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Abstract 

Samantha Lee Allcock 

Living with a changing landscape: Holocene climate variability and socio-

evolutionary trajectories, central Turkey 

Collaborative studies between Quaternary scientists and archaeologists increasingly 

provide new and informative discussions about the nature and timing of cultural change 

and links with variation in the natural world (particularly climate). In the Eastern 

Mediterranean region, connecting the human past with palaeoclimate is an important 

research theme but the complex interactions between them are still poorly understood 

and past climate records have often been collected from regions distant from the human 

record. The thesis aims to derive a record of past climatic and environmental changes 

from lake sediment cores and synthesise this with archaeological data in order to 

reconstruct human-climate interactions at the regional scale. Annually laminated 

sediment data collected from Nar Gölϋ crater-lake and archaeological archives from the 

same region, Cappadocia (Turkey) allow problems of chronological uncertainty between 

records of the human past and palaeoclimatic archives, and spatially variable datasets to 

be addressed.  

New sediment cores collected from Nar Lake in 2010 cover the last ~14000 years based 

on varve counting and climate-stratigraphic correlation. The changing chemical 

composition of these sediments has been obtained using high-resolution Itrax XRF core 

scanning, mainly at 200µm resolution over 21.6m. Temporal differences in Ca and Sr are 

interpreted as a record of regional moisture levels, while Ti and Fe are elemental proxies 

that detail changes in catchment in-wash. These and other sedimentary data (e.g. total 

carbon analysis) document lake evolution from a predominately stable and moist early 

Holocene climate dominated by high authigenic Ca precipitation to a drier and less stable 
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late Holocene dominated by increased authigenic Sr and Mg (and higher lake salinity 

levels). The most arid climatic conditions occurred during Bronze and early Iron Age 

times, but frequent and intense centennial-scale climatic shifts between wet and dry are 

also evidenced during the last 2600 years from Ca/Sr data. 

Peaks in Fe and Ti, along with Si, K and Rb indicate two distinct phases of increased 

sediment influx into Nar Lake, namely ~9200 to ~8000 yr. BP (ceramic Neolithic) and 

again – more importantly – during the last 2600 years (Iron Age and later). These appear 

to be related primarily to increased human impact on vegetation and soils in the lake-

catchment, but volcanic activity and intense rainfall events and/or water deficits may also 

have played a role. 

To determine the degree to which climatic variability and cultural change are interlinked, 

the geochemical record from Nar Lake is correlated against long-term settlement 

histories which have been derived from systematic archaeological site survey and 

excavation data from Cappadocia. One of the key outcomes of the project is an 

examination of periods of climatic stability and instability which are identified by 

amplitudinal changes from the mean state using correlation of coefficient statistics on the 

Nar Lake geochemical record. This information about the predictability of climate has 

been coupled to data in settlement density and location within the resiliency model 

framework of Holling and Gunderson (2002). Together these data suggest that a series 

of four long-term adaptive cycles (Neolithic, Chalcolithic-Bronze Age, Iron Age-Classical, 

Byzantine-Ottoman) characterise the dynamic inter-play between people, climate and 

their environment. In each adaptive cycle, environmental change contributed (both 

positively and negatively) to community resilience, although at no point during the 

Holocene is climatic variability seen as the sole driver of societal change. There were 

times such as the post-Roman Dark Age (1300 to 1100 yr. B.P.) when increased climatic 

variability and environmental degradation may have heightened social vulnerability.
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1. Introduction 

1.1. Research context 

1.1.1. Climate and culture interactions 

Attempts to link natural change events with past societal changes date back as far as the 

early 20th century when key figures such as Raphael Pumpelly, Ellsworth Huntington and 

V. Gordon Childe were influential in advocating a climatic/environmental cause for 

shifting characteristics of human cultures (e.g. Childe, 1926, 1952; Huntington, 1915; 

Pumpelly, 1905). In more recent years, since the development of more accurate 

scientific data from proxy indicators, the role of climatic/environmental change in the 

development of human populations has become an important research theme. The 

identification of ‘rapid climate change’ events which appear to coincide with significant 

social transformations throughout the Holocene has drawn particular interest. This has 

resulted in a number of studies which propose, in a rather deterministic sense, climate 

change as a primary causal factor in the demise of certain human groups (e.g. Cullen et 

al., 2000; Stanley et al., 2003; Weiss and Bradley, 2001). Other studies see climate as a 

driver of increased social complexity (e.g. Brooks, 2006) or an explanation for changes in 

settlement patterns (e.g. Haug et al., 2003). 

Most scholars agree that such mono-causal environmental explanations for societal 

change are too simplistic and ignore the social dimension to change events (see 

Coombes and Barber, 2005). It is also important to note that the linkages made between 

cultural and climatic data are often not as contemporaneous as they seem and can be 

fraught with dating inaccuracies (Berger and Guilaine, 2009). Rosen (2007), by contrast, 

outlines the non-passivity of Eastern Mediterranean people in tackling climatic 

perturbations and avoids the classic climatic deterministic approach by conveying past 
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societies as bodies, at least partially, in control of their own outcomes. Whilst modern 

investigations have shown a nuanced view of these complex interactions (e.g. Cooper 

and Sheets, 2012; McIntosh et al., 2000; Rosen and Rivera-Collazo, 2012; Wilkinson et 

al., 2007), research projects have remained at a small scale and deterministic 

interpretations continue to be in fashion. Even though the comparability and integration 

of research from differing subject fields is being addressed (e.g. Davies and Watson, 

2007; Schulting, 2010), there have been only minor developments in how palaeoclimatic 

and archaeological or historical data sets should be compared. 

A recent development in climate and culture studies has seen the introduction of social 

science terms which, to some degree, have helped to enhance the understanding of 

climate/people relationships. The increased use of social science related terms directly 

relates to our own cultural systems and growing concern with the changing climate 

system we currently face. Ideas such as adaptive response, vulnerability, resilience, 

complexity theory, nonlinear change and feedback regimes (Adger et al., 2005; Adger et 

al., 2009; Byrne, 1998; Janssen et al., 2006; Nelson et al., 2007) are no longer seen as 

just applicable to modern communities, or as simply ‘current’, but as cultural creations 

which were just as relevant in the past (Redman, 2005). Such ideas are now represented 

in discussions (e.g. Ur, 2010)  concerning, for example, the Akkadian and Early Bronze 

Age (EBA) collapse events which, up until present, have primarily been considered from 

a deterministic perspective (Gophna and Portugali, 1988; Richard, 1980; Staubwasser 

and Weiss, 2006). Joint archaeological and palaeoclimatic investigations now suggest 

that climate may not have always been as detrimental to Akkadian culture as first argued, 

as grain storage systems and water regulatory techniques were used to help combat the 

effects of climate (Cullen et al., 2000; Kuzucuoğlu, 2007; Ur, 2010). Whilst still in their 

infancy, these new discussions about how Near East populations had anticipated change 

and moved towards safe-guarding their lifestyles are developments in understanding 

these relationships.  
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It cannot be denied that certain bodies of evidence indicate that periods of cultural 

transition do occur at times of climatic deterioration or amelioration, linked to episodes of 

resource scarcity or environmental uncertainty (e.g. Brookfield, 2010; Brooks, 2006, 

2010). In this regard, some scholars (e.g. Brooks, 2006) have particularly focused on the 

mid-Holocene, for example the 6th Millennium B.P, as a large body of data suggests that 

this time period witnessed widespread climatic drying and reorganisation of many 

different social groups across the Old World. With the emergence of a new climatic state 

by 5000 cal. yrs. B.P., it is argued that a new phase of complex social developed began 

that was significantly different to that which had existed only 1000 years earlier (Brooks, 

2010). The problem remains that interpretations of this sort are formulated from research 

that had been carried out in separation, either in the science or humanities fields, and 

that relationships were ‘perceived’ rather than ‘understood’. Scholars often struggle to 

work from the standpoint of social and scientific disciplines but it is through an integrative 

perspective that the greatest understanding and reconciliation of datasets can be made. 

Given this intricate and often confusing latticework of multifaceted interactions between 

climate, environment and people, this doctoral thesis work seeks to gain a more in-depth 

understanding of climate change and human response mechanisms for the Holocene. 

The Holocene is clearly an era of major social development that to some extent is 

dependent on shifting natural systems, and warrants further research. This research 

aims to look at different climate states and socio-economic and political adjustments 

from an integrated perspective. The work presented here explores the influence of 

changing climatic/environmental variability on past communities and how this is related 

to the sensitivity and adaptability of past societies during the late Pleistocene and 

Holocene. An annual-decadal, as well as a centennial-millennial, temporal resolution is 

used to study climate/culture relations as people will more likely perceive changes in 

climate e.g. between wet and dry on a year by year basis. Emphasis is placed on 

climatic variability rather than sudden change events, as it could be hypothesised that 
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sensitivity and adaptability of past people were highly influenced by stable or unstable 

climate regimes (Rosen, 2007). A comparative analysis of changes in climatic and 

environmental stability and archaeology will be used to outline relationships between 

them. 

1.1.2. The value of annually laminated lake sediments  

Annually laminated or varved sediments are well known recorders of climate and 

environmental variability due to their changing nature, composition and structure (Gold, 

2009). They can provide accurate chronologies based on varve counting and can be 

analysed at high resolution using a range of proxy indicators (Brauer and Negendank, 

2002). Varved lake records have thus been identified as key palaeo-archives for inland 

regions and in recent decades, many projects have attempted to exploit this potential 

gain in understanding.  Varved lake sedimentary archives offer the potential to 

reconstruct records of regional climate and environmental change over time, as seen in 

Jones et al (2006), Marshall (2010), Roberts et al (2001) and Tiljander et al (2003). Their 

sensitivity to climate is often a consequence of a hydrological system that can be 

influenced by evaporation and precipitation (P-E) budgets (Street-Perrott and Harrison, 

1985). Changes to the P-E ratio can cause a lake’s water balance to fluctuate, which 

leads to distinct shifts in the physical, chemical and biological processes occurring within 

a lake, a record of which can be preserved in the lake sediments (Street-Perrott and 

Harrison, 1985). Studies will often adopt a multi-proxy approach (Lotter, 2003) which 

encompasses various geochemical and biological components to help reconstruct 

environmental and climatic change in the lake and catchment over time. 

The benefit of using annually laminated lake sediments extends beyond climatic and 

environmental reconstructions as they can be used to address some of the issues that 

are prevalent in climate/culture studies. Principally they can offer a stricter and more 

tightly dated record of palaeoclimatic change which can help to resolve the problems 
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associated with dating accuracy and uncertainty, and provide detail at the yearly or sub-

annual temporal resolution which is the scale at which people most readily observe 

signals of climatic disruption (Akerlof et al., 2013; Biehl, 2012). Moreover, climate 

reconstructions from lake sediments are often more useful to climate/culture studies 

because the record of climatic change comes from a site which can be in very close 

proximity to areas of past human habitation, thus reducing the effective of spatial 

variability and ensuring that the climate recorded in the lake sediment proxies is the 

same as that experienced by past communities. 

Within this research project, Nar Gölϋ (Lake) has been identified as a suitable site to 

study palaeoclimate. Nar Lake is situated within Cappadocia, central Turkey, and is a 

source of information on the climate history of the Eastern Mediterranean (England et al., 

2008; Jones et al., 2006; Turner, 2007; Woodbridge and Roberts, 2011). The study site 

was chosen for its 1) continuous sediment record throughout the Late Glacial and 

Holocene, 2) annually-deposited (varved) sequences, 3) possibility to establish a high-

resolution (annual) and reliable chronology, 4) existing understanding of the relationships 

between climate proxies and particular climate variables. As Nar Lake is situated 

amongst a plethora of archaeological sites, palaeoclimate data can also be compared to 

changes in human behaviour as evidenced in the archaeological record to investigate 

how societal changes were mediated, by varying degrees, by climatic and environmental 

change. Advantageously, synchronisms in the archaeological and palaeoclimatic records 

can be investigated at the regional scale due to the spatial congruence between the Nar 

Lake site and past occupational locales.  

1.2.  Research aims and objectives 

Overarching aim: The principal aim of this research is to provide a detailed long-term 

reconstruction of changes in Holocene climatic and environmental variability for the 

purpose of comparison to regional past societal changes. Of particular interest are 
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linkages to human societies in the region of Cappadocia, central Turkey, and how 

uncertainties in past climate/environment may have influenced the life choices made by 

past people at various temporal and spatial scales.  

Aim1: To build a clear picture of Holocene climatic and environmental variability to 

assess when natural change occurred in Cappadocia and how.  

Objective 1: To evaluate short-term and long-term Holocene climatic and environmental 

variability from high-resolution sampling and analysis of varved lake sediment archives.  

Objective 2: To delineate periods of stability (constant periods) and instability (unsteady 

periods) in Holocene climate/environment using geochemical elemental records from 

annual lake sediment deposits.  

Objective 3: To combine data from this project to existing Holocene climatic and 

environmental data to understand the broad picture of natural change in central Turkey 

and the Eastern Mediterranean. 

Aim 2: To assimilate records of Holocene climatic and environmental variability with the 

past human record to develop new ideas about the integration of climate and cultural 

data and how ancient social systems developed alongside changes in variability. 

Objective 4: To create archaeological and historical data sets to build up a picture of past 

human occupation in Cappadocia for the Holocene time period, drawing on individual 

site data as well as large scale regional archaeological survey results. 

Objective 5: To produce a timeline of human habitation periods and abandonment 

periods from the archaeological and historical records to establish when there may have 

been cultural discontinuities during the Holocene.  
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Objective 6: To understand the inter-relatedness of climate, environment and culture 

using sediment and archaeological data to examine the hypothesis that stable climates 

would have been more advantageous to past communities.  

Aim 3: To produce a more research-informed, whole-systems dialogue about the 

challenges past societies faced and ultimately what actions, if any, they took during 

times of Holocene climatic and environmental variability.  

Objective 7: To understand the types of links and feedbacks which existed between the 

natural world and people, and how these developed within the limits of Holocene climate 

change. 

Objective 8: To assess how resilient or prepared past communities were and how 

effective social systems were during times of variability in climate.  

Objective 9: To document what happened to past cultures during times of stress and 

vulnerability created by climate variability. This will use knowledge gathered through 

objective 8 about the resilience of communities and how well societies coped with 

changing climate. 

1.3. Thesis outline 

The remainder of the thesis is comprised of 7 chapters. Chapter 2 includes a summary of 

the literature on palaeolimnological study, palaeoclimatic patterns in the Eastern 

Mediterranean, and how past climatic characteristics can be integrated with 

archaeological research to provide an understanding of climate and culture relationships. 

Chapter 3 outlines the key methods employed in this study and the reasoning behind 

their usage. This is followed by a presentation of the project results from Itrax XRF core 

scanning and other sedimentary investigations (chapter 4), and archaeological data 

collection (chapter 6). An interpretation of the Nar Gölϋ geochemical outputs is provided 

in chapter 5. In chapter 7, the results from both the laboratory investigations and 
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archaeological survey collection are brought together to investigate climate/culture 

relationships. Firstly, comparisons between the Nar Gölϋ data and other records of 

Eastern Mediterranean climate are made to discuss the replicability of the palaeoclimate 

record established from Nar Lake sedimentary data. Following this, a discussion 

regarding climatic and environmental variability is made and associated with the history 

of past human occupation in Cappadocia. Finally, climate and environmental variability 

and cultural change are understood from a resilience perspective with the aim of 

highlighting the linkages between climatic change and cultural change. Chapter 8 

includes an overview of the conclusions drawn from this doctoral study and makes 

recommendations for future research. 
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2. Literature review                                                    

Palaeolimnology, Eastern Mediterranean climatic change and 

climate/culture relationships 

2.1. Chapter introduction 

This chapter outlines the key background readings conducted which shaped the basis of 

this thesis. It firstly introduces the subject of palaeolimnology and the advantage of using 

varved lake sediments for understanding palaeoclimatic change, and it draws on XRF 

geochemical analysis for extracting climate data from annual lake sediment archives. It 

also includes a review of the current understanding and literature surrounding Eastern 

Mediterranean climate change from the Late Glacial period through to present day. The 

chapter finishes with an overview of climate and culture studies to date, focusing on the 

development in theory and modern ideas about how we should address such complex 

interactions. 

2.2. Annually laminated lake sediment archives 

2.2.1. Palaeolimnology and palaeoclimatology, an introduction 

Palaeolimnology is the study of past conditions and processes which occurred within a 

lake basin (Last and Smol, 2001). Palaeolimnology plays a key role in palaeoclimate 

studies as processes and conditions can be picked up at high-resolution and inform 

about how climate may have been interacting with the lake environment at various 

temporal and spatial scales (Brauer and Negendank, 2002). Data derived from lake 

sediment archives is generally complex as the information can signify changes in both 

the limnological and terrestrial environments (Brauer and Negendank, 2002). The climate 

record established from lake sediment may not therefore represent the exact climatic 
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forcing due to the non-linear and non-stationary nature of deposit formation (Fritz, 2008). 

Studies of palaeoclimate from palaeolimnological archives demonstrate the usefulness of 

lake sediment records in understanding past climate change (Cohen, 2003). The 

geographical distribution of lakes is wide which provides scholars with a global network 

of sites to choose from and allows for various scales of investigation to be conducted 

with regard to past climate (Battarbee, 2000). Figure 2.1 from Battarbee (2000) outlines 

the sorts of processes which occur in lake as the result of climate and demonstrates the 

physical, biological and chemical responses of the lake system which need to be 

understood to interpret past climatic change from lake sediment archives. 

 

Figure  2.1: Schematic diagram taken from Battarbee (2000) to show examples of the principal 

physical, chemical and biological responses of lake systems to changes in climate forcing. 

Permission to reproduce this image has been granted by Elsevier. 

The biggest issue with palaeoclimate studies is generating a record of climate which 

distinguishes between local factors and regional climate variations, and obtaining 

spatially similar archives (Fritz, 2008). Each lake is different and each lake responds in a 
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unique way to climate forcing which can generate rather conflicting climate 

reconstructions. Therefore, palaeoclimate records must consider regional environmental 

variations, basin characteristics and factors driving sediment formation before any 

detailed reconstruction of climate can be made (O'Sullivan, 1983; Renberg et al., 1984; 

Simola, 1992). As Battarbee (2000) states and as others have shown (Gasse et al., 1987; 

Villalba et al., 2009; Zolitschka, 1998), the multi-proxy approach is the best method for 

understanding lake-catchment and lake-system responses to climate change. Caution 

must be given to responsiveness and lag times however, as each proxy record will 

respond differently to a climatic event and interpretations will therefore be dependent on 

how we understand relations between the two variables (Ingram et al., 1981). Examples 

of the sorts of studies which have been conducted into past climate from lake sediment 

archives can be seen in (Anderson et al., 1996; Bradley and Dean, 1993; Hardy et al., 

1996; Itkonen and Salonen, 1994; Lotter and Birks, 2000; Ramrath et al., 1999). 

2.2.2. Annually laminated lake sediment (varves) 

Varves are annually deposited rhythmic formations which generally consist of a summer 

and winter sediment formed under changing seasonal conditions (Gold, 2009). Varves 

are derived from both autochthonous and allochthonous material and constitute an array 

of deposits depending upon the physical, chemical and biological properties which were 

occurring within and around the lake at the time of formation (Gold, 2009). Catchment 

clastic sediment input may result from precipitation, runoff, vegetation cover and soil 

condition whilst in-lake variations can derive from dissolved materials, chemicals and 

organic matter and are controlled by oxygen content, pH, salinity and water temperature 

(Anderson and Dean, 1988). Limits to varve formation and preservation are outlined by 

O’Sullivan (1983) who suggests that deposits need to be undisturbed and flat lying, and 

that lake water needs to be fairly still to reduce bioturbation and movement of the lake 

bottom. Deep lakes are ideal for varve creation and stability because they are deep 
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enough to minimize disturbance but they also promote low oxygen levels which 

discourages the growth of damaging benthic organisms (O'Sullivan, 1983).  

Due to their changing nature, composition and structure, varves are good recorders of 

climate (Gold, 2009). Varved lake sediments are particularly important for high-resolution 

climate change studies not only because they provide a clear and simple way of defining 

short and long term natural change but because they can provide a chronology, 

independent of other dating techniques (Lamoureux, 2001; Renberg, 1983). Chronology 

formation involves counting individual laminae, replication, cross-dating and cross-

correlation with other dated records to determine the age of the stratigraphic sequence 

(Lamoureux, 2001). Analysis consists of finding a good match between known and 

unknown sections of varve deposits to assign an age to the stratigraphic sequence 

(Verosub, 2000). It is also useful to independently check chronologies through 

radiometric, historical or other incremental dating techniques to validate the determined 

age-depth profiles (Lamoureux, 2001).  

The demand for more accurately dated palaeoclimatic reconstructions from lake 

sediments in recent years has encouraged the growth in studies on varved deposits, 

from investigations into the physical properties of varves and changes in fossil 

assemblages to dating techniques (e.g. Landmann et al., 1996b; Lücke et al., 2003; 

Ojala and Tiljander, 2003; Romero-Viana et al., 2008; Snowball et al., 2010; Tiljander et 

al., 2003; Wick et al., 2003). These annually deposited sediment archives usually exhibit 

visible stratigraphic changes related to regional seasonality and the effects of climatic 

factors combined with anthropogenic influences and basin characteristics. The sensitivity 

of the lake system to changing natural and human-induced conditions leads to 

information about palaeoclimate and environments. Therefore palaeo-reconstructions 

can be performed through varved sediment analysis.  
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2.2.3. Annually laminated lake sediments and the advantages of using XRF  

One of the more significant improvements in terms of analysing lake sediments has been 

the introduction of XRF (X-ray fluorescence) core scanning techniques (Francus et al., 

2009) which allow non-destructive, high-resolution geochemical data to be gathered. 

This is of particular benefit to varved lake sediment deposits (in fact any annually 

laminated sequence) where it is necessary to determine climatic or environmental 

variability over short-term time scales, and there is the need to describe changes that 

have occurred during individual years. XRF scanners offer many applications for 

palaeolimnology including estimating erosion intensities, primary productivity and palaeo-

redox conditions (Francus et al., 2009), which can complement other investigatory 

techniques, but by far the most useful to studies of annual deposits is the sub-millimetre 

scale of analysis (Francus et al., 2009). High-resolution core scanning also has the 

advantage of being relatively low cost and requires few preparation steps (Wilhelms-Dick 

et al., 2012) which is useful when attempting to interpret seasonal changes over long 

temporal scales. The precise chemical composition of sediment cores is not often 

needed in palaeoclimate studies where critical boundaries and shifts are of the main 

interest (Wilhelms-Dick et al., 2012). The fastest way to obtain continuous and accurate 

measurements at high-resolution is therefore by XRF scanning which details only relative 

variations in elemental components (Croudace et al., 2006).  

As with any investigatory technique, the accuracy of this method for palaeoclimate 

reconstruction is variable and can be influenced by a number of physical sedimentary 

properties (Böning et al., 2007; Hennekam and de Lange, 2012; Kido et al., 2006; 

Richter et al., 2006; Tjallingii et al., 2007; Weltje and Tjallingii, 2008). The consequences 

of these factors on elemental intensities are important for palaeoclimatic studies and 

should be adequately considered (Hennekam and de Lange, 2012). As Löwemark et al 

(2011) points out, the dilution effect of organic material on the elemental measurements 

obtained can be rectified to some extent by normalising using a stable elemental 
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component to better assess relative change. XRF is thus an attractive tool for 

palaeoclimate studies provided that some of the investigative uncertainties can be limited 

or quantified (Hennekam and de Lange, 2012). 

XRF core scanning at very high-resolution (µm scale) has been conducted on a number 

of annually laminated lake sequences and proven to be a useful tool for dating annual 

layers and obtaining palaeo-climate/environmental data. An Itrax XRF scanner used on 

lake sediments from Japan proved to be a useful instrument in the creation of a varve 

chronology as the individual varve limits could be precisely marked using a combination 

of Itrax-derived optical, density (X-radiography) and geochemical properties (Kossler et 

al., 2011). Combined with thin sectioning and microscopic investigation of micro-facies, 

an adequate varve based-age model was created (Kossler et al., 2011). In Germany, the 

same method of using Itrax XRF core scanning on Lake Meerfelder Maar (Martín-

Puertas et al., 2012) gave information regarding long-term lake change through Ti 

(Titanium) and Si/Ti (Silica/Titanium) ratio data. A record of Holocene windiness was 

documented even though proxy sensitivity to Holocene climatic variation had shifted 

across time. Itrax scanning on varved sediment cores from Cape Bounty also provided a 

history of changing lacustrine conditions, in this case related to sediment source 

changes and environmental variability (Cuven et al., 2011). The applicability of micro 

XRF scanning is evidently vast. 

2.3. Eastern Mediterranean palaeoclimate 

2.3.1. Eastern Mediterranean palaeoclimate, an introduction 

The Eastern Mediterranean (EM) region is widely discussed in relation to changing 

climate (e.g. Arz et al., 2006; Bar-Matthews et al., 1997; Finné et al., 2011; Migowski et 

al., 2006; Roberts et al., 2011a; Roberts et al., 2011b; Schilman et al., 2001; 

Staubwasser and Weiss, 2006; Weiss and Bradley, 2001; Weninger et al., 2006). The 
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EM region in this context includes a number of modern European, North African and 

southwest Asian countries and their surrounding coastlines (figure 2.2). The climate of 

the region today is highly varied, with each country showing individual climatic 

characteristics; more generally, the whole Eastern Mediterranean is dominated by drier 

conditions in the summer with higher rainfall levels during the winter and spring months 

(Magri et al., 2004). The EM has a complex climatic history due to the influence of 

atmospheric circulation patterns, oceanic conditions and topography. Modern EM climate 

is controlled mainly by the North Atlantic Oscillation (NAO), and Indian Monsoon (figure 

2.2), but the North Sea Caspian Pattern (NCP), El Niño/Southern Oscillation (ENSO) and 

Arctic Oscillation (AO) also have important influences on the regions climate (see 

Kostopoulou and Jones, 2007a, 2007b; Lionello et al., 2006; Mann, 2002; Staubwasser 

and Weiss, 2006; Xoplaki et al., 2003, 2004). Besides climate, anthropogenic activity has 

played an important role in shaping the EM landscape. Climatic change coupled with 

human impact has altered the region’s environment to such a degree that the influences 

of the two are often hard to disentangle (Roberts et al., 2011b). 

The Eastern Mediterranean region, with its long history of human occupation, offers an 

excellent opportunity to link climatic and environmental variability to the human record of 

change as outlined by archaeological findings (Finné et al., 2011). The climate of the 

region has always been a significant influence on the interplay between people and their 

natural-setting (Finné et al., 2011). The climate and resources available to past people 

were substantially different from those available today, and this was driven by the 

evolution of climate over millennia. In contrast to the last 2000 years, Eastern 

Mediterranean climates of the early and mid-Holocene, and preceding Pleistocene were 

controlled principally by solar radiation and ice cover forcings that were very different 

from modern times (Roberts, 2011). The unstable nature of climate over archaeological 

timescales offers the chance to understand how human societies coped with climatic 

changes in the past, and bring to the forefront an understanding of the human 
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experience of dynamic environments (Miller and Moore, 2011). In order to address 

interrelations between past climate and society since the late Pleistocene, a brief outline 

of palaeoclimate data and reconstructions from the region since the Late Glacial is 

provided. 

 

Figure  2.2: Map of the Eastern Mediterranean region highlighting the dominating atmospheric 

circulation patterns (adapted from Woodbridge (2009)). 

The Pleistocene period is characterised by major shifts in global climate between glacial 

and inter-glacial episodes which continued until around 11700 years ago with the 

commencement of the current warm inter-glacial phase called the Holocene (Rosen, 

2007). The late Pleistocene (126000-11700 cal. yrs. B.P.) in the Eastern Mediterranean 

shows a synchronous climatic history to the rest of the Northern Hemisphere, in effect 

being driven by changes in radiation balance, greenhouse gases  and land ice cover 

(Roberts, 2011). The Late Glacial Maximum (LGM) occurring between ca. 25000-18000 

cal. yrs. B.P. represents the last maximum extent of ice cover before warming ensued 
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soon after ca. 15000 cal. yrs. B.P., and before the cold climatic reversal known as the 

‘Younger Dryas’ (ca. 12900-11700 cal. yrs. B.P.) The shift back to warmer and wetter 

conditions ushered in the Holocene (Rosen, 2007). The general picture of long-term 

climate trends driven by precessional forcings during the Holocene is relatively well-

understood. A warmer and wetter first half of the Holocene is replaced around 6500 

years ago with generally drier conditions in the EM (Roberts et al., 2008). However, 

super-imposed on this long-term trend are smaller scale fluctuations in climatic variability 

that resulted in a rather complex climatic history for the Holocene (Finné et al., 2011). Of 

importance are the rapid climate change events that repeatedly caused a short-lived 

deterioration in climate (Rohling et al., 2002) and potentially constrained societal 

development (Weninger et al., 2009). The Holocene also witnessed a significant switch 

from a relatively nature-dominated to a relatively human-dominated earth system that 

caused greater environmental instability and anthropogenic landscape changes 

(Messerli et al., 2000). 

Establishing reliable climatic records remains one of the challenges of Quaternary 

research in the Eastern Mediterranean (Eastwood et al., 2007a).  Nevertheless, a wide 

range of natural archives (e.g. lake sediment, cave speleothem and tree-ring) is available 

for analysing past climate. Palaeoclimatic data and reconstructions have been drawn 

from a number of different sources including pollen, diatoms, geomorphological evidence 

and historical data (e.g. Gvirtzman and Wieder, 2001; Leroy, 2010; Roberts et al., 2004; 

Woodbridge and Roberts, 2011), but each of these proxy indicators has their limitations. 

The number of studies undertaken has provided a good understanding of EM climate 

variability at various spatial and temporal scales. An useful overview of climatic changes 

during the late Pleistocene and the beginning of the Holocene can be found in a paper 

by Robinson et al., (2006), whilst changes in the latter Holocene are summarised by 

Roberts and others (Roberts et al., 2011a; Roberts et al., 2011b). 
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2.3.2. Eastern Mediterranean climate from lake sediment archives 

As outline above in section 2.2, lake sediments offer a unique record of changes in 

hydrological and vegetation conditions through proxy studies such as geochemical 

scanning.  Lakes and lake sediment archives are infrequently found in some parts of the 

Eastern Mediterranean due to low summer precipitation levels and high evaporation 

rates (Roberts and Wright, 1993). There are however a few lakes which offer a firm 

understanding of Late Glacial and Holocene climatic change for the region; key sites 

include Lake Hula (Huleh) (Baruch and Bottema, 1999), Lake Ghab (Meadows, 2005), 

Lake Kinneret (Sea of Galilee) (Baruch, 1986), Birkat Ram (Schwab et al., 2004), the 

Dead Sea (palaeo-lake Lisan) (Migowski et al., 2006), and Burdur, Tϋz, Nar, Eski Acιgöl, 

Konya, Gölhisar, Tecer, Beyşehir and Van Lakes from Turkey (see Eastwood et al., 

2007a; Erol, 1978; Erol, 1997; Jones et al., 2006; Kuzucuoğlu et al., 2011; Roberts, 1983; 

Roberts et al., 2008; Roberts et al., 2001). Sites discussed in this, and the following sub-

sections are mapped by location in figure 2.3. 

Palaeoclimate records extracted from lake sediment archives from the EM region offer a 

history of climate change over the last ~25000 years (figures 2.4 & 2.5). A cold and dry 

Late Glacial Maximum (LGM) and warm and moist conditions centred around 15000 

years ago are inferred from lake archives. Rainfall and temperature are documented to 

have steadily increased from ca. 17000-13000 cal. yrs. B.P, highlighting a long-term 

trend from cold, glacial conditions of the late Pleistocene to warm, interglacial conditions 

of the Holocene (Robinson et al., 2006). The trend towards climatic amelioration from the 

LGM was punctuated by a short climatic event known as the Younger Dryas which saw a 

temporary reversal back to cold conditions (Robinson et al., 2006). This pattern of 

climatic change is seen, for example, at Pleistocene Lake Lisan (precursor of Dead Sea) 

as sediment data (Bartov et al., 2002) suggests high lake levels during the LGM linked 

into a cooler climate with less evaporation (figure 2.4). Lake Lisan water levels began to 
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progressively decrease following this high lake stand as a result of increasing 

evaporation levels and higher temperatures.  

 

Figure  2.3: Location of sites discussed in section 2.3 of this chapter. 1) Hula (Huleh) Lake, 2) 

Lake Ghab, 3) Lake Kinneret (Sea of Galilee), 4) Birkat Ram Lake, 5) Dead Sea and associated 

sites, 6) Burdur Lake, 7) Tϋz Lake, 8) Nar Lake, 9) Eski Acιgöl Lake, 10) Konya Lake, 11) 

Gölhisar Lake, 12) Tecer Lake, 13) Beyşehir Lake, 14) Van Lake, 15) Soreq Cave, 16) Sofular 

Cave. 

Palaeo-lake Konya (Roberts, 1983) in central Turkey provides a record of lake level 

change throughout the Late Glacial phase. High lake levels represented by Dreissena–

littoral sands and a dominance of chemical and minerogenic over organic sedimentation 

occur between ca. 22850-17610 14C. yrs. B.P. This period witnesses some fluctuations in 

lake level but the biggest shift towards lower lake stands occurs after 17.0 ka years ago. 

Lacustrine stands between 17000 and 12000 years ago suggest lake levels fell 

dramatically but the precise nature of the shallowing is unknown. This pattern of change 

is not too dissimilar from that seen at palaeo-lake Lisan and Akgöl Lake (Roberts et al., 
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1999), and is suggested to relate to changes in both temperature and water availability. 

High lake levels at Konya Lake in this instance were reliant on temperature lowering to 

reduce evaporative losses, and increased moisture levels from snow and ice melt in the 

lake catchment during glacial conditions (Roberts et al., 1999). Subsequent lake 

regression in comparison stemmed from a climatically arid phase and higher evaporation 

following the LGM (Roberts et al., 1999). The Late Glacial/Interglacial climatic transition 

at Eski Acιgöl Lake in central Turkey (Roberts et al., 2001) also shows a step-wide 

progression into the Holocene that is driven principally by cooling/warming events. 

 

Figure  2.4: Compilation of lake sediment archives from Lake Lisan and Lake Tiberias for the late 

Pleistocene and Holocene showing shifts in lake level related to changes in EM palaeoclimate 

(Robinson et al., 2006, pg. 1522). Permission to reproduce this image was granted by Elsevier. 
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Figure  2.5: Collection of proxy based palaeoclimate data showing wetter (up) and drier (down) 

conditions for the Holocene. Records D (Gölhisar), E (Nar), F (Eski Acιgöl) and G (Van) highlight 

data from lakes in Turkey. Notice that all records show a long-term downward trend towards drier 

climate conditions and that there were repeated shifts between wet and dry (Finné et al., 2011, pg. 

3158). Permission to reproduce this image has been granted by Elsevier. 
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Two further lake settings which provide information on the late Pleistocene are Lake 

Ghab and Lake Hula (Rosen, 2007). The Ghab pollen sequence suggests that during the 

LGM (ca. 23500-17000 cal. yrs. B.P.) there was an expansion of Mediterranean forest 

into the Ghab basin until temperatures warmed after the LGM and the forests receded to 

their minimum extent between ca. 17000-13000 cal. yrs. B.P. Forest cover was also high 

around 13500-11450 years ago, corresponding to a Younger Dryas type cooling event 

(Niklewski and Van Zeist, 1970; Rosen, 2007). Rossignol-Strick (1995) suggests that 

adjustment of dating errors in the Lake Ghab core would put this sequence more in line 

with other pollen diagrams from the region which highlight major forest decline during 

drier and cooler conditions, and not during wetter and warmer phases. The Lake Hula 

pollen sequence (Baruch and Bottema, 1999) shows low tree pollen at the end of the 

LGM (here dated to ca. 20500 cal. yrs. B.P.) and a marked rise in arboreal pollen 

between ca. 18700-13550 cal. yrs. B.P. This pollen sequence shows a typical late 

Pleistocene climatic evolution with distinctive shifts between wet and dry, warm and cold 

associated with stadial and interstadial events.  

A sharp shift in climatic conditions to warm and wet accompanies the change into the 

Early Holocene (ca.11700-7500 cal. yrs. B.P.). Lake records for this time period expand 

into previously desert type environments in Arabia and North Africa which supports a 

picture of moister climatic conditions (Street-Perrott and Perrott, 1993). The Lake Ghab 

and Hula records both show a significant rise in arboreal pollen types at the beginning of 

the Holocene, associated with warming and wetting (Rosen, 2007). The Lake Ghab 

record shows a growth in oak, pine and pistachio tree pollen (Yasuda et al., 2000) 

suggesting forest expansion and points towards a clear shift to higher precipitation levels. 

The transition at the beginning of the Holocene at Eski Lake showed a shift from herb- to 

grass-steppe at the same time as a negative shift in δ18O values (Roberts et al., 2001), 

with both proxies clearly responding to a more favourable water balance. Lake Van in 

Eastern Turkey (Lemcke and Sturm, 1997) records a similar palaeolimnological history 
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which witnesses an abrupt isotopic depletion during the Early Holocene. In contrast to 

Eski Acιgöl, however, the isotopic results from Lake Van imply that maximum moisture 

levels were not reached until some 3000 years after the transition into the Holocene 

(Roberts et al., 2001). 

During the mid-Holocene (ca. 7500-4000 cal. yrs. B.P.) lacustrine evidence begins to 

characterise a new phase of climatic conditions, this time marking a period of drier 

episodes and the transition to late Holocene aridity. The Dead Sea record for this period 

(Frumkin, 1997; Frumkin et al., 1994; Migowski et al., 2006) shows frequent shifts 

between low and higher lake stands. Migowski et al., (2006) records very dry conditions 

between 7500-5500 cal. yrs. B.P. and rising Dead Sea levels from 5400-3500 cal. yrs. 

B.P. This may support ideas of a wet phase around 5000 cal. yrs. B.P. as depicted in the 

Levant (Robinson et al., 2006). 

The initiation of a mid-Holocene drying trend is also depicted at other lake sites like 

Tecer (Kuzucuoğlu et al., 2011), Gölhisar (Eastwood et al., 2007a) and Van (Lemcke 

and Sturm, 1997; Wick et al., 2003). Numerous sites indicate that humidity levels were 

greatly reduced at this time, although the exact timing of the onset of drier conditions 

differs from place to place (Finné et al., 2011). Generally, multi-centennial oscillations 

between wet and dry were superimposed on an overall drying trend as suggested by 

negative to positive shifts in δ18O values from stacked lake sediment data (Roberts et al., 

2011b) . 

 Persisting wet conditions were followed by aridity around 4000 cal. yrs. B.P. at Lake Van 

(e.g. Wick et al., 2003), at roughly the same time (ca. 4500-3800 cal. yrs. B.P.) as a 

pronounced shallowing of Lake Zeribar in NW Iran as inferred from vegetation data 

(Wasylikowa et al., 2006). At Eski, the disappearance of varved deposits around 6500 

cal. yrs. B.P., and the establishment of salt-tolerant diatoms species indicate a clear fall 

in lake level (Roberts et al., 2011b). Pollen data from this lake site also substantiate a 
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decline in regional moisture levels as oak pollen percentages fall between ca. 5300-3800 

cal. yrs. B.P., and steppic plant species begin to dominate the sequence suggesting 

lower soil moisture availability (Roberts et al., 2011b). At Gölhisar, the vegetation record 

also highlights increased aridity between 4400-3900 cal. yrs. B.P., but the size of Lake 

Van prevents it being as responsive to climatic change as other Turkish sites (Roberts et 

al., 2011b). 

In the late Holocene (ca. 4000 cal. yrs. B.P. - present), lake data suggests a general 

aridification of climatic conditions and a move towards climatic conditions similar to today 

in the region. The best late Holocene climatic record for the Eastern Mediterranean 

comes from Nar Gölϋ (Lake) in central Turkey. The stable isotope record for this site 

during the last 1700 years (Jones et al., 2006) indicates positive isotopic values prior to 

1410 cal. yrs. B.P. and between 550 cal. yrs. B.P-present day, and generally more 

negative isotopic values in-between, suggesting that from AD 200-540 and AD 1400-

1950 there was regional drying but between AD 540-750 and AD 1000-1350 conditions 

were relatively wetter.  

Prior to 1700 cal. yrs. B.P., other Turkish lake sites (Roberts et al., 2008; Roberts et al., 

2001; Wick et al., 2003) show that arid conditions were prevalent after 3000 cal. yrs. B.P., 

although a brief return to higher lake levels is evidenced around 2000 years ago. Rising 

lake levels of the Dead Sea, with a high-lake stand at 2050 cal. yrs. B.P. (Bookman et al., 

2004), also suggests that dry conditions were interrupted by a wetter phase. Lake 

Kinneret (Dubowski et al., 2003) isotopic data details shifts between wet and dry for the 

late Holocene. The period from ca. 3250-2550 cal. yrs. B.P. was highlighted as being dry; 

this was followed by a shift to wetter conditions around 2550-1600 cal. yrs. B.P. A hiatus 

in the record disturbs the sequence until ca. 1250-900 cal. yrs. B.P. when dry conditions 

return. At 900 cal. yrs. B.P. there is a short lived wet phase and then another return to 

dry conditions following ca. 170 cal. yrs. B.P. (Rosen, 2007).  
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Most of the relevant pollen records for the late Holocene are from Lakes Hula, Ghab and 

Birkat Ram (Schwab et al., 2004). Most of the pollen diagrams probably reflect a major 

influence of anthropogenic activity on landscape change for this period and therefore are 

only partially linked to palaeoclimatic changes. A decline in olive around ca. 1500 cal. yrs. 

B.P., and an accompanied increase in oak and Pistacia, a sign of forest re-growth could 

possibility be linked into a warmer and wetter phase during the Medieval period (Rosen, 

2007). In Turkey, a decline in cultivated plant species and a rise in natural tree species 

are associated with a period of recurring Arab invasions (England et al., 2008). 

Regardless of the influences of human activity of vegetation response, a lack of olive 

cultivation in Italy and higher levels of cultivation in eastern sites (like in Turkey) may 

suggest regional variations in relative humidity levels that favour olive growth in more 

eastern regions (Finné et al., 2011). 

2.3.3. Eastern Mediterranean climate from non-lake archives 

As with varved lake sediment records tree-rings are frequently used as a proxy indicator 

of past rainfall because of their ability to record moisture change at high resolution. The 

temporal control is afforded by the annual (yet seasonally specific) formation of tree-rings. 

Whilst in their infancy, dendroclimatological studies in the Eastern Mediterranean (e.g. 

Akkemik & Dağdeviren, 2005; Akkemik and Aras, 2005; D'Arrigo and Cullen, 2001; 

Hughes et al., 2001; Touchan and Hughes, 1999; Touchan et al., 1999) probably offer 

the most detailed records of past climatic change, but mainly only for the last millennium. 

For example, studies by Touchan and others  (e.g. Touchan et al., 2007; Touchan et al., 

2005) reconstructed wetting and drying phases, and changes in precipitation levels 

during the last few centuries; a particularly humid episode was identified between 432 

and 363 cal. yrs. B.P.. Sarris et al., (2007) suggest that the EM has become 

progressively drier, and that this pattern of aridity has become more pronounced since 

AD 2000 based on tree ring growth and precipitation data from southwest Turkey. 
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Cave speleothem records have also offered a detailed history of late Pleistocene and 

Holocene climatic change within the EM. Speleothem records can act as a proxy for 

changes in palaeo-precipitation as demonstrated by Bar-Matthews et al. (e.g. Bar-

Matthews et al., 1997; Bar-Matthews et al., 2004; Bar-Matthews et al., 1999). Probably 

the best tool for understanding climatic change has been the isotopic changes as 

depicted from speleothem records (e.g. Bar-Matthews et al., 2003; Fleitmann et al., 2009; 

Frumkin et al., 1999; Jex et al., 2010; Roberts et al., 2010; Rowe et al., 2012).  

The Soreq Cave δ18O and δ13C isotopic records (see Bar-Matthews and Ayalon, 2011; 

Bar-Matthews et al., 1997; Bar-Matthews et al., 1998, 2004; Bar-Matthews et al., 1999; 

Orland et al., 2012) clearly record a LGM phase around 19000 years ago which indicates 

extremely cold climatic conditions. Following the LGM, isotopic values drop until minima 

are reached around 14000 cal. yrs. B.P. suggesting a warming and gradual increase in 

rainfall. A clear Younger Dryas type phase is also evidenced by higher oxygen isotope 

values from ca. 13200-11400 cal. yrs. B.P. and is associated with another period of 

regional climatic cooling (Rosen, 2007).  The early Holocene record from Soreq shows a 

clear drop in δ18O ca. 11000-9500 cal. yrs. B.P., with subsequent drops ca. 8400 and 

7600, representing very warm and wet climatic conditions. A small reversal to drier 

conditions between these too wetter events gives evidence for an 8.2 ka cal. yrs. B.P. 

abrupt cooling event in the EM (Rosen, 2007). Isotopic evidence suggests that optimal 

warming and wetting was reached towards the end of the early Holocene around 7500 

cal. yrs. B.P. where climatic conditions switch to distinct alternations between wet and 

dry. Rosen (2007) raises an interesting point in that the period was marked by high 

amplitudinal shifts in climate that became less pronounced throughout most of the latter 

Holocene. The Soreq Cave isotopic data detail a similar pattern for the late Holocene as 

is evidence elsewhere in the EM, that climate became much drier and was similar to 

modern day conditions. Rainfall levels were on the whole lowered but fluctuations 

between wet and dry were still more pronounced than they are today.  
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Another cave speleothem record from Sofular Cave, Turkey (Fleitmann et al., 2009; 

Göktϋrk et al., 2011) also offers an overview of the timing and type of climatic changes 

which occurred throughout the late Pleistocene and Holocene in the EM. A drop in δ18O 

between ~16.5 and 14.8 ka years ago shows isotopically depleted values associated 

with wetter conditions and a subsequent  increase in δ18O until ~7 ka years ago suggests 

a shift to less moisture availability following 15000 cal. yrs. B.P. (Fleitmann et al., 2009). 

Moisture availability in the EM though is more adequately expressed by the δ13O record 

from Sofular Cave which highlights generally warmer and wetter conditions around 

14000 cal. yrs. B.P. which gave way to drier climatic conditions by ca. 13000 cal. yrs. 

B.P. (Fleitmann et al., 2009). Another substantial wetting is evidenced at the start of the 

Holocene (ca. 10500 cal. yrs. B.P.) following a period of greater aridity between ca. 

13000-11300 cal. yrs. B.P. (Fleitmann et al., 2009). From ~9.6 ka years ago until ~ 5.4 

ka years ago, the δ13O Sofular record indicates an increase in rainfall amount and 

intensity, in line with other EM studies (Göktϋrk et al., 2011). On the whole, the mid-late 

Holocene (~ 5400 cal. yrs. B.P.-present) is dry and reflects modern day climatic 

conditions (Göktϋrk et al., 2011). 

Some of the geomorphological evidence for climatic and environmental change in the 

EM generally stems from geoarchaeological investigations in association with 

archaeological studies. Beach and Luzzadder-Beach (2008) have reported on increased 

aggradation as a partial result of climatic drying throughout the Hellenistic and Roman 

periods (ca. 2281-1555 cal. yrs. B.P.). Boyer et al., (2006) have used alluvial sediment 

sequences to document changing Holocene environments, and have related the 

geomorphological history to changing flood regimes and soil and water variability, that 

were likely affected by regional moisture conditions. Flood alluvial deposits during 

Neolithic times (ca. 10500-8000 cal. yrs. B.P.) highlighted significantly wet conditions but 

a shift around 4500-4200 cal. yrs. B.P. to a new alluvial regime and a cessation of 
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flooding may relate to an oscillating trend towards drier climatic conditions after ~6500 

cal. yrs. B.P. 

Orbital forcing of the climate system, or more precisely precession, leads to the 

formation of sapropels (black, organic rich laminated sediments) in the Mediterranean 

Sea (Rohling and Hilgen, 1991). The formation of sapropel S1 from ~ 9300-5200 cal. yrs. 

B.P. coincided with enhanced levels of productivity, relating to increased seasonality and 

anoxic bottom water conditions (Rohling et al., 1997). The formation of sapropels at this 

time are therefore thought to relate to warm and wet conditions (Myers and Rohling, 

2000; and references therein). An interruption to sapropel S1 found in marine sediment 

cores around 8000 years ago was related to a climatic deterioration and disruption to 

deep-water ventilation which sub-divided the two sapropel units (Myers and Rohling, 

2000; Rijk et al., 1999; Rohling et al., 1997). Although sapropel formation is driven 

principally by bottom water ventilation and increased productivity, the coincidence of S1 

termination with dry conditions and reduced winter precipitation, and the growth of S1 

during climatic ameliorations enables for climatic instabilities to be inferred from the 

study of sapropels (Rijk et al., 1999). In this instance, EM climate during the early 

Holocene was moist but punctuated by a cooling trend which cooled surface waters and 

changed the balance of marine waters, resulting in an incursion in S1 formation. 

2.3.4. Eastern Mediterranean rapid climate change events (RCC)  

2.3.4.1. Rapid climate change events (RCC), an introduction 

Rapid climate change events (RCC) or abrupt climatic downturns often form the 

backdrop for investigations into climate of the Eastern Mediterranean (e.g. Sahoğlu, 

2005; Weiss, 1982; Weninger et al., 2009). These climatic events are frequently believed 

to be involved in regional settlement abandonment, subsistence replacement, conversion 

to a lower hierarchical state and complete societal collapse (Weiss and Bradley, 2001). 

With the increased use of high-resolution, well dated palaeoclimatic data sets, each RCC 
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has more regularly been correlated to a specific archaeologically defined redirected 

societal trajectory (e.g. Cullen et al., 2000; DeMenocal, 2001; Weiss and Bradley, 2001). 

The suggested association between social change and RCC’s warrants a summary of 

their timing and structure as they clearly represent phases of profound impact. 

2.3.4.2. The 8.2 ka cal. yr. B.P. abrupt event 

The 8200 cal. yr. B.P. event has been observed in a number of high-resolution proxy 

records in the Northern Hemisphere (Alley et al., 1997; Daley et al., 2011). The event is 

clearly defined in both the oxygen isotope signals (Johnsen et al., 2001) and 

accumulated records of three ice cores taken within Greenland (Thomas et al., 2007). 

The climate anomaly is documented to have had a gradual onset but with a more abrupt 

end at 8140 years ago giving a rough duration of around 160±10 years (Rasmussen et 

al., 2007). Oxygen isotope work on the GRIP ice core (Greenland) has suggested that 

overall there may have been a substantial drop in surface air temperatures by 3-6°C 

(Johnsen et al., 2001).  

In the EM, there are many uncertainties as to whether the 8200 cal. yr. B.P. climate 

anomaly documented in the Greenland ice cores played any role in climate variability 

across the region. Evidence from organic and carbon-rich marine sediments known as 

Sapropel 1 (S1) show a clear disruption to S1 formation around 7800 cal. yr. B.P. (Myers 

and Rohling, 2000). Figure 2.6 shows this break in S1 formation using oxygen isotope 

ratios from benthic foraminifera. Dating of this interruption puts it in close proximity to the 

8200 cal. yr. B.P. Greenland climatic deterioration but not at the 8.2 ka boundary; this 

may confirm Rohling & Palike’s (2005) ideas about a more general cooling event at this 

point in time in Southwest Asia.  
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Figure  2.6: Benthic foraminiferal Oxygen Index (OI) for Eastern Mediterranean cores. Thin black 

line indicates fine resolution data and thick black line indicates data from 5-point running means. 

The grey bands represent sapropel S1 formation with the white band between indicating a short 

return to oxygenated conditions (Schmiedl et al., 2010, pg. 6). Permission to reproduce this image 

has been granted by Elsevier. 
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Figure  2.7: Carbon isotope curve from Soreq Cave documenting a marked low isotope reading 

around 8000 years ago (Bar-Matthews et al., 1999, pg 90). Permission to reproduce this image 

has been granted by Elsevier. 

Stronger evidence for an 8.2 ka event in the EM is developed by Bar-Matthews et al 

(1999) using δ13C data to argue for a more precise timing of the climatic downturn (figure 

2.7). Similarly, geomorphological evidence shows a strong colluvial element to 

stratigraphic units and the absence of sediment material at various sites during this time 

which could be attributed to a distinct arid phase (see Rosen, 2007). The short lived 

decrease in arboreal pollen types (Quercus, Pistacia etc.) documented by Rossignol-

Strick (1999) around 8900-8400 cal. yrs. B.P. may also be the result of cooling and 

decreased regional moisture availability. The uncertainty here lies with sample resolution 

and dating accuracy which makes temporal resolutions between short-lived events from 

proxy records complicated (Alley et al., 1997). Evidence points towards a dry phase and 

generally cold conditions around 8200 cal. yr. B.P. but it is hard to define a clear abrupt 
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climatic anomaly in the EM which coincides with the evidence from the Greenland ice 

cores. A summary of the 8.2 ka cal. yr. B.P. event can be found in (Maher et al., 2011). 

2.3.4.3. The 4.2 ka cal. yr. B.P. abrupt event 

The 4.2 ka cal. yr. B.P. abrupt event is a similar dramatic change event as the 8.2 ka cal. 

yr. B.P. cooling phase but is described as a switch to drier conditions, dating to ~ 4500-

3500 cal. yrs. B.P. (the majority of proxy records suggesting a more precise date of 4200 

cal. yr. B.P.) (see Booth et al., 2005; Drysdale et al., 2006; Staubwasser et al., 2003; 

Weiss et al., 1993). This event is particularly recognized in the Eastern Mediterranean 

where it is also associated with the abandonment of many settlement sites and the 

‘collapse’ of complex societies e.g. the Akkadian empire (Cullen et al., 2000). 

Evidence for a rapid climate change event during the mid-Holocene is numerous. 

Investigations into wood remains found in alluvial flood deposits within the Mount Sodom 

caves, Israel reveal a series of Dead Sea lake level changes for the Holocene, of 

importance is a drop in lake level which is dated to around 4000 years ago (Bruins, 1994; 

Frumkin, 1997; Frumkin et al., 1994). Other Dead Sea records also suggest a drier 

phase at the 4200 cal. yr. B.P. boundary. A shift from detritus clay to salt deposits 

recorded by Neev & Emery (1967) indicates a drop in moisture levels at this time and a 

higher rate of evaporation. Klinger et al., (2003) also record lake terrace systems formed 

during low water levels, one dating to a similar time period as Frumkin’s (1997)  low lake 

level  suggesting some similarity between records in the region. The 4.2 ka discontinuity 

in mid-Holocene climate is additionally discussed in relation to down-cutting events and a 

decrease in fine clastic sediments found in sedimentary sequences of hydrological 

systems from the rest of the Levant region (Rosen, 2007). Rosen (1989, 1991, 1995) 

demonstrates that incision of streams and reduced flooding events are indicative of drier 

conditions as less plant cover due to aridity would cause more clastic material to enter 

the water system causing erosion and less over-bank alluvial deposition.  
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Figure  2.8: Record of palaeo-rainfall for the last 7000 years taken from isotopic values of Soreq 

cave speleothems. The values show a general drying trend initiated around 4000 years ago and a 

decrease in amplitude of the climate signal (Bar-Matthews et al., 2004; Rosen, 2007, pg 82). 

Permission to reproduce this image has been granted by the authors. 

In more recent times this evidence for a 4.2 ka cal. yr. B.P. climatic event in the EM has 

come under scrutiny. There are some signals from proxy records which suggest a 

climatic anomaly (Arz et al., 2006; Cullen et al., 2000; Lemcke and Sturm, 1997; Weiss 

et al., 1993) but there are also many other records which point towards a more general 

long term trend towards drier climates; for example the Dead Sea records also show a 

continuation in low lake levels from the mid-Holocene onwards (Enzel et al., 2003). 

Speleothem records from Soreq Cave, Israel similarly reveal a general drying trend after 

a typically humid mid-Holocene phase, within which a dated dry event at 4100 cal. yr. 

B.P. is present (Bar-Matthews et al., 1999) (figure 2.8).  Whilst large scale climatic shifts 

may be picked up by speleothem or terrace formation archives, smaller and subtle 

climate shifts are much more difficult to separate from other variants which could 
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influence the climate signal (Fairchild et al., 2006); as such, RCC events can be blurred 

and have different characteristics depending on which proxy is used to investigate the 

climate signal. This may explain why some scholars define the drying event as a general 

switch in conditions whilst others define it as more sudden. 

2.3.5. Eastern Mediterranean climate and cultural change 

The Eastern Mediterranean and its associated palaeoclimate are frequently discussed in 

relation to its long human history. Holocene climate variability, it has been argued 

(Rosen, 2007), played a pivotal role in the types of behaviour and changes in social 

systems that are recognized in the EM archaeological and historical records.  

Examinations of these relationships have primarily seen social groups as uniform entities 

who rise, adapt, or fall in response to past climate change (e.g. Neev and Emery, 1995; 

Weiss et al., 1993). Climate change in this instance is seen as abrupt and severe; these 

events often tie into rapid climate shifts like those previously mentioned (Staubwasser 

and Weiss, 2006). Less commonly, interactions between past societies and 

climate/environment variability have been dealt with at the smaller socio-evolutionary 

level (e.g. Rosen and Rivera-Collazo, 2012) to fully understand the motivations and 

climatic drivers of cultural change, at a scale which might give a more accurate reflection 

of human response mechanisms. 

Arguably, studies into the relationship between EM climatic/environmental change and 

regional cultural change are improving. Older assumptions that the Younger Dryas 

climatic event explained the development of agricultural lifestyles in the Levant region 

(e.g. Richerson et al., 2001) no longer fit the data for pre-domestication cultivation and 

the ability of Naufian people to adjust to adverse climatic conditions (Rosen and Rivera-

Collazo, 2012). A recent study by Rosen & Rivera-Collazo (2012) uses new theory to 

show the robust nature of foraging systems in the face of EM terminal Pleistocene 

changes. At no point does the study highlight a collapse of cultural traditions at times of 
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shifting climates but it does suggest the climatic change played a particularly important 

role with regards to resource availability (Rosen and Rivera-Collazo, 2012). During cold 

and dry episodes in late Pleistocene EM climate, the plant resources exploited were 

broadened as a response to changing natural conditions (Rosen and Rivera-Collazo, 

2012) which decreased the number of woodland based products which could be 

accessed. The model of climate and culture outlined using adaptive cyclic changes 

considers more than just simple cause and effect relationships but understands the 

complexity of social behaviours in the context of climatic variability. 

The interaction between past people and changes in EM climate is also understood in 

terms of the abruptness, magnitude and duration of climatic changes. The globally 

observed events during 8200 and 4200 years ago were fast changing, high magnitude 

and short phases of climatic deterioration that coincided with phases of proposed 

societal disruption. The final Pre-pottery Neolithic B & C (PPNB/C) (8800-8200 cal. yrs. 

B.P.) farming communities of the southern Levant region were marked by the 8.2 ka cal. 

B.P. event which were probably reduced in size due to a reduction in water availability 

necessary for agriculture (Weninger et al., 2006). Other Levantine sites like Jericho, 

Byblos and Ain Ghazal also have discontinuities in their occupational sequences during 

the final PPNB phase (Berger and Guilaine, 2009; Simmons, 2000) which corresponds to 

EM cooling. The problem with defining the true nature of climate and cultural interactions 

for this transition phase is that changes which are witnessed are not uniform across the 

EM; instead there are some sources of data which point towards a climatic stimulus for 

change and some which do not. Twiss (2007) strongly believes that social factors are to 

blame for the late PPNB/PPNC social discontinuities. Kuijt (2000) also offers non-climatic 

viewpoints as to why social groups may have disbanded at this time. 

The 4.2 ka yr. B.P. climatic anomaly has also been considered as a reason for social 

disbandment. This argument stems from evidence that major settlement sites were 

abandoned during the Early Bronze Age (EBA) IV or EBA III/MBA I period (~4300-4000 
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cal. yrs. B.P.) and smaller or more ephemeral settlements with an emphasis on pastoral 

subsistence strategies were established (Richard, 1987) (figure 2.9). Characterisation 

and understanding of this final phase in Early Bronze Age culture indicates that instability 

in social systems was greatest in the central and southern parts of the EM where the 

effects of social ‘collapse’ are manifested within widespread settlement abandonment 

and economic decline (Tubb, 1998). Traditional representation of this shift in cultural 

development creates a picture of basic, nomadic lifestyles which were heavily influenced 

by climatic deterioration (Weiss et al., 1993). This over simplified view of final EBA 

climate and culture does not account for other evidence that suggests a continuation in 

social systems and lifestyles. Continued occupation of EBIV sites is documented in Syria 

and at the southern Levantine sites of Iktanu and Iskander, East Jordan Valley (Richard, 

1987; Roberts et al., 2004). 

New ideas like those by Rosen (2007) have gone further, suggesting more than a 

climatic stimuli to this cultural change event by emphasising data concerning crop yields, 

buffer systems, surplus, belief systems, trade with Egypt and elite control of resources as 

factors relevant to the linkages formulated between the 4.2 ka yr. B.P. RCC event and 

social abandonment. Rosen (2007) argues that climatic conditions appear bad at this 

time because of society’s ill-response to severe climatic stress. Esse (Esse, 1989, 1991) 

provides a counter argument suggesting purely social influences for the EBIV transition. 

An important note to draw from both Rosen’s and Esse’s ideas is that systems are 

integrated (Flannery, 1972); climate is rarely constraining to past communities on its own 

but is linked with other economic, political and social spheres to become influential in 

cultural change. The question remains though whether dating precision really allows us 

to compare climatic and cultural changes side by side. 
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Figure  2.9: Population and settlement changes at the end of the Early Bronze Age (EBIV), in the 

Eastern Mediterranean, in relation to earlier and later periods (Rosen, 2007, pg 136), referencing 

(Gophna and Portugali, 1988). Permission to reproduce this image has been granted by the 

authors and ASOR publications. 

One way to test synchronicity of relationships is by using climate reconstructions from 

the same stratigraphic sequence; for instance pollen data could be used to provide 
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evidence for human land-use changes whilst stable isotope or geochemical evidence 

could be used as a proxy for past moisture level changes (Roberts, 2011). As records 

come from the same sequence, there is little chance of miscorrelation even if the dating 

accuracy is small. A study of this sort has drawn on EM climate data from Nar crater-lake 

in central Turkey (England et al., 2008) for the last 2000 years. Stable isotope data from 

the lake site highlights a period of pronounced drought from 1500 to 1410 cal. yrs. B.P., 

with a variable age uncertainty this could be aligned with a phase of social abandonment 

towards the end of the Early Byzantine period (ca. 1550-1340 cal. yrs. B.P.) and it would 

be tempting to suggest a climatic cause for cultural change. Cultural pollen indicators 

from the Nar record however do not fully decline until ~1280 cal. yrs. B.P. based on 

precise varve count ages which are much later than the proposed arid phase. Dry 

climatic conditions could therefore not be a driver of cultural change at this time as the 

climatic stress clearly exists around two centuries earlier. Other mechanisms were 

therefore driving social change at this time (see Roberts, 2011). 

2.4. Contextual background to climate and culture studies 

2.4.1. General overview 

A historically important question in academic research has been the links between 

climate and people and their development side by side across different temporal and 

spatial scales. During the Holocene, a period of connected climate and culture relations, 

humans have spread out across landscapes, domesticated nature, increased in number, 

built urban environments and dominated ecosystems (Kirch, 2005). These kinds of 

defining events have accelerated discussions into the role that changing climates played 

in past human trajectories and the intertwined nature of natural and social events during 

the last ~10,000 years. Given the increasing concern over human-climate-environment 

interactions (Rosen, 2007), it is important to evaluate, within a selected spatial and 

chronological framework, aspects of the archaeological record  that may offer evidence 
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of human choice and decision making processes that arise as a reaction to climatic and 

environmental change (Asouti, 2009).  

The realms of nature and society have been studied in very diverse ways, and most 

research is conducted from either the anthropogenic or climate perspective, but this 

approach to research is slowly changing (Wylie, 2000). The role of climate in socio-

climatic relations has dwindled and the emphasis given to human beings has increased, 

to the point that the responsibility of socio-natural dynamics lies principally with cultures 

(Leeuw and Redman, 2002). A climatic shift therefore is primarily a matter of the social 

realm and cannot become a factor in social development unless people allow it to. In this 

sense, climatically induced stress, for instance, is the result of adaptive failures rather 

than climate alone (McIntosh et al., 2000). Scholarly work in recent years has focused 

heavily towards understanding these socio-natural interactions and recognising human 

perceptions of climatic change, assessed through uncertainties, risks and potentials 

(Leeuw and Redman, 2002).  Societies, communities, individuals adjust their behaviour 

in light of climatic shifts and it is this adjustment in response that makes for interesting 

research focuses (Adger et al., 2005). Past human adaptation and adjustment to climatic 

and environmental variability remains insufficiently studied in the Eastern Mediterranean. 

The question of socio-economical adaptation and adjustability, as identifiable in the 

archaeological record, therefore requires further study in the EM region. 

2.4.2. Climate as the determining factor 

Western cultures like to assume that relationships, particularly with climate, are generally 

external to us (McIntosh et al., 2000). Relationships are therefore understood through 

rational and objective techniques that aim to analyse each element of the system and at 

specifically defined scales. This understanding of climate and culture is evidenced in the 

position termed ‘Climatic Determinism’; the defining statement of which is climate drives 

societal trajectories (Manley, 1958). Most climatic determinists seek to understand 
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change by concerning themselves with the general laws and theories relating to the 

natural world and collecting and observing climatic data using ‘appropriate’ scientific 

methodologies (Bell and Walker, 1992). Researchers who take this position assume the 

world is regular, uniformitarian and predictable and that links with the human past are 

also recurring and expected. 

The problem with ‘Climatic Determinism’ is that researchers in the field are primarily 

concerned with explaining/reconstructing climate or environmental changes without any 

connection to human agency or community response behaviours. If such attempts are 

made, they often refer to past people as organisms constrained by their external world 

(Manley, 1958). Deterministic ideas coming mainly from the natural sciences are also 

fundamentally lacking in an understanding of archaeology which is needed to develop 

and interpret concepts of human response mechanisms (Cooper and Peros, 2009). 

There is even less understanding of how to link archaeological and historical material to 

highly refined climate records; different datasets are often superimposed together to 

allegedly prove the impact of climate-induced stress on past people and their social 

development (Eddy, 1980). 

Despite a long history of deterministic ideas being discredited, climate as the defining 

factor in anthropogenic change has become an accepted concept again (Stehr and 

Storch, 1998). For some current scholars (e.g. Cullen et al., 2000; DeMenocal, 2001; 

Diamond, 2005) climate can be ultimately damaging, abrupt and constraining and 

inevitably detrimental to past cultures. Civilisations such as the Maya (Haug et al., 2003) 

and Akkadian Empire (Weiss et al., 1993) are widely believed to have ‘collapsed’ due to 

climatic perturbations which appear to occur at a similar time to disruptions in the social 

realm. These comparisons treat past civilisations as passive bodies unable to foresee 

the damage that changes in climate may initiate within their social, economic and 

political systems. It acknowledges climate as the prime mover of human development, 
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treating all communities as large entities without considering that cultural change may 

occur at various scales and for very different reasons within different communities.  

Diamond’s (2005) work in particular has been criticised for not explicitly considering the 

role of people and their social systems in alleviating and dealing with climatic induced 

stresses, and the systemic disregard for past peoples problem solving abilities 

(Dasgupta, 2005; Good and Reuveny, 2009; McAnany and Yoffee, 2010). This may be 

an unfair representation of Diamond’s work however (Porritt, 2005) as there are some 

complex interactions considered by Diamond (2005), including the influence of hostile 

neighbours and trade systems.  

The deterministic perception of climate/culture relationships has been fuelled in recent 

times by contemporary concerns over global climate change, increasingly putting climate 

back to the forefront of archaeological interpretations (Pillatt, 2012). Problems of dating 

reliability and correlating records have also left many scholars seeking more refined 

understandings of palaeoclimatology from the sciences to help with these dating 

inaccuracies (Pillatt, 2012). As a result, the emphasis placed on scientific reconstruction 

of past natural conditions (Anderson et al., 2007) naturally leads to rather simplistic 

understandings of climate and people, seeking direct chronological links between 

evidence for climate change, archaeological change and associated aspects of societal 

behaviour (e.g. Bogaard and Whitehouse, 2010; Peiser et al., 1998; Van Geel et al., 

2004). These simplistic narratives of change events are at odds with a number of 

scholars who have been vocal in resisting new forms of determinism (McIntosh et al., 

2000; Pillatt, 2012; Tipping, 2002). 

2.4.3. Cultures create their own destinies 

The nature/society dichotomy is a major influence on disciplinary study and is 

strengthened by social non-deterministic anthems also (Sluyter, 2003). At the opposite 

end of the scale, researchers dealing with social responses to past climate change from 
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the humanities disciplines tend to take a rather non-climatic deterministic approach to 

human development and view it as primarily the result of social relationships at various 

scales (Renfrew, 1979). At a more extreme level, some argue that environments and 

climate have negligible impacts on past human societies (e.g. Aimers, 2007; Dean, 

2000).  

This critical reaction to climatic and environmental determinism developed from the 

1950/60s onwards when concepts like cultural ecology and systems theory introduced 

new ideas about people and nature (Butzer, 1982; Flannery, 1972; Steward, 1955). 

Climate and culture relationships were for the first time considered as complex and were 

studied from a whole systems perspective, incorporating all aspects of the social realm. 

Climate change became a limiting factor to past occupations instead of being the only 

decisive cause. Past societies became the prime mover in social trajectories; physical 

parameters were therefore seen as secondary in controlling human action and 

development (see Coombes and Barber, 2005 for further information). 

New considerations, particularly picked up within archaeology in the 1980s and 1990s 

also realized that the way people responded to climate change was ultimately tied up in 

how the natural world was perceived or the ‘meaning’ given to change events. Tsing 

(2001, page 6) summarises this well by arguing that ‘ the agency of nature in affecting 

human affairs develops in tandem with human abilities to know it and manage it in 

particular ways’.  To put another way, the physical and mental worlds matter; sometimes 

these are inextricably linked and it can be difficult to fully conceptualize how past 

individuals, communities, societies understood their world and acted upon those notions.  

Nevertheless, attempts have been made to look at all the interplaying social factors that 

may relate to climate change and in some way impact upon the way it is perceived, 

responded to and how this relates, if at all, to social action. Historical ecologies were the 

first move towards more balanced understandings of how social relations developed, and 
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responded to natural change (Crumley, 1994). A people-centric perspective was 

established in a study by Hsu (2000) who investigated the impact of climate by trying to 

understand Chinese attitudes and traditions throughout time and across different spatial 

scales. He did this by showing that concerns regarding climate are distinctive depending 

on which region of China one is looking at. The Northern provinces for instance have 

developed legends concerning drought and the impact this has on food crops. They 

represent the sun as the devil and ask the dragon king to bring the rains. Hsu (2000) 

argued that this link between climate, ritual and folklore originated back in time when 

priests and divine kings exercised shamanistic rituals to influence the weather and 

looked towards the cosmos to correct adverse climatic conditions. Human responses in 

China therefore seemed to relate to social memory and the cosmology, and to distinctive 

ideas based on what is understood in the social world. 

2.4.4. Possibilism and Incommensurability 

Incommensurability is a useful concept to help explain the two different viewpoints of 

human/climate relations and the lack of coherency between the two (see Adger et al., 

2009). On the one hand there are relationships seen from the climatic deterministic 

perspective and on the other hand there are relations which virtually disregard any 

climatic input into socio-economic trajectories. The different aims, objectives and 

methods often confuse each field and neither is fully aware of what the other is 

discussing. Both concepts may be equally valid in climate and culture studies, but 

without working together, the types of questions being asked from both sides are not 

relevant to each other or comparable. This ultimately affects the way we can understand 

and interpret the data. 

The middle ground is evident in ideas relating to ‘Possibilism’ or the concept that climate 

can be limiting or constraining to social systems but that culture and cultural change is 

predominately the creation of agency (Herzfeld, 2001). Most recently, theories such as 
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complexity theory, non-linear change and feedback regimes (Byrne, 1998; McGlade and 

van der Leeuw, 1997; Schneider, 2004) have played a big impact in assessing the 

importance of viewing climate and anthropological change as the same process, on the 

same level playing field, i.e. that they are co-evolutionary and work off each other. For 

example, traditional ideas that the Akkadian empire collapsed (Cullen et al., 2000) have 

been re-evaluated and argued from a feedback perspective rather than a climatic 

perspective. The heavy reliance of Bronze Age societies on irrigation as an adaptive 

measure to unstable arid climatic events was actually detrimental to their continued 

habitation as complete reliance on wet conditions actually made them even more 

sensitive to arid conditions; this is termed a positive feedback mechanism (Dearing, 2006) 

and is explicitly ‘agent-based’ (Wilkinson et al., 2007), i.e. it is strongly control by human 

choice. 

2.4.5. Better integration of social and climate narratives 

Most recently, understanding climate and cultural change as one entity has attracted 

particular interest from the humanities and social science fields which widely 

acknowledge that traditional ideas of human-climate relationships are outdated (e.g. 

McIntosh et al., 2000). Important arguments to draw from discussions coming out of 

these fields are those concerned with how we as human beings experience and 

understand change events. The development of ecological perspectives within 

archaeology has been highly influential in this instance (Kirch, 2005; Nelson et al., 2007; 

Nelson et al., 2006; Redman and Kinzig, 2003). 

Adaptation to climate and climate change is one of the most discussed topics relating to 

climate/culture relations (e.g. Grothmann and Patt, 2005). Adaptation is often regarded 

as reactive in the sense that responses are triggered by past or current events (Adger et 

al., 2005). Human behavioural change is therefore promoted by understanding the 

system initiating change and often takes the form of abrupt or rapid decisions (Hulme, 



Literature review  Chapter 2     
 

45 
 

2003). Adaptation however can also be anticipatory, assessments are made based upon 

future impacts and outcomes of events which have yet to develop (Adger et al., 2005). 

These two processes, it is argued (Adger et al., 2005) must be understood before 

responses to change can be defined. 

Adaptations are not isolated but are formulated and implemented through context (Adger 

et al., 2005). Therefore, adaptation to change is intertwined with actions of other social, 

political and economic factors and can be transformed by the various elements that 

success of adaptation relies upon e.g. flows of capital or social affiliations (Adger et al., 

2005). This reiterates the idea that climate and culture cannot be dealt with as separate 

areas of research; that it is highly likely that one will impact upon the other at any given 

time, and that they co-exist. This inter-relatedness of climate and cultural aspects 

crucially demonstrates the need for current research to accommodate the dynamism of 

human agency and to understand the choices that past people would have faced.  

Adger (2001) states that human response relates to all the relationships that exist in a 

given situation, he particularly draws on political ecology ideas to show how the political 

world can impact upon how societies handle risk. Whilst political ecology (Robbins, 2012) 

ideas may be beyond the scope of this project, Adger clearly demonstrates a way of 

achieving more sophisticated interpretations that account for culturally conditioned 

experiences of climate. Another method would be to employ modelling techniques to 

focus on the climate changes experienced, recognised and responded to by past people, 

and to focus on the self-organising and adaptation principles outlined here. Exploratory 

models have been most informative when demonstrating resilience to climate within 

social systems (Hudson et al., 2012; McAnany and Yoffee, 2010; McGlade and van der 

Leeuw, 1997; Redman and Kinzig, 2003; Redman et al., 2009). The shifting emphasis 

towards resilience and longer-term socio-natural dynamics does not disregard collapse 

events but asks why there may have been social change concurrent with climatic 
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changes - questions such as adaptation abilities and the role of limiting factors for 

example (Hudson et al., 2012). 

2.4.6. Resilience theory in climate and culture studies 

The concept of resilience theory is most adequately explained in Redman (2005). It is a 

concept that can be used to characterise, by periods, changing and stable relationships 

between humans and climate. It is defined as the amount of change a system can 

undergo yet remain stable before having to move into a new regime (Hudson et al., 

2012). It represents a means for archaeologists and natural scientists to approach the 

ideas of human adaption, societal perception and self-control without completely 

disregarding the potential impact of climatic stress or necessary climatically induced 

collapse. Collapse though is not thought of as the same as Diamond’s (2005) collapse 

but a shift to a new resilience state, following Holling & Gunderson’s (2002) idea of the 

adaptive cycle and panarchical transformations (Gunderson and Holling, 2002) (figure 

2.10). 

The adaptive cycle model (figure 2.10) is a way to understand change events. Change in 

the model can be both sudden and unexpected, created and needed, and is used to 

visualise and contextualise continuous transformations within systems (Weiberg, 2012). 

To understand the concept further the reader is directed towards Holling and Gunderson 

(2002). Associated with the adaptive cycle model is the idea of panarchy (Gunderson 

and Holling, 2002) which is a nested set of cycles within a sort of hierarchy to 

theoretically identify scales of adaptation. Over long-term periods of stress, for example 

caused by climatic or environmental variation, socio-economic systems can change 

position across these scales to combat stress (Vaneeckhout, 2012).  
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Figure  2.10: Illustration of panarchy model showing two adaptive cycles. From Panarchy edited by 

Lance Gunderson and C.S. Holling (Gunderson and Holling, 2002). Copyright © 2002 Island 

Press. Reproduced by permission of Island Press, Washington, DC.  

Principally, the resilience model of change built around adaptive cycles highlights four 

dynamic phases of transformation per cycle to include: 1) a release phase (Ω), 2) a re-

organisation phase (α), 3) a rapid growth phase (r) and 4) a conservation phase (K) 

(Zimmermann, 2012). The forward loop identifies periods of increasing exploitation and 

accumulation (r) which reach a saturation point of maximum conservation and 

connectedness (K) (Dearing, 2008). The backwards or negative loop witnesses a force 

of destabilisation (Ω) which culminates in the eventual stabilisation and re-organisation 

(α) of another cycle (Dearing, 2008). Higher resilience levels are defined between the (Ω) 

and (r) stages, and decline between (K) and (Ω). Social groups who are less resilient (or 

potentially it could be argued, more resilient) will collapse into a different cycle as a 

means of adaptation to tolerate a disturbance or stress factor. It is therefore possible to 

understand the potential causes of collapse and the emergent features that arise from 

evolution into a new state (e.g. simplification or increasing complexity) (Dearing, 2008). 
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Resilience theory, epitomised by the adaptive cycle concept includes two key features 

which makes it useful for understanding culture-climate relations. Firstly that change is 

inevitable and recurring (although change cycles may evolve in different ways) and 

secondly that there are only some scales of analysis that are applicable to any one 

particular system, which has repercussions for understanding the speed of change 

(Redman, 2005). There is also a third consideration, but this insight is really the reason 

why resilience theory is seen as useful in studies regarding human response to climate 

change events; it is that people can be self-organising and can move a system towards a 

more desirable state (Redman, 2005). Perceived in this way, climate is but one part of 

the system and has the potential to influence any part of it. Climatic uncertainties and 

stresses, and/or positive climatic influences, will be more influential in effecting a human 

response if the phenomenon is perceived by the people expecting them, and considering 

other system factors e.g. population expansion. 

The generally longer-term, large scale viewpoint of the resilience model concept is seen 

by some to be too Processual in nature, drawing heavily on systematics and cultural 

evolutionism (Weiberg, 2012). On the other hand, using resilience theory within 

culture/climate studies has brought back aspects of large scale analysis and integrated 

ideas of complex systems theory that were lost to some degree under Post-Processual 

strands of archaeological investigation (Bentley and Maschner, 2003; McGlade and van 

der Leeuw, 1997). The benefit of this is that change processes can be dealt with in light 

of individual historical cases and archaeological data can be adequately contextualised. 

2.4.7. Research needs 

Research on natural environmental-change and how it interacts with documented human 

histories needs to be extended in new ways to include a humanist as well as scientific 

approach to relationships. Many examples already exist which try to add social issues 

into studies of past climate change but it is important to keep these contributions going to 
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develop a deeper understanding of nature/climate dichotomies at spatial and temporal 

scales that have yet to be investigated. For scientists, the nature of past adaptive 

responses may be intriguing but for modern societies it may be even more necessary to 

look at how climate change altered lifestyles given the current shifting climate state. 

Whilst many studies discuss connections between climate and cultures (Dalfes et al., 

1997; Roberts et al., 2011a; Weninger et al., 2009), the discourse on complex systems 

theory and resilience has been virtually overlooked. In cases where such studies do exist 

(see Weiberg, 2012), they generally focus on what has been lost rather than gained by 

each adaptive transition and most have been directed towards understanding typically 

‘collapse’ style events (Weiberg, 2012). The challenge therefore is to expand scholarly 

debate by looking at transformations in new areas, and where research is not usually 

directed towards full scale collapse. Resilience theory as a contextual concept offers a 

positive outlook on cultural transformations taking into account human flexibility and thus 

is a promising model to use within future culture-climate studies. 

2.5. Chapter summary 

Palaeolimnological studies offer the potential to understand shifting climatic and 

environmental characteristics using a range of biological, sedimentological and chemical 

indicators. A current focus of palaeolimnological studies is on utilising higher-resolution 

data sets to refine our understanding of natural change at the shorter timescales and to 

ensure we retrieve material that can be accurately dated. Those with the highest 

precision are lake sediments which are annually banded. Varved lake deposits are 

generally dependent on both internal and external factors thus are good recorders of 

change happening within and outside the lake environment. There are numerous ways of 

extracting climatic and environmental data from these yearly deposited sequences but 

recent advances in XRF scanning techniques have resulted in the frequent use of this 

analytical technique. 
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The Eastern Mediterranean (EM) region is influenced by a number of climatic and 

environmental factors. The region has a complex climatic history that has been 

documented using multiple investigatory techniques including proxy studies on lake 

sediments. EM climate has principally been documented in terms of shifts between wet 

and dry conditions; the LGM and Younger Dryas being dry and cool whilst the early 

Holocene being moist and warm. Desiccation and more frequent aridity are documented 

from around 6000 years ago towards present day. These shifts in climate have been 

particularly important to human development in the EM throughout the Holocene and 

have been related to key changes in social systems. 

Understanding of climate-environment-social relationships is a complex topic, and it is 

generally not agreed upon as to how best to tackle the issue of how past societies 

responded to noticeable shifts in climatic conditions.  Traditional viewpoints took a rather 

deterministic stance, suggesting that climate was a key driver of societal change. More 

nuanced perspectives however suggest that climatic events may only play a role when 

humans cannot comprehend and/or adapt to climate and climate change. It has been 

deemed necessary to avoid implying that societies were passive hostages to climate and 

to use case by case situations to investigate the role of both natural and anthropogenic 

factors in cultural development. New research is required to address socio-evolutionary 

trajectories in relation to climatic fluctuations of different magnitudes, drawing on ideas of 

adaptability and societal resilience. A problem is that studies lack an understanding of 

the whole system, but at the same time it is important to remember that changes in 

natural conditions are fundamental components of that system. 
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3. Methods 

3.1. Chapter Introduction 

This chapter outlines the methods applied to analyse lake sediment samples from Nar 

Gölü. It introduces site selection procedures and describes the field and laboratory 

processes employed to investigate palaeoenvironmental and climatic histories of the lake 

site. Also included is a discussion of archaeological archival research and data collection 

for Cappadocia, central Turkey. 

3.2. Site selection and overview 

3.2.1. Justification of site selection 

The aims and objectives of this project were to produce a well-dated, fine resolution 

record of Holocene climate/environmental variability, and to compare the palaeo-climate 

story with past socio-evolutionary trajectories as delineated from archaeological data. 

The site chosen for study therefore needed to incorporate material that was annually to 

decadally resolved, covered the Holocene time period, allowed for strict chronological 

control and be in close proximity to areas of past human habitation.  

Investigations at Nar Gölü, a crater-lake site (figure 3.1), from 1999 onwards by 

Professor Neil Roberts and colleagues (various institutions) identified lake sediment 

material that was annually varved and therefore suitable for establishing a reliable 

chronology. A new coring programme in 2010 extended the varved sediment record back 

into the Late Glacial adding to existing datasets which cover the late Holocene. Multi‐

proxy work conducted on previously extracted lake sediment sequences from Nar Lake 

have characterized past climatic and environmental change well (England, 2006; 

England et al., 2008; Jones, 2004; Jones et al., 2006; Turner, 2007; Turner et al., 2008; 
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Woodbridge, 2009; Woodbridge and Roberts, 2010, 2011; Woodbridge et al., 2010), 

suggesting that material from this site is highly suitable for Holocene climate/environment 

variability studies. Nar Gölü is also conveniently located in the Cappadocia region of 

Turkey which has been extensively occupied by past people and where widespread 

archaeological investigations have taken place (Eastwood et al., 2007b; England, 2006).  

 

Figure  3.1: Study site – Nar Gölϋ (looking north-west). 

3.2.2. Summary of study site - Nar Gölü 

Nar Gölü (also known as Acι Göl/Acιgöl on Google Earth; Göl is lake in Turkish) 

(38°20’25’’ N, 34°27’24’’ E; elevation 1363 m.a.s.l) is located in Cappadocia, central 

Turkey (figure 3.2). Nar is a >20m deep oligosaline volcanic crater-lake, 0.5km in 

diameter, with a modern conductivity of 2.5-3.1 mS cm-1, and pH of 7.1-7.4. Its 

catchment is small (2,408,000 m²) and does not reach far beyond the upper lake 

boundaries; human activity and disturbance are therefore relatively limited at the present 

day (Jones et al., 2006). The main features of Nar Gölü (figure 3.3) include basalt 

intrusions to the north, steep walls to the east and west, volcanic ignimbrite features 

(‘fairy chimneys’) to the south and an alluvial delta fan on the southern side which 

extends deep into the lake waters (Jones et al., 2005). Whilst there is a relatively simple 

hydrology with no permanent surface inflows or outflows, there are a number of springs 
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in the south, as well as a hot spring which enters below lake level (figure 3.5) (Jones et 

al., 2005). Investigations of the upper springs during 2010 and 2011 found them to be 

almost dry (personal observation).  

 

Figure  3.2: Map showing the wider geographical context of the study region Cappadocia. 

The modern day climate of the area is semi‐arid; in summer there is little rainfall and high 

temperatures (Türkeş, 2003). Average temperatures for July and August range between 

20°C and 27°C, while those in winter fall to 3°C to -3°C reflecting the continentality and 

elevation of the area. Mean monthly and annual precipitation levels for two weather 

stations close to Nar Lake (Nevşehir and Niğde) from 2001-2010 can be seen in 

appendix  1. The data highlights that modern precipitation levels in Cappadocia during 

the summer are low, with some years recording 0mm for the months of July, August and 

September. Autumn and winter precipitation levels (appendix 1) in contrast are relatively 

high but can vary dramatically year on year. The climate at Nar Lake falls neatly within 

the Central Anatolia climatic zone (Unal et al., 2003). Present day vegetation of 

Cappadocia is characterised by dry-steppe-forest but below ~1100 m.a.s.l vegetation 
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becomes steppic, with Festuca, Poa and other grasses, along with Artemisia and 

chenopods. Above ~ 1400 m.a.s.l deciduous oak woodland dominates but is highly 

degraded. The area is agriculturally active today, with cultivation of cereals, pulses and 

some areas under vines, particularly below ~ 1100 m.a.s.l (Eastwood 2011, pers. comm). 

 

Figure  3.3: Location of Nar Lake within a) the wider region and b) its catchment. 

3.2.3. Regional geology 

Nar Gölϋ is situated within Cappadocia that forms part of the Central Anatolian High 

Plateau (CAHP) and the Cappadocian Anatolian Volcanic Province (CAVP) (Aydar et al., 

unpublished), which have a long history of volcanic activity of Neogene-Quaternary age 



Methods  Chapter 3 
 

55 
 

(Druitt et al., 1995) (figure 3.4). The CVAP comprises several eruptive centres and 

extends across the modern day provinces of Nevşehir, Aksaray, Niğde and Kayseri. As a 

result of faulting and volcanism, numerous lake basins of Miocene-Pliocene and 

Quaternary age dot the landscape (Karabιyιkoğlu et al., 1999; Woodbridge, 2009). The 

crater-lake at Nar is believed to have been created by fault-controlled volcanic eruptions 

which left topographic depressions that resulted in the evolution of lake-basin (Gevrek 

and Kazanci, 2000). The region of Cappadocia has been subjected to at least nine major 

ignimbrite eruptions of tertiary age (Le Pennec et al., 1994) but the exact age of Nar 

Gölϋ is still unknown. The presence of basaltic and volcanic ash layers just south of Nar 

Lake, which have been dated by K/Ar and Ar/Ar dating techniques, give evidence that 

Nar is younger than the 1.6 Ma basalt deposit (Jones, 2004). 

There are four key Cappadocian Quaternary volcanoes: Acigöl (Nevşehir) caldera, Göllϋ 

dağ, Hasan dağ and Erciyes dağ (Kuzucuoğlu et al., 1998). Nar Gölϋ is located within 

the Göllϋ dağ – Acigöl area of the CAVP. Volcanic tephra studies on lacustrine material 

from lake Eski Acigöl (25 km from Nar Lake), suggest that Cappadocia has been 

subjected to several volcanic eruptions during the Late Pleistocene and Holocene up 

until ~5000 years ago (Kuzucuoğlu et al., 1998; Woodbridge, 2004). Tephra horizons 

most certainly originate from the near-by volcanoes mentioned above, in particular the 

Hasan dağ and Acigöl complexes (Kuzucuoğlu et al., 1998). The ages of the ten tephra 

layers recorded in the Eski Acigöl sediment sequence give evidence for strong volcanism 

during a period of important climatic and societal changes (Kuzucuoğlu et al., 1998). The 

proximity of Eski Lake to Nar Gölϋ suggests that the Nar Lake basin likely experienced 

some of the same volcanic activity as Eski, and therefore could also record Cappadocian 

tephra horizons of Holocene age. There is also evidence of a major explosive volcanic 

eruption within Cappadocia at 8.6 ka B.P. from distal tephra found widely across the 

Eastern Mediterranean (Develle et al., 2009; Hamman et al., 2010). 
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Figure  3.4: a) Regional geological map of Cappadocia (adapted from Druiit et al., 1995) and b) 

geological map of Nar Gölϋ (adapted from Gevrek et al., 2000). 

3.2.4. Previously extracted core sequences from Nar Gölϋ 

Previous coring programmes and preliminary investigation work was carried at Nar Gölü 

between 1999 and 2002, and in 2006 (table 3.1). Using lake bed morphology to identify 

the deepest part of the lake (25m water depth at time), a site was chosen for core 

extraction to obtain a long and undisturbed sediment record (Dean et al., 2012; England, 

2006). In total, a 376cm composite core sequence (NAR01/02) was developed from 

cores extracted in 2001 and 2002 (figure 3.5) using three coring methods; consisting of 

Glew (Glew and Smol, 2001), Mackereth (Mackereth, 1969) and Livingstone (Livingstone, 

1955) techniques. The Glew corer was used to extract the top most sediment from the 
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lake bed and to ensure recovery of the sediment water interface (England, 2006). 

Mackereth and Livingstone cores allowed longer core sequences to be retrieved (1 & 3, 

and 5 meters respectively) and less disturbance of the sediment profile (Jones, 2004; 

Turner, 2007; Turner et al., 2008; Woodbridge, 2009). In 2006, another short Glew (Glew 

and Smol, 2001) core of 36cm was collected from Nar Lake (NAR06) (figure 3.5) to 

correlate to the existing master core sequence from 2001/2002 (Woodbridge, 2009).  

Table  3.1: Nar Lake 2001, 2002, and 2006 core information. The 2001 and 2002 individual core 

sections were combined to create one composite master core sequence (NAR01/02) (only the 

details of individual core sections used in the master sequence are listed). 

Core 
Year of core 
extraction 

Total core 
length (cm) 

Length of core 
section used for 

analysis (cm) 

Time period of 
sections used for 

analysis (vys) 

NAR01 GB 2001 27 27 0-21 

NAR02 
M2(1) 

2002 97 89.5 39-261 

NAR02 
M2(2) 

2002 79 76 279-701 

NAR02 
M2(3) 

2002 87 70 719-1001 

NAR02 
M3(3) 

2002 86 80.5 1019-1282 

NAR01 
LBIII 

2001 96 5.5 1298-1342 

NAR01 
LCIII 

2001 85 81.5 1359-1705 

NAR06 2006 36 36 0-80 

 

These core sequences were laminated throughout. 210Pb and 137Cs dating of the top 

50cm of the master core sequence and sediment trap data confirmed the laminated 

couplets to be annual deposits (Jones et al., 2005; Woodbridge and Roberts, 2010). 

Dating of the rest of the master core sequence from 50cm down was based upon 

laminae counts given in varve years before AD 2001 and converted to calendar years 

(see Jones et al., 2006 for further details). The three core sequences from the 2001, 

2002 and 2006 coring seasons were stratigraphically correlated through visual 

identification of varve couplets and matching sedimentary patterns between cores. 
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Figure  3.5: Previous Nar Lake sampling locations. NAR01 (red circle); NAR02 (M1, M2, M3; 

yellow circles) (Jones, 2004); NAR06 (dark grey circle) (Woodbridge, 2009). Also indicated are 

sediment traps installed in 2006 (A & B) and known spring locations. Grey shading indicates the 

boundaries of the Nar catchment (Imaged adapted from Woodbridge, 2009). 

3.2.5. Previous work on the Nar 2001/2002 extracted core sequence 

The Nar Gölϋ 2001/2002 (NAR01/02) composite sediment core sequence has been 

investigated using a number of different proxy indicators with the aim of studying past 

Eastern Mediterranean environmental and climatic change. Analysis of the NAR01/02 

record highlights changes for the last two millennia related to a combination of natural 

and anthropogenic factors. For an in-depth understanding of previous work at Nar Gölϋ 

the reader is directed to the original publications which detail stable isotope (Jones et al., 

2006), diatom (Woodbridge, 2009), micro-charcoal (Turner, 2007) and pollen (England, 
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2006) work to date. Whilst these works provide the best overview of the late Holocene 

sediment record from Nar, variability in the different proxy records will be highlighted 

again here. 

The sediment sequence was analysed at high-resolution for stable isotope analyses to 

record changes in δ18O and to understand late Holocene variations in precipitation and 

evaporation (figure 3.6). A major change to more negative isotope values is dated ca. AD 

530, while major shifts to more positive isotope values occur at ca. AD 800 and ca. AD 

1400 (England et al., 2008; Jones et al., 2005; Jones et al., 2007; Jones et al., 2006). 

The stable isotope data therefore show drier periods (AD 300-500 and 1400-1960) and 

wetter intervals (AD 560-750, 1000-1400 and post-1960) that were related to the 

intensity in summer drought and changes in the amount of spring and winter precipitation 

(Jones et al., 2006).  

Diatom-inferred (DI) conductivity (excluding bloom taxa) and δ18O show very good 

correspondence for the first half of the NAR01/02 record and demonstrate that the 

Eastern Mediterranean region experienced repeated drought prior to AD 540, with a 

subsequent rapid and simultaneous shift to fresher lake conditions and wetter climate 

(figure 3.7) (Woodbridge and Roberts, 2011). Diatom data suggests that following AD 

540 there was another dry phase during AD 800-950 before the onset of a wet medieval 

phase from AD 950 to AD 1400. During the subsequent Little Ice Age (LIA) (~AD 1700-

1900), DI-conductivity and δ18O become decoupled. The presence and growth of distinct 

diatom bloom events at this time may suggest that the diatom community had a different 

relationship with lake water conductivity for the latter part of the record. It is postulated 

that increasing human influences on the lake environment as identified in the Nar Lake 

pollen record (figure 3.6) could be a contributing factor to the difference responses 

between the isotope and diatom proxies.
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Figure  3.6: Synthetic diagram showing late Holocene environmental changes as inferred from Nar Gölϋ lake sediments. Shown are the results from pollen 

analysis, charcoal analysis using palynological (PCM) and density separation methods (DSM), and stable isotope analysis. Records are plotted alongside 

calendar ages and archaeological time periods for interpretational purposes (image taken from England et al., 2008, pg. 1239). Permission to reproduce 

this image has been granted by SAGE publishing.
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Figure  3.7: NAR01/02 δ
18

O plotted against NAR01/02 diatom-inferred conductivity for the last 

1720 years (arrows indicate direction of time and shaded areas represent different time periods). 

Highlighted is a distinctive climatic shift to relatively wetter conditions after AD 540 (Woodbridge 

and Roberts, 2011, pg. 3389). Permission to reproduce this image has been granted by the 

authors. 

3.3. Fieldwork 

A new field season was carried out at Nar Gölü during July 2010 by a multi‐collaborative 

team to core and extensively study the lake in order to understand its past and present 

characteristics. A variety of field work was conducted for palaeo‐environmental and 

palaeoclimatic reconstructions, and to study the lake’s contemporary conditions. Bulk 

sampling of catchment sediments was undertaken to characterise the different sediment 

types and to map elemental erosion indicators.  



Methods  Chapter 3 
 

62 
 

3.3.1. Lake coring 

Collection of lake sediment cores that are of sufficient length and resolution can be 

achieved through a variety of well-tested sampling devices (Glew, 2001). The type of 

core extractor used during fieldwork was constrained by the need to obtain a long and 

continuous sediment stratigraphy dating back to the start of the Holocene, and by the 

delicate nature of the varved lake deposits. It was also important to recover the sediment 

water interface, to be confident that the most recently deposited sediments were 

retrieved. 

With these issues in mind, cores were retrieved using an UWITEC (Schultze and 

Niederreiter, 1990) hammer‐based piston coring device operated from a raft platform; 

this coring system from the CNRS EDYTEM relies on gravity to hammer plastic tubing 

into the lake sediment to collect samples (figure 3.8). Whilst such an operation was 

expensive and bulky, the rig gave the support needed to successfully core the lake over 

deep waters and could hold the large aluminium frame to retrieve cores over 

considerable depths. Determination of the coring site was based upon lake-bathymetry 

and previous coring locations (figure 3.5). A suitable position was selected in the deepest 

part of the lake and far from the eroding fan delta to obtain a sequence which was as 

long as possible and not disturbed by processes such as bioturbation. Sediment was 

recovered from three parallel holes in the profundal zone of the lake and from one 

location close to the lake edge and active delta at intermediate water depth (table 3.2). A 

depth overlap of 50cm was maintained for the second and third holes to attempt to 

create a continuous and comparable sequence. It was found that 60mm and 90mm 

(external diameter) PVC down-piping regularly recovered a continuous sediment 

sequence, including undisturbed material from the sediment water interface. Due to the 

soft and often unconsolidated nature of the lake sediment, it was possible to carry out 

sampling in 2 and 3 meter drives. At times, more consolidated sections required more 

effort and hammering from the rig system to penetrate the plastic tubing through hard 
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layers. A shorter, 44cm core was also collected in 2010 using a Glew corer (Dean et al., 

2012; Glew, 1991) to retrieve material for samples covering the 20th and 21st centuries. 

 

Figure  3.8: UWITEC coring device in operation (extracting the core tubing). 

Due to the presence of annual laminations, it was vital that deposits were not disturbed 

during transportation so that fine‐detail work could be carried out back in the U.K., 

without any loss of information. After each drive, the plastic tubing and sediment samples 

were covered at each end (after removal of water) by oasis and a plastic cap, taped and 

then packaged ready for transportation to Plymouth University. In some cases, there 

were signs of drying and shrinking of the sediment which had resulted in much shorter 

samples or in some cases larger samples due to expansion from trapped air. In these 

instances, the cores were cut down using a hand saw or were pierced using a hand held 

drill along the core length to release trapped gas. No stratigraphic integrity was lost 

through these processes. Samples were stored upright in a dry, cool and dark room until 

they could be exported. 
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Table  3.2: Nar Lake 2010 core locations and information. 

Core Latitude and 

longitude 

Water 

depth (m) 

Core start 

depth (m) 

Core end 

depth (m) 

Total core 

length (m) 

NAR10 Core 1 34° 27.424’E 

38° 20.498’N 

21.32 0 21.56 21.5 

NAR10 Core 2 34° 27.421’E 

38° 20.497’N 

21.32 1.0 22.45 21.45 

NAR10 Core 4 No data 21.32 0.5 15.37 14.87 

NAR10 Core 5 No data 11.6 0.25 7.25 7.0 

 

3.3.2. Archiving of lake cores 

It is important to store samples in a way that reduces the possibility of chemical alteration 

of the sample and which minimizes its chances of becoming distorted (Jones, 2004). All 

samples recovered from Nar Gölü during the 2010 field season were transported back to 

the U.K. by road. Core material was stored within the dark cold store (refrigerator at 4°C) 

at the Physical Geography laboratories at Plymouth University to chill the samples and 

prevent any further damage to the structure of the sequence. 

3.3.3. Bulk sediment catchment sampling  

Catchment sampling was conducted at Nar Gölü alongside the 2010 coring project to 

help comprehend the lake history and the attributes which relate to catchment inflows 

and sediment characterization. Catchment sampling is particularly important for 

understanding the geochemistry which has been conducted on the lake sediments 

recovered during coring. Catchment geochemical identifications will help detail human 

disturbances around the lake as well as where inorganic and organic material may have 

derived from the surrounding landscape (Boyle, 2001; Lottermoser et al., 1997; Meyers 

and Teranes, 2001).  
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Figure  3.9: Points detailing the location of bulk catchment samples (red points) and higher lake 

stands (yellow points), referenced to the Universal Transverse Mercator (UTM) co-ordinate 

system for Turkey. 

The short distances from the lake edge to its catchment boundaries allowed many 

samples to be collected over very short timescales. The samples were selected from 

exposed surfaces and eroding gullies (figure 3.9). Most of these feature types are 

situated to the south of the lake which meant that work focused heavily here. At sample 

sites, both the topsoil and sub-soil were collected as bulk samples of around 40g. Bulk 

sediment samples were collected using a trowel and placed into plastic polythene bags 

for storage and transportation. Once back in the U.K, samples were stored within the 

plastic bags in a cool and dry cupboard until analysis. 
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Alongside catchment sampling, a high lake stand noticeable by white carbonate-rich 

water marks on basalt rocks to the west and north (figure 3.9) was mapped using a 

hand-held GPS and a clinometer.  

3.3.4. Further research at Nar Gölü 

Aside from coring programmes, Nar Lake has been investigated using a number of 

techniques to look at modern and palaeolimnological conditions. A picture of lake bed 

morphology has been achieved through lake-bathymetry work (figure 3.10) conducted in 

2001 (Jones, 2004; Woodbridge, 2009) and 2010 (Smith, 2010), mainly to support the 

lake coring operations. A survey of the underlying sediments in 2010 was achieved using 

an Applied Acoustic CSP-L and AA201 boomer type sub-bottom profiler, coupled with a 

high precision GPS system. In total, 53 transect lines across the lake with an interval 

spacing of 30m east-west and north-south was achieved, producing continuous trace 

layers for the upper ~20m of lake sediment deposits (Smith, 2010). Bathymetry 

investigations were used to locate the deepest parts of the lake to aid recovery of long 

sediment sequences. 

In addition to lake-bathymetry work, systematic water sampling has been carried out 

since 2001 at different water depths. Lake surface waters are sampled for pH, 

conductivity, temperature, water chemistry and stable isotopes. For water sampling 

methods pre-2007 the reader is directed to Jones (2004). Temperature, pH and 

conductivity in 2010 were measured with a Myron ultrameter II, calibrated using standard 

solutions. A Glew corer (Glew, 1991) was used to extract water samples at specific 

depths along the water column. Water samples were also gathered from three spring 

locations (figure 3.5), for technique see Jones (2004). Both lake and spring water 

samples were subjected to the same analysis as surface samples. Lake monitoring by 

data loggers was also conducted alongside water collection. This was achieved using 
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Bara Troll pressure sensors at 1m lake depth and temperature ‘Tinytag’ data loggers at 

different lake depths. 

 

 

Figure  3.10: 1 m gridded lake bathymetry data (top) and 5 m gridded lake bathymetry data 

(bottom), as displayed in Fledermaus, showing lake depth across the site. Dark blue indicates 

deep waters and the preferred area for core extraction (Smith, 2010, pg. 37). Key indicates 

meters below water surface. 

Seston sediment traps, similar to those used by Davis (1967) have also been installed to 

examine modern lake deposition and to help interpret palaeo-records. Two sediment 

traps were secured at two depths and planted in two different locations in the deepest 

part of the lake (as sedimentation is more secure here); these were emptied and 

replaced yearly between 2001-2011 (England, 2006; Jones, 2004; Woodbridge, 2009). 
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Sediment trap data have been used to investigate sediment falling through the water 

column, sediment accumulation over a year, sediment isotope chemistry, pollen 

concentrations, diatom communities and seasonality. 

Trapping of modern pollen samples has also been conducted to see what types of pollen 

are being deposited within the Nar catchment. Pollen traps consisting of a plastic tub and 

glycerol were unsystematically left at locations around Nar Gölü in 2010 and recovered 

one year later. Recovery of these traps was minimal as most had been disturbed or 

stolen. Reinstallations of traps left in 2011 and recovered in 2012 proved more 

successful. 

A daily record of lake-colour was kept March-June 2012 and regular photos have been 

taken by the nearby Nar Thermal Hotel to record changes within the lake on a regular 

basis. Ultimately, this was intended to delineate times of ‘whiting’ in the lake, linked to 

algal bloom events. Whilst daily diaries and regular photo archives have not documented 

such an episode, a scheduled field visit in July 2012 witnessed such an event, which 

lasted for three days. 

3.4. Laboratory methods 

Core sequences extracted from Nar Lake underwent a number of laboratory analyses. 

Analyses were conducted to record changing climatic and environmental histories for the 

Holocene (aim 1). High resolution sub-samples were extruded from the non-archived 

NAR10 core half sections to document changing sediment properties. The same half 

sections were scanned using XRF techniques to detail down-core geochemical 

variations.  
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3.4.1. Lithology and chronology 

3.4.1.1. Core opening and preparation 

A unique system for cutting the core tubing open was devised to deal with the 2‐3m core 

samples (figure 3.11). A vibrating hand-held saw was attached to a laboratory bench and 

the sediment filled core tubing was moved along the work bench, against a ‘wood guide’ 

to cut a slit into the side of the plastic tube (figure 3.11). Once cut, cores were then 

opened length ways into two half sections using cheese wire and gently pulled apart and 

separated using a palette knife as outlined in Lamoureux (2001). One core half was 

wrapped in clean non-PVC cling film and a labelled plastic sleeve and placed back into 

the refrigerator for storage and archiving. The other half was left open for cleaning, 

recording and cross‐correlating with other core sections.  

 

 

Figure  3.11: Photo of self-designed core cutting equipment and core opening procedure. 

Non-archived core sections were cleaned to ensure that the sedimentary sequence was 

clearly visible and that layers were not smudged or blurred. Cleaning involved scraping 

off a few millimetres of sediment from the core surface using the straight edge of a 
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spatula, following the direction of the varve structure as described in Renberg (1981). 

Core sections were then described and recorded. As photographs of the core face are a 

good way of accessing further detail concerning sediment characteristics (Renberg, 1981) 

and an effective means of storing information for the future (Francus, 1998), professional 

photographic equipment was set up to systematically photograph the core sections. 

3.4.1.2. Sediment characterisation 

The core sections were divided into major lithostratigraphic units and smaller sub-units 

depending on changes in sediment type and colour. Primarily this was achieved through 

visual examinations of the open core halves. Variations in sediment colour can be a 

significant indicator of change and a valuable aid in stratigraphic descriptions (Cornwall, 

1958). A Munsell chart, as described by Shackley (1975), was used to describe the 

colour attributes of the sediment and to help highlight down core variation. 

3.4.1.3. Master sequence formation 

A composite master sequence for the Nar Lake sediment was determined by laying out 

all the core sections and identifying prominent marker points at fairly regular intervals of 

where core sections correlated (figure 3.12). Correlation between the cores was quick 

and simple because of the highly variable stratigraphy and changes in laminated 

sections. Over‐lapping core sequences in this way provides a much more reliable and 

accurate master chronology as it can help identify inconsistencies and localised changes 

that might be inherent within one core sample (Lamoureux, 2001).  

Although many over‐lapping core sequences were obtained from Nar Gölü, unfortunately 

the sediment record is not 100% complete. There are some non‐laminated sections and 

additionally there are a few gaps in the composite sequence, and it is unclear as to how 

much material has not been recovered. Ultimately, the estimated gap is small and should 
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not affect any of the main inferences made as other dating and cross‐correlation 

techniques have been applied. 

 

Figure  3.12: Cross‐correlations of core sequences from three different core drives. 

3.4.1.4. Nar Gölü laminae counting 

From the composite master sequence, varve counting was conducted. Each varve 

couplet comprised a light lamina and a dark lamina to the naked eye. Once varve 

identification criteria were determined, an initial chronology was completed by visually 

counting individual varve sections and assuming a constant sedimentation rate for non‐

varved sections. Where major gaps in the sequence occurred, the length of the gap was 

determined from coring depths and counts were based upon those estimates. Cores 

were counted in 20 varve year intervals, and pinned at the end of each section. These 

sections were then independently counted by two further counters; if there was a 

difference in the counts then the corresponding section was recounted by all counters 

until agreement was reached. To enlarge the view of very fine laminations (<1mm), a 

magnifying lamp was used. Counts were also checked and marked on high-resolution 

digital photographic imagery. For confirmatory purposes, varve counts for the top 376cm 

were compared to existing varve counts for the NAR01/02 and NAR06 core sequences 

and found to match within <10 varve years.  

Switch point from one core to another, known as a tie point. 
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3.4.1.5. Nar Gölü core chronology 

A chronology for the Nar Gölü composite master sequence was achieved principally 

through new varve counts and correlation to previous varve counts and radiometric dates 

(210Pb and 137Cs) (Jones, 2004). For parts of the 2010 composite sequence which do not 

overlap with previously extracted core sequences, further radiometric dating is being 

conducted to help interpret non-varved sections and to tie in ‘floating’ varve counts to 

‘non-floating’ sections towards the top and bottom of the core sequence. An attempt at 

identifying tephra horizons was also made to help date the Nar sequence but even 

though distinct layers were visually and chemically recognised, these horizons were 

found to not be diagnostic volcanic air fall deposits. 14C cannot be used here either as 

there is a 15000 year old carbon effect that is related to on-going geothermal activity.  

226 Radium (Ra-226) dating 

Radium isotopes are useful chronometers for the determination of time series of 

environmental processes (Schmidt and Cochran, 2010). Radium dating is applicable to 

Nar Lake due to the deposition of inorganic carbonate precipitates and spring activity 

(Schmidt and Cochran, 2010). Bulk lake sediment samples of ~2cm thickness were 

removed from the cores, taking care to avoid contamination by potentially disturbed 

material from the edges of the plastic tubing, for 226Radium dating. These were collected 

from mainly the top half of the core sequence (0-8 kyr B.P.) because whilst the series is 

appropriate for dating systems with millennial ages, the isotope only has a half-life of 

~1602 years. Samples were packaged in a 3cm diameter plastic tube and sent to Pierre 

Sabatier at the EDYTEM facility in Savoie, France. Unfortunately, due to delays in the 

dating procedure, there are no 226Radium derived dates at present. 
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Uranium-Thorium (U-Th) dating 

U-series (uranium-thorium) dating can provide accurate and reasonably precise ages for 

Quaternary carbonates (Haase-Schramm et al., 2004). Nar Lake sediments are high in 

precipitated carbonates and are thus suitable for the application of this dating technique. 

Bulk sediment samples of ~1cm thickness were removed from the cores, taking care to 

avoid contamination again, for U-Th dating. U-series dating was carried out on 

authigenic lake carbonates at BGS (British Geological Survey) using a Neptune Plus 

MC-ICP-MS analyser. U-Th dating on the Nar Lake sediments has been difficult, 

particularly because of high detrital thorium, coupled with low levels of uranium. This has 

led for the need of an Isochron approach as used in Roberts et al., (2001). Isochron 

techniques allow for different parts of the sediment sequence to be correlated and 

combined, giving an age estimate for a larger sediment sample (Bischoff and Fitzpatrick, 

1991; Luo and Ku, 1991). This requires several coeval samples and will thus increase 

the statistical error on the dating results for Nar (± several hundred years). This dating 

procedure is still in progress with dates yet to be accurately obtained.  

3.4.2. Sediment analysis 

3.4.2.1. Sub-sampling of master core sequence 

Sub-samples for geochemistry and total carbon (both analysed as part of this PhD 

project), along with pollen, diatoms, stable isotopes, pigments and other sedimentary 

investigations were obtained by cutting out sediment samples from the Nar Gölü half 

core sections using a scalpel and spatula. Three or five varve year (vy) samples were 

extracted every 20 varve years or at an interval of 4cm depending upon core condition; 

some non-laminated sections required sampling by depth. Also highly compacted or 

distorted sediments made it difficult to select individual lamina, making sampling by 

depth simpler. It is possible that some contamination may occur where lamina were thin 

or slanted. A bi-decadal resolution was selected to ensure coverage of the entire core 
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sequence at intervals that did not result in too many samples and for practical reasons 

involving very narrow laminations. Individual lamina sub-samples were taken for the top 

25vys to produce a much finer temporal resolution for comparison to meteorological data 

and existing multi-proxy palaeo-histories. 

3.4.2.2. Total carbon content 

A common way to generate a record of total carbon is to use a total carbon analyser. 

This determines total carbon automatically to help describe the abundance of organic 

and inorganic carbon in sediments (Veres, 2002). Determining sedimentological 

properties in this fashion from lacustrine sediments can provide valuable data on the 

nature of past depositional environments, and be useful indicators of climatic and/or 

environmental change (Lowe and Walker, 1997). 

The organic and inorganic carbon content of the selected samples was determined by 

temperature controlled combustion of homogenous and dried samples using a Skalar 

Primacs Series Total Carbon Analyser in the Physical Geography laboratories, Plymouth 

University. Total carbon (TC) was determined by catalytic oxidation of the sediment 

sample at just over 1000 0C, converting the carbon present to CO2
 which is recorded by 

detectors when released. The inorganic carbon fraction (IC) was determined by 

acidification of the sediment sample in the IC compartment which converts the inorganic 

carbon to CO2 and removes the organic carbon component. Windows software collects 

the data and uses this to calculate a reading for the organic carbon component (TOC) 

using the equation TC-TIC=TOC. 

In total, 512 samples were analysed. Samples were weighed to 105 mg (TC) and 65 mg 

(TIC) before analysis. No sample preparation beyond drying was conducted because of 

issues concerning small sediment weights; due to this, the results strongly over-estimate 

the total inorganic carbon fraction and occasionally under-estimate the total amount of 
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organic carbon presence. Samples remained in the furnace for 300 seconds to obtain 

the best reading possible for the sediment type.  

3.4.2.3. Itrax high-resolution XRF core scanning and documentation of 

physical properties 

Traditional elemental geochemistry methods such as single sample X-ray fluorescence 

(XRF) can be time consuming (Croudace et al., 2006) which can make data collection a 

slow process if dealing with long sediment sequences. A much faster and non-

destructive analysis can be achieved through the use of Itrax XRF core scanning instead. 

Itrax core scanning (Francus et al., 2009; Rothwell et al., 2006; Rothwell and Rack, 2006; 

Thomson et al., 2006), whilst a relatively expensive option, is a very good technique to 

use on long, continuous and annually deposited core sequences (Croudace et al., 2006). 

The Itrax micro X-ray beam irradiates the sediment sample to collect positive X-ray 

images and to detect the energy of fluorescent radiation to provide a relative 

concentration level for various elemental components. The scanning machine will also 

produce X-ray radiographs and optical images (Guyard et al., 2007; Marshall, 2010). 

Standard procedures for Itrax scanning were followed as outlined in Croudace et al., 

(2006) & Francus et al., (2009). 

Whole sections of cores covering the 2010 Nar master sequence were transported to 

Aberystwyth University and scanned using the Itrax scanner at 200 μm resolution (400 

μm for concreted sections) under the guidance of Prof. Henry Lamb and Dr. Mike 

Marshall. This corresponds to around 5-20 data points for individual varves which 

measure between 1-4mm, thus attaining sub-seasonal resolution. Spilt sediment cores 

(between 24cm-183cm in length) were loaded onto the horizontal cradle with the core 

top positioned to the right (figure 3.13). Various programme settings were made and 

adjusted using the Core Scanner Navigator (CSN) program to ensure a successful scan. 

Step size and dwell time were selected with consideration to the quality of the acquired 
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data, the nature of the annual layers, as well as time and money constraints. Prior to 

scanning, core surfaces were covered with a thin polypropylene film (4μm thick), which is 

pure and chemically resistant, to protect the scanning device from the wet muds (Berger 

et al., 2009). For a more detailed overview of how to use the core scanner, see 

Croudace et al., (2006) & Marshall (2010). 

Scanning was conducted using a molybdenum (Mo) tube, 10-s count time, 200-ms 

exposure time, 30 kV X-ray voltage and an X-ray current of 50 mA to detect 28 elements, 

including Iron (Fe), Calcium (Ca), Titanium (Ti), Strontium (Sr), Manganese (Mn) and 

Potassium (K). X-ray radiographs were also obtained with the same Itrax scanner using 

60 kV X-ray voltage and 50 mA of current intensity. The density contrasts shown by the 

radiograph image indicate the presence of organic-rich layers (light bands) and 

carbonate-rich facies (darker bands). After scanning, data were explored and plotted 

using the Itrax-Plot software package which produced PowerPoint images of core 

section images alongside elemental profiles to help aid interpretation. 

 

Figure  3.13: Photo of Nar core section in Itrax scanning machine. 
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3.4.2.4. Portable XRF core scanning of whole core sections 

X-ray fluorescence (XRF) handheld core scanning is a relatively new analytical 

technique which allows for non-destructive, in situ XRF analysis of sediment cores and 

samples (Kylander et al., 2011a). The difference between this technique and Itrax 

procedures is that Itrax scanning produces one single dispersive energy spectrum for 

each sampling point along the core surface, resulting in data being expressed as peak 

area integrals rather than counts per second (CPS). Spectral readings from Itrax are 

correlated to theoretical spectra to help determine elemental compositions; problems can 

occur with this method if sediments vary significantly down core (Kylander et al., 2011a). 

Similar to XRF, if there is variability in sediment composition, texture, porosity and water 

content then the measured element concentrations in CPS have no quantitative 

representation (Rothwell et al., 2006). One particular draw-back of Itrax scanning 

compared to traditional XRF is that the machine finds it hard to detect lighter elements at 

the top of the periodic table and cannot detect Sodium (Na) or Magnesium (Mg). Those 

lighter elements however can be detected by conventional portable XRF (if used with 

helium purging and used on mining mode) making the record of elements such as Si 

collected through this method substantially better than that collected by Itrax. By using 

the two techniques together, a broader elemental composition for the sediment core 

sequence can be determined and cross-correlations can be made to ensure that the 

elemental readings are an accurate reflection of geochemical alterations in the lake 

sequence. 

The complete 21m core sequence from Nar Lake was analysed using the Thermo 

Scientific Niton XL3t GOLDD series XRF portable scanner housed at Plymouth 

University. The GOLDD standard machine allowed for faster measurement times and 

detection of light elements. The machine features a 50 kV miniaturised x-ray tube, 

internal camera for visual identification purposes and user-selectable 3mm small spot 

that collimates the x-ray beam onto small zones. A sampling resolution of every 8cm was 
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used to account for time constraints and the length of the core sequence. By scanning a 

collimated 3mm spot every 8cm instead of one specific spot every 200 μm, an averaged 

and broader picture of elemental change was determined. 

At 8cm intervals, the Niton XRF handheld gun was fired for 225 seconds (60 secs for 

heavy elements, 60 secs for medium elements and 105 secs for lighter elements); the 

unit was set to employ helium purging to allow the analysis of elements lighter than 

Potassium (K) and the 3mm toggle spot was switched on. 40 elements from Magnesium 

(Mg) to Uranium (U) were determined and error limits expressed. In recognition of the 

‘weak’ penetration of X-rays involved in the analysis of lighter elements, half core 

sections were prepared with a thin, clear polypropylene cover instead of the standard 

Mylar cover recommended. The role of the film being to protect the source and detector 

from the wet and muddy sediment samples (Berger et al., 2009). 

The in-house computer program (Niton Data Transfer (NDT) software suite) was used to 

analyse the spectra produced by the Niton gun in order to calibrate the results by 

comparison to known reference samples. The program is designed for downloading and 

managing data, and was used to produce excel print-outs of the results obtained for use 

in other statistical packages. 

3.4.2.5. XRF scanning of bulk sediment catchment samples 

In contrast to the scanning of core surfaces using portable XRF techniques, bulk 

catchment samples were analysed using more conventional XRF measurement 

techniques on single samples. Firstly, material gathered from the field was sub-divided to 

a small workable amount using the quartering technique, as outlined in (Shackley, 1975), 

chosen for ease and speed. For the XRF scan, these catchment sub-samples were then 

dried and homogenised to provide a flat and smooth surface for analysis (Rothwell and 

Rack, 2006). Samples were processed to powder pills using a Fritsch P5 Planetary Mill 

(PULVERISETTE 5 classic line with 4 bowl fasteners). A small amount of sediment 
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sample, equating to around half a bowl full, was added to a metal grinding bowl and four 

agate grinding balls were added to each bowl. The bowls were clamped into the machine 

and spun at high speed for 30 seconds or until the milled particles reached a size of 

approximately 60 μm. This fine fraction was then used to fill 5cm3 plastic pots ready for 

scanning. 

Samples were scanned using the Niton XL3t GOLDD series XRF portable scanner which 

was held within its desktop base. Helium purging was selected for again to make sure 

that the lighter elements were detected. Each individual sample was scanned for 270 

seconds as this seemed to be the optimal duration time for the potted samples. Mining 

mode was selected and the toggle spot was not use this time around. The Niton Data 

Transfer software was used again to output the results into a useful format. 

3.5. Data presentation and analysis 

Once results had been gathered, a number of numerical techniques were used to 

explore patterns within the datasets. Computer software programs were used to display 

and graphically represent key findings. 

3.5.1. Visualisation of data 

Changes in total carbon and geochemical parameters were graphically displayed as 

stratigraphic profiles using C2 data analysis software (Juggins, 2003) to present 

temporal changes in the elemental compositions and sedimentary variables. Where use 

of C2 was not available, the computer software program ‘R’ ('http://www.r-project.org/,'; 

Ihaka & Gentleman, 1996; R-core-team, 2001) was used to plot the data as line charts. 

The variables selected for graphical representation were selected based on their 

applicability to the study and on their potential as a climate/environmental change 

reflector, i.e. Argon (Ar) was not chosen for presentation because it was a bi-product of 

the scanning procedure and of no use to the interpretation process.  
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Relationships between variables, running averages, running correlation coefficients, 

PCA’s and other statistical tests were graphically represented to help with the 

interpretation process and to highlight to the reader significant changes in the NAR10 

profiles. Numerical analyses were visually displayed using C2 (Juggins, 2003) and R 

('http://www.r-project.org/,') graphical functions. 

3.5.2. Numerical analysis 

3.5.2.1. Data transformations  

3.5.2.1.1. Standardisation 

Multivariate data can be highly variable and more often than not, unevenly distributed. 

This becomes a problem if two data sets are to be compared alongside one another. It 

was therefore desirable to convert the original scores to some standard scale so that two 

or more variables could be plotted together. Variables were transformed with the object 

of normalising the scores and reducing the distribution to the normal, or as close as 

possible; this process is known as ‘standardisation’ (Kendall & Buckland, 1976). Data 

were normalised so that they co-varied (r2=1) by subtracting the parent mean of the full 

dataset from each individual sample, and dividing by the parent standard deviation, 

resulting in a dataset with mean of 0 and standard deviation of 1. 

3.5.2.1.2. Correction of Itrax derived data 

The usefulness of data extracted using XRF core scanning techniques is limited by the 

fact that elemental variations are not measured as concentrations and that sedimentary 

factors such as water content, organic content, surface undulation and porosity can all 

influence the measurements obtained (Böning et al., 2007; Kylander et al., 2011b; 

Tjallingii et al., 2007; Weltje and Tjallingii, 2008). Additionally, the aging of the X-ray tube 

can influence the measured count, unless two core sections were scanned close in time 
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(Lowemark et al., 2011). The strength of XRF though is that it can provide geochemical 

variations directly from the core surface at much higher spatial resolutions, allowing for a 

near-continuous record of diverse elemental intensities. In order to understand relative 

variation in comparison to other elements it is therefore necessary to correct for 

problems relating to the sediment matrix to extract the XRF’s full potential.  

To adjust for variations cause by core properties and scanning procedures, all data are 

usually normalised to another parameter. Commonly, data are normalised to the 

incoherent and coherent scattering (inc+coh) (Kylander et al., 2011b) / (inc/coh) (Melles 

et al., 2012), as fluctuations in the sediment will influence this absorption measure, as 

seen in Thomson et al., (2006). Incoherent fluctuations can be closely tied to the organic 

component of the lake sediment deposit, therefore kilo-counts per second (kcps) are 

often used as a normalising parameter, instead of incoherent and coherent values, to 

account for the complete changing nature of the sediment matrix (Bouchard et al., 2011). 

Normalising elemental data by a conservative element like Aluminium (Al) is also 

common practice (Lowemark et al., 2011), particularly when assessing changes in 

lithophile elements (Bertrand et al., 2010). This helps detect supplementary elemental 

inputs different from the background concentrations (Rothwell and Rack, 2006). Other 

detrital elements, such as Rubidium (Rb), have also been used to standardise peak area 

integrals (Guyard et al., 2007). With these methods in mind, the Nar Lake Itrax XRF 

derived results were corrected for using the Inc/Coh ratio and kcps scores (figure 3.14), 

which yielded differing results; because kcps corrections can account for multiple core 

problems, this parameter was selected for over the incoherent scatter. Corrections using 

Al could not be made as the peak area integrals for this variable were too low to be of 

use. Other detrital elements (Ti and Rb) have however been used to correct for the 

lithogenic component. 

Ratios have been used (figure 3.14) to minimise the effect of physical properties and 

closed sum-dilution effects present in the analysed spectrum (Tjallingii et al., 2010). This 
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is a useful way of correcting for some of the ‘disruptions’ in the sedimentary sequence 

caused by individual components. Whilst limited to just two variables, this is the best way 

to represent variability inherent in groups of elements. 

 

Figure  3.14: Stratigraphic diagram showing the stages taken to adjust and correct the Itrax 

derived geochemical data. The four different stages of correction are indicated using Calcium (Ca) 

data. The original data (measured in peak area) was corrected by removing gaps and cracks, and 

then were subjected to various alterations by using the incoherent (Inc) and kilo counts per 

second (kcps) profiles (both unitless). Ratios with other elemental records (e.g. Ca/Sr) (unitless) 

also provided a means of adjusting for individual elemental variation.  
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The quality of data obtained from Itrax XRF can also be affected by gaps and cracks in 

the sediment sequence. To account for this, sharp drops in elemental peak area 

integrals were detected from the stratigraphic profiles, mean standard error readings and 

x-ray radiographs, and removed from the measurement sequence before down core 

variations were graphically presented (figure 3.14). Inspection of the parameters for 

other erroneous peaks was also conducted, and these artefacts were ignored. 

3.5.2.1.3. Data reductions 

To look at longer terms trends and non-random fluctuations in the very highly resolved 

Itrax dataset, it has been necessary to use data reduction techniques to slim down the 

data. Running averages (also known as moving averages) (Matthews, 1981) (have been 

used to smooth the Itrax data to generally average out or mask very high and low values 

that make the signal noisy. This was achieved using Excel functions to calculate the 

mean of overlapping sections. 500 sample and 2000 sample running means were 

conducted as these would hopefully show fluctuations greater than 10-40 years in length. 

A comparable averaging process was used for correlation statistics (see section 

3.5.2.2.1). Loess smoothing curves (Cleveland, 1979, 1981) were also plotted on 

stratigraphic diagrams displaying the Itrax derived data in a similar attempt to reduce the 

number of data points and to look at longer term trends. Loess smoothing, with a 0.2 

span, was applied using the R statistical computer package ('http://www.r-project.org/,') 

to draw a smooth curve through a basic line plot. 

To slim down the Itrax data and bin the samples into selected groupings a computer 

program called ‘File.format.conversion.for.LRA.12Oct09.exe’ initially designed for use 

with pollen count data by S. Sugita (Tallinn University, Estonia) in October 2009 was 

used. This allowed the 0.2mm Itrax data points to be averaged in bins of 3cm at every 

8cm interval. The binned data was used to compare alongside portable handheld XRF 

data which was only scanned at 8cm resolution using a 3mm toggle spot. The 3cm bin 
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width was selected for to account for any inaccuracies there may have been with the 

reading of depths during handheld scanning and the 8cm resolution ensured readings 

from the two techniques were comparable. 

3.5.2.2. Statistical analysis 

3.5.2.2.1. Correlation analysis 

Correlation analysis was used to assess how two variables co-vary down core, 

particularly on those parameters established through Itrax core scanning to explore 

similarities between elemental components. To measure how two continuous variants 

(with a true zero) are related, Pearson’s Product Correlation Coefficient was used, which 

is a measure of the degree of correlation (Clarke and Cooke, 1998) and has been 

recognised as a power technique in correlation analysis (Wheeler et al., 2004). Analysis 

was conducted using Excel functions. The strength of the relationship was measured 

using the r value. Strong positive relationships will show an r value of 1 and strong 

negative relationships will have an r value of -1, very weak relationships will take a value 

close to 0. The strength and significance of r values was determined in Excel also using t 

and p values. A p value below 0.05 was seen as significant. 

To look at relationships over a longer time-span, running correlation coefficients were 

produced using the same Excel functions for selected elemental profiles. This was 

achieved using 500 and 2000 sample bins to reflect change over ~ 10-40 varve year 

timescales. A Pearson’s Product Correlation Coefficient was computed for each 

overlapping bin interval in a similar fashion to how running averages were computed. 

3.5.2.2.2. Principal components analysis 

Principal Components Analysis (PCA) is an indirect (or unconstrained) ordination 

technique used to reduce the number of variables that need to be considered in a study 

to a small number of significant indices that are linear combinations of the original 
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variables (Manly, 2004). Basically, PCA analysis is a data reduction technique; groups of 

variables can be positively and negatively correlated, or uncorrelated. This technique has 

been used to reduce the Itrax elemental variables to a number of significant dimensions 

that represent the underlying structure of the data. Analysis helped make the large Itrax 

dataset more manageable and to explain the largest variance in the dataset. PCA 

analysis was performed in C2 (Juggins, 2003) on standardised and centred species 

scores and results were displayed as ordination bi-plots using the same software 

package and as stratigraphic profiles using R ('http://www.r-project.org/,'). PCA-

ordination diagrams show species scores represented by arrows and samples scores 

represented by dots. 

The number of PCA ordination axes to be retained for interpretation was determined by 

assessment of the eigenvalues (total amount of variance witnessed by that axis). 

Assessment was made using the broken stick method and plotted using a scree plot to 

confirm the importance of axes (Frontier, 1976; Legendre and Legendre, 1998). The 

scree method followed that outlined by (Jackson, 1993).  

3.6. Archaeological data collection 

Research of primary and secondary archaeological sources was conducted as part of 

the PhD project; a study grant provided by the British Institute in Ankara, Turkey (BIAA) 

supported independent desk and archival research into long-term cultural change. 

Archival research enabled the capture of a sense of change over time which would not 

have been accessible through fieldwork or modern observational techniques. Retrieval 

and analysis of data extended over a one month period, starting September 2nd 2011. 

Work consisted of using archived archaeological and historical records to create a 

database of sites, chronologies and cultural change strategies for the Cappadocia region 

in Turkey. More in-depth work was possible for individual excavated sites to document 

artefact variability and human occupation sequences. This work has led to periods of 
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societal change to be delineated, which may have been influenced by shifts in Holocene 

climate. The study provided a multi-period account of change from the Neolithic to 

modern times.  

Initially, work involved engaging with the library collection and identifying key resources 

(books, journals, monographs etc.) of use. A preliminary assessment of the library 

resources made in 2010 as part of a BIAA supported study tour of Turkey had revealed 

that the resources available were suitable for the proposed research. Of the resources 

consulted in September 2011, access to Turkish journals and electronic access to 

Anatolian Studies proved to be very useful, as these are not readily available for use 

within the U.K. The labyrinth of individual site reports and monographs were also of 

benefit. 

Archival and background research conducted in association with the BIAA study grant 

progressed in two stages. The first stage of work involved looking at archaeological 

survey data to obtain settlement numbers and sizes, along with mobility patterns through 

time for Cappadocia. In fact, this was a BIAA led project, managed by Institute Director 

Dr. Lutgarde Vandeput and Dr. Geoffrey Summers (previously of Middle Eastern 

Technical University). The project aimed to collate data from Ian Todd’s 1960’s survey of 

Cappadocia and to establish an accessible database for the sites mentioned in this 

survey. By summer 2011, BIAA research scholar Michele Massa (University College 

London) had already documented settlement pattern changes and shifts in site size for 

the three main provinces that form Cappadocia, the focus of which was on early 

Holocene occupational periods.  

In light of this information, archival research became orientated towards expanding the 

dataset already produced in association within the British Institute and checking work for 

errors and inconsistencies.  Work focused on collating data from the more recent 

archaeological surveys which have been conducted since the 1960’s, particularly those 
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conducted in the Kırşehir, Kayseri and Nevşehir provinces. Dr. S. Omura and his 

Japanese team have so far produced the most comprehensive map of archaeological 

sites, following the lines of I. Todd and including key mining sites as well as occupational 

mound sites. Priority was given to those sources which included site numbers for later 

occupation periods. Whilst the Neolithic period may have been well documented, later 

ceramic cultures were often more complex and difficult to date, consequently leading to 

under-representation in site surveys. These problems of course apply to all survey 

investigations, particularly with smaller and more ephemeral sites or large flat exposures. 

Nevertheless, a broad picture of occupation for central Anatolia was developed using the 

available published data. Evidence has been collated into a master spread sheet 

document. 

Second stage work involved far more intensive used of the library resources and detailed 

investigation into the excavated sequences of individual archaeological sites in the 

Central Anatolian Plateau. Key sites, as delineated by the survey data and by fellow 

researchers were chosen for detailed analysis. These include sites like Aşıklı Höyük, 

Çatalhöyük, Kültepe, Kaman-Kalehöyük and Can Hasan for which there are preliminary 

reports. Some sites outside the main focus region of Cappadocia were also looked at as 

they include information regarding the major chronological sequencing for certain time 

periods and include artefactual details (e.g. about storage remains) that are vital to the 

understanding of cultural change mechanisms. Such sites include Erbaba and Kerkenes 

Dağ. It is noteworthy that no reliable excavated sequence exists for certain cross-over 

period’s e.g. late Chalcolithic-EBA transition. Later levels, from Hellenistic times onwards, 

whilst apparent at sites like Topakli and Hacıbektaş, were not considered in this research. 

This was mainly due to time constraints and to the difficulties with sequencing of earlier 

phases which made interpretations difficult.  An Excel spread sheet database was set up 

to record and document certain aspects of each site’s history including occupation levels, 

dating, structural changes and shifts in storage type/use.  
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3.7. Chapter summary 

The methods applied and discussed here were selected according to the aims and 

objectives of the project; geochemical and sedimentary analyses helped to address aim 

1 and archaeological data collection helped to address aims 2 and 3. Nar Lake site was 

chosen because of its usefulness for extracting suitable climate proxies, its potential for 

high-resolution sampling and its varved nature which helped to create a firm chronology, 

at least in part. Fieldwork allowed for the collection of relevant samples for geochemical 

analysis and to assess modern day conditions at the lake. Laboratory procedures were 

adequately developed to extract data suitable for addressing relationships between 

people and climate/environment change. Datasets underwent statistical analyses 

following standard methods to explore the patterns and information stored within values.  
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4. Sedimentology and elemental geochemistry                      

Nar Gölϋ results 

4.1. Chapter introduction 

In summer 2010, coring of Nar Gölü (Nar Lake) in Cappadocia, central Turkey produced 

a 21.6m continuous and mainly annually laminated sediment core sequence, hereby 

known as NAR10. The core sequence was sub-sampled for multi-proxy investigations 

every 20 varve years (vys) or every 4cm depending on the core lithology. At each 

sample point, three or five varve couplets were collectively sampled, depending on varve 

thickness, and divided into 8 sub-samples ready for further analysis. The sediment 

sequence is being evaluated using a range of methods, including analysis of various 

stable isotopes, pollen, pigments, X-ray diffraction (XRD) and diatoms. In this chapter, 

results are presented of X-ray fluorescence (XRF) core scanning and total organic and 

inorganic carbon, and a description of the sedimentary facies. 

4.2. NAR10 sediment lithology 

The NAR10 sedimentary record is composed primarily of 0.5-5mm thick, clearly 

discernible to faint laminations, varying in colour and in calcium carbonate and organic 

content. Around 90% of the 21.6m master core sequence is laminated, with most 

appearing to be annually varved (figure 4.1). There are several important stratigraphic 

changes along the sequence, which include a mainly non-laminated unit with calcium 

carbonate concretions at 5.9-7.5m (unit 2), thick multi-coloured banding centred around 

8m (unit 3) and a non-laminated grey marl at 19.7-20.1m (unit 6), the top of which 

appears to mark the start of the Holocene. Grey clastic layers are also present, 

particularly in the top 2m, some of which are visually graded when thick; these layers are 

interpreted as ‘turbidites’. Annual varve couplets are composed of a light (usually dull 
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white) lamina containing mostly summer-precipitated carbonate and a dark (usually dark 

brown or olive green) lamina consisting of diatoms, organic material and clastics which is 

deposited in the autumn/winter (Jones, 2004). In some cases, distinct diatom bloom 

layers are present (Woodbridge, 2009). 210Pb and 137Cs dating of the top 50cm of the 

NAR01/02 core sequence, together with modern data from seston sediment traps, 

provides evidence that these couplets are annually deposited, with each dark and light 

band representing one year of sediment accumulation (England, 2006; Jones et al., 

2005). There are changes in the composition of the carbonate laminae throughout the 

core sequence between aragonite, calcite and dolomite (Dean, in prep; Jones, 2004).  

The NAR10 core sequence has been tied in with previous core sequences extracted 

from the same lake based on sedimentological descriptions, visual comparisons and 

microscopic observations; these are NAR06 (AD 1927-2006) and NAR01/02 (AD 276-

2001). Correlation of Nar Lake cores for the uppermost units of NAR10 and NAR01/02 

provides a means of checking the dating of the upper part of the new (NAR10) core 

sequence. Across the three Nar sequences, clastic event layers and varve types appear 

consistent which may imply that there is little variation in sediment accumulation and 

lithology across the central lake bottom. However, there are some variations, mainly the 

result of variations in the thickness of slump deposits. There are also several small 

sections in the NAR10 sequence which have been disturbed through the coring process, 

where the laminations have become folded and misshapen. Generally, cross-correlation 

between parallel cores has helped to avoid using these disturbed sections, yielding a 

relatively complete master sequence. There is however, one break in the composite 

stratigraphy below 11.3m depth because there was no core recovery for this interval; this 

stratigraphic gap is estimated to be ~22.5cm thick.   

The composite sediment sequence was created using all three lake centre NAR10 cores 

with correlations based on 29 tie points (Tp) (figure 4.1). The master core sequence has 
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been divided into seven key lithostratigraphic units based upon changes in visual 

appearance and composition (table 4.1, figures 4.1 & 4.2).  

 

Figure  4.1: NAR10 composite master lithology and individual core sections. The sequence has 

been visually split into 7 key lithostratigraphic units with varved and non-varved deposits identified. 

‘Tp(n)’ indicates the location of tie points used for cross-correlating individual core sequences. 
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Table  4.1: Descriptive summary of the key lithostratigraphic units and sub-units identified for the 

NAR10 sediment sequence. 

Master 

sequence 

depth (cm) 

General description of unit 

Master 

sequence depth 

(cm) 

Detailed description 

(Tp = tie point) 

0-592.7 

Unit 1: Mm thick laminated silts, black, 

brown, grey, olive, beige in colour; with 

distinctive, mid- grey turbidite events 

which occur frequently. 

0-41 

Sub-unit 1a: Mm thick laminated silt, 

brown, grey, olive, beige colour; with 2-

3mm thick turbidite layers. 

  41-152.7(Tp3) 

Sub-unit 1b: Light brown, olive, beige 

laminated silt; with thin mm thick turbidite 

events. 

  152.7(Tp3)-391.7 

Sub-unit 1c: Dark brown, dark olive, 

beige laminated silt; thick and thin grey 

turbidite events. 

  391.7-412.7(Tp6) 

Sub-unit 1d: Light olive, beige, yellow 

laminated silt similar to above. Some thick 

grey turbidite layers towards top. 

  

412.7(Tp6)-

592.7(just above 

Tp8a) 

Sub-unit 1e: Darker colours. Black, 

brown, grey, olive, beige laminated silt; 

occasional turbidite events. 

592.7-753.7 

Unit 2: Mostly non-laminated and hard 

with rare thin, soft, interspersed 

laminations. Frequent nodular layers, 

some formerly laminated. 

592.7(just above 

Tp8a)-599.7 

Sub unit 2a: Dark laminations, hardened 

for top 5cm. 

  599.7-622.7 

Sub unit 2b: Dark grey hard carbonated 

silt. Finely laminated but highly disturbed 

by calcareous nodules. 

  622.7-682.7(Tp9) 

Sub unit 2c: Hard, homogenous light 

grey carbonated silt; Large nodules. Last 

10cm cut by black organic rich band 

running left to right, 1cm thick (Tp8b). 

  682.7(Tp9)-693.7 

Sub unit 2d: Olive, white mm thick 

laminated soft, silt. Some oxidation to top 

due to orange colour. 

  
693.7-

713.7(Tp10) 

Sub unit 2e: Light grey, beige hard silt. 

Some linear carbonates at top which 
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appear to be formerly laminated. 

  
713.7(Tp10)-

719.7 

Sub unit 2f: Soft, olive, grey, beige mm 

thick laminated silt. Thick grey lamina at 

top. 

  
719.7-

753.7(Tp11) 

Sub unit 2g: Light grey, olive hard silt. 

Frequent nodular carbonates with no 

laminations. 

753.7-

1138.7 

Unit 3: Silty, brown, grey, olive, red, 

tan, cream, white 1-5mm thick 

laminations. Occasional non-laminated 

section. 

753.7(Tp11)-

798.7(Tp11a) 

Sub unit 3a: Brown, olive-tan laminated 

silt. Thin, regular laminations with bowing 

to structure towards base. Some thick 

brown banding; lighter at bottom. 

  

798.7(Tp11a)-

1006.2(just 

below Tp14) 

Sub unit 3b: Brown, olive, beige, red 

laminated silt. 1-5mm thick, horizontal 

laminations. Occasional disturbance, 

distorted individual laminae structure. 

  

1006.2(just 

below Tp14)-

1022.2 

Sub unit 3c: Brown, dark olive silt. 

Laminated. 

  
1022.2-

1099.7(Tp16) 

Sub unit 3d: Thick, olive, cream 

laminated silt. Highly distorted with some 

non-laminated sections between Tp14 & 

Tp15 (984.2-1045.2cm). 

 . 

1099.7(Tp16)-

1138.7(end of E 

drives) 

Sub unit 3e: Brown, deep red, beige 

laminated silt. Finely laminated. 

1138.7-

1161.2 

Break in sediment sequence: Core 

depths suggest no core recovery for this 

section. 

1138.7-1161.2 

(between E and 

F drives) 

No sub units 

1161.2-

1428.2 

Unit 4: Mostly laminated, very pale 

beige & white silt. Very fine laminations. 

Interrupted by carbonate tufa with plant 

stem inclusions and mm sandy bands. 

1161.2(start of F 

drives)-

1279.2(Tp17) 

Sub unit 4a: Very finely laminated beige, 

white silt with banded sand inclusions. 

Some distorted laminations. 

  
1279.2(Tp17)-

1299.2 

Sub unit 4b: Homogenous grey/brown 

crumbly, calcareous deposit. Contains 

many tufa-encrusted plant stems, ~5mm 

long. 

  
1299.2- 

1428.2(end of F 

Sub unit 4c: Weakly laminated silt, thin 

olive-beige alternations with very few 
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drives) breaks in the laminae. Includes similar but 

thinner calcareous, tufa encrusted plant 

deposit at 1291.2cm and thick black 

organic band at 1341.2cm. 

1428.2-1974 

Unit 5: Mm thick laminations of mainly 

olive-beige alternations but also black, 

grey, red, cream and white laminae. 

1428.2(start of G 

drives)-

1606.2(Tp22) 

Sub unit 5a: Dark olive, grey, dark beige 

coarse laminated silt. Occasional 2-3mm 

thick turbidite and banded sand events; 

black organic band at 1470.2cm. 

  
1606.2(Tp22)-

1921(Tp26) 

Sub unit 5b: Fine, 1-2mm thick, 

distinctive laminated olive, beige, cream 

silt. Most laminae are uniform but few 

have been distorted; Very few clastics and 

banded sands. Following is a 

homogenous, light olive silt which is likely 

slop from coring. 

  1921(Tp26)-1953 

Sub unit 5c: Cream, white finely 

laminated soft silt. Broken by laminated 

brown banding, 0.5-2.5cm thick. 

  
1953-1974(just 

above Tp27) 

Sub unit 5d: Dark brown, olive laminated 

silt. Various colour changes but 

predominately brown. 

1974-2013 

Unit 6: Homogenous mostly non-

laminated grey, beige marl. Hard and 

calcareous; some large concreted 

nodules. Some dark laminations present 

between hard layers. 

1974(just above 

Tp27)-2013 

Sub unit 6a: Light grey marl. Softer 

towards top and more calcareous towards 

bottom. No laminations and some 

carbonate nodules. 

2013-2169 

Unit 7: Coarse and finely laminated 

olive, beige silt; occasional distortions. 

Frequent non-laminated sections; olive 

in colour, some soft nodular 

laminations. Abrupt colour changes at 

bottom between homogenous beige and 

olive silts. 

2013-2128(just 

above Tp29) 

Sub unit 7a: Light grey, beige laminations 

1-3 mm thick. Some distortion to laminae 

from nodules above. Below 2033 cm, 1-

3mm thick, distinctively laminated brown, 

olive, beige soft silt. Some laminae are 

coarse, nodular and distorted. 

  
2128(just above 

Tp29)-2165.2 

Sub unit 7b: Weakly laminated beige, 

cream soft, silt. Interrupted at 2133-

2137.5cm & bottom of core sequence by 

dark brown, weakly laminated silts. 
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Figure  4.2: Overview images of the 7 key lithostratigraphic units identified for NAR10. Each image 

is a 15cm representative sample of the whole unit. To note are the changes in varve thickness 

and visibility, and changes in sediment colour and composition between each unit. 

4.3. NAR10 dating and chronology 

4.3.1. Chronology overview 

Accurate dating of the NAR10 sequence has been problematic. The lack of terrestrial 

carbon and the remobilisation of old carbon stores from volcanic degasing have 

prevented the use of 14C as a dating tool. Due to the annual nature of varved deposits at 

Nar Lake, it has been possible to establish a chronology from laminae deposits. The 

master chronology established for NAR10, to date, has been assembled using previously 

determined chronologies for the NAR01/02 core sequence and from varve chronological 

counting techniques (Lamoureux, 2001). Varve interpretation and the counting of varves 

was performed in 2011 by Nar Lake team members at Plymouth University, and a 

partially complete varve time series was constructed from these data. The assembled 
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varve chronology is shown in figure 4.3. Other radiometric dating techniques are also 

currently being used but are not sufficiently complete to discuss in more detail here. 

4.3.2. Varve chronology 

A varve chronology (partially floating) has been established by visual varve counting of 

the NAR10 master composite core sequence, covering a time interval from the Late 

Glacial until present day (2010). Most of the chronological record was obtained from 

zones of clearly delineated varves, particularly in the top and lower sections of the 

composite sequence (figure 4.3). There were some zones of disturbed and concreted 

sediment that made varve counting impossible and for these areas varve counts have 

been extrapolated. Extrapolation for distorted sections and areas of problematic 

sedimentation was conducted using averaged varve thickness measurements from 

adjacent varves, measuring the associated depth interval and dividing the two. No single 

laminae type was seen throughout the core making components hard to define in places, 

and the presence of thick laminations, that can appear annual in nature, further 

complicated the counting procedure. Three estimates for the number of years 

represented by the thicker laminations have been devised to account for the possible 

annual/non-annual nature of these sections. The chronology was further complicated by 

‘turbidite’ type layers that interrupted varve couplets. The regular pattern of clastic input 

during carbonate laminae formation made identification of these bands easy and the 

clear contact with material below and above in most cases confirmed minimal erosion. 

The proposed varve chronology should therefore be minimally affected by clastic 

sedimentary events. 

A robust varve chronology has been established for the top 592.7cm as the stratigraphy 

is continually varved from there to the present day. Besides some disruption to the top 

10 varves (discussed in section 4.3.3), there are no obvious hiatuses or sedimentological 

distortions in this section, resulting in a firm varve count of 0-2589vys equivalent to 
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calendar ages of AD 2010-BC 579. The varve chronology for the top 1719vys was 

developed alongside previous core chronologies (NAR01/02); NAR10 varve counting 

commenced from the end of the NAR01/02 sequence until the top of unit 2 (592.7cm) 

where hard carbonate concretions prevented further counting.  

 

Figure  4.3: Age-depth model based on varve chronologies for NAR10. The purple line shows 

counts from the NAR01/02 sequence and the blue line shows counts for the NAR10 sequence 

(with some overlap). The green line shows varve counts established from 11700 years ago 

towards present. The black line shows counts for unit 7 which pre-dates the Younger Dryas (here 

delineated as starting at 12900 cal. yrs. B.P). Chronologies finish where varve formations stop or 

where sections are problematic. 

A reasonably firm varve chronology has also been established from 11700 cal. yrs. B.P. 

until 6398vys as varves for this time section (units 4 and 5) are also clear and easy to 

count. The start date of 11700 cal. yrs. B.P. (end of unit 6) is an estimated date for this 
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part of the core sequence as isotope studies (Dean, in prep), geochemical data and 

changing sediment characteristics (both this thesis) indicate that this boundary 

represents the termination of the Younger Dryas climatic anomaly, the end of which is 

commonly agreed as 11700 cal. yr. B.P. (e.g. Grootes et al., 1993; Holliday et al., 2011; 

Rasmussen et al., 2006) and provides a suitable tie point for this varve sequence. 

Similarly, it is possible to delineate the start point of the Younger Dryas event through 

isotopic, geochemical and visual analysis of the sediment sequence. Varve counts from 

the start of this climatic event (dated here to 12900 cal. yrs. B.P. (Bakke et al., 2009)) 

back in time have resulted in an annual count of 958vys, ending at 13858 cal. yrs. B.P. 

for the base of the varved core sequence (figure 4.3). 

4.3.3. Comparison with NAR01/02 chronology 

To assess the reliability of the varve chronology for the top 400cm of the NAR10 

sequence, dates were correlated to the chronology established for the NAR01/02 

composite sequence (figure 4.4) where the two records overlap. The benefit of 

comparing to the NAR01/02 sequence (figure 4.5) is that this record has been 

radiometrically dated, providing confirmatory evidence of the estimated varve years 

(Jones, 2004). 210Pb and 137CS dates revealed that the original NAR01/02 varve 

chronology needed to be shifted by 5 varve years to younger values to correct for the 

mismatch in the age-depth model (England, 2006). It is assumed that the same issue is 

of relevance to the NAR10 chronology due to an off-set in isotope samples for the two 

sequences of around 5 varve years, and has therefore also been adjusted accordingly 

(Dean, in prep). This has resulted in missing varve years for the top most 10 years of the 

NAR10 sequence and has led to laminae being assigned a two varve year interval in 

parts. There are a number of postulated causes for the missing varves, none of which 

are certain, but range from the presence of large ‘turbidites’ in the core sequence to the 

construction of a geothermal exploratory bore hole in the vicinity of the lake during the 

early 1990’s, both of which could have affected varve deposition. 
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Figure  4.4: Age-depth relationship for NAR01/02 varve chronology (Jones, 2004) 

 

 

Figure  4.5: Comparison of the NAR01/02 (purple line) and NAR10 (blue line) varve counts against 

cumulative depth.  
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Table  4.2: Comparison of the NAR01/02 varve count with the NAR10 varve count for a 480 year 

overlap period. 

NAR01/02 

varve year 

Date 

(AD) 

NAR10 

varve year 

Date 

(AD) 

Difference 

(vy) 

Difference between 

NAR01/02 and NAR10 

(%) 

1270 731 1261 740 9 0.7 

1290 711 1281 720 9 0.7 

1310 691 1301 700 9 0.7 

1330 671 1322 679 8 0.6 

1350 651 1344 657 6 0.4 

1370 631 1363 638 7 0.5 

1390 611 1384 617 6 0.4 

1410 591 1403 598 7 0.5 

1430 571 1423 578 7 0.5 

1450 551 1441 560 9 0.6 

1470 531 1459 542 11 0.7 

1490 511 1479 522 11 0.7 

1510 491 1497 504 13 0.9 

1530 471 1519 482 11 0.7 

1550 451 1532 469 18 1.2 

1570 431 1550 451 20 1.3 

1590 411 1571 430 19 1.2 

1610 391 1589 412 21 1.3 

1630 371 1607 394 23 1.4 

1650 351 1624 377 26 1.6 

1670 331 1643 358 27 1.6 

1690 311 1661 340 29 1.7 

1710 291 1680 321 30 1.8 

1730 271 1697 304 33 1.9 

1750 251 1719 282 31 1.8 

 

Table 4.2 shows the cumulative laminae counts for NAR01/02 against the cumulative 

laminae counts for NAR10 to help identify parts of the core sequence where varve 
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numbers may be under or over-represented. Comparing the two records in this fashion 

suggests that the counts for both sequences are not too dissimilar with an estimated 

maximum counting difference of around 1.9% for this part of the core sequence. The 

error estimates suggest that on average, the NAR10 laminae counts are up to 1% 

younger than the NAR01/02 laminae counts. It is reasonable to put forward that for the 

parts of the NAR10 sequence which overlap with the NAR01/02 sequence, there is 

minimal error in the NAR10 varve chronology. The counting error for NAR10 will have 

little influence on the climatic and environmental reconstructions made for the last 

2589vys (unit 1) because the different between NAR10 and NAR01/02 is small. Further 

counting checks for the rest of the NAR10 sequence are planned once radiometric dates 

are made available. 

4.4. NAR10 total organic and total inorganic carbon analysis results 

Total carbon analysis is a method which measures the total inorganic (TIC) and total 

organic carbon (TOC) component of sediments (Dean, 1974). Total organic carbon 

concentration varies through the sedimentary sequence, indicating changes in organic 

deposition and preservation under different sedimentary conditions (Meyers and Lallier-

Vergés, 1999). The NAR10 TOC and TIC results are presented in figure 4.6 and 

described according to depth and lithostratigraphic unit. With 512 sample depths and a 

mean sampling interval of 4.09cm, results show considerable down core variability, 

correlating with sediment lithology and clearly reflecting the diverse nature of the 

lithostratigraphic units. Total inorganic carbon concentrations are significantly higher than 

total organic carbon concentrations. The mean TOC content of the NAR10 sediments is 

about 1.1% although it ranges from 0 to 5.9%. TIC percentages are generally much 

higher, reaching levels of 14.1% (but also low levels of 4.0%). On average, TIC is 9.5%, 

indicating that the NAR10 sediments are relatively carbonate-rich. Visually, total carbon 

(TC) percentages for the top half of the NAR10 sequence are more highly variable than 
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the lower section. Values range between 4.71-13.52% for the top and 5.3-13.15% for the 

bottom, with higher amplitudinal changes more commonly associated with the top 10m.  

 

Figure  4.6: Total carbon (TC), total inorganic carbon (TIC) and total organic carbon (TOC) results 

for NAR10 plotted as carbon mass percentage. Total carbon percentages are shown against core 

depth, lithology and lithostratigraphic units. 
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Caution must be given to samples where inorganic carbon values exceed total carbon 

values as this indicates that during total carbon analysis, not all carbon was combusted 

and therefore will underestimate organic carbon values. Similarly, where high TIC values 

exist, organic levels may be swamped by high inorganic readings and also 

underrepresent the amount of organic carbon presence. Samples with low TOC readings 

must therefore be interpreted with some care.  

Lithostratigraphic unit 7 shows the lowest average values of TOC for the whole core 

sequence (0.2%) with TOC values of zero recorded for the bottom 0.5m of the core 

sequence.  High TIC levels, which fluctuate only moderately, and decreased levels of 

organic carbon typically characterise the bottom 165cm of the sediment sequence dating 

to the Late Glacial period. From unit 7 through to sub-unit 5c, values of TIC remain 

constantly high at this sampling resolution. TOC values are likewise consistently low, 

apart from a sharp increase at 20m to 4.4%. Towards the top of unit 5, TIC levels begin 

to decrease, ultimately resulting in relatively low TIC values (down to 4.08%) by sub-unit 

5a. In sub-units 5a & (end of) 5b, carbon values vary quite significantly, with TIC 

percentages ranging between 4.08-13.4% and TOC percentages ranging between 0.5-

5.15%. Unit 4 in comparison is characterised by very high levels of TIC and the 

occasional peak in TOC (0.8% average). The TIC record here is also relatively stable 

with values generally fluctuating between 10 and 13 %, and only dropping when organic 

levels increase beyond 2%. Unit 3 shows a different pattern to that witnessed in unit 4, 

with moderate levels of TIC (12.53% max) and greater fluctuations in concentration. The 

base of unit 3, the transition from unit 3 to unit 2, and unit 2 reveal increased levels of 

TOC, and slight decreases in TIC, making this section very distinctive in terms of organic 

carbon deposition. Average mass percentage values for TOC of 1.86% for unit 2 and 

1.79% for unit 3 suggest fairly similar conditions across the two units. The transition to 

unit 1 is evidenced by a slight increase in TIC and a slight decrease in TOC 

concentrations. Unit 1 shows fairly high levels of TIC (8.4% average) with only three 
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noticeable decreases in concentration at around 2.6, 3.7 and 4.8m. Variability and 

amplitudinal change is greatest here, but not too dissimilar from the variability witnessed 

in units 3 and 2 also. 

4.5. NAR10 Itrax XRF core scanning results 

4.5.1. Itrax core scanning results overview 

Itrax XRF core scanning provided a high-resolution record (every 200 or 400 μm) of 

geochemical variations for the full NAR10 sediment sequence. The following Itrax XRF 

summary plots show the key results from core scanning that will be used to determine 

palaeoclimatic and palaeoenvironmental change for Nar Lake from the Late Glacial 

through the Holocene, and up until present day. The nature of Nar Lake’s evolution will 

be discussed in relation to changes over time, with coverage of in-lake (autochthonous) 

and out of lake (allochthonous) processes. Down-core profiles of both heavy and light 

elements noticeably delineate the different sedimentological units and physical 

properties already described in this chapter (section 4.2). Broadly, data shows opposite 

trends between Ca and Fe peaks, while Ti, K, Rb and Si behaviour is variable. Some 

data obtained recorded very low peak area integral values and some individual elements 

were generally at the limits of detection; these have no significant meaning with regards 

to climatic/environmental change and have thus only been presented in appendix 2. Due 

to issues with dating accuracy in parts of the core sequence, elemental data have been 

plotted against core depth only here. 

The fact that geochemical results tie in nicely with sedimentological units has highlighted 

an important issue concerning possible gaps in the NAR10 sediment sequence. Whilst it 

has been suggested that there is a gap between units 3 and 4 of around 22.5cm, the 

element profile for this part of the core sequence actually shows a clear gradual 

transition in sample values across the break suggesting that the coring gap is certainly 

not any larger than the proposed estimated depth. On the other hand, an abrupt change 
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in sample values between units 4 and 5 is very marked, with change occurring over a 

very short time interval and may suggest that sediment material may be missing from 

this section also. Whilst core depths suggest no break in the sediment sequence at this 

point in time, elemental variations may imply a possible break in the core sequence 

following unit 5. It is likely however, given core depth estimates, that this stratigraphic 

gap prior to unit 4 would be small. 

4.5.2. Itrax core scanning results for selected elements 

The following figures (figures 4.7 & 4.8) are plots outlining the Itrax core scanning results 

for elements related to authigenic carbonate deposition within Nar Lake. Note that 

Magnesium (Mg) was not detected by the Itrax XRF scanning procedure.  Moving 

averages have also been plotted to smooth out the short-term fluctuations in the data 

and to highlight longer-term trends.  

Based upon the corrected Itrax data profiles of Calcium (Ca) and Strontium (Sr) (figure 

4.7), elemental variation clearly parallels lithostratigraphy, with unit 4 being particularly 

distinctive. Starting from the bottom of the core sequence, unit 7 shows generally 

elevated levels of Ca and Sr, which can be relatively variable in nature. The change to 

unit 6 is subtle, and characterised mainly by higher levels of Ca and a small drop in Sr. 

The end of unit 6 reveals heightened Sr levels (600 max) and slight decreases in Ca 

(above 4000) (all values in peak area integrals). The beginning of unit 5 is not too 

dissimilar to unit 6 in terms of Ca (average 2500), but levels of Sr in contrast decrease 

significantly here (below 200). Unit 5 witnesses a decrease in Ca values from the base to 

the top, with a slight increase in the levels of Sr. A dramatic change is evident during the 

transition into unit 4 where Ca increases by 60% and Sr values decrease by 50%, 

revealing a major switch in climatic and environmental conditions here. Raised levels of 

Ca (above 3000) in relation to Sr (below 2000) characterises unit 4. This unit also shows 
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pronounced stability in the geochemical record compared to other periods; particularly 

evident is the stability of Sr values at this time.  

 

Figure  4.7: Stratigraphic diagrams of Calcium (Ca) and Strontium (Sr) (corrected peak area 

integrals) showing the Itrax derived values for these elemental components of NAR10. 

Lithological units are indicated by red lines. A 0.2 span loess smoother (yellow line) has been 

applied to the datasets to show longer-term change. 

The biggest drop in Ca values is seen during the transition to unit 3. Unit 3 consists of 

low Ca; in fact the lowest average Ca values (~1000) for the entire core sequence are 

seen here. Sr and Ca both increase between unit 3 and 2, with peak area integral values 

increasing on average by 49% for Sr and 72% for Ca. Unit 2 shows elevated levels of Ca 

and Sr in relation to the end of unit 3 and start of unit 1. The top of unit 1 shows slightly 

reduced levels of Ca and Sr; Sr levels in unit 1 decrease by an average of 62%. 
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Fluctuations of Ca and Sr are typically higher in unit 1, resulting in a noticeable extreme 

event occurring during sub-unit 1c where Ca reaches values up to 4000. At the end of 

this event, a massive increase in Sr is also witnessed at ~293cm (the largest peak in the 

whole data set). In the most recent deposits towards the top of unit 1, Ca and Sr values 

decrease again. 

Moving average window plots (figure 4.8) confirm many of the patterns seen within the 

corrected Itrax elemental profiles of Ca and Sr. Running averages reveal three key 

changes along the NAR10 sequence in the Ca record, at sub-units 1c and 5a, and unit 4 

respectively. Unit 4 is the most distinctive, with significantly elevated values of Ca. Unit 4 

is also characterised by very low Sr, a pattern also evident in sub-units 5b, 5c and 5d. 

The averaged Sr record reveals a slightly different pattern to Ca with units 3 and 6 being 

the most distinct; unit 6 indicating the most dramatic rise in Sr deposition for the entire 

core sequence. 

Figures 4.9 & 4.10 for the Iron (Fe) and Manganese (Mn) elemental component of the 

NAR10 sediment sequence represent the distribution of these two elements which is 

controlled a) by influx of detrital iron compounds from the catchment, and b) the 

deposition of hydrous oxides down core and of reduction/oxidation (redox) reaction 

conditions at the lake bed. Moving averages have been plotted to smooth out the short-

term fluctuations in the data and highlight longer-term trends. 
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Figure  4.8: Stratigraphic diagrams of Ca and Sr (corrected peak area integrals) showing the Itrax 

derived values for these elemental components of NAR10. Plots are of 500 and 2000 sample 

running averages of the two elemental components to reveal change over roughly 10 and 40 year 

intervals respectively. 
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Figure  4.9: Stratigraphic diagrams of Iron (Fe) and Manganese (Mn) (corrected peak area 

integrals) showing the Itrax derived values for these elemental components of NAR10. Diagrams 

are plotted from modern times and lithological units are indicated. A 0.2 span loess smoother 

(yellow line) has been applied to the datasets to show longer-term change.  

Stratigraphic profiles of Iron (Fe) and Manganese (Mn) variation (figure 4.9) also show a 

strong association with lithology, with key changes in the geochemistry occurring at 

points where there are significant changes in sediment colour and type. The bottommost 

unit 7 of NAR10, in terms of Fe and Mn concentration, shows moderate fluctuations in 

peak area values for both elements. In comparison to other parts of the core sequence, 

smoothed values of Fe (~400) and Mn (~15) suggest fairly low levels of deposition during 

unit 7. Fe and Mn values are low and constant throughout unit 6. Unit 5 is split into two 

distinct sections, with sub-units 5b, 5c & 5d showing low levels of Fe (range 0-1000) and 

Mn (range 3-39) and sub-unit 5a showing much higher levels of Fe (max 2800) and 
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decreased levels of Mn (~10). The transition between unit 5a and unit 4 is abrupt, 

revealing a dramatic rise in Mn and a drop in Fe. The increase in Mn levels compared to 

the decrease in Fe levels during unit 4 signifies that the two elements are not responding 

together, as is the case in the preceding unit. Units 2 and 3 are very similar to each other 

with relatively low values of Fe (~300) and Mn (~10) and only moderate fluctuations in 

concentration. Several Fe peaks in units 2 and 3 (max 2600) indicate that Fe may be 

responding differently to Mn here also. The transition into unit 1 shows increasing Fe and 

Mn values (79 and 42% respectively). Unit 1 is very distinct in terms of Fe with very high 

and variable levels (range of 0-3500). The Mn values for this unit are not as variable but 

do show some elevated sections during sub-units 1a and 1e. Sub-unit 1c is also 

noticeable by a significant drop in Fe levels to below 500.  

Running average plots (figure 4.10) show three distinct phases of change between Fe 

and Mn. With Fe, unit 1 and sub-unit 5a are the most visually distinctive with values 

exceeding 1000 in some cases. Also noticeable is the long-term increasing trend in Fe in 

the upper 6.5m of the core record. With Mn, unit 4 is by far the most noticeable zone of 

elevated Mn levels, and these levels remain constant for the entire unit. There are some 

other increases in Mn that are visually recognisable at around 5m too. Units 2 and 3 for 

both elements show lowered values and reduced variation. Unit 5, whilst split into two 

distinct sub-units in terms of Fe, in terms of Mn there is less variation in the values 

recorded resulting in a less pronounced separation of the unit for this elemental profile. 
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Figure  4.10: Stratigraphic diagrams of Fe and Mn (corrected peak area integrals) showing the 

Itrax derived values for these elemental components of NAR10. Plots are of 500 and 2000 sample 

running averages of the two elemental components to reveal change over roughly 10 and 40 year 

intervals respectively. 
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Figures 4.11-4.14 detail detrital elemental components of the NAR10 sediment sequence 

and represent the distribution of these detrital elements down core. A large component of 

the NAR10 sediment record is assumed to be of detrital origin as the sequence is 

commonly high in Fe, Ti, K, and to some extent Si, Rb, Zr, Zn and Cu. The most useful 

indicators of clastic input into the lake are Ti, Fe, Rb and K as the peak area integrals for 

these elements are relatively high and the Itrax system has identified peaks successfully. 

Presented here are the results for Ti, Si, K and Rb, with Fe values presented in figures 

4.9 and 4.10. Other elements such as Zr, Zn and Cu show similar trends to the major 

clastic elements, but for the most part have low Itrax XRF peak area values. 

Considerable noise results from data with low peak area integrals, and can provide an 

unreliable indication of past climate/environmental conditions. Results for Zr, Zn and Cu 

can be seen in appendix 2. Lighter elements (e.g. Si and K) have lower peak area 

integral values because these are generally at the limits of detection. Their co-variance 

with other lithogenic elements like Ti, Rb and Fe reveals that changes in these elemental 

components can be classed as ‘real’.  Occasionally, Si is decoupled from the lithogenic 

component, and in this instance Si is principally biogenic in nature. Moving averages 

have been plotted for detrital derived elements for smoothing and highlighting purposes 

also.  

Stratigraphic diagrams of Si and Ti (figure 4.11) show significant changes relating to the 

NAR10 sediment stratigraphy. The general pattern for Si is one of decreasing values 

from the base of unit 5 through to increasing values during unit 1 (range 0-15), forming a 

rough u-shaped pattern. The record is also highly variable, particularly towards the top of 

the core sequence where values are relatively high (above 10). Moderately low levels of 

Si are witnessed during unit 7, unit 6 and the latter half of unit 5. Values are by no means 

constant for these time periods and this is evidenced by a noticeable decrease in Si 

levels (~2.5) during sub-units 5b & 5c. Lowest Si deposition is associated with units 4 

and 3 where values average around 1. This drop in Si is particularly noticeable due to 
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the much higher values associated with sub-unit 5a, and which begin to develop 

afterwards during unit 2. The pattern of Si deposition for unit 2 highlights values slowly 

rising. A significant drop in Si can be seen towards the base of unit 2 which is 

distinctively different to the overall trend for the unit; here values reach zero in places. 

Unit 1 stands out because of the highly variable nature of the record. Si deposition is not 

constant, with lows of 2 and highs of 13 recorded. The most significant shift in value can 

be seen during sub-unit 1c where Si levels fall abruptly. In most recent times, it appears 

that Si deposition is declining with lower levels indicated. 

 

Figure  4.11: Stratigraphic diagrams of Silicon (Si) and Titanium (Ti) (corrected peak area integrals) 

showing the Itrax derived values for these elemental components of NAR10. Diagrams are plotted 

from modern times and lithological units are indicated. A 0.2 span loess smoother (yellow line) 

has been applied to the datasets to show longer-term change. 
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The Ti record (figure 4.11) shows a similar pattern in places, particularly in unit 1 where 

values can be high (above 40, average 22) and variable. Unit 7 indicates very low 

(around 5) and constant levels of Ti, a pattern which continues until sub-unit 5b. At this 

point in time, Ti values begin to dramatically increase, firstly peaking at ~17m and then 

more prominently at ~15.6m. Following these peaks in Ti, there is a long-lived deviation 

to low Ti which extends across units 4, 3, and to some extent unit 2. There is only one 

noticeable peak in Ti during unit 3 which is likely associated with a dense black sediment 

band observed in the core stratigraphy. During unit 2, Ti values begin to increase again. 

By unit 1, values have increased by 92% from those witnessed during unit 2. Whilst Ti is 

high on average, dramatic amplitudinal changes are also visually apparent during unit 1, 

revealing some dramatic lows in Ti for this unit also (range 0-79). Of importance is a 

deviation to low values during sub-unit 1c where values average around 5. 

Moving average plots of Si and Ti (figure 4.12) confirm that Si is lowest during the middle 

of the core sequence with more modern and older sediments showing generally more 

elevated levels. Ti is most dominant during unit 1 and towards modern times, apart from 

a key event distinguishable during sub-unit 1c. Sub-unit 5a is also distinct; particularly 

because Ti values that precede this event are extremely low and invariable. The 

transition into unit 4 and throughout unit 3 is one of decline. Values remain consistently 

low until unit 2 where Ti deposition greatly increases, reaching very high values by unit 1. 
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Figure  4.12: Stratigraphic diagrams of Si and Ti (corrected peak area integrals) showing the Itrax 

derived values for these elemental components of NAR10. Plots are of 500 and 2000 sample 

running averages of the two elemental components to reveal change over roughly 10 and 40 year 

intervals respectively. 
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Figure 4.13 details the down-core changes of Potassium (K) and Rubidium (Rb). 

Elemental variation clearly parallels sediment stratigraphy again, with unit 1 being the 

most distinctive. Due to their similar nature and patterns of change, K and Rb will be 

discussed together here. Detailing changes from unit 7 towards present times reveals 

very low and consistent levels of both K and Rb in early deposits. The base of the core 

sequence hints at slightly increased variability at this time for both elemental components, 

but generally, change throughout unit 6 and sub-units 5b, 5c & 5d is relatively small 

scale. Sub-unit 5a witnesses a change in conditions, as both levels of K and Rb increase 

significantly here (max 90 and 80 respectively). This abrupt shift to high values is made 

even more apparent by the abrupt drop that follows this event. The transition into unit 4 

sees a reduction in Rb levels by 34% and K by 65%. Also noticeable is the increase in 

variability associated with the change to high values during sub-unit 5a. Unit 4 contains 

the lowest levels of K (average 5.6) and Rb (average 2.8) seen throughout the entire 

core sequence and values remain diminished until the transition into unit 3. Unit 3 is 

characterised by decreased levels of both K and Rb (below 20). However, the two 

elements begin to show a less similar pattern here with values of Rb starting to rise 

towards the base of the unit and values of K moderately fluctuating. There is an extreme 

peak noticeable in the centre of unit 3 associated with a dark black band in the sediment 

stratigraphy and forms a noticeable deviation from the norm. Unit 2 appears to be a 

transitional phase with increasing levels of both elements. Unit 1 sees a 52% increase in 

K values and a dramatic 97% increase in Rb values from unit 2. Unit 1 also reveals a 

highly variable record with very distinctive shifts, the most noticeable occurring during 

sub-unit 1c. Here values of K range between 0-120 and values of Rb between 0-140; 

values which have not been seen since the base of unit 5. This is also in stark contrast to 

unit 4 which has very low variability and a range of 0-20. 
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Moving average plots for K and Rb (figure 4.14) reveal a very similar pattern for the two 

elements to that witnessed by plotting stratigraphically. Patterns indicate that variability is 

highest during unit 1 and sub-unit 5a and lowest during unit 4. Most noticeable is the 

switch to low detrital values during sub-unit 1c, the increasing values post unit 2 and the 

stability of values between unit 7 and sub-unit 5b. Also of interest is the length of time 

that both K and Rb increase for, starting around 800cm. Whilst punctuated by some 

extreme events, this process of continually increasing detrital input is a clear trend that 

dominates the latter half of the core sequence. 

 

Figure  4.13: Stratigraphic diagrams of Potassium (K) and Rubidium (Rb) (corrected peak area 

integrals) showing the Itrax derived values for these elemental components of NAR10. Diagrams 

are plotted from modern times and lithological units are indicated. A 0.2 span loess smoother 

(yellow line) has been applied to the datasets to show longer-term change. 
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Figure  4.14: Stratigraphic diagrams of K and Rb (corrected peak area integrals) showing the Itrax 

derived values for these elemental components of NAR10. Plots are of 500 and 2000 sample 

running averages of the two elemental components to reveal change over roughly 10 and 40 year 

intervals respectively. 
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4.6. Portable XRF core scanning results 

4.6.1. Portable XRF core scanning results overview 

The elemental composition of the lake sediments was also investigated by another XRF 

scanning technique, in this case using a portable or handheld XRF scanner at lower 

resolution than for Itrax XRF scanning.  

To check that trends in elemental abundances measured by Itrax XRF were correct and 

not made too inaccurate by sedimentary factors such as water content, organic content, 

surface undulations and porosity (Böning et al., 2007; Kylander et al., 2011b; Tjallingii et 

al., 2007), Itrax data was supplemented by portable XRF scan results on the same 

NAR10 cut half-core sections. Portable XRF core scanning has also helped to get a 

better grasp on processes that relate to elements with lighter atomic numbers as the 

addition of helium purging helped detect these elements more robustly. Scanning was 

conducted at a much coarser resolution (every 8cm, over a 3mm spot) due to time 

constraints and because replication of values at the resolution scanned by Itrax (200 μm) 

is not needed for comparison purposes. The abundances of Ca, Sr, Mg, Ti, K, Si, Rb, Fe 

and Zn are examined here. Ti, Fe, K and Rb have been used as key indicators of clastic 

input into the lake, whilst Ca, Mg and Sr have been used as proxy indicators for 

carbonate deposition. Si is thought to represent clastic input, but can also be an indicator 

for lake productivity. At times, Zn too is related to the detrital suite. Presented here are 

the results for these key elemental components (figures 4.15-4.18).  

Trends in elemental counts from the handheld XRF analyser were almost identical to 

those measured on the Itrax core scanner for the selected elements. Comparison of XRF 

scans for other elements not presented here has also yielded similarities between the 

intensity and pattern of measured peaks. This replication gives confidence in the higher-

resolution Itrax results.  
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4.6.2. Portable XRF scanning results for selected authigenic elements 

 

Figure  4.15: Stratigraphic diagrams of XRF handheld derived carbonate related elemental values 

(parts per million (ppm)) for NAR10. Diagrams are plotted from modern times and lithological units 

are indicated. 

Figure 4.15 shows selected geochemical (carbonate related) elemental concentrations 

for NAR10 core sections scanned using the Niton X3 portable XRF analyser. Figure 4.16 

shows these elemental components plotted alongside concentrations measured using 

Itrax core scanning techniques on the same sediment sequence but at much finer 

resolution. For comparison purposes, no smoothing was needed on the Itrax dataset 

because it is visually clear that the two correlate well. Generally, a very good parallel 

exists between the handheld XRF and the less quantitative (but higher resolution) Itrax 

datasets. Variations between the two datasets are therefore likely to reflect differences in 
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sampling resolution, scanning technology and core variations only (Croudace et al., 

2006). One such difference can be seen at around 293cm sediment depth where the 

Itrax scanning documented an extreme peak in Sr (above 1148) but the portable XRF did 

not pick up this event; this was the result of the 8cm resolution used for handheld 

scanning which skipped this change in Sr. 

 

Figure  4.16: Stratigraphic diagrams of XRF handheld derived (ppm) and Itrax derived (corrected 

peak area integrals) carbonate related elemental values for NAR10. Lithological units are 

indicated. Mg results are not available from Itrax and therefore cannot be compared here. The 

diagram indicates that there is a clear similarity in the elemental profiles obtained from the two 

different core scanning techniques. 

Overall, patterns of geochemical change extracted using handheld XRF scanning 

techniques are similar to those witnessed during Itrax XRF scanning for carbonate 
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related elements, and provide a well replicated signal of down-core variability. Notice the 

inclusion of a Magnesium (Mg) profile here due to the increased sensitivity of the 

portable XRF to Mg concentrations (figure 4.15). At the start of the sequence, peaks in 

Sr are recorded and levels of Ca are moderately high. Values of both elements generally 

decrease during the middle of unit 7 and begin to increase again during the transition 

into unit 6. Unit 6 reveals very high levels of Sr (max 1200) and the first noticeable peak 

in Mg (2400). Above this point, Sr decreases quite significantly until 1500cm, whereas 

Ca remains relatively high and stable throughout sub-units 5b, 5c & 5d. Sub-unit 5a is 

distinct in that levels of Ca fall dramatically for the first time (lows of 40000), and is 

associated with smaller drops in Mg and Sr. Sub-unit 5a is characterised by significantly 

decreased values of all three elemental components at this time. The transition into unit 

4 is abrupt with increases in Ca and decreases in Sr. Mg remains fairly constant for this 

section. Ca values for unit 4 are very high (~240000) and Sr values are remarkably 

stable. Unit 3 is similar to unit 4 in terms of Sr and Mg deposition, revealing low and 

stable conditions. Sr values here are the lowest seen throughout the entire core 

sequence (~112). The Ca profile for unit 3 is also low and seems to be responding in 

unison with Sr. The change between unit 3 and 2 is evidence by significantly increasing 

Ca, Sr and Mg values. Unit 2 is characterised by high peaks in Ca and Sr, but more 

importantly by Mg which dominants this unit (highs of 9000). Whilst Mg generally drops 

off by unit 1, another noticeable peak in Mg at 450cm is witnessed. Levels of Ca and Sr 

at the top of the core sequence are relatively high and fairly unstable, with some large-

scale amplitudinal changes occurring. Mg on the other hand remains low and stable up 

to present day. 

4.6.3. Portable XRF scanning results for selected lithogenic elements 

Figure 4.17 shows selected geochemical (detrital related) elemental concentrations for 

NAR10 core sections scanned using the handheld analyser. Figure 4.18 shows these 

elemental components plotted alongside concentrations measured using Itrax core 
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scanning techniques on the same sediment sequence but at much finer resolution. 

Variation in detrital elemental components is similar to that seen within the Itrax derived 

profiles. Broadly, Fe, Ti, Rb and K are visually closely related to each other. Si and Zn 

are generally also of detrital origin but at times can be unrelated to the clastic component.  

From unit 7 through to sub-unit 5b, levels of detrital elements are low and constant apart 

from Zinc (Zn). Si increases when detrital elements are low, showing that at this time, Si 

is not likely related to detrital elemental deposition. There is a noticeable large drop in Si 

associated with sub-units 5b & 5c where Zn levels show a slight rise, hinting at a change 

in conditions here. Similarly, a distinct event occurs at sub-unit 5a where values of Si, K, 

Fe, Ti and Rb all increase and become highly variable, and values of Zn decrease. Unit 4 

sees relatively high Si whilst levels of other detrital components remain low. Zn is poorly 

recorded through this section, as is primarily the case in sub-units 5b-d and may not be 

meaningful; this was mainly because levels of Zn were below the limits of detection. For 

all elements apart from Zn, lowest levels are reached during units 4 & 3, with one sharp 

peak in values associated with a dark black band situated in the middle of unit 3. Zn 

levels during unit 3 are relatively high (above 100), and it is likely that this pattern should 

have been witnessed during unit 4 also based upon the extrapolation of the few values 

obtained for this section. Unit 2 appears to be a transitional phase which sees slowly 

increasing levels of detrital components and moderately high levels of Si. Zn is generally 

low until the base of unit 2 where it visually begins to respond alongside other detrital 

elements. Unit 1 is characterised by high and varying levels of all elements with some 

short-term, large-scale shifts in value; variability in the record is greatest here. To note is 

the abrupt transition to lower values associated with sub-unit 1c and the stabilisation of 

Fe, Ti and Rb for sub-unit 1b.
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Figure  4.17: Stratigraphic diagrams of XRF handheld derived detrital elemental values (parts per million (ppm)) for NAR10. Diagrams are plotted from 

modern times and lithological units are indicated.
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Figure  4.18: Stratigraphic diagrams of XRF handheld derived (ppm) and Itrax derived (corrected peak area integrals) detrital related elemental values 

for NAR10. Lithological units are indicated. Zn values from Itrax and XRF could not really be compared side by side due to the generally poor readings 

for Zn by Itrax. For the other detrital elements though, there is a very close match between the profiles obtained from the two different scanning 

techniques, providing some certainty for the pattern witnessed in both profiles.
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4.6.4. Checks on the accuracy of Itrax core scanning results using   

handheld XRF data 

Comparison of handheld XRF samples scanned every 8cm with Itrax XRF samples at 

200 & 400 μm intervals shows that the two techniques reveal very similar patterns in 

geochemical variation. With this in mind, the question remains as to whether Itrax 

derived elemental data can be used on their own, and in association with other proxy 

indicators to help infer past climatic and environmental changes. To help address this, 

Itrax derived data were slimmed down to 3cm averages at every 8cm interval to compare, 

using statistical methods, against portable scanning results. Pearson correlation 

statistics for various elemental profiles showed generally high positive r-values and 

demonstrates that Itrax scan results can be replicated. Maxima and minima in Itrax Ca 

are consistently replicated by handheld XRF giving a relatively high r-value of 0.82. 

Similarly for other elements, namely Si, K, Fe, Ti, Sr and Rb, r-value scores are positive 

(0.5, 0.67, 0.69, 0.62, 0.66 & 0.67 respectively) and statistically significant at p<0.05 level. 

Only with Zn are r-values deemed low (0.1) and show no significant relationship. This 

mismatch is probably best explained by missing handheld XRF data where values were 

undetectable and a lack of parallel samples between records, and not because the 

profiles do not closely correspond. 

Due to the replicability in records it is reasonable to suggest the Itrax data adequately 

record changes in the elemental composition at NAR10 and that any inferences made 

from these records can be used to facilitate an understanding of past climatic and 

environmental change. When using Itrax derived data, it is important to remember that 

numbers are sensitive to the settings of the XRF scanning machine and core related 

factors like organic levels, and that at best, Itrax data are but semi-quantitative. 

Nevertheless, handheld scanning has offered a means of checking the accuracy of Itrax 

XRF scans and has shown the technique to be a good estimate of change events. The 

replicability also allows the use of handheld XRF derived elements alongside Itrax 
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derived elements, particularly lighter elements such as Magnesium which are of use to 

the interpretational process. 

4.7. Portable XRF bulk sample scanning results 

 

Figure  4.19: Nar catchment sample locations plotted onto a Google Maps image of Nar Lake. 

Indicated are the results of XRF portable scanning of bulk sediment samples for 8 selected areas 

to show variation across the site. Samples include: 1(SS22a), 2(SS12a), 3(SS7a), 4(SS8a), 

5(SS10a), 6(SS19b), 7(SS5a), 8(SS3a). 

Portable handheld XRF scanning on modern bulk sediment samples was conducted to 

compare to scanning results obtained for core samples to see what sort of elements are 

being eroded out of the catchment area today. Scanning gave the opportunity to look for 
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distinct erosion profiles and how these vary according to sediment type. The full suite of 

results obtained can be seen in appendix 3. Figure 4.19 shows the results from bulk 

catchment XRF scanning of selected samples. Clearly visible is the large proportion of Si 

that is incorporated into the sediment profile, with highs also apparent in Fe and 

Aluminium (Al). The sediments today therefore seem to consist mainly of alumino-silicate 

minerals and iron oxides. The presence of K may also suggest some inclusion of 

feldspars, of which Fe may become incorporated. Generally, bulk sediment samples are 

higher in Si when there is influence from surrounding ignimbrite deposits, particularly to 

the south of the lake (e.g. sample 3). To the north, where deposits are generally sandier 

and influenced less by eroding unweathered volcanic deposits, there are higher 

proportions of Mg, Ca and Fe (e.g. sample 7). Some of these sand dominated samples 

represent a region of the lake edge thought to be a former lake shoreline. They clearly 

have a different geochemistry to that of the eroding hillsides. Interestingly, those samples 

taken from areas of modern day agricultural activity in the east show little variation from 

the other samples collected (e.g. sample 6). This reveals that perhaps cultivation 

activities are not intensive enough to alter the chemical signal of the sediment.  

Lower values are witnessed for elements such as Ti, Rb and Mn which are more 

dominant in the Itrax derived profiles. Values for Zn, Copper (Cu) and Sr are also low. 

Concentrations of Rb, Zn and Ti are known to be underestimated by the scanning 

procedure though (Roy et al., 2010). Variations in other profiles such as Molybdenum 

(Mo), Niobium (Nb) and Chromium (Cr) are very minimal. Generally, values below 1000 

ppm can be seen as low. Of major importance are the variations seen within Al, Si, K, Fe 

and Ca, as concentrations are usually high and error readings are small. Sample 

variations suggest that these elements are key erosion indicators at Nar Lake today. 
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4.8. Characterisation of possible ’tephra’ horizons using the Scanning 

Electron Microscopic (SEM) 

NAR10 sediments include three distinct thick bands (figure 4.20), all of dark colour, and 

all consisting of allochthonous particles which may be volcanic in origin. These bands 

are observed on the geochemical profiles by exceptionally high values of certain 

elemental components (i.e. Ti) and appear very different to the rest of the core sequence. 

To investigate the nature of the deposits, bulk sediment samples of the horizons were 

scanned using a Scanning Electron Microscope (SEM) to help characterise the main 

sedimentary features present.  

 

Figure  4.20: Photo of distinct black band visible in core section 01Ei of the NAR10 sediment 

sequence of unknown origin. Two other bands of this type are also visible in the core sequence. 

 

Figure  4.21: Photo of known ‘turbidite’ deposits from core section 01P1 of the NAR10 sediment 

sequence. Visually and geochemically these bands are different from the darker possible ‘tephra’ 

horizons seen in figure 4.20 above. 
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Figure  4.22: Scanning electron microscope images of ‘possible tephra’ samples and of clastic 

event layers taken from NAR10. (A-C) Dark bands of potential volcanic origin i.e. tephra layers, 

(D-E) ‘turbidite’ like bands of catchment derived material and clastic influx for comparison 

purposes. 

For comparisons purposes, the SEM was also used to look at known ‘turbidite’ bands 

(figure 4.21) to identify what constituents make up clastic event layers; in theory volcanic 

derived deposits should appear different. Figure 4.22 shows the SEM images for 
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‘possible tephra’ samples. No clear signs of volcanic material were witnessed; 

particularly there was no evidence of sherds or reflective ‘glass like’ particles. Four 

different particle groups were witnessed; 1) carbonate nodules of both autochthonous 

and allochthonous derived, 2) non-silicified organic material but no plant remains, 3) 

biogenic silica, both pennate and centric diatoms, and 4) clastic materials, particularly 

alumino-silicates. Generally particles appeared as conglomerations of single particles 

silicified together. These four main components were confirmed by SEM EDX analysis 

which showed high intensities of Al, Si and Ca in all samples scanned. There were some 

sample specific variations, including changes in pennate and centric diatoms of various 

sizes, and the presence of chrysophycean cysts and algal ospores. No one sample was 

the same hinting at different sample histories; including the clastic layers. Post 

depositional alteration and digenesis may have occurred since deposition, therefore 

obscuring original depositional features. It is possible that suggested ‘tephra’ bands are 

merely catchment derived with small quantities of volcanic material incorporated into the 

matrix from the surrounding volcanic geology. This would explain the darker appearance 

of sediment bands and the distinctive geochemistry for these horizons. 

4.9. Chapter summary 

This chapter summarised the palaeo-data obtained from Nar Gölü and presented the 

major lithostratigraphic changes. The NAR10 composite core sequence appears to 

represent more than 13,000 years of sediment accumulation, most of which is annually 

laminated. The sediment profile has been split into 7 distinctive units representing 

significant changes in deposition and representing major sedimentation events in the 

lake’s history. Sediment profiles were scanned using an Itrax XRF core scanner for the 

rapid identification of elemental variability down-core to detect palaeoclimatic and 

environmental indicators at Nar Lake. The annually deposited Nar laminations were 

analysed at mainly 0.2mm resolution and show significant changes related to 

lithostratigraphic units. 
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The Itrax XRF data suggests that sediment composition is strongly controlled by Ca and 

Fe elemental components, which alternate seasonally between spring/summer and 

autumn/winter. Occasional clastic events are characterized by peaks in Fe, Si, Ti, K, Zr, 

and Rb, and some periods contain high levels of elements usually at the limits of 

detection such as Zn and Mg. Other elements which have been detected included Mn 

and Sr; Sr being linked to the authigenic component and Mn being associated primarily 

with changes in Fe. The general story is one of shifting lake conditions linked into 

authigenic processes (Ca and Sr) overprinted by lithogenic in-washed material (Ti and 

Fe). Several elements play multiple roles within the lake system. For example Si is 

principally linked with the lithogenic type elements, but it can also be disassociated from 

these elements, particularly Ti, suggesting a possible biogenic source for Si also. 

The elemental patterns witnessed for authigenic and lithogenic elemental components 

during Itrax scanning were similarly witnessed using other XRF core scanning 

techniques. The high correlation between two XRF scanning techniques provide means 

of testing the reliability of the data expressed through Itrax and suggests that these data 

can be used with some certainty to reflect change events down-core. Some correlations 

between the two methods could not be made due to poor detection rates of some of the 

elements but the good replicability between the two datasets for other elemental profiles 

implies that Itrax scanning is a suitable method for geochemical studies. Modifications 

and improvements to the Itrax suite of elements were made using handheld XRF to 

increase the elemental range to include Mg and to improve values for lighter elements 

such as Si.  

Total carbon analysis was also conducted using sediment from the NAR10 core 

sequence. Total carbon data suggests that the system is highly influenced by inorganic 

carbon levels particularly during sediment unit 4. The presence of total organic carbon in 

the Nar system appears to be mainly restricted to the base of unit 3 and unit 2, as levels 

for the rest of the core sequence are relatively low. Also evident in the total carbon 
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record are changes in variability throughout the core sequence. Towards the top of the 

core, amplitudinal changes between low and high values are greater reflecting an 

increase in total carbon fluctuations for both TIC and TOC during unit 1. 

To evaluate the information gathered from sedimentary and geochemical analysis on the 

NAR10 sediment sequence, various numerical analyses are provided in the next chapter. 

A combination of multivariate statistics and elemental comparisons will provide 

complementary information to aid interpretations of the geochemical data presented here. 

Comparisons with other Nar Lake and regional proxy datasets will also be conducted to 

strengthen and confirm inferences made regarding possible climatic and environmental 

histories portrayed by the shifting geochemical profiles.
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5. Sedimentology and elemental geochemistry 

Interpretation and synthesis of Nar Gölϋ results 

5.1. Chapter introduction 

This chapter provides an interpretation of the Nar Gölϋ sedimentological and 

geochemical results, and associated numerical analyses. Within this chapter, 

geochemical variations will be discussed in terms of changing lake status and shifting 

climatic and environmental conditions. This chapter also provides an interpretation of the 

Itrax core scanning results and sedimentary characteristics in relation to other studies 

conducted at Nar Lake (isotope (see Jones et al., 2006), diatom (see Woodbridge and 

Roberts, 2011) and pollen analysis (see England et al., 2008)), and published Eastern 

Mediterranean palaeo-climatic/environmental records.  

5.2. Statistical analysis of geochemical data: elemental associations 

5.2.1. Correlation analyses of Itrax derived elemental data 

Itrax core scanning produces geochemical data recorded as peak area integrals. In the 

context of this study, looking at elemental concentrations in terms of exact counts or 

concentrations is not required for inferences into past climatic and environmental change. 

Of importance are the relative changes in elemental profiles down-core which relate to 

variation in lake conditions. Peak area and depth profiles for selected elements, 

specifically Ca, Sr, Si, Ti, Fe, Mn, K and Rb have already been plotted in chapter 4 and 

show clear changes relating primarily to sediment type. It is clear that elemental variation 

characterises both in-lake and out of lake processes but what is unclear from plotting 

stratigraphic profiles alone are the drivers behind these changes and the importance of 

the signals witnessed. Also, whilst these profiles show relative change for individual 
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elements, the association between elements cannot be represented in this way and the 

strength of relationships cannot be quantified. Graphical representation of inter-element 

relationships is a simple yet extremely effective tool to evaluate the strength of a 

relationship. When used in association with correlation statistics, the main elemental 

composition of a sediment sequence can be determined (Boyle, 2001). Correlation 

matrices have therefore been constructed for the entire core length and individual 

lithostratigraphic units to show the strength of associations between paired elements for 

the NAR10 sequence (appendix 4). Table 5.1 highlights the key associations between 

elemental components for each lithostratigraphic unit as detailed in the correlation 

matrices; values stated have r-values above 0.5 or below -0.5, and are significant at the 

0.001 level, and are therefore unlikely to be coincidental. 

Correlation matrices of Itrax elemental data reveal that the coupling and decoupling of 

elements along the core sequence is related to lithology in part, with several elements 

playing key roles within the system. Although patterns associated with lithological units 

can clearly be visually identified from stratigraphical diagrams, variation is more 

distinctive when correlation coefficients are examined.  

The elements which appear to correlate most commonly and most strongly in all units are 

Ti, K, Fe, and sometimes Rb and Si, which suggests a strong association with detrital 

input. Si is interesting as it can play a dual role within the lake, positively correlating with 

clastic elements Ti, Fe and K in units 1-3 (e.g. r-value of +0.88 Si vs. K unit 1) but not 

during units 4-7 (e.g. r-value of +0.22 Si vs. K unit 4) suggesting a changing combination 

of minerogenic and biogenic sources of Si. This dual nature of individual elements can be 

seen elsewhere in the sediment profile where Fe can be linked with either redox 

conditions in the lake or changes in detrital in-wash (Davison, 1993). A reasonably strong 

positive correlation between Fe and Mn in unit 2 (0.67) implies control by redox 

conditions here, whereas negative correlations to Ca (e.g. r-value of -0.65 unit 1) and 

positive correlations to Ti (e.g. r-value of 0.97 unit 2) for the rest of the core sequence 
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suggests Fe is mainly of detrital origin. In unit 3, and to some extent unit 1, Ca is 

correlated with Sr (0.74 and 0.54 respectively) indicating that calcium carbonate 

precipitation is particularly important for these parts of the core sequence (Kylander et al., 

2011a); other units (2,4,5,6,7) show very weak correlation of Ca and Sr (e.g. 0.26 whole).  

More uncommonly, in unit 2, Pb (Lead) is strongly associated with Se and Br (0.69 and 

0.73 respectively) which typically relate to organic rich layers (Croudace et al., 2006). 

This relationship occurs during a suggested association between Fe and Mn (0.67 unit 2). 

Correlation of contaminant trace elements like Pb with Fe-Mn oxide concentrations within 

sediment profiles has been linked to remobilization but is unlikely to be a factor in most 

situations (Boyle, 2001). Lead can also be absorbed by organic-rich deposits during 

anoxic conditions which can be inferred from changes in Fe/Mn (Corella et al., 2011; 

Martín-Puertas et al., 2008). Low TOC values suggest low organic levels for most of unit 

2 and may therefore imply that remobilisation of material in the lake drives the 

association between Pb and Se, Br at this time; however, some peaks in TOC towards 

the start of the unit could imply the uptake of Pb due to increased organic-rich sediments. 

Sulphur is another element which does not clearly relate to any of the key relationships 

witnessed, only strongly correlating alongside Fe in unit 6 (0.61). A strong positive 

relationship between S and Fe here is therefore likely related, in part, to digenetic iron 

sulphides (Corella et al., 2011). Generally, S is weakly positively correlated to detrital 

elements K, Ti and Zn (e.g. 0.12 S vs. Zn unit 7) and weakly negatively correlated to Be, 

Se and Sr (e.g. -0.02 S vs. Se unit 5) revealing that there is no relationship between 

sulphur and organic-rich facies, endogenic and exogenic processes. 

Correlation coefficients indicate that certain elemental components are dominant in the 

sediment profile. Of importance seem to be carbonate related elements Ca and Sr, redox 

related Mn, detrital related components Fe, Ti, K and Rb, and Si which can be biogenic 

in origin. With this in mind, the association of these elemental profiles in relation to each 
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other is looked at in greater detail using moving correlation coefficient plots of selected 

paired elements in the following section. 

Table  5.1: Table highlighting significant correlations between Itrax derived elemental profiles for 

the whole core sequence and each individual Nar lithostratigraphic unit. Elements compared 

include: Si (Silicon), S (Sulphur), K (Potassium), Ca (Calcium), Ti (Titanium), Mn (Manganese), 

Fe (Iron), Cu (Copper), Zn (Zinc), Se (Selenium), Br (Bromine), Rb (Rubidium), Sr (Strontium) and 

Zr (Zirconium). 

Lithostratigraphic 

unit 

Significant elemental relationships 

(strongly associated) (r<>0.6, p<0.001) 

Significant elemental relationships 

(moderately associated)(r<>0.5, p<0.001) 

Whole 

Si vs. K, Ti, Fe, Zn 

K vs. Ti, Fe, Zn, Rb, Zr 

Ca vs. Rb 

Ti vs. Fe, Cu, Zn, Rb, Zr 

Fe vs. Cu, Zn, Rb, Zr 

Zn vs. Rb 

Rb vs. Zr 

Si vs. Rb 

K vs. Cu 

Ca vs. Fe, Zr 

Cu vs. Zn, Rb 

Zn vs. Zr 

1 

Si vs. K, Ti, Fe, Zn, Rb 

K vs. Ti, Fe, Zn, Rb, Zr 

Ca vs. Ti, Fe, Rb, Zr 

Ti vs. Fe, Cu, Zn, Rb, Zr 

Fe vs. Cu, Zn, Rb, Zr 

Cu vs. Zn 

Zn vs. Rb, Zr 

Rb vs. Zr 

Si vs. Cu, Zr 

K vs. Ca, Cu 

Ca vs. Zn, Sr 

Fe vs. Sr 

Cu vs. Rb 

Zn vs. Sr 

Rb vs., Sr 

2 

Si vs. K, Ti, Fe 

K vs. Ti, Mn, Fe, Zn 

Ca vs. Rb 

Ti vs. Mn, Fe, Cu, Zn 

Mn vs. Fe 

Fe vs. Cu, Zn 

Se vs. Br, Pb 

Br vs. Pb 

Si vs. Zn 

K vs. Cu, Se 

Ca vs. Se, Br, Pb 

Ti vs. Rb 

Mn vs. Se 

Fe vs. Rb 

Cu vs. Zn 

Zn vs. Rb 

3 

Si vs. K 

K vs. Ti, Fe 

Ca vs. Sr 

Ti vs. Fe, Zn, Rb 

Fe vs. Rb 

Si vs. Ti 

Ca vs. Mn 

K vs. Zn 

Fe vs. Zn 

4 

K vs. Ti, Fe, Rb 

Ti vs. Fe, Rb 

Fe vs. Rb 

Mn vs. Sr 

5 

K vs. Ti, Fe, Rb 

Ca vs. Fe, Rb 

Ti vs. Fe, Zn, Rb 

Fe vs. Rb 

K vs. Zn 

Ca vs. Ti 

Mn vs. Sr 

Fe vs. Zn, Zr 

Zn vs. Rb 

6 

S vs. Fe 

K vs. Ca 

Mn vs. Sr 

 

7 
K vs. Ti 

Ti vs. Fe, Rb 

S vs. K, Fe 

K vs. Mn, Rb 

Ca vs. Rb 

Mn vs. Sr 

Fe vs. Rb 
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5.2.2. Moving correlation coefficient (MCC) plots  

Moving correlation coefficient (MCC) plots have been used to assess how two elements 

are continually correlated over time. This statistical method is used to show pair-wise 

variation and the degree of correlation between two components within a single 

stratigraphic sequence, especially when the number of observations is large (as with 

Itrax derived data) (Dean and Anderson, 1974). Strong positive or negative correlations 

may be significant in the correlation matrices purely because of the high number of 

samples, using this method should hopefully reduce the bias potentially created by the 

number of Itrax data points. 

 

Figure  5.1: Running correlation coefficients for Ca vs. Sr (r-values). Plots are of 500 and 2000 

sample running windows of the two elemental components to reveal change over roughly 10 and 

40 year intervals respectively. R-values <>0.6 (dashed line) indicate strong positive or negative 

correlations. 

Based on moving correlation coefficient plots of Ca vs. Sr (figure 5.1), it is clear that for 

the majority of the NAR10 record the two elements are positively correlated. There are 
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distinctive periods though when the relationship between Ca and Sr changes and the two 

elements become decoupled, and even negatively related. Negative r-values are 

associated with units 2, 4 and 6, and sub-unit 1c (taking into consideration shifts in the 

record due to the averaging process). The strongest negative relationships can be seen 

in unit 6 and at the start of unit 4. 

 

Figure  5.2: Running correlation coefficients for Fe vs. Mn (r-values). Plots are of 500 and 2000 

sample running windows of the two elemental components to reveal change over roughly 10 and 

40 year intervals respectively. R-values <>0.6 (dashed line) indicate strong positive or negative 

correlations. 

Based on the MCC plots of Fe vs. Mn (figure 5.2), it is also clear that the two elements 

are positively correlated for most of the core sequence. There are distinctive periods 

though where the two elemental components negatively correlate, signifying a different 

depositional mechanism. Sub-unit 1c, the black sediment band in unit 3, unit 4, and the 

transitions between sub-units 5b and 5a, and 7b and 7a all indicate negative correlation 

coefficients. Variability is great which indicates that the relationship between Fe and Mn 

is constantly shifting, generally between strong and not so strong positive relations. 
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Strong positive Fe vs. Mn relationships are evidenced at the very top of the NAR10 

sequence, during units 2 and 6, and at the bottom of sub-unit 5a. These core sections all 

indicate values over 0.5 and show that Fe and Mn are closely related during these 

phases.   

Moving correlation coefficient plots of K and Rb, along with Ti and Fe (figure 5.3) have 

been created to see how detrital components respond to each other. Most noticeable is 

that all the plots indicate very few significant drops in value below 0 (r-value) showing 

that relationships between selected elements are generally always positive. Lower 

values seem to distinctly be associated with unit 4 and unit 6, although generally these 

units still remain positive in value. Unit 1 exhibits the strongest positive correlations with 

r-values barely getting below 0.5. Unit 2 also shows very strong correlations, particularly 

between Ti and Fe and Rb. The most extreme shifts in value are seen in Ti vs. K 

indicating that at times, K may not be as closely related to the detrital suite of elements. 

Moving correlation coefficient plots of Si vs. Ti (figure 5.4) indicate that at most times, Si 

and Ti are positively correlated, i.e. that they have a positive relationship to each other. 

Change however is not always constant as these two variables do show some 

fluctuations over time, shifting from only slightly positive to strongly positive (r-values of 

0.1-0.9). The strongest correlations exist during unit 1 but this is also a time of highest 

variability so some correlations are documented as weak. The weakest correlations exist 

within units 4 and 6. Unit 4 also shows the least variability in the record. The largest 

transition phases are seen from units 2 to 1 and from units 5 to 4 where values are either 

decreasing or increasing respectively. There are also noticeable shifts in the data 

associated with sub-units 1c, 3b and the start of 5a where r-values move more distinctly 

towards the negative or positive end of the spectrum. The shift at 3b shows a clear peak 

(r-values above 0.7) and is distinctly different from the surrounding sediment matrix of 

unit 3; the peak coincides with a possible ‘tephra’ band (see section 4.8) in the sediment 

sequence which records high Ti values. 
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Figure  5.3: Running correlation coefficients for Ti vs. K, Ti vs. Rb and Ti vs. Fe (r-values). Plots 

are of 500 and 2000 sample running windows of two elemental components to reveal change 

over roughly 10 and 40 year intervals respectively. R-values <>0.6 (dashed line) indicate strong 

positive or negative correlations. 
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At certain times, relationships between these two elements become negative. When Si 

and Ti are negatively correlated, Si does not form part of the lithogenic suite of elements 

of which Ti is usually associated (Kylander et al., 2011a). Although these negative 

relationships are not strong (r-values of around -0.1), the existence of several negative 

correlations implies that Si is not terrigenous in origin for short periods during the 

transition to sub-unit 5a, units 4, 3, 2, and the very top of unit 1 (although temporal 

accuracy is altered slightly by grouping samples into time windows). The shift to more 

negative correlation coefficients may be driven by primary production (biogenic silica) of 

Si (Cohen, 2003). The relationship between Ti and Si is therefore not straightforward. 

 

Figure  5.4: Running correlation coefficients for Si vs. Ti (r-values). Plots are of 500 and 2000 

sample running windows of the two elemental components to reveal change over roughly 10 and 

40 year intervals respectively. R-values <>0.6 (dashed line) indicate strong positive or negative 

correlations. 

5.2.3. Scatter plots for selected elements 

Scatter plots have also been used to look at changing relationships between two 

elements over time. Figures 5.5 & 5.6 show individual scatter plots for each lithological 
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unit to show how the relationship between Ti and Fe and Ti and K changes over time. 

These few elements have been selected because both Fe and K appear to respond 

differently to the detrital suite at times, which is represented here by the Ti profile. 

Scatter plots have been used to identify times when the relationship between Fe, K and 

Ti may not be linear, i.e. when they become decoupled. This data will complement the 

patterns witnessed in the MCC plots. 

 

Figure  5.5: Scatter plot of Fe vs. Ti to show how the two elements vary over time. Each unit has 

been plotted separately to show the changing nature of the lithostratigraphy. Unit1 (black), Unit 2 

(red), Unit 3 (green), Unit 4 (yellow), Unit 5 (light blue), Unit 6 (pink), Unit 7 (orange). 

Fe and Ti (figure 5.5) appear to have a fairly linear relationship but this relationship is not 

constant over time. Unit 7 shows a preference for high Fe in place of Ti and largely there 
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is a very weak relationship between the two elements. Unit 6 is the most distinctive with 

very low levels of both Ti and Fe and no clear linear relationship. Unit 5 reveals a linear 

relationship for the first time in the core sequence but there are some samples which do 

not fit the overall pattern; individual samples can be high in Fe but low in Ti. Unit 4 shows 

a very linear relationship also, with higher values for Ti than Fe recorded. Unit 3 is 

unique as it incorporates some samples that plot out very differently to the rest of the 

data for that unit, thus showing values at both ends of the graph. The high values relate 

to a dark black band in the sediment stratigraphy. Units 2 and 1 show similar results to 

unit 5, where the relationship between Fe and Ti is linear. 

 

Figure  5.6: Scatter plot of Ti vs. K to show how the two elements vary over time. Each unit has 

been plotted separately to show the changing nature of the lithostratigraphy. Unit1 (black), Unit 2 

(red), Unit 3 (green), Unit 4 (yellow), Unit 5 (light blue), Unit 6 (pink), Unit 7 (orange). 
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The relationship between Ti and K is somewhat different (figure 5.6). The relationship is 

linear in part but there are both positive and negative relationships visually apparent. 

Generally when values of Ti are highest, then K is not as high. There seems to be a 

maximum peak reached by 35 Ti and 75 K from which values begin to become 

negatively correlated. This pattern in the dataset hints that at times, K and Ti may not be 

as closely related as at other times. Looking at the changes by unit we see a small but 

linear relationship for unit 7, a similar pattern to that witnessed in unit 4. Unit 6 shows 

that K is often poorly correlated with Ti here and indicates that the elements are 

generally out of phase for a time. Unit 5, as seen by the Ti vs. K scatter plot reveals a 

generally linear relationship. The relationship between K and Ti in unit 4 is similarly linear. 

Unit 3 shows a split between the samples again with most samples plotting out in the 

lower ranges but with some clustering at the extreme Ti end also. Values in unit 2 are far 

more bunched together in comparison apart from some with high Ti. The greatest 

variability is witnessed in unit 1 where samples seem to plot out in a boomerang shape, 

indicating that perhaps there are two different relationships here. 

5.2.4. Ratios for selected elements 

Due to the semi-quantitative nature of the values obtained from Itrax XRF core scanning 

and factor related detection rates, it is also useful to plot elemental values as ratios to 

another element to avoid these issues (Francus et al., 2009; Rollinson, 1993). The ratios 

chosen for presentation in figure 5.7 have been selected based on known behaviours of 

elements and ratio proxies. For instance, Zr/Rb can be used as a proxy for changes in 

grain size (Kylander et al., 2011a) and lower values of Ca/Sr can signify higher 

evaporation and salinity, and lower lake levels (Cohen, 2003). Figure 5.8 shows ratios of 

select elements alongside titanium as this is generally a very conservative element, and 

not affected too greatly by transport or weathering processes compared to other 

elements (Young and Nesbitt, 1998). This enables the assessment of the role of other 

elemental components (which are perhaps more variable in character) alongside an 
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index for lithogenic input (Marsh et al., 2007), particularly in the absence of aluminium 

which is more commonly used as a detrital devisor (Rothwell and Rack, 2006). Ti-

normalised element ratios are expected to better represent endogenic and authigenic 

processes. 

Rb and Zr can be used to acquire grain size information due to their associations with 

clay particles and medium-coarse silts respectively. Lower values of Zr/Rb therefore 

reflect typically finer-grained sediments and higher values reflect coarser material 

(Dypvik and Harris, 2001). There is also generally no alteration to the Zr/Rb ratio over 

time from weathering or mobility making it a reasonable ratio to use for looking at grain 

size fractioning characteristics of lake sediments (Wang et al., 2008). Figure 5.7 

highlights changes in the Zr/Rb ratio for NAR10. Typically, sediments at the start of the 

sequence show high values of Zr/Rb which vary significantly, which is in contrast to latter 

deposits which are lower and fluctuate only moderately. There are exceptions to this 

pattern with a distinct drop in Zr/Rb values associated with sub-unit 5a (below 5) and 

some high values recorded for unit 1 (max 40). Lowest levels of Zr/Rb are witnessed 

during unit 2 and the start of unit 1. Decreasing values are also evident at the transition 

between unit 4 and unit 3 but a break in the sequence at this point obscures the 

movement to lower values. 

The Ca/Sr ratio is another commonly used proxy for looking at changing lake conditions 

from Itrax data. Principally it is used to locate enhanced Sr levels and therefore the 

presence of high-Sr aragonite which requires a shallow water source to precipitate 

(Rothwell et al., 2006). The Ca/Sr ratio is linked in to Ca and Sr in-lake precipitation of 

calcium carbonates (Kylander et al., 2011a). Figure 5.7 highlights the changes in Ca/Sr 

at NAR10. Unit 7 reveals moderate but highly fluctuating levels of Ca/Sr which decrease 

during unit 6 to values below 10. The start of unit 5 reveals relatively high levels of Ca/Sr 

but the values drop again towards the end of unit 5. The transition into unit 4 sees 

another jump to high Ca/Sr levels, the highest values recorded (above 40) for the entire 
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core sequence is witnessed in unit 4. Unit 3, 2 and the start of unit 1 in contrast witness 

the lowest Ca/Sr levels for the NAR10 sequence, with relatively stable values recorded. 

An abrupt change in conditions is noticeable during sub-unit 1c where Ca/Sr values are 

as high as those seen in unit 4. The latter half of unit 1 records moderate levels which 

can fluctuate greatly. 

 

Figure  5.7: Stratigraphic diagrams of ratios between two selected elements for NAR10. Diagrams 

are plotted from modern times and lithological units are indicated. A 0.1 span loess smoother 

(yellow line) has been applied to the datasets to show longer-term change. 
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The Fe/Mn ratio has been used as an indicator of palaeo-redox conditions in lakes as 

smaller amounts of Mn and larger amounts of Fe are released from the sediments to the 

water under oxygenated (oxic) conditions (Schaller and Wehrli, 1996; Schmidt et al., 

2008). Therefore low values of Fe/Mn should indicate more oxygenated bottom water 

conditions and the separation of Fe and Mn (Marsh et al., 2007). Figure 5.7 highlights 

four distinct low points in the Fe/Mn ratio, associated with sub-units 5b, 5c & 5d, and 

units 6, 4 and 2. Values in unit 4 are the lowest for the entire core section and barely get 

above 0. The rest of the core sequence sees moderate levels of Fe/Mn with highly 

fluctuating conditions. Unit 1 and sub-unit 5a witness particularly high amplitudinal 

changes with values reaching 1200 in places. A similar high peak is evidenced in unit 7 

also, though average values are lower in this unit. 

Figure 5.7 displays the results for Ti/Ca also. This ratio is not as widely used but has 

been used here to indicate the dominance of carbonate and detrital components for each 

lithographical unit. Ca typically represents carbonate precipitation in the lake and Ti 

typically corresponds to clastic influxes, the relationship between the two therefore 

should be informative of the importance of either input at a set time. The latter half of the 

core sequence shows very low levels of Ti/Ca and therefore high carbonate deposition. 

Similarly, unit 4 is characteristically low in Ti/Ca with values barely getting above 0. High 

Ti/Ca is noticed during sub-unit 5a, and unit 1. Unit 3 is also moderately high in Ti/Ca at 

times. Unit 1 is the most visually distinctive with highly variable values documented and 

dramatic amplitudinal shifts between samples (0-0.8).  

Figure 5.8 documents elemental changes in relation to Ti. Si/Ti ratios are widely used as 

an indicator of biogenic silica to identify phases where Si may relate to alumino-silicates 

or diatom productivity as a component of their frustules (Peinerud, 2000). Determination 

of Si by the Itrax scanner is not particularly sensitive and it is important to understand 

that this can produce a high signal/noise ratio (Marsh et al., 2007). The Si/Ti ratio at Nar 

Lake is interesting as it shows very high values for the beginning of the core sequence 
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which slowly fall towards more modern times. This switch to lower values around unit 4 

indicates a 645% change in Si/Ti. This over simplified pattern though obviously contains 

more time specific changes like the abrupt drop in values to below 5 associated with sub-

unit 5a. Sub-unit 1c is also noticeable in terms of low Si/Ti. Generally the record 

fluctuates greatly, with the biggest amplitudinal changes witnessed in units 7, 6, 5 and 4. 

 

Figure  5.8: Stratigraphic diagrams of ratios between two selected elements for NAR10. Diagrams 

are plotted from modern times and lithological units are indicated. A 0.1 span loess smoother 

(yellow line) has been applied to the datasets to show longer-term change. 

Sr/Ti and Mn/Ti ratios are shown in figure 5.8 also. Changes in these ratios have no 

specific climatic or environmental implication but reflect changes in elemental 

components alongside a stable detrital devisor (Ti). Sr/Ti reflects carbonate deposition 

where SrCO3 is co-precipitated with CaCO3 and Mn/Ti reflects the mobility of 
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manganese in the lake water. For unit 7, values are high for the Sr/Ti record. Unit 6 is 

characterised by a decrease in values which peak again towards the end of the unit. Unit 

5 shows lower Sr/Ti values but only after a period of transition from unit 6. Very stable 

values are documented for unit 4 and do not fluctuate greatly from values of around 500. 

The rest of the core sequence shows more variability with higher values recorded for the 

base of unit 3 and lower values for unit 2 and the top of unit 1. Sr/Ti values are relatively 

high for the base of unit 1 in comparison to the start of the unit.  

The Mn/Ti ratio shows some significant changes also. The most visually dominant 

change is noticed in unit 4 where values are relatively high (above 150). Values are also 

high at the start of the core sequence apart from unit 6 where there is a distinguishable 

drop in Mn/Ti levels. Lower values are also evidenced during sub-unit 5a where values 

drop below 5. Material deposited after unit 4 is dominated by generally lower levels of 

Mn/Ti with only subtle variations in values recorded.  

5.2.5. Principal Components Analysis 

Principal components analysis (PCA) was carried out using C2 statistical software on the 

NAR10 elemental dataset (14 elements by unit) to help describe the main variance 

witnessed by a few key factors and to confirm relationships already established by 

correlation matrices, scatter plots, MCC plots and ratios. PCA analysis (figure 5.9) 

confirms the inverse relationship witnessed between elements of detrital origin (e.g. Ti) 

and those associated with organic matter (e.g. Br) and endogenic mineral phases (e.g. 

Ca). The first eigenvector represents 44% of the total variance, and is controlled mainly 

by detrital elements (Ti, Fe, Si, Zn, and Cu) at the positive end and Sr at the negative 

end which is linked in to calcium carbonate precipitation. Positive sample scores on PCA 

axis 1 represents higher clastic input into the lake and characterises periods of increased 

sediment influx from the surrounding catchment. Interestingly, the grouping of Rb and Zr 

at the positive end of PCA axis 1 associates these elements with clastic input too, but as 
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these two elements also plot out separately from the detrital elements it signifies that 

grain size could be a factor driving NAR10 variation. The second eigenvector represents 

only 13% of the total variance and is identified by Br, Se and Pb at the positive end and 

Ca and Mn at the negative end. Positive scores may indicate higher organic matter 

content, whereas negative scores reflect changing redox status and carbonate 

precipitation levels. PCA axis 2 suggests that on the whole, Ca is unrelated to detrital 

components. Interpretation of eigenvector 3 (9% of total variance), controlled by Sr at the 

negative end and Mn, Pb at the positive end is more complex. The partial inclusion of Ca, 

Br and Se into positive axis 3 gives clues though to its nature, which is defined here as 

being reflective of moist, anoxic and less saline conditions when positive. At the negative 

end, the presence of Sr may indicate decreased precipitation levels (and lake water) and 

thus increased salinity (Mϋller and Wagner, 1978). Sr-rich hydrological conditions 

suggest a brackish lake with a dominance of aragonite formation (Martin-Puertas et al., 

2011). It is likely that PCA axis 3 is reflecting the type of carbonate deposition. 

Figure 5.10 shows bi-plots of the PCA results per lithostratigraphic unit against the first 

and second PCA axes, which are the two dimensions likely to reflect signals of interest. 

The PCA bi-plot for unit 7 shows that axis 1 explains 27% of the total variance consisting 

of strong Ti and Fe, and Sr at the opposite end. Of some difference to other units though 

is axis 2 (11% of total variance) which shows organic elements of Se and Br plotted out 

against Mn and K. Associations between Mn and K can be indicative of weathering and 

in-lake cycling in summer. Axis differences in unit 6 are less clear than unit 7, with both 

axis of the bi-plot only representing 37% of the total variance. PCA axis 1 for unit 6 

consists of an organic component of Se, Br and Pb at the positive end and a carbonate 

weathering component of K and Ca at the negative end. In contrast to all the other units, 

detrital components of Fe and Ti plot out on PCA axis 2 indicating their decreased 

importance during unit 6. Unit 5 probably shows the clearest two eigenvectors, with axis 

1 reflecting detrital versus authigenic and axis 2 reflecting organic moist versus non-
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organic dry. Interestingly, an extreme cluster of values is evident in the PCA bi-plot for 

unit 4 which coincides with a dark grey clay-rich band in the sediment profile. PCA axis 2 

for unit 4 represents only 12% of the total variance and is dominated by Mn at the 

positive end and Sr at the negative end. PCA sample scores for unit 3 are the largest 

seen for any unit (up to 8.5 for axis 1) and reveal a clear distinction in those samples of 

‘normal’ detrital origin and those of ‘abnormal’ detrital origin. Extreme positive scores of 

eigenvector 1 coincide with a black band in the sediment profile. This black band 

discussed in section 4.8 is possible tephra material. It is similar in nature to the dark 

band witnessed in unit 4. PCA axis 2 during unit 3 is similar to that from unit 2, reflecting 

seasonal adjustments between organic and authigenic processes. Unit 2 indicates a lack 

of Ca control on PCA axis 1 in contrast to other units and instead helps to account for the 

24% variance as seen on PCA axis 2. The separation of Sr and Ca shows a shift in 

carbonate formation processes and suggests substitution of Sr from precipitating CaCO3 

(Saalfield, 2012). The dominant role of Ca, Se and Br on axis 2 is merely reflecting 

seasonal varve formation as deposits switch from carbonate rich to organic rich. The 

PCA bi-plot for unit 1 indicates a very strong detrital component to the sediment signal as 

eigenvector 1 represents more than 50% of the total variance. This clastic element is in 

direct opposition to allochthonous calcium carbonate precipitation as indicated by the 

presence of Ca and Sr on the negative axis.  
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Figure  5.9: PCA bi-plots of axis 1, 2 and 3 for NAR10 Itrax derived elemental data. Sample scores 

are highlighted by dark grey dots and species scores are highlighted by red vector lines. 
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Figure  5.10: PCA bi-plots of axis 1 and 2 for all units of NAR10 Itrax data. Sample scores are highlighted by dark grey dots and species scores are 

highlighted by red vector line.
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5.3. Comparison of total carbon proxy and Itrax derived elemental data 

5.3.1. Organic carbon related component 

Scattering of the XRF x-ray signal during core scanning is classed into two types 

depending upon energy loss, these are termed Rayleigh (coherent) and Compton 

(incoherent) scatters. The intensity of scanning is dependent upon the condition of the 

sediment being measured and thus a ratio of the two may be informative about sediment 

type. Jenkins (1999) suggests that the ratio of incoherent to coherent (Inc/Coh) will have 

a greater value when sediments contain more organic matter and a lower value when 

measuring inorganic materials. As a qualitative measure, the Inc/Coh ratio could 

therefore be used to discuss organic deposition at Nar Gölϋ. The potential of this method 

will be tested by comparing the Inc/Coh ratio obtained during the Itrax XRF scanning 

procedure to the total organic carbon results to see how useful Inc/Coh can be as a 

measure of organic levels at Nar Lake. 

Figure 5.11 shows a comparison between the Inc/Coh ratio from the Itrax XRF data and 

the total organic carbon (TOC) curve. Visually there seems to be a good correlation 

between the two for units 1 and 2. Units 3 and 4 seem to show a breakdown in the 

relationship. The lower part of the core sequence seems to show a return to a more 

positive correlation between the two. Using Pearson’s correlation statistics on the two 

profiles to see how they compare over time reveals a similar pattern to this. For the 

whole sequence, correlation statistics provides an r-value of 0.35. Highest r-values (0.38) 

are associated with unit 1, with positive values also during unit 6 (0.31). Unit 2 and unit 3 

reveal reduced r-values of 0.16 and 0.12 respectively. No correlation exists for units 4 & 

7 which revealed an r-value of 0.01. The Inc/Coh ratio may be used as a qualitative 

measure of the amount of organic carbon within the NAR10 sediments during unit 1 (0-

592cm) due to the overall good correlation between Inc/Coh and TOC. Although this 

provides a faster estimation of down core TOC, quantifying organics in this manner is not 
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particularly robust. Comparison of samples down-core reveals that on the whole, 

samples do not co-vary as maxima in TOC are not reproduced by the Inc/Coh ratio and 

vice versa. The fact that the Inc/Coh ratio does not correspond precisely with TOC for 

the rest of the core sequence suggests that the scattering of the XRF signal may be 

related to factors other than organic level, such as porosity, water content and undulated 

surfaces. More likely is that the TOC sample size and reliability of results may play a part 

in the low correlation scores seen. Incomplete combustion of the sediment sample and 

problems with sample weights during TOC analysis limit the scope of this record to show 

a clear and precise pattern of organic level change over time. It is reasonable to suggest 

therefore that the Inc/Coh may be a truer reflection on changes in the organic component 

for NAR10. 

 

Figure  5.11: Stratigraphic plot of Incoherent/Coherent ratio against total organic carbon 

percentages, alongside cumulative core depth. Values have been normalised to 0 mean and 1 

standard deviation to allow the two datasets to be plotted side by side. 

 



Interpretation and synthesis   Chapter 5     Chapter 5 
 

157 
 

5.3.2. Inorganic carbon related component 

Total inorganic carbon (TIC) measures the amount of inorganic carbon contained within 

the lake sediment. TIC values can be related to a number of factors such as rate of 

carbonate precipitation. Due to its close association with carbonate processes, TIC 

should correspond to the Ca values obtained from XRF geochemical scanning as this 

element is also generally associated endogenic carbonate processes, particularly during 

the formation of CaCO3 (Ohlendor et al., 2010). As long as Ca profiles are controlled by 

the proportion of authigenically precipitated calcite in the lake, then XRF derived Ca peak 

areas should reflect changes in TIC percentages. As a qualitative measure, Ca could 

therefore be used to discuss the amount of inorganic carbon. To test this relationship, 

normalised Ca and TIC were plotted alongside one another to see how the two profiles 

co-vary over time (figure 5.12).  

Figure 5.12 outlines the relationship between Itrax derived Ca values and the total 

inorganic carbon (TIC) curve. Visually there seems to be a good correlation for most of 

the core sequence, with the most extreme rises and troughs picked out by both datasets. 

Units 3 & 4 seem to show the least correlation between the two records. Using Pearson’s 

correlation statistics on the two sequences to see how they compare over time reveals 

that on the whole, the two variables correlate closely. Correlation statistics for the whole 

sequence provide an overall r-value of 0.62 which indicates that Ca and TIC strongly 

positively correlate. Highest r-values are associated with unit 6 (0.53), with reasonably 

positive values witnessed for unit 1 (0.52), 7 (0.49), 5 (0.44) and 2 (0.44). Visually, unit 3 

seems to show the least correlation between the two variables but statistics indicate that 

there is still some similarity (0.31). Low correlations could be the result of Ca 

replacement by Mg and Sr as dolomite and aragonite during unit 3 (Dean, in prep). 

Visually, unit 4 seems to co-vary moderately well but actually this unit reveals the lowest 

r-values of just 0.29 indicating that at this time Ca and TIC are not closely related. The 

picture obtained for unit 4 may be skewed though due to the low TIC values obtained for 
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some samples which could have resulted in a reduced r-value. Generally, Itrax derived 

Ca may be used as a qualitative measure of the amount of inorganic carbon within the 

NAR10 sediments due to the overall good correlation between the two. This therefore 

provides a more fine-tuned and faster estimation of down core variations in TIC for this 

study and shows good reliability in the data gathered for both proxies. 

 

Figure  5.12: Stratigraphic plot of corrected peak area integrals of Ca against total inorganic 

carbon percentages, alongside cumulative core depth. Values have been normalised to 0 mean 

and 1 standard deviation to allow the two datasets to be plotted side by side. 

5.4. Synthesis of geochemical records 

5.4.1.  Overview of Nar Gölϋ chemostratigraphy 

There are 7 key zones distinguishable in the sediment stratigraphy and geochemistry; 

these have already been identified as units 1-7 (figure 4.1). Stratigraphically constrained 

cluster analysis produced a total of 10 key zones for the Nar geochemical data (figure 

5.13) but the most important boundaries between zones actually mirrored the 

lithostratigraphic boundaries. The other three clusters all lie within the already 

distinguished sediment units. The similarity between the visually defined units and the 
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cluster analysis has prompted the synthesis of data by sedimentary unit only, with sub-

unit variations highlighted. Thus the influence of climatic/environmental and limnological 

variability on the composition of Nar Lake’s geochemistry (figure 5.13) will be discussed 

in relation to stratigraphy, with dates indicated where available.  

5.4.2. Unit 7 (ca. 14000-12900 years ago) 

Visually, the sediment stratigraphy for unit 7, which dates around the Late Glacial, 

consists of abrupt alternations between beige and dark olive brown homogenous silts 

and thin laminations. In the main, this period is quite variable showing moderate 

amplitudinal changes in both carbon content and geochemistry (figure 5.13). Inorganic 

carbon content (TIC) is reasonably high for this period (average 10.5%) and the organic 

carbon content (TOC) is in contrast low, particularly for the very start of the core 

sequence. The darker sedimentary bands identified in this unit however correspond with 

relatively elevated levels of TOC and decreases in TIC. This pattern is similar to the 

pattern witnessed by normalised Ca (figure 5.12) and Inc/Coh, with darker coloured 

sediments associated with very high Inc/Coh ratio values (figure 5.11). Lighter beige 

sediments and sections with fewer varves show a different pattern, with much higher TIC 

values recorded. High peaks in TIC also correspond well with elevated levels of 

carbonate related elements, particularly Ca (figure 5.12). The high values recorded for 

carbonate related elements and low biogenic silica suggest that authigenic precipitation 

of carbonate dominates during lighter sediment bands (Heymann et al., 2013; 

Marzecova et al., 2011). Sub-unit 7a, dating to ~13596-12900vys, is characterised by 

much higher organic carbon levels and decreased Ca. Ca/Sr values (figure 5.13) are 

also heightened during this phase which suggests an increase in lake water levels as 

high Ca/Sr is typically a proxy for greater moisture availability (Rothwell et al., 2006). 

This is in contrast to the period prior to ~13596vys which consists of lower Ca/Sr values 

and therefore may represent a period of drier hydrological conditions.
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Figure  5.13: Summary of chemostratigraphy for Nar Lake. The proxies presented were selected based upon their usefulness for showing key 

geochemical changes down core. Geochemical variations are also shown alongside sedimentological data, results from constrained cluster analysis and 

the total carbon record.
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Unit 7 also shows relatively low values associated with detrital elements (see PCA axis 1) 

(figure 5.13) but values rise slightly during the inferred moister hydrological phase 

associated with 2128-2033cm sediment depth. The presence of higher Fe/Mn values 

(figure 5.13) at this time also supports ideas relating to deeper lake waters as high 

Fe/Mn is generally associated with anoxic lake conditions and increased water depths 

(Chirinos et al., 2005). High values of Fe and detrital input at this time however may be 

pushing Fe/Mn values up and thus the ratio cannot always be used as an indicator of 

lake depth. Increased sediment input from the catchment could have been caused by 

higher amounts of precipitation, which would have increased surface runoff into the lake 

by rainfall in the near vicinity, or it could have been caused by greater spring melt from 

snow. The presence of distinct laminations suggests deeper lake conditions and clear 

seasonality, with enough substantial seasonal turn-over of the lake to deliver enough 

organics for the formation of distinct varve couplets (Hedges and Keil, 1995). Seasonal 

turnover and therefore summer stratification of Nar Lake indicates anoxic lake bottom 

waters which fits well with higher Fe/Mn levels (Dean, 1993). 

5.4.3. Unit 6 (ca. 12900-11700 years ago) 

Unit 6 is readily distinguishable by a change in sediment colour from grey varves to 

lighter grey/beige marl without any laminations. The unit is completely homogenous with 

very little visible change in sediment stratigraphy. The unit is also evidenced by a 

decrease in elemental variability, mainly due to the unchanging or mixed nature of the 

sedimentary deposit. Total carbon results (figure 5.13) though suggest that two periods 

of change existed in this unit, ending and starting at around 2001cm sediment depth 

respectively. The change within sediment unit 6 is also noticeable by geochemical 

variations relating to carbonate and detrital deposition (figure 5.13).  

Visually the beginning of unit 6 is not very different chemically from sediments deposited 

at the end of unit 7 and likely reveals a continuation in sediment formation. The first half 
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of unit 6 consists of lower TIC and higher TOC, higher Ca/Sr and relatively little detrital 

influence (figure 5.13). It is possible that these geochemical parameters are reflecting 

generally moister lake conditions, which is particularly evidenced by increased Ca/Sr 

values (Cohen, 2003). Once waters were deep enough, organic preservation would have 

improved (Hedges and Keil, 1995) and thus may explain the slight increase in TOC here. 

The Inc/Coh ratio (a proxy for organic levels) (figure 5.11) however, shows only a slight 

elevation in the amount of organic material being deposited in the lake at this time, and 

values are greatly reduced from unit 7. The absence of laminations, lower Inc/Coh 

values and generally reduced Fe/Mn values suggest lake levels were shallower than in 

unit 7. Lower lake waters are substantiated by large calcareous nodules and distortions 

towards the end of this depositional phase, and relatively higher levels of carbonate 

deposition as outlined by increased Ca (figure 5.12).  A dry and evaporative event 

following the deposition of fairly moist material may have diagenetically altered the 

sediment appearance and could help explain the somewhat confusing geochemistry for 

this phase which could be inferred to represent both wetter and drier conditions.  

The latter half of unit 6 is evidenced by higher TIC, Ca and Sr (figure 4.7), and lows in 

Ca/Sr (figure 5.13). The potentially short-lived excursion to more moisture availability 

following unit 7 was disrupted by a return to exceptionally dry and evaporative conditions, 

and therefore lower lake stands. This is confirmed by increased oxygenation of lake 

bottom waters as suggested by lower Fe/Mn values (figure 5.13). Whilst low in terms of 

the rest of the core sequence, slightly raised levels of biogenic silica (as outlined by the 

Si/Ti ratio (figure 5.8)) are also documented for the latter half of unit 6. If lower lake 

waters did persist then more light would have reached the lake bed and may have 

influenced the growth of diatom communities at this time. If lake waters receded then 

much of the exposed material on the basin sides would have been prone to some 

erosion. Slightly elevated levels of K (figure 4.13) indicates some weathering but 

relatively low levels of detrital in-wash (figure 5.13) suggest that on the whole, the 
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surrounding catchment and lake edge was moderately stable. Stability likely resulted 

from reduced levels of precipitation. Reduced precipitation levels would have meant that 

sediments surrounding the lake were not subjected to increased water induced erosion. 

It is also likely that snow deposits made little impact on material entering the lake at this 

time.  

5.4.4. Unit 5 (ca. 11700-8046vys B.P.) 

Early Holocene sediment is marked by a sustained level of inorganic carbon matter and 

a continuation of low clastic input (figure 5.13). A shift from a prolonged arid phase 

during unit 6 may have led to episodes of high inorganic carbon sediment input into the 

lake post event due to re-working of previously exposed shoreline deposits. The slight 

fall in TIC (figure 5.13), Ca (figure 5.12), detrital levels and low values for K (figure 4.13) 

(a weathering indicator) suggest that this did not occur at the onset of unit 5. In fact, 

decreased clastic input from ~11700-9190vys suggests landscape stabilisation for an 

extended period of time following unit 6. Within unit 5 there is a shift in lake condition and 

this unit has thus been divided into sub-units based on patterns of carbonate and detrital 

derived geochemical change (figure 5.13). These have been classified as sub-units 5b-d 

(1974-1606.2cm; ca. 11700-9190vys B.P.) and sub-unit 5a (1606.2-1428.2cm; ca. 9190-

8046vys B.P.).  

Sub-units 5b-d indicate a significant change to stable conditions following a period of 

what seems to be changeable but generally dry conditions during unit 6. This stability is 

evidenced by only subtle changes in redox conditions, detrital input and carbonate 

precipitation (figure 5.13). At the start of unit 5, there are slightly elevated levels of Sr 

(figure 4.7) which are likely relic deposits of Sr from the unit below precipitated during 

lower lake stands and decreased precipitation (Mϋller and Wagner, 1978). TIC and Ca 

(figure 5.12) are relatively high here and annual laminations are clear and distinctive. 

The presence of laminations during low Fe/Mn values (figure 5.13) is puzzling given that 
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varves would not normally form under oxygenated lake bottom waters (Dean, 1993). It is 

possible that oxic conditions are reflected because of reduced seasonality and/or lake 

turn-over during the spring and autumn months rather than lower lake waters per se 

(Magyari et al., 2009). It is also possible the low Fe/Mn values relate to the lack of detrital 

material entering the lack at this time (figure 5.13) and thus a reduced level of Fe in the 

lake system. The formation of varves suggests it is likely that the lake level rose from unit 

6 and conditions became more nutrient rich, a condition expressed by high diatom 

productivity and high Si/Ti values (figure 5.8) at this time too. The increased water level 

would have submerged near shore settings and expanded the lake surface area which 

would have introduced more nutrients into the lake waters accelerating secondary 

carbonate productivity from algal communities. A noticeable excursion in Ti levels (figure 

4.11) at 1708.2cm (9966vys) is associated with a decline in biogenic silica shortly 

beforehand. Decreased aquatic communities and an increase in clay related elements 

(e.g. Ti, Fe) may imply a short lived excursion to drier and cooler conditions.   

Sub-unit 5a is characterised by dramatic shifts in detrital and generally fine grained input 

centred at 1574.2 cm (9072vys), with five other important peaks occurring at 1503.2, 

1485.2, 1468.2, 1448.2 and 1432.2 cm (8599, 8419, 8303, 8169 and 8065vys 

respectively). Detrital elemental profiles show significant high peaks during this phase 

and relatively variable conditions (figure 5.13). Clay mineral and clastic influx at this time 

forms a major component of the sediment sequence indicating control by allochthonous 

processes. At this time also, Fe/Mn ratios (figure 5.13) suggest increased lake bottom 

anoxia, lake water stratification during the summer months and enhanced seasonal 

extremes. Grain size is small as indicated by the Zr/Rb ratio (figure 5.13), as is Si/Ti 

(figure 5.8) for most of the time. Lows in Ca and Sr (figure 4.7) suggest that carbonate 

deposition was reduced (Kylander et al., 2011a), but it is likely that some of the 

carbonate signal is diluted because of high clastic elemental readings.  A slight rise in 

Inc/Coh and TOC values (figure 5.11) may indicate more terrestrial organic material 
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entering the lake with the detrital elements. It is postulated that during sub-unit 5a, 

conditions were drier in the catchment than the rest of unit 5, with shifting moisture levels 

relating to changes in seasonal precipitation patterns. Lack of moisture availability in the 

catchment would have been enough to trigger frequent landscape instability and erosion 

of catchment material into the lake water (Giguet-Covex et al., 2011). The change in 

nutrient supply would have also been enough to disrupt biological communities in the 

lake thus lowering levels of biogenic silica at this time. Heightened levels of detrital in-

wash may also be explained however by human activity within the lake catchment which 

could have potentially disturbed the stability of soils and by increased volcanic eruptions 

as may be evidenced by the presence of a possible tephra horizon during sub-unit 5a. 

5.4.5. Unit 4 (ca. 8046-6398vys B.P.) 

Lacustrine sediments deposited throughout unit 4 consist of thin (mm scale) and very 

faint but visible laminations compared to sediments deposited earlier. Organic carbon is 

relatively low in unit 4 but inorganic carbon is exceptionally high (figure 5.13), and 

reaches levels not seen elsewhere in the core sequence. Unit 4 is also markedly 

different in terms of geochemistry, with relatively low detrital values recorded and 

remarkably high calcium concentrations (figure 4.7). These changes are linked in with 

the occasional deposition of calcareous granules of biochemical origin and a huge 

increase in Mn deposition (figure 4.9). Higher aquatic productivity is evidence by slightly 

elevated levels of Si/Ti (figure 5.8) but in comparison to units 7 and 5, these values are 

low. The high inorganic carbon content, as well as high Ca and low Sr (figure 4.7) in unit 

4 suggests conditions are strongly controlled by calcium carbonate precipitation (Treese 

et al., 1981). The indication of oxic conditions by low Fe/Mn (figure 5.13) could imply 

sediment fixing of Ca which would result in increased levels (Boyle, 2001). A lack of 

seasonal turnover of lake waters as potentially implied by low Fe/Mn could also be 

considered as a function of stable yearly rainfall levels, and therefore high Ca values in 

this instance would relate to in-lake chemical precipitation as a result of sustained 
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moisture levels (Arnaud, 2013, pers. comm; Heymann et al., 2013). More stable and 

year-round precipitation levels may also be substantiated by only faint winter laminae 

and enhanced carbonate summer laminae. 

Based on very low detrital influence at this time (figure 5.13) it is also possible to assume 

little influence of eroded catchment material on lake geochemistry. The surrounding 

landscape must have been very stable and soil erosion was decelerated for a time. Lack 

of clastic influence could be characteristic of a moist phase which encouraged greater 

catchment vegetation and soil cover and therefore a reduction in landscape instability 

during unit 4. It could also be characteristic of relatively reduced human activity in the 

catchment and therefore less human-induced landscape disturbance. A one-off event 

does occur at 1356.2 cm (7588vys) where levels of Ti, Fe, Rb, Si and K (figures 4.9, 4.11 

and 4.13) increase significantly and signify a sudden and short lived influx of clastic 

material. This is evidenced to by a dark grey clay band in the sediment stratigraphy and 

SEM scans (figure 4.22) indicating increased input of alumino-silicates (detrital type 

material). It is likely that this event is similar to other large detrital peaks witnessed in 

sub-unit 5a. The cause of this event could be decreased moisture availability, 

destabilisation of the surrounding landscape or the deposition of volcanic material (see 

section 4.8). Generally, constant conditions persisted during unit 4 as variation in 

geochemistry is often minimal (figure 5.13). Fluctuating conditions are barely witnessed 

and highlight the unchanging nature of the climatic/environmental state at this time. 

5.4.6. Unit 3 (ca. 6398vys B.P.-?)  

Unit 3 is characterised by thick laminations in the sediment stratigraphy (figure 5.13) that 

cannot be confirmed as annual deposits. Organic matter values rose considerably as 

highlighted by increased Inc/Coh values and elevated TOC levels in relation to unit 4 

(figure 5.11); with the most rapid rise evident towards the base of the unit and into the 

transition with the next lithostratigraphic unit. Visually, unit 3 is markedly different with 
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dramatic colour changes between bands and the deposition of bright white carbonate 

rich lamina. Both are strongly linked to shifts between precipitated carbonates and up-

core increases in organic levels. Unit 3 also signifies the start of reduced Si/Ti (figure 5.8) 

and therefore diatom biological activity in the lake, which remains low until present times. 

Carbonate deposition at this time was not controlled by increased biogenic productivity in 

the lake and is likely to relate more firmly to non-biological endogenic processes. Grain 

size (Zr/Rb), clastic input, biogenic silica and precipitated carbonate (figure 5.13) are on 

the whole reduced for this time period but some changes in these components are seen 

and signify partially alternating conditions in lake state.  

High peaks in detrital elements are witnessed at 1107.7, 958.5, 897, 842.8 and 804.4cm 

sediment depth. These peaks show that at times, the influence of clastic material was 

greater than at other times, and highlights increased catchment instability for short 

abrupt episodes. The most distinctive peak is at 958.5cm and is witnessed by a dark 

black sediment band in the stratigraphy. SEM scanning (figure 4.22) of this band was 

conducted as it have characteristics of a tephra horizon. Another significant elemental 

component of unit 3 is Sr (figure 4.7), with values shifting from below 200 to above 400 

(peak area integral value) at two points in the sequence. These shifts correspond to 

925.9-858.9cm and 805.1-741cm sediment depth. Co-precipitation of Sr and Ca at this 

time suggests endogenic precipitation (Kylander et al., 2011a) of aragonite, a signal 

confirmed by XRD analysis (Dean, in prep). Aragonite carbonates likely cause the bright 

white laminae documented in the sediment stratigraphy, particularly towards the top of 

the unit sequence. Lake level and moisture availability is hard to interpret during unit 3 

but generally reduced Fe/Mn and Ca/Sr values suggest that lake levels were lower than 

in unit 4. The presence of detrital in-wash events however suggests less stable 

conditions than in unit 4. 
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5.4.7. Unit 2 (>2600vys B.P.) 

Sediments in unit 2 are very distinctive as most of the unit is non-varved. Laminations 

are rare, and where apparent they are thin and often disturbed. Hard carbonate 

concretions dominate the unit; concretions can be as large as 3cm in diameter and 

extremely tough to break apart. Considering these deposits are carbonate rich, the total 

inorganic carbon values recorded are relatively low (average 8.78%) (figure 5.13). 

Normalised Ca values (figure 5.12) also suggest that during unit 2, calcium carbonate 

deposition (in the form of calcite) is reduced. The start of the unit corresponds to 

relatively high levels of organic carbon (average 1.86%), a pattern witnessed towards the 

end of unit 3 also (figure 5.13). These values tail off by the end of unit 2 as TIC rises. 

The Inc/Coh ratio in contrast suggests primarily low organic levels for the whole of unit 2 

besides the transition with unit 3 (figure 5.11) and it has been suggested that this proxy 

offers a better representation of down-core changes in organic levels.  

The high inorganic content and lack of visible laminations towards the bottom half of unit 

2 may be indicative of a low lake level. The nodular nature of deposits also indicates 

extreme drying at this time, with water levels significantly reduced. The interpretation of 

lower lake stands is substantiated by the Fe/Mn ratio (figure 5.13) which highlights an 

oxic lake state and therefore oxygenation of bottom lake waters. Organic matter 

decomposition occurred due to higher oxygen levels at the bottom of the lake. In addition, 

the lack of yearly stratification and continual ventilation of the water-column can be 

inferred from sediment homogenisation. The strong presence of Sr and Mg (figures 4.7 & 

5.13) at this time also indicates that there was extreme drying. Magnesium 

supersaturation in unit 2 (figure 5.13) indicates intense evaporative conditions and 

increased salinity (Hubert-Ferrari et al., 2012), and thus higher levels of aridity. 

The presence of some varves and a small amount of organic matter preservation 

towards the start of the unit suggests that water levels may have periodically been higher 
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as the breakdown of organics did not occur readily and conditions must have been 

anaerobic enough to preserve varve formations. With increased water depth, 

bioturbation would have been reduced and thus enhanced the deposition of organics. 

Relatively low levels of Si/Ti (figure 5.8) suggest low productivity at the lake during unit 2. 

The slightly elevated peaks in Si (figure 4.11), though, is interesting as detrital elements 

are generally minimal here which suggests that the Si profile may show some variation in 

biogenic silica and diatom productivity. The reduction in erosion indicators (figure 5.13) 

and therefore clastic input into the lake may be a consequence of a buffering effect from 

growth of littoral vegetation if water levels were relatively higher at the beginning of this 

phase. The lack of organic matter for most of the unit (figure 5.13) however implies that 

reduced detrital values relate primarily to another mechanism of change, possibly 

reduced human landscape disturbance and/or reduced surface erosion from wetter 

climatic conditions. Less precipitation may have resulted in less detritus material being 

transported into the lake. 

5.4.8. Unit 1 (ca. 2589vys B.P.-present) 

During unit 1, the return to varved sediments and absence of hard carbonate nodules 

suggest a return to anoxic and higher lake level conditions. Relatively stable average 

carbonate and organic conditions after unit 2 implies little mean change between these 

two phases. More extreme values in both TIC and TOC (figure 5.13) however imply that 

conditions were far from stable and in fact fluctuated on a frequent basis. The deposition 

of Ti, Fe, K, Si and Rb as highlighted by the PCA axis profile in figure 5.13, suggests 

increased input of catchment material on the lake setting during unit 1. The coincidence 

of clastic matter and relatively high levels of TOC (figure 5.13) may imply enhanced 

terrestrial organic matter input at this time. This change in hydrological condition to 

higher lake stands and increased sedimentation is reflected in the Fe/Mn ratio (figure 

5.13) which is likely not only indicating highs in detrital Fe but also a switch back to 

stratified lake waters and therefore potentially wetter climatic conditions. Increased 
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precipitation may have caused greater erosion of soils and may explain the large rise in 

detrital values witnessed. Given the fact that unit 1 is relatively modern in age, it is also 

interesting to consider the role of humans on the pattern of clastic in-wash witnessed. 

Increased human disturbance and activity within the lake catchment may also explain an 

increase in detrital elements here. 

Five distinctive switches in lake status are evident in unit 1 associated with 592.7-340.1 

(sub-units 1e-c), 340.1-281.8 (sub-unit 1c), 281.8-203.1 (sub-unit 1c), 203.1-41 (sub-

units 1c-b) and 41-0cm (sub-unit 1a) sediment depth. These changes are mainly 

evidenced by shifts between low detrital, high carbonate and high detrital, low carbonate 

values. The first period of change associated with sub-units 1e-c seems to span a period 

between ca. 2589-1394vys, ending at an estimated calendar age of AD616 and is 

characterised by unstable fluctuations in clastic material and very low carbonate 

deposition. Sediment and geochemical change between 340.1 and 281.8cm (estimated 

to date between ca. 1394-1096 vys B.P.) is the most distinct shift in unit 1. It is identified 

by increased carbonate deposition of co-precipitating Sr and Ca (figure 4.7). Slight 

increases in Si/Ti (figure 5.8) are evident during high carbonate stands and may imply 

some control by algal communities. Increases in pH during algal blooms in the summer 

months may increase the amount of precipitated calcite and this would be witnessed in 

the elemental profiles by high Ca and Sr. High calcite levels could also signify increased 

moisture levels. Grain size also increases in line with the change from detrital dominated 

material as inferred by Zr/Rb (figure 5.13). The shift at 281.8-203.1cm (ca. 1096-841vys) 

shows a reversion back to detrital dominated deposition and finer grain materials. 

Carbonate deposition is remarkably low for this time and suggests reduced moisture 

availability. The next change dated to ca. 841-80vys shows a similar pattern to the 

second visual period of change. The final change in geochemistry occurs at ca. 80-0vys 

and is evidenced by a dramatic increase in detrital elements and increased visual 

evidence of large scale clastic in-wash events by thick ‘turbidite’ inclusions. At this point 
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in time, Si (figure 4.11) is incorporated into the detrital suite and signifies low primary 

productivity. Grain size is also dramatically reduced (figure 5.13). A rise in TOC and drop 

in TIC is interesting and may indicate increased terrestrial derived organic material. As 

these are modern sediments dating to the Turkish Republic Era (1923-present), the role 

of human populations and agriculture on the surrounding landscape is an important 

concern for this time. Increased clastic input shows heightened erosion and landscape 

instability for this last phase of change. 

5.4.9. Synopsis of Nar Gölϋ chemostratigraphy  

Combining elemental and sedimentary datasets from Nar Gölϋ produces a number of 

different conclusions regarding changes in lake hydrology and environmental variations. 

Fluctuating conditions between moist and dry are noticeable throughout the Late Glacial 

period and into the Holocene. The Early Holocene in contrast is evidenced by very stable 

conditions and higher lake levels. Carbonate production by algal communities was 

extremely high at this time and likely explains some of the high carbonate deposition 

here. Catchment erosion also had no significant effect on the lake until sub-unit 5a. At 

this time, increases in detrital in-wash relates to amplified landscape instability and soil 

degradation. In unit 4 clastic influxes are significantly reduced showing a marked change 

from conditions during sub-unit 5a. Constant precipitation levels are suggested from 

Fe/Mn ratios which signify oxygenated bottom lake waters and from faint laminations. A 

strong relationship between organic content and thick, possibly non-annual laminations 

exists for unit 3. Aragonite formations likely increased the relatively reduced carbonate 

signal at this time; generally low carbonate precipitation is controlled by reduced 

biological activity in the lake. Extremely low lake levels and evaporative conditions 

persisted in unit 2 and this is well documented in the sediment stratigraphy by hard 

carbonate concretions and no varve deposits. A strong detrital component for unit 1 

suggests control principally by external sources. The return of laminations also implies 
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higher lake levels at this time. Unit 1 is dominated by highly variable shifts in elemental 

geochemistry and therefore represents frequently fluctuating conditions. 

Whilst some understanding of hydrological conditions at Nar Lake have been produced 

for select time periods, the exact interplay between climatic and environmental factors is 

hard to justify through elemental synthesis alone. It is therefore necessary to look at the 

NAR10 geochemical record in relation to other proxy records from the lake and to data 

from other regional records to better understand the variable nature of hydrological 

conditions at Nar Lake and to relate this history of change with the pattern of change 

witnessed elsewhere in the region. 

5.5. Nar Gölϋ multi-proxy comparisons 

5.5.1. Comparisons to the Nar Gölϋ oxygen isotope record 

The moisture balance history of a lake can be determined from oxygen isotope ratios if 

they have been isotopically modified by evaporative processes (Anderson et al., 2001). 

Increased evaporative rates cause δ18O enrichment whilst decreased evaporative rates 

result in δ18O depletion. Positive oxygen isotope values (enriched) have thus been 

associated with drier climatic conditions whereas negative values (depleted) signify a 

wetter climate. In the Eastern Mediterranean, lake level shifts have predominately been 

related to changes in the precipitation-evaporation (P-E) ratio and are thus principally 

controlled by changing climate (Jones et al., 2006; Roberts et al., 2008).  

Oxygen isotope work conducted on the Nar Lake sedimentary record has progressed in 

two stages. Firstly, oxygen isotope studies on spring/summer precipitated carbon were 

conducted in 2001 & 2002 by Matthew Jones (Jones, 2004) for the last 1720 years at 

yearly and sub-decadal resolution on samples from the NAR01 and NAR02 core 

sequences. Subsequently, Jonathan Dean (Dean, in prep) has studied isotope values 

from the NAR10 core sequence for a period from around 14,000 yrs. B.P. to present day. 



Interpretation and synthesis  Chapter 5   

 

173 
 

Isotope studies from the NAR10 record are still in progress and will form part of a 

doctoral thesis submission (Dean, in prep). In light of this, only a low resolution profile of 

the isotopic changes throughout the Late Pleistocene & Holocene are used in the 

comparisons here but this should be sufficient enough to detail the fundamental shifts 

between wet and dry. The full record from the NAR01/02 sequence is available for 

comparison purposes. 

Jones (Jones, 2004; Jones et al., 2005; Jones et al., 2006) identified significant shifts 

between wet and dry conditions at Nar Gölϋ during the late Holocene from water oxygen 

isotope ratios; these changes were driven by precipitation and evaporation. If, as 

suggested in section 5.2.4, the Ca/Sr ratio and carbonate mineralogy record are driven 

mainly by precipitation-evaporation levels then the Nar Lake isotope record and the Itrax 

XRF data should show similar shifts between wet and dry. To see if this is the case, a 

comparison is made between the Ca/Sr, TIC and δ18O records from Nar Lake (figure 

5.14). 

In total, significant shifts between wet and dry are identifiable in the combined NAR01/02 

and NAR10 isotopic records. Also noticeable is the dominance of wetter conditions prior 

to 6300 years ago (roughly end of unit 4; 1161.2 cm) with drier conditions persisting 

thereafter. In the more highly resolved isotope record from NAR01/02, three shifts from 

positive to negative values are recorded between AD 486-561, AD 1393-1429 and AD 

1949-1987 (Jones, 2004; Jones et al., 2006). These finer detail changes are not clearly 

identifiable in figure 5.14, which was constructed to highlight the broader and more major 

shifts occurring over long time spans and therefore only indicates drier conditions for the 

period after AD 1400.  

The most important shifts in Ca/Sr occur simultaneously alongside δ18O shifts between 

wet and dry, with the most noticeable changes happening between 1953-1625cm 

(important wetting trend) and 750-590cm (important drying trend) sediment depth. The 
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wettest period on record therefore occurs between ca. 11649-9292 vys. B.P. (9639-7282 

B.C.) and the driest period found between ca. ~4500-2596 vys. B.P. (~2490-586 B.C.). It 

appears that the Ca/Sr and oxygen isotope record respond in a similar fashion to 

changes within the lake system and that the Ca/Sr ratio is an indicator of P-E ratio and 

as a result lake level changes also. A correlation value of -0.64, significant at <0.05, 

suggests that there is a clear negative relationship between the two variables as is 

witnessed in the sedimentary profiles. 

 The TIC record does not respond as clearly to changes in P-E ratio as Ca/Sr, even 

though the patterns of TIC and δ18O, on the whole, are comparable. More negative 

isotopic values from 1130-1070cm for instance coincide with generally reduced levels of 

TIC, a reversal of the pattern that would be expected if TIC and P-E ratio were related, 

suggesting that TIC responds to more than just P-E adjustments. This reversal in the 

patterns witnessed can also be seen from 1190-1133cm and 1070-1010cm where 

positive peaks in δ18O are matched by increased TIC.  It appears that from 1190-1010cm 

the TIC record may respond to P-E changes but to lag the δ18O. A Pearson’s correlation 

value of -0.33, significant at <0.05, implies that at times there is a weak negative 

relationship between the oxygen isotope and TIC records but suggests that in many 

instances, the two proxies may not be responding in parallel to lake system changes. 
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Figure  5.14: NAR10 Ca/Sr and TIC record presented alongside the NAR01/02 (Jones et al., 2006) 

and NAR10 (Dean, in prep) oxygen isotope stratigraphy, sedimentary stratigraphic units and 

lithology. Periods of major drying are indicated by light grey boxes and periods of major wetting 

are indicated by dark grey boxes. The overall pattern of change witnesses wetter conditions in the 

early Holocene in comparison to the late Holocene. 
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The non-stationary relationship between TIC and δ18O is not driven by a lack of response 

to changes in the lake’s hydrological system but because TIC levels can also be 

controlled by carbonate productions within the lake (Marzecova et al., 2011), particularly 

by calcite (Ca), aragonite (Sr) and dolomite (Mg) precipitation in the case of Nar. The 

close correspondence between Ca and TIC (section 5.3.2) during periods of less 

resemblance to the oxygen isotope data suggests a greater control on TIC production by 

in-lake carbonate formation, which could be biologically led (Marzecova et al., 2011). 

Alternatively, the presence of high Ca would likely result in greater isotopic enrichment 

and more positive δ18O values relative to other carbonate precipitates (Yuan et al., 2006) 

5.5.2. Comparisons to the Nar Gölϋ diatom record 

Diatoms are useful biological indicators of palaeoclimate and preserve well in lake cores 

(Woodbridge, 2009). Their changing characteristics are related to the lake environment 

and thus their response mechanisms can be used to infer past climate trajectories and 

cycles (Woodbridge, 2009). Diatom sensitivity to a variety of ecological conditions means 

that changes in climate can be inferred from changes in species abundance, species 

diversity, species distribution and the ecological requirements of ‘indicator species’. 

Certain species are selective in terms of lake level and nutrient supply, which are in turn 

related to precipitation levels, solar output, wind, nutrient upwelling and erosion/terrestrial 

input (Kilham et al., 1996). Diatoms are also heavily influenced by altered erosion levels 

and increased nutrient supplies to the lake environment as a result of human impact and 

anthropogenic activity within the surrounding landscape (Selby and Brown, 2007). 

Woodbridge (2009) and Woodbridge et al. (Woodbridge and Roberts, 2010, 2011; 

Woodbridge et al., 2010) analysed the NAR01/02 and NAR06 diatom record and found 

that diatoms are useful indicators of climate change and anthropogenic influence at Nar 

Lake over the last 1720 years at the decadal time resolution. They concluded that Nar 

Lake water was most saline, and thus climate was more arid prior to AD 540 in 
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comparison to the rest of the period studied (Woodbridge and Roberts, 2011). A 

postulated 5th century AD drought episode (Woodbridge and Roberts, 2011) was likely 

the last pronounced dry phase of a series of drought events to have punctuated the latter 

half of the Holocene in central Anatolia (Kuzucuoğlu et al., 2011) and is also evident in 

the oxygen isotope record at Nar Lake (Jones et al., 2006). Four key diatoms zone were 

identified (Woodbridge and Roberts, 2011) highlighting significant shifts in regional water 

balance and lake conductivity. Drier periods were evident from AD 270-540 & AD 800-

950 and wetter episodes were evident from AD 540-800 & after AD 950. From AD 1400-

1960 there is a decoupling of the δ18O isotope values and diatom inferred conductivity 

reconstruction which is thought to relate to increasing influence of human processes on 

the diatom record. Isotope data suggests that climatic conditions at this time were 

relatively dry but the lack of response from the diatom community cannot corroborate this 

pattern. 

Busby (2011) extended the diatom work which was completed by Woodbridge and 

others by analysing the diatom record from the newly extracted NAR10 sediment 

sequence. For his diatom study, 59 samples were selected from the NAR10 lake cores 

covering a period from ~14,000 vys. B.P – 1720 vys. B.P. Diatom inferred conductivity 

and diatom class studies resulted in the identification of 7 distinct diatom zones 

highlighting changes in diatom inferred salinity and possible lake level changes. On the 

whole, the conductivity record shows an increase in salinity during the mid-late Holocene 

which peaks at 800cm sediment depth. Diatom analysis (Busby, 2011) details that the 

start of the NAR10 core sequence documented fairly wet climatic conditions with 

associated high lake stands and freshwater, whilst the latter half of the core sequence 

saw established drought and a reduced water balance. 

To see how the geochemical record from Nar Lake related to the diatom stratigraphy 

from the same core sequence, a comparison was made between PCA axis 1 sample 

scores, the Ca/Sr ratio, the Mg record, diatom species abundance, diatom ecological 
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preferences and diatom inferred conductivity (figure 5.15). If the presence of Mg in the 

core sequence relates to heightened salinity (as suggested in section 5.4.7) then there 

should be clear links with the diatom inferred conductivity record. Similarly, if the PCA 

axis scores (representative of detrital influx) and Ca/Sr ratio (representative of moisture 

balance) are indicative of shifting environmental and climatic changes then there should 

be some parallel with components of the diatom record which are said to have uniquely 

responded to climatic/environmental shifts (Woodbridge, 2009). 

Comparison of the diatom history at Nar Lake with the NAR10 geochemical record 

(figure 5.15) reveals a subtle relationship in the response of these proxies. The links 

between species abundance, ecological preference, conductivity and lake geochemistry 

is non-stationary through time and on the whole, recognised changes in lake 

geochemistry only partially coincide with significant shifts in the diatom record. The fact 

that the records appear only slightly related may be connected to the different response 

characteristics of each individual proxy or the fact that human presence and land use 

practices could have also influenced the patterns witnessed. Comparisons made to 

planktonic + facultative planktonic diatom abundance and conductivity changes are also 

made less usable by the fact that changes in these profiles are heavily driven by the 

prevalence of certain diatom species and reflect changes in diatom abundance rather 

than lake conditions alone. 
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Figure  5.15: NAR01/02 and NAR10 diatom stratigraphy presented alongside PCA axis 1, Ca/Sr and Mg from NAR10. Diatom inferred conductivity and the 

planktonic & planktonic + faculative planktonic diatom abundance have been used to explore the whole Nar Lake diatom dataset. Cyclotella 

meneghiniana species has been included to highlight correspondence to other proxies. All data presented with lithostratigraphic units and non-varved 

lithology.
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The relationship between diatoms and elemental geochemistry is not ‘strong’ but may be 

significant in terms of understanding and corroborating changes in the lake’s history. 

Most noticeable is the possible link between Cyclotella meneghiniana species and PCA 

axis1 (figure 5.15). Whilst the records are not similar throughout the whole core 

stratigraphy, it seems that increases in PCA axis values, which reflect increased detrital 

influx in to the lake, often coincide with increases in Cyclotella meneghiniana abundance. 

This is clearest during sub-unit 5a (1606.2-1428.2cm) and the first half of unit 1 (592.7-

340cm), and may imply that nutrient changes and other limnological changes driven by 

increased clastic input into the lake are advantageous for the growth of Cyclotella 

meneghiniana populations. The sedimentary record may therefore also preserve 

seasonal biological responses corresponding to terrigenous summer/autumn fluxes as it 

is apparent in the sediment stratigraphy that clastic bands are most prevalent between 

the summer and autumn sub-laminae. 

Although some sub-units seem to suggest a correspondence between PCA axis 1 and 

Cyclotella meneghiniana abundance, there are parts of the Nar core sequence where the 

relationship is inversed, such as during unit 4 (1428.2-1161.2cm, 8046-6398 vys. B.P.) 

and part of unit 1 (340-0-cm, 0-1394 vys. B.P.). Unit 4 suggests high Cyclotella 

meneghiniana populations during minimal detrital input and the base of unit 1 suggests 

low Cyclotella meneghiniana populations during heightened and variable clastic influx. 

Deciphering why the relationship between the two proxies is non-stationary would 

require further work but changes in source material, nutrient loading relating to human-

land use practices, climate-related variables and limnological conditions may explain why 

the relationship is complex. 

Although it has already been suggested that the planktonic + facultative planktonic 

record can be deceptive, the fact that it relates closely to the Ca/Sr ratio in places 

suggests that, at least in part, it is representative of changing lake status. A prevalence 

of benthic type (bottom dwelling) diatoms is encouraged by shallow water conditions 
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which increase the amount of oxygen and light reaching the lake bed and allow for 

greater colonisation of the lake bottom and near shore zone (Cohen, 2003). The 

abundance of benthic and littoral type species therefore can be used as a proxy for past 

water level changes (Barker et al., 1994) as higher numbers of benthic and lake edge 

diatoms would be expected during lower lake waters. Ca/Sr ratio can also be used as a 

palaeoclimate indictor to understand lake level and salinity changes, with lower ratio 

values reflecting lake shallowing and high salinity (Cohen, 2003). The abundance of 

bottom and littoral dwelling diatom species (% not planktonic or facultative planktonic 

(figure 5.15)) and Ca/Sr ratio should show a similar pattern to each other if both can be 

related to changes in lake level. On the whole, decreases in Ca/Sr correspond to 

increases in none planktonic and facultative planktonic diatom abundance (apart from 

sub-unit 5a). The similarity is most noticeable after unit 4 as both records suggest an 

abrupt and prolonged shift to lower lake stands and ultimately drier climatic conditions at 

this time.  

5.5.3. Comparisons to the Nar Gölϋ pollen record 

Pollen counts have become the basis for many palaeoenvironmental studies (Birks and 

Birks, 1980) and pollen collected from lake sediments are commonly used to develop 

interpretations of past climate conditions (e.g. Baruch and Bottema, 1999; Eastwood et 

al., 2007b; Rossignol-Strick, 1999; Van Zeist and Woldring, 1978). Pollen recovered from 

lake cores can also be informative about past vegetation change, landscape 

development and human impact (England, 2006). Pollen was the main source of 

evidence for England (England, 2006) and England et al. (2008) who analysed the pollen 

profile for the Nar Gölü NAR01/02 sediment sequence and identified that human 

influence has been a major driver of vegetation change in the Nar Lake catchment for 

the last 1720 years. Four distinct ecological phases were recognised by England et al. 

(2008) documenting shifts from a dominate arboriculture phase during Roman and early 

Byzantine times (AD 300-670) to increasing intensification of dryland cereal cultivation 
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from the late Ottoman Empire onwards (AD 1830-2000). A marked increase in tree 

pollen and a decrease in anthropogenic indicator species from AD 670-950 imply a 

period of agricultural abandonment and decline in human landscape impact related to a 

cultural decline phase. 

Comparison of the NAR01/02 pollen changes with the NAR10 geochemical record is 

only possible for the top 1720 years as pollen investigation of the NAR10 sediment 

sequence is not complete. The most significant shifts in the pollen record are tied heavily 

into anthropogenic factors and are characteristic of changes in human land-use practices. 

If the PCA axis 1 scores are related to landscape instability it may be possible to identify 

periods of extra detrital influx during times when pollen data suggests heightened 

landscape changes. High detrital influx is evident from ~520-340cm (c. 171 BC - AD 616) 

which coincides with inferred Hellenistic/Roman/early Byzantine agricultural production 

and low detrital input is evident from ~340-280cm (c. AD 616-914) which coincides with 

landscape abandonment and woodland regeneration. From 280cm towards present day, 

PCA axis 1 scores suggests fluctuations between high and low detrital input, with the top 

most ~40cm (AD 1930-present) corresponding to relativity high levels of clastic material 

input into the lake environment. Interestingly, this also coincides with the pollen story of 

agricultural intensification after AD 1830. Comparison of the pollen and geochemical 

data therefore may suggest a similar response to landscape use and human activity.  

The fact that the Ca/Sr and PCA axis 1 proxy profiles can be reversed at certain times 

also points towards a possible climatic influence on both the geochemical and pollen 

records. During high Ca/Sr values from ~360-300cm (c. AD 550-832), and therefore 

increased regional moisture levels, there is overlap with inferred woodland regeneration 

in the pollen record. The offset in dates (AD 550-832 for Ca/Sr and AD 616-914 for PCA 

axis 1, and AD 670-950 for pollen) may suggest a slow response of vegetation to 

amelioration in climate and increased precipitation. This moist phase is also picked out in 

the isotope record (figure 5.14) (dated to 560-750 AD (Jones et al., 2006)) so it is 
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possible to assume some correspondence between Ca/Sr and the pollen data. 

Nevertheless, the lack of a climate signal in the NAR01/02 pollen analysis (England et al., 

2008), and a dating off-set implies that the human-land use signal may dominate in this 

case. 

5.5.4. Summary of Nar Gölϋ multi-proxy comparisons 

Comparisons to the Nar Gölϋ oxygen isotope, diatom and pollen records have shown 

there to be considerable similarity between the climatic and environmental history 

recorded between these proxies and the Nar Lake geochemical and sedimentary record. 

Shifts between wet and dry as recorded by δ18O values are also seen in the Ca/Sr ratio 

and partially in the levels of TIC documented. Changes in detrital influx recorded by PCA 

axis 1 may be linked to the diatom species assemblage as increases in Cyclotella 

meneghiniana can correspond to greater clastic input. Lake level variation as recorded in 

Mg, Ca/Sr and diatom abundance proxies highlight increasing salinity and shallowing of 

lake waters from the mid-Holocene. Comparisons between pollen data and PCA axis 1 

scores show considerable similarity in the timing and length of inferred land-use 

practices and detrital influx variations suggesting a possible link between clastic 

indicators and human presence. However, this interpretation remains sceptical at 

present given a similar correspondence between the pollen record and Ca/Sr inferred 

water availability at times. 

Variability in the Nar records appears replicated between proxies and this substantiates 

environmental and climatic reconstructions made and gives credit to the palaeo-

limnological story. It highlights the importance of relying on multiple proxies from the 

same core to build up a more accurate picture of change. Especially where proxy 

relationships are non-stationary and reliance on only one parameter may portray an 

inaccurate picture of change. This is seen in the Nar record for instance where TIC and 

oxygen isotopes may not be responding in parallel to lake alterations. Ultimately, the 
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different proxy records relate to a range of factors but the fact that both abiotic and biotic 

indicators are often synchronous suggests records are complimentary in their ability to 

reconstruct palaeolimnological changes.  

To make reconstructions from the Nar Lake geochemical and sedimentary records more 

credible, it is also useful to identify differences and parallels to other multi-proxy studies 

which document change at similar spatial and temporal scales. This will be attempted in 

the following section. 

5.6. Comparisons with Eastern Mediterranean palaeo-climatic archives 

5.6.1. Comparisons with Eastern Mediterranean archives, an overview 

Itrax derived XRF geochemical data (chapter 4), sediment variability (chapter 4) and 

comparisons with other Nar Lake data (this chapter) suggest that the NAR10 record is 

influenced, at least in part, by shifts in palaeoclimate, which in turn result in shifting 

hydrological conditions. The Ca/Sr and the Mg profiles record principally shifts between 

low and high lake level, saline and non-saline conditions driven largely by changes in 

precipitation and evaporation. The first PCA axis and associated detrital elements may 

also relate to changes in catchment moisture balance when not aligned with human 

driven catchment disturbance. These selected proxies suggest that there have been 

wide variations in the amount of moisture available within the Nar Lake system over the 

last ~14,000 years with periods of increased aridity occurring mainly from ~6300 vys ago. 

The period preceding ~6300 vys. B.P. is associated with a much wetter climate state in 

general but is punctuated by drier episodes between ca. 12900-11700 cal. yrs. B.P. and 

c. 9190-8046 vys. B.P.  

Comparison of the Nar Gölϋ palaeo-records with other regionally relevant datasets may 

show if the shifts witnessed from the NAR10 material occur at the same time, and to the 

same degree, as the climatic changes suggest by other proxy records. Identifying where 
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parallels may exist and where records diverge could highlight the unique aspects of the 

Nar geochemical record and outline changes that are localised to the Nar setting, i.e. 

changes relating to non-climatic factors. 

Tϋrkeş and others (Türkeş and Erlat, 2003; Türkeş et al., 2009) show that there is a 

strong regional signal to precipitation and temperature patterns across Turkey and define 

changes in present day climate by statistically selected regional groupings. If it is 

assumed that these regional relationships existed in the past then palaeo-records from 

the same regional group should respond to the same variation in past climate behaviour. 

With this in mind, Nar Lake proxies have firstly been compared to proxies from Eski 

Acιgöl and Tecer Lake which are situated within the same Central Anatolian climatic 

region as Nar Lake (the Continental Central Anatolia zone (CCAN)) (figure 5.16), and 

may therefore show very similar climate histories to those discussed in this thesis. The 

Nar Lake data have also been compared to other key Eastern Mediterranean palaeo-

archives (figure 5.16) and where possible to highly-resolved datasets as these are 

precisely dated and relate more closely to the sampling resolution used in this study. The 

Eastern Mediterranean offers a range of rich and high-quality archives, across different 

spatial and temporal scales, making it possible to shed light on the wider climatic aspects 

of the Nar Lake geochemical record and can be used to support inferences made 

regarding past climate shifts.  
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Figure  5.16: Geographical distribution of sites discussed in text and in relation to the Continental 

Central Anatolia climate zone (CCAN). References for each site can be found in-text. 1. Nar Gölϋ 

(Lake), 2. Eski Acιgöl, 3. Tecer Gölϋ (Lake), 4. Gölhisar, 5. Van, 6. Soreq Cave, 7. Sofular Cave.   

5.6.2. Nar Gölϋ and regional climate patterns 

5.6.2.1. Comparison to the Eski Acιgöl proxy records 

It is advantageous that Nar volcanic crater-lake is situated in close proximity to another 

former crater-lake which lies within an old volcanic caldera, named Eski Acιgöl 

(1270masl: 38°33’01’’N, 34°32’41’’E) (Roberts et al., 2001). Eski Acιgöl crater-lake is 

also partially annually laminated prior to c.6500 cal. yrs. B.P where the lithology switches 

to mainly non-laminated silts. The similarities with Nar Gölϋ in terms of the ability to date 

by annual layers and in terms of location make Eski Acιgöl a good site to contrast to the 

Nar Lake record as both should record similar climate histories. 



Interpretation and synthesis   Chapter 5           

 

187 
 

The record from Eski Acιgöl (Jones et al., 2007; Roberts et al., 2001; Woldring and 

Bottema, 2001) (figures 5.16 & 5.17) shows a dominance of planktonic diatoms and the 

presence of laminated silts for part of the core sequence dating to >16000 to c.12900 cal. 

yrs. B.P. suggesting that deep water conditions prevailed in the crater-lake at this time, 

as is observed in the Nar record between ca.13600 to 12900vys. B.P. (although dating 

remains uncertain here). Both records reveal stepwise changes likely driven by changes 

in precipitation and temperature for the Glacial to Interglacial transition. It is likely that 

both lakes experienced similar climatic conditions during the Late Pleistocene due to 

their proximity to each other and that variation in sedimentary characteristics between 

archives is the result of lake individualities alone. 

The end of the Pleistocene is marked by a dramatic shift to drier and cooler conditions, 

with this change being synchronous at both Nar and Eski Lakes (ca.12900-11700 cal. 

yrs. B.P.) (figure 5.17) Lows in Ca/Sr and organics at Nar, and positive oxygen isotope 

values and low tree pollen at Eski reveal a clear shift to dry and evaporative conditions, 

and therefore lower lake stands. This event, recorded at both sites, likely relates to the 

Younger Dryas cooling event which disturbed Northern Hemisphere climate between 

approximately 12900-11700 yrs. B.P. (Alley, 2000; Bakke et al., 2009). The transition 

into the Holocene sees another dramatic shift in climate at both Nar and Eski (figure 

5.17), with proxies responding to increases in effective moisture balance. The early 

Holocene at Eski Acιgöl shows a slow increase in arboreal pollen as a response to a 

more favourable water balance and relatively negative isotopic values. At Nar, this 

change is discernible from high Ca/Sr values and low Fe/Mn values, both indicative of 

deep fresh waters, and is complimented by high Zr/Rb values, indicative of finer grained 

sediments and deposition during more humid conditions.
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Figure  5.17: Comparative proxy data from crater-lakes Nar Gölü and Eski Acιgöl. Comparing PCA axis 1 (detrital influx indicator), Ca/Sr (moisture 

indicator), Fe/Mn (redox indicator), Zr/Rb (grain-size indicator) and Inc/Coh (organic content indicator) data from Nar Lake to δ
18

O (moisture indicator), 

diatom plankton abundance (lake level indicator) and arboreal pollen (mainly moisture indicator) data from Eski Acιgöl to understand past hydro-climatic 

regimes. 
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The record at Nar indicates a major change in lake status around 6500-6000 vys. B.P., 

which is highlighted by a decrease in Ca/Sr, and is suggestive of a shift to drier climatic 

conditions and a retreat of lake waters (figure 5.17). Comparatively, the Eski Acιgöl 

record also shows a shift towards drier climatic conditions between ca.7500-6250 yrs. 

B.P., which is evidenced most clearly by a decrease in planktonic diatom species, a fall 

in tree pollen (partly climate driven) (figure 5.17), increase in salinity and the cessation of 

laminations. The oxygen isotope record at Eski Acιgöl for part of this period (ca.7150-

6500 cal. yrs. B.P.) suggests wet conditions and matches more closely to the high Ca/Sr 

values, and therefore higher moisture availability recorded at Nar Lake from ca. 8046-

6500 vys. B.P. (figure 5.17). Whilst contradictory in nature, the proxy records at Eski as a 

whole have been interpreted to represent a period of drier hydro-climate and lake 

shallowing, as have the records at Nar Lake after 6500 vys. B.P. Both records show that 

by 6500 cal. yrs. B.P., regional moisture levels begin to reduce with lake waters receding 

in response. 

Extreme arid conditions were established at Eski Lake by 4500 cal. yrs. B.P., with the 

driest period documented between 3250-2250 cal. yrs. B.P. as highlighted by the 

complete absence of diatom remains. This story is not too dissimilar to the Nar Lake 

record which shows the driest conditions during sedimentary unit 2, estimated to date to 

ca. 4500/3500-2589 vys. B.P. The two crater-lake records are therefore in agreement 

that the hydro-climate of central Anatolia altered significantly during the mid-Holocene 

from a relatively substantial water surplus to increased aridity. Drier climatic conditions 

were manifested in significantly altered δ18O values, increased salinity and the absence 

of varve formation at both sites, highlighting the huge impact the drier situation had on 

lake status and regional water balance. 

The proxy data from Nar Lake and Eski Acιgöl, in combination, provide reasonable 

evidence to suggest that the early Holocene experienced a very different climate regime 

to the later Holocene, and in comparison to present day. Climate became progressively 
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drier as precipitation levels fell and evaporation increased. Drought frequencies would 

have risen and water resources would have shrunk in response, providing greatly 

diminished moisture levels after 6500 yrs. B.P.  

5.6.2.2. Comparison to the Tecer Lake proxy records 

The mineralogy and grain size distribution of sediments from Tecer Lake provide another 

set of proxy records to compare to the Nar Lake data. Tecer Lake (figure 5.16) sits to the 

north-east of Nar Gölü (1393msal: 39°25’52.80’’N, 37°05’00.79’’E) (Kuzucuoğlu et al., 

2011) situated within the Sivas basin at the foot of Tecer Dağ. This lake site makes a 

suitable comparison to the Nar geochemical record because laboratory analyses have 

focused on very similar lines of evidence to those investigated within this study including 

changes in total carbon and carbonate production. The Tecer Lake chronology is based 

on 13 AMS dates and is not varved like Nar and Eski Lakes and the sediment record 

only spans the last 6000 years of the Holocene (Kuzucuoğlu et al., 2011). 

In Tecer, climate conditions between 5850 and 5250 cal. yrs. B.P. are inferred as humid 

and supposedly relate to enhanced winter-rainfall levels. It may be possible that the mid-

Holocene drying trend at Nar Lake is punctuated sometime around 5800-5300 vys. B.P. 

by a wetting phase as identified by slightly heightened Ca/Sr but unfortunately the dating 

inaccuracies for this part of the Nar core sequence make it impossible to be certain as to 

the timing of this shift. 

By 5000 cal. yrs. B.P., the Tecer Lake record shows increasingly depleted humidity and 

increasing dryness. A rise in gypsum and a high sand input are suggested to represent a 

period of lake level drop and soil instability. Increasing aridity and low lake levels are also 

inferred at Nar for this time period, with arid conditions worsening by ca. 4000 vys. B.P. 

At Tecer Lake, worsening aridity may have culminated in what is assumed to be a long 

lasting drought event starting around 4300 cal. yrs. B.P. shown by a hiatus in 

sedimentation and a low sedimentation rate. From 3850-2800 cal. yrs. B.P., lake levels 
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are still inferred as shallow at Tecer Lake but climatic conditions alternate between wet 

and dry whilst at Nar this period remains very arid and there are no indications of 

significant wet phases between ca.4500-2600 vys. B.P. The intensity of drought at Nar 

Lake could relate to its sensitivity to evaporative conditions and position in relation to 

prevailing air masses. 

During the last 2000 years, the Tecer Lake record highlights an acceleration of 

alternations between wet and dry. These variations compared to the Nar 2001 and 2002 

isotope data (Kuzucuoğlu et al., 2011) are only similar at some points in time, particularly 

during the Roman climatic optimum (ca. 2020-1450 cal. yrs. B.P.) and the Medieval 

Climate Anomaly (ca. 1130-820 cal. yrs. B.P.). As the article by Kuzucuoglu et al. (2011) 

goes into a lot of detail about how the Tecer and Nar records correspond for the late 

Holocene, little discussion is needed here but a point to raise is that higher variability 

between wet and dry phases are evidenced at both sites for the last 2000 years. These 

oscillations in climate characterise the later Holocene phase and contrast significantly 

with the rest of the Holocene. 

5.6.3. Nar Lake and Eastern Mediterranean comparisons 

The geochemical record from Nar Gölϋ may be influenced by both climatic and non-

climatic factors at the local and regional scale. It is important to investigate any problems 

that may persist in the climate history documented from the Nar Gölϋ geochemical 

record by investigating the NAR10 sequence alongside other well-documented climate 

reconstructions from the Eastern Mediterranean region. Comparisons have been made 

with palaeoclimate records from Eastern Mediterranean sites to identify how similar the 

Nar sequence is to other region-wide proxy reconstructions. For the purpose of this 

comparative exercise, oxygen isotope records from three sites are used. Two are lake 

sites situated within Turkey (Gölhisar and Van) whilst the other is a cave site and 

speleothem record from Israel (Soreq) (figure 5.16). A carbon isotope record from 
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another cave site in Turkey (Sofular) (figure 5.16) has also used for comparison 

purposes. These four records were selected for because of their close localities to Nar 

Lake, their high-resolution, their dating accuracy and their reliability at recording 

historical shifts in regional effective moisture availability. 

Stable isotope analysis of lacustrine authigenic calcites from Gölhisar Gölü documents 

past climatic change through the Holocene for southwest Turkey. The δ18O record from 

Lake Gölhisar (930 m.a.s.l: 37°8’N, 29°36’E) (Eastwood et al., 2007a; Eastwood et al., 

1998a; Eastwood et al., 1999; Jones et al., 2002) (figure 5.18) shows a significantly wet 

early Holocene from ca.10150 to 8900 cal. yrs. B.P. For most of the mid-Holocene at 

Gölhisar (8900-6750 and 4700-3700 cal. yrs. B.P.), isotope-inferred water balance 

suggests generally decreased precipitation and reduced moisture availability but with 

large-scale switches in precipitation-evaporation balance. For the upper part of the core 

sequence (post 3700 cal. yrs. B.P. to present day) the isotope proxy record suggests a 

period of relative hydro-climate stability and principally dry climatic conditions. Wetter 

conditions persisted during Classical and Byzantine times (c. 2250-1600 cal. yrs. B.P.) 

though, punctuating a period of sustained aridity. 

The oxygen isotope record from Gölhisar records a similar climate history at times to that 

witnessed at Nar Lake. The most noticeable similarities are witnessed during the early 

Holocene and during the late Holocene. The wet early Holocene documented between 

ca.11225 and 9400 cal. yrs. B.P. at Gölhisar is also evidenced at Nar Lake by 

substantially increased Ca/Sr values from 1890-1625cm (estimated to date between 

ca.11214 to 9292 cal. yrs. B.P.). The partial difference in timing may be due to 

differences between the estimated Nar varve age model and the Gölhisar radiocarbon 

dated record, which both contain dating errors. The oldest radiocarbon 14 date for 

Gölhisar is also only 9522 cal. yrs. B.P. which means that dates have been extrapolated 

beyond this adding further to the dating uncertainties. The close similarity in end date 

(~9300 cal. yrs. B.P.) for a sustained wet period though gives confidence that the timing 
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of events is a least replicable along parts of the core sequence and suggests a clear 

climate shift from wet to drier around 9300 years ago. Another period of higher moisture 

availability is seen in the Nar record from 375-290cm (estimated to date between ca. 

1552-1132 cal. yrs. B.P.), which is not too dissimilar in nature from a wet phase identified 

at Gölhisar from 2250-1600 cal. yrs. B.P. Again the similarity in the isotope curves 

between the two sites suggest that this event is the same but chronological 

discrepancies suggests that the shifts to negative isotope values may also relate to 

different climate histories.  

The biggest difference between the Nar and Gölhisar records is that the Nar data 

suggest a major transition to arid conditions around 6500 years ago, whereas the δ18O 

record from Gölhisar documents a transition to extremely humid conditions and high 

precipitation levels at this time. For this mid-Holocene phase, the climate histories at the 

two sites are remarkably different and may relate to the influences from different 

teleconnection systems. Spatial variation in climate systems would have generated 

differences in the timing and magnitude of precipitation and temperature changes, and 

thus climate oscillations may not have coincided with each other at different sites. It has 

been suggested by Kuzucuoğlu et al. (2011) that humid conditions in the Eastern 

Mediterranean region, for this time, are driven primarily by increased winter precipitation 

levels whilst summers became drier. The increased seasonality is not evidenced at Nar 

as very thin and indistinct winter varve deposits suggest a possible reduction in winter 

precipitation levels. 

Lake Van in Eastern Anatolia (figure 5.16) (Landmann et al., 1996a; Lemcke and Sturm, 

1996; Litt et al., 2009; Reimer et al., 2009; Van Zeist and Woldring, 1978; Wick et al., 

2003) is one of the deepest lakes in the world (460m) and is much larger than Nar Lake 

(Roberts et al., 2001). It is however situated at a similar altitude (1648 m.a.s.l), responds 

to similar climate patterns during modern times and is continuously laminated throughout 

the Late Pleistocene and Holocene (Wick et al., 2003) making it suitable for comparison. 
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A non-floating varve record for Lake Van covering the last 14,000 years (Landmann et al., 

1996b; Lemcke, 1996), and recently revised by Litt et al. (2009), provides a unique 

opportunity to relate the Nar record to proxy studies with a very good annual time scale.  

From ca.12750-11300 cal. yrs. B.P., the oxygen isotope record from Lake Van (figure 

5.18) shows an extremely pronounced dry phase which likely relates to the Younger 

Dryas cooling event. The most positive isotope values are centred around 11650 cal. yrs. 

B.P., compared to estimated ages of ca.11500 cal. yrs. B.P. for other regional records 

(Roberts et al., 2001). This arid phase at Lake Van is not too dissimilar in terms of timing 

from the Nar record which documents extreme drying from ca.12900-11700 cal. yrs. B.P., 

with the end of the pronounced arid period placed at 11700 varve years B.P.  

Similarities between the Van and Nar datasets are also witnessed during the period 

following the Younger Dryas cooling event. A shift towards more negative isotopic values 

around 11000 cal. yrs. B.P. at Van Lake suggests increasing availability of water and an 

associated rise in precipitation levels, which is sustained until sometime after 10000 cal. 

yrs. B.P. Sustained and high levels of water availability are also documented at Nar Lake 

for this time period identified from Ca/Sr increases and a shift to negative isotopic values 

(figure 5.18). In this case, the timing of increased moisture levels at both sites is 

reasonably similar with wet conditions dated from ca.11214 to 9292 cal. yrs. B.P. at Nar. 

Whilst the dates may be marginally difference, the resemblance between the two records 

gives confidence that the climatic interpretation of the geochemical record at Nar is a 

least in part substantiated by proxies from other sites within Turkey.  
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Figure  5.18: Comparative proxy data from Nar Lake and oxygen isotope data from other Eastern Mediterranean climate records. For sources see text. 

δ
18

O profiles chart shifts between wet (more negative values) and dry (more positive values) climate states, and may signify changes in effective moisture 

levels. 
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For the mid and late-Holocene, the records from Nar and Van Lakes are not in as close 

agreement as in the Pleistocene/Holocene transition and early Holocene mainly due to 

the relative stability of the Van isotope record which fluctuates only subtly along the core 

sequence. This relates to the fact that Van’s size prevents it from establishing very low 

lake levels so that its isotopic values vary significantly less than a crater-lake like Nar 

where lake waters can become highly reduced. The gradual shift to more positive 

isotope values during the last 4500 years though imply that Lake Van also experienced 

increasing aridity in the later Holocene as Nar does. 

The speleothem carbon and oxygen isotope record from Soreq Cave (31°45.35’N, 

35°1.35’E) (figure 5.16) (Bar-Matthews and Ayalon, 2011; Bar-Matthews et al., 1997; 

Bar-Matthews et al., 1998, 2004; Bar-Matthews et al., 1999; Matthews et al., 2000; 

Orland et al., 2012; Orland et al., 2009) offers another high resolution climate record in 

the Eastern Mediterranean and offers an alternative climate history for the region. The 

period from ca. 15000-11000 cal. yrs. B.P. saw speleothem δ18O values drop 

progressively (figure 5.18), supposedly correlated to increases in precipitation. This 

period is punctuated by the Younger Dryas cooling event, with the driest episode 

documented between ca. 13000-11300 cal. yrs. B.P. (figure 5.18) (but initiated around 

13750 cal. yrs. B.P.). The speleothem record for ca. 11000-9500 cal. yrs. B.P. has the 

lowest δ18O on record and signifies a period of sustained wetting (figure 5.18). From ca. 

7000-1000 cal. yrs. B.P. conditions become closer to those of today in Israel with many 

low amplitude oscillations and less water availability. An excursion to wet conditions is 

evidence in the sub-annual resolution data available for ca. 2300-1800 cal. yrs. B.P. 

(figure 5.18). 

The Soreq record highlights three key periods of change which are also identifiable in the 

Nar Lake sequence. These are the Younger Dryas arid phase, the moist and humid early 

Holocene and the punctuated wet phase of the late Holocene (figure 5.18). There are 

also similarities between the two records with Nar Lake data showing an arid phase 



Interpretation and synthesis   Chapter 5 
 

197 
 

dating to ca.12900-11700 cal. yrs. B.P. and an early Holocene moist phase dating to 

ca.11214 to 9929 cal. yrs. B.P.  The moist phase during the late Holocene is not so well 

matched in terms of dating though which Nar Lake data details as persisting from 

ca.1552-1132 cal. yrs. B.P. This period has a later start date at Nar then it does at both 

Gölhisar and Soreq which may suggest that it took a long time for Nar Lake waters to 

respond to increasing moisture balance, or that climate changes were out of phase 

between central Anatolia, south-west Anatolia (Gölhisar) and the southern Levant 

(Soreq). Given that the differences in timing for a pronounced wet phase are reasonably 

large, Nar Lake’s locality within central Anatolia likely played a large role in its climate 

history for this time. 

In contrast to the above three records, the speleothem record from Sofular cave 

(41°25’N, 31°57’E; 440masl) (figure 5.16) (Fleitmann et al., 2009; Göktϋrk et al., 2011) 

forms a good comparison to the Nar records because its proximity to the Black Sea 

coast produces different climatic characteristics to those experienced in central Anatolia, 

noticeably a lack of dry summers. The question therefore is whether the climates of 

these two areas of Turkey have ever been coupled and therefore whether the influence 

of Black Sea climate has been weakened, and thus influence from the Atlantic has been 

stronger. 

The Younger Dryas interstadial is clearly reflected in the Sofular record (figure 5.18), 

here depicted by higher δ13C values. δ13C in stalagmites is often related to changes in 

vegetation and therefore levels of precipitation and changes in available moisture. Higher 

δ13C values and therefore drier conditions between ca. 13000-11300 cal. yrs. B.P. 

indicate a period of decreased moisture availability and is surprisingly consistent with the 

Nar record of change, especially considering it would be expected to see a lag between 

vegetation response and changes in precipitation. A humid, wet summer period was 

established soon after the Younger Dryas as δ13C values return to negative. It has been 

suggested by Göktϋrk et al. (2011) that δ13C values for this period do not support the 
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idea of a humid period after ca.11000 years ago but visually there does appear to be 

subtle changes that indicate a prolonged wet period. The mid-Holocene is represented 

by fluctuating conditions, with values generally indicating similar precipitation levels to 

those seen during the early Holocene. The late Holocene is punctuated by a short wet 

phase from ca. 1600-1200 cal. yrs. B.P. 

Once again there are clear similarities to the Nar record, principally a strong arid 

Younger Dryas period and a moist and humid early Holocene. The short wet phase 

identified during the late Holocene is also noticeable in both records and dates to around 

the same period (ca. 1152-1132 cal. yrs. B.P. at Nar). It suggests that to some degree, 

these two sites were likely responding to similar climatic conditions but that during the 

mid-Holocene different processes were affecting the climate history recorded at Nar 

Lake compared to Sofular Cave. This is most evident in the Sofular Cave record at ca. 

5750 cal. yrs. B.P. where δ13C values suggest a shift towards wetter conditions until ca. 

3250 cal. yrs. B.P. which is in direct opposition to the record from Nar which shows a 

drying trend at this time. This may suggest that during the mid-Holocene, a different 

climate state was being experienced within central Anatolia compared to some other 

parts of Turkey. 

5.6.4. Summary of Eastern Mediterranean proxy comparisons 

Comparisons made between the Nar geochemical data and other Eastern Mediterranean 

proxy records suggests that on the whole, the Nar Lake climate history can be replicated 

at other sites in the same region. This gives confidence in the interpretations given to the 

geochemical data and highlights interesting similarities across the region. Time periods 

which are most similar across the area are the Younger Dryas cooling event, the moist 

early Holocene and the period of abrupt wetting which punctuates a largely drier late 

Holocene. It is the mid-Holocene period which is recorded differently at each individual 

site, with the Sofular record for instance showing a very wet phase just as Nar is 
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becoming extremely dry. Differences in the climate patterns witnessed may relate to 

local factors including lake morphology and different water chemistries but they may also 

relate to the influence from different teleconnection systems across the region. It is likely 

that Nar’s unique location within central Anatolia, which is relatively protected by 

mountainous zones, renders it to respond differently to the influencing weather systems 

compared to other regions in Turkey. There are also spatial variations in the dominant 

forcing weather systems, which encourage regionally different humidity levels. Any 

contrasting climate histories are therefore likely explained by geographic specificities. 

The fact that there is also a large chronological uncertainty on mid-Holocene dates (from 

6398-2589 cal. yrs. B.P.) at Nar Lake means that events and switches in climate cannot 

be well dated, thus making comparisons to other datasets imprecise. Comparisons made 

for the mid-Holocene period must by approached with caution as off-sets in the timing of 

climate changes may relate to dating inaccuracies only. 

5.7. Chapter summary 

The sedimentary and XRF derived geochemical records from Nar Gölϋ have provided 

various insights into changing lake status throughout the Late Pleistocene and Holocene, 

linked into climatic and/or environmental changes. Specific elemental components and 

ratios e.g. Ca/Sr have been useful in determining changes in moisture availability and 

lake condition, and changes in the surrounding Nar Lake catchment through, for example, 

Ti changes. The biggest driver of elemental change is clearly allochthonous material 

delivery to the lake; this is evidence by a strong PCA axis 1 which consists only of 

detrital indicators. Changes in carbonate mineralogy and precipitation are also important 

factors of elemental variation which appear to be driven by changes in water availability 

and biogenic activity. The Nar Gölϋ geochemical record therefore potentially provides 

detailed information about both climatic and environmental change. 
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Key interpretations from the Nar palaeo-record include a very pronounced and extremely 

arid Younger Dryas event between ca. 12900-11790 cal. yrs. B.P which is followed by a 

very moist and substantially wetter early Holocene phase which ends around 9292 cal. 

yrs. B.P. Following this wet period during sub-units 5b-d there is another pronounced dry 

phase, this time coinciding with increased erosional input during sub-unit 5a. The earlier 

mid-Holocene dating to around 8046-6393 cal. yrs. B.P. reveals heightened Ca/Sr values 

and very low Fe/Mn values which has been interpreted here as representing a period of 

even yearly rainfall and less seasonal variation in moisture availability.  Low levels of Ti 

and Fe also suggests very little influence of catchment derived material at this time and 

therefore fairly pristine and clear lake waters can be envisaged. A change between 

6500-6000 cal. yrs. B.P. to much lower Ca/Sr demonstrates a return to arid conditions. 

Optimum aridity is reached by unit 2 as high peaks in Mg and Sr suggest substitution of 

precipitated carbonate during drier lake conditions. From 2589 cal. yrs. B.P. until present 

day elemental profiles fluctuate greatly in relation to shifts between wet and dry. Of 

significance though is the control of geochemical variation by external forces as this top 

phase is dominated by detrital indicators like Ti.  

In comparison to other Nar Lake proxy data, the changes evidenced in the geochemical 

and total carbon records match well. Suggestions that geochemical variability relates to 

switches between wet and dry conditions are substantiated by the Nar isotopic record. 

Changes in catchment material influxes are also confirmed by pollen and diatom data. 

The Nar Gölϋ palaeo-record presented here is also comparable to other regional records 

revealing that a wetter first half of the Holocene was replaced by a drier second half. 

Other periods of climatic variability such as a wet phase evident in the late Holocene are 

also identifiable in the Nar record and in regional comparisons. The similarities between 

datasets give confidence in the interpretations given to the geochemical data and 

highlights interesting similarities across the region and within the same lake core 

sequence. 
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6. The settlement history of Cappadocia                                                  

Results and discussion 

6.1. Chapter introduction  

This chapter describes systematic archaeological survey work conducted in Cappadocia, 

central Anatolia and collated by the author. The collation of survey data focuses on three 

large scale, multi-period surveys conducted in the selected region, including the Kaman-

Kalehöyϋk Regional Survey in Kirşehir province (Mikami and Omura, 1991a; Omura, 

1989-2008), the Central Anatolian Survey (CAS) in the southern Cappadocia Plains 

(Todd, 1998) and the Türkiye Arkeolojik Yerleşmeleri Project (TAY project) designed to 

build a chronological inventory of cultural heritage information for Turkey. Of the modern 

day provinces of Turkey, survey data were collected from the Kirşehir, Kayseri, Nevşehir, 

Aksaray, Niğde and Ankara (Şereflikoçhisar) provinces to encompass as much of the 

wider Cappadocia area as possible. Also included is a summary of the key excavated 

sites for the Cappadocia region to support survey data with information that potentially 

has stricter chronological certainty and a closer examination of settlement changes. 

The primary objective of work presented here is to establish a picture of changing human 

occupation for the chosen Cappadocian provinces, to address objectives 4 and 5 of the 

thesis (chapter 1). These objectives target the accurate documentation of long-term 

settlement histories and analysis of artefactual research in the context of the Holocene. 

The use of survey data aimed to accomplish two tasks here: to capture spatial aspects of 

land use and the function of individual sites, and to look at habitation patterns over the 

longer term which is not possible from excavation data alone. Its results serve as a way 

of identifying change events associated with certain occupational time periods within 

which patterns of continuity and abandonment can be identified. Ultimately, it outlines the 

study of population dynamics and interactions between past people and their landscape 
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with a specific time and regional frame. A focus at the landscape scale allows for 

information acquisition applicable to most human-climate-environment interactions and is 

a common unit of analysis to both the natural and human sciences (Crumley, 2000). 

Survey and excavation data presented are pertinent to subsequent chapters for 

comparisons with laboratory analyses and other archaeological archives. 

6.2. Site survey data: limitations 

Whilst archaeological excavation data can provide information about past behaviours in 

neat time windows, archaeological surveys are equally valuable because of their ability 

to document change over longer time spans and at greater spatial scales. Although 

providing unique insights into changes in human history over the longue-durée, it must 

be mentioned that survey data can provide only a basic understanding of changing 

settlement patterns and must thus be interpreted with some caution.  

Limitations of site-based surveys are widely documented (Dunnell, 1992; Dunnell and 

Dancey, 1983; Foley, 1981; Thomas, 1975). The temporal resolution of survey results is 

in the order of centuries and is often a palimpsest of reconstructed events, leading to 

issues of contemporaneity. Combining archaeological survey and excavation data can 

improve our understanding of the way people used to live from these snapshots. 

Inferences from surveys are dependent on the type and accuracy of sample collection 

(Wandsnider and Camilli, 1992), and can be influenced by taphonomic histories and 

investigator bias. Nevertheless, spatial patterning of settlement data can still be a key 

source of information regarding past human behaviour and demography. 

6.3. Definition of terms 

Due to the recurring use of time-dependent nomenclature and special terms within this 

chapter, it is necessary to clarify the meaning of certain terminologies to avoid possible 

ambiguity and misinterpretation. The term ‘site’ is used here to mean the physical 
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location of human activity. A site can be any size and range from a few individual objects 

to a structure with associated objects and finds. Site finds do not necessarily have to be 

primary deposits. The term ‘settlement’ on the other hand is used to define and area 

where people lived. This could be permanent or temporary but must be a congregated 

space for population habitation. The use of the term ‘settlement’, for this purpose, does 

not include individual constructed features such as a monastery or areas of aggregated 

archaeological artefacts. 

The periodization framework which will be used within this thesis is set out in table 6.1. 

The named periods help categorise data into defined blocks of time based upon common 

characteristics and promotes consistency in discussions. 

Table  6.1: Table detailing the dates assigned to each time period addressed in this chapter. Dates 

are given in years BC/AD – before and after the beginning of Christian era respectively, as this is 

the standard system employed for discussing archaeological material in Turkey. 

Time period Assigned date Further information 

Pre-Neolithic 

(Pre-Neo) 
Pre-8500 BC 

Has no specific start date. It is likely that investigators 

e.g. Todd (1998) took this to principally mean 

Epipalaeolithic. 

Neolithic (Neo) 8500-6000 BC 

Encompasses two sub-phases: the Aceramic Neolithic 

(8500-7000 BC) and the Ceramic Neolithic (7000-6000 

BC). 

Chalcolithic 

(Chalco) 
6000-3000 BC 

Encompasses three sub-phases: the Early (6000-5500 

BC), Middle (5500-4000 BC) and Late (4000-3000 BC) 

Chalcolithic. 

Early Bronze 

Age (EBA) 
3000-2000 BC 

Encompasses three sub-phases: the EBA I (3000-2600 

BC), EBA II (2600-2300 BC) and EBA III (2300-2000 

BC). Also overlaps with the Assyrian Trade Colonies 

period (3000-1750 BC). 
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 Middle Bronze 

Age (MBA) 
2000-1450 BC 

Includes Early Hittite occupations (2000-1750 BC) and 

the Old Hittite Kingdom (1750-1450). 

Late Bronze Age 

(LBA) 
1450-1200 BC Hittite Empire (1450-1200 BC). 

Iron Age (IA) 1200-331 BC 

Encompasses three sub-phases: the Early (1200-900 

BC), Middle (900-585 BC) and Late (585-332/331 BC) 

Iron Age. Also includes a Dark Age (1200-700 BC), 

Phrygian (900-585 BC) and Persian (585-332/331 BC) 

occupations. 

Hellenistic and 

Roman 

(Hell & Rom) 

331 BC – 395 AD 

These two phases have been grouped together as it is 

hard to identify chronological changes in material for sites 

termed more generically as ‘Classical’. 

‘Late’ 585 BC – 395 AD 

A period classification used during the Central Anatolian 

Survey (Todd, 1998) to assign sites to a phase 

encompassing the Late Iron Age, Hellenistic and Roman 

periods. 

Roman-

Byzantine 

(Rom-Byzan) 

395-1071 AD 

Consists mainly of Byzantine sites - yet due to dating 

issues some sites cannot be allotted solely to Roman or 

Byzantine phases and have therefore been classified 

together here. 

Medieval-Modern 

(Med-Mod) 

1071 AD - 

present 

The period includes the dominant political changes of the 

time, including: Seljuk (1071-1299 AD) and Ottoman 

(1299-1923 AD), although the Ottoman Empire did not 

take hold here until the 15
th
 century. 
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6.4. Settlement trends and patterns in Cappadocia 

6.4.1. An overview of survey data collection  

Site survey results collated from three major sources (I. Todd (1998), S. Omura (Mikami 

and Omura, 1991a) and TAY (http://tayproject.org)), recorded a total of 857 

archaeological locations of which 578 can be classified as ‘settlement’ type sites. A 

synopsis of the changes in archaeological site numbers, according to individual time 

periods identified in the three surveys, can be seen in figure 6.1.  There are however 

clear investigator biases related to classifying sites by time period; most authors 

preferring to document sites by typical and more general archaeological time period 

nomenclature like ‘Early Bronze Age’, whilst some, the Kaman-Kalehöyϋk survey in 

particular, prefer to document sites by very specific and localised chronologies. In this 

regard, the archaeological survey results have also been plotted in consolidated time 

periods (figure 6.2) to avoid totalling raw site counts by minor sub-divisions that are not 

comparable to other site surveys (which assigned survey material to more commonly 

used periodizations and archaeological terminology (Matthews and Glatz, 2009b)). 

Figure 6.2 also includes total raw site count data weighted by the duration of the 

associated time period to account for the differing temporal spans of the cultural and 

historical phases used for classification. A weighted count of archaeological sites thus 

provides an estimate of the numbers of sites occupied during one century at a particular 

point in time (Matthews and Glatz, 2009b).  

Unfortunately, whilst some site size information could be retrieved, the discrepancies 

between values assigned by different investigators and the complete lack of data in other 

instances means that site data cannot be studied in terms of aggregated site area or 

magnitude. Due to the inherent problems with site size data, no attempt has been made 

to study the trends and patterns in size attributes through time. Where site numbers 

appear to decrease in the raw data, it has therefore been necessary to consider the 
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potential impact of consolidation or agglomeration of smaller sites into larger sites on the 

total number of sites recorded, even if such data may not be obtainable. 

6.4.2. Settlement trends and patterns 

6.4.2.1. Raw site counts 

Changes in site numbers for all periods identified in the Cappadocian surveys can be 

seen in figure 6.1. The overall pattern of change through time is not clear due to the 

large number of sub-divisions of phases, resulting in a highly fluctuating dataset. At the 

broad scale, Pre-Neolithic and Neolithic site numbers are relatively low (11 & 70 sites) 

but increased occupation of Cappadocia is observed from the Chalcolithic onwards. In 

comparison to other times, site numbers during the Chalcolithic (163 sites) are also 

moderately low but notably increase towards the end of the period and into the Early 

Bronze Age. The EBA experienced a significant peak in site numbers, totalling 340, with 

the EBA II period indicated as the most distinctive period of growth. Following the EBA, 

there is a 41% loss in occupational sites by the MBA (201 sites) and a further 52% loss 

in sites by the LBA (97 sites), revealing dramatically reduced site numbers by the end of 

the LBA. Most noticeable is the 220% increase in the number of sites thereafter. Site 

numbers throughout the Iron Age (310 sites) appear to rise, with the later Iron Age 

showing relatively high numbers in comparison to the early Iron Age as a result of 

Phrygian and Persian occupations. This change in the second half of the Iron Age is also 

documented by the sizable value recorded for ‘Late’ (195 sites) which encompasses final 

phase Iron Age sites. The higher values for ‘Late’, as well as for Hellenistic & Roman 

(Classical) times (187 sites) suggest that site numbers remained elevated for the periods 

succeeding the Iron Age. By Byzantine times, numbers begin to decrease again (97 

sites), a pattern which continues throughout the Medieval, Seljuk and Ottoman periods 

(41, 2 & 16 sites respectively).  
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Figure  6.1: Raw archaeological site counts by phase and sub-division (all periods documented). 

Unfortunately, more than 20% of survey sites have no date recorded (figure 6.1) and 

thus cannot be plotted by time period; most of these are tumuli sites but some are large 

settlement sites where chronologies are currently inaccurate and cannot be used with 

any confidence. The majority of settlement sites have been assigned to a specific time 

period and can be included within the histogram. See figure 6.5 for further details of sites 

with no known age. 

6.4.2.2. Grouping of phases and adjusted raw counts 

By documenting changes in site number using broader time periods (figure 6.2), the 

overall pattern of change can be seen with more ease, and the high variability of values 

witnessed using smaller time classifications becomes less of an issue. Through plotting 

site amounts in this way, the expansion in site numbers during the EBA (522 sites), the 

Iron Age (431 sites), and Hellenistic and Roman (382 sites) times becomes especially 
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noticeable. The earliest major period of settlement increase and denser occupation of 

the Cappadocia region, as suggested by the raw count data, therefore seems to occur 

during the EBA. However, looking at the change in site numbers by weighted values 

(figure 6.2) we see a different pattern to that documented by the broad period groupings. 

It is in fact the MBA period which seems to have the highest density of occupation, with 

62 sites recorded per century, closely followed by the EBA and Hellenistic & Roman 

periods (52 sites per century). Following weighting data transformation, the number of 

Iron Age sites becomes deflated and no longer represents the second largest phase of 

settlement expansion. The Iron Age records 49 sites per century, indicating a strong 

presence of sites at this time but on a less sizable scale than is suggested by the raw 

site count data.  

In relation to neighbouring periods, the LBA shows a less than thriving settlement tally 

(112 sites) and generally reduced levels of occupation (figure 6.2). The Byzantine and 

post-Byzantine world evidence similarly diminished site numbers (105 and 65 sites 

respectively) (figure 6.2). The biggest declines in raw site number are therefore observed 

during the LBA and following the Arab invasions of the Eastern Roman Empire (7-9th 

centuries). Weighted counts for these time periods (Figure  6.2) portray a different picture 

however, with the LBA phase showing evidence for relatively substantial occupation (45 

sites per century). The weighted count for the LBA brings occupation levels in line with 

those seen during the preceding MBA and proceeding IA periods. Site numbers in the 

Byzantine period are also partially inflated through the weighting method (16 sites per 

century) but comparatively remain reduced. The Medieval-Modern phase is represented 

by a reduction in weighted values (8 sites per century) from Byzantine times suggesting 

a substantial lack of site data for this time period. 
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Figure  6.2: Long-term trends in site number for Cappadocia (raw site counts per combined phase 

and counts weighted by the temporal length of each chronological phase). 

On the whole, the broad pattern of change identified using weighted counts (figure 6.2) 

shows increasing settlement occupation after the Chalcolithic period, which remains high 

until the end of the Roman period where site numbers begin to decline. This pattern of 

change is similarly reflected in the categorised data (figure 6.2). The biggest changes in 

settlement history and the most prolific occupation of the Cappadocian region are 

therefore indicated during the mid-late Holocene (~3000 BC – 647 AD). 

6.4.2.3. Periods of abandonment and continuity 

Plotting change in site numbers alone provides only a basic overview of the key 

fluctuations that occur between phases and it is virtually impossible to detect if changes 

are related to site abandonments, agglomerations, or other processes. By breaking down 

each periodic shift into levels of abandonment and continuity it becomes easier to 

identify the changes happening at each transition and how those changes are 
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manifested in settlement preferences. Figure 6.3 highlights the extent to which sites are 

abandoned, occupation was sustained and new sites were established during a specific 

phase in relation to its previous period, calculated as a percentage difference. 

The earliest form of substantial settlement in Cappadocia is witnessed during the 

Neolithic, as 117 sites have been recorded (figure 6.1). Following this early phase of 

occupation, settlement begins to increase significantly with many new sites forming. As 

indicated by figure 6.3, during the Chalcolithic, 65% of sites were documented as new 

establishments, 52% of which continued to be in existence during the EBA, a time which 

also saw another dramatic increase in the formation of new occupation localities (57% of 

sites were newly formed). The first biggest abandonment phase is observed in the MBA 

with a significant number of EBA sites not showing any evidence of MBA occupation (46% 

abandoned). Some new settlements are established but in far fewer number than had 

been seen previously. The MBA also witnesses some settlement continuity implying that 

the period cannot be defined solely by shifts in settlement organisation. The pattern of 

increased abandonment of sites continues throughout the LBA which sees a 60% 

reduction in site numbers from the period before. A clear change in settlement 

preferences occurs thereafter during the Iron Age as 69% of sites are new 

establishments, with very few LBA sites being abandoned. 

Settlement continuity is a common trait for Cappadocia from the Iron Age into the 

Hellenistic and Roman periods. However, just as many sites are abandoned as are 

established in post Iron Age times suggesting that during this Classical cultural phase, 

settlement strategies are somewhat different from preceding periods as no single change 

event dominates. Following Roman dominance in Cappadocia, there appears to be a 

dramatic decrease and abandonment of sites. The first sign of this discontinuity is seen 

during Byzantine times (72% abandonment) but is further evidenced in the Medieval and 

Ottoman periods (further 70% abandonment). The apparent lack of settlement formation 
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in Medieval and Ottoman times cannot be taken at face value due to the heavy focus of 

surveys on early occupation periods; this will be discussed in more detail shortly.  

 

Figure  6.3: Site continuity, establishment and abandonment for grouped phases. 

On the whole, it seems as though there are many sites which have their roots embedded 

in previous periods but there are some significant temporal changes that reveal time 

specific settlement preferences or necessities, ultimately resulting in the demise or 

development of specific locations. 

6.4.2.4. Settlement type and spatial patterning 

Another interesting way of looking at settlement data is to look at time specific changes 

in site type to better understand how occupations are organised and how people 

envisaged their use of space and landscape. Figure 6.4 and figure 6.5 identify changes 

in site type by period and highlight the shifts in spatial patterning of sites through time at 

both the regional scale and around the Nar Lake study site. There are many different 
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scales at which archaeological data can be compared to palaeoenvironmental data, 

including both regional and local scales, which is why spatial changes within Cappadocia 

and the Nar Lake area need to be identified here. 

Neolithic settlement sites (figure 6.4) appear to be predominately mound or tell 

formations (locally known in Turkish as ‘Höyϋks’), but other settlement types are 

recorded in smaller numbers. Atelier sites and/or obsidian and lithic scatters are also 

common which may indicate a preference for economically orientated locales during the 

Neolithic as these site types possibly suggest some form of quarrying activity or lithic 

production in the area. Neolithic sites on the whole are generally more dominant in 

southern Cappadocia, particularly in selected upland regions and on alluvial plains, and 

highlight the point that Neolithic occupations may have been selective in nature. Of 

importance are the proximity of Neolithic occupations (24 sites in total (table 6.2)) to the 

Nar Lake study site (figure 6.4) and the dominance of ateliers or ‘workshops’ within a 30 

kilometre radius of the lake catchment. It is likely that Nar and the surrounding area 

formed a significant habitation spot and/or seasonal residence for Neolithic people linked 

to obsidian quarrying, as is evidenced in the Nenezi Dağ area (Carter et al., 2006). 

The Chalcolithic period (figure 6.4) in contrast sees an overall reduction in atelier sites 

and artefact scatters, and the establishment of many new höyϋk type sites. Some 

preference for other settlement types remain but the appearance of more mound sites is 

a strong characteristic of this time. Also noticeable is the occurrence of more sites to the 

north and around Tϋz (Salt) Lake indicating the occupation of new spatial locations. 

Issues with investigator bias may have led to an under-representation of Neolithic sites in 

the north, and an under-representation of later sites in the south so this pattern of 

change may be an artefact of sampling strategy alone and not an indication of settlement 

patterning. The type of sites recorded in the vicinity of Nar Lake (figure 6.4) also changes 

during the Chalcolithic with much more emphasis on mound type sites and the 

establishment of ‘settlements’, although site numbers decrease (table 6.2). Workshop 
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sites are no longer evidenced but some artefact scatters remain; the lack of workshop 

sites being testament to changing settlement choices and landscape use at the time. 

 

Figure  6.4: Map of Cappadocia with site survey data by period and site type. A) Prehistoric and 

Neolithic, B) Chalcolithic, C) Early Bronze Age, D) Middle Bronze Age, E) Late Bronze Age. 

The significant rise in settlement numbers seen during the Early Bronze Age (figure 6.2) 

does not appear to affect the choice of site type (figure 6.4). Both the EBA and MBA 

show a preference for mound sites and settlement of lower lying plains as witnessed by 
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a decrease in upland settlement types. The few unknown site types recorded for the EBA 

do not significantly alter this view point. The lack of artefact scatters and single find spots 

for both periods suggests that settlement remains for this time were generally large and 

noticeable and therefore a better representation of settlement sites may have been 

obtained if features were clearer to the investigator. It also underlines the unique nature 

of workshops during the Neolithic as only two such sites were found during the entire 

Bronze Age. A similar pattern is witnessed for the LBA (figure 6.4) with mound sites 

dominating, albeit with a slightly reduced number of sites.  

Table  6.2: Table showing the number of sites located within a ~30km radius of Nar Lake by period. 

Period Number of sites 

Neolithic 24 

Chalcolithic 12 

EBA 22 

MBA 12 

LBA 3 

Iron Age 17 

Hellenistic-Roman 17 

Byzantine 5 

Medieval-Modern 3 

Unknown 2 

 

The majority of LBA sites are located in the Kirşehir province to the north but it is hard to 

infer whether this change is the result of shifting settlement practices or due to 

investigator bias. Around Nar Lake mound sites dominate during the EBA and MBA, with 

only the occasional upland site recorded (figure 6.4). As may be expected given the raw 

site count data (figure 6.1) there are more sites within 30 kilometres of the lake during 

the EBA than in the two proceeding periods (22 sites during the EBA (table 6.2)). This is 

in contrast to the LBA where only three sites are found in close proximity to the lake, 

further reiterating the point that many sites appear to be located in northern Cappadocia 

at this time. 
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During the Iron Age (figure 6.5) the first clear indication of a move away from mound type 

locations is witnessed and new architectural types appear, including fortress sites and 

burial mounds (tumuli). It is possible that the increased use of the area allows for these 

features to be more easily seen but considering high numbers of sites are documented 

for the EBA also and very few non-mound sites are recorded, it is likely that this signifies 

a significant shift in occupational strategies.  

By Classical times (figure 6.5), the building of fortress sites has increased and we begin 

to see a noteworthy change in the function and role of sites, in this case for control and 

defence of the landscape. This may imply a significant investment in new architectural 

forms following the Bronze Age and a new importance placed on non-residential sites. 

Also interesting to note is that no Classical site is documented on the widest zone of the 

Tϋz Lake, even though occupation in the locality of the lake increases substantially. 

Whilst they cannot be addressed here, questions therefore arise as to why this may be. 

Perhaps sites closer to the lake centre are hidden by alluvium deposits or there were 

human selective processes that prevented people from occupying these areas.  

Settlement around Nar Lake during the Iron Age and Classical times (figure 6.5) is 

relatively abundant (table 6.2) and stable in terms of site numbers and site type. Due to 

Nar Lake’s proximity to high plateaus, there is some evidence of upland settlement, but 

generally mound and fortress sites are recorded; a pattern that is typically reflected 

elsewhere in Cappadocia at this time. 

The post-Roman decline in site numbers (figure 6.2) coincides with a change in 

settlement preferences with the establishment of rock-cut underground settlement 

systems (figure 6.5). Fortresses still play a dominant role, as do other monumental 

features classes like towers, especially in higher localities. The area surrounding Nar 

Lake during the Byzantine period (figure 6.5) shows little in the way of settlement history 

as very few sites are documented (table 6.2). Of the five sites which are recorded, all are 
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mound occupations, for example the site of Nazianzos (modern day Bekârlar) located 

12km from Nar (England et al., 2008). This may in fact be a skewed vision of the true 

occupational history of the area as it is known from personal observations that there are 

rock-cut dwellings (created by Christian monks) within the lake catchment that are not 

recorded within the Cappadocian surveys. Of significance during Byzantine times 

therefore are the rock-cut habitation sites which seem to prevail in southern Cappadocia.  

 

Figure  6.5: Map of Cappadocia with site survey data by period and site type. A) Iron Age, B) 

Hellenistic and Roman (Classical), C) Byzantine, D) Medieval-Modern, E) Unknown. 
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By the Medieval period, the number of monumental and rock-cut dwelling type sites is 

reduced with mainly mound type sites documented (figure 6.5). The northern regions 

also become less heavily populated in comparison to preceding periods and may imply 

shifting landscape preferences and/or lack of visible sites. There is some evidence of 

continuity of sites, particularly to the south-east of Tϋz Lake where 10 sites remain in use 

from post-Roman times. Settlement around Nar Lake is also diminished at this time 

(figure 6.5) with only three sites recorded (table 6.2), none of which are situated in the 

lake catchment itself. Of particular importance is that those sites around Nar and 

elsewhere within Cappadocia seem spatially placed closed to riverine, lake or in upland 

locations which may highlight human selection for water-based or defensive locales. 

Sites where chronologies cannot be confirmed or where datable material is unavailable 

seem to principally be tumuli sites where perhaps artefactual evidence is lacking. Many 

more tumuli sites with assigned ages could have been included within the study if 

suitable co-ordinate data were obtainable. Similarly high is the number of mound sites 

which likely results from damage and the removal of datable material by processes like 

ploughing. There is no particular region where unknown site ages dominate suggesting 

that the lack of datable material does not depend on location. The atelier site of unknown 

age close to Nar Lake is likely to be Neolithic in age given the dominance of workshops 

in the area during this time. 

6.4.3. Excavated sites located in Cappadocia  

Based on information available from published sources, a list of the key sites excavated 

within Cappadocia has been complied for the Holocene to add to the survey database 

(table 6.3). The documentation of excavated material sought to provide information about 

settlement changes and site activities which would not only help substantiate and help to 

refine the chronology of the survey data but which could be used to construct a more in-

depth understanding of the factors which shaped settlement patterns. The most 
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promising possibility in this regard was the chance to study transition periods and phases 

where survey data was limited. Excavation data provided much-needed comparative 

material within which to situate sometimes fragmentary and bias survey data. Several of 

these sites and their documented histories are referred to at relative points in the 

sections that follow.  

For the Neolithic, the mound site of Aşιklι Höyϋk (Esin and Harmankaya, 1999) is 

uniquely informative due to its close location to Nar Lake and the fact that it provides a 

continued history of change from the onset of sedentism, including patterns of settlement 

construction. For the Chalcolithic, excavations at Tepecik-Çiftlik (Cutler, 2004) are of 

value as it was occupied during several transition phases. The site of Kaman-Kalehöyϋk 

(Hongo, 2004) provides the best overview of changes during the Bronze and Iron Ages, 

and the major cultural transformations that took place during these periods. Of 

importance are the profound changes in crop storage practices that relate to the long-

term stability of communities and provide a direct means of piecing together dynamical 

changes in socio-political systems. For later periods, assorted information from various 

sites provides a degree of comparative background as there is limited excavation data 

which can be extracted from just one site. 

Other central Anatolian sites which are not located within Cappadocia but which are also 

considered appropriate for further understanding include Pιnarbaşι (Baird, 2005b) (Pre-

Neolithic), Boncuklu (Baird, 2010a), Çatalhöyϋk East (Hodder, 2005), Can Hasan 3 

(French et al., 1972) (Neolithic), Can Hasan 1 (French, 1962), Çatalhöyϋk West (Mellaart, 

1965) (Chalcolithic), Çadir Höyϋk (Steadman et al., 2008), Alaca Höyϋk (Koşay, 1951) 

and Alişar Höyϋk (Gorny, 1995) (Bronze Age & Iron Age). The quantity and quality of 

data available for the prehistoric period in central Anatolia is considerable in comparison 

to historic periods. It is clear that each archaeological phase is significantly different but 

gaps in knowledge still remain, particularly for very early (Pre-Neolithic) and very late 

(post-Medieval) phases. Neolithic and urban changes are mainly studied using 
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excavation techniques and thus such changes are generally well understood, but for 

other periods such as the Chalcolithic, there is less information available regarding 

lifestyles and economies. In this instance, discussions of certain periods like the EBA 

within this thesis are better informed from excavation data. 

Table  6.3: Table identifying key excavated archaeological sites per time period for Cappadocia. 

Time period Excavated archaeological sites 

Pre-Neolithic (Pre-Neo) Kaletepe Deresi 3 (Early & Middle Palaeolithic) 

Neolithic (Neo) 

Aşikli Höyük, Fertek, Kayιrlι-Bitlikeler, Kömϋrcϋ-

Kaletepe, Kösk Pinar Höyük, Musular, 

Pinarbaşi-Bor, Tepecik-Çiftlik 

Chalcolithic (Chalco) 
Fιrakin, Gelveri, Güvercinkayasι, Has Höyϋk, 

Kösk Pinar Höyük, Sarioğlan, Tepecik-Çiftlik 

Early Bronze Age (EBA) 

Acemhöyük, Demircihöyϋk, Gelveri, Göltepe-

Kestel, Has Höyük, Kaman-Kalehöyük, Kanlica, 

Kültepe, Pinarbaşi-Bor 

Middle Bronze Age (MBA) 
Has Höyük, Kaman-Kalehöyük, Porsuk Höyük, 

Zank Höyük 

Late Bronze Age (LBA) Kaman-Kalehöyük, Kirsehir Höyük, Topakli 

Iron Age (IA) 
Göllϋ Dağ, Kaman-Kalehöyük, Kaynarca, 

Kerkenes Dağ, Kιnιk Höyϋk 

Hellenistic and Roman 

(Hell & Rom) 
Fertek, Karahüyük – Hacibektaş, Topakli 

Roman-Byzantine 

(Rom-Byzan) 

Byzantine underground cities and rock-cut 

churchs (e.g. Selime Kalesi), Çanlι Kilise, 

Fertek, Kemerhisar-Tyana, Topakli 

Medieval-Modern (Med-Mod) 
Various Seljuk and Ottoman hans, mosques 

and other standing structures. 
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6.4.4. Survey summary and comparison with other surveys 

6.4.4.1. Survey summary and comparison, an overview 

To understand if the habitation changes presented here are representative and whether 

the documented settlement history is localised in nature or more specific to the central 

Anatolia region, it is useful to relate the trends and patterns recognised to other known 

archaeological surveys conducted in the area. Survey results presented for Cappadocia 

will be considered in relation to two well documented and extensive site surveys 

conducted in neighbouring regions, the Konya Plain survey to the west (Baird, 2001a, 

2002, 2004b) (figure 6.6) and the Paphlagonia survey to the north (Matthews and Glatz, 

2009a) (figure 6.7). Using these two adjacent surveys should provide comparable links to 

sites surveyed in both north and south Cappadocia.  

These two multi-period site surveys are excellent at documenting settlement shifts 

throughout the Holocene time span and allow for period specific contrasts to be made. 

On the whole, the Konya Plain and Paphlagonia surveys generally fail to provide a 

substantial overview of post Roman/Byzantine sites but considering the Cappadocia 

survey is also lacking information for the historical period, there are already some useful 

cross-overs which suggest comparisons can be made.  

The Konya and Paphlagonia surveys have similar settlement histories to those 

witnessed in Cappadocia but their different geographic locations and environmental 

settings lead to some localised variations. All three surveys show growth of Early Bronze 

Age communities from a somewhat smaller scale of occupation during the Neolithic and 

Chalcolithic, with a steady continuation of increased settlement into the latter Bronze and 

Iron Ages. The major distinctions are the higher settlement densities of the Konya Plain 

during Byzantine times (figure 6.6) and the high values recorded for LBA occupations 

and lack of Neolithic remains in Paphlagonia (figure 6.7). 
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Figure  6.6: Long-term trends in site number and aggregated site area (ha) for the Konya Plain. 

Data as understood from Baird (2004b, 2005a). Data could not be obtained for the Late 

Chalcolithic-Bronze Age period. 

 

Figure  6.7: Long-term trends in site-number, weighted site counts and aggregated site size (ha) 

for the Paphlagonia survey. Data as understood from Matthews & Glatz (2009b). 
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6.4.4.2. Pre-Neolithic  

The Pre-Neolithic period, as it is defined here, is not well documented by any of the 

surveys discussed in this chapter (figures 6.1, 6.6 & 6.7). There is a strong focus in the 

Cappadocian and Konya surveys on the Neolithic period but virtually no indication of 

settlement prior to this time which may be the result of dating confidence, lack of 

‘settlement’ type locations and/or visibility of non-permanent sites. In total, the 

Cappadocia survey identified only 11 sites that were not classified as cave dwellings (45 

Pre-Neolithic cave sites were omitted due to lack of chronological certainty); most sites 

documented are lithic artefact scatters and are dated by regional typologies. The limited 

number of sites recorded for the Pre-Neolithic period does not necessarily suggest only 

low populations and occupation prior to 8500 cal. yrs. BC, but the lack of sites is also  

testament to the strategy employed by investigators and related to the unclear nature of 

evidence in comparison to later periods (i.e. the visual dominance of Höyϋk type sites). 

The fact that Epipalaeolithic occupations can be traced on the Anatolian Plateau and that 

occupations persisted into the Holocene (Düring, 2011) suggests that sites dating to this 

time should be distinguishable. However, only a handful of Epipalaeolithic sites have 

actually been documented in central Anatolia, demonstrating a clear under-

representation of sites for this period. 

A similar pattern of Pre-Neolithic occupation as witnessed in Cappadocia can be seen in 

the south-west Konya Basin where 5-6 sites date to before 8000 BC (Baird, 2005a) 

(figure 6.6); the most famous of these being Pınarbaşı (Asouti, 2003; Baird, 2003, 2004a, 

2005b). The sites recorded as ‘pre 8th millennium BC’ (Pre-Neolithic) in the Konya Basin 

are documented to be mound type sites indicating some sedentary behaviour, even if it 

may be periodic in nature. In comparison to survey results presented here, no mound 

sites were identified. To any archaeologist, mounds are certainly the most obvious 

feature class of this time and it is interesting to note the lack of lithic scatters recorded by 

the Konya survey and the lack of mound sites recorded for the Cappadocian survey. This 



Settlement history  Chapter 6 

223 
 

may suggest a number of things including preservation bias, investigator bias and/or a 

different use of landscape. 

Location plays an important role in the prehistoric settlement histories of parts of central 

Anatolia. It seems likely, given site type data (figure 6.4), that human presence in parts of 

Cappadocia was encouraged by resource availability, with people particularly being 

drawn to the area by the presence of obsidian outcrops and the accessibility to exchange 

routes (Baird, 2012; Chataigner et al., 1998). The area would have been home to highly 

mobile groups (Baird, 2012) who took advantage of the proximity to materials and 

developed settlement strategies in line with the significance of the area, in this case 

resource abundance. Sedentary lifestyles were not of importance to Cappadocian 

groups but lithic technologies and interaction were (Baird, 2012). The lack of mining 

activity on the Konya Plain and documentation of mainly mound sites only reiterates the 

point that Cappadocia formed an important locale for landscape exploitation. The 

zonation of the wider landscape into areas of exploitation and settlement was principally 

determined by resource availability during Pre-Neolithic times. 

6.4.4.3. Neolithic  

The Neolithic period, as documented by Dϋring (2011), is represented by an increase in 

settlement numbers and more noticeable population levels which are encouraged 

through shared social-ideological factors like the importance of community living. In 

Cappadocia, settlement numbers increase to 106, but the biggest perceptible change is 

the appearance of mound type sites (figure 6.4). The most renowned mound site in 

Cappadocia is Aşıklı Höyük (~20km from Nar Lake) (Buitenhuis, 1997; Esin et al., 1991; 

Todd, 1966; Van Zeist and de Roller, 1995), which indicates a level of permanence to 

occupation as inferred by site size and investment in housing and architectural planning. 

Included within the social landscape of Aşιklι is another site called Musular (400m 

southwest) which is believe to be related to domestic expansion by the people of Aşιklι 
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themselves (Duru and Özaşaran, 2005). The increase in larger and permanent 

settlement sites is encouraged at this time by processes of agglomeration and sedentism 

(Düring, 2011). The increase in the size of sites and the formation of many new 

occupational locales also suggests an increase in regional population levels at this time. 

From site type data presented here (figure 6.4) and other studies (Balkan-Atli, 2010; 

Carter et al., 2006; Pernicka et al., 1997) it is inferred that Cappadocia was heavily 

exploited during Neolithic times, a result of an expansion in obsidian resource 

exploitation. The area likely had great resource potential to inhabitants which may 

explain the rise in site numbers during the Neolithic. Surveyed sites like Aciyer, Alva Dağ, 

Bitlikeler, Göllϋ Dağ and Nenezi Dağ, which are all in close proximity to Nar Lake, are 

testament to the links between occupation and resource abstraction because of their 

primary use as mining localities. The similarity of sites between the Pre-Neolithic and 

Neolithic phases may suggest some form of conservatism in settlement preferences and 

continuity in resource exploitation practices. 

The Neolithic evidence in Cappadocia, on the whole, is not similar to the Neolithic survey 

results from other studies. The uniqueness of the area at this time for the establishment 

of mining and mound sites is reiterated by the complete lack of Neolithic finds found 

during the Paphlagonia survey (Matthews and Glatz, 2009b) (figure 6.7) (only three sites 

are documented for the whole of north-central Anatolia (Düring, 2008)) and only a 

marginal increase in Neolithic site numbers on the Konya Plain (Baird, 2001b, 2002, 

2005a) (figure 6.6). The Aceramic Neolithic of the Konya Plain witnesses more 

substantial settlement sites in comparison to earlier phases (e.g. Boncuklu Höyϋk) but 

site numbers remain small and there is no indication of a population shift at this time 

(Baird, 2005a). Similarly, during the Ceramic Neolithic, there is a lack of permanent and 

well established village sites (Baird, 2002, 2005a). The presence of Çatalhöyϋk (Hodder, 

2000, 2005), a massive agglomeration site, is the only exception to this pattern. It is 

argued that Çatalhöyϋk thrived at the expense of smaller communities resulting in a lack 
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of sites recorded for this time period (Baird, 2005a). The dominance of one settlement 

site forms a real difference from earlier periods and is in contrast to the wider 

Cappadocian region where there is a preference for smaller “village” sites. 

From the limited information available, it seems that settlement in Cappadocia during the 

Neolithic was relatively prolific in terms of site number and heterogeneous with respect to 

site type and function in relation to neighbouring regions. Sites were located close to or 

at sources of obsidian and were involved heavily with exchange routes across the Near 

East region. It is likely that inhabitants’ participation in the extraction and exchange of 

materials encouraged increased settlement expansion during the Neolithic and the 

greater accumulation of people in the area. 

6.4.4.4. Chalcolithic  

With the onset of the Chalcolithic, regional differences are still identifiable. In Cappadocia, 

there is an overall reduction in mining sites and a new focus on mound occupations and 

the expansion of settlement into more northern regions (figure 6.4). This is in contrast to 

the Konya Basin where the proliferation of mound sites begins in earnest during the 

Early Neolithic (Baird, 2005a). The excavations of sites like Tepecik-Çiftlik, 

Gϋvercinkayasi and Köşk Höyϋk reveal a strong and dynamic Early-Middle Chalcolithic 

phase in Cappadocia, and a predominantly small-scale domestic nature of sites (Cutting, 

2005). Previous work (Baird, 2012; Marciniak and Czerniak, 2007) has suggested that 

Early Chalcolithic sites are still economically tied to the exploitation of Cappadocian 

obsidian and that their nature relates heavily to their proximity to exchange routes 

(Marciniak and Czerniak, 2007). By the latter half of the Chalcolithic however, the 

importance of raw materials decreases and this is said to have manifested itself in a 

decline in settlement numbers (Marciniak and Czerniak, 2007), a pattern which cannot 

be supported by the survey data presented here (figure 6.1). 
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The increase in site numbers during the Chalcolithic (figure 6.2) is related, in part, to the 

results of the Kaman-Kalehöyϋk (Mikami and Omura, 1991a) survey which identifies a 

high number of Chalcolithic sites in northern Cappadocia. The lack of Chalcolithic 

remains documented by Ian Todd (1998) in the southern Cappadocian Plains gives 

strength to the idea that occupation became denser in northern areas. Marciniak & 

Czerniak (2007) comment that the Chalcolithic of Cappadocia is characterised by the 

occupation of new areas which would fit with the survey results presented here. The 

location of new Chalcolithic sites may have been structured by the development of 

sedentary agricultural lifestyles, region wide links in exploitation strategies and a new 

focus on the autonomy of households (Marciniak and Czerniak, 2007). The fact that the 

Cappadocian survey poorly records sites by sub-period (figure 6.1) means that it cannot 

be stated with confident as to when these spatial changes occurred but its seems 

reasonable to suggest they happened in the first half of the Chalcolithic period given the 

lack of site data available for the later Chalcolithic (Düring, 2011). 

The lack of continuity between sites (figure 6.3) and the increase in site numbers (figure 

6.2) between the Neolithic and Chalcolithic is also evidenced by the Konya Plain survey 

(figure 6.6). Whilst occupation at the large site of Çatalhöyϋk continues, there is a growth 

of smaller dispersed sites in the vicinity which were not witnessed in the Ceramic 

Neolithic (Baird, 2010b). This dispersal of population and lack of aggregation relates in 

part to the diminished suppression of communities by the presence of Çatalhöyϋk and 

procurement in other activities (Baird, 2010b). The Middle Chalcolithic on the Konya 

Plain in contrast shows a noticeable reduction in site numbers and continuation in site 

locations and type, with some consistency in community based relationships (Baird, 

2005a). By the Late Chalcolithic, many sites disappear from the Konya Basin, including 

the Çatalhöyϋk site (Baird, 2001b). The growth of settlement during the Early Chalcolithic 

and fall in settlement numbers by the end of the Chalcolithic indicates considerable 

temporal change in settlement dynamics for the Konya Plain. 
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In Paphlagonia, the Chalcolithic time period is poorly represented with only 5 mound 

sites documented (Matthews and Glatz, 2009b) (figure 6.7). Population levels in 

comparison to Cappadocia and the Konya Plain are low and sites are only evidenced 

along resource seams or exchange networks. Middle Chalcolithic sites are dispersed 

and heterogeneous in nature but some sites like Maltepe reveal considerable continuity 

in occupation (Matthews and Glatz, 2009b) which is not too dissimilar from the stability in 

sites documented by the Konya survey (Baird, 2005a). Survey data suggests that the 

settlement preferences of inhabitants of Paphlagonia differed from the more southerly 

regions during the Chalcolithic, with their concern for resource extraction matching more 

equally to the Neolithic occupations in Cappadocia.  

6.4.4.5. Early Bronze Age  

A sharp rise in settlement numbers and a relative abundance of data is recorded in the 

Cappadocia survey for the Early Bronze Age (figure 6.2). The number of new 

settlements rises to a level not seen previously and whilst some sites are abandoned 

(figure 6.3) there is strong continuity in site location and type from the Chalcolithic into 

the EBA (figure 6.4). For example, Tepecik-Çiftlik (Bıçakçi et al., 2007) is one of the sites 

that witnesses settlement continuity during the Chalcolithic-EBA transition. Due to the 

lack of data assigned to sub-divisions in the original Cappadocian surveys, it is difficult to 

known exactly when the key changes in settlement occurred but site numbers (figure 6.1) 

indicate that perhaps the increase is found around the EBII period, a time when town 

planning and urbanisation took hold (Yakar, 1985).   

Settlement during the EBA seems to be structured by the need for resources and the 

exploitation of local deposits (i.e. metal ore) and trade routes (Düring, 2011; Yener, 2000) 

in a similar fashion to that witnessed in and prior to the Neolithic. Not only are settlement 

increases linked in with exchange but also the adjustment in community living and the 

erosion of trust with outsiders, likely brought about by the new economic environment 



Settlement history  Chapter 6 

228 
 

(Steadman, 2011). People were beginning to prefer occupying sites at the household 

level and avoiding community lifestyles, resulting in the need for more space. 

Broadly, the patterns witnessed in Cappadocia match those documented for 

Paphlagonia. In Paphlagonia, site numbers and population levels increase dramatically 

(Matthews and Glatz, 2009b) (figure 6.7), as they do across the Near East region 

(Wilkinson, 2003). Metal ore was indicated as a key contributor to the establishment of 

new and fortified sites (Matthews and Glatz, 2009b), for whilst resources offer the 

potential of regional networks, they lead to a greater concern for security and protection 

in the landscape (Matthews and Glatz, 2009b). Multi-period mound sites are another 

common feature in both the Cappadocian and Paphlagonia surveys with the majority of 

these showing some stability in the landscape. New sites in comparison tend to be 

associated more with previously uninhabited areas. 

In the Konya Plain (Baird, 2001b) too there was significant increases in the frequency 

and rank of settlement sites, brought about by the development of urban living and 

population growth. Settlement took the form of large centre sites and smaller peripheral 

localities, situated within close proximity to exchange pathways or areas of agricultural 

potential (Baird, 2001b). Whilst such a pattern cannot be delineated from the 

Cappadocian survey, the Konya survey also highlights a significant drop in site numbers 

following the EBII period, and following a period of prolific settlement development. If this 

is an accurate representation of change, it suggests that the boom in EBA settlement 

occurs at the start of the EBA period in the Konya region. The strong continuity between 

sites dating to the EBI and EBII, and not of EBIII in the Cappadocian survey may suggest 

that a change event also occurred towards the end of the EBA period within this study. 

What form that change event took though is not discernible from the data presented. 
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6.4.4.6. Middle Bronze Age  

Archaeological survey evidence for the Middle Bronze Age in Cappadocia suggests 

similar settlement patterns to those witnessed in the Early Bronze Age, with significant 

levels of occupation and a clear dominance of mound type sites (figures 6.2 & 6.4).  

Weighted site counts (figure 6.2) suggest that this period saw the highest levels of 

occupation per century in relation to all other phases (figure 6.2) which is in contradiction 

to the high level of abandonment also implied by the survey data (figure 6.3). The major 

difference between the EBA and MBA is that there are very few new sites being 

established during the Middle Bronze Age (figure 6.3); which if viewed alongside the 

abandonment data suggests that occupation could not have been as prolific throughout 

the period as a whole as is implied by the weighted counts. Sites which continue to exist 

in both periods show a strong sense of settlement continuity and stability. This can be 

seen at major occupational sites like Kaman-Kalehöyϋk (Mikami and Omura, 1991b; 

Mori and Omura, 1995) in the north of the region. 

Of importance to inhabitants and a reason for settlement stability during the MBA may 

have been the integration of sites into key trade routes and the new system of political 

power established by the trading Assyrian colonies and later by the Indo-Europeans 

(Crossland, 1957; Darga, 2000; Larsen, 1974; Orlin, 1970). Stability in settlement is 

therefore suggested to relate to increased expenditure by local authorities on settlement 

systems (i.e. increase political control of food distribution (Fairbairn and Omura, 2005)) 

and the new dependence on urban interaction. Increased social relations through trade 

and urbanisation allowed for increased security for a time and a productive system of 

food storage and distribution which enabled secure living (Fairbairn and Omura, 2005).   

The security in habitation sites at this time and the link with urban-based polities may 

have manifested itself in the number of archaeological sites recorded in the Cappadocian 

survey as “Middle-Late Bronze Age” (figure 6.1), indicating the special importance of 
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socio-economic stability across a period of time. To identify which proportion of these 

sites relate to the MBA, a simple percentage equation was used to spilt to the Middle-

Late Bronze Age sites into two figures based upon existing counts for the MBA and LBA. 

As can be seen in figure 6.8, this added an extra 19 sites to the inventory for the MBA. 

When viewed alongside proceeding periods (figure 6.8), this new site count records a 

substantial level of occupation in relation to the LBA and LBA-IA transition phase. 

 

Figure  6.8: Cappadocian site count data for selected periods, adjusted using counts from the 

Middle-Late Bronze Age phase. 

In Cappadocia, it seems that the MBA is important in terms of settlement steadiness and 

investiture, and points to some individual sites having strong cultural links with earlier 

times, as well as links with the new commercial future. The MBA as documented in 

Paphlagonia (figure 6.7) in comparison is likewise outlined as a significant settlement 

change period due to the changing context of the political and economic world. In 

Paphlagonia, there is a strong aspect of settlement continuity and a large increase in site 

numbers. Only 21 substantial sites have clear evidence for MBA occupation though 
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(Matthews and Glatz, 2009b) and it can be argued whether this represents a true record 

of settlement endurance and establishment in Paphlagonia. In Cappadocia, especially if 

we look at site numbers by century (figure 6.2) we see a number almost double that seen 

for the entire period in Paphlagonia. Survey size likely has some part to play in the 

numbers recorded, and whilst the pattern of MBA growth is similar, the site numbers 

detailed in the Cappadocian survey give greater confidence to the patterns observed. 

In the Konya Plain, the Middle Bronze Age is also characterised by increases in the 

frequency of sites and in the aggregate site area (Baird, 2001b). In contrast to the 

Cappadocian and Paphlagonia surveys however, the Konya survey documents less 

stability in the settlement record with sites shifting in location and occupying previously 

unoccupied locales. Resident differences in environment and agricultural potential have 

been accredited for the variability in settlement preferences seen on the Konya Plain and 

therefore make comparisons to the data presented here difficult. Nevertheless, some 

broad similarities are witnessed, including the increased intensity of settlement. 

6.4.4.7. Late Bronze Age  

The LBA period in Cappadocia is contradictory. There is evidence for both settlement 

continuity from the MBA (figure 6.3) and evidence for dramatically reduced settlement 

numbers (figure 6.3). Overall though, occupational sites which had existed with some 

stability during the MBA are abandoned during the LBA. Weighted counts (figure 6.2) 

provide a more accurate indication as to the level of occupation at the time and indicate 

that the decreases were not as extreme as they first appear from the site count data 

alone (figure 6.1). Nevertheless, these changes do occur to some extent and certainly 

many MBA sites appear to be uninhibited during the LBA. 

Of those sites documented to be LBA in age, most appear to congregate in the north of 

the region whilst southern parts of Cappadocia appear to be less extensively inhabited 

(figure 6.4). This could relate in part to investigator bias but considering LBA sites 
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elsewhere are documented to have been unstable (Dönmez, 1999; Yakar, 1980), it 

suggests that this pattern of landscape abandonment may be a region wide 

phenomenon. Campaigns on Hittite communities by Kasha tribes from the north (Yakar, 

2006) have been suggested as a reason for the demise in permanent settlement and the 

lack of settlement stability during the LBA (Matthews, 2004). The apparent presence of 

more sites in north Cappadocia though is intriguing as this is where territories would 

have been most under threat. The dominance of the ruling Hittites in the north however 

had a strong pull on communities, encouraging settlement in and around the source of 

political power. The advantage held by locating near to sources of power but far enough 

away from fortified borders would have been a deciding factor in settlement histories of 

the time. 

The Paphlagonia survey in comparison documents many new sites forming by the end of 

the LBA (Matthews and Glatz, 2009b) (figure 6.7) which may be linked into the building 

of new fortification sites for security. The spatial placement of sites is also intriguing as 

they seem to be located in strategic defensive areas like along river systems and in high 

localities (Glatz et al., 2009; Matthews and Glatz, 2009b). This is in contrast to the 

Cappadocian survey which sees an overall decline in site numbers and little change from 

‘Höyϋk’ type occupations. The presence of a strong LBA in Paphlagonia is not matched 

by data here and indicates a prominence of northern areas of LBA populations or a 

preference for diminished aggregation of populations.  At the regional level there is a 

general decline in LBA settlement and the abandonment of many MBA sites in the 

Central Anatolian Plateau (Glatz, 2009). Survey data for the Konya Plain during the LBA 

is not readily accessible due to minimal publication but from the data available, a decline 

phase is not documented (Baird, 2001b), indicating some similarity to the Paphlagonia 

results. Therefore whilst the results presented here are aligned with the regional pattern 

of change, the downwards shift in settlement is not apparent in neighbouring locations. 
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6.4.4.8. Iron Age  

The Iron Age (IA) period in Cappadocia forms the next big notable shift in settlement 

figures following the EBA settlement boom. Site numbers dramatically increase and the 

intensity of settlement seems remarkably high (figure 6.1). Whilst there is some 

continuity from the LBA, generally sites are new establishments (figure 6.3) showing a 

change in settlement preferences from settlement maintenance to settlement creation. 

The LBA-IA transition phase includes very few documented sites (figure 6.8) which may 

suggest a massive drop in settlement prior to the IA increase, although archaeological 

data from sites like Kaman-Kalehöyϋk imply that several substantial occupations did 

continue on from the LBA (Mora and d'Alfonso, 2012). Important to note is that weighted 

counts (figure 6.3) suggest that IA occupation levels may not have been as high as is 

evidenced by the site count data. The noted importance of Phrygian (900-585 BC) 

occupations in Cappadocia (Summers, 2006; Voigt and Henrickson, 2000) though may 

suggest that averaging the site count data by centuries is not suitable for this time where 

occupation was likely more dominant at one point in time and not throughout the IA 

period as a whole. 

Site numbers by sub-period (figure 6.1) in Cappadocia are too poorly recorded to notice 

a significant shift in numbers immediately following the LBA but the higher proportions of 

sites document for later IA periods suggests that at these times, Cappadocia was a key 

area for Phrygian and Persian (585-331 BC) populations. The preference for new sites 

(figure 6.3) and settlement locations (figure 6.5) may suggest new people moving into 

the area with new ideas of spatial planning and site formation. Due to the number of sites 

recorded as ‘Late’ it has been necessary to divide these data across the late Iron Age, 

Hellenistic and Roman times as this is what ‘Late’ implies. The resultant settlement count 

can be seen in figure 6.9 and shows that late Iron Age sites are of some importance. The 

increase in site numbers identified in the IA is witnessed right across central Anatolia 

with a clear differentiation to the Bronze Age (Glatz, 2009). This phenomenon seems 
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directly related to the changing political situation and the re-colonisation of the area 

following decline during the end of the LBA. 

 

Figure  6.9: Cappadocian site count data for selected periods, adjusted using counts from Late, 

Hell-Roman and Roman-Byzantine phases. 

This is in contrast to the results observed in Paphlagonia (figure 6.7) where following the 

collapse of the Hittite state there is a significant drop in settlement numbers and a 

meagre spread of sites (Matthews and Glatz, 2009b). It seems likely that there was an 

initial hiatus to permanent and recognisable settlement sites, sometime around the 

decline in site numbers documented here. The Paphlagonia survey includes some IA 

sites dating to the Phrygian time period (Matthews and Glatz, 2009b) which may indicate 

a recovery in occupation levels towards the latter half of the IA. The presence of these 

sites on top of defensive structures of the LBA suggests a need to continue with security 

and use of defensive locations. Paphlagonia at this time formed a somewhat border zone 

between the Phrygian state and its northern neighbours (Matthews and Glatz, 2009b), 

likely resulting in the much localised pattern of settlement change witnessed. 
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The localised pattern of change in Paphlagonia is made more apparent in relation to the 

Konya Plain survey (figure 6.6) which, similar to the Cappadocian survey, indicates 

increased site numbers and the recolonisation of the Plains by small sedentary 

communities (Baird, 2001b). In the Konya Basin, IA sites are documented as variable in 

size and non-hierarchical in nature, and the position of a site does not seem to relate to 

any one urban centre. This is in contrast to preceeding periods and suggests that much 

of the settlement distibution is new, similar to the pattern of change outlined in this study. 

6.4.4.9. Hellenistic and Roman (Classical)  

Due to the problems of distinguishing between Hellenistic and Roman sites as a result of 

their similarity, the two time periods will be dealt with together here. In some cases (166 

out of 382), sites can be attributed to one particular time period and in these instances, 

site numbers for both periods are the same (83 sites each) (figure 6.1). Even when the 

‘Late’, ‘Hell-Rom’, ‘Classical’ and ‘Rom-Byzan’ sites (figure 6.1) are incorporated into the 

settlement count, we see similar site numbers for the two periods (180 & 184 

respectively) (figure 6.9). Typically, this Classical phase is represented by an aspect of 

settlement continuity and continuation in settlement preferences, with relatively high 

numbers recorded. The political changes that occurred post Iron Age do not seem to 

have affected much of the settlement distribution. There is however growth in the 

number of fortress type sites being built during the Hellenistic-Roman period (figure 6.5), 

which is in contrast to other areas which saw the prolific introduction of defensive 

structures during the LBA. This is likely the result of Cappadocia’s location on the 

eastern borders of empire (Van-Dam, 2002) where previously it had not been part of any 

border zone. 

The increase in site numbers at this time (figure 6.2) may be the result of two processes. 

It seems reasonable to first suggest that the security and agricultural prosperity that 

developed under elite rule would have encouraged population growth or at least 
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movement into the area, and thus resulting in settlement expansion. Secondly however, 

as Cappadocia is only described as a ‘backwater’ of empire (Van-Dam, 2003), and the 

fact that only two sites (Tyana and Caesarea) become major regional hubs, it is 

reasonable to suggest that the appearance of amplified settlement may relate to the 

establishment of many smaller agricultural ‘village’ sites. 

In Paphlagonia, Hellenistic times were typical of a decline phase with a 63% reduction in 

site numbers from the preceding phase (Matthews and Glatz, 2009b) (figure 6.7); there 

may be some evidence for agglomeration which could explain the lack of noticeable site 

locations. The process of settlement agglomeration occurs after Hellenistic times on the 

Konya Plain (Baird, 2001b).  In relation to the Hellenistic pattern of change, the Roman 

period in Paphlagonia witnesses the area flourish, with settlement spreading and 

increasing in intensity (Matthews and Glatz, 2009b). The site survey results from 

Cappadocia are more comparable to those from the Konya Plain (figure 6.6) as these 

suggest a steady rise in site number and aggregate size from the late Iron Age through 

to Roman times and do not hint at any discontinuity within the Hellenistic period. It 

seems that during Hellenistic-Roman phases, Cappadocia has more in common with 

events occurring on the Konya Plain as both indicate the establishment of permanent 

towns and agricultural villages. 

6.4.4.10. Byzantine  

After the decline of the Roman Empire (~AD 395) and particularly after administrative 

instability from ~AD 670, site numbers fall by 72% and reach low values (105 sites) not 

recorded since the LBA (112 sites) (figure 6.2). It is likely that short-lived periods of 

socio-political dislocation and landscape abandonment influence the figure recorded by 

the Cappadocian survey (England et al., 2008). The physical invisibility of remains is a 

problem for this phase and it is difficult to know if this truly is the result of minimal 

Byzantine occupation. Considering the lack of site survey work for the Byzantine period, 
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and the fact that most sites are probably buried under modern town developments, it is 

likely that this number is under-represented. This lack of clear Byzantine information is 

emphasised by Cooper & Decker (2012) who outline that settlement surveys of the time 

are often limited in scope. 

The most prominent, and well documented shift in settlement during Byzantine times is 

the expansion of cave dwelling sites (Erdem and Erdem, 2005; Ousterhout, 2005) (figure 

6.5) and cave monasteries (which are not documented here) (Cooper and Decker, 2012; 

Rodley, 1985). This shift in habitation is picked up only partially in the Cappadocian 

survey but is expressed in more detail in Ousterhout (2005). The building of underground 

settlement sites and the expansion of subterranean features shows a clear divergence in 

the architectural vision of populations and a need for new habitation practices. The use 

of these sites as defensive locations is suggested (Bertini, 2010; Kalas, 2007) and 

reflects an instability in residential populations that was not evident during Roman times. 

A period of insecurity is evident in the area from the mid-7th century onwards when Arab 

invasions begun and Christian lifestyles were threatened (England et al., 2008). Cave life 

(including the sanctuaries for monks seen around Nar Lake) was made obligatory by the 

frequent changes occurring in the political realm (Çorakbaş, 2012), but ultimately höyϋk 

architecture is still evident (figure 6.5) and signifies a heterogeneity to settlement choice. 

Whilst Byzantine Cappadocia is poorly explored within the three surveys outlined here, 

Paphlagonia and the Konya Plain have been surveyed more extensively and provide a 

much more reliable picture of Byzantine settlement change (figures 6.6 & 6.7). In 

contrast to Cappadocia, Byzantine settlement on the Konya Plain flourished, particularly 

during the 5th-7th centuries and appears to witness a kind of settlement boom (Baird, 

2004b). This is the largest number of sites recorded since the Iron Age in the area and 

probably relates to increased human presence in the vicinity. The sites indicate a strong 

sense of continuity from Roman times but also the presence of many new sites indicates 

some growth. The location of settlement sites also shows some continuity, with the same 
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area repeatedly being selected for occupation. Extensive settlement is recorded near 

and on alluvial fan areas which is in contrast to Cappadocia which sees settlement off 

the Tϋz Lake fan edge and in potentially more predictable landscapes which are not 

subjected to regular sedimentary deposition.  

During mid-Byzantine times, Cappadocia found itself at the limits of empire, as did the 

inhabitants of Paphlagonia as witnessed by the reduction in site numbers moving into the 

Arab phase (Matthews and Glatz, 2009b). As with Paphlagonia, the typical urban centres 

were being replaced by more specific building types like religious buildings and 

fortresses particularly as conflict ensued towards the end of the period. Konya too begins 

to see collapse and abandonment after the 7th and 8th centuries (Baird, 2004b) 

suggesting a region-wide upheaval of settlement practices and habitation.  

6.4.4.11. Medieval – Modern  

It is difficult to infer much from the survey data regarding this time period but here and 

elsewhere it is likely that site numbers fell with the advent of Arab (7th-9th century) 

invasions and the unstable political and military situation that occurred as a result of 

these incursions (Cooper and Decker, 2012). The fact that there was little construction 

and development in site locations (figure 6.3) suggests a reduced period of growth as the 

region was passed through the hands of Seljuk and Ottoman rulers. ‘The ebb and flow of 

Byzantine-Arab warfare’ (Cooper and Decker, 2012 pg. 21) would have put considerable 

stress on populations as attack threatened everyday living but it remains uncertain as to 

whether settlement changes were driven by imposing policy or a communal response to 

the upheavals (Cooper and Decker, 2012). The major Roman/Byzantine urban city of 

Tyana is said to have been sacked many times due to its strategic importance in terms of 

position (Cooper and Decker, 2012), placing its’ inhabitants on a constant state of alert. 

With respect to other villages and towns, it is likely therefore that significant population 
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shifts occurred as people sought to avoid the pursuing conflict and as the role of 

settlement also changed. 

Whilst the full trends in settlement distribution and density for periods following the 10th 

century AD cannot adequately be identified here, it can be concluded from other survey 

work  (Baird, 2001b; Matthews and Glatz, 2009b) and published work (England et al., 

2008) that settlement numbers in central Anatolia remained relatively low and that 

habitation was relatively stable. Cooper and Decker (2012) suggest that settlement had 

been greatly affected, resulting in the intensification and fortification of strategic urban 

centres and a move back to Cappadocia’s ruralised past. Occupation during the 

Medieval and Ottoman periods relied heavily on agricultural prosperity which helped to 

maintain a steady cultural landscape for a time (Eastwood et al., 2007b). Life was 

ultimately administered through village living and cereal based agriculture (Eastwood et 

al., 2007b), with a mix of Christian and Muslim populations (Ballian, 2010). 

6.5. Chapter summary 

The various selected results for the three Cappadocian surveys covered here 

demonstrate a varied settlement history that is only in part comparable to changes 

documented in neighbouring regions. The evidence is such that it is possible to detail 

large scale changes in settlement distribution and the role of the Cappadocian landscape 

in habitation preferences. A major factor in the constructed settlement culture seems to 

be the location of Cappadocia and its placement between often opposing political entities. 

Local populations would have certainly played a role in shaping settlement histories but 

ultimately it appears to be the larger scale socio-political/economic changes that affected 

site number and type for the region.  

Given the problems associated with investigator biases and identifying certain material 

culture types, historical data are only a partial representation of the actual trends and 

patterns that had occurred. The similarities to other known survey results are 
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encouraging and we can be sure that the spatial and chronological changes that were 

evidence are at least somewhat valid. 

The pattern of change witnessed sees small-scale non-sedentary communities mould 

themselves into urban and complex communities, often alongside developments in 

economic strategy and political administration. The Cappadocian surveys identified, in 

the form of mainly lithic scatters, a clear Pre-Neolithic phase prior to a well-developed 

and substantial Neolithic occupation built around access to raw materials and exchange 

networks. The first substantial phase of intensified occupation however did not begin 

until the Chalcolithic when settlement numbers increase, and continue to increase well 

into the Middle Bronze Age period. Mound sites are the most dominant site type at this 

time, some of which continued to be occupied over many thousands of years showing 

incredible continuity and a conservative approach to settlement. The MBA period was 

one of relative stability and growth, anchored into the continuous economic prosperity of 

the area. Settlement numbers from the end of the MBA period through into the Iron Age 

are more changeable and for the first time a clear decline phase is evidenced. Also 

noticeable is a significant shift in the location of settlements, with evidence pointing 

towards a preference for more northern localities.  

The Iron Age period sees considerable settlement expansion and growth but settlement 

strategies appear altered in comparison to previous phases with the establishment of 

more fortification site types. By the Roman period there is a substantial shift towards 

investiture in non-settlement type sites and a greater concern for security and defence. 

Settlement numbers in Classical times remain high and very few sites are altered or 

reconstructed from the late Iron Age onwards, suggesting strong settlement continuity. 

Another fundamental change is evidenced post Roman, and more particularly between 

this and Medieval times where settlement numbers decline in light of political instability. 

The apparent decline in occupation must be approached with caution however due to the 

lack of survey investigation for these historical phases. During Medieval and Ottoman 
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times, the pattern of settlement change stabilises as communities re-establish their 

agricultural heritage and the threat of attack diminishes. 

In and around Nar Lake there too have been significant shifts in settlement. The most 

prolific occupation of the area was seen during Neolithic times when a number of 

workshop type sites were recorded. Given the popularity of Cappadocia during EBA and 

IA-Roman times, Nar Lake was also heavily populated during these periods, consisting 

predominately of multi-period mound occupations. Two major decline phases are noticed 

in the survey data. Very few sites are recorded within ~30km of Nar Lake during LBA and 

Byzantine-Ottoman times, although some rock-cut dwellings are known about within the 

lake catchment. This signifies a dynamic settlement history for Nar Lake and suggests 

that the area was particularly favourable during certain periods of the Holocene. 

Each phase and change in site number witnessed by the Cappadocian survey appears 

to have its own characteristics, which in most cases seem rooted to preceding periods. 

Despite period specific peculiarities, settlement organisation and fluctuation, and location 

do not alter too significantly between the Neolithic and Bronze Ages. Any disruptions to 

settlement planning are often small and short-lived, and appear to result from shifting 

political situations.  Four major periods of change are identifiable, including: the 

dominance of workshops during the Neolithic, the prevalence and growth of höyϋk type 

sites in the EBA, the introduction of defensive architecture types by the IA and the 

decline in settlement during the 7-8th centuries. Geography also likely played some part 

in the changes witnessed and is what distinguishes these survey results from 

neighbouring investigations. Cappadocia’s abundance of raw material, particularly 

obsidian, and its dynamic landscape of plains and highlands encouraged targeted 

settlement for reasons including resource abstraction and fortification boundaries. 

Ultimately the patterns of settlement change documented here reflect the shift from 

small-scale resource gathering communities to a fully urbanised integrated system.
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7. Palaeoclimatic, palaeoenvironmental and 

archaeological change  

7.1. Chapter introduction 

Palaeoclimatic and environmental information identifiable from geochemical and 

sedimentological changes allows these records to be applied to archaeological data to 

provide information about the links between natural change and cultural change. The 

inferred palaeoclimatic and environmental changes at Nar Gölϋ coincide with 

considerable shifts in past human practices and habitation and indicate possible 

associations between the two systems. Past climatic and environmental variability may 

therefore have a significant relationship with the pattern of human change witnessed in 

Cappadocia, central Anatolia. This chapter combines archaeological survey data collated 

in this thesis (chapter 6) with inferred palaeoclimatic and palaeoenvironmental changes 

(chapter 5) to investigate how social systems developed alongside changes in variability 

as per the thesis aims. 

7.2. Change in palaeoclimatic, palaeoenvironmental and cultural 

relationships 

7.2.1. An overview to past climate-environment-culture relationships 

The Nar Gölϋ geochemical record indicates considerable environmental and climatic 

variability in central Anatolia for the late Pleistocene and Holocene. Itrax derived XRF 

data show pronounced shifts between wet and dry, changes in lake level and highly 

fluctuating levels of detrital influx linked into changing climate systems and localised 

environmental dynamics (including human impact). A key aspect of this project is to link 

the geochemical record with archaeological data over the longer-term perspective 



Discussion   Chapter 7                           

243 
 

(longue durée) to understand the integration between past environmental/climatic 

change and human response within central Anatolia. Lacustrine sediments in central 

Anatolia have already been used as archives to address the effects of climate on human 

development (England et al., 2008) but only for selected time periods. The Nar Gölϋ 

record, covering the last ca. 14000 years offers the chance to reconstruct climate forcing 

on societal evolution for longer time duration than has previously been attempted. Due to 

the fact that archaeological evidence may only show selected response to climatic 

change, the focus of this study is on change at the largest chrono-cultural scale to make 

sure that the overall pattern of human action can be summarised.  

Societies will often adjust with little difficulty to most natural changes, however some 

changes are of such magnitude or rarity that societies can be deeply affected by them 

(Sheets and Cooper, 2012). Vulnerability or post climatic/environmental event stress can 

be witnessed in the archaeological record and thus through comparisons of 

archaeological site survey data and Itrax derived geochemistry it is possible to highlight 

links between the natural and human worlds. Many of the conceivable human responses 

to climatic stress will not be detectable in the archaeological record. The most visible one 

that is considered within this study is the change in settlement population and site 

numbers brought about by human dominance in the landscape. 

7.2.2. Matching of archaeological periods to Itrax derived XRF data 

The study of human response in relation to climatic and environmental history must first 

identify which archaeological periods occur with climatic phases in the geochemical and 

sedimentary record. As already stated, it is important to observe the whole historical 

trajectory in order to see over-arching links between the two systems. With this in mind, 

figure 7.1 shows the long term view of archaeological cultures against the Nar Gölϋ 

geochemical data. Details of the site survey data have also been added to show where 

the periods of densest occupation lie in relation to the geochemical profiles. A discussion 
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of this figure and the implications it has for understanding the interaction between past 

populations and natural change will be dealt with in the following sections. 

7.2.3. Archaeological periods and Nar Gölϋ inferred palaeoclimate 

The linking of archaeological periods to the Nar Gölϋ geochemical record (figure 7.1) 

highlights significant shifts in habitation and human activity coinciding with periods of 

pronounced climate change in central Anatolia. A discussion of climate and cultural 

change prior to the Holocene will not be made due to the lack of archaeological data for 

the late Pleistocene but here follows an overview of the comparisons from 10,000 years 

B.P. to present day. 

Early Holocene climate (sediment units 5b, 5c & 5d), as inferred from the Ca/Sr and 

Zr/Rb geochemical ratios was moist and precipitation levels were high; this pattern of 

climate is also witnessed in other records from Turkey and the Eastern Mediterranean 

(figures 5.17 & 5.18). This period of enhanced moisture availability and favourable 

climate coincides with the development of the first sedentary Neolithic communities in 

central Anatolia, shown in figure 7.1 by the establishment of Aceramic Neolithic 

populations. It is interesting to note that the ‘Neolithic’ way of life developed later in 

central Anatolia than in Eastern parts of Turkey and the Levant (Schoop, 2005b), despite 

the establishment of climate conditions more than suitable for the adoption of the 

agricultural package promoted by other Near Eastern Neolithic populations. It is 

therefore possible to postulate a localised tradition of cultural change that has limited 

direct relation to climate, because climate amelioration (wet and warm) would have 

provided a perfect backdrop for testing agricultural subsistence practices.  
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Figure  7.1: Long-term perspective of archaeological and climatic/environmental change. Archaeological periods for central Anatolia have been placed 

alongside the Itrax derived XRF geochemical record to show links between cultural and natural change. Archaeological site survey data suggests that the 

most prolific periods of occupation occur during the EBA and IA which are highlighted by pink. Boundaries for the late Chalcolithic and Bronze Age are 

provisional given the chronological uncertainty here.
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On the other hand, however, climatic amelioration would have encouraged new 

ecosystems to develop, which were advantageous to a range of wildlife and thus would 

have allowed proficient exploitation of local animal resources. With an abundant and high 

density of possible food sources, hunter-gatherer populations would have been less 

likely to alter their subsistence strategies if times were ‘good’. Hunter-gatherer 

populations would have sustained more traditional subsistence practices as they could 

cross new environmental thresholds due to the higher water availability. Perhaps the 

process of ‘Neolithisation’ was postponed due to ability to build equally as complex 

societies from the use of only ‘natural’ resources; an argument favoured by Schoop 

(2005b). Aşıklı Höyϋk, an Aceramic settlement in Cappadocia, and close to Nar Lake, 

witnessed advanced hunter-gather subsistence practices continuing for more than 1000 

years without clear reliance on cultivated plants (Esin and Harmankaya, 1999), which 

likely relates to the stability in agreeable climate conditions. Of course, an absence of 

plant or animal domesticates does not entirely imply that they were not manipulated for 

consumption purposes but the fact that at many sites across central Anatolia there is a 

heavy reliance on ‘wild’ food sources for the Aceramic Neolithic suggests that 

domesticates played a minor role in subsistence practices. 

As Schoop (2005b) suggests, it is likely that the Aceramic Neolithic semi-mobile 

communities were dependent and thrived on the new grassland habitat that emerged 

due to the wetter and moister climate conditions that prevailed during the early Holocene. 

Turner et al. (2010) agree that the early Holocene is marked by the rapid expansion of 

grassland across the Anatolian plateau but relates the change to wetter but seasonally 

dry climate which increased the occurrence of dry-season burning of landscapes. The 

main stimulus to sustain hunter-gather ways of life may have been the rich and varied 

environmental possibilities brought about by a favourable climate state but possible 

restrictions did exist in the form of increased seasonal extremes and burning frequencies 

that may have made the shift to agriculture more difficult. It is difficult to partition the role 
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of humans from increased fire frequencies, but during the earliest Neolithic, it is likely 

that climate was the principle ‘pacemaker’ for fire activity (Turner et al., 2010). Fe/Mn 

ratios from Nar Lake for this period however signify that lake conditions were primarily 

oxic. The growth of oxygenated conditions at the lake bottom has been inferred as 

representing a phase of reduced seasonal extremes (chapter 5) and is in contrast to 

Turner’s assumptions. Perhaps the role of humans on the fire activity of the early 

Holocene has been under-stressed. 

Interestingly, during the Ceramic Neolithic where there is a reduction in moisture levels 

as indicated by reduced Ca/Sr values (figure 7.1) we also see new cultural patterns 

emerging in the archaeological record (sediment unit 5a), namely increased ritual activity 

and household autonomy (Düring and Marciniak, 2006). The Ceramic Neolithic in the 

area may represent a period of emerging domestic production and consumption but it is 

also associated with the development of the household and the breakdown of 

conservative lifestyles (Marciniak and Czerniak, 2007). The question therefore remains 

as to whether reduced moisture levels impacted upon the more ’traditional’ lifestyles that 

had been the case in the earlier Neolithic, forcing later Neolithic populations to seek new 

subsistence modes and form new relationships within the community. Boyer et al. (2006) 

suggest that increased flooding and alluviation of the Konya Basin, perhaps partially 

driven by more seasonal climatic conditions and therefore increased soil erosion had 

little effect on human occupation at the time. In fact, communities responded well to the 

spring floods which may have been an advantage to the mixed-farming communities. 

Drier and less encouraging conditions nevertheless would have meant that the 

grasslands which had sustained populations until the late Neolithic would have altered in 

character and thus would have altered the availability of abundant ‘wild’ resources. The 

scale of this social change is most evident in the settlement data for Cappadocia for the 

late Neolithic/early Chalcolithic which witnesses considerable changes. Sites appear in 

completely new areas and are much smaller in size than those that had previously been 



Discussion   Chapter 7                        

248 
 

established. Settlements such as Tepecik-Çiflik, Köşk Höyϋk and Pιnarbaşι-Bor show a 

less permanent nature to habitation (Düring, 2011) in comparison to early Neolithic 

occupations and it is speculated whether these changes were influenced by the shifting 

climate system of the time or whether driven by social practices alone. The hypothesis 

that deterioration of ecological conditions as the result of climate lead to an environment 

that could no longer support populations (Özdoğan, 1997) in the way it had previously is 

likely given figure 7.1 

The shifts in cultural practices seen during the late Neolithic are also driven by new 

economic practices and the presence of obsidian trade routes through the central 

Anatolian plains (Balkan-Atli et al., 1999), and cannot be solely determined by shifts in 

moisture availability. This helps explain way settlement sites shift in character and why 

populations become less communal in nature if the construction of society was becoming 

more driven by economic processes. However it has to be considered that a decrease in 

precipitation would have put strain on populations dependent upon natural ecosystem 

services for prosperity, likely encouraging them to adopt new measures, which in this 

case may have resulted in an increased reliance on obsidian exchange and farming 

lifestyles. A straightforward link between technological development and climate is not 

proposed but it is possible to envisage the effects a drier climate may have had on the 

shared traditions of the earlier Neolithic and facilitated the movement of people away 

from hunter-gatherer lifestyles. 

Another point to mention regarding Neolithic lifestyles is that some authors (Weninger et 

al., 2006; Weninger et al., 2009) have discussed Neolithic reactions to the 8.2 ka cal. yrs. 

B.P. event and the potential implications climatic drying had on the Neolithisation 

process. Major disruptions to Neolithic cultures in central Anatolia are believed to be 

driven by aridity around 8200 cal. yrs. B.P., and it is speculated that this climate event 

led to settlement abandonment and cultivation failures (Weninger et al., 2006) towards 

the end of the Ceramic Neolithic. The Nar Lake record shows two peaks in detrital 
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elements ca. 8303 and 8169 vys. B.P. which may be related to increased arid conditions 

but comparisons to the archaeological record (figure 7.1) reveals that similar detrital 

peaks prior this had no relation to Neolithic development so there is no obvious link 

between aridity and societal change in this instance. 

By the early Chalcolithic we see communities based around farming practices and 

economies which were dependent on the exploitation of local resources (Düring, 2011). 

Archaeological survey data suggest that site numbers increase, as do the number of new 

locations being exploited (chapter 6). This is against a backdrop of enhanced moisture 

levels as indicated by the geochemical proxies at Nar Lake (figure 7.1). The primary 

cause of settlement change at the time was likely the result of economic prosperity 

(Marciniak and Czerniak, 2007) but a developing favourable climate may have also 

promoted the stability and growth of early Chalcolithic communities, particularly if 

dependent on the growth of crops for food. An increase in regional moisture levels would 

have also allowed new areas to be agriculturally sustained thus allowing for settlement 

expansion and increased use of landscape. Thus it appears that the enhanced levels of 

precipitation may have affected population distributions in terms of increasing the ability 

to grow and expand. Agricultural development and associated societal development 

benefitted from higher levels of humidity, both in terms of climate and water availability. 

 It has been noted that in Cappadocia, the middle Chalcolithic witnesses an 

abandonment and collapse of permanent occupation in comparison to the early 

Chalcolithic (Marciniak and Czerniak, 2007). One of the reasons postulated for 

settlement collapse is believed to be the breakdown of obsidian exploitation and a 

decrease in the availability of raw materials (Thissen, 2002). There is no significant 

evidence for a major change in climate during the middle Chalcolithic at Nar Lake (figure 

7.1); stable and consistent climate conditions therefore corroborate claims that the 

middle Chalcolithic cultural decline was human led.  The end of the middle Chalcolithic 

phase however coincides with the biggest shift in lake state witnessed for the entire Nar 
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profile, which sees the start of an extreme reduction in available moisture levels and a 

decrease in precipitation levels (figure 7.1). By the middle Chalcolithic/ late Chalcolithic 

transition we see the onset of aridity which would have likely caused major challenges 

for human populations. Perhaps the parallel changes witnessed in the archaeological 

record, although not witnessed to such extend here due to poor survey coverage and the 

collation of all Chalcolithic sites into one time category (chapter 6), relate partially to the 

mid-Holocene climate degradation initiated during the 6th Millennium B.P. which would 

have certainly impacted upon the agricultural lifestyles developed during the early-mid 

Chalcolithic. 

Coincident with and partly stimulated by this climatic downturn, complex societies 

developed within the Eastern Mediterranean during the late Chalcolithic and Bronze Age 

(Roberts et al., 2011a). Rather than having a ‘negative’ effect, the climate shift 

corresponds to the start of EBA city dominance (Rosen, 2007) and the start of metal 

manipulation in central Anatolia, and would suggest a clear ‘positive’ relationship to the 

climatic stimulus (Roberts et al., 2011b). The move to a drier climate may have initiated a 

response in human populations to agglomerate and live in close proximity to each to 

combat the effects that the change in climate may have had, particularly the 

establishment of a typically ‘Mediterranean’ ecology favourable to shrub vegetation and 

lacking in woodland habitats (Roberts et al., 2011a). Interestingly, we see the biggest 

period of settlement growth and prolific occupation occurring in central Anatolia during 

the EBA at a time of highly reduced water availability (figure 7.1) and associated 

landscape evolution (Roberts et al., 2011a). It is also possible that settlement increase 

began earlier during the late Chalcolithic but because site survey data fails to classify 

Chalcolithic sites by sub-period they have had to be grouped together (chapter 6) and 

thus this limits the interpretation of late Chalcolithic habitation practices.  

Whilst the climate regime may have seemed unfavourable, EBA settlements prospered 

(chapter 6) which likely related primarily to social and political factors, but these 
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emerging centralised powers (Rosen, 2007) may have also been encouraged through 

the necessity to protect growing populations from the occurrence of drought and 

unpredictable climates. The fact that people lived well during these times may suggest a 

unique way of coping during what should have been a harsh time for those reliant on 

subsistence agriculture. Living under administrative rule and within urban centres (Rosen, 

2007) may have been a way of dealing with climatic risk and depletion in humidity. 

Settlement numbers during the MBA remain relatively unchanged even though many 

sites witness abandonment and very few new sites are inhabited (chapter 6); this is 

during what is interpreted to be a continuation in arid conditions. In fact, by sediment unit 

2 we see arid conditions worsen at Nar Lake with lake waters becoming exceptionally 

low and precipitation levels significantly decreasing as indicated by low Ca/Sr levels and 

the absence of varve formations (figure 7.1). It is also interesting to note that the start of 

the MBA and the end of EBA coincides with the development of what Nar Lake data 

suggests to be the most arid phase in central Anatolia (although there is a large dating 

uncertainty here). This transition period is renowned for being a period of collapse in the 

archaeological record (Mellaart, 1958) (see Roberts (2011b) for further information). It 

may be likely that social disarray and settlement abandonment resulted from both 

increasing drought frequency and a change in the political system encouraged by 

drought weakened communities (Roberts et al., 2011b). The role of a 4.2 ka cal. yrs. B.P. 

abrupt aridity event in the demise of EBA populations has been the subject of lively 

debate (Algaze and Pournelle, 2003; Cullen et al., 2000; Kuzucuoğlu, 2007; Lemcke and 

Sturm, 1997; Rosen, 2007; Weiss et al., 1993) but evidence in the Nar data for shifts in 

aridity are not well constrained chronologically. In reality, Cappadocia experienced a 

longer-term trend in drying that was not sudden in nature.  

The change in occupational growth from the EBA to the MBA (chapter 6) was likely 

brought about an overall sensitivity to a drier climate which ruptured local traditions and 

trade links, and was worsened by ill-effective response mechanisms. Despite the dry 
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climate challenge faced by MBA populations, settlement data outlined here would 

suggest that many societies coped reasonably successfully, as 42% of sites showed no 

change between the EBA and MBA periods (chapter 6). Societies faced the climatic 

challenge and developed well during the MBA until the LBA where there is once again 

evidence for cultural instability. 

LBA site data suggests another fall in settlement numbers and a shift in occupational 

practices, with a further 60% of sites becoming abandoned (chapter 6). There are three 

competing perspectives for the decline in Bronze Age societies. Firstly that the 

widespread settlement collapse reported for the LBA and evident in the settlement data 

here (chapter 6) is linked to the collapse of the Hittite Empire and the associated gap in 

political power that was filled by incoming ‘Sea People’ (Kealhofer et al., 2009; Roberts 

et al., 2011b; Voigt and Henrickson, 2000). Secondly that there were internal conflicts 

brought about by a reduction in urbanisation, population, trade, literacy and centralised 

authorities and thus sustainability (Kealhofer et al., 2009; Riehl et al., 2012). Thirdly that 

a phase of significant aridity and drought (figure 7.1) events hastened socio-economic 

problems (Kealhofer et al., 2009). Sustained arid periods and reduced water levels would 

have only added to the problems already created by foreign raids and increasingly would 

have put human populations under intense internal stress.  

The impact that the shift in climate may have had on populations can be seen in pollen 

diagrams from the Eastern Mediterranean (Boyer et al., 2006; Eastwood et al., 1998b). 

The LBA phase witnesses decreased forest cover and land clearance which may relate 

to human populations trying to cope with the ever changing climate conditions, and tree 

species declining in light of the drier climate. Arboreal pollen levels at Eski Acιgöl reach 

their lowest during the LBA (figure 5.17) which may relate to increased aridity and human 

impact during the Beyşehir Occupation phase (Eastwood et al., 1998b). Much of the 

effects of drier conditions on the environment were exacerbated by the actions of people 

in response to the downturn in climate and would have certainly further influenced the 
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sustainability of subsistence strategies and LBA lifestyles. Mid-Holocene human 

populations were transformed by the complex interactions between climate forcing 

events and human activities (Roberts et al., 2011b). 

It took some time before societies successfully managed to cope again with problematic 

climate changes. It is not until the late Iron Age where we begin to see another phase of 

settlement growth (chapter 6) likely encouraged by new economic and political affinities. 

In fact, the IA period demonstrates a time were cultures blossomed in the face of an 

unstable but improving climate (figure 7.1) as seen by increasing urban development and 

the inter-connectedness of tribal kingdoms (Gunter, 2012). During the later IA, settlement 

dramatically increases, and corresponds to a time of increasing precipitation levels after 

2600 cal. yrs. B.P. (figure 7.1). It could be of some significance that the height of IA 

settlement coincides with an improvement in climate and there is a remarkably close 

correspondence between a wet phase and establishment of late Iron Age, particularly 

Persian, rule after 2500 cal. yrs. B.P. 

Archaeological survey data suggest little change in settlement from the IA through into 

Hellenistic and Roman times which is a similar pattern evidenced in the climate record 

(figure 7.1) as moisture levels stabilise for these Classical archaeological periods. The 

shift away from extreme aridity though would have been beneficial to populations of 

Classical times and may relate to Cappadocia becoming an agricultural production zone 

for which evidence exists from the late Iron Age (Balatti and Balza, 2012). Other studies 

suggest that the Eastern Roman Empire was generally wet and warm for a sustained 

period (McCormick et al., 2012) which may have played some role in Cappadocia re-

establishing itself as an area of economic and strategic importance, particularly in 

Roman times. 

It is noteworthy to suggest that the best represented period of Byzantine rule, the early 

Byzantine period corresponds to a period of higher precipitation, and therefore a 
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decreased frequency of drought (figure 7.1), making climate conditions more suitable for 

greater agricultural prosperity. The numerous Arab raids that likely passed through 

Cappadocia at the end of the early Byzantine period likely put stress on Byzantine 

communities (England et al., 2008).  

With the onset of modern climatic conditions, we see short term fluctuations between wet 

and dry, with drier periods coinciding with the start of Seljuk and Ottoman rule 

respectively (figure 7.1). It is likely that settlement changes (chapter 6) during this time 

were driven by political changes but an unstable climate would have certainly put 

pressure on populations who were already under threat from instabilities in agricultural 

practices and disturbances brought about by raids and warfare. A study by White (2011) 

is important in understanding the possible linked between the environmental and climate 

history of Anatolia alongside the political, economic and social changes in the early 

modern Ottoman Empire. The focus of the study is on the Little Ice Age (LIA) climate 

event and how it triggers the Celalî rebellions that nearly brought an end to the Ottoman 

Empire during the 17th century AD. Ultimately, agricultural prosperity was delayed, in his 

opinion, by climatic crisis. In the Nar geochemical record (figure 7.1), there is little 

evidence for a major cooling trend as generally proxies do not respond to temperature 

directly but a peak in Ca/Sr around AD 1650 may relate not to heightened rainfall but 

moisture availability from increased snow-melt (a cause of the riots). On the whole, the 

Nar data suggests reduced water availability during Ottoman occupations (figure 7.1) 

and seasonal data from Nar diatoms (Dean et al., 2012) suggests reduced seasonal 

conditions implying that winters were on the whole dry. Drier conditions during the LIA 

(Roberts et al., 2012) may have coincided with cooler conditions and therefore bad 

winters. 
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7.2.4. Summary of archaeological and proxy record comparisons 

The Nar Gölϋ palaeoclimatic and Cappadocian archaeological data are on the whole 

complementary. At times of past human change we see variations in the climate record, 

thus detailing possible connections between socio-economic and political changes in the 

Holocene with the climatic changes that deeply marked the region. The Nar Gölϋ data 

indicate three major periods of climatic discontinuities that appear to at least characterise 

the archaeological record. Firstly is a wet early Holocene which coincides with 

substantial conservatism in the archaeological record and economic prosperity. Secondly, 

the trend to more arid conditions during the mid-Holocene coincides with increasing 

complexity and the development of urban lifestyles during the Early Bronze Age. This is 

interesting considering it would have been expected to see increasing social stress in the 

archaeological record during worsening climate. Thirdly, drier climatic conditions that 

persisted thereafter coincided with the height of late Holocene occupation.  

7.3. Variability in the Nar Gölϋ geochemical record and its relationship with 

cultural change 

7.3.1. Nar Gölϋ sediments as an archive of climatic variability 

When trying to understand cultural transformations in the context of shifting climate 

states it is necessary to go beyond comparing patterns of change, and focus more 

heavily on the causation of change. Of course the relations between culture, climate and 

environment are complex and causation can be difficult to demonstrate. One way of 

looking at causation over scales of centuries-millennia is to examine patterns of stability 

and instability in the climate record. This approach can be a more productive way of 

examining climatic events with cultural actions as it avoids having to directly match 

records with differing temporal resolutions (Rosen, 2007). It is not proposed here that 

cultural changes are principally related to stability in climate but that variability in climate 
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may influence or affect the way that natural change is experienced and that in turn could 

result in different socio-cultural factors or in the case of this thesis, settlement patterns. 

Climate change happens over different lengths of time, including millennia, centuries and 

decades but it is the change that happens at the smallest scale, for example year-to-year 

that people will experience most readily (Biehl, 2012). Human societies and individuals 

will remember most clearly changes in the natural world that have happened within life 

spans and those which happened to be most abrupt or different. Short-term fluctuations 

also have a more significant impact on human systems if the system is already 

weakened by longer-term climate patterns (Parry, 1978). It is therefore necessary to 

understand all climate ‘triggers’ as year-to-year fluctuations are the means through which 

longer-term change is experienced (Parry, 1978). 

From a human perspective, a shift from what is normal and expected (stable) has the 

potential to initiate a shock within the social system. People can respond to predictable 

climate changes or invariable conditions but are less likely to formulate successful 

response mechanisms in the face of discontinuity in climate. As Sandweiss and Quilter 

(2012) state, it is the ‘unknown unknowns’ that create the most problems and challenges 

to cultural prosperity if the unknowns are potentially unfavourable.   

The view considered here takes into consideration Marek Zvelebil’s (2005) idea that 

human agency and human decisions, as represented in the archaeological record, can 

be structured by present and past knowledge of the natural world. If people’s constructs 

of climate are promoters of cultural transformation then an unstable climate or sudden 

event that had not been socially or individually understood previously may represent a 

larger ‘negative’ factor within cultural frameworks. Climate which was stable and 

‘understood’, even that which was extremely dry or wet, could be incorporated into 

human habits and practices as has been argued by Feynman and Ruzmaikin (2007) 

regarding the adoption of agricultural practices. Vulnerability of past people to climate 
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change is not a straightforward relationship with exposure, it also relates to people’s 

perception of the climatic risk (Berkes, 2007). If that climatic risk was characterised by 

surprises then it would be hard to build effective perceptions of what that risk entails, 

especially without any other cultural memory of the risk. Only if the climate risk is 

understood can people become resilient to uncertain times and thus periods of unstable 

climate, if sudden and unprecedented may likely cause societal adaptation problems. 

With this in mind, the Nar Gölϋ geochemical proxy record, which records climatic change 

at yearly scales, can be examined in terms of climatic stability to see how periods of 

more predictable climate relate to the archaeological history of central Anatolia. 

Holocene climatic and environmental variability, as recorded in the Nar record, have 

been analysed in ‘time windows’ or selected temporal intervals along the core sequence 

to identify periods of stable and unstable conditions. The time windows selected for 

investigation represent 500 varve year intervals, and have been constrained by non-

varved and un-dated sections. Table 7.1 shows the mean value, standard deviation and 

coefficient of variance computed for ten 500 varve year time windows using the Ca/Sr 

and PCA axis 1 Itrax XRF data. The Ca/Sr profile has been used because the ratio proxy 

represents effective moisture balance within Nar Lake and is thus most likely to relate to 

changing climatic conditions. PCA axis 1, as an indicator of clastic input into the lake has 

also been used as it may relate to changing environmental condition, including 

catchment disturbance. In order to quantify variability in the geochemical proxies, the 

coefficient of variance (CV) for Ca/Sr and PCA axis 1 was calculated; a larger CV value 

means greater dispersion in the dataset and therefore is used to show the extent of 

variability in relation to the mean. The standard deviation of each dataset was divided by 

the mean in order to calculate the coefficient of variance; this allows for comparisons of 

time windows with vastly different units of measure and means, and allows for a 

discussion regarding the level of variation for each time window. CV requires positive 
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values to avoid being misleading therefore PCA scores were adjusted by adding a 

constant of 1 to circumvent using negative numbers. 

Table 7.1 and figure 7.2 highlight changes in variability in the Ca/Sr and PCA records as 

inferred from the coefficient of variance values and show changes in the mean state. 

High average values for the PCA axis 1 data are evident during the Ceramic Neolithic 

(1.03) and from the late Iron Age up until Ottoman times (above 1.39), indicating high 

clastic in-wash during these periods. High average values for the Ca/Sr data are 

documented for the Aceramic Neolithic (22.03) and middle Chalcolithic (25.54) 

suggesting that these periods were the wettest on record. The calculation of variance 

(CV %) for each proxy record suggests that the most stable and therefore least variable 

phase coincides with sediment unit 4 (1161.2-1428.2cm) – variance of 15% (PCA) and 

13% (Ca/Sr). Highest variability and therefore unstable conditions are most evident for 

the top two time windows associated with sediment unit 1 (0-592.7cm). Variance 

increases significantly within the late Byzantine, Seljuk and Ottoman time window to 72% 

(PCA) and 59% (Ca/Sr) which are the highest values for the entire record for both 

proxies. An increase in variability to this degree would be expected during times of acute 

climatic fluctuations and heightened terrestrial disturbance.  
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Table  7.1: Mean value, standard deviation (std) and coefficient of variance (CV) for Ca/Sr and PCA axis 1 selected time windows. Grey cells highlight 

intervals with higher variability. Std and CV values have not been computed for unit 2 because the sediment is not varved here and dates are uncertain. 

    
PCA axis 1 

(proxy for clastic in-wash) 

Ca/Sr ratio 

(proxy for moisture balance) 

500 varve 

year time 

window 

(vys) 

 

Associated 

depth 

interval (cm) 

 

Associated 

sedimentary 

stratigraphic 

unit 

Associated cultural 

phase(s) 

Average 

value 

(PCA 

score) 

Standard 

deviation 

(std) 

Coefficient 

of variance 

(%) 

Average 

value 

(Ratio 

value) 

Standard 

deviation 

(std) 

Coefficient 

of 

variance 

(%) 

500-1000 135-260 1 
Late Byzantine, Seljuk and 

Ottoman 
1.73 1.24 72 7.97 4.72 59 

1500-2000 366-490 1 Roman and Early Byzantine 1.71 0.98 57 5.22 2.54 49 

2100-2600 499-596 1 
Late Iron Age and 

Hellenistic 
1.39 0.77 55 5.71 2.09 37 

2700-3200 613-720 2 

Mainly LBA. Possibly also 

MBA and Early & Mid Iron 

Age depending on dating 

0.86 - - 4.67 - - 

4500-5000 750-871 3 EBA 0.84 0.17 21 4.18 1.95 47 

5500-6000 1000-1061 3 Late Chalcolithic 0.81 0.14 17 6.99 1.99 28 

6700-7200 1211-1294 4 Middle Chalcolithic 0.61 0.09 15 25.54 3.33 13 

8200-8700 1454-1514 5a Ceramic Neolithic 1.03 0.54 52 8.47 1.84 22 

10000-10500 1713-1785 5b  Aceramic Neolithic 0.71 0.13 18 22.03 4.45 20 

13000-13500 2064-2122 7 Pre-Neolithic 0.67 0.14 21 10.20 4.64 45 
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Figure  7.2: Average values and CV (%) per time window plotted alongside archaeological survey data and periodisations. Higher variability as inferred 

from the CV data for PCA axis 1 is evident during Ceramic Neolithic and Iron Age-Ottoman times. Higher variability for Ca/Sr is evident during Pre-

Neolithic, EBA, and Roman-Ottoman time. 
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There is little doubt that the calculations of variance for each time window suggest that at 

least four of the ten time slices have experienced relatively instable climate conditions. 

Changes in the Ca/Sr ratio through the sedimentary record at Nar principally reflects 

changes between wet and dry and therefore increased variability relates to higher 

amplitudinal shifts in climate state and regional moisture balance. Higher climatic 

variability is evident during the Late Glacial period (45%) (figure 7.2) which is likely the 

result of the interplay between interstadial and stadial periods (see Abrantes et al., 2012 

for summary). Higher climatic variability is also evident during the Early Bronze Age 

which has a coefficient of variance value of 47% (figure 7.2). The highest CV 

percentages are associated with Roman and post-Roman cultural periods (49 and 59%). 

The relatively drier climate state for EBA and post Roman times, and heightened 

variability suggests a very challenging climate state during these periods. Not only were 

conditions arid but they were unpredictable and could change quite significantly in a 

short space of time. 

Higher variability levels for the Ca/Sr record for the EBA may have some relation to the 

type of laminae formation witnessed, which at this time may not be annual in nature and 

are dominated heavily by thick organic rich deposits. A rise in organic matter within 

laminated sections could signify deposition by more intensive flooding (Martín-Puertas et 

al., 2009) in the locality of Nar Lake which may explain why the EBA is associated with a 

more variable Ca/Sr record if certain periods experienced higher-energy water influxes. 

A higher Ca/Sr CV% during the EBA though is surprising given the lack of visual 

fluctuations in the Ca/Sr profile for this time (figure 7.2). A small shift in the mean state 

during the associated time window could be one likely explanation for the pattern 

witnessed. Whilst attempts were made to avoid time windows that covered significantly 

different mean states or peaks in the data, the length of the time window (500 vys) and 

dating problems, in this case, resulted in the need to overlap the time segment with a 
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small adjustment in mean state. Therefore, high variability levels for the EBA may be 

deceptive. 

The relationship between climatic variability and archaeology is of interest during unit 1 

where we see the biggest amplitudinal shifts in Ca/Sr ratio. Higher variability levels 

during Roman and early Byzantine phases coincide with a generally high level of 

occupation in Cappadocia (chapter 6) and a flourishing agrarian community (England et 

al., 2008) suggesting that greater shifts between wet and dry were relatively irrelevant to 

the prosperity of human populations. During increased climatic variability from late 

Byzantine times we see considerable changes in site number which show an overall 

decline in habitation after the Byzantine period (chapter 6). It is likely that habitation 

changes related primarily to the impact of multiple invasions and internal religious reform 

known as Iconoclasm (Ousterhout, 2005). However, due to the unpredictable nature of 

climate during late and post Byzantine times it is easy to envisage communities put 

further under stress by the prevailing climatic conditions. Given the political upheavals of 

the time it is likely that such climatic conditions only exacerbated social instability. 

The following two periods of Seljuk Turk and Ottoman rule saw central Anatolia move 

between the hands of various political leaders and it is likely that the Arab Muslims who 

were used to drier climates took advantage of periods of aridity by making consistent 

attacks upon Byzantium with the hope of taking control. It is witnessed in pollen records 

from the area (England et al., 2008) that agrarian land was abandoned sometime around 

the start of incursions from Arab populations and it may be that both changes in the 

variability in climate and warfare resulted in this fatal damage to subsistence practices. 

Economic disruption, enslavement of populations and interruptions to agricultural life 

(England et al., 2008) are commonly assumed consequences of the Arab incursions but 

little has been discussed relating to the impact of increasing climatic variability. 



Discussion   Chapter 7        Chapter 6                 

263 
 

Increasing variability seems to have had less of an impact on later Medieval and 

Ottoman populations who may have been discernible to the unstable nature of climate. 

By this time, communities would have been aware of the issues faced during 

unpredictable climate conditions and built strategies to deal with this. Agricultural 

prosperity during the centralised and westernised Ottoman state (England et al., 2008) 

suggests that populations were well adapted to the unstable climate regime. White (2011) 

however argues that agricultural prosperity and intensification was delayed as a result of 

unfavourable climatic conditions therefore it is interesting to consider the role of 

increasing climatic variability on landscape ecology and land-use. Agricultural strategies 

may have been affected by the less stable climate regime, particularly if the level of 

instability related to increased seasonal variation. The role of seasonality cannot be 

discussed in detail without finer detail investigation of the varve deposits but seasonality 

may have certainly played a large role in determining fluctuations between wet and dry, 

and thus impacted upon agricultural production. Well defined summer and winter 

laminae during unit 1 imply a clear distinction between a cooler wet and warmer dry 

season and therefore marked distinctions in yearly moisture availability. It is also 

possible that larger amplitudinal shifts were more noticeable against a back-drop of 

generally dry climate (7.97 Ca/Sr average) which increased the effects of an unstable 

climate, particularly if water availability decreased. 

7.3.2. Nar Gölϋ sediments as an archive of human impact during the 

Holocene 

Changes in the rate of sediment influx through the sedimentary record at Nar Lake 

reflect changes in climatic and/or land-use forcing mechanisms. The observed changes 

in PCA axis variability likely derive from increased catchment sediment supply or from 

within-lake redistribution processes. Periods of increased clastic variability during 

sedimentary sub-unit 5a (1428.2-1606.2cm) (52%) and unit 1 (0-592.7cm) (above 55%) 
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(figure 7.2) coincide with the development of Ceramic Neolithic and late Byzantine-

Ottoman populations; with the whole duration of unit 1 also corresponding with Persian, 

Hellenistic, Roman and early & mid-Byzantine rule. During these cultural periods, 

archaeological survey data (chapter 6) suggest substantial expansion in human 

occupation and activity at and around Nar Lake. The role of anthropogenic factors on 

increased detrital input is therefore possible given the coincidence of heightened human 

activity close to Nar Lake and the proliferation of sediment influx instability. Here, the 

sediment variability data may therefore be used to evaluate the role of human presence 

in changing the sediment dynamics of the lake and catchment over the Holocene. 

The level of sediment influx variability during sub-unit 5a (9190-8046vys) and unit 1 

(2589-0vys) is unprecedented and may reflect the impact of amplified disturbance from 

human populations who potentially affected landscape stability and the sensitivity of soils 

to climatic changes. Increased land use by human populations during sub-unit 5a and 

the Ceramic Neolithic relates primarily to mining and obsidian resource abstraction 

activities conducted within very close proximity to Nar Lake (chapter 6) where lithic 

resources were exploited for the purpose of exchange (Balkan-Atli and Binder, 2012). 

Neolithic activities such as sedentary behaviour, agriculture and animal husbandry 

(Düring, 2011) also likely led to increased environmental instability at the time. In the late 

Holocene (here associated with sediment unit 1), catchment disturbance may have been 

influenced heavily by human factors rather than climatic or natural agencies as 

landscape change is believed to be largely driven by cultural actions (England et al., 

2008). Catchment changes at this time are said to relate to increased agricultural 

production from Hellenistic times onwards in central Anatolia where olive plantation 

becomes very fashionable under Classical rule (Mitchell, 2005) and much of Cappadocia 

became agrarian in nature until the establishment of the Turkish Republic (England et al., 

2008). The presence of rock-cut features on the edge of Nar Lake (figure 7.3) is also 

testament to the increased use of the area by Christian populations during the late 
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Holocene. Times of decreased landscape instability have been suggested to relate to 

times of economic stress and social upheaval as seen during the Arab invasions 

(England et al., 2008) but more generally would relate to a reduction in human 

disturbance processes, evidenced here during the middle Chalcolithic (figure 7.2; 

chapter 6). 

 

Figure  7.3: Photo of anthropogenic rock-cut features within the Nar Lake catchment. 

Human-induced clearing of vegetated areas for economic and subsistence use, and as 

the result of population expansion may have increased the likelihood and intensity of 

water runoff from the catchment (e.g. Dearing, 2008) and therefore led to greater levels 

of terrestrial input into the lake. Climate parameters for both sub-unit 5a and unit 1 

suggest relatively dry conditions on the whole (chapter 5) rather than higher precipitation 

levels; drier times would have also led to soil instability hazards through desiccation 

which may have been exacerbated by human presence and seasonal extremes. If higher 

clastic input is associated with generally dry and variable conditions climatically (units 5a 

and 1) (figure 7.2), but not heighten during increasing aridity (e.g. units 2 and 3) and high 
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amplitudinal changes between wet and dry (e.g. units 3 and 7) (figure 7.2) then it can be 

hypothesized that anthropogenic effects are indeed greatly responsible for the very high 

allochthonous variability recorded for sediment sub-unit 5a and unit 1. 

Peaks in the PCA axis 1 record (which reflects changes in both Ti & Fe) may also result 

from volcanic material being deposited within the lake system. The origin of increased 

detrital variability remains unclear as unstable conditions during sub-unit 5a also occur 

during a period of proposed volcanic activity in central Anatolia (Hamann et al., 2010; 

Zanchetta et al., 2011). It has been argued using Neolithic illustrations that the volcano 

Hasan Dağ (Mellaart, 1993) which is situated close to Nar Lake was active during 

Ceramic Neolithic times, and was therefore potentially erupting at a time of increased 

allochtonous input into Nar Lake. The presence of Göllϋ Dağ and Nenezi Dağ (figure 7.4) 

near to Nar Lake also implies that a volcanic origin for increased detrital variability is 

possible. Nearby Eski Acιgöl Lake documents tephra deposits dating to around 9.0 cal. 

yrs. B.P., as well as others between the late Pleistocene and mid-Holocene (Roberts et 

al., 2001) suggesting noticeable volcanic activity within Cappadocia during enhanced 

early Holocene clastic in-wash at Nar Lake. Unfortunately, no definite tephra horizons 

have been identifiable in the Nar record to date but micro-faulting and disruption to 

laminations during unit 5 sedimentation may be linked into increased landscape 

movement which in turn could relate to volcanism or seismic activity, and thus greater 

detrital flow as a result of tectonic influences. 

The abrupt subsequent stabilisation of sediment in the Nar catchment from ca. 8046-

2600 varve years B.P. which likely relates to reduced human presence in the vicinity of 

the lake (chapter 6) and a reduction in human impact (mining, deforestation, pastoral and 

agrarian activities) is also of interest. Episodes of higher human occupation during mid-

Holocene times (mainly EBA) (figure 7.2) show only a weak influence on sediment 

influxes, indicating either limited environmental impact/and or a more ‘buffered’ 

environmental system at this time. The mid-Holocene period is characterised by 
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increasing aridity which does not appear to have greatly impact upon the record of 

environmental variability. 

 

Figure  7.4: Photo highlighting the closeness of Nenezi Dağ volcano to Nar Gölϋ (volcano is 

situated at the back of the photo to the north of Nar Lake, photo looking north-west). 

Nevertheless, despite potential volcanic and climatically induced landscape disturbances, 

there appears to be a relationship between past cultural actions and past catchment 

instability. Sediment influxes are most noticeable during sub-unit 5a and unit 1 and 

appear to be in response to specific human changes occurring within the lake catchment.  

Lacustrine response to changes in detrital input, and therefore landscape stability 

suggest that at times of increased human presence in the vicinity of Nar Lake during 

Ceramic Neolithic and post late Iron Age times, the degree of human impact increases in 

line with increased occupation. Erosional change explicitly associated with 

anthropogenic land-use practices produce a destabilised soil surface and increased 

erodability (e.g. Chiverrell, 2006) that is picked up within the Nar Lake geochemical 

record. This allows assumptions regarding the role of human impact on landscape 
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stability and long-term environmental change within Cappadocia to be made. Detrital 

variability at Nar is a suitable data source for examining the magnitude of human impact 

on the environment during different occupational periods, with significant anthropogenic 

effects occurring from as early the 9th millennium B.P.  

Further work at Nar Lake includes the use of faecal sterols to provide a record of human 

occupancy through time to help confirm the presence of past communities around Nar 

during heighted clastic variability. The study would be similar to that undertaken by 

D’Anjou et al., (2012) to distinguish between natural anthropogenic factors of lake 

geochemistry and environmental impact.  

7.4. Evolutionary adaptive change, Cappadocian cultural trajectories and 

the Nar Gölϋ record 

7.4.1. Theoretical framework 

It is important to evaluate, within a selected spatial and chronological framework, aspects 

of the archaeological record (e.g. changing settlement patterns) that may offer evidence 

of human choice and decision making processes that arise as a reaction to 

climatic/environmental change (Asouti, 2009). The question of socio-economical 

adaptation and adjustability, as identifiable in the archaeological record, is therefore 

examined here in light of the variable and longer-term climatic changes documented 

from the Nar Lake geochemical record. A ‘resilience theory’ conceptual framework 

(Redman, 2005; Redman and Kinzig, 2003) is used to assess and characterise the 

changing periods of human occupation and coincident climatic changes. Concepts of 

panarchy and adaptive cycles (Gunderson and Holling, 2002; Vaneeckhout, 2012) will 

help to describe the changes in socio-economic systems. The use of this whole systems 

approach may be viewed with caution given concerns of resorting too heavily on 

Processual ideas of systemics (Weiberg, 2012) but given the positive and socially 
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integrating nature of the resilience framework it enables a nuanced view of history in 

close context with developing climatic conditions as per the thesis aims.  

‘Resilience theory’ seeks to explore the source and role of change and how it relates to 

systems that are resilient and adaptive (Holling and Gunderson, 2002). Further details of 

resilience theory can be found in chapter 2 of this thesis or in Redman (2005). 

Adaptation cycles are a resource for integrating observations and interpretations in a 

formal way. Linking archaeology and palaeolimnological records using adaptive cycles is 

therefore exploratory in nature but may highlight the interaction of climatic variability and 

environmental response with periods of human activity in Cappadocia, for the Holocene. 

 In a panarchical sense (Gunderson and Holling, 2002), the level of change for 

Cappadocia happens at two frequencies, the meso (decadal-centennial) and macro 

(centennial-millennial), with meso scale nested cycles articulating into four macro scale 

relationships. The presence of four different threshold states and shifts into steadier 

social systems is consistent with the ideas of adaptive cyclical behaviour and complex 

systems development, suggesting that the concepts of adaptation and resilience are 

appropriate for this study. The human socio-economic trajectory for Cappadocia, as 

viewed in terms of adaptive cycles can be seen in figure 7.5.  

7.4.2. Macro scale adaptive behaviour in Cappadocia 

The evidence from archaeological survey data (chapter 6) and climatic and 

environmental variability parameters (this chapter) suggest that one macro-scale 

adaptive cycle can be attributed to the development of Pre-Neolithic (mostly 

Epipalaeolithic) societies up until the Ceramic Neolithic (figure 7.5). Over this time period 

it can be suggested that the establishment of moist and warm climatic conditions, and 

relatively stable catchment systems (this chapter) following the Younger Dryas cooling 

event (commencement of sediment unit 5) allowed for the establishment of successful 

hunting and gathering strategies by Pre-Neolithic populations. This quickly led into a 
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phase of societal development (first α stage) encouraged by the broader-based diets and 

mobility of Holocene hunter-gatherer lifestyles (Baird, 2005b). The flexibility brought 

about by ameliorating climatic and environmental conditions led to a greater potential 

amongst Pre-Neolithic populations to exploit the diverse range of wild resources and 

increase their buffering capacity or resilience to change. The low level and organisation 

of habitation in the Pre-Neolithic (chapter 6), is consistent with the Ω and α phases of the 

adaptive cycle where investiture in different food sources, the formation of new societal 

relations, and the growth in flexible living behaviours (Baird, 2012; Düring, 2011) allowed 

for movement within the cultural system and therefore increased the resilience of 

communities to change events. 

As hunter-gather communities began to acclimatise to the shifting prosperity, this led 

towards more sedentism and organisation of village life (chapter 6), which was also 

encouraged by the abundance of obsidian outcrops within southern Cappadocia which 

offered a new means of capital (Balkan-Atli et al., 1999). This growth phase (first r stage) 

links into periods of expansion in resource exploitation and habitation reorganisation 

during the Aceramic Neolithic (Düring, 2011; Özdoğan et al., 2012); a time when 

predictable and dense resources were produced by the people themselves rather than 

provided for by nature. This change in social organisation occurs against a back drop of 

low climatic variability and relatively moist and warm climatic conditions (this chapter). 

During this r phase, external influences (climatic disturbances) decrease in visibility due 

to the high level of resilience within communities and the positive impact climate likely 

had on populations. Social development, for a time, was not constrained by climate 

parameters or human actions. Times were good and there was no climatic or social 

mechanism for a conscious change in subsistence practices. The postponement of ‘truly’ 

agricultural lifestyles within central Anatolia at the time (Schoop, 2005b) was likely the 

resulting factor of climatic and social stability which allowed for the continuation of 

successful hunter-gather subsistence practices. 
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Figure  7.5: Four medium scale adaptive cycles of social and climatic relationships that can be 

identified from archaeological and palaeolimnological geochemical records of this thesis. Image 

adjusted from Rosen and Rivera-Collazo (2012). 

By the early Ceramic Neolithic, there is increased sedentary behaviour, associated 

growth in population, intensification of the productivity of exploited sources and 

investiture in ritual behaviours (Özdoğan et al., 2012). This rigidity in culture, 

conservatism and increasing expansion of resource extraction were sustainable for a 

time but became less sustainable as climatic conditions became drier (chapter 5) and 
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soils were beginning to destabilise (this chapter). The change in socio-economic 

pressures may have also encouraged greater investiture in plant cultivation and 

husbandry (Marciniak and Czerniak, 2007), putting further pressures on the landscape 

and soil stability. The decrease in mobility, increase in landscape disturbance, 

pronounced exploitation, inter-connectedness of villages and growth in settlement 

(chapter 6 & this chapter) are all consistent with a K phase in the adaptive cycle. 

Conservative efforts would have been needed to maintain the level of productivity seen 

only a few centuries before and may explain why there is no major restructuring of 

cultural practices and increasing conservatism during the early Ceramic Neolithic. These 

efforts would have been made more fast moving in light of the increased risk and 

vulnerability from variable landscape conditions, and accentuated by a down-turn in 

climate (chapter 5). The natural pressures exerted on later Neolithic populations did not 

trigger a change in culture but were likely perceived more readily at a time when 

resilience levels were declining. 

The extreme rigidity in cultural norms that had developed by the late Ceramic Neolithic 

meant that communities became increasingly vulnerable to the impact of a drier climate 

state and exerted further pressure on an already down-graded landscape (this chapter). 

As moisture availability decreased, hunter-gatherer type resource exploitations of a 

varied landscape would have been less viable and the flexibility in exploitation and 

subsistence strategies lessened. The pressures place on late Neolithic people may have 

manifested themselves with the symbolic behaviour of communities which often referred 

to symbols of death or violence (Erdogu, 2009). Towards the end of this cultural phase, 

the response of communities was to initiate new cultural practices to become more 

adaptable to the ‘not so normal’ climatic and environmental perturbations. In this case, it 

is postulated that natural change was a strong influence on social departure. Rather than 

investing more in social connections or fully adopting cultivation as a major subsistence 

strategy (a high risk option), late Ceramic Neolithic people developed new cultural 
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trajectories like living at the household level with greater emphasis on territoriality 

(Marciniak and Czerniak, 2007). The heavy exploitation of obsidian though continued, as 

did the growth of occupation in Cappadocia (chapter 6) suggesting that land-use 

organisation was little effected by the change in adaptive strategy. 

It is therefore possible to view a new positive phase of societal evolution initiated towards 

the end of the Ceramic Neolithic and developed during the early Chalcolithic which was 

encouraged by the need to increase societal resilience. The early Chalcolithic appears in 

line with the Ω stage of the adaptive cycle as there is a ‘release’ type reorganisation into 

a new social system which evolved around the intensification of individualism within and 

between communities, new symbolic expressions (Erdogu, 2009), a focus on landscape 

domestication through cultivation and herding practices, and a change in economics 

(Marciniak and Czerniak, 2007). Expansion into new settlement areas is also noticeable 

(chapter 6) which is likewise consistent of a release phase as significant energy was 

made available by new forms of settlement in previously under-occupied regions 

(Marciniak and Czerniak, 2007). Climatic conditions at the time were favourable 

(particularly wetter) and the influx of detrital components into Nar Lake decreased 

(chapter 5) suggesting less intensive exploitation of the Nar catchment. The amelioration 

in climate was advantageous for new opportunities to develop and for people to take 

advantage of the new system characteristics. This period of societal re-adjustment 

stemmed from a long period of social rigidity and connectedness that evoked a change 

to more individual behaviours, and at the same time towards greater social complexity 

and innovation. 

 After around 500 years of prosperity settlement numbers decline (chapter 6), and the 

impact of people on the Nar landscape is reduced (this chapter). This probable decline in 

occupation and land-use but sustained social complexity during the middle Chalcolithic 

(chapter 6) suggests that social reorganisation was not a stable process and that the 

growth of new systems was likely fragmented. A switch in climatic conditions at the end 
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of the middle Chalcolithic towards declining moisture availability (chapter 5) would have 

certainly played a large factor in social development and it is possible to postulate that 

settlement abandonment and a slower level of growth were related in part to the 

worsening climate state. Most scholars (e.g. Marciniak and Czerniak, 2007) promote a 

lack of economic prosperity as the cause for settlement change during the mid-

Chalcolithic. Economic organisation and natural influences helped to maintain a level of 

lower growth and prosperity which has resulted in the middle Chalcolithic being seen 

here as a continuation of the Ω phase. 

The late Chalcolithic, which had some new cultural preferences (e.g. enclosure walls and 

monochrome potteries) in comparison to earlier Chalcolithic communities (Arbuckle, 

2012; Düring, 2011) can be seen as the second significant period of societal 

reorganisation (α phase). It has been suggested that the gradual change in socio-

economic status of late Chalcolithic groups was a human response to climate change of 

the mid-Holocene (Baird, 2012). The Nar record suggests a generally degraded and 

transformed climate state that was on the whole arid during the late Chalcolithic (chapter 

5). This synchronism though would point to a rather positive effect on central Anatolian 

populations as there is a rise in settlement numbers (chapter 6) and a growth in semi-

pastoralist lifestyles (Gülçur, 2008; Schoop, 2005a). By the end of the late Chalcolithic 

there is a new wave of flourishing urbanism, crop agriculture, metal manipulation and 

trade (Gülçur, 2008; Roberts et al., 2011b; Yakar, 1985) that imply a renewed period of 

innovation and a clear trajectory of development. The late Chalcolithic in central Anatolia 

remains relatively poorly investigated (Düring, 2011) though and generally is only 

understood from a handful of archaeological excavations (e.g. Can Hasan, Haşhöyϋk 

and Firakin) making any inferences made here sceptical. However, organisational 

structures were definitely becoming more elaborate and economic sectors were 

advancing which would identify the late Chalcolithic as a clear reorganisation phase. 
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 EBA cultures within Cappadocia are similar to the (r) stage of the adaptive cycle as we 

see a growth of social structures and increasing connectedness which result in 

agricultural intensification, internal specialisation, hierarchical organisation and 

nucleation (Yakar, 1985). The relationship between climatic stimulus and cultural change 

at this time seems to show incredible social ingenuity to cope with the degrading climatic 

conditions as increasing complexity in the archaeological record coincides with a 

reduced regional moisture balance (this chapter). It is also important to note though that 

climate variability at this time may have been heightened (this chapter), and seasons 

may have been more extreme suggesting that climate changes could have been less 

predictable. It is suggested here that the increased reliance on community relations, 

growth in trade networks and lack of individual-control (Yakar, 1985) might relate to the 

choice to build an integrated system that could work against the stress brought about by 

degrading climate in the hope of increasing consumption and capital. This was the EBA 

way of coping and trying to raise the standard of living against a setting of tentative 

unfavourable climate. 

The boom that was the EBA, culminated into a well-populated, highly settled (chapter 6) 

and regional connected MBA during what is inferred as sustained dry climatic conditions 

(K stage) (this chapter) (note the chronological uncertainty here). The reduction in new 

settlement sites and the strong sense of settlement continuity (chapter 6) are similar to a 

conservation phase in the adaptive cycle where it would be expected to witnesses a 

reduction in growth and an attempt to preserve the prosperity that was propagated 

throughout the r phase. Populations were forced into lifestyles that had been initiated in 

the EBA and thought to be legitimate due to the wealth increases but were hard to 

sustain. Regional trade, urban interaction and increasing investment in productivity was 

directly linked to a socially driven narrowing of lifestyle options that reinforced the need 

for more storage and politically controlled social security (Fairbairn and Omura, 2005). 

The fact that food distribution strategies and greater administrative control is evidenced 
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for the MBA period (Fairbairn and Omura, 2005) suggests that increasing effort was 

placed upon stability and maximisation of sub-systems, which in turn possibility related to 

the extreme aridity that was prevalent at the time and an attempt to mitigate the effects 

of drier climatic conditions.  

The attempt to hold out within the K phase continued into the LBA but an inflexibility of 

social practices, as well as shifts in political control brought about a rigidity in lifestyles 

that decreased systems resilience. In light of the LBA being the driest period on record 

(chapter 5) (keeping in mind dating issues), it is postulated that climate pressures were 

greater at this time when resilience levels were at their lowest. The increase in fortified 

sites and a shift in settlement practices (chapter 6) principally relate to changes in the 

political realm but it is possible that extreme aridity was an added stress to increased 

internal conflicts and a weak central government (Yakar, 1993). The cumulative impact 

of practices and decisions, climate change, encouraged unsustainable behaviours and 

political disruption was systems failure towards the end of the LBA and during the early 

Iron Age (Dark Age). The release into a new socio-economic system at this time (third Ω 

phase) was a way of coping with the changes occurring in both the natural and political 

worlds, and related to a decrease in resilience, likely brought about by the inflexibility of 

MBA/LBA lifestyles and collapse of centralised state control. It is hypothesized here that 

that need to restructure the social system derived not from human agency but mainly 

from a failure of behaviours and are not consistent with resilience transformation. 

Nevertheless, as is expected from the adaptive cycle principle, socio-economic systems 

reorganised through the establishment of Iron Age cultures. Whilst occupation levels 

during the early Iron Age remained relatively low (chapter 6) as communities begun to 

reconceptualise social directions (Ω stage), the middle Iron Age sees an increase in 

settlement associated with Phrygian rule and re-colonisation of areas abandoned during 

the LBA (chapter 6). This is consistent with a reorganisation phase in the adaptive cycle 

(third α stage) and highlights the extension in urban development and sedentary 
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behaviour that stemmed from a social memory of the positivity of settlement expansion 

from the EBA. At the same time, a slightly increased moisture balance following the early 

Iron Age (this chapter) allows the tentative suggestion of an interconnectivity between 

social restructuring and climatic conditions. The directional change to more favourable 

climatic conditions and re-investiture in landscapes contributed strongly to help promote 

and stabilise socio-economic conditions. 

The significant level of occupation reached by the late Iron Age (Persian) and Hellenistic 

periods (chapter 6) and the high investiture in territory linked to political control (Mieroop, 

2007; Sağdıç, 1987; Van-Dam, 2002) are all consistent with a growth (third r) phase of 

the adaptive cycle. This investment in the landscape, combined with no major 

restructuring from the middle Iron Age, reflects a period of increasing exploitation and 

growth in social capital. The slight reduction in aridity (this chapter) would have eased 

the threat of climatic stress and made communities’ less vulnerable to the impact of 

deterioration in climate forcing no energy loss as the result of climate change. The 

increased presence of people and a greater demand on the environment created a new 

situation of landscape vulnerability (this chapter) that would have put pressures on 

productivity and exploitation, forcing greater investiture in maintaining capital. In this 

case, humans may have built social systems that exacerbated rather than mitigated 

potential hazards by socially conditioning the landscape around them (Nelson et al., 

2012).  

By the Roman and early Byzantine periods, exploitation reaches its maximum as people 

become heavily involved in agricultural production (Van-Dam, 2002) and settlement sites 

continue to increase in number (chapter 6). The anthropogenic impacts of agrarian 

subsistence strategies appear to relate heavily to increasing erodability as evidence 

within the Nar catchment clastic record (this chapter). The impact of growth and 

expansion of cultivation would have been felt most noticeable on soil stability and 

condition within the landscape. The potential that could be extracted from the soils would 
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have been reduced, and therefore to increase growth, further time and investment would 

have been required to maintain expansion and wealth. A period of sustain intensification 

and landscape alteration are features of the K phase and reflect a long-period of lifestyle 

conservation and social investment in subsistence systems. Surprisingly, this is against a 

backdrop of increased climatic variability and unstable precipitation levels (this chapter). 

It has been suggested that winter conditions in Cappadocia at the time were ‘harsh’ and 

snow cover was common (Van-Dam, 2002). Despite limitations to winter productivity and 

a less predictable climate regime, agrarian communities flourished (Van-Dam, 2002) and 

the agricultural landscape appears to have been maintain at least up until AD 670 

(England et al., 2008). The seemingly well-ordered cultural landscape was an important 

aspect in economic rigidity which was not broken until raids by Arabs during mid-

Byzantine times (England et al., 2008). 

Whilst it is difficult to relate climatic/environmental parameters and socio-economic 

development at a time when complexity in social systems was high, the agrarian 

landscape characterised during Roman and early Byzantine times was maintained until 

the impacts of land use and soil erosion decreased systems resilience. Landscape 

degradation (this chapter) likely had negative consequences on social development and 

the fragility of the system resulted in another ‘release phase’ (fourth Ω phase) in the 

adaptive cycle by the mid-Byzantine period. The influence of attacks by Arab forces likely 

also encouraged the move into the next adaptive cycle as communities needed to drop 

to a lower level of living to help combat and adapt to the changing political situation 

which likely brought about many disturbances in the socio-economic sub-systems. A 

decrease in settlement numbers (chapter 6) and damage to the agrarian economy 

(England et al., 2008) no doubt related to the ensuing conflict and environmental 

instability as a shift to wetter climate conditions at the time implies that climate change 

was not a limiting factor. On the other hand however, the increase in climatic variability 
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and dramatic shift between dry and wet at the time (this chapter) may have been of 

some significance even though conditions were generally improving.  

According to the Nar Lake pollen record, it took around a century for the agricultural 

landscape to re-establish (England et al., 2008). This is likely related to two processes; 

firstly that the landscape was given time to recover after extensive use during Roman 

and early Byzantine times and a reorganisation of the agrarian and pastoralist 

communities during the late Byzantine period (α phase). Once investiture in Cappadocia 

re-emerged under late Byzantine rule, there appears to be cultural growth and expansion 

under Seljuk Turk and Ottoman control. The Seljuk and Ottoman periods were phases of 

recovery and increasing resilience (r and K phases respectively) in the face of 

challenging climatic conditions which were very variable and relatively dry (this chapter). 

At the long-term scale, both the Seljuk and Ottoman phases appear little affected by the 

unpredictability in climate. Increasing expenditure in the landscape once more though 

continued to create unstable soil conditions as the discernible impact of long-term 

landscape use for agriculture resulted in increased erodability at Nar Lake (this chapter). 

It could be argued that by the late Ottoman period, rigidity, heightened exploitation and 

increasing political management of sub-systems (White, 2008) again left communities 

less resilience and more susceptible to risk. It is possible that a new adaptive cycle has 

developed following the late Ottoman period but it is too soon to look at this at the long-

term scale. 

7.4.3. Micro scale adaptive behaviour in Cappadocia 

The trajectory of cultural evolution in Cappadocia also displays micro scale (decadal-

centennial) adaptive changes, particularly within archaeologically defined cultural phases, 

but the usefulness of analysis at this scale is small given the aim to study regional long-

term changes and interactions between climate and people. However, it is worth 

mentioning that the EBA period in particular may show a transformability that is 
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potentially contemporaneous with climate disruptions. The EBA I & II can be linked to the 

reorganisation and growth phases (α and r stages) of the adaptive cycle and the EBA-

MBA transition can be linked to the release phase (Ω stage) as evolutionary 

development may have been encouraged by a need to increase resilience to the 

worsening climate state of the 3th Millennium B.C. Minimum resilience likely developed 

towards the end of the EBA III phase where you get active influence from neighbours 

and low social mobility in terms of economic practices (Yakar, 1985); this is in line with 

the K phase of the adaptive cycle. It is argued here that the systems’ vulnerability during 

the EBA was not noticeable until exposure of the system to extreme arid climatic 

conditions at the EBA-MBA transition suggesting heightened sensitivity to climatic stress 

at this time. Equally important are the lack of efforts to strengthen the system against the 

adverse external conditions it was exposed to, to such a level that the only effective 

mechanism was adaptive transformation to increase resilience. 

7.4.4. Summary of the application of adaptive cycles to Cappadocian data 

Adaptive cycles allow dynamical understanding of relationships rather than just how they 

were at one point in time. Adaptive cycles as identifiable in Cappadocia are caused by 

both internal social-economic and external factors such as climate or soil 

mismanagement. The use of these adaptive cycles helps identify specific social system 

components and how they related to changes in climate over the Holocene period. 

Different social configurations in terms of reorganisation, growth and conservation have 

enabled cultures to adapt to the longer-term changes in climate and environmental 

states and the ensuing political and economic well-being. Key points that resonate from 

adaptive theory are that change is to be expected and not feared and resisted (Redman, 

2012), and that it is a process of stabilising socio-economic systems in un-resilient 

situations and is therefore a positive influence of social development and opportunity. 

Without adaption strategies and reorganisation there is a likelihood of collapse and 
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damage to the system, which as it suggested here does not occur at any point in 

Cappadocian social history.  

The trajectory of Cappadocia is characterised into four main stages of change which are 

used to regulate societal resilience and coping capacity. The complexity of relationships 

between climate and cultural become visible when looking at non-linear and cyclical 

change at both the large evolutionary scale and smaller sized time window. Especially 

interesting is that change does not seem to have been negative or detrimental, but was 

seen as a chance for a fresh start and important in terms of long-term social stability. 

Climate appears to have been a major factor for Pre-Neolithic populations and mid-

Holocene urban communities but never was it the sole driving factor in social 

development. A transition in development needed the synchronisation of many different 

acting groups, either by external factors or neighbouring cultural systems or internal 

dynamics. Mapping the adaptive cycle onto millennial cultural changes in Cappadocia 

suggests that the record of land-use and erosion are typically detrimental to people after 

the late Iron Age where accelerated catchment disturbances are linked into an 

intensification of cultivation practices. The cumulative effects of increased erosion was 

associated with the conservation stage of the resilience mechanism suggesting that 

landscape instability may have been a factor in reducing resilience levels within 

communities. 

Numerous assumptions are required in order to infer adaptive cycle changes for the 

Holocene. Recognising the limitations that result from these assumptions is important 

when considering the likelihood of inferences made. The concepts of panarchy and 

adaptation cycles assist in the analysis of complex systems and allow social change to 

be viewed alongside external climatic and environmental influences. The Cappadocian 

perspective on adaptation cycles though is but a general one and down-scaled because 

of the limited archaeological record and fragmentary chronology for the Nar Lake record. 

The fact that only ‘archaeological cultures’ are being studied and that the archaeological 
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history of Cappadocian still remains ‘patchy’ means that an understanding of climate-

environment-human interactions in terms of systems dynamics is limited by current 

understandings of change. The focus on external influences may also be, to some, 

questionable given that mono-causal explanations of change are seen as outdated and 

fail to convince in many cases. Nevertheless, multifaceted societal systems do have 

relations with external factors such as climate and environment and it would be 

unreasonable to think that these were of little importance. Varied reactions to external 

influences at different scales goes beyond linear relationships, and brings in an element 

of social individually that makes studies regarding cultural/climate interactions much less 

deterministic in this instance. 

7.5. Chapter summary 

The Nar geochemical record, which was identified as a good regional signal of climate 

change, was compared alongside the archaeological history for the region to identify 

possible interactions between shifting climate and socio-economic trajectories. Three 

significant periods of climate change were identified that coincided with significant shifts 

in the archaeological record. These were 1) a favourable and moist early Holocene 

phase which was associated with the growth and development of Neolithic populations 

and the establishment of sedentary lifestyles; 2) a dramatic drop in moisture levels and 

increasing salinity during the mid-Holocene coincident with the growth of urban centres 

and long-distance trade; and 3) a changeable and relatively arid late Holocene which 

prevailed during heightened agrarian activity and population of the Cappadocian plains. 

In light of these long-term changes it were also useful to understand how smaller-scale 

shifts were responded to by past people, as it is likely that it is at this scale where 

climatic or environmental perturbations are most felt. The impact of higher climatic 

variability was different depending on the community, with later more complex 

communities finding it increasingly difficult to cope with shifts in climate states, especially 
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against a backdrop of sustained aridity. Environmental variability was also shown to be a 

key factor in the record at Nar. In comparison to the archaeological record, it appears 

that highest variability coincides with higher landscape use and habitation levels during 

the late Neolithic and post Iron Age world. The role of volcanic activity cannot be ruled 

out so the record of possible human influence on the Nar catchment must be 

approached with caution. 

In an attempt to link the proposed climate and environmental variability records to the 

human record of change, adaptive cycles were chosen as a framework upon which to 

understand the influence of external change on socio-dynamics. These proved very 

useful for determining possible stress indicators and the self-organising capabilities of 

societies. Four adaptive cycles of different system components showed that in no point 

of time was climate or environmental degradation the sole mover of societal change. 
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8. Conclusions 

8.1. Introduction 

This thesis project aimed to highlight the interactions between cultural developments in 

Cappadocia as witnessed in the archaeological record and regional long-term Holocene 

climate and environmental change and variability. Of particular interest were the life 

choices made by past people at various points in time related to the uncertainties in the 

natural environment and how this ultimately impacted upon socio-economic trajectories. 

A comparative analysis of changes in climatic/environmental stability and archaeology 

has provided the means to record factors relating to the adaptability and sensitivity of 

past communities to the different climate/environmental regimes. Three research aims 

and fourteen objectives were identified in chapter 1, and these are restated in a 

streamlined form below: 

1. To analyse lake sediments as an archive of Holocene climatic/environmental 

change at high temporal resolution. 

2. To merge these records of Holocene climatic and environmental change with the 

past human record as understood from archaeological materials to develop ideas 

relating to the inter-relatedness of natural and cultural change at a regional level. 

3. To use systems models to understand the challenges that past people faced in 

the light of stable and unstable climate regimes and to establish whether people 

were effective in coping with unpredictable climatic situations. 

The Eastern Mediterranean (EM) history of societal change has been particularly 

sensitive to drought and desiccation, due to the limited water resources available, and 

commonly susceptible to climatic variations between wet and dry (Weiss et al., 1993). 

Annually deposited lake sediment data are a potential medium for providing information 

regarding regional climate at a scale which was recognisable to past people and could 



Conclusion  Chapter 8    
 

285 
 

be firmly and accurately dated. Annually laminated deposits from lake settings offered a 

record of climate and environmental variability which was sensitive to regional 

hydrological balance thus allowing the successful reconstruction of high-resolution 

climate shifts (Brauer and Negendank, 2002; Marshall, 2010). 

Nar Gölϋ (Lake) located in central Anatolia (chapter 3) is the source of high-resolution 

information on the climate history of the EM analysed in this thesis. This study site was 

chosen for its 1) continuous Holocene record, 2) annually-deposited sequences, 3) ability 

to provide a reliable chronology, and 4) existing understanding of relationships between 

climate proxies and particular climate variables. Lacustrine geochemical variability was 

investigated using XRF core scanning at sub-annual resolution to identify different 

temporal changes in elemental variability for the late Pleistocene and Holocene. The 

application of geochemical analysis has allowed a record of hydrological regimes and 

limnological changes to be derived, from which palaeoclimatic and palaeoenvironmental 

inferences could be made. For further interpretation of the geochemical proxies, other 

sedimentological analysis including total carbon and sediment stratigraphy were also 

recorded for the Nar Lake sediment sequence. 

The thesis aimed to synchronise lacustrine derived palaeoclimate/environment changes 

with a regionally specific scale of archaeological analysis, particularly using site survey 

data to formulate narratives of climate-environment-people interactions. A combination of 

visual comparisons to the geochemical data and exploratory frameworks provided the 

basis for understanding relationships. 

 Palaeoclimate data (isotope (Jones et al., 2006) and diatom (Woodbridge and Roberts, 

2011)) from previous late Holocene Nar Lake proxy investigations and other regionally 

relevant climate histories (Bar-Matthews and Ayalon, 2011; Eastwood et al., 2007a; Litt 

et al., 2010; Roberts et al., 2001) provided supplementary palaeo-information which 
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aided the confirmation of inferences and gave a clearer understanding of the pattern of 

Holocene climate documented in this thesis. 

Qualitatively and quantitatively, the Nar Gölϋ Itrax geochemical record appears to have 

been sensitive in its response to palaeoclimatic and palaeoenvironmental changes. The 

data produced using the relatively new high-resolution Itrax core scanner picked up 

clearly changes in allochthonous and autochthonous input along the whole core 

sequence. The more quantitative hand-held XRF was also used at lower sampling 

resolution to compare to the data produced by the Itrax machine, and corroborates many 

of the patterns witnessed from the first XRF spectrometry technique. This therefore 

provides confirmation that the method of Itrax scanning was the correct choice to obtain 

a high-resolution, quick and non-destructive record of elemental change. This allowed 

investigations into geochemical shifts in response to palaeoclimate/environment at a 

resolution suitable for the high temporal changes occurring along the core sequence. 

This technique also allowed turbidite layers to be identified providing a unique record of 

catchment in-wash events for the entire Holocene. The major contribution of this dataset 

is the high resolution data which provides an excellent record of the dynamic changes in 

climate and environment to help describe changes in frequency and magnitude of natural 

variability. The high-resolution data also provided extra information on the annual nature 

of varve deposition and shifting seasonal behaviours. 

8.2. Reconstructions of climate and environment from XRF derived 

elemental variability using the Nar Gölϋ NAR10 sediment record 

Overview 

Varved lake sediments from Nar Gölϋ were investigated to obtain a high-resolution 

record of climate and environmental change for the last ~ 14,000 years (chapter 4). 

Geochemical and sedimentological records were obtained to extend the record from 

previous Nar core sequences mainly at 200 µm resolution through this time period. 
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Modifications and improvements to the Itrax suite of elements were also made using 

hand-held XRF at 8cm sampling resolution. Geochemical changes closely relate to 

changes in stratigraphy and show a clear coupling of elements down-core associated 

with their varying role within the lake system. Analysis of elemental variability through the 

NAR10 sediment record reveals clear shifts in seasonal deposition between Ca-rich 

summer deposits and Fe-rich winter deposits, with disruptions in laminae deposition from 

clastic in-wash events characterised by high Ti, Fe, K and Rb. Other elements of interest 

included the Si profile which provided information regarding biological silica content, Zr 

and Rb as indicators of grain size and Mn which seems to be a major guide to redox 

state. It has been shown that the Nar Lake sediment contains multiple climate-sensitive 

proxies that record changes in available moisture (Ca, Sr and Mg) and the presence of 

catchment material (Ti, Fe, K, Rb) related to landscape stability. The general story is one 

of shifting lake status linked into authigenic processes (Ca and Sr) overprinted by 

influxes of sediment (Ti and Fe) related to changes in precipitation-evaporation and soil 

erodibility.  

XRF spectrometry provided some methodological difficulties in trying to fit the sediment 

cores within the scanning device and applying the correct scanning parameters to each 

individual core section. The ‘stitching’ process required the linking up of 27 individual 

core scans. This process highlighted some minor modifications to the NAR10 master 

sequence core depths and enabled the correction of the master stratigraphic sequence; 

thus improving the accuracy of the depth scale. 

Studies relating to the total carbon content of the core sequence were carried out 

(chapter 4) which led to a further understanding of processes within the lake system and 

the Itrax derived record which may have been influenced by changes in organic levels. 

Unfortunately, the influence of high inorganic values meant this method was made less 

accurate in places by high TIC and in samples with a low mass. Organic level 

reconstructions therefore derive more accurately from the Inc/Coh ratio computed from 
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the Itrax scans which are affected by the same lithological and water factors that affected 

the reliability of the other XRF elemental profiles. 

Numerical analyses (chapter 5) were used to investigate the climate and environmental 

history at Nar Gölϋ. The general climate history from the Late Glacial period through to 

the modern period is very similar to that witnessed at other regional relevant sites 

(chapter 5) with few differences in the timing and duration of climatic events. Any 

differences in interpretation of this dataset and previous work are minor, usually 

consisting of discrepancies in the timing or magnitude of particular events, and likely 

stem from problems of dating reliability, differing regional expressions and diverse 

response mechanisms of proxy indicators. 

Interpretations of the geochemical and total carbon records for the Holocene period 

require a number of assumptions based upon the relationships between the lake system 

and climatic variables, particularly assuming those which are evident today or in other 

studies are applicable to the Nar Lake situation. Therefore that other proxy records form 

the same core sequence and other regional climate accounts record the same 

climatically-driven hydrological changes gives weight to the accuracy of interpretations 

made in this thesis. 

Lacustrine inferred climate/environment 

Geochemical and sedimentological indicators (chapter 4 & 5) suggest that palaeoclimate 

fluctuated greatly during the Late Glacial period (2165.24-1974cm; ~ 14000-11700 years 

ago) and into the Holocene (starts around 1974cm) noticeable by fluctuations in lake 

level driven by switches between warm/moist and cool/dry. The lake level at Nar was 

very low during the period of time corresponding to the Younger Dryas (2013-1974cm) 

(~12.9-11.7 cal. yrs. B.P.), inferred from high carbonate precipitation, low lake 

productivity and the absence of varves. Low catchment runoff and erosion is also 

inferred from reduced input of detrital material. The early Holocene is characterised by 
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stable climatic conditions and increasing lake water depths. A rise in detrital in-wash and 

biological indicators suggests increased lake productivity relating to algal growth and 

landscape instability, particularly during sub-unit 5a (1606.2-1428.2cm; 9190-8046vys). 

A subsequent rise in precipitation levels marks unit 4 (1428.3-1161.2cm; 8046-6398vys); 

it is possible that this change is a reflection of sustained rainfall levels throughout the 

year as suggested by oxic lake conditions. Most importantly there is also a long-term 

reduction in clastic influx inferred from a decreased supply of titanium and lithogenic 

elements, which suggests a clear stabilisation of the landscape. 

By the mid-Holocene (~ 1200cm) there is a marked transition to a reduction in regional 

moisture balance, evidenced by significant drops in Ca/Sr ratio and a decrease in clay 

deposition.  A strong relationship between organic content and thick, probably non-

annual laminations exists for unit 3 (1139.7-753.7cm; 6398-~3/4500vys) but the reason 

for this change in lamination type is hard to decipher. The first major evidence for 

extreme aridity is found during unit 2 (753.7-592.7cm; ~3/4500-2589vys) which is 

recognised by low and stable Ca/Sr and peaks in Mg (a salinity indicator). An abundance 

of detrital elemental components during unit 1 (592.7-0cm; 2589-0vys) may have 

become more enhanced due to sustained aridity, but have also related to human-

induced landscape change and instability as the result of increased anthropogenic 

activity. Climatic conditions over the last 2000 years have been variable with shifts 

between wet and dry. Changes to high precipitation and high lake stands at the 

beginning of sub-unit 1c (centred around 350cm; ~1440vys) have been interpreted from 

high Ca/Sr. 

Climatic and environmental variability 

As well as presenting evidence for hydrological changes in response to palaeoclimatic 

and palaeoenvironmental changes, it was also vital to discuss the short-term inter-annual 

variations as changes at this scale are most relevant to past cultural change (Biehl, 
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2012). The likelihood of past people responding to climatic change and for it to be 

registered relates to stability characteristics of the ensuing climate (Rosen, 2007). In this 

sense, it is the unstable and highly variable fluctuations in climate that will be most 

noticeable by past communities, especially against a back-drop of already degrading 

climate. The annual nature of Nar Gölϋ sedimentation and high scanning resolution of 

the geochemical data allowed for investigations into unstable climate periods to be made. 

A significant pattern of changing climatic and environmental variability was documented 

from statistical analysis of time windows of geochemical data (chapter 7). The most 

dominant periods of high climatic variability were during units 7 (2165.24-2013cm; 

~14000-12900 years ago) and 1 (592.7-0cm; 2589-0vys), and were interpreted to related 

to higher amplitudinal shifts between wet and dry conditions and changes in precipitation 

levels during the summer and winter seasons. Similarly, highest environmental variability 

was associated with sub-unit 5a (1606.2-1428.2cm; 9190-8046vys) and unit 1 linked into 

increasing erosion of catchment material into the lake environment and therefore 

landscape instability.  

Collection of archaeological survey and excavation data (chapter 6), from Cappadocia, 

suggest that during sub-unit 5a and unit 1, increased landscape instability is related to 

the presence of people in the lake catchment and growth of agrarian lifestyles principally 

after the late Iron Age. More unstable landscape conditions during sub-unit 5a coincide 

with the growth of Neolithic populations and obsidian mining activities in the vicinity of 

Nar Lake but the role of volcanically-induced sediment influx cannot be dismissed. These 

relationships are likely to be important for understanding the impact of past people on 

landscape dynamics and on geochemical responses in the lacustrine environment. The 

relative degree of landscape sensitivity to anthropogenic factors cannot be quantified 

successfully without statistical models and further calculations but the likelihood is that 

unstable soils were dependent on numerous factors both physical and biological, 

externally and internally. Determining the impact of people is complex but at least there 
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appears to a close relation between erodibility and increased land-use whether that is for 

agriculture or resource abstraction. 

8.3. Collated archaeological survey results from Cappadocia 

Archaeological site survey data  

Collation of archaeological survey results for the Cappadocia area (chapter 6) show 

significant changes in settlement density associated with temporal changes in human 

habitation. Comparative analysis reveals the existence of regional differences between 

southern and northern Cappadocia throughout the Holocene. These differences are due 

to a large environmental gradient, uneven distribution of exploitable resources and 

changes in political territorial boundaries. During all archaeological periods, occupational 

preferences were strongly coupled to subsistence practices, exploitation strategies, 

administrative control, and environmental conditions.  

The variable archaeological survey records for Cappadocia indicate a settlement history 

that is only partially comparable to neighbouring regions. The pattern of settlement 

change documented (chapter 6) sees an early occupation built around access to raw 

materials and exchange networks during the Neolithic, particularly in southern 

Cappadocia and therefore in close proximity to Nar Lake. A substantial growth in 

occupation occurred during the late Chalcolithic period, and continued well into the MBA 

phase. Occupation at this time is one of relative stability, anchored into economic 

prosperity and investment in sedentary lifestyles. The first pronounced significant drop in 

settlement numbers is evidenced for the LBA. Also evident is a significant shift in the 

placement of settlement sites, with northern Cappadocia being favoured perhaps for its 

links with political power. Re-establishment of high settlement numbers and an 

expansion in habitation can be seen from the middle Iron Age (900-585 BC) onwards, 

with a greater concern for non-settlement sites as a means of increased administration, 

security and defence. Another decline phase likely occurs after late Roman dominance in 
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the area linked to political instability during the Arab period (670-900 AD) but a lack of 

settlement data for this time period may suggest that there is an under-representation of 

sites at this time. 

Ultimately, the patterns of settlement change documented here reflect the shift from 

small-scale resource gathering communities to fully urbanised and integrated settlement 

systems. At no point is there a complete collapse of occupation in Cappadocia but there 

are two phases of decreased settlement associated with the LBA and mid-Byzantine 

times that suggest some disruption to habitation. Each phase of change is individually 

characterised but in most cases has its roots embedded in settlement organisations of 

preceding periods. 

Limitations of linking archaeological site survey data and climatic data 

One of the major considerations of this study was the use of both natural and 

archaeological data from a region where very little is known about the interactions 

between climate and culture. When these two datasets were looked at simultaneously, a 

great deal of information could be gathered regarding the nature of socio-evolution in 

light of climate or environmental events. The discussion presented in this thesis is a 

simplified summary of the true situation. There is still an aspect of uncertainty regarding 

the documented societal changes from archaeological survey data and whether the 

geochemical record is sufficient to provide a complete picture of regional climatic and 

environmental development. To solve these issues, further studies will need to be based 

on additional archaeological, environmental and climatic records, in which dates are firm 

and reliable. An interesting question is therefore whether human culture-climate 

interactions remain misunderstood due to limitations in data collection. The solution 

would require more in-depth studies which at present are problematic within Cappadocia. 

Issues of representation require less consideration though when cores are 

stratigraphically consistent across the lake basin and comparisons with other palaeo-
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climate reconstructions show a similar understanding of Holocene climatic change, as is 

the case at Nar. 

8.4. An evaluation of the relationship between climate-environment-culture 

in Cappadocia 

The changes seen in the archaeological record of Cappadocia for the Holocene are likely 

to result from a combination of social, political, economic, environmental and climatic 

stimuli. As an exploratory technique to investigate the interactions between all these 

components, at various spatial and temporal scales, the adaptive cycle model (Holling 

and Gunderson, 2002) was used to provide a comprehensive picture of the pooled data 

sources (chapter 7). The adaptive cycle concept provided this study with two major 

advances. Firstly it does not imply a separation of climate from culture as in deterministic 

principles and secondly the model integrates different continuous scales of change 

allowing patterns to be considered at various temporal levels (Widlock et al., 2012). 

It is unrealistic to assume that the adaptive model can provide a complete understanding 

of climate-environment-cultural interactions and people’s response mechanisms to shifts 

in natural variability but it helps to distinguish those features that play an important role in 

shaping societies and the outcomes of potentially adaptable behaviours. In summary it is 

a simple tool to summarise the evidence from very different archives and will change as 

more information becomes available. 

The adaptive model applied to the Cappadocian archaeological history of cultural change 

and XRF derived record of climatic and environmental variability (chapter 7) identified 

links at different scales of analysis. It was those changes evidenced at the macro scale 

that provided the best whole-systems dialogue about the challenges faced by past 

people and ultimately, what actions they took. In total four macro scale cycles were 

identified, highlighting times when cultures were ill-prepared and failed to establish 

effective coping mechanisms during times of societal instability.  
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At no point throughout the Holocene was climatic variability seen as a driver of societal 

change but there were periods, for instance during the Pre-Neolithic and Aceramic 

Neolithic, when climate (moist and warm) was important in terms of increasing resilience 

and economic development. There were also times, for instance towards the end of LBA, 

where climate (in this case sustained aridity) may have put added stress on communities 

at times of already dwindling resilience levels. Variability in climate seems to have only 

affected communities at times of decreasing resilience, for example when climatic 

variability is high during Roman and early Byzantine times we see a blossoming agrarian 

society. In contrast when climatic variability is high during the mid-Byzantine, a time 

when there is significant political upheaval, there seems to be a greater impact on 

communities from climatic changes. 

The role of environmental variability in shaping the nested adaptive cycles is also 

interesting given the attractiveness of linking human land-use practices with increasing 

detrital in-wash into the lake environment. It is demonstrated in the thesis that it is often 

during the conservation (K) phase of the adaptive cycle that environmental instability (as 

determined from the Nar recorded) is greatest. One possible explanation for this is that 

carrying capacities had been reached and the level of growth had been reduced 

encouraging communities to intensify their environmental pressures. It is also possible to 

assume increasing environmental instability linked into the agrarian lifestyles of the later 

Neolithic and post Iron Age worlds. It is reasonable to accept that added agricultural 

activities would have weakened soil development, particularly during deteriorated climate 

conditions and increased the chance of catchment influx events. 

8.5. Proposals for future research 

The seasonal resolution and clear sedimentation changes of the NAR10 sediment 

sequence have resulted in an important understanding of regional climate development. 

Further work on the sediment cores beyond those already carried out (e.g. diatoms, 
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isotopes, pollen, pigments, XRD) will lead to a further understanding of the limnological 

processes driving geochemical variability in climate change. There is potential to use the 

varve data, gathered from grey scale analysis, thin-section digital imagery and laminae 

thickness measurements, in conjunction with the geochemical understanding of varve 

formation to establish new climate proxies for the Nar Lake record.  

As it often the case with lake data, questions still remain over the timing of these climatic 

events and how to further develop the depth-age scale that is currently used. Thin-

section records would also be important in trying to provide a more robust chronology for 

the Nar sequence as laminae could be counted more precisely under microscope or 

distinguished from colour intensity variations. Nevertheless, this study provides a much 

better chronological precision than its possible from most other regional sediment 

records. 

Also of interest is the possible relationship between increase environmental instability 

and volcanism during the early Holocene. Further investigation of this issue may enable 

a better understanding of the role of volcanic material in limnological geochemical 

variability and the record of environmental change established. Furthermore, it could 

have implications for the understanding of hazards and their role within societal 

development of the region. This could be achieved through tephra horizon investigations 

from thin-sectioning the Nar sediment sequence and microprobe analysis if tephra 

deposits are found. 

This thesis has shown that high-resolution investigations from annually deposited 

sequences offer an excellent archive of past climatic and environmental change. The 

lack of investigations between such records of natural change and the archaeological 

understanding of human cultural change suggests that further work needs to be done in 

this area. One of the benefits of a study of this type is that it can be extended to different 

geographical localities and temporal scales, meaning it is not restricted to the central 
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Anatolian region or lake sediments. In combination with site specific excavation data and 

regional survey overviews, more data such as those presented here at the regional scale 

will allow further analysis of the characteristic properties of cultural change in light of 

natural change and vice versa. Consequently, the adaptive model of change presented 

here is a stimulus for further investigations directed at climate-culture interactions.  

It would be interesting to expand this work to regions neighbouring Cappadocia which 

have similar patterns of settlement change (chapter 6) such as the adjacent Konya Plain. 

A detailed survey of the archaeological landscape and on-site palaeoenvironmental 

sampling may allow reconstructions to be made with specific detail at the broad regional 

scale from sites which are directly related.
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Appendix 1 

Mean annual and monthly precipitation data (presented in millimetres per month/year) for two Cappadocian weather stations, Nevşehir and Niğde, 

highlighting yearly variations in rainfall for the Nar Lake region. Data collected by the Turkish Meteorological Service and supplied by Murat Tϋrkeş. 

Nevşehir Year Jan Feb March April May June July Aug Sept Oct Nov Dec Mean annual monthly (mm) Mean annual total (mm) 

 2001 1.8 36.4 21.2 22.2 103.4 0.6 6.1 0.7 8.7 9.6 29.3 53.8 24.48333333 293.80 

 2002 41.9 15.6 16.8 84.0 27.1 7.3 21.5 18.9 23.8 13.6 20.6 41.7 27.73333333 332.8 

 2003 14.9 63.0 50.5 41.7 63.8 6.7 0 0 22.0 44.7 35.8 29.8 31.075 372.9 

 2004 37.9 32.4 26.5 57.9 28.1 27.4 15.0 1.9 0 7.5 81.5 34.2 29.19166667 350.3 

 2005 43.1 39.1 51.1 41.0 29.5 7.0 0.5 7.0 30.8 29.9 29.8 18.4 27.26666667 327.2 

 2006 50.4 23.6 20.2 70.2 29.6 5.2 0.7 0.8 17.1 54.2 29.9 8.3 25.85 310.2 

 2007 25.1 47.9 52.4 73.5 89.4 46.2 0.4 14.2 3.1 18.3 60.2 52.4 40.25833333 483.1 

 2008 35.3 30.5 27.0 22.0 46.1 15.2 0 1.1 31.2 41.7 25.9 47.5 26.95833333 323.5 

 2009 49.8 76.5 83.8 51.5 63.3 25.7 52.7 0 12.2 3.7 78.9 45.8 45.325 543.9 

 2010 86.4 43.7 41.1 76.1 11.1 75.4 4.1 0.1 3.6 122.3 5.2 67.1 44.68333333 536.2 

 

Niğde Year Jan Feb March April May June July Aug Sept Oct Nov Dec Mean annual monthly (mm) Mean annual total (mm) 

 2001 2.0 61.0 29.9 28.7 75.1 2.7 0.1 0.2 2.3 21.9 69.7 34.4 27.33333333 328 

 2002 35.4 13.6 15.4 92.2 54.1 13.7 22.6 21.4 31.6 22.0 34.7 49.7 33.86666667 406.4 

 2003 25.7 53.1 30.8 47.6 41.3 10.7 0.1 0.4 12.2 33.2 49.7 22.8 27.3 327.6 

 2004 34.2 16.9 18.9 53.5 19.0 11.7 16.6 0.3 0 12.9 54.6 11.5 20.84166667 250.1 

 2005 37.6 27.8 59.1 30.7 15.4 14.4 0.1 0.6 28.8 21.7 20.9 22.3 23.28333333 279.4 

 2006 29.3 22.2 30.5 45.3 42.7 31.8 2.6 7.0 4.1 64.0 37.0 0.5 26.41666667 317 

 2007 19.0 19.3 20.6 38.2 38.8 14.4 0.2 26.3 0.5 26.2 106.1 41.8 29.28333333 351.4 

 2008 22.7 19.9 28.3 16.0 46.7 14.4 0 21.8 21.7 40.1 55.8 25.0 26.03333333 312.4 

 2009 65.4 59.7 52.6 38.5 61.8 4.1 37.5 0.1 20.2 13.6 70.1 37.2 38.4 460.8 

 2010 63.4 28.4 37.1 71.9 16.0 49.4 2.9 7.4 4.8 89.7 7.9 104.4 40.275 483.3 
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Appendix 2 

Stratigraphic profiles of all the elmental components detected during Itrax XRF core scanning on lake sediments from Nar Gölϋ. Elements are presented as 

peak area integrals in no specific order, and against the Nar lithostratigraphy. The Itrax derived results have been adjusted using kilo counts per second (kcps) 

and erroneous peaks removed. 
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Appendix 3 

Results from portable handheld XRF scanning of bulk modern sediment samples from Nar Gölϋ. This table provides a list of the samples investigated along 

with the elemental changes recorded as ppm (values are plotted without decimal places to enable the data to be displayed more clearly).  

Sample Number Easting Northing Scan mode Mg Si Al K Fe Zn Cu Pb Zr Ti As Ba Mo 

SS2a 36627087 4245017 Mining 4447 221945 42887 18559 32048 45 0 20 108 3060 0 202 0 

SS3a 36627291 4245052 Mining 7783 213151 50122 14173 48540 58 49 9 109 4887 0 320 0 

SS5a 36627472 4244942 Mining 9813 159897 37054 8581 42579 45 29 0 77 3644 0 290 0 

SS5b 36627478 4244945 Mining 7500 227471 51991 15699 44937 52 35 9 103 4574 0 282 0 

SS7a 36627471 4244051 Mining 2409 243778 45336 23087 24380 41 0 21 102 2426 0 250 0 

SS8a 36627020 4243850 Mining 0 259985 38178 31372 11059 32 0 24 102 1211 0 278 4 

SS8b 36627049 4243869 Mining 1488 239158 39975 27187 17826 37 0 23 101 1879 0 301 3 

SS8c 36627049 4243869 Mining 0 260686 37779 31701 11749 33 0 24 101 1370 0 237 3 

SS8d 36627073 4243935 Mining 1069 236253 35968 28399 15395 38 0 26 114 1778 0 313 3 

SS8e 36627073 4243935 Mining 741 248992 35802 30768 12469 32 0 26 101 1321 0 267 3 

SS9a 36627073 4243832 Mining 1427 246694 42192 26902 16717 36 0 21 102 1868 0 285 3 

SS9b 36627077 4243839 Mining 1043 237372 38404 26077 15054 32 0 24 113 1919 0 245 3 

SS9c 36627090 424892 Mining 1337 254776 41415 28720 14134 38 0 23 103 1739 0 289 3 

SS9d 36627091 4243939 Mining 1220 242885 38818 28040 14451 31 0 24 95 1760 0 310 0 

SS9e 36627094 4243942 Mining 1166 256208 40947 29376 14895 30 0 20 103 1739 0 312 0 
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SS9f 36627066 4243985 Mining 1624 256962 41731 29077 13970 32 0 22 102 1685 0 316 3 

SS10a 36627043 4244139 Mining 1351 246075 37593 29178 14609 33 0 23 88 1538 0 219 3 

SS10b 36627086 4244168 Mining 1331 244584 36425 26363 15322 33 0 26 99 1654 0 255 3 

SS10c 36627174 4244152 Mining 936 235843 35877 26041 14889 36 0 20 95 1654 0 193 0 

SS10d 36627264 4244158 Mining 569 243747 42993 27458 17288 36 0 23 98 1815 0 225 3 

SS10e 36627381 4244168 Mining 1232 252083 40291 27094 16140 35 0 24 104 1712 0 282 0 

SS10f 36627507 4244168 Mining 0 254256 37191 30503 12128 24 0 21 90 1191 0 252 3 

SS11a 36626891 4244026 Mining 2534 234298 40415 25311 22619 39 0 20 92 2078 0 282 0 

SS11b 36626901 4244049 Mining 1806 233692 38177 26644 21424 35 0 22 107 2135 0 307 0 

SS12a 36626799 4244159 Mining 4691 221414 49521 16806 38591 50 28 15 102 3978 5 289 0 

SS12b 36626829 4244166 Mining 3875 228012 44300 21612 31008 42 22 15 86 3050 0 289 0 

SS13a 36627467 4243993 Mining 2005 238841 46908 22140 26446 36 0 21 104 2478 0 255 0 

SS14a 36627367 4243949 Mining 0 270760 41124 30365 13208 28 0 22 90 1351 5 261 3 

SS14b 36627365 4243955 Mining 0 255585 37576 30362 12040 29 0 23 90 1263 0 243 3 

SS14c 36627361 4243956 Mining 796 265537 39593 30184 12843 26 0 21 89 1313 0 260 3 

SS14d 36627360 4243955 Mining 682 253915 40434 28643 14233 27 0 23 95 1417 5 240 3 

SS15a 36627656 4244262 Mining 2369 216765 40860 17604 34587 51 28 20 107 2982 0 190 0 

SS16a 36627749 4244346 Mining 3673 214121 46037 18041 32465 46 0 16 102 3420 0 270 0 

SS16b 36627777 4244313 Mining 4023 219617 46772 18471 34011 44 0 18 102 3425 0 293 3 

SS16c 36627790 4244307 Mining 4055 231935 48222 20638 30793 45 0 18 99 3088 0 266 0 

SS16d 36627803 4244272 Mining 4444 191625 50602 8547 54487 64 39 8 82 5391 0 330 0 
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SS17a 36627814 4244303 Mining 4749 228267 51663 17391 45101 54 27 10 94 3934 0 324 3 

SS18a 36627284 4243796 Mining 0 253885 35592 30088 11664 25 0 24 80 1139 0 272 0 

SS18b  36627287 4243795 Mining 612 238683 35103 27887 14280 27 0 22 100 1532 0 246 4 

SS19a 36627280 4244087 Mining 5489 219595 50482 17939 38583 48 35 19 136 3694 6 268 0 

SS19b 36627924 4244279 Mining 5455 233149 52046 18212 42842 53 36 11 112 4120 6 330 3 

SS20a 3662707 4243757 Mining 2109 239995 41380 26290 15935 39 0 23 114 2213 0 261 0 

SS20b 36627018 4243759 Mining 1794 214468 37446 22787 16942 36 0 20 103 2163 0 273 3 

SS21a 36627198 4242800 Mining 1807 250738 41175 25106 19150 35 0 23 95 2280 0 238 0 

SS22a 36626512 4244149 Mining 5971 197479 55807 12380 50013 58 45 12 108 5154 0 292 0 

SS23a 36626596 4244649 Mining 4866 189023 49277 11580 51074 63 49 10 116 5347 0 267 0 

 

Sample 

Number 

Easting Northing Scan 

mode 

Nb Sr Rb Bi Ni Mn Cr V Ca Cl S 

SS2a 36627087 4245017 Mining 13 172 59.74 16.29 0 593.64 173.55 190.18 28125.82 362.3 0 

SS3a 36627291 4245052 Mining 11 279 28.44 7.03 47.69 917.63 184.1 250.01 51306.55 461.11 0 

SS5a 36627472 4244942 Mining 7 338 32.7 0 101.51 694.8 191.74 186.77 131342.3 300.8 1953.46 

SS5b 36627478 4244945 Mining 10 248 34.01 8.68 71.91 857.01 189.99 219.78 42716.27 475.96 0 

SS7a 36627471 4244051 Mining 14 107 72.67 24.6 0 455.54 99.82 168.96 11792.75 502.37 266.81 

SS8a 36627020 4243850 Mining 17 63 88.24 27.95 0 299.7 0 176.32 7250.28 1013 268.54 

SS8b 36627049 4243869 Mining 14 89 78.84 22.67 0 348.63 64.09 176.66 11492.41 688.99 338.94 

SS8c 36627049 4243869 Mining 15 78 84.75 25.15 0 263.24 0 156.74 8308.64 975.69 0 
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SS8d 36627073 4243935 Mining 15 94 79.86 20.97 0 362.78 47.27 179.45 10124.14 769.85 151.44 

SS8e 36627073 4243935 Mining 16 69 86.6 28.83 0 286.06 30.9 166.79 8535.87 916.81 135.76 

SS9a 36627073 4243832 Mining 15 92 78.7 21.27 0 322.68 57.94 174.43 10221.34 708.08 610.14 

SS9b 36627077 4243839 Mining 15 85 75.8 21.65 0 188.59 32.56 205.8 8933.95 730.46 1536.87 

SS9c 36627090 424892 Mining 14 90 80.63 22.17 0 276.75 38.71 183.5 8524.06 836.63 289.35 

SS9d 36627091 4243939 Mining 14 90 80.68 26.27 0 329.48 0 169.99 9946.23 773.7 415.88 

SS9e 36627094 4243942 Mining 14 94 79.99 25.92 0 303.72 34.86 165.13 10035.68 855.84 284.6 

SS9f 36627066 4243985 Mining 13 101 79.62 23.92 0 267.1 52.43 161.24 10959.5 811.12 225.49 

SS10a 36627043 4244139 Mining 13 90 75.53 20.97 0 309.9 0 155.81 12250.19 835.8 0 

SS10b 36627086 4244168 Mining 15 79 80.01 20.78 0 310.7 50.03 161.92 11413.79 750.3 591.37 

SS10c 36627174 4244152 Mining 13 73 77.63 22.69 0 232.89 38.78 160.28 10605.71 721.62 992.26 

SS10d 36627264 4244158 Mining 16 65 78.2 26.11 0 272.85 45.11 153.27 7824.53 675.95 658.68 

SS10e 36627381 4244168 Mining 16 71 83.56 22.88 0 397.28 52.93 153.58 9268.04 642.82 0 

SS10f 36627507 4244168 Mining 15 63 87.14 27.77 0 281.78 0 127.59 7870.49 736.68 0 

SS11a 36626891 4244026 Mining 14 120 71.2 21.22 0 632.02 79.32 172.01 19677.66 641.16 97.49 

SS11b 36626901 4244049 Mining 15 115 71.09 20.87 0 514.03 74.51 180 15482.92 674.13 0 

SS12a 36626799 4244159 Mining 11 195 48.19 14.48 0 867.67 188.55 229.27 35616.23 425.34 0 

SS12b 36626829 4244166 Mining 12 184 50.88 14.06 0 818.7 129.52 177.69 25100.75 507.05 0 

SS13a 36627467 4243993 Mining 14 126 69.74 21.6 0 456.77 90.94 170.91 13356.59 539.6 1050.78 

SS14a 36627367 4243949 Mining 16 64 85.71 26.55 0 275.06 60.22 131.01 7897.21 771.31 0 

SS14b 36627365 4243955 Mining 15 59 86.88 25.73 0 284.7 0 132.77 8098.96 749.62 0 

SS14c 36627361 4243956 Mining 15 60 87.98 28.84 0 275.72 36.78 133.36 7245.29 750.05 0 
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SS14d 36627360 4243955 Mining 16 72 85.14 26.38 0 351.29 43.84 131.88 9271.78 667.65 0 

SS15a 36627656 4244262 Mining 11 146 55.21 13.53 0 678.75 105.69 179.17 19391.81 432.6 835.67 

SS16a 36627749 4244346 Mining 13 176 51.27 17.31 0 743.99 138.74 198.45 26869.52 408.56 0 

SS16b 36627777 4244313 Mining 14 191 54.17 15.76 0 803.98 219.69 199.52 26619.34 419.91 0 

SS16c 36627790 4244307 Mining 12 171 56.59 15.37 0 681.78 122.69 192.42 26322.69 478.55 93.86 

SS16d 36627803 4244272 Mining 11 316 20.31 0 0 1392.82 172.94 221.32 34711.68 386.48 0 

SS17a 36627814 4244303 Mining 9 265 33.29 7.83 74.92 936.13 154.7 232.37 34185.52 445.74 0 

SS18a 36627284 4243796 Mining 15 63 87.69 25.66 0 326.68 33.03 127.13 7802.08 730.72 0 

SS18b  36627287 4243795 Mining 16 71 85.45 25.06 0 385.61 43.07 137.26 9338.4 663.1 0 

SS19a 36627280 4244087 Mining 14 165 53.6 15.18 0 651.43 160.84 201.32 26523.46 397.7 0 

SS19b 36627924 4244279 Mining 12 252 41.92 10.53 0 826.28 136.14 261.18 33169.46 455.7 0 

SS20a 3662707 4243757 Mining 15 100 75.64 20.65 0 214.84 51.35 217.66 9863.02 687.73 1778.65 

SS20b 36627018 4243759 Mining 15 91 71.51 23.44 0 128.33 44.14 203.31 9414.5 614.03 2353.18 

SS21a 36627198 4242800 Mining 15 94 76.29 22.83 0 464.46 71.57 154.49 12420.06 587.71 198.16 

SS22a 36626512 4244149 Mining 11 231 33.01 11.79 45.93 947 289.19 236.77 34499.23 349.34 0 

SS23a 36626596 4244649 Mining 12 218 31.75 0 49.64 879.63 212.69 208.39 33727.04 329.52 0 
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Appendix 4 

Correlation matrices (r-values) for the NAR10 sequence by lithostratigraphic unit. Correlation 

matrices for: Si (Silicon), S (Sulphur), K (Potassium), Ca (Calcium), Ti (Titanium), Mn 

(Manganese), Fe (Iron), Cu (Copper), Zn (Zinc), Se (Selenium), Br (Bromine), Rb (Rubidium), Sr 

(Strontium) and Zr (Zirconium). Strong correlations = r≥ 0.6 in red or r≤ -0.6 in blue. Correlations 

which are not significant at the 0.001 level (p-value >0.001) are shown with *. 

Unit Correlation coefficients for key elements 

Whole 

 
Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.46 
             

K 0.69 0.34 
            

Ca -0.21 -0.01* -0.40 
           

Ti 0.65 0.28 0.88 -0.47 
          

Mn 0.07 0.06 0.16 0.34 0.13 
         

Fe 0.64 0.46 0.87 -0.52 0.92 0.12 
        

Cu 0.39 0.15 0.53 -0.31 0.69 0.07 0.61 
       

Zn 0.62 0.22 0.80 -0.29 0.83 0.20 0.75 0.60 
      

Se -0.23 -0.19 -0.24 -0.17 -0.20 -0.22 -0.25 -0.14 -0.21 
     

Br -0.20 -0.09 -0.23 0.04 -0.22 -0.11 -0.24 -0.16 -0.19 0.41 
    

Rb 0.55 0.21 0.84 -0.61 0.87 0.03 0.84 0.56 0.72 -0.02 -0.11 
   

Sr -0.11 0.03 -0.14 0.26 -0.23 -0.27 -0.20 -0.16 -0.27 -0.02 0.04 -0.21 
  

Zr 0.39 0.22 0.61 -0.52 0.61 -0.02 0.64 0.43 0.52 -0.11 -0.18 0.65 -0.18* 
 

Pb 0.06 0.17 0.01 -0.09 0.02 -0.03 0.05 -0.02 0.02 0.25 0.30 0.12 -0.18* 0.00 

1 

 
Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.30 
             

K 0.88 0.18 
            

Ca -0.47 0.11 -0.55 
           

Ti 0.79 0.11 0.85 -0.60 
          

Mn 0.20 0.14 0.29 -0.11 0.25 
         

Fe 0.76 0.31 0.83 -0.65 0.92 0.35 
        

Cu 0.50 0.04 0.52 -0.42 0.73 0.14 0.65 
       

Zn 0.79 0.09 0.87 -0.54 0.88 0.21 0.82 0.64 
      

Se -0.26 -0.21 -0.29 -0.07 -0.24 -0.25 -0.30 -0.18 -0.25 
     

Br -0.33 -0.18 -0.40 0.13 -0.36 -0.33 -0.42 -0.25 -0.33 0.44 
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Rb 0.72 0.04 0.82 -0.71 0.86 0.21 0.82 0.57 0.80 -0.03 -0.25 
   

Sr -0.41 -0.08 -0.49 0.54 -0.51 -0.17 -0.53 -0.34 -0.53 0.03 0.11 -0.57 
  

Zr 0.60 0.07 0.68 -0.60 0.69 0.18 0.67 0.47 0.66 -0.11 -0.30 0.75 -0.39 
 

Pb 0.07 0.25 0.03 -0.04 0.01* -0.01 0.06 -0.04 0.02 0.18 0.18 0.12 -0.27 0.02 

 2 

 
Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.46              

K 0.69 0.31             

Ca -0.04 0.01 0.10            

Ti 0.66 0.30 0.89 -0.18           

Mn 0.48 0.35 0.66 0.19 0.64          

Fe 0.63 0.33 0.88 -0.20 0.97 0.67         

Cu 0.43 0.24 0.52 -0.16 0.62 0.34 0.61        

Zn 0.56 0.25 0.72 -0.20 0.80 0.42 0.80 0.58       

Se -0.26 -0.10 -0.50 -0.58 -0.32 -0.51 -0.32 -0.13 -0.20      

Br -0.26 -0.10 -0.49 -0.57 -0.32 -0.49 -0.31 -0.13 -0.19 0.78     

Rb 0.28 0.05 0.36 -0.66 0.57 0.07 0.57 0.38 0.51 0.29 0.28    

Sr -0.42 -0.22 -0.39 0.37 -0.48 -0.42 -0.47 -0.26 -0.34 0.16 0.19 -0.32   

Zr 0.20 0.08 0.38 -0.21 0.49 0.20 0.49 0.36 0.41 -0.12 -0.15 0.46 -0.26  

Pb -0.19 -0.07 -0.40 -0.55 -0.24 -0.40 -0.22 -0.09 -0.13 0.69 0.73 0.33 0.12 -0.12 

3 

 Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.47              

K 0.67 0.41             

Ca 0.19 0.07 0.34            

Ti 0.54 0.29 0.76 -0.06           

Mn 0.32 0.26 0.60 0.60 0.26          

Fe 0.45 0.37 0.69 -0.17 0.86 0.26         

Cu 0.22 0.11 0.24 -0.08 0.33 0.03 0.28        

Zn 0.47 0.23 0.53 -0.01* 0.70 0.17 0.56 0.38       

Se -0.14 -0.11 -0.29 -0.23 -0.16 -0.27 -0.20 -0.10 -0.12      

Br -0.09 -0.04 -0.19 -0.10 -0.10 -0.17 -0.11 -0.11 -0.10 0.37     

Rb 0.46 0.26 0.59 -0.32 0.73 0.06 0.71 0.23 0.49 0.00 0.01    

Sr 0.31 0.15 0.36 0.74 -0.06 0.42 -0.14 -0.03 0.04 -0.21 -0.11 -0.12   

Zr 0.04 0.04 0.04 -0.37 0.15 -0.15 0.16 0.15 0.12 -0.05 -0.14 0.22 -0.26  

Pb -0.04 0.07 -0.08 -0.26 0.05 -0.18 0.12 -0.06 -0.02 0.27 0.37 0.21 -0.23 -0.03 

 4 

 Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.16              

K 0.22 0.23             
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Ca -0.36 0.10 -0.23            

Ti 0.23 0.17 0.84 -0.34           

Mn -0.04 -0.02 -0.21 0.26 -0.16          

Fe 0.23 0.16 0.90 -0.38 0.92 -0.20         

Cu 0.04 0.02 0.10 -0.07 0.12 -0.03 0.12        

Zn 0.11 0.04 0.19 -0.13 0.20 0.03 0.21 0.07       

Se 0.00* 0.01* -0.09 -0.08 -0.07 -0.04 -0.08 -0.01* 0.00*      

Br -0.01 0.05 -0.08 -0.02 -0.08 -0.06 -0.08 0.01* 0.00* 0.17     

Rb 0.22 0.14 0.69 -0.45 0.69 -0.27 0.75 0.07 0.15 0.00* -0.05    

Sr -0.04 -0.08 0.13 -0.27 0.10 -0.56 0.12 0.01* -0.11 0.06 0.10 0.22   

Zr 0.05 -0.02 0.04 -0.09 0.08 0.08 0.08* 0.05 0.03 -0.03 -0.06 0.06 -0.14  

Pb 0.02 0.05 -0.03 -0.10 -0.02 -0.07 0.00* 0.01* 0.03 0.10 0.15 0.05 0.03 -0.01 

5 

 Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.44              

K 0.46 0.29             

Ca -0.43 -0.09 -0.46            

Ti 0.47 0.32 0.90 -0.58           

Mn -0.04 0.26 0.01* 0.27 0.03          

Fe 0.49 0.40 0.84 -0.67 0.94 0.03         

Cu 0.19 0.15 0.40 -0.26 0.47 0.03 0.47        

Zn 0.31 0.21 0.57 -0.30 0.62 0.16 0.58 0.37       

Se -0.06 -0.02 -0.18 0.00* -0.15 -0.04 -0.21 -0.09 -0.12      

Br -0.10 0.01 -0.21 0.17 -0.20 0.04 -0.27 -0.11 -0.14 0.39     

Rb 0.45 0.26 0.84 -0.71 0.89 -0.10 0.87 0.37 0.51 -0.09 -0.18    

Sr -0.05 -0.17 -0.02 0.21 -0.14 -0.50 -0.16 -0.04 -0.19 -0.07 -0.09 -0.15   

Zr 0.26 0.18 0.42 -0.44 0.47 -0.02 0.50 0.25 0.31 -0.11 -0.18 0.48 -0.11  

Pb 0.03 0.15 -0.07 -0.01* 0.00* 0.16 -0.03 -0.02 -0.01* 0.30 0.39 0.03 -0.28 -0.05 

6 

 Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.00              

K -0.23 0.08             

Ca -0.45 -0.04 0.78            

Ti 0.01* 0.22 0.20 0.11           

Mn -0.10 0.45 0.22 0.12 0.30          

Fe 0.10 0.61 -0.13 -0.28 0.15 0.45         

Cu 0.05 0.01 -0.03 -0.03 -0.06 -0.01 -0.01        

Zn 0.08 0.02 -0.02 -0.05 0.00 -0.02 -0.02 0.11       

Se -0.08 -0.01* -0.36 -0.44 -0.05 -0.02 0.00* -0.03 0.01      
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Br -0.14 0.01* -0.29 -0.34 -0.09 -0.10 -0.02 -0.06 -0.01* 0.43     

Rb 0.43 -0.05 -0.24 -0.41 -0.04 -0.13 0.05 -0.01 0.03 0.18 0.06    

Sr -0.04 -0.43 -0.04 0.12 -0.23 -0.70 -0.41 -0.01 0.02 -0.18 -0.01* 0.05   

Zr -0.05 -0.10 -0.17 -0.17 -0.08 -0.12 -0.04 0.05 0.00* 0.12 0.04 0.06 0.13  

Pb -0.09 0.21 -0.35 -0.43 -0.03 0.02 0.36 -0.03 -0.01 0.40 0.41 0.14 -0.19 0.03 

7 

 Si S K Ca Ti Mn Fe Cu Zn Se Br Rb Sr Zr 

S 0.30              

K 0.25 0.51             

Ca -0.31 0.00* 0.13            

Ti 0.30 0.40 0.76 -0.26           

Mn 0.28 0.35 0.50 0.13 0.42          

Fe 0.21 0.57 0.48 -0.48 0.65 0.29         

Cu 0.05 0.05 0.00* -0.15 0.07 -0.01 0.14        

Zn 0.24 0.12 0.15 -0.09 0.21 0.25 0.14 0.08       

Se 0.00* -0.10 -0.14 -0.10 -0.11 -0.10 -0.17 -0.04 -0.02      

Br -0.03 -0.09 -0.10 0.05 -0.12 -0.07 -0.21 -0.06 -0.08 0.26     

Rb 0.30 0.22 0.51 -0.52 0.66 0.21 0.55 0.03 0.11 0.04 -0.05    

Sr -0.29 -0.27 -0.11 0.32 -0.27 -0.53 -0.38 -0.06 -0.28 -0.02 0.07 -0.26   

Zr 0.06 0.16 0.13 -0.21 0.18 0.03 0.25 0.09 0.05 -0.06 -0.10 0.14 -0.06  

Pb 0.07 0.15 0.11 -0.18 0.12 0.01* 0.20 -0.02 -0.02 0.13 0.17 0.24 -0.07 0.03 
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