A novel tri-unsaturated highly branched isoprenoid (HBI) alkene from the marine diatom Navicula salinicola

Gao, S

http://hdl.handle.net/10026.1/15905

10.1016/j.orggeochem.2020.104050
Organic Geochemistry
Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
A novel tri-unsaturated highly branched isoprenoid (HBI) alkene from the marine diatom *Navicula salinicola*

Simin Gao a,b,*, Lukas Smik c, Maxim Kulikovskiy d, Nataliya Shkurina d, Evgeniy Gusev d, Nikolai Pedentchouk a,d, Thomas Mock a, Simon T. Belt c

(a) School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
(b) Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
(c) School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
(d) K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia

* Corresponding author, simin.gao@uea.ac.uk

ABSTRACT

A novel tri-unsaturated C_{25} highly branched isoprenoid (HBI) alkene has been identified in a laboratory culture of the diatom *Navicula salinicola* and its structure determined using a combination of NMR spectroscopy and gas chromatography–mass spectrometry (GC–MS). This represents the first report of a C_{25} HBI in a marine diatom from the *Navicula* genus, although a different tri-unsaturated C_{25} HBI has been reported previously in the freshwater species *N. sclesvicensis* and unspecified HBIs have been identified in the brackish *N. phyllepta*. The newly characterised HBI contains a relatively unusual conjugated diene sub-unit, a structural feature...
only previously reported in some HBIs biosynthesised by a further marine
diatom, Haslea ostrearia.

Keywords: highly branched isoprenoid; alkene; diatom; Navicula salinicola

1. **Introduction**

C_{25} highly branched isoprenoid (HBI) alkenes are common
components of marine and lacustrine sediments worldwide and are
biosynthesised by certain diatoms mainly belonging to the genera Haslea,
Navicula, Rhizosolenia, Pleurosoma, Berkeleya and Pseudosolenia
(Volkman et al., 1994; Belt et al., 1996, 2000, 2001; Sinninghe Damsté et al.,
1999; Grossi et al., 2004; Brown et al., 2014; Kaiser et al., 2016). A single
tri-unsaturated C_{25} HBI (Structure 6; Fig. 1) has been identified in the
freshwater diatom Navicula sclesvicensis (Belt et al., 2001), and the mainly
brackish species N. phyllepta has also been reported as an HBI-producing
diatom (Sinninghe Damsté et al., 2004), although no structures were given.
In contrast, no HBIs have as yet been reported in any marine species within
the Navicula genus. Here, we identify a novel tri-unsaturated C_{25} HBI
isolated from a laboratory culture of the marine diatom N. salinicola and
report its structure based on analysis by NMR spectroscopy and gas
chromatography–mass spectrometry (GC–MS).

2. **Experimental**

The benthic diatom N. salinicola was collected from a coastal marine
environment (M. Kulikovskiy, June 2016 at Nha Trang, Vietnam,
12°13'14.5"N 109°12'18.3"E) and kept as strain BTD1 in the Laboratory of
Molecular Taxonomy of Aquatic Plants Institute of Plant Physiology (RAS).

(Further taxonomic information can be found in the Supplementary Information). Initially, *N. salinicola* was cultured at 15 °C, 150 µmol m⁻² s⁻¹ continuous light in small flasks (150ml). Samples were harvested by filtration using MF-Millipore™ membrane filters (25 mm diameter, 0.3 µm pore size) during the exponential and stationary growth phases (Fig. 2). Large-scale cultures were then set up in several 2 l conical flasks under the same growth conditions. 80 l of such cultures were harvested by centrifugation (4000 rpm, 10 mins) during the stationary growth phase. For the small- and large-scale culture experiments, we used enriched f/2 medium (Guillard and Ryther 1962), along with the following nutrient concentrations: 2646 µM NaNO₃, 318 µM Na₂SiO₃, 108 µM NaH₂PO₄. The filtered and centrifuged biomass was freeze dried and the resulting dry material extracted via sonication using hexane (3 ml (small-scale cultures); 25 ml (large-scale culture)). The total hexane extract (THE) was then concentrated by removing hexane under a stream of nitrogen and partially purified using column chromatography (SiO₂). The hydrocarbon fraction (hexane) was analysed by GC–MS using an Agilent 7890 gas chromatograph equipped with a HP₃MS fused-silica column (30 m; 0.25 µm film thickness; 0.25 mm internal diameter) coupled to an Agilent 5975 series Mass Selective Detector (MSD). NMR data were obtained using a JEOL ECP-400 NMR spectrometer with chemical shifts measured relative to those of CDCl₃ (¹H: 7.24 ppm; ¹³C: 77.0 ppm). NMR data were collected on the THE
obtained from the large-scale culture. The purity of the newly reported C\textsubscript{25:3} HBI (see Section 3) in this THE was estimated to be ca. 90\% based on its relative peak area (GC–MS; Supplementary Information) and by the relative integration values of H-23 (Fig. 1) versus the alkenic protons of the co-occurring polyunsaturated linear alkenes (δ = ca. 5.3 ppm) in the 1H NMR spectrum.

3. Results and discussion

Following extraction of several small-scale cultures of \textit{N. salinicola} from the exponential and stationary growth phases, analysis of partially purified THEs by GC–MS revealed the presence of a suite of closely eluting polyunsaturated linear alkenes (e.g. heneicosa-3,6,9,12,15,18-hexaene; \textit{n-C}_{21:6}), trace amounts of a di-unsaturated HBI (2; Fig. 1) and a further compound exhibiting similar mass spectral properties to a range of C\textsubscript{25} HBIs characterised previously. However, although the retention index (RI) of this component (RI\textsubscript{HP5ms} = 2141) did not match that of any previously reported C\textsubscript{25} HBIs, hydrogenation of an aliquot of one THE resulted in the formation of the parent HBI alkane C\textsubscript{25:0}, thus confirming the C\textsubscript{25} carbon skeleton. Interestingly, this new HBI was only detected in cultures harvested during the stationary phase and was identified as tri-unsaturated on the basis of its molecular ion (M⁺ 346; Fig. 3). At this point, it is not clear why this new HBI and the co-occurring diene 2 were not detected during the exponential growth phase, although we note that some variability in cellular HBI concentrations and distributions have been reported in a small number of
previous studies (e.g. Wraige et al., 1997,1998,1999; Brown et al., 2020). From the large-scale culture of *N. salinicola*, we obtained ca 0.2 mg of the partially purified HBI triene (3; Fig. 1), which enabled full structural characterisation using 1H and 13C NMR spectroscopy. A conjugated diene sub-structure (C22–C25; C23–C24; Fig 1) could be readily identified through a particularly characteristic low field resonance in the 1H NMR spectrum due to H-23 (Wraige et al., 1997; Allard et al., 2001), together with further low field resonances that could be attributed to alkenic methylene protons at C24 and C25 (Table 1). The third double bond could also be identified from its methylene protons at C17. Alternative positions for this third double bond at C1–C2 or C14–C15 can be discounted due to the observation of two isopropyl groups in the 1H and 13C NMR spectra (Table 1). Further, a double bond at C10–C18 leaves a solitary methyl group at C17 whose 13C chemical shift would be at ca. 15.5 ppm, by comparison with related compounds (e.g. 1; Belt et al., 2012). In contrast, isolated methyl groups at C18 in previously characterised HBIs resonate at ca. 19–20 ppm (e.g. 19.8 ppm for HBIs 1 and 2; Fig. 1) (Johns et al., 1999; Belt et al., 2012), consistent with that observed for HBI 3 (i.e. 19.9 ppm; Table 1). The 13C NMR spectrum of HBI 3 also contained individual resonances due to the six magnetically inequivalent alkenic carbon nuclei (Table 1) and complete 13C resonance assignments could be proposed by comparison with structurally similar HBIs characterised previously (Fig. 1; Belt et al., 1996, 2012; Wraige et al., 1997; Allard et al., 2001), some of which contain a conjugated diene.
sub-unit (i.e. 7–8). The GC RI of HBI 3 (RI_{HP5ms} = 2141) is substantially higher than those of some other HBI trienes (e.g. RI_{HP5ms} = 2114 (4); 2109 (5); 2090 (6)) but is consistent with that reported for the structurally related tetraene 7 (RI_{HP-5} = 2159; Allard et al., 2001).

The identification of a C_{25} HBI in N. salinicola represents the first example of HBI production within a marine Navicula species despite the near-ubiquity of this genus within natural diatom populations. Since the Navicula and Haslea genera are quite similar, phylogenetically, with the latter well-known as an HBI-producing genus, the new finding is probably not surprising; however Navicula is a far more common genus, potentially making it a more important source of some HBIs in marine sediments. In terms of its structure, the conjugated diene sub-structure (C_{22–C25}; C_{23–C24}; Fig. 1) is somewhat unusual, although there is some previous precedent for such a feature in other HBIs isolated from a small number of cultures of the marine diatom Haslea ostrearia (Wraige et al., 1997; Allard et al., 2001). In fact, HBI 3 is a close structural analogue of HBI 7 identified previously in H. ostrearia, albeit as a minor component. Since the retention index of HBI 3 (RI_{HP5ms} = 2141) is similar to two HBI tetraenes identified in some cultures of H. ostrearia (viz. RI_{HP-5} = 2143–2146; Allard et al., 2001), one of which also contained HBI 7, it possible that HBI 3 may also have been present in the corresponding lipid extracts, but not identified due to co-elution. We are unaware of any geochemical reports of HBI 3 although its characterisation described herein may, in the future, lead to its positive
identification in sedimentary archives, an outcome that may potentially add to the use of HBIs as palaeoenvironmental indicators (c.f. HBIs 1 and 2 for Arctic and Antarctic sea ice; see Belt, 2018 for a review).

4. Conclusions

We report the structural identification of a novel C\textsubscript{25} HBI biomarker in the marine diatom *N. salinicola*, the first example of HBI production within a marine *Navicula* species, thus expanding the potential number of sources of HBIs in the environment. Further studies into *N. salinicola* and related species may prove valuable in the use of HBIs as palaeoenvironmental proxies.

Acknowledgments

SG was funded by the UEA-SUSTech Split-Site PhD programme. We also acknowledge partial support by The Leverhulme Trust (RPG-2019-088). MK, EG, and NS were supported by Russian Science Foundation (19-14-00320) and by The Framework of The State Assignment (theme AAAA-A19-119041190086-6). We also thank two anonymous reviewers who provided helpful feedback on the original manuscript.

References

alkenes from the marine benthic diatom *Pleurosigma strigosum*. Phytochemistry 65, 3049–3055.

Figure legends

Figure 1. Structures of C\textsubscript{25} HBIs referred to in the text. HBIs are numbered in order of increasing unsaturation.

Figure 2. Growth curve of the small-scale culture of the marine diatom \textit{N. salinicola}. Cell densities were estimated by measuring in vivo fluorescence between 460 nm to 670 nm using the SpectraMax® iD3 Multi-Mode Microplate Reader. Cultures were harvested during the exponential (empty arrow) and/or stationary (solid arrow) growth phases (n=1).

Figure 3. Structure and mass spectrum of HBI 3.
Figure 1.

Figure 2.

Figure 3.

Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation.
Table 1. Key NMR data for HBI 3.

<table>
<thead>
<tr>
<th></th>
<th>Carbon shift (δ/ppm)</th>
<th>Proton Number</th>
<th>Proton shift (δ/ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.8, 22.7*</td>
<td>1,15,16,19</td>
<td>0.85 (12H, m)</td>
</tr>
<tr>
<td>2</td>
<td>28.0</td>
<td>5,7,21</td>
<td>2.05 (5H, m)</td>
</tr>
<tr>
<td>3</td>
<td>39.1</td>
<td>17</td>
<td>4.77, 4.72 (2H, 2 x s, br)</td>
</tr>
<tr>
<td>4</td>
<td>25.6</td>
<td>18</td>
<td>0.82 (3H, t, J=6.9 Hz)</td>
</tr>
<tr>
<td>5</td>
<td>33.0</td>
<td>23</td>
<td>6.33 (1H, dd, J=17.6, 11.0 Hz)</td>
</tr>
<tr>
<td>6</td>
<td>152.3</td>
<td>24a</td>
<td>5.01 (1H, d, J=11.0 Hz)</td>
</tr>
<tr>
<td>7</td>
<td>47.1</td>
<td>24b</td>
<td>5.16 (1H, d, J=17.6 Hz)</td>
</tr>
<tr>
<td>8</td>
<td>29.8</td>
<td>25</td>
<td>4.96 (2H, m, br)</td>
</tr>
<tr>
<td>9</td>
<td>34.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>37.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>39.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>28.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,19*</td>
<td>22.8, 22.7*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>109.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>146.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>139.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>113.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>115.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Assignments may be interchanged