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Abstract

An important capacity that is still lacking in intelligent systems such as robots,
is the ability to use concepts in a human-like manner. Indeed, the use of concepts
has been recognised as being fundamental to a wide range of cognitive skills, in-
cluding classification, reasoning and memory. Intricately intertwined with language,
concepts are at the core of human cognition; but despite a large body or research,
their functioning is as of yet not well understood. Nevertheless it remains clear that
if intelligent systems are to achieve a level of cognition comparable to humans, they
will have to posses the ability to deal with the fundamental role that concepts play
in cognition.

A promising manner in which conceptual knowledge can be acquired by an intel-
ligent system is through ongoing, incremental development. In this view, a system
is situated in the world and gradually acquires skills and knowledge through interac-
tion with its social and physical environment. Important in this regard is the notion
that cognition is embodied. As such, both the physical body and the environment
shape the manner in which cognition, including the learning and use of concepts,
operates. Through active partaking in the interaction, an intelligent system might
influence its learning experience as to be more effective.

This work presents experiments which illustrate how these notions of interaction
and embodiment can influence the learning process of artificial systems. It shows
how an artificial agent can benefit from interactive learning. Rather than passively
absorbing knowledge, the system actively partakes in its learning experience, yield-
ing improved learning. Next, the influence of embodiment on perception is further
explored in a case study concerning colour perception, which results in an alterna-
tive explanation for the question of why human colour experience is very similar
amongst individuals despite physiological differences. Finally experiments, in which
an artificial agent is embodied in a novel robot that is tailored for human-robot
interaction, illustrate how active strategies are also beneficial in an HRI setting in
which the robot learns from a human teacher.
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Chapter 1

Introduction

The use of concepts comes natural to people. We tend to talk and think in concepts,

and the learning of new concepts or alterations of existing ones comes with remark-

able ease. Concepts appear to be fundamental building blocks of human cognition.

Hence, the ability to use concepts has been described as “paramount for the un-

derstanding of many cognitive phenomena” (Gärdenfors, 2000b, p.1), as all sorts of

cognitive structures and abilities like memory, knowledge representation, reasoning

and deduction entail concepts in some way. From ancient times scholars have been

interested in this phenomenon, and particularly in the last century, along with the

rise of modern psychology, the interest in concepts has increased tremendously. Yet

the issue is far from settled, as despite a large body of scientific and philosophical

investigations, there is still no consensus about what exactly constitutes a concept,

how it might be encoded, how it can be acquired and in general what role it plays

in human cognition.

Given the importance of this role in human cognition, it is not surprising that

the topic has received considerable attention from artificial intelligence (AI) and

cognitive robotics. This interest is not only in explaining the nature of human con-

cepts, but also to enable artificial systems to use concepts in a human-like manner.

The general aim of AI can thus be seen as twofold. On the one hand the develop-

ment of AI models may help to understand human intelligence, as theories can be

tested, made more concrete by requiring implementation details to be explicit and

the application of models of cognition might create new predictions and provide new
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inspirations. On the other hand, the fact that AI systems are currently far from in-

telligent might largely be due to a relatively poor understanding of human cognition.

A more thorough understanding of human intelligence might turn out to be crucial

if we ever hope to build artificial systems that display intelligent behaviour to some

degree1. Thus, given the fact that the use of concepts is fundamental to human

cognition, to build an effective AI system, a good understanding of how concepts

function in humans seems necessary. And vice versa, to unravel the manner in which

humans utilise conceptual knowledge, AI systems may prove to be invaluable tools.

Both aims naturally go together, though for some researchers the first one may be

the ultimate goal while for others it might be the latter, and some researchers might

implicitly aim for both.

The interest in concepts from an AI perspective can also be found in Cognitive

Robotics (CR), viewing the latter as an extension of AI that makes more rigorous

demands with respect to methodology, design and robustness of effective AI systems.

Indeed, due to the emphasis on real world applications and robotic embodiment,

proposed solutions need to be able to cope with the, from an AI system’s perspective,

ever noisy2, chaotic and dynamically changing environment that is constituted by

the real world. At the same time this focus on embodiment, real world application

and the increasing adoption of robots as part of society opens up new opportunities

for interaction, learning and cooperation between robots and humans.

Setting the stage

The nature of the research described in this thesis is interdisciplinary, and as such

themes from different disciplines, like psychology, AI and cognitive robotics will be

brought forward. In the remainder of this chapter we will set the stage for the

1This, of course, depends on what exactly is meant with intelligent behaviour. The most famous
‘definition’ of artificial intelligence is formulated in the Turing Test (Turing, 1950), which states
that an artificial system is said to be intelligent if its behaviour, while playing an imitation game
with a human interrogator, cannot be distinguished from human behaviour. While this definition
of intelligence is somewhat controversial (for instance, Searle’s Chinese room thought experiment
(Searle, 1980) argues against it), it is a fact that as of today AI systems have not reached a level
of sophistication that enables them to pass something like a Turing Test, i.e. behave in such a
manner that they cannot be distinguished from humans, other than in very restricted contexts.

2With ‘noisy’ the random fluctuations in sensory channels in general are meant, which are
therefore not necessarily restricted to sound.
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inclusion of these topics from different disciplines. We briefly discuss how different

aspects from human concept use, AI, cognitive robotics, learning, developmental

robotics, language and human-robot interaction all relate to the thesis at hand, that

is, interactive concept acquisition for embodied artificial agents.

1.1 Concepts

One of the most compelling cognitive capacities is the ability to form concepts from

observations we make in the world around us (Smith, 1995). A concept is generally

understood to be some kind of abstract representation which somehow provides

a ‘model’ for all the instances that we might encounter in the world around us;

having such models allows for the sorting of streams of sensory information into

meaningful ‘chunks’ as part of our cognitive processing. For now we will stick with

this fairly informal description of concepts, a more in-depth discussion about the

issues regarding a definition of concepts is provided in section 2.1 and section 2.2.

Having the capacity to use concepts provides a lot of advantages. For example,

having a concept of a bear3 allows us to recognise something with bear-like proper-

ties from a distance, make predictions about this (it might attack me if I get near)

and communicate about this to others (“beware of the bear!”). There is no need to

have encountered this particular bear ever before, and in fact it might look, smell

or behave considerably different from other bears we have encountered, but yet we

are able to do these things. Having the ability to match something we perceive

with another thing that we have experienced before clearly serves a purpose. Yet,

this is not a trivial task, as it requires a fine balance of sufficient but not too much

detail in both the storage (memory) and matching process. If we have memorised

too many details from previous encounters with bears, we might end up with a very

specific bear concept and decide on that basis that the newly observed entity does

not sufficiently matches to be considered a bear (a decision that could have lethal

consequences). On the other hand, if too little is stored, our concept of bear would

3Throughout this thesis concepts will be written in small capitals to indicate the concept
itself is meant (presumably as part of some agent’s cognitive repertoire), rather than the linguistic
label referring to this concept, or the actual referent in the world.
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be very general and we might end up constantly warning people for all sorts of things

that are brown and move. In a similar vein the matching needs to be balanced as

well; our concept of bear might have struck the right balance between details and

generality, but if we are, during the matching process, too fussy about the details

of some observation or not fussy enough we still might be in trouble. Context is

extremely important for this process (Barsalou, 1982), as this can determine which

properties of a certain concept are relevant and which are not.

Humans are exceptionally good at using concepts in an effective manner. Not

only visual observations from the world around us are subjected to conceptualisa-

tion, but virtually any sensory processing might be thought of in terms of concepts

(Harnad, 1987). It would be very hard to formulate theories about cognition with-

out resorting to a level of description that involve concepts in one way or another.

However, despite large efforts to investigate and unravel human concept acquisition

and use, no all-inclusive theory of concepts that manages to explain all empirical

data has been proposed so far. While initially it seems that concepts, although cen-

tral to human cognition, were relatively straightforward to study and to model, the

more research was addressed to it, the more complex and ‘messy’ the story seemed

to become (Murphy, 2002). Some authors have even proposed to stop trying to

formulate theories of concepts altogether, arguing that their inclusion in cognitive

theories only leads to misunderstandings (Machery, 2009). Nevertheless, despite

the lack of a grand theory of concepts, it is an accepted fact that concepts are a

fundamental part of human cognition, and are therefore of interest to anyone who

wishes to study human intelligence4.

1.2 AI and Cognitive Robotics

As previously described, the study of AI has two goals: understanding human cogni-

tion and the creation of artificial systems that exhibit human-like intelligence. Given

4Presumably concepts-like structures might be found in other forms of natural intelligence,
see Allen and Hauser (1991) for a discussion. However, we are primarily concerned with human
intelligence and concept use because the aim is to achieve human-like behaviour in artificial systems,
rather than other animal-like behaviour.
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the importance of concepts to human cognition, adopting either one of these goals

entails an incorporation of mechanisms that can deal with human-like concept use.

Traditionally however, AI has not necessarily focussed on modelling of concepts per

se. Rather, it has undergone a kind of paradigm shift, going from a focus on mod-

elling higher level cognitive functioning (like symbolic reasoning) to a much more

basic level of embodied cognition (see Anderson (2003) for an overview of this shift).

This transition is briefly described below.

1.2.1 From GOFAI to embodiment

The now famous Dartmouth conference in 1956 is generally credited as the birthplace

of AI. While at the time cybernetics5 already advocated a systems view, research

in AI from the 1950s onwards tended to revolve around principles that are now

generally dubbed as Good Old Fashioned Artificial Intelligence (GOFAI), a term

coined by Haugeland (1985). GOFAI approaches were essentially based on the idea

that cognition is computational in a classical sense. That is, in analogy to a digital

computer, the brain can be seen as a central processing unit (CPU) that engages

in symbol manipulation. In this view cognition is the act of processing information

encoded in a symbolic fashion.

As such, AI systems and robots were endowed with control architectures based

on ‘sense-plan-act’ loops that were executed in serial fashion: 1) perception of the

environment through sensors, 2) building of an internal representation of the current

situation based on perceived sensory values, 3) calculation of next action based on

current situation and predefined goals, 4) execution of the action, and 5) back to

step 1). A typical example of this type of system is the robot ‘Shakey’6 (Nilsson,

1984), which was one of the first in its kind, being able to reason about its environ-

ment and act accordingly. Such robots performed reasonably well in a static and

predictable environment in which everything was controlled (e.g. a laboratory set-

ting or a factory). Their performance was significantly less effective in unpredictable

5Cybernetics was defined by Norbert Wiener as “control and communication in the animal and
the machine” (Wiener, 1948) and as such was about a theoretical understanding of a broad variety
of feedback systems; including, but not limited to, AI systems.

6This robot was nicknamed ‘Shakey’ because of its peculiar way of moving.
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dynamically changing environments such as an office with people coming and going,

or an outdoor setting with changing weather and lighting conditions, background

movement, uneven terrain etc. At the time however, most of the difficulties and lim-

itations were perceived as resulting from a lack of computational power that would

eventually be overcome through the development of more powerful computers (cf.

Moore’s law).

Within GOFAI architectures it was assumed that cognitive tasks could be decom-

posed in smaller subtasks (sense, plan and act) which could be solved independently

in a heuristic fashion. So in order to solve a rather complex task, all a robot needed

to do was to decompose it into manageable subtasks, find solutions for these and

‘glue’ it all together. The decomposition into subtasks however, turned out to be

not trivial or even impossible on occasion. Also, issues with the subtasks themselves

were problematic. For instance, how could sensory information be translated into

a proper symbolic representation, how could discrete symbols be translated into

continuous motor actions and, to anticipate a changing environment, how could

planning be done in real-time while this tended to require a lot of computational

time. Also the Frame Problem (McCarthy and Hayes, 1969), the problem of deciding

which aspects of the environment are worth paying attention to (i.e. spending com-

putational resources on) without actually computing them, plagued this approach7.

Despite these problems GOFAI dominated AI research for decades.

New themes and ideas emerged in the 1980s. For example, Braitenberg (1986)

showed how relative ‘intelligent’ behaviour could be achieved in very simple ‘vehi-

cles’: software or hardware agents that exhibited certain reflexive behaviours like

being drawn to light, avoiding light, approaching a target, moving in a certain pat-

tern etc. The ‘brain’ of these vehicles was very simple, it consisted of clever coupling

between sensors and actuators in such a way that when placed in the right envi-

ronment, the vehicle displayed recognisable behaviours. For instance, the behaviour

7The Frame Problem is in fact not one specific problem, but rather a host of problems that all
revolve around the notion that it is problematic for AI systems to make decisions about what should
be computed, what is relevant and what can be ignored, without spending too much resources (time
and computational power). For example, changes in the world that are not relevant for a certain
problem should be ignored, but the only way to know if they are relevant or not is to examine
them, which comes at a cost. Different variation on this problem and varying solutions have been
proposed, see Lormand (1990).
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‘drawn to light’ was achieved by cross-connecting light sensors and actuators: a light

sensor on one side of the vehicle detecting an increase of light would increase output

of the actuator on the other side, thus causing the vehicle to move towards the light.

Braitenberg’s vehicles illustrated that no complex high level cognition was required

for simple forms of behaviour and such were examples of ‘minimal intelligence’.

Also Brooks (1986) challenged the underlying principles of GOFAI by proposing

the ‘subsumption architecture’. This control architecture for autonomous agents

consisted of multiple layers of behaviour which operated in parallel. Sensors where

directly connected to motor outputs to allow for fast low level behaviour. On top of

this other layers of behaviour could be added incrementally which could influence

lower behaviour but also incorporated higher order objectives. Through parallel

processing of all behavioural layers, the robot controller was proposed to be more

adaptive toward changing environments than robotic controllers originating from

the GOFAI approaches. Behavioural layers were hierarchically structured, where the

simplest layers at the bottom served as reactive behaviour (e.g. obstacle avoidance)

and more advanced layers which incorporated the higher order objectives could

inhibit or exhibit the output of lower layers and hence strive for more long term goals.

Although the subsumption architecture was inspired by nature (low level behaviour

as ‘reflexes’, high level behaviour as higher cognitive functions like planning), each

layer was still designed and tested by human programmers. Since each layer could

influence all pre-existing layers complexity accumulated rapidly, which made the

design of complex behaviours more and more challenging as new layers were added.

Even though the subsumption architecture was not the ultimate answer to the

problems of the GOFAI approach, the ‘behaviour based robotics’ approach sparked

the development of a broader movement. This paradigm, known as ‘Embodied

Cognition’ or ‘Embodiment’ (Pfeifer and Scheier, 2001; Wilson, 2002), advocated

the notion that symbol manipulating rule based systems were not suitable to capture

the most basic characteristics of intelligence. Instead, the alternative proposal was a

lower level, behaviour based, reactive, embedded and embodied approach, in which

the environment, the brain and the physical system could not be seen independently
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but should be studied as a whole. In this view the morphology of any cognitive

system heavily influences its abilities and is therefore of crucial importance.

The view was broadened and researchers started to focus on biologically inspired

techniques like neural networks and evolutionary algorithms because such techniques

provided new means for the development of adaptive control. Also methodological

tools from dynamical systems theory served the newly formed paradigm well. Dy-

namical systems theory describes the development of typically complex systems over

time, so applying this to robotics, the robot’s control program, the robot’s phenotype

and the environment are all regarded as one dynamical system in which interactions

are taking place continuously. As such, cognition cannot be understood properly in

isolation, but the environment in which it operates, the body in which the cognitive

mechanism is embedded and the sensors that provide a connection with the outside

world all play their respective parts. Moreover, boundaries between these aspects

may be fuzzy, as cognitive processes may happen through utilisation of the body

(e.g. counting with fingers) or through cognitive ‘offloading’ onto the environment

(e.g. physically rearranging of objects to separate them into classes, or the use of

tools such as notepads; Clark, 2008). Currently, the notion of embodiment has

become fairly mainstream in cognitive robotics (Pfeifer et al., 2007).

1.3 Learning and developmental robotics

Another prominent aspect of the ‘new AI’ as described above is the appreciation of

the fact that it is practically impossible to provide AI systems with all the knowledge

they might need. As the real world is so enormously complex it is virtually impossible

to predict what kind of knowledge an AI system should have in order to be able to

deal with everything that might be encountered. Therefore, rather than providing

robots with such ‘innate’ knowledge, they should be adaptive to their environment

and learn skills and knowledge on the fly. Possessed with such flexibility, a robot can

tune itself to whichever environmental factors are relevant for its current situation.

Hence, within new AI approaches, adaptivity became an important topic as well.

Inspiration for this has been drawn from developmental psychology, as children
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display an enormous capacity to quickly expand their abilities in a relative short

time frame from the moment they are born. Even though infants are genetically

disposed to certain characteristics, e.g. organisation tendencies in brain development,

many of their cognitive abilities gradually develop through interaction with their

environment, including their bodies, their caregivers, other children and the world.

Developmental psychology has been strongly influenced by the pioneering work of

Piaget (Piaget and Cook, 1953), who was one of the first to describe the different

developmental phases children go through. Piaget’s theories however, viewed the

learning of children very much as a one-way process, in which the child gradually

absorbs knowledge from the world through individual exploration. In contrast, the

theories of Vygotsky (1964), put more emphasis on social, cultural and linguistic

aspects of child development, placing the child in an interactive environment through

which it learns.

These views have since been applied to robotics, as it was recognised that insights

and principles from developmental psychology could yield interesting new ways in

which robots can learn, thus giving rise to the field of cognitive developmental

robotics (Dautenhahn and Billard, 1999; Asada et al., 2001; Lungarella et al., 2003;

Asada et al., 2009). In this approach, rather than endowing a robot with certain

fixed capacities and then ‘exposing’ it to the real world, a robot is viewed as a

naive learner that gradually goes through different stages in development through

interaction with its environment (Sandini et al., 2004). As such, the robot engages

in incremental cognitive development in which simple capacities are acquired first

and newer, more complex capacities are built on top of this (Cangelosi et al., 2010).

1.4 Language

All topics discussed so far relate to language in one way or another. It has been

argued that language is at the root of cognitive abilities that are unique for humans

and that set us apart from other animals (Bickerton, 1995); the ability to use re-

cursion in language being the most unique feat (Hauser et al., 2002). Moreover, it

has been suggested that the language faculty is intimately linked with the ability
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to use concepts (Bloom, 2000), making it hard to distinguish between learning a

concept and learning the meaning of a word. A long standing debate is the no-

tion of linguistic relativism, also known as the Sapir-Whorf hypothesis, which states

that the thoughts we have (including concepts) are determined by the language we

speak (Whorf and Carroll, 1956). The strong version claims that all thoughts and

concepts we can entertain are determined by the particular language that we speak,

while the weaker version states that language merely influences concepts we have

and behaviour we display (Kay and Kempton, 1984). Regardless of which version

is supported, there exists a strong relation between concepts and language.

Related to this is the question of how both syntactic and semantic aspects of

language are learned. Regarding syntax, one school of thought endorses the view

that the capacity to learn language must be innate; a position which is most famously

advocated by Chomsky (1986), who argued that because children are not exposed

to sufficient linguistic material that could enable them to learn all complexities of

language (the poverty of the stimulus), they must possess an innate capacity for

this (known as Universal Grammar). Others have argued against this. For instance,

Tomasello (2003) proposed a usage-based account of language learning which does

not require the existence of a special language faculty. Rather, children are able

to learn a language because they utilise cognitive skills like statistical analysis of

observed patterns that are not unique for language but for other cognitive abilities

as well, combined with an interactive process in which they recognise others (parents,

teachers, playmates) as intentional beings through imitation, attention sharing, goal

sharing etc. As such, language acquisition is a highly interactive, constructive and

social process (Tomasello, 1992).

The ideas above are mostly focussed on how syntactic aspects of language (like

grammar) are acquired; closely related to this is how semantic knowledge, i.e. mean-

ing, can be learned. The latter becomes particularly pronounced in AI models of

language learning, as a naive style of meaning representation using explicit defini-

tions suffers from the ‘dictionary’ problem, the problem that the meaning of words
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is very often defined in circular fashion8. Related to this is the symbol grounding

problem (Harnad, 1990), which asks the question of how abstract symbols (e.g. lan-

guage) can acquire meaning. Proposed solutions suggest that low level meanings

must be grounded in sensorimotor contingencies on which more abstract notions

can be based (Massé et al., 2008). Alternative views have placed more emphasis on

the interactive and social nature of language acquisition. For instance, Steels (1997)

showed how symbols and meanings can become shared in a population of agents

through a process of continuous social interaction with other agents. He proposed

the framework of language games; a mechanism in which artificial agents, triggered

by what they observe in their environment, engage in linguistic interactions through

which they acquire word-meaning combinations and gradually align these with other

agents in the population.

1.5 Human-Robot Interaction

Taking the embodiment thesis to heart, we are not only concerned with simulated

agents, but also consider the learning agent as embodied in robotic hardware. This

brings us to the topic of Human-Robot Interaction (HRI) and social HRI in specific.

HRI as a research field has considerably developed in recent years. With the increas-

ing availability of advanced robotic platforms that are meant to interact with people

in unstructured, informal settings9, questions about how exactly these robot systems

should interact with people have become more articulated. Given that robots are

becoming more and more sophisticated in their appearance and behaviours, insights

gained from the more established field of Human-Computer Interaction (HCI) may

8A typical illustration of this problem is the following. Dictionary.com defines the word ‘fact’
as “something that actually exists”. The word ‘actual’ is then defined as “existing in act or fact”,
the word ‘existing’ is defined as “to have actual being” and finally the word ‘being’ is defined as
“the fact of existing”. Thus, the circle is complete and nothing is learned about the meaning of
these words, other than that they define each other in a circular fashion.

9This is in contrast with industrial robotic applications that typically operate in tightly con-
trolled and highly predictable environments. For this type of robots there is a notion of HRI as
well, as they are operated by people to some extent, but this is of a drastically different nature
than the HRI we discuss here, as personnel operating industrial robots will typically have received
formal training. In contrast, the robots we are concerned with are envisioned to operate in envi-
ronments with the general public; thus people that come into contact with these robots are not
expected to have received any specialised training.
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not be directly transferable to an HRI context. The new discipline, HRI, has steadily

been gaining ground in the last decade, building on foundations from HCI (e.g. an-

thropomorphism) but gearing this towards a view in which humans and robots are

seen as social partners (Breazeal, 2004). The fact that people tend to treat robots

as social entities opens up new possibilities for interaction (Duffy, 2003). More than

an ‘ordinary’ computer, a robot can elicit social behaviour towards it and effectively

utilise social channels that come naturally to people, both verbal and non-verbal

(Breazeal, 2000).

This can be beneficial for learning as well. People display natural tendencies of

tutoring behaviour towards others and in particularly towards infants and children;

e.g. by providing isolated, structured learning examples which are easy to grasp. A

robot could greatly benefit from these tendencies; the more a robot behaves like a

human learner, the more effective the teaching might become. Important in this

regard is the ability of a robot to utilise social channels in a correct manner. As we

want to avoid the uncanny valley10 (Mori, 1970), currently the aim for a robot is

not to ‘mimic’ human behaviour in every aspect, but rather behave in such a way

that people find the interaction natural. That is, a robot should behave according

to people’s expectation, and this is best achieved through transparency with respect

to the robot’s capabilities. For instance, the presence of physical ears on a robot

head is an indication that it can hear, dexterous hand movements may indicate that

the robot can understand people’s gestures and so on. The robot should portray an

image that is overall coherent. HRI will be more extensively described in section 7.1.

1.5.1 Social learning

An important aspect of human development is that it is strongly embedded within

social context (Rogoff, 1990). Indeed, virtually all important developmental phases

an infant goes through happen within a social environment, which is typically shaped

10The uncanny valley is the observation that the more human-like robots become, the more
familiar people might feel towards it. However, at some point a robot might reach a resemblance
that is very close to human, while at the same time it is obvious that it is still an artefact. This
state of ‘almost like human but not quite’ can feel uncanny and eerie to people, causing a drop in
their familiarity towards the robot.

28



by the infant’s caregivers (Gauvain, 2001). Language acquisition and the develop-

ment of a capacity for concept use are no exception to this (Tomasello, 1999; Akhtar

and Tomasello, 2000). As such, a theory seeking to explain concepts from a devel-

opmental perspective will need to acknowledge this social component.

Consequently, the notion that social context is also relevant for knowledge repre-

sentation and learning in artificial system has gained more attention in recent years.

Indeed, social aspects in robotics are recognised as important, see for instance Fong

et al. (2003). Also pioneering work of Breazeal (2000) contributed to the consensus

that specifically robots, in contrast to artificial systems in general (which might be

embodied in robots but might also exist in e.g. simulations), are easily viewed as so-

cial partners because they can tap into social channels that are perceived as natural

by people. As such, a learning robot can benefit from learning strategies rooted in

social interaction, by manifesting the appropriate social behaviours. Social robots

that are able to effectively utilise these social channels might be particularly suited

to learn from humans in an ongoing, interactive fashion.

A relative new view on machine learning and artificial intelligence is the so called

socially-guided machine learning (SG-ML) as advocated by Thomaz (2006). In the

SG-ML paradigm classical machine learning techniques are augmented with social

guidance in order to make the learning more effective. This proves particularly

useful in the context of cognitive robotics, as the context in which these robots tend

to operate may very often naturally provide the required guidance. In other words,

no ‘artificial’ or ‘contrived’ scenarios need to be employed, as a social environment

is naturally rich in learning opportunities and social partners are generally available

to provide guidance.

Recently, such interactive machine learning has gained more attention; differ-

ent studies have demonstrated that robots can benefit from employing interactive

strategies in which the robot learner is not passively absorbing new knowledge, but

rather actively engages in the learning experience through social interaction with

a human teacher (Brooks et al., 2004; Thomaz and Breazeal, 2008). Also different

robot behaviours were investigated by Cakmak et al. (2010), indicating that robots
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may benefit from active querying as opposed to standard supervised learning. Hu-

man tutors appear to appreciate an active learner, but like to stay in control at

the same time. Thus, balanced behaviour may be most optimal, and this can vary

for different users. Moreover, optimal robot behaviour might require fine-grained

understanding of the social situation in order to be effective (Knox et al., 2012); as

such, more exploration of appropriate robot behaviour remains to be done.

1.6 The thesis

Within this thesis the various themes as described in the previous sections come

together. Concepts are important for human cognition and therefore AI systems

should be able to learn and use them. Recent trends in AI, drawing inspiration from

developmental psychology, have focussed on embodiment, adaptivity and learning

with promising results. It is believed that language, as a bearer of conceptual

knowledge, can be acquired in a fluid constructive process through interaction with

the environment. As such, a developmental approach to concept learning can be

promising. In this view, an AI system, embodied in a robot, gradually acquires

concepts through social interaction with human tutors. Moreover, the manner in

which this happens is one of active learning, in which the learner actively tries to

influence the learning experience though utilisation of social cues, as to obtain better

results.

Having set the stage, the following general questions can be formulated:

• How can an artificial system be endowed with a conceptual model that bears re-

semblance to human concept learning and how might social interaction impact

on concept acquisition through such a model?

• Given variations in embodiment and specifically perception, how might social

concept acquisition overcome these differences?

• Can an artificial system equipped with such a conceptual model learn through

social interaction with humans?
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These questions are addressed as follows. First, various theories about concepts

are explored from two perspectives, one of these focussing on psychological theories

of how human use, learn and adapt concepts as part of their cognitive development

(the human perspective, section 2.3), and the other relating notions of concepts

to machine learning theories and techniques (the machine perspective, section 2.4).

Combining these two perspectives, it then is described which aspects of concepts

are deemed important for a model of concept learning applied to AI, addressing

important notions from both human and machine concept use (section 2.5). This

results in the formulation of a computational model that combines two frameworks:

Conceptual Spaces (Gärdenfors, 2000a) as a means of representing concepts and

Language Games (Steels, 1998) as a means of social acquisition of concepts. This

computational model is described in detail in chapter 3.

Using this computational model of concept learning as a starting point, some

aspects regarding its basic functionality are explored. Specifically, three different

aspects are addressed: 1) two forms of concept learning and testing are compared,

one based on classical language games, and the other as a form of more direct

learning (section 4.2); 2) different means of representing concepts in a conceptual

space are compared (one based on Discrimination Games, one based on k -Means

and one based on Self-organising maps, section 4.3); and 3) the model’s ability to

represent animal concepts in a manner compatible with prototype theory is tested

(section 4.4).

Having established the computational model and its basic functionality, we sub-

sequently move to the more experimental part of the thesis, in which the notion

of active learning, embodiment and social scaffolding of concept learning are in-

vestigated, both using simulations and a real-world setup that consists of people

interacting with a novel robotic face (section 7.2). Specifically, the following aspects

are addressed experimentally. To investigate the effectiveness of active learning in

a language acquisition setting, agents are endowed with means to actively influ-

ence their learning experience. This allows them to more effectively learn concepts

through interaction with other agents (chapter 5). Next, we explore the effect of dif-
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ferent embodiments on this type of learning (chapter 6). Both simulated agents and

robots with differences in their perceptual capabilities engage in learning interaction;

the flexibility of the learning dynamics allows them to overcome their perceptual dif-

ferences (section 6.2). These experiments are then extended to simulation that more

accurately models human vision, allowing us to make the argument that these learn-

ing mechanisms might account for the phenomenon that people’s subjective colour

experience hardly seems to differ, despite large physiological differences in the retina

(section 6.3). The next steps include extension of the findings into a robotic setup

(chapter 7). First the ability of people to read a novel robot’s gaze is investigated,

as mutual gaze understanding contributes to HRI (section 7.3). Having established

that the robot can be an effective social partner, experiments are presented in which

the robot learner employs the active strategy that was explored in simulation, by

utilising social cues, through interaction with a human teacher (section 7.4). Results

indicate that active learning gain also holds in a real HRI setting.

1.7 Contributions

In light of the description of the thesis provided above, the original contributions of

this work can be summarised as follows:

• A demonstration is provided of how two frameworks (conceptual spaces and

language games) can be combined into a functional model which is able to

learn concepts in a manner that is consistent with the prototype/exemplar

theory of concepts and which places emphasis on the social and interactive

nature of concept learning; both as a formalisation and through a working

implementation.

• The language game framework is augmented with interactive features to ac-

knowledge the interactive nature of learning. In a series of experiments it

is shown that active learning, in which the search space of an agent is more

effectively explored, constitutes an improvement over the classical approach.
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• Despite physiological differences people display a remarkable agreement with

respect to colour terms. Through a computational approach which models the

development of colour terms as interactions between agents with perceptual

differences, an alternative explanation of how this phenomenon can come about

is provided.

• Mutual gaze understanding is important for joint attention and learning, and

as such robots employed in HRI need to support this. Through experiments

in which human participants read the robot’s gaze, the LightHead robot is

established as a novel HRI platform.

• Combining the aspects described above, it is experimentally established that

active learning aspects in human-robot tutelage also hold when employed in an

actual robot setup in which human participants teach concepts to the Light-

Head robot.

1.8 Structure

The structure of the thesis is provided below, with a description of the content for

each chapter.

• In this introductory chapter 1 the main themes that are important for this

thesis have been introduced, along with the thesis narrative, the contributions

and the structure.

• In chapter 2 a more extensive background on concepts is provided. The con-

cept of concept is discussed, and theories about concepts are described from

two different perspectives. The human perspective deals with theories from

psychology about how concepts are used by humans, and the machine per-

spective describes theories that are more based on computational modelling of

concepts and how this is done from an AI perspective. These two perspectives

are then related to each other and it is described how those aspects of concept

33



learning that are deemed important are combined into a functional model that

supports social concept learning.

• Chapter 3 introduces the computational model that is used for the experi-

ments described in this thesis. The model is based on the combination of

two frameworks: conceptual spaces and language games. We explain how this

combination leads to a functional model that fits in with the background pro-

vided in chapter 2 and provide some of the more technical descriptions of the

model, including evaluation methods and a description of relevant parameters.

• In chapter 4 some of the basic functioning of the model is explored through

simulations. A baseline simulation is provided, against which we compare

direct instruction as an alternative to language game learning. Furthermore,

the partitioning of the conceptual space as resulting from the discrimination

game is compared to two alternative classification methods: k-Means and

self-organising maps. Finally the model’s abilities to display prototype and

typicality effects are explored.

• Chapter 5 concerns a series of experiments centred around the notion of in-

teractivity in learning. It has been fairly well established that learning is

an interactive process in which both teacher and learning actively contribute.

Using colour as an exemplar case, augmentations of the language games frame-

work are considered that allow an agent to be more actively engaged in the

learning process. The effect of these augmentations on the learning process

is tested in an experimental setting; particularly the notion of active learning

turns out to be useful.

• The effect of embodiment is explored in chapter 6. A series of experiments is

run in which artificial agents and robots are endowed with different perceptual

abilities. The effects these perceptual differences have on the learning and

alignment of colour terms are discussed. In a second series of experiments we

argue that the computational models can provide an alternative explanation

for the phenomenon that people hardly experience any difference in colour
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perception, despite striking differences in the physiology of the human retina.

• In chapter 7 robotic aspects are included. First the LightHead robot is in-

troduced, which constitutes a novel robotic platform for use in HRI studies.

As gaze is very important for mutual understanding in HRI, the ability of

participants to read the robot’s gaze is tested in experimental fashion. Next,

experiments in which human tutors teach the robot concepts are described,

showing that the active learning principles described in chapter 5 also apply

in an HRI setting.

• Chapter 8 provides an overview of the work covered in the thesis, reflects on

aspects that are related to the thesis in a broader sense and discusses some

topics of future research.
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Chapter 2

Concepts

This chapter sketches a theoretical background of concepts. First, a brief historical

overview of thinking about concepts throughout the history of science is provided

and relevant theories of conceptual modelling are discussed. Theories about con-

cepts and classification are explored from two different viewpoints: one is the human

perspective, in which we describe theories related to human concept use, and the

other is the machine perspective, in which some machine learning techniques related

to concept learning and classification are discussed. Then, we discuss learning in a

broader sense, with an emphasis on the social aspects of concept learning. Finally,

we describe how insights from both perspectives, with the inclusion of a social com-

ponent, can be combined into a computational model which is subsequently is used

for the experiments reported in this work.

2.1 A note on defining concept

Given the prominent role of concepts in this thesis, it would be fairly common to

start with a definition of what exactly a concept is understood to be; or in this

case, what the concept of concept might be. However, attempts at providing such a

definition might prove to be somewhat futile, predominantly because no consensus

regarding a definition of concepts can be found in the literature. As such, rather

than providing an exhaustive list of all definitions that have been proposed, or trying

to formulate a new one, we will discuss some of the issues related to formulating a
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definition of concepts and suggest that perhaps a strict definition is not necessary.

Within the literature the terms concept, category and class are frequently used

interchangeably, as are conceptualisation1, categorisation, classification and discrim-

ination. In case of the latter, all terms refer more or less to an act of assigning some

kind of data as belonging to some kind of group. It is sometimes understood that a

category refers to a kind of ordering, organisation or grouping of things in the world,

and that a concept is an internal representation of an agent2 for this particular cat-

egory. This distinction between categories and concepts can lead to ontological

questions such as the following: do categories exist in the world without an agent to

make this categorisation, and if they do not, how could they be distinguished from

concepts? The causal relation between concepts and categories is also unclear if this

distinction is assumed: do people form concepts in response to the categories they

perceive, or do they form concepts as a means of organising perception and then

impose these conceptual structures on the observations they make? (Goldstone and

Kersten, 2003).

In (Davidsson, 1996, p. 62) several definitions of concept and category are dis-

cussed; the conclusion is that the terms concept and category do not have a clear

definition and need to be explicitly defined within the theoretical framework in which

they are used. However, as Murphy (2002, p.5) notes, “being too fussy about say-

ing concept and category leads to long-winded or repetitious prose (...) with little

advantage in clarity”. Thus, one can question the need to explicitly define the dif-

ference between a concept and a category. Instead, we will follow Murphy’s example

and loosely use the terms concept and category as synonyms unless the difference is

relevant; if this is the case the difference will be made explicit.

Sometimes a difference between perceptual categories and conceptual categories

is postulated (Mandler, 1997). This proposal usually goes along the following lines.

Perceptual categories are those based on observable features, such as colour, shape,

1Conceptualisation can refer to the formation of concepts, i.e. the creation of mental objects
that are concepts, but is also commonly understood as the practice of making new ideas concrete,
e.g. concept art as a visualisation of some design or idea. However, in this text the first reading is
meant.

2Agent in this context is to be understood in a broad sense: an entity that perceives and
acts within an environment. This includes natural agents such as animals and humans as well as
artificial agents (both in software and hardware).
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size, texture etc. Conceptual categories on the other hand rely on distinctions that

may or may not be observable, e.g. properties such as “has blood” or “is alive”. The

latter tend to be more abstract and are typically learned later in a persons lifetime.

Whether or not there is a real distinction between the mechanisms that give rise

to these supposedly different types of concepts is still debated in the literature

(see Quinn and Eimas, 2000; Rakison and Oakes, 2003). Therefore, we will not

presuppose a difference between perceptual and conceptual categories. Rather, all

categories or concepts are considered equal in terms of their structure and underlying

mechanisms of acquisition. Some might be very concrete with easily identifiable

properties, e.g. dog, car and apple, while others are more abstract (conceptual),

e.g. jealousy, innovation and peace.

2.2 Theories concerning concepts and classifica-

tion

Since ancient times concepts have been considered as fundamental to human knowl-

edge and reasoning. As such, concepts are commonly viewed as being at the heart

of cognition, i.e. as building blocks from which higher level cognitive processes

can come about. Throughout the history of science mankind has been formulating

theories about how concepts are formed and how they constitute human cognition.

However, in many cognitive theories there is not always a clear distinction between

concepts and other aspects of cognition such as knowledge, memory or semantics.

Hence, cognitive theories may use different terminology but may nevertheless be con-

cerned with the same or similar processes, structures and organisational principles

of cognition.

2.2.1 Different perspectives

The disciplines involved in the formulation of models about concepts and categories

are vast; they include philosophy, psychology, neuroscience, linguistics, biology, com-

puter science and artificial intelligence just to name a few. Within all these fields
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theories about concepts and classification have been developed, albeit using different

terminologies. In an attempt to provide some insights in this broad theoretical span,

some relevant theories are discussed from two different perspectives: the human per-

spective and the machine perspective3. Applying the human perspective and the

machine perspective to artificial intelligence, these two perspectives highlight the

two different goals of AI (as briefly discussed in chapter 1).

On the one hand, AI is about understanding human intelligence4 through the

creation of models of cognition. Through application of synthetic means it is possible

to systematically explore a wide range of different models with different parameters;

all of which might be relevant for cognitive functioning, but which may be hard

or even impossible to manipulate in living organisms because of various practical

or ethical considerations. The goal is to gain understanding of natural intelligence

through artificially creating it.

On the other hand, undertakings in AI can be aimed at the creation of machines

that have some kind of intelligence and are capable of performing in a dynamic,

ever changing world populated with other intelligent agents (human or artificial).

Thus, the goal of this endeavour is to create some kind of machinery that is able

to perform its tasks in an intelligent manner. To reach this goal an understanding

of human intelligence might be required, as humans prove to be capable of very

versatile, adaptive and creative behaviours in a wide variety of circumstances and

as such constitute a ‘solution’ to the ‘problem’ of intelligent behaviour. Hence,

from the machine perspective this understanding of human intelligence is not a goal

in itself, but merely an exercise in ‘borrowing’ of ideas and serving as a source of

inspiration5.

Thus, where research from the human perspective is primarily concerned with the

3One might argue that humans can be seen as biological machines; as such a machine perspective
in contrast to a human perspective becomes meaningless. However, here we mean to highlight the
distinction between humans (or other organisms) as vehicles for natural intelligence and machines
(artefacts) as vehicles for artificial intelligence.

4Or rather natural intelligence. Human intelligence might be considered as the pinnacle of nat-
ural intelligence, but other forms of animal intelligence are not of lesser interest. Indeed, the study
and understanding of lower forms of intelligence might provide a prerequisite for understanding
higher forms.

5Of course, in day-to-day execution of AI research, the two perspectives can blend seamlessly;
a lot of researchers tend to have both an interest in natural intelligence and a desire to build
machines that can display intelligent behaviour.
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understanding of natural cognition and employs computational models to this end,

the goal of research from the machine perspective is to apply these computational

models to artificial systems in order to achieve intelligent behaviour. In the first

perspective psychological, biological and/or neuroscientific plausibility is of major

importance, as this is at the heart of the problem under investigation. A good

model of human intelligence will need to be consistent with empirical data from these

disciplines. In contrast, from the machine perspective the ultimate goal is to develop

a system that just works; therefore biological plausibility could be compromised if

it turns out that better results can be achieved by taking certain ‘short-cuts’ that

may be not biologically plausible. However, it could turn out to be that in order

to achieve truly functional artificial cognition such short-cuts may not be available.

That is, the only way to build a truly intelligent system is to do it in the same

way as nature has done. Whether or not this is the case remains to be seen; if

anything, biological intelligent systems provide at least one working example of an

‘implementation’ of intelligence.

Having described the general idea of studying concepts and categorisation from

the human and machine perspective, we will now for each of these perspectives

discuss some relevant theories in more detail.

2.3 The human perspective

2.3.1 The relation between concepts and words

The difference between knowing a word and knowing a concept is often quite hard

to describe. Indeed, in a lot of literature this is (implicitly) regarded as one and the

same process, as a person knowing the meaning of a certain word is the de facto

proof that this person entertains a certain concept. And the other way around, if

one has a concept of something, one usually knows the word for this. Yet, intuitively

it seems conceivable to have a concept for something without knowing a word for it,

i.e. having a sense of something without knowing the precise words to describe this.

Also various studies have shown that prelinguistic infants are able to form concepts
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before they learn to speak, e.g. Roberts (1988); Quinn (2003); Rakison (2003). This

suggest that words and concepts are at least partially independent.

Related to this is the Sapir-Whorf hypothesis which states that language influ-

ences thought to various degrees. As briefly mentioned in section 1.4, the strong ver-

sion, also known as linguistic determinism, claims that language determines thought;

a weaker version, known as linguistic relativism, states that language merely influ-

ences thought. This notion gained renewed attention as a series of psychological

experiments demonstrated how perception of stimuli and use of categories is influ-

enced by the words we know; this has been notably demonstrated for categories of

time, colour and space, e.g. (Gilbert et al., 2006; Majid et al., 2004; Roberson et al.,

2008). In addition, field studies such as Gordon (2004) have demonstrated that the

lack of certain words can have severe impact on cognitive abilities such as count-

ing; not having words to describe quantities greater than two6 makes it difficult to

distinguish between different sets of quantities.

From a developmental perspective it has been shown that young children, in

addition to learning directly from sensory exploration, rely on linguistic labels to

acquire the meaning of words. Xu (2002), for example, demonstrated how linguistic

labels help 9-month old infants to establish a representation for different objects;

learning without linguistic labels, or with the presence of tones, sounds or emotional

expressions is not effective. This implies that language is crucial in acquiring novel

concepts from a very early age on. Plunkett et al. (2008) came to the same conclusion

in a tightly controlled experiment where they demonstrated how category formation

in 10-month old infants is influenced by linguistic labels. Linguistic labels also

have an effect on category learning in adults; adults who learn a new category did

so significantly faster and showed more robust category recall when the learning

experience was accompanied by novel linguistic labels (Lupyan, 2006; Lupyan et al.,

2007).

While language clearly influences cognition and the learning and use of concepts,

other studies have suggested a relative independence between words and concepts.

For instance, Dufour and Kroll (1995) described experiments with bilingual people,

6Every quantity greater than two that needs to be named is referred to as “many”.
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which indicated that words in different languages can share a same underlying con-

ceptual structure. Additional evidence comes from Goldin-Meadow et al. (2005),

who studied deaf children (both American and Chinese) that were not exposed to

adult language models; neither acoustic nor through sign as deaf children from non-

deaf parents are typically only exposed to conventional sign language when they

are adolescents. Nevertheless these children frequently invent gesture systems called

‘home sign’, to be able to communicate with their surroundings (Goldin-Meadow,

2003). It was observed that such children develop the ability to express generic utter-

ances (“birds fly”) in sign language as well. The use of such generic utterances (and

also the presence of a bias to do this more frequent for animal categories than for

artefacts categories) suggested that these children had developed conceptual struc-

tures that are similar to non-deaf children who grow up in ‘normal’ circumstances

in which linguistic input is typically abundant.

In summary, there exist ample evidence suggesting that language influences cog-

nition, perception and category interpretation; while in addition there are also indi-

cations that conceptual structures can be formed without language and can operate

relatively independent from it. As such, within this work a standpoint is adopted in

which words and concepts are treated as separate notions (that is, agents will have

a lexicon containing word labels and a different structure to represent concepts),

albeit with a strong influential connection between them. Indeed, as will be seen

in work reported later on, linguistic descriptions and interactions serve as guiding

mechanisms for the formation of concepts.

2.3.2 Ancient theories about concepts

The best known ancient scholar who wrote about a theory of concepts is the Greek

philosopher Plato, who described the nature of reality in his theory of Forms. As

described in Kraut (2011), according to Plato, every worldly observation people

make about some object is just a flawed reflection of this object’s true form. These

true forms are entities that reside in a realm that is different from the world we

can perceive with the ordinary senses. This realm is more ‘real’ and perfect, and is
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populated with entities that are the perfect versions of what we might perceive in

the normal world. These entities can be concrete like “table”, “bed” and “horse”

or more abstract entities like “goodness”, “beauty” and “just”. According to Plato,

analogue to prisoners in a cave watching shadows of real things (Plato’s famous

Allegory of the Cave), everything we see and hear around us is but a bleak shadow

or echo of its true form. These forms are said to reside in the non-material realm

and constitute the only true knowledge. Ordinarily people have only access to the

imperfect copies of the forms through ordinary senses like sight, smell, touch, etc.

However, the true forms can be reached through disciplined exercise of the mind,

through reason and philosophy.

The other well known Greek philosopher, Aristotle, had a rather different view

on concepts and categories. As opposed to Plato, Aristotle did not subscribe to a

realm in which the perfect versions of all things in the world resided. Rather, things

in the world could be classified according to ten basic categories, such as ‘Substance’,

‘Quality’, ‘Quantity’, ‘Place’, ‘Time’ etc. These categories are both presumed to be

both “exhaustive and irreducible” (Shields, 2012), so that everything in the world

can be classified according to this.

Another prominent philosopher who spoke about concepts was John Locke (as

described in Uzgalis, 2010). According to Locke there are general ideas which can

be simple or complex, where a combination of simple ideas can create a complex

idea. In opposition to Plato, these ideas are purely internal and come into existence

through the human senses, rather than residing in some kind of abstract realm.

2.3.3 The classical theory of concepts

Rooted in ancient philosophy (e.g. Aristotle’s categories), a definition style of cat-

egorising observations in the world remained dominant even within substantial pe-

riods of modern psychology. This view, known as the ‘classical theory of concepts’,

assumes that concepts, and specifically lexical concepts (i.e. meanings of a word)

are based on definitions. Thus, the concept of car might be defined in terms of de-

scriptive properties such as ‘means of transportation’, ‘moving construction’, ‘having
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moves flies eats lives has wings has wheels carries people
aircraft x x - - x x x
bird x x x x x - -
car x - - - - x x

Table 2.1: Example of the definitional structure of concepts under the classical the-
ory. In this example aircraft is defined as something that moves, flies, has wings,
has wheels and carries people; consequently, everything that has these properties
must be an aircraft.

four wheels’, ‘having a steering wheel’, ‘carrying passengers’ etc. A definition of a

concept is viewed as a list of necessary and sufficient properties that describe the

concept. In order for something to be called a particular concept, it must have all

the necessary properties; and vice versa, if some object has these sufficient proper-

ties, it is an instance of this concept. For example, bachelor may be comprised of

the properties ‘adult’, ‘male’ and ‘is not married’; consequently, everything that is

an adult male and is unmarried is therefore a bachelor (Murphy, 2002; Margolis

and Laurence, 1999; Smith and Medin, 1981). Table 2.1 provides an illustration of

such definitional structure. Moreover, every object is viewed as belonging to some

category, there is no space for in-between cases. As such logical statements like “x is

a concept” are either true or false. Also, all members of a concept are considered

equally good instances of this particular concept.

2.3.4 Problems with the classical theory

For a long time it was accepted that concepts could be defined in terms of these

necessary and sufficient properties. But this classical view turned out to have some

fundamental flaws, which are discussed below. Alternative theories were proposed,

many of which can be viewed as a response to the classical theory in one way or

another.

Two kinds of problems caused the downfall of the classical theory. The first

is theoretical in nature. That is, the classical theory specifies that all concepts

should have a neat logical definition, but it turns out that for a lot of concepts it

is very hard to come up with such a definition. Despite trying hard for decades,

for a lot of concepts it appears to be simply impossible to come up with a list of
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defining features. Wittgenstein identified this problem in his classic investigation of

the concept game (Wittgenstein, 1953). He tried to find a common property that

all games should have, but this turned out to be non-existent. Wittgenstein solved

this by proposing a structure of ‘family resemblance’, in which all games have some

overlapping properties and as such resemble one another, but there is no ultimate

defining ‘game’ property that all games posses.

The second type of problems for the classical theory is more empirical in nature.

Even if logical definitions for concepts can be found, in reality there are a lot of

things in the world that fall outside of these defining boundaries. For instance,

carpet may be considered as belonging to furniture by some people but not by

others, and what about a waste bin? They seem to reside on the boundaries of

what is and what is not counted as furniture. Also, people may be unaware of

certain definitions and assign objects to a particular concept, even though this is

not consistent with this concept’s definition. For example, many people regard a

tomato as a vegetable even though it scientifically classified as a fruit; they may

count a dolphin as a fish and not as a mammal and so on. It turns out that in

every day situations people do not seem to use very strict definitions with respect

to the classification of objects. Furthermore, people do not consider all members

of a concept as equal, but instead think of some members as better examples of a

concept than others.

These two types of problems might be summarised as follows: 1) definitions are

very hard to find for a lot of concepts, and 2) even if definitions exist, in practice

people do not appear to use them consistently. As such, these problems were con-

sidered as major flaws in the classical theory of concepts and alternatives seeking to

remedy these problems were proposed.

2.3.5 Prototype theory, exemplar theory and similarity

The observation by Rosch (1973) that many everyday concepts are prototypical in

nature constituted a major problem for the classical theory. Rosch showed that

many concepts cannot be logical defined (as was common practice under the classical
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theory) because they show typicality, i.e. humans judge certain instances of a specific

concept to be more typical than others. For example, for the concept bird, a robin

is thought to be more ‘bird-like’ than a penguin and a banana is more typical for

fruit than a pomegranate7. Hence, it seems that instances of a concept exhibit

a graded membership to an idealised prototype, so that some instances are judged

to be more typical for this concept than others. This cannot be explained by the

classical theory, as any instance that falls within the definition is considered an equal

member of this concept.

The prototype theory has been around for quite a while, with many different

flavours (Posner and Keele, 1968; Reed, 1972). The general notion is that concepts

are represented as some kind of idealised version constructed from examples that

people have experienced throughout their life. So, for the concept bird people have

a prototype that represents the ideal bird, and any encounters they have in the real

world is matched with this prototypical version. The more similar an observation is

to the prototype, the more likely they are inclined to consider the observation as an

instance of this concept. Given the wide variety of birds, it seems unlikely that all

members of bird could be represented by one single prototypical bird that actually

exist (Murphy, 2002, p. 42). So a prototype should be thought of as a summary

representation that specifies the properties of the concept, where some properties

are more important than others. Not all properties are necessary, as in the classical

theory, but rather they describe which properties instances of the concept in general

tend to posses. The process of identifying an object in the world entails a matching

to known prototypes. This matching takes the form of a similarity measurement,

rather than a logical “does it ticks the boxes?” type of analysis. For this similarity

measurement several methods have been proposed, this is discussed in more detail

in section 3.1.

The prototype theory also has its problems, for instance the problem of com-

positionally (i.e. combining simple concepts into more complex ones; Osherson and

Smith, 1981), but solutions have been proposed for this as well (Smith and Osherson,

1984; Smith et al., 1988).

7Of course, this may be culturally different.
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Exemplar theory The exemplar theory as proposed by Medin and Schaffer (1978)

is historically the main competitor for the prototype theory. In the exemplar view

concepts are not seen as idealised prototypes that exhibit the concepts’ most promi-

nent features, but rather a concept is comprised of the collection of all exemplars a

person has encountered in life. So, the concept of cat consists of the collection of

all cats one has experienced. Upon perceiving something new in the world, people

mentally compare this to things they have experienced previously. If the newly per-

ceived object bears considerable resemblance to known objects that happen to be of

the same concept, then most likely the new object is also an instance of this concept.

As with the prototype theory, this entails a similarity measurement. The main dif-

ference is that concepts are not stored as summaries, but all individual exemplars

are stored in memory and together constitute a concept (Nosofsky, 1986).

Prototype and exemplar theory The debate whether or not prototype or exem-

plar theory better explains empirical data has quite a history, with some researchers

advocating models based on prototype theory (Smith et al., 1988), others favour-

ing models based on exemplar theory (Nosofsky and Zaki, 2002) or some arguing

for hybrid models (Voorspoels et al., 2011). These days the debate seems to have

subdued somewhat, although researchers may still embrace one theory or the other.

Both prototype and exemplar theory are based on the notion of some kind of

space in which concepts reside, and which allows for comparison in term of similarity

through distance measurement. This has been established as a fundamental property

for conceptual modelling and has been at the basis for many theories that followed.

Different accounts exist of how this similarity matching is modelled best (Hampton,

1995).

2.3.6 Other accounts

Some alternative accounts of conceptual modelling that do not subscribe to the

notion of similarity have been proposed. Two of these frequently feature in the

conceptual literature and are discussed briefly for the sake of completeness. However,

they are not further considered in the rest of this thesis.
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Theory-theory The theory-theory or knowledge approach (Murphy and Medin,

1985) regards concepts as a part of mental theories and general knowledge a person

holds about the world, in a manner similar to scientific theories. As such, concepts

do not exist as isolated chunks of knowledge, but learning a new concept always

happens in interaction with the general knowledge a person has and entails the

incorporation of this new information with already existing knowledge. Combined

with everything else a person knows, the new concept forms an intricate web of

knowledge. This framework of knowledge needs to be consistent; learning some-

thing new may have implications on what is already known and likewise, what is

already known may influence how a person learns something new. The development

of consistent sets of concepts within this framework may bear similarities to how sci-

entific theories unfold. Throughout a persons lifetime concepts are enriched through

new experiences; as such the sets of concepts gradually evolve and at some point

may become incommensurable with other sets of concepts (Carey, 1991). Such a

paradigm shift may bear similarities to a scientific revolution as described by Kuhn

(1962).

Conceptual atomism Conceptual atomism as a theory of concepts (Fodor, 1981,

1998) is a somewhat radical position, as it advocates that concepts do not have a

structure that specifies their properties, but rather have no structure at all. In this

view all concepts are seen as atomic primitives. Conceptual atomism is mostly a

reaction to the fact that previous theories had problems with a seemingly important

aspect of concepts: the fact that many concepts are compositional. One of the main

advantages of conceptual atomism is that it can handle compositionally rather well,

something the theories mentioned afore tend to struggle with. Due to the atomic

nature of concepts they can very easily be applied in symbolic reasoning, including

compositional constructs. A main drawback is that it views concepts as innate,

and thus supposes that also obvious artefacts like microwave or volleyball are

somehow innate. How acquisition of new concepts is supposed to happen is generally

underdeveloped.
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2.4 The machine perspective

The machine perspective on concepts and classification uses cognitive theory to

create ‘smarter’ and ‘more intelligent’ machines. For a lot of non-trivial cognitive

challenges (i.e. things people do, like navigating in an unknown environment, ab-

straction, reasoning and speech production and recognition) it has become more

and more apparent that relatively simple, algorithmic solutions (GOFAI) may not

be able to provide solutions. Rather, a deeper understanding of true human cogni-

tion seems necessary. A description of this development from GOFAI to new AI has

been given in section 1.2.1; this section is mostly concerned with the so called new

AI methods.

From the machine perspective modelling of concepts tends to be less articulated.

A lot of research has focussed on the problem of machine learning, that is, how an

artificial system can acquire new knowledge in automated fashion. For instance, a

typical machine learning problem is classification: to assign a class or category to

perceived stimuli. There are countless approaches solve this problem, which in gen-

eral involve some kind of labelling of examples by a teacher while the system learns

the right abstractions in the case of supervised learning; or, in the case of unsuper-

vised learning, the system autonomously discovering the input space and developing

some kind of representation for this. These types of machine learning problems

tend not to be regarded as concept learning per sé, but the process of appropriately

classifying observations bears considerable similarities to having conceptual struc-

tures and applying these effectively. Thus, there exist considerable overlap with the

human perspective, but methods and terminology tend to be different.

Because of the vast body of literature that exist with respect to machine learning,

the aim in this section is not to provide a general overview of all machine learning

techniques that provide means of classification. Rather, we will link some common

machine learning techniques to the theories of conceptual modelling described in the

human perspective above. Furthermore, we provide a synthesis of how a combination

of different approaches can lead to a computational model which can be employed

within social concept learning.
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2.4.1 Machine Learning and Classification

Machine learning is commonly viewed as the means by which an artificial system (a

computer or a robot) can self-improve or acquire knowledge in an automated fash-

ion. A classical topic within machine learning is classification, the problem of finding

classes for a set of datapoints based on their features and generalising over these to

classify new data. Classification as such bears similarities to concept use in humans,

as the objective is to learn/identify classes (concepts) and to interpret new obser-

vations in light of what is already known. Numerous classification algorithms have

been developed over the years, e.g. see Mitchell (1997) and Kotsiantis et al. (2007)

for a good overview of various machine learning techniques and an overview of some

well known supervised algorithms. One of the most commonly used classification

algorithm is k-Nearest Neighbour (see e.g. Duda and Hart (1973) for a description),

in which an unknown data point is assigned as belonging to the same class as the

majority of its k neighbours. This requires knowing the classes of the surrounding

data points and as such is a form of supervised learning. Another technique that

operates in an unsupervised manner is k-Means clustering. k-Means is a commonly

used clustering algorithm for solving the k-Means problem that can be defined as

follows: (definition taken from Kanungo et al., 2002) given a set of n data points

in real d -dimensional space, Rd, and an integer k, the problem is to determine a

set of k points in Rd, called centers, so as to minimize the mean squared distance

from each data point to its nearest centre. The k-Means algorithm (also known as

Lloyd’s algorithm; Lloyd, 1982) groups input data into k classes in an unsupervised

manner.

Another well known, more modern classification technique are Support Vector

Machines (Vapnik, 1995). These work by maximising the so called margin, the

region separating two classes of datapoints in a hyperplane. The datapoints close

to the decision boundary (the support vectors) are the hardest to classify and as

such play a crucial role in maximising the margin. Other notable classification

techniques are Decision Trees (Quinlan, 1986), which classify data through tree-like

flow charts in which various features are checked; näıve Bayesian classifiers (e.g.
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Friedman et al., 1997), which assign classes to datapoints using Bayes rule while

assuming independence between the probabilities of observing different features; and

connectionist approaches; the latter being discussed in more detail in section 2.4.4.

2.4.2 Formal Concept Analysis

Formal Concept Analysis (FCA) (Wille, 1982) can be seen as a mathematical for-

malisation of the classical theory of concepts (Priss, 2006). Originally developed as

a sub-field of applied mathematics, FCA proposes a formal treatment of concepts

by postulating them as a hierarchically ordered lattice of objects and properties.

FCA can be applied to a whole range of fields, including cognitive science, linguis-

tics, data mining and economics, see Ganter et al. (2005) for an overview. Recently,

Wennekers (2009) suggested that hierarchies constructed through FCA may have

some biological basis. In FCA a triplet {O,P, I} (called the context) is considered,

where O is a non-empty set of objects, P is an non-empty set of properties and I is

a binary relation between O and P indicating whether or not object o ∈ O exhibits

property p ∈ P . A concept is then a pair (A,B), with A ∈ O and B ∈ P such that

A is the maximal set in O that shares all properties of B and B is the maximal set

of properties shared by all the objects in A. The collection of all formal concepts

of {O,P, I} can be ordered in a hierarchical set-theoretic structure, called the con-

cept lattice, through the requirement that all objects of subordinate concepts are a

subset of the set of objects from their superordinate concepts. This yields to a for-

mally sound order which is also intuitively easy to grasp. An example (adapted from

Wennekers, 2009) is as follows: O = {tomato, lettuce, spinach, beans}, P = {red,

green, veggy, canned} and I is provided in table 2.2. The resulting concept lattice

is displayed in figure 2.1, which depicts the hierarchically ordered set of all (A,B)

pairs that can be constructed from context {O,P, I}.

FCA is mostly in line with the classical theory of concept representation (sec-

tion 2.3.3): the full set of objects and their properties need to be known in order

to build the lattice. This approach clearly suffers from all the objections that were

raised against the classical theory, and thus cannot be considered as a proper cog-
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red green veggy canned
tomato x 0 x 0
lettuce 0 x x 0
spinach 0 x x 0
beans x 0 x x

Table 2.2: Binary relation between O and P which indicates whether or not object
o ∈ O exhibits property p ∈ P .

0

1 2

3

4

B = {veggy}
A = {beans, lettuce, spinach, tomato}

B = {red, veggy}
A = {beans, tomato}

B = {green, veggy}
A = {lettuce, spinach}

B = {canned, red, veggy}
A = {beans}

B = {canned, green, red, veggy}
A = { }

Figure 2.1: Example of a FCA lattice which can be constructed from a context
{O,P, I}.

nitive model (although there have been attempts to reconcile FCA with prototype

theory, see Van Eijck and Zwarts, 2004). Nevertheless, the manner of representing

concepts as hierarchical ordered sets is intuitively appealing and may help to clarify

relations in bodies of data.

2.4.3 Semantic networks and LSA

Another popular method to represent conceptual knowledge is through semantic

networks (Sowa, 1991, 1992). This technique is not specific for either psychological

or computational accounts of concepts, but could be utilised from both perspectives.
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In its core a semantic network is a structure which expresses relations between a

collection of objects. Typical relations, at least for definitional networks, are isa,

isnot, has and ispartof. When properly applied, such relations allow for structured

expression of a rich body of conceptual knowledge in a hierarchical fashion. As such,

it supports inheritance. Semantic networks can account for typical human memory

behaviour like semantic priming; this is discussed in more detail in section 8.3.2.

A problematic aspect of semantic networks is that there is no intrinsic grounding

of concepts within the network. The meaning of a concept is purely derived from its

relation with other concepts and as such may suffer from the ‘dictionary’ problem

(see section 1.4).

LSA Latent Semantic Analysis as proposed by Landauer and Dumais (1997) is

technique for the acquisition of semantic knowledge through statistical analysis of

large text corpora. This typicality results in a network that is akin to semantic

networks as described above, with the notable difference that the connections be-

tween words are not described as logical relations, but rather through associations

which carry a certain weight. Throughout their lifetime children are exposed to

vast quantities of written and spoken language and as such are able pick up sta-

tistical regularities from this. Related words commonly co-occur and by analysing

these co-occurrence word meaning can be derived. It has been shown that a system

employing LSA can acquire vocabulary knowledge at a rate comparable to school

children. While systems trained through LSA may perform comparable on standard

word meaning tests, the word knowledge is represented in a multidimensional space

with a high number of rather abstract dimensions8 that cannot easily be related

to any kind of modality. For instance, after application of LSA a system might

consider ‘bread’ and ‘butter’ to be highly related, due to their mutual co-occurrence

in conjunction with other related words. This relation is then expressed as a high

similarity in the multidimensional space (typically calculated by taking the cosine of

the two respective vectors), but it does not say anything about why these two words

8The ‘magic’ number appears to be 300 dimensions, this number is derived through performance
tests.
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are related; neither the evaluation of the respective vectors provides any insights

due to the abstractness of the dimensions. Moreover, a knowledge system derived

through LSA lacks any form of grounding, because the meaning of words is purely

derived from the relation with other words. In this respect it bears similarities to a

semantic network as in both cases the meaning and structure of words is dependent

on the network configuration, i.e. the relation to other words. An illustration of

the type of networks that can be formed through application of LSA-like techniques

is displayed in figure 2.2 (visualised through Gephi9). The text corpus that was

used for this illustration is the English Lara Corpus from the CHILDES database

(MacWhinney, 2000).

Figure 2.2: Graph displaying thematic relations that were found in the English Lara
Corpus from the CHILDES database through application of LSA-like techniques.

9https://gephi.org.
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2.4.4 Connectionist models

Connectionism is generally thought of as new AI, although some theories and tech-

niques have been around for quite a while and could by now be considered as ‘classic

new AI’. Nevertheless, as of the time of writing, connectionist models are still be-

ing used in a wide variety of applications. In relation to conceptual modelling and

the theories from the human perspective described previously, connectionist models

tend to produce classification behaviour that is mostly in line with prototype and

exemplar models, e.g. (sets of) output units representing different categories, with

their activation levels providing a measure of similarity between input data and the

respective categories.

Inspired by neurological accounts of cognition, connectionism is a family of the-

ories that advocate the notion of distributed representations rather then explicit

ones. Connectionist approaches typically provide mappings between sensory input

and classifying output; that is, the output nodes can be read as classification of what-

ever input the network has received, and this in turn can trigger various behaviours.

The biological analogy is as follows: in natural cognitive systems the senses pro-

vide input and the behaviour of the organism is the output. In between the brain

engages in some kind of cognitive computation. The brain is a massively parallel

structure and on a low neurological level, i.e. individual neurons, there appears to be

no explicit representation of chunks of information. Rather, the information exists

as the collection of hundreds/thousands/millions of neurons which collectively store

information in a distributed fashion. In a similar vein artificial neural networks

process information in parallel. Sensory input results in specific output patterns as

a reflection of the connectively of the neural network, i.e. how neurons are inter-

connected and what the strength (weight) of these connections is. Some common

neural networks and their ability to classify input spaces are discussed below.

Even the most simple form of a feed-forward neural network (FFNN), the per-

ceptron, is able to function as a classifying mechanism because, after sufficient (su-

pervised) training, it is able to classify an input vector as belonging to a certain

class. For a perceptron to be able to learn to distinguish different classes, they need
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to be linearly separable10 (Rojas, 1996). Recurrent neural networks (RNN) (Elman,

1990; Jordan, 1997) are a more advanced form of neural networks due to the addi-

tion of recurrent connections which allow for temporal storage of data and reuse in

subsequent time steps.

A self organising map (SOM) (Kohonen, 1982, 1984) is a type of neural network

that originally was proposed as a method of visualising high dimensional data into

a (typical) 2D grid. Its functioning is akin to FFNNs, but it has the additional

feature of topology preservation. This means that the output nodes are organised

in a coherent lattice, such that output nodes that respond to similar data are neigh-

bouring each other. Hence, input vectors that are sufficiently similar will result in

neighbouring output nodes being activated. SOMs can be used as classifiers; they

can reduce high dimensional input data into meaningful classes on a 2D grid.

Interactive Activation and Competition (IAC) models (McClelland and Rumel-

hart, 1981; Rumelhart and McClelland, 1982) constitute another flavour of neural

networks with specific classification properties. IAC models consist of a network

of multiple pools of neurons, with each node having a certain activation value and

activation is propagated through the network via weighted connections. Different

pools typically encode different modalities, and within these pools individual nodes

encode specific properties, thus constituting localised representations (Page, 2000).

However, rather than having each node potentially connecting to every other node,

within IAC models all the nodes in one pool have inhibitory connections to one

another, while they have excitatory connections to special ‘hub’ nodes. As such,

these hub nodes serve as a bridge which connect multiple modalities. Because the

connections are bidirectional, the activation of nodes in a certain pool can spread

via a hub to other pools. In this respect IAC models bear similarities to concept-

like behaviour, as the perception of certain properties can trigger associations with

related properties.

IAC models can account for various properties of human memory, for example

priming effects, spreading activation and top-down effects. With respect to con-

10Data is said to be linear separable when for each n-dimensional space there exist a hyperplane
of n-1 dimensions that cuts this space in two, as such separating data points into distinct groups.
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cept modelling, the property of localised representations allows for the formation of

knowledge structures that are interpretable in a concept-like manner. Particularly

the hub nodes can be interpreted as prototypes, as the connectivity of the hubs and

the activation levels of connected nodes in different pools specify which properties a

prototype tend to have. Hence, the observation of an object that is very similar to a

known prototype results in high activation levels and clearly distinctive properties,

while observations that are less similar to known prototypes result in less articulated

activation patterns. A major drawback has been that traditional IAC models did

not incorporate any form of learning but had to be designed by hand. Recognising

this as a considerable drawback, augmentations which allow learning in IAC models

were proposed, for instance by Burton (1994).

A relative new proposal for a cognitive model, Epigenetic Robotics Architecture

(ERA) (Morse et al., 2010) combines several aspects of connectionist models de-

scribed above. The basic units of representation are based on self-organising maps;

that is, different SOMs allow for the encoding of information in different modalities.

Multiple SOMs are connected to one hub, which typically encodes body postures.

These hub SOMs that combine different modalities through other SOMs constitute

the basic ERA units; as such this is very much akin to the hub structure of IAC mod-

els. Multiple ERA units can be combined in hierarchical fashion, allowing for more

abstract representations. Linguistic labels are associated with activation patterns

in the ERA unit through Hebbian learning (Hebb, 1949).

2.4.4.1 Modelling concepts

What all connectionist models tend to have in common, is that they provide a

mapping from certain input patterns to specific output patterns. Thus, they are

suitable as classifiers. This mapping is typically the product of a training procedure,

either in supervised (e.g. FFNN, RNN) or unsupervised (e.g. SOM) fashion.

Various studies have shown that connectionist models can be used to learn and

represent categories in such a way that they can account for characteristics and em-

pirical findings associated with prototype and exemplar models. For instance, Reilly
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et al. (1982) trained neural networks to classify unconstrained handwritten numerals

through the formation of prototypes in the system’s memory. The implementation

was a middle ground between prototype and exemplar theory, as every exemplar is

treated as a prototype. Also Schyns (1991) proposed a model that is based on an

underlying connectionist approach (a SOM in this case) which is able to learn cate-

gories. This model made a distinction between the learning of perceptual categories

on the one hand and the associated linguistic labels on the other. There have also

been attempts to combine connectionist models with the theory-theory of concepts,

for instance in (Towell and Shavlik, 1994) neural network learning mechanisms were

augmented with “domain theories” represented in propositional logic.

A classical drawback of some forms of connectionist modelling is the fact that

they suffer from catastrophic interference; that is, the problem of forgetting what

was already known when new data is learned (see French, 1999). Another issue is

the fact that knowledge is represented in a distributed fashion. This makes it rather

hard to analyse and identify the internal workings of these networks and to gain

an understanding of the basis on which classifications happen. In contrast, IAC

networks (described above) do not exhibit this problem because of their localised

manner of representation.

2.4.5 Concepts and word labels

Regarding the relation between concepts and words as discussed in section 2.3.1, the

different approaches to modelling concepts from the machine perspective discussed

above treat this relation quite differently. First of all, in FCA with its definitional

structure concepts are logical constructs that are defined by their properties. As

such, there is no distinction between a concept and a word, as a concept is in fact

identified by a word. The associated properties are all members of logical concept

set. Secondly, network-like structures such as semantic networks and LSA could

be said to be devoid of concept-like entities (other than words), as they are purely

constructed by word-word relations. Words are the concepts, there is no other level

of representation, and the meaning of words is derived from the relation to other
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words. Thirdly, connectionist models typically do treat word labels as independent

from conceptual levels, as the latter are usually realised through sensory activation

patterns. As such, the network forms associations between word labels and sensory

input. Word labels are the output of the classification process, and with respect

to learning are the basis on which different sensory patterns can be clustered. In

case of unsupervised forms of learning (e.g. SOMs), the result is a structuring of the

input space which typically lacks word labels. In this case subsequent association

between conceptual representations and word labels typically does involve some

other learning mechanism that might be supervised or more implicit, e.g. Hebbian

learning.

With respect to modelling concepts, it is not the distributed nature of connec-

tionism that is interesting (indeed, this may be problematic to a certain extend,

e.g. categorical forgetting), but the associative nature between sensory patterns and

word labels that seems most suitable for concept modelling. The construction of

these associations might best be achieved by subscribing to a theory of social and

interactive learning.

2.5 Modelling concept learning

In the sections above some theories concerning the use of concepts have been dis-

cussed. From a human perspective these studies of concept use tend to be heavily

intertwined with theories about learning and memory. Commonly, the different ex-

planations are concerned with the particular structure that human concepts have;

the fact that people use concepts is treated as a given, the theories seek to explain

what kind of underlying structure gives rise to this phenomenon and what kind of

psychological, neurological and/or sociological factors influence this. The machine

perspective on the other hand is mostly concerned with the question of how (ab-

stract) knowledge can be represented and how an automated system can learn this

kind of knowledge. Human concept use is viewed as a very effective way of dealing

with a vast amount of information coming from a constantly changing, dynamic

environment. As such, from the machine perspective, the focus lies on finding for-
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malisms and algorithms that allow for effective ways of representing and learning

knowledge. These do not necessary have to be compatible with human concept use,

but the fact that people prove to be exceptionally good at this provides at least one

solution from which inspiration can be drawn.

For both the human and the machine perspectives the notion of social learning

(section 1.5.1) is deemed important, as the modelling of concepts and specifically the

dynamics of acquisition needs to be viewed in a social context. That is to say, from

the human perspective a theory disregarding social aspects would be incomplete

and from the machine perspective there is a great potential with respect to learning

based on social interaction. As such, a perspective on concept learning that takes

these social aspects into account seems a promising endeavour.

Combining insights from the human perspective and the machine perspective,

and endowing these with the notion of social learing, the aim is to arrive at a

functional model of social concept learning that can be embedded on a robot so that

it can learn through interaction with people. What then, in order to build such a

computational model of concept learning for social HRI, are the fundamental aspects

that need to be taken into account? Broadly speaking, an effective computational

model will need the following:

1. A representation of conceptual knowledge in such a way that the properties

of this model, including acquisition mechanisms, sufficiently reflects empirical

data from human studies. That is, the representation of concepts should not

be in contradiction with anything that is known from psychological studies

of human concepts, but should be able to account for properties of human

concept use (as discussed in section 2.3).

2. A means of interacting with its social environment that is perceived as natural

by people, as to support the learning of concepts through social interaction

between a robot and a person.

Addressing 1), following a relatively modern approach towards conceptual mod-

elling from the human perspective, it seems prudent to account for the prototypically
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of concepts (section 2.3.5). Indeed, as Murphy concludes in his final chapter, “I will

propose that our theory of concepts must be primarily prototype-based.” (Murphy,

2002, p.488). This conclusion is based on the fact that prototype theories seem to

be able to account for most of the empirical data (better than the exemplar ap-

proach); albeit while being part of a larger knowledge structure as envisioned by the

theory-theory (section 2.3.6). While prototype theory is by no means the ‘ultimate’

theory of human concept use, its properties and explanatory power are nevertheless

considered adequate for the type of research that is pursued in here; that is, interac-

tive learning by embodied agents. A relatively modern approach that has its basis

in prototype theory is the framework of conceptual spaces.

Addressing 2), acknowledging that learning always occurs in a social context

through interaction between learner and a teacher, and the observation that concept

learning is heavily intertwined and indeed, is quite frequently indistinguishable from,

the learning of words (section 2.3.1), a minimal model of word learning through social

interaction is deemed appropriate. Such a model is realised through the adoption of

the language games framework.

The combination of concept representation based on conceptual spaces and the

language game framework is not novel in itself, as various studies have used a similar

setup. These will be discussed in more detail in section 3.3. The aim of this work

however, is to use these frameworks to investigate some interesting topics regarding

social concept learning (as outlined in section 1.6), using both simulations and an

HRI setup. The conceptual spaces and language games frameworks will be described

in more detail in chapter 3, along with a description of related literature using these

frameworks and implementation details as to obtain a computational model which

serves as basis for most experiments reported in this thesis.

2.6 Chapter summary

This chapter has discussed concepts, both as part of human cognition and how they

might be modelled from a perspective of artificial intelligence. From the perspective

of human cognition most theories of concepts are concerned with the explanation of
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empirical data from psychological experiments by providing models of conceptual

structures that may give rise to this data. The machine perspective on the other

hand is less concerned with explanation of empirical data but places more emphasis

on the construction of models that might enable artificial systems to use concepts

in a human-like manner.

Various psychological theories of human concept use have been discussed and

they were linked to some approaches from the machine perspective. A synthesis was

provided of how a computational approach might yield a model that is sufficiently

compatible with relevant psychological theories. It was concluded that for the aims

of this work, that is, the social learning of concepts for embodied artificial agents,

an approach based on prototype theory might be most appropriate in terms of cap-

turing sufficient aspects of human concept use while at the same time providing an

account that is relatively straightforward to incorporate in computational models of

agents and an HRI setup. In this approach concepts are modelled as entities that

are separate from the words that describe them, while at the same time linguistic

interaction governs the manner in which concepts are learned. The need to coordi-

nate such social linguistic interactions that result in concept learning by agents was

acknowledged by adopting an appropriate framework to model this.
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Chapter 3

Computational model

In this chapter we describe the computational model which forms the basis of most

experiments reported in this thesis. First a description is provided of two theoretical

foundations on which the model is based, namely conceptual spaces and language

games. We then illustrate how these two theories can be combined into a functional

model. Simply put, a computational model of concepts is envisioned as consisting

of two parts: 1) a low level classifier that can process incoming stimuli into discrete

chunks, based on their resemblance to known patterns; 2) a higher level organisa-

tional structure that links different chunks from the lower level together, based on

co-occurrence and governed through linguistic interaction (the latter bears similar-

ity to Hebbian learning). More specifically, a conceptual space serves as a way to

represent concepts within different domains, and the language games provide a man-

ner for acquisition of linguistic descriptions for these concepts. Thus, there exists

a difference between the (perceptual) concept on the one hand, and the linguistic

description (word) an agent may use for this particular concept on the other. For a

discussion about the relation between words and concepts, see section 2.3.1.

3.1 Conceptual Spaces

A long standing debate within cognitive science is whether knowledge representation

can best be understood in terms of high level symbolic representations or in terms of

associative distributed structures (usually dubbed connectionism). See section 1.2.1
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for a more in-depth account. Rather than championing one view or the other,

the conceptual spaces (CS) framework (Gärdenfors, 2000a) proposes to represent

knowledge on a level that resides between symbolic representation and distributed

representation. In this view, connectionist models are seen as subconceptual, de-

tailed processing of the lowest level of information units, while symbolic processing

is seen as the most abstract form, providing higher level computation and logical

reasoning. Thus, symbolic representations and distributed representations are not

seen as competing theories, but rather as explanations of the the same phenomenon

on different levels. As such, a CS is placed in between these levels, describing con-

cepts in terms of geometrical shapes that are grounded in sensory properties which

can be distributed in nature, but which can also exhibit symbol-like behaviours in

more abstract levels of description.

A CS consists of a geometrical structure in vector space that represents a col-

lection of one of more domains, e.g. colour, size, taste. Each domain consists of

one or more inseparable quality dimensions that represent the lowest level values

of the particular domain. For instance, the colour domain is typically represented

using three dimensions, RGB being a popular choice1. To express a colour, each

of the three quality dimensions needs to have a value; expression of colour using

only R and G would be impossible. As such, inseparable dimensions together form

a domain. In similar fashion, the taste domain can be represented through four

dimensions encoding values for sweet, sour, bitter and saline (or five dimensions if

umami is included).

In principle, any domain can be used to express a concept in a CS, provided

the relevant dimensions can be found. For some domains it is more straightforward

to extract the relevant dimensions than for others. For instance, in the domains

discussed so far associated dimensions have perceivable and measurable values, but

the shape domain might include a dimension like ‘cat-like’ for which it is harder

to express explicit values. However, often dimensions will relate to perception; the

1RGB is commonly used to represent colours on display devices, but there exist a wide range
of colour models with different properties and virtues. E.g. HSV, CMYK, CIE-XYZ and CIE-
L*a*b*, the latter being close to human colour perception. The majority of these spaces appear
to consist of 3 dimensions.
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human senses provide domains (vision, smell, touch, hearing, taste) and their origins

are innate (Gärdenfors, 2000a, p. 27). In other cases the dimensions may be more

analytic, i.e. the weight of an object (which cannot directly be perceived).

Crucial to modelling concepts in a CS is the ability to take a distance measure-

ment. For each of the dimensions involved, a suitable metric to calculate distance

must be defined. For a lot of dimensions the Euclidean distance may be the most

appropriate one, but the Manhattan distance can also be used2. The metric can

be augmented with a weight to allow certain dimensions to be more prominently

expressed than others; see equation (3.1). Different contexts can influence saliency

and this saliency determines the dimension’s weight.

Distance dxy between point x and point y takes the general form:

dxy =

(
N∑
i=1

wi|xi − yi|r
) 1
r

(3.1)

where r denotes the type of metric with r = 1 for the Manhattan distance and r = 2

for the Euclidean distance, i is a dimension and w the weight of the dimension.

This distance measurement allows for similarity judgement, as similarity between

two points in the CS are a function of their distance. However, with respect to sim-

ilarity judgement, studies have shown that people do not rate concept similarity in

a linear fashion, but rather there appears to be a non-linear relation between dis-

tance and similarity (Shepard, 1987; Nosofsky, 1986). To account for this, distance

is converted into a similarity as expressed in equation (3.2). Similarity s between i

and j is computed as an exponentially decaying function of distance:

sij = e−cdij (3.2)

where c is a sensitivity parameter.

Rather than mere points in space, concepts are postulated as convex shapes

which may span one or more domains. In each dimension of the domains that are

associated with a particular concept, the coordinates of the concept in this dimension

2Typically the Euclidean distance is used for distance measurement on continuous dimensions
and the Manhattan distance is used for discrete dimensions.
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Figure 3.1: Illustration of a simple conceptual space with 2 dimensions which is
populated by 10 concepts. Through generation of a Voronoi diagram the boundaries
of the concepts are defined.

are used to generate a Voronoi tessellation. This results in a decomposition of the

space as depicted in figure 3.1 which shows a simple CS with two dimensions that

is populated by 10 concepts. Each point in the space is assigned as belonging to

the concept to which it is closest and as such the conceptual boundaries are defined.

The region encompassed within the generated polygon surrounding a concept is said

to be part of that particular concept.

3.1.1 Populating the CS

Typically a learning agent starts out with an empty CS, i.e. without any conceptual

knowledge. Through interaction with other agents concepts can be learned in, from

the learning agent’s point of view, essentially a supervised manner3; a newly observed

stimulus can either be stored as a new concept in the CS, or added to an existing

one. The decision of whether to store the new data as a new concept, or blend it in

with existing concepts is based on language game dynamics which take place outside

of the CS. This is described in detail in section 3.2.

Once a CS is populated with some concepts, it can be used to classify new

3From a language games perspective the learning is not supervised but rather exhibits self-
organising properties, as a population of agents generate shared meaning through interaction with
each other, see section 3.2.4.
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observations. Classification happens in the following manner. Given a CS C with

concepts < c1, c2, ..., cn >, each c ∈ C consists of a collection of one or more domains

Dc =< dc1, d
c
2, ..., d

c
n > and each dc ∈ Dc consists of one or more quality dimensions.

For a newly observed stimulus y with associated domains Dy, similarity scy is cal-

culated for each c ∈ C. y is then classified as c for which s is the smallest. Based on

certain thresholds y can either be stored as a new concept in which case y is stored

as cnew in C, or y can be added to the closest matching c ∈ C. In case of the latter

this is done as follows: for each dc ∈ Dc that is equal to dy ∈ Dy, the coordinates x

of dc are updated through inclusion of the coordinates z of dy. This is done using

the following formula:

xnew = xold +
|xold − z|

N
(3.3)

where N is the number of observations on which x is based, so after the update

operation N = N + 1. In a similar fashion, the standard deviation for each x ∈ dc

is updated as well. The SD of x provides a measure of spread for this dimension,

and as such is an indication of the relative size of the concept in the CS.

3.1.2 Prototypes and exemplars

As described in chapter 2, a prototype based manner of concept modelling seems to

be sufficiently close to empirical data collected from human studies. A CS represen-

tation is very well suited for prototype modelling, as the inherent distance metric

can easily function as a measure of typicality. The model’s ability to represent

prototypes is further explored in section 4.4, which provides a practical example of

prototype learning featuring a commonly used dataset of zoo animals.

Even though a CS is typically populated with summary representations as con-

cepts and as such supports a prototype approach, it can easily be extended to

accommodate aspects from the exemplar theory (section 2.3.5), by simply keeping

a copy of all observed stimuli in memory. Indeed, this was the case for the actual

implementation that was used for experiments reported in this thesis. Although not

explicitly used, the collection of all observed stimuli that make up the prototype is

useful for calculating the SD of the prototype, thus gaining a measure of the spread
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of a concept within the CS. Should the need arise (e.g. because of some vital empir-

ical data strongly suggesting exemplar based modelling), the distance measurement

can be modified through utilising the set of exemplars rather than the prototype. As

such, the CS model implemented for the work reported in this thesis also supports

concept modelling based on exemplar theory.

3.1.3 Related work

The CS framework has been applied in numerous other works, varying from the-

oretical expansions to more practically oriented applications in robotics. An ex-

tension, which describes how concepts can also be represented in an ‘action space’

is described in Gärdenfors (2007). More practical examples of robotic applications

which are geared towards categorical perception, are provide by Chella et al. (1997,

2000). In these works a robot vision system is based on conceptual spaces in which

each point corresponds to a geon-like 3D geometric primitive (Biederman, 1985).

A notable criticism of the conceptual spaces framework is that application of the

theory has only been demonstrated in simplistic cases (Tanasescu, 2007). In response

to this, Adams and Raubal (2009) introduced a more comprehensive conceptual

space algebra which provides query operations for semantic similarity measurement

and concept combination, as to “allow one to build and reason with complex concep-

tual space structures”. Further extensions of conceptual spaces, including a symbolic

subspace which allows for a connection with higher order symbolic representations,

are described by Aisbett and Gibbon (2001) and Rickard et al. (2007).

3.2 Language Games

The second part of the model is based on language games; this serves as a mechanism

to govern the acquisition and association of linguistic labels with perceptual concepts

that populate the CS. Because language games are inherently placed within a social

context, that is, agents learn through interaction with other agents, this framework

supports a social learning account as discussed in section 1.5.1.
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3.2.1 Background

The language games model was first proposed by Steels (1996a,b) as a model of

meaning acquisition for artificial agents. A real world analogy, adapted from (Steels,

1999) is described below.

Imagine the following scene. Two people with different native languages, say

French and English, are dining together. At some point the English person asks the

French “Could you pass me the salt please?”. The French person might not be very

accomplished in the English language, but may nevertheless register the fact that the

statement is a question. Furthermore, “salt” sounds somewhat similar to the French

“sel” and given the situation it is not too hard to deduce the meaning of the question.

Thus, the French person passes the salt and the communication is a success, which

can be expressed in a non-verbal manner. Both interlocutors mentally note the

success of this interaction and the French person can also mentally strengthen the

connection between the word “salt” and the salt shaker he just passed. Alternatively,

it might be the case that the question is not understood properly. The French person

might indicate this through some kind of non-verbal action, or simply fail to pass the

salt. If this happens the English person might make a gesture towards the salt on

the table and utter the word “salt” again. Even though the initial communication

was not successful, the resulting actions still allow the French person to mentally

connect the salt on the table with the linguistic label “salt”.

Through a continuous engagement in these kind of ritualised interactions, in-

terlocutors can gradually learn to associate the correct linguistic labels to objects

in their environment, thus effectively learning to speak a shared language. It is

these kind of interactions that Steels argues help to establish meaning between ab-

stract word utterances, real world objects and situations. In a situated environment

agents exchange linguistic descriptions of objects they perceive through commu-

nicative acts. Meta-communicative actions (which can be verbal or non-verbal),

expressing confirmation or disconfirmation of these communicative acts, provide the

agents with means to alter the associations between the linguistic expressions and

their referent, i.e. the objects in the world. Various software simulations using this
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model have shown that through prolonged engagement in language game interac-

tions, communication between agents tends to become more successful over time,

i.e. they converge to a shared system of meanings (Steels and Kaplan, 2002b; Steels,

2003).

Language games may be seen as an umbrella term, as there exist a multitude of

variations and implementations. The underlying principle is that agents develop a

shared language that enables them to ‘speak’ about their environment, through the

exchange of linguistic labels and the adoption and shifting of underlying conceptual

representations; variations differ in the number of agents, the manner of interacting,

the environment, the type of feedback between agents, the agent’s update functions

etc.

Experiments in language games can be done in simulation, but have also been

extended to robotic hardware. For instance, the Talking Heads experiment (Steels,

1999) included pan-tilt cameras that observed a real world scene of colours and

shapes. Other experiments included various robotic platforms such as Lego robots

(Steels and Vogt, 1997), AIBOs (Steels and Kaplan, 2002a), QRIOs (Wellens et al.,

2008; Steels and Spranger, 2008) or human subjects (Belpaeme, 2002a). The model

has also been used to explore the emergence of human communication (Steels, 2006),

compositional structures (Vogt, 2005) and linguistic categories (Puglisi et al., 2008),

as well as case studies focussing on the origin of colour terms (Steels and Belpaeme,

2005; Belpaeme and Bleys, 2005).

The implementation that is used in this thesis follows the model as described in

Belpaeme and Bleys (2005). As such, we take the following view. Language games

consist of two distinctive parts: the discrimination game and the guessing game.

Discrimination games are used by the agent to develop a categorical representation

from the input space; guessing games serve to develop linguistic descriptions for

these categories through interaction with other agents in a population. As such,

after engaging in language games agents are able to successfully communicate with

each other about their shared environment. The agents, the discrimination game

and the guessing game are described in more detail in the following sections.
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3.2.2 The agents

Language game always involve one or more agents. An agent A is defined as follows:

A = {S, L,Mi,j}

where S is a conceptual space that is populated with i concepts, L is a lexicon

containing j word labels and Mi,j is a i × j matrix encoding connection strength

between all c ∈ S and all l ∈ L as a scalar [0.0, 1.0]. When multiple agents (N) are

involved, they are collected in a population P = {A1, A2, ...AN}.

3.2.3 The discrimination game

The discrimination game is played by an individual agent observing a context, which

is a set of objects from the agent’s environment. It proceeds as follows:

1. Agent A observes context O = {o1, ..., oN} containing N objects and an index

i, designating object o ∈ O as ot: the topic of the discrimination game.

2. A finds the best matching concept c from its conceptual space SA for each

stimulus in the context: {o1, ..., oN} → C = {c1, ..., cN}.

3. For ot, if the best matching concept ct is unique in C the game succeeds,

otherwise it fails.

The discrimination game can fail in several ways; this is an opportunity to improve

the agent’s concepts. When SA is empty, a new category is created on the coordinates

of ot and the game proceeds with the next round. When no unique discriminating

concepts can be found for ot, there are two possible actions: (1) a new concept is

created on ot, or (2) the best matching concept c is adapted to better represent ot

by shifting c towards ot. Action (1) is taken when the discriminative success4 of the

agent is below a threshold adapt = 0.9, otherwise action (2) is taken. Regardless

4The discriminative success of an agent is the global success of the agent in all discrimination
games it has engaged in. It is typically measured by dividing the number of times the agent has
successfully discriminated the topic from the context by the total number of discrimination games
the agent has played.
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of which action is taken, the discrimination game results in A assigning a concept

from SA (either new or adapted) as best matching ot.

A division of input space into discrete categories as achieved by the discrimina-

tion game can be compared to other methods of categorisation, like k-Means and

self-organising maps. This comparison is covered in more depth in section 4.3.

3.2.4 The guessing game

The guessing game is played between two agents observing the same context. One

agent (the teacher) initiates the game by describing an object from a set of multiple

objects (the context), and the other agent (the learner) tries to guess which object

from the context the teacher has described5. More formally, the guessing game

proceeds as follows:

1. Teacher AT and learner AL observe context O = {o1, ..., oN} containing N

objects and the index of the topic, specifying ot.

2. AT plays a discrimination game for ot; this results in the concept cT .

3. AT finds the associated label lT and communicates this to AL.

4. AL hears lT = lL and finds the associated concept cL.

5. AL points to oL closest to cL.

6. if oL = ot, the guessing game succeeds; if not, it fails.

When the guessing game is successful, the connection strength between lL and cL is

increased by learning-rate α and ot is added as an exemplar of cL, effectively shifting

the coordinates of cL towards ot.

The guessing game can fail in several ways. (1) The discrimination game of AT

fails; in this case the guessing game fails as well. (2) AL does not know lT . AL

then plays a discrimination game for ot, finds cL and adds lT → lL to its lexicon

5Throughout this research the agents are called teacher (the agent that initiates the guessing
game) and learner (the agent that makes the guess), as we are mostly concerned with a teacher-
learner scenario. In related research that utilises the language games framework, agents are also
called speaker and hearer. Despite this difference in terminology, the respective roles of the agents
are the same.
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Figure 3.2: Schematic display of the guessing game interaction between a teach-
ing agent AT and a learning agent AL according to the description provided in
section 3.2.4.

with a default connection 0.5 to cL. (3) AL knows lT , but points to the wrong

topic. AL then decreases the connection strength by α between lL and cL, plays a

discrimination game for ot, finds cL and adds lT → lL to its lexicon with a default

connection 0.5 to cL. A schematic representation of this interaction is displayed in

figure 3.2.

3.2.5 Two scenarios

There are two different scenarios possible with respect to playing language games

that involve multiple agents. The first one resembles a teacher-learner scenario,

in which one agent (the teacher) is initialised with certain categories and words

combinations, allowing it to describe objects from a context. As such, the training

data which is used during guessing games will be of a similar structure (same domains

and dimensions) as the knowledge the teaching agent is endowed with. The other

agent starts with a blank memory, i.e. its lexicon and conceptual space are empty.

Both teacher and learner engage in a series of guessing games, and through these

interactions the learner gradually acquires knowledge from the teacher. The teacher
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does not modify its word-meaning associations.

The other variety of language games is played in a population of two or more

agents. In this scenario all agents start with a blank memory. During each round,

two agents that are randomly selected from the population play a guessing game.

If words are needed to describe the topic from the context, the agents acquire these

through a discrimination game. Through multiple interactions between all agents,

word-meaning combinations gradually propagate throughout the population, even-

tually converging to a shared language. This latter type of language game is mostly

applied when one is interested in the dynamics of language evolution.

3.2.6 Evaluation

To measure the performance of the agents in terms of learning, i.e. how effective

knowledge from a teaching agent can be ‘transferred’ onto the learning agent, or in

the case of a population, how well do the agents in the population ‘speak’ the same

language, a performance measurement needs to be defined. Typically this is done

by measuring the communicative success of language games. The communicative

success is calculated as the number of language games in which two interacting agents

are successful in their communication divided between the total number of language

games played. Related work featuring the language game framework sometimes

measures only the average success in communication over the last x number of

interactions, i.e. a running average. However, in this work communicative success is

always averaged over all interactions. As such, agents can never reach 100% success,

because inevitably there will be miscommunication, particularly at the early stages

of interaction when agents’ lexicons are not yet aligned to a great extend.

The choice of using this overall measure of communicative success as opposed to a

running average was arbitrary, i.e. the practice was simply adopted while implement-

ing the language game framework. It is not expected to influence the experimental

findings in any way.
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3.2.7 Parameters

Various parameters govern the outcome of language game interaction. Depending

on the objective of the experiments, optimal settings will vary. A description of the

most important parameters is provided below:

• Number-of-agents (NA)

This determines the number of agents that participate in the language game.

As described above, a teacher-learner scenario is normally played with two

agents; other types of language games have two or more agents in the popula-

tion.

• Number-of-interactions-per-agent (NI)

This specifies the average number of language game interactions an agent par-

ticipates in. For convergence of meaning within a population NI is typicality

set to 10,000 games or more, depending on the complexity of the environment,

as expressed by other parameters. However, particularly for teacher-learner

scenarios, the number of interactions might be considerably less, e.g. some of

the experiments that are described in section 7.4 only use 50 interactions.

• Context-size (C)

The context size determines how many objects are included in a context. The

higher this number, the harder it is for other agents to make the right guess

when observing a context and hearing a linguistic utterance from the speaking

agent. Values might range between [2, 7]; for most experiments reported in

this thesis C is set to 3 or 4.

• Minimum-distance-objects (Dmin)

Related to C is a measure of how different the objects in the context are with

respect to each other. Even with C = 2, if these objects are very similar, it

is hard for agents to make a guess that is above chance. Dmin governs the

extent to which objects in the context are sufficiently different, so that agents

can discern between them. In a human context, this parameter relates to the

notion of ‘Just Noticeable Difference’, i.e. the degree at which two stimuli differ
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in such a way that people can just notice this difference. See Baronchelli et al.

(2010) for an exploration of this notion.

• Adaptive-threshold (Tadapt)

This parameter determines how adaptive agents are with respect to building

their categories during discrimination games. Tadapt functions as a threshold; if

the discriminating success of an agent drops below it, the agent invents a new

category. A high value (i.e. 95%) will cause an agent to build many categories,

while a low value will cause an agent to end up with few, but potentially

more general categories. The most effective value for Tadapt varies for different

language game scenarios.

• Learning-rate (α)

The learning rate specifies the amount of adjustment agents make in their

word-category scores, based on the outcome of a guessing game. A high learn-

ing rate can result in quick convergence of a certain word-category combina-

tion, but this can be disruptive on a population level as it might cause large

fluctuations in the shared lexicon.

• Number-of-replications (R)

R encodes the number of replications of the same simulation. Because of

random aspects in the initialisation of training data, the selection of agents

for guessing games and the choice of topic from the context, the outcome

of language game simulations will vary to a certain extent from run to run.

To obtain an average measure for statistical analysis, simulations with the

same parameter settings are replicated a number of times. Through a trial

and error process it was established that R = 25 generally provides a middle

ground between obtaining good average values and the computational time

required to do so.
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3.3 Combining CS and LG

The combination of a conceptual spaces model of concept representations (sec-

tion 3.1) with the language games dynamics that model the development of a shared

system of meanings between agents (section 3.2) will form the basis of the computa-

tional models that will be described in the following chapters. There exist a body of

work in the literature that has followed a comparable approach to concept modelling,

a description of this related work is provided here.

Originally, categories in language games were represented through discrimination

trees (Steels, 1996a). Following work utilised other means of representation as well,

such adaptive subspaces (De Jong, 1999), radial basis function networks (Steels and

Belpaeme, 2005) or vector spaces that, although not always explicitly mentioned,

bear considerable resemblance to Gärdenfors’ conceptual spaces model; e.g. Bel-

paeme and Bleys (2005); Spranger et al. (2010); De Beule and Bleys (2010), as well

as various experiments reported in Steels (2012). Also in Vogt (2005), a conceptual

spaces model is used to represent concepts (colours and shapes). In this work the

emergence of compositional structures are explored by combining the underlying di-

mension of the CS with a rewrite grammar that allows for compositional structures.

Similar work is described by Vogt (2004), in which agents acquire categories based

on principles of cross-situational learning (Siskind, 1996; Smith, 2005; Smith et al.,

2006); see section 8.2 for some more discussion of topic. Other approaches employ

similar manners of category representation and transfer of meaning, but utilise affor-

dances for categorisation and cross-situational learning, e.g Takáč (2008). Yet other

studies have returned to discrimination trees as a means of representing concepts

(Wellens et al., 2008).

As illustrated by the related literature described above, the combination of Lan-

guage Games with an conceptual spaces manner of representing concepts is not novel

in itself. However, in this thesis we will utilise this combination as a means to ad-

dress the questions as formulated in section 1.6, approaching the topics of concept

learning and linguistic convergence from the perspective of concept learning through

social interaction. As such, the following aspects of this work can be considered as
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novel: an explicit relation of the model’s concept formation dynamics to prototype

theory (section 4.4), the investigation of interactive features as a means to improve

learning dynamics (chapter 5), an illustration of how application of the model’s

dynamics might help overcome differences in embodiment (chapter 6), and the sub-

sequent implementation of aforementioned interactive features into augmentations

of an embodied agent’s social repertoire (section 7.4).

3.4 Chapter summary

In chapter 3 a description has been provided of the two main frameworks that serve

as a basis for the experimental work covered in this thesis. The first framework is

that of conceptual spaces, which provides the means for modelling concepts in a

prototype-like fashion. Concepts are depicted as convex regions in a multidimen-

sional feature space, and as such the notion of similarity between different concepts

(points in the space) is realised through a distance metric. Furthermore, it has been

described how a conceptual space can be populated with conceptual structures, and

how these structures exhibit properties that are compatible with a prototype theory

of concepts.

The second foundation of the experiments reported in this thesis is the language

game framework. This functions as a learning mechanism through which a con-

ceptual space of an agent can become populated with concepts and word labels to

describe these concepts can be obtained. The language game framework emphases

the interactive nature of learning, as the meaning of objects in an environment grad-

ually becomes aligned within a population of agents through multiple interactions.

As such, these learning mechanisms provide a ground for social interactive learning,

both in simulated environments with multiple agents, and in a didactic setting in

which an agent, embodied in a robot, learns from a human teacher. Along with a

description of this framework, the most important parameters were discussed.

It is then described how the combination of these two frameworks are used to

explore the questions formulated in section 1.6.
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Chapter 4

Experiments in simulation

This chapter reports on simulated experiments which are based on the model de-

scribed in chapter 3 and which serve as a benchmark. A baseline experiment is

provided to allow for a comparison with variations of concept learning. An alterna-

tive method of teaching and testing, dubbed direct instruction (DI), is compared to

the standard model of language game interaction. Next, different perceptual bases

that serve to partition the CS are explored; the normal means of representing cate-

gories in a CS is compared to other methods based on k-Means and self-organising

maps (section 2.4.4). Furthermore, the ability to represent prototypes in a CS repre-

sentation, a property that is deemed important for concept modelling (section 2.3.5),

is investigated.

4.1 Baseline

A guessing game simulation (teacher-learner scenario) was run to serve as a baseline

experiment. In this simulation one agent is adopting the role of teacher and as such

is endowed with categories and word labels at the beginning of the simulation. The

other agent (learner) starts with an empty repertoire of categories and word labels;

through interaction the learner gradually acquires categories that match those of

the teacher. We measure the communicative success of both agents; recall that in

the methods adopted in this work communicative success can never reach 100%,

because it is averaged over the total of interactions (section 3.2.6). This simulation
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was run with abstract training data, in the sense that objects in the context do not

represent any particular domain but rather consist of abstract normalised vectors.

The interaction was replicated 25 times (R = 25), to allow for statistical analysis.

For every replica the number of dimensions was randomly determined through a nor-

mal distribution with a mean of 3 and an SD of 21. Also the conceptual knowledge

of the teacher was randomised; the number of concepts was determined through a

normal distribution with a mean of 20 and and SD of 2. Other parameters were:

NI = 2000, C = 4 and Dmin = 0.1. These parameters were chosen based on prag-

matic considerations; they are believed to represent a reasonable ‘default’ setting

for language game learning and as such are suitable for a baseline simulation. The

resulting learning curve is shown in figure 4.1. This result is used to compare the

modifications of language games that are subsequently explored in section 4.2.
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Figure 4.1: Baseline performance expressed as communicative success of two agents
engaged in language game using abstract training data.

4.2 Language games and direct instruction

As described in section 3.2, language game learning (LG) happens as follows. During

each round, both agents examine a context which consists of objects drawn from

1Using these values can result in 0 dimensions. To ensure that there will always be some data,
the minimum number of dimensions was set to 1.
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the environment; the teacher then chooses one object from the context as the topic

of ‘conversation’. The word label associated with the topic is communicated to the

learner. The learner tries to identify the topic in the context based on this word

label and depending on the outcome of the guessing game modifies its word-concept

associations.

Direct instruction (DI) can be seen as a simplification of this teaching process.

In a similar vein as LG, it consist of two agents: a teacher with predefined knowledge

and a learner with an empty repertoire. The teaching mechanism differs however, as

during an interaction there is no context. Instead, a single random object is chosen

as the topic, and the teacher provides a word label for this. The learner then adds

the word label to its lexicon and object data to its CS, either by adding the object

data and word label as a new concept, or by updating the best matching concept

from its CS if the word label is already known to the learner.

Also, the evaluation measurement that is used to express successful interaction

can be modified in a DI manner. When using (normal) LG measurement, the com-

municative success after each interaction is based on the ability of the learner to

successfully identify the topic from the context. Alternatively, with DI measure-

ment, a set of random sample objects (n=20) is generated, and both agents provide

a word label for these objects based on their respective best matching concepts and

word associations. If the word labels match, communication is a success; if they do

not match, communication fails. Communicative success is then measured as the

number of objects for which the word labels of both agents match, divided by the

total number of objects in the set. These two methods of teaching and two methods

of testing result in four different cases, as expressed in table 4.1. Simulations with

these different regimes were run using the same parameter settings as the baseline

learning (figure 4.1).

LG testing DI testing
LG teaching LGteach − LGtest LGteach −DItest
DI teaching DIteach − LGtest DIteach −DItest

Table 4.1: Normal (LG) and Direct Interaction (DI) learning and testing regimes.
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condition versus t test
LGteach − LGtest LGteach −DItest t(48) = 9.3457 p < 0.001

DIteach − LGtest t(48) = −0.911 p = 0.367
DIteach −DItest t(48) = 1.8852 p = 0.065

DIteach − LGtest LGteach − LGtest t(48) = 0.911 p = 0.367
LGteach −DItest t(48) = 8.8416 p < 0.001
DIteach −DItest t(48) = 2.4317 p = 0.019

LGteach −DItest LGteach − LGtest t(48) = −9.3457 p < 0.001
DIteach − LGtest t(48) = −8.8416 p < 0.001
DIteach −DItest t(48) = −7.0825 p < 0.001

DIteach −DItest LGteach − LGtest t(48) = −1.8852 p = 0.065
LGteach −DItest t(48) = 7.0825 p < 0.001
DIteach − LGtest t(48) = −2.4317 p = 0.019

Table 4.2: Pairwise comparisons of performance resulting from different treatments
(direct instruction and language games) for both teaching and testing methods.

4.2.1 LG and DI: results

As can be observed from figure 4.2, when the testing method is LG, the performance

of both LG and DI as teaching methods is very close (difference is not significant;

two-sample t-test: t(48) = −0.911, p = 0.367). However, when DI is used as a testing

method, the difference between LG and DI as teaching methods becomes much more

apparent (difference is significant; two-sample t-test: t(48) = −7.0825, p < 0.001).

All pairwise comparisons of performance are shown in table 4.2.

If we focus on DI as a testing method (regardless of the teaching method), the

difference in performance can be explained in the following manner. When a context

is generated for LG, the parameter minimum-distance-objects (Dmin) ensures that

there exists a minimal distance between every object in the context. Dmin affects

the number of concepts that a learning agent will form as a result of exposure to the

environment. The smaller Dmin is, the more concepts an agent will form in its CS

as to be able to discriminate these small differences. In the case of testing, using a

context that respects Dmin (as happens in LGtest) makes the guessing task easier,

compared to a direct test (DItest). This is the case because for the learning agent,

when confronted with a context and a word label from the teacher in the case of

LG, the task is to find the topic from the context through the word label. The

learning agent finds the concept in its CS that is most strongly associated with the

word label and compares this to all objects in the context. The concept associated
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with the word label does not need to be exactly the same for the teacher and learner

in order to successfully discriminate the topic from the context, because the Dmin

ensures that other objects in the context will sufficiently differ from the topic. To

illustrate this point, an example scenario is provided below.

In a 1-dimensional environment, a context may look like this: [0.22, 0.63, 0.91].

A teaching agent may have a CS populated with the following concepts: [0.2, 0.4,

0.6, 0.8]. If the first object in the context (0.22) is chosen as topic, the teacher might

communicate an associated word label “word1”. The learning agent may be familiar

with “word1”, but has it associated with a concept with value 0.28. The learner

compares this concept of “word1” with the context, and will still find that the first

object (0.22) is the closest match. Because the existence of Dmin, there is less chance

that other objects in the context will be associated with the communicated word,

since they tend to be sufficiently different. Thus, communication may succeed even

though concepts of teacher and learner differ to a certain degree.

On the other hand, when DI is the method of testing, a sample object might be

generated that is marginally closer to one of the teacher’s concepts than to another.

The teacher will express the associated word, while in fact the sample object also

matches relatively well to another concept. If the learner has a somewhat different

CS than the teacher, it may be the case that another concept from the learner’s CS

matches best for the sample object. In this case the word associated with this other

concept will not match the word provided by the teacher and the communication

fails.

To experimentally test the explanation described above, a simulation with a

modified DItest was run. In this experiment the learner is allowed to provide both the

best-matching and second-best-matching word label for a given sample object. As

a result, an increase in performance can be observed (figure 4.3). This performance

increase indicates that in a substantial number of cases communication fails because

the given sample object resides on the border of two concepts; by allowing the second

best matching word label as a valid response these cases are accounted for. DI as a

testing method can actually surpass LG as testing method.
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Figure 4.2: Comparison of performance under different learning and testing regimes
(DI and LG).

To sum up, a test using LG gives more leeway to objects that are on the border

of one concept and another, because the Dmin ensures that other objects in the

context will be sufficiently different, making it easier in those cases for communica-

tion to succeed. In other words, a test that uses DI leaves less room for successful

communication about dissimilar concepts.

4.2.2 Concluding remarks

In conclusion, it appears that DI can be a useful method of teaching, because it

allows for a somewhat simpler interaction scenario. However, DI as testing method

is considerably harsher, and leaves less room for marginally different conceptual

spaces. As such, it might not be suitable as a testing method. Also, to be able to

place the research reported in this thesis in context with other research using the

language game framework, we opt to retain the LG method for both teaching and

testing.

4.3 Perceptual basis

When participating in a language game an agent needs to perceive the environment

in order to be able to examine the context and determine a word label for the topic.
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Figure 4.3: Comparison of performance under different learning and testing regimes
(DI and LG), with DI utilising second best matching word label.

Therefore, agents are equipped with the perceptual means tailored towards this

environment. Perception might be very direct; for instance, in a basic simulation

the context typically consist of objects (e.g. colours) that are expressed as a vector

(e.g. [255, 0, 0] to express a colour typically called ‘red’ by people). Such an encoding

can directly be copied into the conceptual space of agents. In other cases perception

might require some kind of pre-processing. For instance, in chapter 6 differences in

perception are explored in which agents have different mapping functions to go from

objective perception of the environment to subjective encoding. Or, in the case of

robotic agents, camera streams might be pre-processed to extract the right kind of

perceptual information.

Within the language game framework representations of the environment and

the concepts that an agent learns are formed through application of discrimination

games (DG, section 3.2.3). After individual agents are able to categorise new ob-

servations from the environment, a population of agents can further develop their

shared meaning system by engaging in guessing games. However, to perceive the

environment, application of discrimination games is not the only manner in which an

agent can acquire the necessary concepts. A similar result can be achieved through

the application of other clustering techniques. For instance, the well known method

of k-Means clustering allows, after training, for finding clusters in multidimensional

85



vector spaces (section 2.4.1). Also self-organising maps (Kohonen, 1984) can be

used to form a topological map (usually with fewer dimensions) of the input space

(section 2.4.4). To investigate how well these techniques perform in terms of un-

derlying representation for language games, experiments were performed in which

we compared agents with three different mechanisms for categorisation of the input

space: discrimination games (DG), k-Means (KM) and self-organising maps (SOM).

k-Means was chosen because it is a common manner of clustering multidimensional

spaces; the choice of SOMs as a means of representation was motivated by the fact

that this allows for a closer comparison of the computational model with the ERA

cognitive architecture (as described in section 2.4.4).

4.3.1 Perceptual basis: setup

Tests were run as follows. Training data was drawn from a normalised vector space

with three dimensions; the language game parameters were NA = 10, NI = 10000,

C = 3, Dmin = 0.3 and R = 25. For each of the three mechanisms (DG, KM

and SOM), categories were generated in the following fashion. In the case of DG,

a standard discrimination game was used with N = 1000. In the case of KM,

for each agent a perceptual base was generated using the k-Means algorithm from

Matlab, through which 11 clusters were found from a training dataset containing

1000 normalised datapoints drawn randomly from the input space. The choice of

k = 11 was inspired by the 11 basic colour categories as identified by Sturges and

Whitfield (1995), although it is acknowledged that this is somewhat arbitrary. As

the seeds on which k-Means was based were random, each agent had a different CS,

albeit one that corresponded to the input space. In the case of SOM, agents were

fitted with the resulting response vectors from a 4x4 SOM which was trained using

the standard SOM algorithm on the input space for 1000 iterations. Thus, these

agents’ CSs were populated with 16 concepts. The resolution of the SOM (4x4)

was based on the observation that agents fitted with a perceptual basis derived

through training SOMs with a resolution of 3x3 resulted in severely less successful

communication. Thus, it was reasoned that a 4x4 SOM constitutes the minimal
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Figure 4.4: Comparison of different perceptual bases: DG, k-Means and SOM, for a
population of 10 agents, where each agent interacted in 1000 guessing games. C = 3.

required resolution. Also in this case the seeds on which the SOMs were trained

were random for each agent, ensuring that each agent had a different CS. Fitted

with these different perceptual basis, agents then engaged in regular guessing games.

4.3.2 Perceptual basis: results

As can be seen in figure 4.4, the three manners of representing categories performed

functionally very similar. Particularly if the simulation is allowed to run long enough,

the three different regimes tend to converge. However, a main difference lies in the

fact that KM and SOM need to be trained beforehand, while DG is an online learning

method. For instance, for KM it is necessary to specify how many clusters we want

to find, then run the algorithm and then equip agents with the resulting clusters.

Also in the case of SOM, it is necessary to specify beforehand the number of nodes

in the network, i.e. the resolution. Based on this, nodes in the network are shaped

to reflect the input space during the training. In contrast, using discrimination

games as a means to populate the CS of agents allows for a form of online learning

where the agent adds new categories when necessary (as governed by the Tadapt, see

section 3.2.7).

In a second simulation the number of objects in the context was increased to 6
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Figure 4.5: Comparison of different perceptual bases: DG, k-Means and SOM, for a
population of 10 agents, where each agent interacted in 1000 guessing games. C = 6.

(C = 6). This makes the guessing game harder as random guessing is only successful

in 16.66% of the cases. Figure 4.5 shows the results of this regime. Interestingly,

DG as perceptual base performs better with these settings. This is because DG is

more adaptable; new concepts can be added as the need arises, while for KM and

SOM the conceptual structures are fixed.

4.4 Modelling prototypes

This section explores the models ability to form prototypes; the work reported has

been published in De Greeff et al. (2012a). As described in section 2.3.5, to account

for empirical data from human concept use, a conceptual model should be able to

display prototypes and typicality effects. To examine how the CS part of the model

is able to build conceptual structures that exhibit these prototypes and typicality

effects, the CS model was trained with data from the Zoo dataset from the UCI

Machine Learning Repository (Frank and Asuncion, 2010). This database contains

101 animal exemplars which are divided into seven categories: amphibian, bird,

fish, insect, invertebrate, mammal and reptile. Each animal exemplar is

encoded through the following 16 properties: [hair, feathers, eggs, milk, airborne,

aquatic, predator, toothed, backbone, breathes, venomous, fins, legs, tail, domestic,
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Figure 4.6: PCA showing the coordinates in the first two components for the 7
categories and the 8 animal exemplars which were used to test the CS ability to
display typicality effects.

catsize]. All properties are binary, except ‘legs’ which is encoded as a numerical

value (see appendix A for the full dataset). The ‘legs’ property was normalised as

to allow distance measurement in the CS with the same weight setting.

From the 101 exemplars the following 8 animals were selected as test cases:

dolphin, lion, herring, seasnake, ostrich, parakeet, penguin and pheasant. These 8

animal where chosen based on their explanatory value. That is, lion and herring

are considered very typical for their category. Dolphin constitutes an interesting

example because it is commonly incorrectly classified as a fish, also by humans. The

same holds for seasnake, as this exemplar has properties that are halfway between

the fish and reptile categories. The four birds are included to illustrate typicality

effects within the same category. The remaining 93 exemplars were used to populate

the CS in a supervised manner, following the procedure as described in section 3.1.1.

Thus, prototypes were formed based on the seven categories. After training, the

CS was probed with the 8 test animals. To illustrate the relation between the

7 categories and the 8 exemplars that were used to test the model’s prototype

structure, a principal component analysis is shown in figure 4.6.

89



lion dolphin seasnake herring
0.00

0.10

0.20

0.30

0.40

0.50

0.60

MAMMAL
FISH
INVERTEBRATE
AMPHIBIAN
REPTILET

yp
ic

a
lit

y 
ra

tin
g

Figure 4.7: Typicality for the first four animals of the test case. All but seasnake
are classified correctly; lion and herring are very typical for their category, while
dolphin is atypical and very close to an incorrect category.

4.4.1 Prototype formation and typicality

Through training the CS becomes populated with animal prototypes. Next, the

similarity between these prototypes and the 8 animals from the test set is calculated

using equation (3.2); this results in the typicality values as shown table 4.3. The

animal are classified as belonging to the category for which the typicality rating is

highest. As can be observed, 7 out of 8 animals are classified correctly. Figure 4.7

shows the typicality ratings for the first four test animals. What can be observed

is that both lion and herring are rated very typical for their respective categories.

Seasnake is classified incorrectly as fish (0.17), but the correct category, reptile, is

very close with a typicality rating of 0.14. Dolphin is correctly classified as mammal

(0.17); interestingly fish, which would be a common misclassification, is very close

(0.15).

Focussing on the bird category, we can clearly observe within-category typicality

effects (figure 4.8). For the bird class, the pheasant is the most typical example,

followed by the parakeet, the ostrich and finally the penguin. This is in line with

human typicality ratings (Rosch, 1975; Hampton and Gardiner, 1983; De Deyne

et al., 2008), except for the fact that pheasant is rated as more typical than parakeet.

Upon closer inspection it turns out that the property ‘domestic’, which is true for
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Figure 4.8: Typicality ratings of the CS model for the four bird exemplars for the
bird category.

exemplar classified as INV MAM AMP INS REP FISH BIRD
dolphin MAM 0.07 0.17 0.11 0.04 0.11 0.15 0.07
lion MAM 0.07 0.54 0.09 0.06 0.14 0.07 0.07
herring FISH 0.12 0.08 0.18 0.06 0.16 0.62 0.09
seasnake FISH 0.11 0.09 0.16 0.05 0.14 0.17 0.08
ostrich BIRD 0.10 0.10 0.10 0.10 0.19 0.09 0.27
parakeet BIRD 0.08 0.07 0.08 0.12 0.13 0.07 0.34
penguin BIRD 0.12 0.09 0.14 0.07 0.16 0.12 0.24
pheasant BIRD 0.10 0.07 0.10 0.15 0.16 0.08 0.51

Table 4.3: Typicality ratings of the CS model for the 8 exemplars from the test set.
Classifications (highest typicality rating) are shown in bold.
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a parakeet, is somewhat rare for bird and therefore the parakeet is rated as less

typical. We speculate that this contrast with typicality ratings from human data is

due to the fact that the property ‘domestic’ may not commonly be very prominent

for people when classifying birds.

Overall the results indicate that the model is able to represent concepts in a

manner that is in line with the prototype theory of concepts. Detailed descriptions

of this experiment can be found in De Greeff et al. (2012a) and Baxter et al. (2012).

In these works we compare the ability of the model to form prototypes to the DAIM

model (Baxter et al., 2011), which provides a more developmental and distributed

account of cognitive modelling.

4.5 Chapter summary

This chapter has presented a selection of experiments based around the computa-

tional model as described in chapter 3. These experiments serve as an exploration

of the performance of the model with respect to category learning in an interactive

fashion. As there exist a large body of research that used the framework of language

games (see section 3.2.1) and as such the basic dynamics are well documented, the

experiments reported in this chapter constitute a somewhat ‘alternative’ exploration

of the performance of the model. That is, rather than a systematic investigation of

the impact of various parameter settings, the chapter discussed three aspects of the

model that are considered important for its application in social concept learning.

Specifically, the following three series of experiments were presented. In a first

series of experiments, an alternative means of learning and testing, dubbed direct

instruction (DI), was compared to the classical language game methods. DI consti-

tutes a more direct manner of interaction, effectively bypassing the use of a context

(a set of objects from which agents make a guess) as is common practice in classic

language games. Results indicate that the performance of the model utilising DI

is comparable to that of LG. While DI as a teaching method has some merits, e.g.

the fact that in the absence of a context and guessing by an agent it constitutes

a more simple scenario of interactive teaching, the DI means of testing successful
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communication is more harsh and as such leaves less room for marginally different

conceptual spaces of individual agents. Moreover, in order to be more compatible

with other work adopting the language game framework, it was decided to not use

DI for further experiments.

A second series of experiments contrasted the computational model’s method

of learning and representing concepts through conceptual spaces and discrimina-

tion games (DG) with two other methods of partitioning multidimensional spaces:

k-Means clustering and self organising maps (SOMs). The model was compared

with k-Means clustering because this is a common method of classification in mul-

tidimensional spaces. The choice of comparison with SOMs was motivated by the

fact that SOMs form the basis of the ERA model (described in section 2.4.4); the

substitution of DG as perceptual basis with SOMs renders the computational model

more comparable with the ERA architecture as it illustrates how certain functional

components of both models are interchangeable. Measured by communicative suc-

cess, all three perceptual bases performed very similar, with DG performing notably

better in language games with a larger context. However, DG allows for online learn-

ing, as new concepts can be learned when the need arises. In contrast, k-Means and

SOMs require pre-training and specification of the number of clusters for k-Means

and resolution in terms of number of nodes for SOMs. As such, the DG method of

learning and classification of concepts is maintained within the model.

A third experiment explored the ability of the model to represent concepts in

a manner compatible with the prototype theory of concepts as discussed in sec-

tion 2.3.5. The prototype theory envisions concepts as summary representations

and stipulates that instances of concepts express typicality; that is, some instances

are more typical for a concept than others. The ability of the model to represent

concepts in this way was tested by training the model with animal exemplars from

a commonly used dataset and subsequently testing it for its ability to classify and

rate selected exemplars. The resulting typicality ratings were in line with empirical

data from human subjects; as such the model is deemed adequate for a prototype

manner of concept representation.
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Chapter 5

Interactive learning

In this chapter the notion of interactive learning is discussed; rather than a passive

transfer of knowledge from a teacher to a learner, a learner may influence its learning

experience through active participation. Interactive learning in the context of this

work is a set of modifications of the language game dynamics that allow a learning

agent to be more influential with respect to what it learns. In normal language

games the learner has less influence on which objects are learnt, as this is typically

decided by the teacher. In contrast, by providing a learning agent with means to

interact and influence the learning experience a better learning outcome can be

achieved. We first discuss the relevance of interactive learning by comparing it to

insights from developmental psychology, then a description of the implementation

of in the computational model is given and finally improvements in learning are

discussed. The work in this chapter has been published in De Greeff et al. (2009b).

5.1 Interaction

In developmental psychology it has been known for a while that social and affective

interaction is central to language development and, by extension, to concept acqui-

sition. Young learners and their caretakers engage in intersubjectivity (Trevarthen,

1998), the common denominator for interactions involving the learner’s understand-

ing of emotion and thought. There is evidence that the acquisition of language

and specifically of vocabulary requires the young child to interact with a human
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caretaker: Krcmar et al. (2007) showed how 15 to 21 month old children benefit

from interaction: learning novel words was significantly more efficient when joint

attention and interaction was involved. This was contrasted to learning experiences

presented on a television screen, which did not involve joint attention or interaction;

results showed how televised learning experiences were up to half as effective as

actual interaction (interestingly, the study suggested that children are least likely

to learn novel words presented by animated characters on television). Also Baldwin

and Moses (2001) describe a large body of evidence indicating that children need

social understanding to properly learn a word-object mapping. That is, temporal

contiguity of a word with an object is often not enough for children to accept the

word as a proper label, additional social cues indicating that a caregiver is indeed

referring to a specific object is required to properly learn new words. These social

clues may be joint attention (Baldwin, 1995; Tomasello, 1995) and/or non-verbal

communication like facial expressions or gestures.

The importance of interaction for learning has also been acknowledged within

the human-robot interaction community (e.g. Cassell and Tartaro, 2007). Several

researchers have examined the role of interaction by building robotic models that

learn from the environment through interacting with it, rather than plain observa-

tion. Breazeal and Scassellati (2000) for instance, describe a system which allows

a robot to regulate the level of interaction, so that it gets neither too much nor

to little stimulation from its surroundings. Thus, the system actively creates an

optimal learning environment for itself.

Interaction is therefore deemed to be an important aspect, as learning is never

a one-way process. As such, the computational model was augmented so that a

learning agent can make use of some interactive learning features, which allow it

to actively influence the learning process. These interactive features are designed

to help the learning agent to develop conceptual knowledge more quickly, while

keeping psychological relevance in mind. Three interactive features were developed

for this end: active learning, knowledge querying and contrastive learning. Active

learning gives the learner a bias to learning unknown stimuli and relates to novelty
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preference which is typically observed in young children, knowledge querying helps

the learning agent to solidify its conceptual knowledge by testing uncertain label-

concept mappings with the teacher and contrastive learning allows the learner to use

certain stimuli as negative examples, which bears similarities to lateral inhibition

(Oliphant, 1999) and lexical contrast (Clark, 1993).

5.2 Adding interaction to the model

In the experiments reported here the colour domain was used as a test case, but

rather than the standard RGB encoding, CIE L*a*b* encoding was used because

this is more in line with how humans perceive colours (Fairchild, 1998). Hence,

colour stimuli consisted of three values, where the L* dimension encodes for the

lightness of the colour and the a* and b* dimensions respectively encode for a

red-green and yellow-blue dimension.

The language games framework supplied the means by which agents can learn

new concepts (section 3.2). The basic functioning of this was modified to allow

for more interaction through addition of components that enable the learning agent

to actively steer learning experience towards gaps in its knowledge; as such this

may constitute more effective concept learning. These interactive features and their

implementation in language games are described below.

5.2.1 Interactive features

1. Active learning (AL). During a guessing game, instead of using a randomly

picked topic from the context, the learner actively chooses the topic. This

is done by picking the stimulus from the context for which the distance to

the most nearby already learnt concepts is the greatest. That is, the most
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unfamiliar stimulus is chosen as topic1. The idea behind AL is that selecting

the most unfamiliar stimulus as the topic enables the agent to reach far corners

of the conceptual space more quickly. By selecting the stimulus which bears

the least resemblance to already known concepts, the agent should be able

to achieve a more distributed conceptual knowledge structure. AL could be

viewed as a way of modelling novelty preference which is typically observed in

young children.

2. Knowledge querying (KQ). After a specified number of guessing games, the

learner queries some of its knowledge it has learned so far with the teacher.

This is done by selecting the concept which has been the least successful during

previous language game interaction. This concept is presented to the teacher,

along with the associated label. If the teacher confirms the query, i.e. if the

label of the teacher for the queried concept is equal to the label of the learner,

the strength of the association between the label and the concept of the learner

is increased. If the query is not confirmed, this association is weakened. KQ

aims to implement a common sense intuition, namely that it is sensible to

check learned information from time to time and adapt if necessary.

3. Contrastive learning (CL). During a guessing game, after the learner has suc-

cessfully identified the topic through the label uttered by the teacher, not only

the association between label and topic is increased, but contrastive informa-

tion is utilised as well. For each stimulus in the context that is not the topic,

the learner finds the concept in its knowledge body that is closest, and weak-

1Inspiration has been drawn from Oudeyer and Delaunay (2008), which also featured a mecha-
nism called ‘active learning’. The difference with our implementation of AL and that of Oudeyer
and Delaunay consists in the fact that we aim to actively explore the far corners of the conceptual
space quickly. Hence, the aim is to enable the agent to experience unknown stimuli and build
concepts for this. Instead, in Oudeyer and Delaunay the active selection of meaning by the agent
serves as a mechanism to gradually control the growth of different meanings and thus strive for a
more robust shared lexicon. Because the agent considers introducing a new meaning based on cer-
tain criteria (for instance, the average success of the meanings already in use), this active selection
can be seen as a method to consolidate the knowledge already learnt, leading to faster convergence
among the population. This form of AL is essentially aimed at employment within a community
of agents which all interact with one another, while ours is aimed at the learning agent only. In
summary, although the term “active learning” is the same, the actual implementation functions
differently. It is called “active” because in both cases agents are actively engaged in the dynamics
that govern the acquisition of meaning.
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ens the association between this concept and the label that the teacher used

to describe the topic. This is supported by experimental results from develop-

mental psychology (O’Hanlon and Roberson, 2007) and bears resemblance to

lateral inhibition (Oliphant, 1999), lexical contrast (Clark, 1993) and mutual

exclusivity as used in the models described in Vogt and Haasdijk (2010)2.

More formally, when interactive learning is used, the guessing game algorithm

as specified in section 3.2.4 is modified according to the following description:

• AL. During the guessing game, when AL is confronted with context O: (1) AL

finds best matching concept c in SAL for each stimulus in O: {o1, ..., oN} →

C = {c1, ..., cN}. (2) The distance between every oi and ci is calculated and

stored in D = {d1, .., dN}. (3) The oi with the highest di is chosen as topic for

the guessing game by AL.

• KQ. After each language game the success of the concept cL used by AL is

recorded. After a specified number of language games AL initiates a knowledge

query: (1) AL finds the concept in SAL with the lowest success rate clow and

the associated label llow and communicates this to AT . (2) AT finds the closest

concept in SAT and the associated label lmatch. (3) If llow = lmatch, AT responds

positive, otherwise negative. (4) Based on the feedback from AT , AL increases

or decreases the connection strength between clow and llow.

• CL. (1) After a successful guessing game AL examines all objects ¬ot in the

context and finds related C = {c1, ..., cN} in SAL . (2) AL decreases the con-

nection between lL and all objects in C.

5.2.2 Experimental setup

In each language game the context consisted of 4 stimuli, including the topic. This

context was generated by randomly picking 4 samples (C = 4) from a dataset

containing 25,000 pixels drawn with uniform probability from the RGB space and

2Mutual exclusivity as used in (Vogt and Haasdijk, 2010) however, applies to all competing
concepts in an agent’s knowledge body, whereas CL as implemented in this work only applies to
other stimuli in a given context. As such, CL only applies to a context size ≥ 2.
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converted into CIE L*a*b* space. Between all stimuli in the context there was a

minimum distance of 50 (Dmin = 50)3. The teacher and learner engaged in 2000

language games (NI = 2000). For all learning regimes (LG, AL, KQ and CL) 300

replicas R = 300 were run and the average correctness score was calculated. This

setup was chosen based on a reasable balance between the aim to provide a general

language game learning environment within which the effects of interactive features

could be explored, and the computational time needed to run the simulations.

5.2.3 Evaluation

To evaluate the performance of the different learning regimes, the conceptual knowl-

edge held by the learner after learning sessions is compared to that of the teacher.

This is done by employing a test scenario in which teacher and learner are shown

a set of 100 random stimuli4. Both teacher and learner then state their associated

label for each stimulus in the set. If the two labels are equal, the learner has learnt

the label correctly. In this way the learner is assigned a correctness score S which

reflects the percentage of correctly learnt labels. S is calculated as the number of

stimuli correctly named by the learner divided by the total number of stimuli in the

given set.

5.2.4 Result

To compare the results of the various learning regimes the LG learning method

was used as a baseline performance. Then the interactive features AL, KQ and CL

were compared to the baseline LG, which is shown in figures 5.1 to 5.3. Figure 5.4

displays the performance of the base condition against interactive learning with all

three features enabled. The correctness score S and SD for each learning regime at

the end of language game interactions is shown in table 5.1. As can be observed from

the graphs, performance of interactive learning is very close to that of LG learning

in all cases. CL performs slightly less, while the other learning regimes perform

3As an illustration of the CIE L*a*b* distances between typical colours: the distance between
green-blue is 258, red-blue is 177, yellow-blue is 232 and yellow-green is 70.

4Because of running time considerations we did not use the full set of 25,000 colour samples for
evaluation after each training interaction.
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somewhat better than LG. With all three interactive features concurrently enabled,

performance gain is the highest. To determine whether or not the differences at the

end of learning were significant, a two sample t-test was performed (see table 5.2).

It turns out that in all cases except for LG vs CL the difference in performance is

small but significant. Overall it can be observed that learning of concepts through

language game interaction may improve somewhat when interactive features are

added; both in terms of learning speed and in terms of final performance after

learning. The performance of any learning regime never really converges to 100%

accuracy. This is due to the fact that although the learner is generally able to form

concepts that functionally resemble the concepts of the teacher, the boundaries of

the learners’ concepts are never exactly the same. So while testing, there will always

be border cases which the teacher may call ‘concept 1’, but the learner ‘concept 2’. A

pairwise comparisons of the learning performance for all different interactive features

is shown in table 5.3. As can be observed, the combination of all three interactive

features performs clearly the best in terms of correctness score S.

We also computed the performance of agents performing randomly, i.e. the agent

picks a random label to respond to a stimulus. Typically, the performance of the

agent is around 10% (this is proportional to inverse number of labels of the teacher).

As can be seen from the graphs, the learners quickly perform better than random and

achieve a performance of over 60% after about 100 interactions. Quite a number of

concepts the agent holds at that point will in fact be learnt in just a few interactions.

Hence, the learning process bears a resemblance to fast mapping in young children

(Carey, 1978). The fact that the agent scores only 60% is because (1) through

random selecting the stimuli not all colour categories may be encountered already

at this point, and (2) the discrimination game of the teacher may fail sometimes

(depending on the distance between all the stimuli in the context), rendering some

of the 100 interactions not suitable for learning.
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Figure 5.1: Performance of LG vs AL. The darker (blue) line indicates LG, the
lighter (red) line indicates AL.
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Figure 5.2: Performance of LG vs KQ. The darker (blue) line indicates LG, the
lighter (red) line indicates KQ.

LG AL KQ CL all
Average S 0.7476 0.7581 0.7579 0.7414 0.7753

SD 0.0497 0.0491 0.0515 0.0476 0.0446

Table 5.1: Average learning performance (S) and SD at the end of the language
game interaction for all learning regimes.
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Figure 5.3: Performance of LG vs CL. The darker (blue) line indicates LG, the
lighter (red) line indicates CL.
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Figure 5.4: Performance of learning with all interactive features enabled. The darker
(blue) line indicates LG, the lighter (red) line indicates learning with all interactive
features.

LG vs AL LG vs KQ LG vs CL LG vs all
t-test t = -2.6114 t = -2.4928 t = 1.5676 t = -7.1749

df = 597.9 df = 597.3 df = 596.9 df = 590.9
p = 0.0092 p = 0.013 p = 0.12 p < 0.0001

Table 5.2: Learning performance using LG compared with the learning performance
using the three interactive features AL, KQ and CL, plus all three features combined.
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regime versus t test
AL KQ t(596.7) = 0.0568 p = 0.9547

CL t(597.5) = 4.2472 p < 0.001
all t(592.6) = −4.4775 p < 0.001

KQ AL t(596.7) = −0.0568 p = 0.9547
CL t(594.5) = 4.0842 p < 0.001
all t(586.1) = −4.4189 p < 0.001

CL AL t(597.5) = −4.2472 p < 0.001
KQ t(594.5) = −4.0842 p < 0.001
all t(595.4) = −9.0015 p < 0.001

all AL t(592.6) = 4.4775 p < 0.001
KQ t(586.1) = 4.4189 p < 0.001
CL t(595.4) = 9.0015 p < 0.001

Table 5.3: Pairwise comparisons of the learning performance for all different inter-
active features.

5.3 Alternative versions of active learning

The previous section illustrated how interactive features can improve learning. From

the three interactive features tested AL appears to be the most effective, i.e. resulting

in a small, but stable improvement. Hence, this feature was further explored.

In the experiments described in the previous section the training data that was

used consisted of random points in the CIE L*a*b* colour space. Although infor-

mative, this constitutes a somewhat abstract case. As described in section 4.4, the

model can also be used to learn and represent more ‘natural’ prototypes, i.e. con-

cepts that are based on a real world data and that have more properties (that is,

higher dimensionality). Hence, this section explores how well AL performs when the

training data is based on the Zoo database that was used for prototype formation.

As it turns out, for the Zoo dataset, the addition of AL is less effective; particu-

larly during the earlier interactions (< 1000) the addition of AL results in a slightly

lower communicative success (compare NO AL to AL1 in figure 5.5). This sparked

the investigation of alternative implementations of AL. A modification that per-

formed better was implemented as follows: when a learning agent observes a given

context to determine what is the least known item, it calculates for each item in the

context the distance to all categories in the agent’s repertoire. In the experiments

described in the previous section, the distance to the best matching category was

stored and subsequently the item with the largest distance was selected as topic
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(this ‘classic’ version of AL will be referred to as AL1 henceforth). Here, the dis-

tance to the least matching category is stored for each item (this version of AL will

be referred to as AL2). Then, the item that has the highest distance becomes the

learning preference for the agent. A description of AL2 using the same format as

section 5.2.1 is provided here:

• AL2. During the guessing game, when AL is confronted with context O:

(1) AL finds the least matching concept c in SAL for each stimulus in O:

{o1, ..., oN} → C = {c1, ..., cN}, by calculating the distance between ox and

each c in SAL and selecting c for which the distance is greatest. (2) The

distance for every (oi, ci) pair is calculated and stored in D = {d1, .., dN}. (3)

The oi with the highest di is chosen as topic for the guessing game by AL.

The rationale behind this alteration is that by selecting the least matching cat-

egory for each item in the context and subsequently choosing as the topic the item

for which this least matching distance is the greatest, AL2 constitutes a more ‘ex-

treme’ version of AL and as such results in a more effective use of the space. The

simulation was run with the following parameters: NI = 2000, C = 3 and R = 25;

the notion of Dmin was not used, as the training examples were not generated dat-

apoints, but animals from the Zoo dataset. As can be observed in figure 5.5, AL2

is particularly effective for training data with high dimensionality, as is the case for

the Zoo dataset. Note that although AL1 is less effective, on the long run it still

outperforms the base condition (NO AL). The difference in performance between

NO AL and both AL1 and AL2 is significant, with t(48) = −11.3535, p < .0001 and

t(48) = −35.9831, p < .0001 respectively (two-sample t-test).

5.4 Discussion

As described above, the addition of interactive features to language game learn-

ing can improve the effectiveness of the algorithm. Different interactive features

have different effects: knowledge querying marginally improves learning, contrastive

learning does not constitute any improvement (the difference compared to a normal
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Figure 5.5: Performance of normal learning (NO AL) contrasted with forms of active
learning (AL1 and AL2). Both versions of AL outperform NO AL on the long run.

language game is not significant) and active learning actually improves the learning.

While the differences compared to a setup that does not utilise interactive features

is relatively small, it nevertheless constitutes a significant improvement and as such

deemed useful. Furthermore, particularly active learning illustrates how a learning

agent can benefit from actively influencing its learning experience. Hence, active

learning will be further put to use in section 7.4, in which a robot employs this

strategy while learning from a human tutor.

5.5 Chapter summary

This chapter has discussed the notion of interactivity during learning. Various stud-

ies haves show that learning for people is very often an interactive process, in which

both teacher and learner contribute to the learning experience. Given this impor-

tance of interactivity, this chapter has illustrated how the language game framework

as a learning algorithm can be augmented with some interactive features. Particu-

larly the feature of active learning, which results in the learner being able to more

effectively populate its conceptual space, results in a small, but significant improve-

ment. An alternative version of active learning was also explored, which turned out

to be more effective for datasets with higher dimensionality.
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Chapter 6

Difference in embodiment

This chapter discusses the effect of different embodiments and different perception

of the world on the development of shared meanings between agents. Using colour

as a case study, we discuss how despite perceptual differences agents can develop

a common understanding of colour categories. This phenomenon is investigated

through computational modelling of agents with different perceptual capabilities

that engage in linguistic interaction. Difference in perception is modelled on both

human physiological differences and on data recorded from two types of robots.

We investigate the notion of category alignment with perceptual differences

through two experiments. In the first experiment artificial agents are endowed with

an ‘individualised’ manner in which they perceive the environment; their perfor-

mance in language games is compared to agents with normal perception. In a similar

fashion performance in language games from agents whose perception is embodied

in two different robots is compared to those of agents with normal perception. In

a second series of experiments the agents’ difference in perception is more closely

modelled on human physiological differences in perception; again this is compared

to normal perception. The work in this chapter has been published in De Greeff

and Belpaeme (2011a,b).
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6.1 Difference in embodiment and perception

Young children typically learn new categories through interaction with their care-

givers. As discussed in section 2.3.1, it is well known that language is hugely im-

portant in this process, as the specific words that are used influence the categories

a child will form. Drawing on this psychological data, models have been created to

simulate the development of new categories within a population of artificial agents

(e.g. Steels and Belpaeme, 2005). In these models, simulated agents perceive an

environment and develop new categories through linguistic interaction. Typically

the perceptual capabilities are the same for all agents in the population, i.e. the

agents are homogeneous.

As discussed in section 1.2.1, cognition (for both humans and artificial agents)

is considered to be embodied. Rather then merely ‘facilitating’ an environment,

the physical body actually shapes cognitive processes, which implies that variation

in the human body and specifically variation in the sensor modalities will result in

varying perception. When the perception of two agents is not identical this could

lead to diverging perceptual categories and concepts. One would expect this to have

a negative impact on communication: if two agents have categories and concepts

that are not the same, then communication is expected to be affected. Also the

learning of meaning from one agent to another would be expected to be influenced

by perceptual differences.

There are striking differences to be found in the physiology of human perception

(Roorda and Williams, 1999). This is not only the case between adults, but also

between caregivers and children. A child with a developing body and neural system

perceives the world differently throughout different developmental stages (Ling and

Dain, 2008). More specifically, regarding human perception, it has been shown that

the ratio of cones sensitive to medium wavelengths (M cones) and long wavelengths

(L cones) in the human retina can be very different between individuals. The differ-

ent number of L and M cones should, according to neurophysiological understanding

of colour perception, lead to broad variations in colour perception. However, people

with different L:M cone ratios do not seem to vary much in colour perception. When

107



asked to point out the colour on a spectrum they see as unique yellow, they report

virtually identical wavelengths. To explain this phenomenon, it was suggested that

“neural factors play an important role in stabilizing unique yellow against variation

in the L/M cone ratio” (Brainard et al., 2000).

What these “neural factors” might be is still unclear. Various plasticity mech-

anisms have been proposed which allow for tuning colour experience in the higher

layers of visual perception (Neitz et al., 2002). However, Solomon and Lennie write

“In the retina we still know little about [...] why human colour vision seems to be

hardly affected by variation in the proportions of cones of different types.” (Solomon

and Lennie, 2007, p. 284). Hence, it is still unclear by which process the perceptual

experience of colour becomes attuned, so that individuals experience colours in a

similar manner despite having individual neurophysiological differences.

While neural factors certainly might play a role, an alternative hypothesis is that

language might be the mechanism responsible for coordinating subjective colour ex-

perience. It has been suggested that language plays a role in the apparent shift of

the lateralization of colour perception in infants and adults (Franklin et al., 2008).

Thus, this would indicate that language influences the developmental trajectory of

colour perception. This could also explain why colour deficiencies go relatively un-

noticed. In protan colour deficiency the L cones are missing or abnormal, while

in deutan colour deficiency this is the case for the M cones. About 1% of Cau-

casian males has protanomaly and 6% has deuteranomaly (Sharpe et al., 1999).

However, colour deficiencies are often picked up rather late and only through the

administration of a colour deficiency test (such as the Ishihara colour blindness test;

Ishihara, 2001). This suggest that other processes might be at work which moderate

perceptual differences caused by colour deficiencies.

In this chapter we explore an alternative explanation for why the differences

in cone ratios does not cause people to perceive colours very differently. We show

how linguistic mechanisms allow agents to align their colour perception with respect

to their environment. That is to say, through linguistic interaction with others,

people may be able to reach an agreement on which perceptual experiences are to
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be called red, green, yellow, etc. in such a way that allows for variations at the

lower neurophysiological level. We show the feasibility of this position by presenting

a series of computational models in which populations of agents are endowed with

varying perceptual abilities, but are nevertheless able to achieve a shared system

of conceptualisations with respect to colour terms. In other words, the individual

differences that exist in lower level perception do not hinder effective communication

because of a dynamic process of shaping linguistic meanings through interaction with

other individuals.

6.1.1 Human colour vision

The neurophysiology and psychology of colour perception has been well studied

(Wyszecki and Stiles, 1982; Gegenfurtner and Sharpe, 1999), making colour an ideal

test ground for cognitive models. Humans have four types of photosensitive receptors

in the retina. The achromatic rod receptor contributes little to colour perception

and mainly serves scotopic vision. Colour is perceived by three types of chromatic

receptors, known as cone receptors. Each of the three cone types has a different

peak sensitivity: to short wavelengths (S-cones, 430 nm), to medium wavelength

(M-cones, 530 nm) and to long wavelengths (L-cones, 560 nm), but respond to

a wide range of visual light. The sensitivity curve of a specific type of cone is an

indication of the probability that this type will absorb a photon of a particular

wavelength (Solomon and Lennie, 2007); see figure 6.1 for a plot of the sensitivity

curves for the three cone types (Stockman and Sharpe, 2000). Hence, the human

colour vision is trichromatic. In trichromatic colour vision the perception of colour

depends on the combination of activation of three different cone types.

6.1.2 Physiological differences

Regarding the organisation of the retinal mosaic of the three cone types, it has been

quite well established that the number of S-cones is about 5 to 10% and that the

distribution pattern is semi-regular (Williams et al., 1981b,a; Hofer et al., 2005).

However, with respect to the M and L cones, there appears to be a much wider
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Figure 6.1: Sensitivity curves for the three human colour cone receptor types (2-
degree fundamentals from Stockman and Sharpe, 2000)

variation, both in the relative proportions of M and L cones and with the distribu-

tional patterns. Contrary to what was assumed, the amount of M and L cones to

be found in the retina is not roughly equal for individual humans. Big differences

between individuals can be found upon close examination. Roorda and Williams

(1999) reported a L:M cone ratio of 1.15 for one subject and 3.79 for another; see

figure 6.2 for an illustration of the trichromatic cone mosaic in pseudo-colour for

two subjects. In another series of experiments 62 normal males were tested and

substantial individual differences were observed, with L:M cone ratios ranging from

0.4 to 13 (Carroll et al., 2002).

Brainard et al. (2000) studied functional consequences of the relative numbers

of L and M cones. In particular, they focussed on the effect of a varying L:M ratio

on the perception of unique yellow, as yellow light is picked up by both L and M

cones. As the ratio between L and M cones was 1.15 for one subject and 3.79 for the

other, it was predicted this would have a large effect on the wavelength of light that

both subjects perceived as unique yellow. For this prediction they used an additive

model proposed by Cicerone (1987) which assumes that the contribution of L and

M cones depends on their relative numbers and which predicts how the wavelength

of unique yellow will vary depending on different L:M cone ratios (equation (6.1)).
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Figure 6.2: Image of the trichromatic cone mosaic in pseudo-colour for one subject
(a and b) and another (c), adapted from Roorda and Williams (1999). Blue, green
and red are an indication for S, M and L cones respectively.

(Nl/Nm)L(λy)− kM(λy) = 0 (6.1)

where λy is the wavelength specifying unique yellow, Nl/Nm is the L:M cone

ratio, k a parameter which tunes the relative contribution of M and L cones to the

subsequent red-green channel and L(λy) and M(λy) express the spectral sensitivity

of the L and M cones respectively. This model predicts how the wavelength of what

individuals perceive as unique yellow varies as a function of their L:M cone ratio.

In a later study this was empirically confirmed (Otake and Cicerone, 2000).

However, Brainard et al. found that the variation in individual L:M cone ratios

was large, while the variation in their judgement of unique yellow varied only slightly

(with two subject reporting 576.8 and 574.7 nm). According to the contribution of

L and M cones to the perception of yellow, individual variation in unique yellow

should have spanned a range between 500 and 600 nm, but this was not observed.

6.1.3 Neural factors

Neitz et al. (2002) offered an account of these neural factors: “a neural normal-

ization mechanism for colour perception, determined by visual experience, operates

to compensate for large genetic differences in retinal architecture and for changes

in chromatic environment.” They argued for the existence of such mechanism by
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having subjects wear coloured lenses for certain periods of the day and subsequently

finding differences in reported wavelengths of unique hues, both when perceptual

alterations were present and not present. As such, they concluded that “the global

normalization described here apparently compensates for the huge genetic variation

in the ratio of L to M cones.”

However, the individuals who were subjected to these perceptual alterations,

were adults with normal colour vision. As such, they had a lifetime of experience

with normal colour perception, which was most likely internalised in some kind of

colour mapping. Hence, upon experiencing a shift in perceived wavelengths when

observing objects and/or scenes from which they would know which colours are

appropriate through previous experience, it is only natural to assume that this

previous knowledge allows for a consistent shift in the whole colour experience.

In other words, it may be very likely that a subject who knows that a certain

object is yellow and who experiences the perception of this object through altered

perception, could come to regard the shifted wavelength of the object as yellow

again after some prolonged exposure. This would be the case in particular when

the subject would also engage in interaction with his/her surroundings about the

colour of objects, which is to be expected when people are subjected to this kind of

perceptual alterations. So, although Neitz et al. showed the existence of plasticity on

the perceptual level, this is not necessarily an explanation of how colour perception

became aligned in the first place for individuals with different cone ratios.

6.1.4 Linguistic factors

An alternative explanation for the close agreement between individuals on colour

terms might be of a cultural rather than neural account. That is, through a shared

language people with significantly different colour perception might be able to ne-

gotiate colour terms and come to a mutual agreement. Neitz et. al. dismissed this

notion by arguing that “we show ... that anomalous observers give different values

for unique yellow compared to color normals, even though they are subject to the

same cultural influences.” (p. 788).
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However, again, the apparent existence of this plasticity mechanism which oper-

ates on a relative short timescale (the shift in colour perception persisted for 1 to

2 weeks after the filters were discontinued) does not necessarily rule out any cul-

tural and linguistic factors. Linguistic factors operate on a much more prolonged

timescale and would predominantly be active throughout language development, i.e.

during childhood. Indeed, different studies have demonstrated that language has an

impact on perception (Boroditsky, 2006; Tan et al., 2008) and also on colour vision

(Gilbert et al., 2006; Regier and Kay, 2009). As such, we will further explore how

through linguistic mechanisms a group of individuals with different perception can

come to agree on colour terms.

6.1.5 Computational experiments

As there is variation in the distribution of photosensitive receptors in the human

retina and variation in how people name colours, we aim to capture this ‘individual’

perception and linguistic production in a computational model. The basics of the

model operate according to the description provided in section 3.2; the way in which

agents perceive their environment is modified as to capture individual differences due

to embodiment. Two series of experiments are described: experiment 1 concerns a

comparison of normal agents with another group with altered perception based on

robotic data; experiment 2 provides a similar comparison, but the individualised

perception of agents is more closely modelled on the human mechanism of colour

vision and a more extensive analysis is provided.

6.2 Experiment 1

6.2.1 Synthetic experiments with agents with individualised

perception

Typically, in language games, interacting agents have the same means of observing

their environment. That is, participating agents perceive the context in exactly the

same manner (i.e. values of the properties of the scene are extracted the same way
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for all agents). In contrast, this is not the case for humans. As described above,

individual humans may vary greatly with respect to their cone distribution and yet

describe the same colour stimulus in the same terms. To simulate this effect, the

perceptual capabilities of artificial agents were modified in order to reflect such dif-

ferences in perception. In this first experiment, it was assumed that the differences

between individuals in terms of L/M cone ratio is arbitrary. To model this the

perceptual function of agents was altered by systematically modifying their obser-

vations with a random (but persistent within an individual) factor. This resulted in

a unique manner of perceiving the environment for each individual agent, reflecting

the difference in human individuals. We compared the success in communication of

agents with these modified perceptional capabilities to a group of agents that had

normal perceptual capabilities.

During a language game, when data from the context was processed by the

agents, the RGB values were modified on an individual basis for each agent according

to equation (6.2):

sa = f(srgb) ·W a (6.2)

where sa is the stimulus as received by agent a, f is a function converting data

from RGB to LMS colour space, srgb is the unmodified stimulus and W a is a set of

weights specific to agent a. In this way each agent perceived a ‘personalised’ version

of a given stimulus (appendix B provides a detailed description of this conversion).

Figure 6.3 shows a typical example of the projection of 11 basic colour coordinates

(Sturges and Whitfield, 1995) from RGB to an agent’s LMS space.

This setup was tested in two different manners. The first was a scenario in

which one agent acted as a teacher and thus had predefined knowledge of 11 basic

colour categories which were learned by another agent with an empty conceptual

repertoire. The second manner was a scenario in which a population of agents all

started with an empty conceptual space and gradually developed a shared system

of meanings by altering teacher and learner roles over the course of development.

Parameters were NI = 1000, C = 3, Dmin = 0.3 and R = 100 for the teacher-learner
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Figure 6.3: Projection from RGB to LMS colour space.

scenario, and NA = 20 and NI = 5000 in the population scenario. Parameter choise

was based on pragmatic considerations (such ‘normal’ language game development

as computational time).

6.2.1.1 Teacher-learner scenario

Experimental setup Sets of contexts consisting of 3 random RGB stimuli were

generated. One agent was endowed with conceptual knowledge of colour terms, i.e.

its conceptual space was populated with 11 basic colour terms and their coordinates,

translated to the agent’s LMS encoding. This agent functioned as a teacher and the

other agent as a learner. One series of language game interaction consisted of 1000

language games and this setup was replicated 100 times to obtain a measure of

average communicative success.

Results The performance of the group with individual perception compared to

a group of agents with normal perception is shown in figure 6.4. As can be seen,

agents with individual perception communicate less effective compared to the perfor-

mance of agents with normal perception (two-sample t-test with t(198) = −62.7997,

p < 0.0001). Nevertheless, the agents are able to reach a communicative success

of around 80%, compared to just above 90% for the agents with normal percep-

tion. Also, the shape of the performance curve is very similar over the course of

development.
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Figure 6.4: Performance of agents with normal perception compared to performance
of agents with individual perception (error bars show SD).

6.2.1.2 Population scenario

Experimental setup In addition, another experiment was run with the same

parameter settings, but instead of only a teaching and a learning agent, a population

of 20 agents engaged into language games. For each interaction, two agents were

selected randomly to act as teacher and learner. All agents in the population started

with an empty conceptual space, so no knowledge of colour concepts was predefined.

During a series of interaction 50,000 language games were played. The setup was

replicated 100 times.

Results On a population level, the difference in performance becomes smaller.

The communicative success of the population of agents with individual perception is

rather close to the performance of the population with normal perception (figure 6.5).

However, the difference is still significant (two-sample t-test with t(198) = −20.1384,

p < 0.0001). These results are discussed in more detail in section 6.2.3.
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Figure 6.5: Performance of a population of agents with normal perception compared
to a population of agents with individual perception (error bars show SD).

6.2.2 Synthetic experiments with data recorded from em-

bodied robots

In this experiment, data for stimuli was recorded by having two robots examining the

same context. The two robots each perceive differently, not only because of their

physiological make-up, but also because of their unique perspective on the scene

which resulted in different lighting conditions. One robot was an iCub humanoid

robot (Metta et al., 2008) and the other the LightHead robot, which is a newly

developed robot specifically tailored for HRI. The LightHead robot is described in

more detail in section 7.2. Both robots are quite different in terms of hardware

(CCD sensor for the iCub cameras, CMOS for LightHead’s), capabilities and cost.

Figure 6.6 shows an example of different perception of the same stimulus, which led

the iCub robot to encode the colour as RGB(220, 124, 85) and the LightHead robot

to encode the colour as RGB(178, 49, 21). Even though the colours appear to be

rather similar, they constitute a considerable distance in RGB space (figure 6.7).
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Figure 6.6: Perception of the same stimulus by the iCub robot (top) and the Light-
Head robot (bottom).

6.2.2.1 Data collection

Data was recorded by having both robots observe a scene in which colour stimuli

were presented (figure 6.8). Colour stimuli consisted of the 11 basic colour centroids

as reported by Sturges and Whitfield (1995) with an additional 39 colours randomly

generated from RGB space. Both robots took a snapshot of the stimuli and saved

it for off-line processing. In this manner both robots recorded 50 stimuli. After

recording, the RGB values were extracted by running a blob-detection algorithm to

find the precise location of the stimuli within the recorded picture and calculating

the average RGB values for this region. The RGB data was not converted to LMS

because this colour space models human cone reception. This procedure resulted

in a set of 50 colour stimuli for the iCub robot and 50 stimuli for the LightHead

robot. This set of colour stimuli was then used to play language games with artificial

agents. Parameters were the same as the experiments described in section 6.2.1.
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Figure 6.8: Robotic setup with the iCub robot on the left and the LightHead robot
on the right examining a shared scene with colour stimuli.
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6.2.2.2 Teacher-learner scenario

Experimental setup The set of stimuli as described above was used to generate

sets of contexts consisting of 3 stimuli for language games. Two artificial agents

representing the iCub and LightHead robot engaged in a series of language games.

For each stimulus, the agent representing iCub would perceive the RGB values of

a stimulus that was recorded from the iCub robot and in similar fashion the agent

representing LightHead perceived the RGB values corresponding to the LightHead

robot. The performance of the agents with robotic perception was then compared

to the performance of agents with unaltered, normal perception. That is, agents in

the normal condition perceived the RGB values from the items in the context in

an unmodified manner, in the same vein as the agents with normal perception as

described in section 6.2.1. Also in other aspects the experimental setup was similar

to the setup as described in section 6.2.1.1.

Results Figure 6.9 shows the performance of the agents with robotic percep-

tion compared to agents with normal perception (two-sample t-test with t(198) =

−71.2809, p < 0.0001). As can be observed, in the case of the real world stim-

uli, the agents with robotic perception perform still quite good compared to those

with normal perception. The difference in perception causes a difference in perfor-

mance but the agents are able to overcome these differences, resulting in an average

communicative success of around 75% at the end of the language game interaction.

6.2.2.3 Population scenario

Experimental setup Next, an experiment was run in which a population of

agents interacted through a series of language games to develop a common language

system. All agents started with empty conceptual repertoires. The population

consisted of 20 agents that were randomly assigned to represent either the iCub or

LightHead robot (which determined the way they perceived stimuli). The stimuli

were the same as used in the teacher-learner scenario. A series of language games

ran for 50,000 cycles and 100 replications with these settings were run.
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Figure 6.9: Performance of agents with robotic perception compared to agents with
normal perception (error bars show SD).

Results Results indicate that compared to a setup in which agents perceive nor-

mally, the agents perceiving robot-recorded stimuli performed marginally better.

A t-test shows a significant difference (two-sample t-test with t(198) = 2.5389,

p = 0.0119), but communicative success for both cases is almost on par (figure 6.10).

The reason that agents with individual perception perform this well is most likely

the fact that there is no predefined knowledge in the system. Thus, agents are free

to utilise word labels that are most effective for their environment and personalised

perception.

Analysis The fact that performance is virtually identical to agents with normal

perception is in contrast with the performance of the agents as described in sec-

tion 6.2.1.2, as in the latter there is a difference between agents with individual

perception compared to normally perceiving agents. This discrepancy is due to the

fact that in the population scenario with robotic samples, effectively there are only

two types of agents: one with iCub perception and another one with LightHead

perception. In contrast, in the population as described in section 6.2.1.2, all 20

agents have individual perception, making it harder for the population to derive at

a shared meaning system.

To verify this explanation, a simulation was run with the same settings as in
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Figure 6.10: Performance of a population of agents with robotic perception com-
pared to agents with normal perception (error bars show SD).

section 6.2.1.2, but with only two types of agents1. The results indicate that with

only two types of individual perception, agents in the population perform as good

as a population with normal perception.

6.2.3 Discussion

We have presented computational simulations in which agents with different per-

ceptual capabilities successfully manage to develop a shared system of meanings.

Perceptual differences in agents are modelled on physiological differences in the hu-

man vision system and on recordings from two different robots. Agents are able

to overcome these differences in perception in both cases, in both a teacher-learner

scenario and within a population of multiple agents.

The difference in perception has an influence on the effectiveness of commu-

nication, but through reshaping of colour categories agents are able to reach an

acceptable level of communication. How does this come about? The answer to this

question can be explained by considering the language games dynamics. In a lan-

guage game, communication between two agents succeeds when the listening agent

1That is, the number of agents was still 20, but they were randomly assigned one out of two
possible perceptual systems which were based on the difference in perception between the two
robots.
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is able to discriminate from the context the topic that is intended by the speaking

agent. Crucial to this is the ability to adequately discriminate all items in the con-

text, which in turn depends on how different these items are with respect to each

other. Interesting cases arise when the listening agent is not able to discriminate

the topic from the context that was intended by the speaking agent. Indeed, this

is a vital part of the learning process, as it allows the listening agent to adjust its

categories based on feedback generated through the failed language game.

When the perceptual capabilities of agents differ, it is to be expected that this

situation will happen more often than when agents have identical perception. This

is particularly the case, because when training data is generated, the notion of

Minimum-distance-objects (Dmin, section 3.2.7) governs the distance between all

items in the context. However, when agent’s perceptual capabilities are modified

according to equation (6.2), it can easily be the case that for a context in which Dmin

is adhered to given normal perception, with the agent’s particular manner of percep-

tion this is no longer the case. As illustrated in figure 6.3, the mapping from RGB to

LMS can alter quite drastically the positions of objects in the colour space. As the

manner in which agents’ perception is modified contains a random set op weights

(which is persistent for the agent), this effect may be more or less pronounced for

different agents. Given the above, this will generate situations in which the label

provided by the speaking agent does allow the learning agent to discriminate the

topic from the context. This results, on average, in an increased number of failed

communication events. This effect is more pronounced in the teacher-learner sce-

nario, because in this the teacher has a fixed repertoire of colour concepts and word

labels, and as such does not alter its word-concept associations, nor the coordinates

of the colour concepts. In contrast, in the population scenario, all agents act both as

teacher and learner. Thus, this leaves more freedom within the population to shape

the agents concepts and word-concepts associations in response to the environment

and the particular manner in which the agents perceptual capabilities are modified.

Hence, a population is able to find a functioning system of meanings provided there
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is some similarity in agents’ perception2.

This agrees with experiments in which human subjects were asked to play a

language games using colours: agreement between subjects was on average 84%

(Belpaeme, 2002a). We suggest that this mechanism of linguistic coordination may

be analogous to how humans solve this problem, the latter also being a situation in

which the link between perceptions and the words used to describe them is constantly

reshaped through interaction with others. Furthermore, when the model is extended

to robotic hardware, the same principles seem to hold.

Language games or, more generally, the adaptive coordination of categories

through feedback, has been shown to overcome the diverging categories that would

be caused by varying embodiment. When categories and concepts need to be co-

ordinated between robots, language can act as the conduit for this coordination.

The interaction between humans and robots also required coordinated categories

and concepts, and although not demonstrated in the experiments discussed in this

chapter, we propose the same process can also be used to coordinate the conceptual

representation between humans and robots, which have perhaps the most extreme

variations in embodiment.

6.3 Experiment 2

In a second series of experiments we explore the same issue as in experiment 1,

that is, how agents with fundamentally different perception can achieve a common

understanding of colour names. However, in this series of experiments, the manner

in which agents perceive colours is more closely modelled on the human colour

perception system; this is explained in more detail in section 6.3.1.

As such, while obtaining similar results, we argue that these experiments make

a stronger case for the proposed explanation of how agents overcome perceptual

differences through linguistic means. Agents’ perceptual capabilities are based on

human colour perception as described in section 6.1.1; as usual, their interaction

2When agents’ perception is modified in a total random manner (but consistent per agent) a
population performs little above chance.
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type c µ σ R-square
S cone 0.9889 447.2 33.4 0.9928
M cone 0.9989 545.2 52.69 0.9965
L cone 1.0 567.9 64.78 0.9951

Table 6.1: Coefficients used in order to model responsiveness of S, M, and L cones.

with other agents is modelled through language games (section 3.2).

6.3.1 Modelling agents’ colour perception

Artificial agents perceive external colour stimuli and communicate about this with

other agents in a population. The agents colour vision proceeds as follows: an agent

perceives a colour stimulus as a wavelength with a certain value w in nm. This

value is fed into a function which was fitted as a Gaussian distribution on the cone

responsiveness data as reported in Stockman and Sharpe (2000) so that activation

value at with t ∈ {S,M,L} reflects the sensitivity curves for the three cone types S,

M and L.

at = cte
−
(
w−µt
σt

)2

(6.3)

Table 6.1 displays the coefficients used to model the activation levels of S, M and

L cones, along with the goodness of fit (R-square). For each perceived w a triplet

(aS, aM , aL) is returned; figure 6.11 shows a projection of the S, M and L responses

for different wavelength values in a LMS-responsiveness space.

The next step in colour vision is generally thought to be a projection of cone

activations into two dimensions, the so called ‘cone-opponent axes’ specifying red-

green and blue-yellow (Webster et al., 2000). To model this, the activation triplet

(aS, aM , aL) resulting from equation (6.3) is processed in the following manner. First,

each activation is divided by the total level of activation:

(aS, aM , aL) =
(
aS
aT
,
aM
aT

,
aL
aT

)
(6.4)

with aT = aS + aM + aL. Then the opponency channels are created according to

equation (6.5):
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Figure 6.11: Response to various wavelengths projected in LMS space.

[x, y] = [(aL − aM), (aS − (pLaL + pMaM))] (6.5)

thus resulting in an [x, y] coordinate set on the red-green by blue-yellow plane,

where pL and pM are parameters that govern the relative input of the M and L

cones. The value of pL and pM has been established to be about 0.5 (Sankeralli

and Mullen, 1996), and so the blue-yellow axis can be thought of the activation of

S vs M+L cones. Figure 6.12 shows a series of wavelengths projected on this cone

opponency plane3.

6.3.2 Language games applied to colour learning

Discrimination game - single agent Before agents can interact with other

agents to establish a system of shared meanings, they first need to be able to classify

incoming colour stimuli. This is based on the perceptual mechanisms as described

in section 6.3.1 and combined with a discrimination game.

A discrimination game typically results in a division of the input space into a

limited number of categories. The actual number of categories an agents ends up

3The background colouring is shown to give an idea of the various wavelengths and the corre-
sponding colour. The actual colours would not be exactly as shown.
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Figure 6.12: Response to an incremental series of wavelengths projected on the cone
opponency plane.

with varies, as it is guided by a random selection of stimuli and governed by a

parameter Dmin which specifies the minimum distance between all stimuli in the

context (see section 3.2.7). The smaller Dmin is, the more categories an agent will

end up with. Figure 6.13 displays an agent’s representation of the input space after

1000 discrimination games with Ncontext = 3 and Dmin = 40 projected in a LMS

space (top) and against the visible spectrum (400-700nm, bottom).

Language game - population After agents have learned to categorise the input

space, they can engage into linguistic interaction with other agents in the population.

A baseline example of the results of such a language game is shown in figure 6.14.

This illustrates the communicative success of a population of 10 agents (NA = 10)

after running 50,000 interactions which involved 2 randomly chosen agents. Thus,

each agent participated on average in 10,000 interactions (NI = 10, 000). Other

parameters were Ncontext = 3, Dmin = 40 and R = 25. As can be seen in the figure,

agents are able to achieve a good level of successful communication after sufficient

interactions.

Another useful measure is the degree of similarity that exist between the agents’

categories. To measure this we use the weighted sum of minimum distances (equa-
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Figure 6.13: Internal categories of an agent after application of discrimination games
projected in LMS space (top) and against the visible spectrum (bottom); lines in-
dicate category boundaries.

tion (6.6); Belpaeme, 2002b) which calculates the distance Dset(A,B) between two

agents’ sets of categories.

Dset(A,B) =

∑
a∈A

min
b∈B
‖a− b‖+

∑
b∈B

min
a∈A
‖a− b‖

|A|.|B|
(6.6)

Dpop =
∑

a,b∈A
Dset(a, b) (6.7)

with A and B being to sets of categories and the distance metric ‖a− b‖ being

Euclidean. This is then summed over the whole population (equation (6.7)), as to

obtain an overall measure (Dpop) of how close all agents’ categories are within a

population. Application of this measure is shown in figure 6.15, which displays the

distance between agents’ categories which decreases over time, thus indicating that

the agents’ categories become more similar throughout language game interactions.

A more in-depth illustration of how agents’ categories change over the course

of participation in language games is shown in figures 6.16 and 6.17. Recall that

agents’ categories are shaped through the dynamic process of the language games
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Figure 6.14: Communicative success of a population of 10 agents.
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Figure 6.15: The distance between agents’ categories Dpop in a population of 10
agents decreasing over the course of language games.
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played within a population; depending on the outcome of multiple guessing games

agents shift their categories and associated word labels, as governed by the dynam-

ics described in section 3.2.4. Figure 6.16 shows the categories that the agents have

acquired through discrimination games, which is essentially their subjective seg-

mentation of the input space. To generate the figure, each agent is queried for the

series of wavelengths [400, 700] and from this category boundaries are derived. In

figure 6.17 the agents’ categories are displayed after their participation in language

games, thus their categories are shaped through this linguistic interaction. As can

be observed from these figures, agents’ categories resemble one another much more

after linguistic interaction through language games.

6.3.3 Learning of colours with perceptual differences

To model differences in the way artificial agents perceive colour, their perception

is modified in the following manner. Individual agents are endowed with a param-

eter coner which specified the ratio of the three cone types. Thus, an agent with

coner = [0.1, 0.45, 0.45] has a cone ratio of 10%, 45% and 45% for S, M and L

cones, respectively. When an agent observes a colour stimulus, at resulting from

equation (6.3) is multiplied by the respective cone ratio pt ∈ coner, as illustrated in

equation (6.8).

at = ptcte
−
(
w−µt
σt

)2

(6.8)

This effectively results in a lower activation at, depending on the cone type t

and the associated ratio. This assumes there is an additive mechanism at play that

regulates the activation and subsequent processing of colour data in human colour

perception. When all agents in the population have the same cone ratios, there

is no effect on their ability to communicate effectively. If, for instance, all agents

have coner = [0.1, 0.45, 0.45], this effectively shrinks the S dimension to 10% and

the M and L dimension to 45%, but it does not entail any functional differences as

the range of the dimensions is arbitrary and the change is consistent for all agents.

However, if, like in humans, agents differ in their cone ratios on an individual
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Figure 6.16: Categories of agent 1 to 10 (top to bottom) after playing discrimination
games. Cx indicates category numbers; the wavelength is printed underneath the
spectrum (when possible).
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Figure 6.17: Categories of agent 1 to 10 (top to bottom) after playing language
games. Cx indicates category numbers and the word label that is used within
the population is displayed under this. The wavelength is printed underneath the
spectrum (when possible).

132



400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
M
L

Wavelength

R
es
po
ns
e

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
M
L

Wavelength

R
es
po
ns
e

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
M
L

Wavelength

R
es
po
ns
e

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
M
L

Wavelength

R
es
po
ns
e

Figure 6.18: Cone response levels for a normal agent (top left) and three agents
with random cone ratios (top right: coner = [0.1, 0.02, 0.88], bottom left: coner =
[0.1, 0.81, 0.09] and bottom right: coner = [0.1, 0.49, 0.41]).

basis, this might have an effect of their ability to communicate. To test this situation,

upon initialisation, the agents’ coner is randomly chosen in such a way that pS

is always 10%, but the remaining 90% is be randomly divided over pM and pL.

This results in different cone responses for individual agents. The effect of this

treatment is shown in figure 6.18 which shows the cone response curves for a normal

agent, and agents with coner = [0.1, 0.02, 0.88], coner = [0.1, 0.81, 0.09] and coner =

[0.1, 0.49, 0.41] respectively.

To illustrate the effect of varying cone ratios on the categories that agents form

during discrimination games, all agents categories are plotted in the cone opponency

plane. As can be seen in figure 6.19, in the baseline condition the agents’ categories

are neatly following the same line as displayed in figure 6.12. However, as can be

observed in figure 6.20, for the agents with random cone ratios the categories are

much more distributed over the whole of the plane. The same effect is illustrated in

figure 6.21. In here the categories of agents are plotted for the random cone ratio

condition, after application of language games, for one replication only. What can

133



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

red-green

ye
llo
w
-b
lu
e

Figure 6.19: Categories of agents with equal cone ratios projected in the cone op-
ponency plane. The categories are aggregated over all agents in the population for
all 25 replicas.

clearly be seen is that each agents categories follow a different line through the cone

opponency plane, depending on the cone ratio of the particular agent.

The colour yellow is said to be experienced in the absence of red and green, so

this occurs when the activation of M and L cones cancel each other out. Based on

the colour perception models as described above, for agents that have equal cone

ratios this is the case for a stimulus of 555nm4. For agents with random cone ratios

the stimulus at which activation of M and L cones cancel each other out varies widely

for each individual agent, as the agent’s individual cone ratio dictate the activation

strength. To illustrate this point, all agents in the population were probed with

a range of wavelength stimuli and their cone response levels (S, M and L) were

observed. Then, to identify the stimuli for which resulting activation of M and L

cones cancel each other out, the following rule was applied:

4While 555nm is the wavelength at which M and L cones cancel each other out for the particular
colour models that are used here, in general a wavelength of about 580nm is considered yellow by
most people. This is presumably the case because additional weighting mechanisms play a role
in the processing of colour perception such as discussed by (Neitz et al., 2002, p.787). However,
equation (6.5) is used to calculate coordinates in the cone opponency plane for a given wavelength,
which assumes no such weighting mechanism. As such, a stimulus of 555nm results in M and L
cancelling each other out. However, this poses no problem for the point that is made here, which
is to show that for agents with varying cone proportions the wavelength at which M and L cancel
each other out varies widely across the visual spectrum.
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Figure 6.20: Categories of agents with random cone ratios projected in the cone
opponency plane. The categories are aggregated over all agents in the population
for all 25 replicas.
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Figure 6.21: Agents categories projected in the cone opponency plane for agents
with random cone ratios after language games. To keep the figure readable, not all
agents from the population their categories are plotted.
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Figure 6.22: Display of stimuli (in wavelength) for which L and M cone activations
cancel each other out (L-M=0) for agents with random cone ratios. The figure
shows a cumulative plot of aggregated stimuli that fit the rule as formulated in
equation (6.9) for all agents in the population, for 100 replicas.

(S < 0.05) ∧ ((M + L) > 0.05) ∧ (|L−M | < 0.001) (6.9)

In words, this rule selects those stimuli that result in an agent’s cone activation

levels such that S is not active (< 0.05), M and L are active (> 0.05) but the

absolute difference between M and L is very small (< 0.001). The stimuli for which

this was the case were aggregated over all agents in the population for 100 replicas,

and cumulatively plotted, as shown in figure 6.22. What can clearly be seen is that

due to the varying cone ratios of the individual agents, the stimulus (in wavelength)

at which L and M cone activations cancel each other out varies widely amongst

different agents.

6.3.4 Effects of perceptual differences

The results of learning through language games by agents with varying cone ratios

are shown in figure 6.23 and figure 6.25 (left), which compares the resulting commu-

nicative success to the baseline performance. Parameters for this simulation were

the same as the simulation described in section 6.3.2. Figure 6.25 (right) shows a

coherence test, in which the word labels that are used within the populations are
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Figure 6.23: Communicative success of a population of agents with random cone
ratios compared to the baseline performance.

analysed5. Agents are also tested on the level in which they agree on words used

for randomly picked stimuli. For 1000 tests 2 randomly chosen agents both stated

their word label for a randomly drawn stimulus. If the words are the same, they

score a point. This provides a measure of word agreement. The results over all

replicas after application of language games are 0.74876 for the baseline condition

and 0.74624 for the random cone ratios condition. This is not significantly different

(two-sample t-test with t(48) = 0.1848, p = 0.8542).

What can be observed is that the communicative success of agents with varying

cone ratios is very close to the communicative success of agents with equal cone ra-

tios. However, when looking at the distance between agents’ categories (figure 6.24),

it is striking that the agents categories are much more different compared to a pop-

ulation with equal cone ratios. Moreover, whereas in the latter case the population

distance gradually decreases, this is not the case for agents with differing cone ra-

tios. This reflects the fact that these agents have a different segmentation of the

underlying cone opponency plane.

Next, we determined how similar the perceptual categories are for what agents

5The coherence test works as follows. For each stimulus in nm all 10 agents in a population
list the word label that best matches the stimulus. The coherence score C is 1 when all agents in
the population use the same word, and 10 when all agents use a different word. Coherence is then
calculated as 1 − ((C − 1)/9), so 1 for maximum coherence and 0 for no coherence. This is then
averaged over all replications.
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Figure 6.24: Distance between categories of a population of agents with random
cone ratios compared to the baseline performance.
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Figure 6.25: Comparison of population of agents with random cone ratios to the
baseline performance (left), differences are small but significant (two-sample t-test
with t(48) = 3.6139, p = 0.0007), and within population coherence for all replicas
(right), for which the difference is also significant (two-sample t-test with t(48) =
7.2507, p < 0.0001).

perceive as ‘yellow’. This is done by recording which perceptual category responds

(i.e. is closest) to a stimulus of 580nm6. The coordinates of this matching category

are plotted in the cone opponency plane. This is done for all agents in a group for all

replications. There are four groups: agents with normal cone ratios before playing

language games (baseline before), after language games (baseline after), agents with

random cone ratios before language games (random before) and after language games

(random after). The aggregated categories are plotted in figure 6.26. What can be

6Generally a wavelength of about 580nm is considered ‘yellow’, but from an agent’s perspective
querying a particular wavelength is arbitrary.
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observed is that in the baseline case the application of language games causes the

categories associated with the 580nm stimulus to become a bit more similar with

respect to other agents in the population. However, this is not the case in the random

condition; in here after language games the categories associated with 580nm are

still scattered throughout the full range of [-1,1] in the x-axis of the cone opponency

plane. Thus, in this case the agents maintain their individualised representation of

the category and only align with other agents on the linguistic level.
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Figure 6.26: Perceptual categories responding to a stimulus of 580nm plotted in
the cone opponency plane. Top displays baseline before (left) and after (right)
language games, after which the categories have become slightly more focussed;
bottom displays random cone proportions before (left) and after (right) language
games.

The alignment on the linguistic level (after the agents have engaged in language

games) is illustrated in figure 6.27. In here agents with random cone ratios are

probed with a stimulus of 580nm to represent ‘yellow’. For the word that is most

strongly associated with this stimulus (the referent) the spread is measured (i.e. the

range of stimuli in wavelength with which this word is associated). The centre of

this spread is cumulatively shown in the figure, for all agents in a population for all

replicas. As can be observed, the word label that is associated with the stimulus
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representing ‘yellow’ is very much focussed in a small range of wavelength. Thus,

compared to figure 6.22, the agents have focussed their perception of ‘yellow’ on the

linguistic level to a much smaller range.
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Figure 6.27: Cumulative display of centre of spreads (in wavelength) associated with
the words that respond to a 580nm stimulus for agents with random cone ratios. The
figure displays the aggregated count for all agents in a population for all replicas.

The application of language games for a population in which agents have vari-

ations in their cone ratios results in a group of agents which have quite dissimilar

categories, but are yet able to achieve a level of communicative success that is very

close to a population of agents with equal cone ratios. The ability to reshape the

meaning of word labels used within the population proves robust against dissimilar

underlying perceptual categories. Moreover, whereas before linguistic interaction

agents perception of ‘yellow’ varies widely (figure 6.22), after engaging in language

games the range in nm which is associated with ‘yellow’ is much more focussed

within the population (figure 6.27)

6.4 Chapter summary

Given the embodiment thesis, one would expect that differences in physical embod-

iment would impact on cognition and perception. Despite physiological differences

in the human retina, in particular the ratio of M and L cones, people behave very
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similar in colour naming tasks. Strikingly, people with very different M:L cone ratios

show only a small variance in the range of wavelength that they perceive as unique

yellow. It has been suggested in the literature that a kind of neural weighting is

responsible for this alignment of colour terms, but how this exactly works remains

unclear.

In this chapter we have suggested an alternative account in which it is not lower

level neural weighing, but a higher level dynamically shaped linguistic system that

enables people to align their colour experience. We have shown the feasibility of

this account by demonstrating how agents with perceptual differences based on

physiological differences in the human retina and data recorded from two robots are

able to achieve an effective communication system. By dynamically reshaping the

meaning of word labels used to describe colour stimuli, it is not necessary for agents

to have an identical low level perceptual organisation. Indeed, individual agents can

have significant differences in their perceptual properties and yet ‘speak the same

language’; that is, reach an effective level of communication. We argue that given

the highly intersubjective nature of human experience, it is only natural to assume

a constant reshaping of linguistic meanings based on interaction with others. The

relatively simple experiments which capture these linguistic dynamics provide an

account of how perceptual differences can be overcome for communicating agents.
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Chapter 7

Social learning with robots

This chapter describes experiments with the computational model involving humans

and robots. Rather than having simulated agents performing the interactive learn-

ing, the interlocutors are humans and (embodied) robots. Real world implementa-

tions of models can increase their strength because successful application shows the

feasibility of actually working ‘in the wild’, as opposed to working in a controlled

virtual environment. The real world is always much more noisy, chaotic and less

structured than any simulated environment; real world applications are therefore

more credible than their simulated counterparts, as they need to be more robust.

This chapter combines the findings from chapter 5 with the insights from human-

robot interaction as described in section 1.5. Particularly the aspect of interactive

social learning is explored. First, social learning within an HRI context is explored,

focussing on crucial capabilities such as gazing and category learning. Then a de-

scription of a new kind of robot, LightHead, is provided. This robot is tailored

towards HRI and sports a retro-projected animated face which has many advan-

tages over more classic mechatronic robotic faces. The LightHead robot was used

in an exploratory study which assessed people’s abilities to read the robot’s gaze.

Having established the LightHead robot as a functional platform for HRI, experi-

ments are then described in which a learner (both in simulation and embodied in

the robot) employs active learning strategies while learning from human teachers.
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7.1 Human-Robot Interaction

Traditionally, Human-Robot Interaction (HRI) has focussed on industrial applica-

tions in which people operate robots to perform various tasks. As such, robots are

perceived as tools and human-robot interaction research focussed on interfaces, feed-

back, sensory information and control. However, due to a steady increase in robots’

sophistication in recent years, application domains have expanded drastically and

subsequently HRI has become more complex. HRI as an independent field of re-

search started to emerge in the mid 1990s and early years of 2000 (Goodrich and

Schultz, 2007). Rather than viewing robot as mere tools, Breazeal (2004) identified

four different paradigms of HRI: 1) robot as tool, 2) robot as cyborg extension, 3)

robot as avatar and 4) robot as sociable partner. Each of these paradigms entail a

different view of the role of the robot within the interaction: in the first the robot

is seen as a piece of (complex) equipment, in the second the robot can be seen as

an extension of ones own body, in the third the robot is a surrogate for some other

person and in the fourth paradigm the robot is seen as a social entity. In the last

two paradigms, people interacting with a robot would not use specialised interfaces,

but rather rely on the same interaction channels that are used when interacting with

other people; e.g. verbal communication1, mutual gaze understanding, pointing, ges-

tures and facial expressions. Particularly the fourth paradigm, in which a robot is

perceived as a social partner, opens up new areas of research and applications, by

placing emphasis on the skills and attributes robotic systems would need to posses

in order to interact socially with people (Dautenhahn, 2007b).

Also within this last paradigm, where robots are seen as social entities that can

interact with people, different themes and objectives have emerged. For instance,

some HRI research takes a developmental perspective (akin to the developmental

robotics approach as described in section 1.3), in which robotic babies are used

to investigate developmental aspects of cognitive systems and child/robot-caregiver

relationships (Minato et al., 2007; Ishihara et al., 2011). Other research has fo-

1Verbal communication with an artificial system requires natural language processing (NLP),
which constitutes a whole research field in itself. As of to date, no artificial system can cope with
open ended natural speech; applications tend to be restricted to limited domains.
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cussed more on human-robot interactions in general, in which the objectives are to

investigate people’s expectations and manners in which robots should be designed

and behave in order for society to accept them. Examples of such themed work

are e.g. the lifelike androids such as Ishiguro’s Geminoid (Nishio et al., 2007) and

Hanson Robotics’ Albert HUBO (Oh et al., 2006), the work of Goetz et al. (2003),

which shows how people’s compliance with robots improves when the robot’s ap-

pearances and behaviours match their capabilities, and Kanda et al. (2004), who

studied how interaction between robots and children could lead to the formation of

social bonds. Related to this, benchmarks have been proposed (Kahn et al., 2007)

to establish a means of measuring the success of building more and more life-like

robots. Anticipating more integrated roles for robots in society, Takayama et al.

(2009) investigated aspects of human-robot conflict management. These develop-

ments in HRI have sparked discussions of ethical concerns related to an increase of

robotic presence and related HRI in society, e.g. Sharkey and Sharkey (2010, 2012),

although others have argued that it might be too early to worry about such issues

(Belpaeme and Morse, 2010).

Another ‘branch’ of HRI that has been on the rise is the application of robots

in teaching and therapy, such as the robot therapy for elderly with dementia using

a baby seal robot (the Paro robot, Wada et al., 2005), therapeutic robots aimed

at interacting with autistic children (Dautenhahn et al., 2009; Kim et al., 2012), or

the development of robots that are capable of prolonged interaction with diabetic

children (the ALIZ-E project, Belpaeme et al., 2013), providing companionship to

the child, as well as teaching them important concepts about diabetics and self-

management. In similar vein, robots have also been used to facilitate teaching of

healthy children (Tanaka and Matsuzoe, 2012). Recently, the topic of long-term

interaction has gained attention as well (Leite et al., 2013).

7.1.1 HRI topics

To support effective and satisfactory interaction between robots and people, the

robots need to be equipped with the right kind of sensory apparatus and means to
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process the various datastreams that govern the interaction; not only in technical

terms (e.g. sufficiently high resolution of camera images), but also the appropriate

programming and design architectures, i.e. the robot’s ‘AI’2.

As HRI by its very nature emphasises aspects of interaction, it draws attention

to the variety of functions and mechanisms that facilitate interaction between hu-

mans, and that, as such, are perceived as natural by people. Humans are a linguistic

species, and considering the prominent role of language in cognition (section 1.4), one

might expect that language would be a prime factor for human interactions. How-

ever, a lot of aspects that facilitate and influence interaction between people (Hinde,

1972; Ekman and Friesen, 1981) and, by extension, people and robots (Breazeal

et al., 2005; Han et al., 2012), are non-verbal. Examples of such non-verbal interac-

tion mechanisms are for instance facial expressions (Gonsior et al., 2011), gestures

and pointing (Yang et al., 2007; Sato et al., 2007), joint attention (Nagai et al.,

2006) and eye gazing (Yoshikawa et al., 2006).

The latter topic, eye gazing, will be the object of interest for some of the HRI

experiments presented in this chapter. Gaze understanding is considered very im-

portant for effective communication, as it plays a crucial role in social attention

(Langton et al., 2000). As such, it is a relevant topic for HRI. A lot of research has

been focussed on how robots can read gaze from humans, which is effectively the

extraction of a gaze angle from a video stream and thus fundamentally constitutes a

computer vision problem. Various algorithms have been proposed, e.g. (Atienza and

Zelinsky, 2002; Yoo and Chung, 2005), for an overview see (Morimoto and Mimica,

2005; Hansen and Ji, 2010). However, as interaction is bi-directional, it is equally

important that a person who is interacting with a robot is able to interpret the

robot’s gaze; particularly for establishing joint attention. The issue of establishing

bi-directional eye-contact has been addressed in some studies (Miyauchi et al., 2004,

2005), but what remains still unclear is what factors influence people’s abilities to

infer where another (artificial) agent is looking? What is the influence of the physiog-

nomy of an agents face and eyes on the users ability to infer where it is looking? And

2Of course, the field of AI is entails a very wide scope of topics (see e.g. section 1.2 and
section 1.3), but from the current HRI perspective one might understand AI as the robot’s control
mechanisms that allow the robot to interact with people.
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do the dynamics of eye movements have an influence? To address these questions

an experiment was conducted in which we tested participants’ abilities to read the

gaze from a (novel) robotic head. This experiment will be presented in section 7.3.

The issue has subsequently been recognised by the HRI community, as, following

our study, several others have conducted similar experiments (e.g. Al Moubayed

et al., 2012; Onuki et al., 2013).

Another topic that has gained more attention within HRI recently is social learn-

ing through interaction. This has been discussed in section 1.5.1. Taking these ideas

as inspiration, a social learning experiment was conducted that combines the vari-

ous topics of this thesis by having a robot learn concepts interactively from people

(section 7.4).

7.1.2 HRI methodologies

As HRI studies tend to involve human participants, it is common to use techniques

and methodologies derived from sociology and psychology. For instance, in a typical

HRI study groups of participants would interact with a robot exhibiting a certain

kind of behaviour, and a control group would be interacting with a more ‘neutral’

robot without this particular behaviour. Alternatively, a group of human partici-

pants would interact with various kinds of robots in sequence. Studies can be both

qualitative and quantitative; data gathering and measurements are, apart from the

robot log files, similar to those used in psychology as well, e.g. annotation and coding

of audio and video recordings, asserting participants’ performances through tests,

questionnaires, response time and physiological aspects such as skin conductivity.

Kidd and Breazeal (2005) discusses several measurement types for HRI, along with

some design recommendations. However, as argued by Dautenhahn (2007a), the

field of HRI is relatively young and rapidly evolving. As such, no true established

methodologies have been defined that can be agreed upon by all involved. Even

though efforts have been made to establish common metrics for HRI studies (e.g.

Steinfeld et al., 2006), these metrics would not be applicable to all experiments, as

the field is constantly evolving. Another proposal for more unified evaluations meth-
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ods within HRI is the theoretical and methodological evaluation framework USUS

(Weiss et al., 2009), which “addresses usability, social acceptance, user experience,

and societal impact of humanoid robots used in collaborative tasks...”.

The use of questionnaires is very common in psychology, where it is often used to

measure the users attitudes; as such a large body of literature on their use exists (e.g.

Groves et al., 2004). Within the field of HRI, the use of questionnaires are common

as well; see e.g. (Walters et al., 2005) for an extensive discussion of questionnaire

design in HRI studies. Advantages are for instance that they are rapidly applicable,

and allow for quantitative analysis of participants’ demographics, attitudes and

their subjective experience regarding interaction with a robot. A drawback is for

instance that questionnaires are typically filled out by participants alone, and as

such do not allow for more in-depth questioning about some interesting details the

participant disclosed. Hence, a qualitative interview might be more appropriate

in some occasions. Bartneck et al. (2009) provide an elaborate discussion regarding

questionnaire use in HRI, including common pitfalls regarding design, and offer tools

and guidelines for their appropriate use as a methodology in HRI, aiming to make

results from HRI studies more comparable.

HRI experiments can be very challenging to set up, because of the advanced

technologies that tend to be involved and the interaction with human participants.

This makes it often quite hard to reproduce a certain finding, which can be prob-

lematic from a scientific viewpoint. Novel methodologies have been proposed that

aim to facilitate design, prototyping and testing of HRI scenarios (e.g. Woods et al.,

2006). Another technique that is rather specific to the field of HRI, is the so called

Wizard of Oz (WoZ) setup. Because of technical limitations, it is fairly common

in HRI studies to employ a WoZ setup, in which (part of) the robot behaviour is

controlled by a human experimenter; typically in such a manner that the human

subject with whom the robot is interacting is not aware of this. Although this con-

tains an element of deceit, it allows to study human-robot interactions that would

otherwise not be possible because of limited capabilities on the robot side (Riek,

2012).
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7.2 The LightHead robot

The CONCEPT project3 studied how robots could learn concepts from a human

teacher in an interactive manner. Part of this project was the development of a

new kind of robot face, one that is very much tailored to support some of the cru-

cial aspects of HRI. That is, non-verbal communication through facial expressions,

mutual gaze understanding and sophisticated and coherent timing of actions. The

robot face, dubbed LightHead, was developed by Frédéric Delaunay as part of his

PhD research. It offers a considerably cheaper alternative to the more traditional

mechatronic robot faces due to the use of off-the-shelve components.

LightHead has the appearance of a young child (see figure 7.1). Its main feature

is the utilisation of retro-projected animated face (RAF) technology (Delaunay et al.,

2009): the use of a small scale projector to project a computer generated character

inside a semi-transparent facial mask. As such, the robot offers advantages over

the more classic mechatronic faces, most notably the ease of projecting computer

animations which allow for flexible character design and rich social interaction. The

animated face projected into the mask is generated in real-time by an off-board

computer, which typically is also used to control the 6-DOF robotic arm on which

the face is mounted. Examples of some different facial expressions are shown in

figure 7.2. Being computer animated, the facial appearance and expressions of the

robot are very versatile and can be modified on the fly, depending on the application

and context in which the robot is used. Besides ‘regular’ facial expressions, display

of more subtle communicative signals such as an animated tongue, iris dilatation,

blushing and other socially salient cues can easily be achieved.

To support the interaction, the robot head is mounted on a robot arm such that

the arm acts as a thorax and neck. This allows the robot’s head to move, thus giving

the impression of looking around or craning over a table, for example to examine

objects in front of it. For more details regarding the design, materials, software

architecture and implementation, see Delaunay (2014).

3http://www.tech.plym.ac.uk/SoCCE/CONCEPT/
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Figure 7.1: The LightHead robot face, mounted on a robot arm (Jennie Hills, Science
Museum, London).

Figure 7.2: An early version of the LightHead robot face showing different facial
expressions.
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7.3 Gazing experiment

The LightHead robot was designed to support effective HRI. As described in sec-

tion 7.1.1, the ability of interacting partners to properly interpret each others gaze is

highly important. As such, for the LightHead robot to be effective, people should be

able to read its gaze. To explore how the LightHead robot performs in this aspect,

we conducted an experiment in which we tested how well people succeeded in read-

ing the robot’s gaze compared to other display types. This work has been published

in Delaunay et al. (2010), the experiment is described in more detail below. Design

of the LightHead physical face, software animations and control architecture to op-

erate the face and robotic arm was done by Frédéric Delaunay; Joachim de Greeff

and Frédéric Delaunay both contributed equally towards the experimental design,

organisation, execution, analysis and dissemination of the gazing experiment.

7.3.1 Methods

To investigate how well participants can read the LightHead robot’s gaze, we com-

pare this to people’s ability to read other types of faces. For this experiment four

different faces were used: a real human face, a human face shown on a flatscreen

monitor, a computer animated face projected in a spherical dome and a computer

animated face projected in a facial mask (the LightHead robot4). Figure 7.3 displays

the four face types, which will be referred to as human, flat, dome and mask re-

spectively. Participants had to examine the faces from two different viewing angles,

one position was frontal and the other was at an angle of 45◦ from the right. The

resulting eight different face conditions are summarised in table 7.1.

Between the participants and the face there was a transparent grid of 50 by

50cm which was divided into 100 squares. The squares displayed the numbers 0 to

99 from top left to bottom right, so that the numbers 44, 45, 54 and 55 were in the

middle (see figure 7.4 and figure 7.5 for a schematic overview of the setup). During an

4This last face was in fact an early prototype of the LightHead robot. When the experiment
took place, the full robotic head incorporating a pico projector (figure 7.1) was not yet build.
Instead, a normal projector was used to project the animated face into the 3D mask. For the
objectives of the experiment this made no difference.

150



Description viewing angle ◦ identifier
Human face 0◦ human-0
Human face 45◦ human-45
Human face displayed on a flatscreen monitor 0◦ flat-0
Human face displayed on a flatscreen monitor 45◦ flat-45
Animated face projected in a semi-sphere 0◦ dome-0
Animated face projected in a semi-sphere 45◦ dome-45
Animated face projected in a 3D mask 0◦ mask-0
Animated face projected in a 3D mask 45◦ mask-45

Table 7.1: The eight face conditions that were tested in the gazing experiment.

Figure 7.3: The four face types used in the experiment. From left to right and top
to bottom: human, flat, dome and mask.

experimental session participants had to interpret the gaze direction of the face which

they perceived through the transparent grid, and write down the number of the

square they thought the gaze was directed at. A session consisted of the face looking

at 50 randomly generated numbers, with 5 seconds delay between each number. In

the human face condition (which was the face of one of the experimenters) the

generated numbers were played in a headphone worn by the experimenter so that

it could not be picked up by the participants. In the flat condition the participants

were shown a pre-recorded sequence. In the case of the dome and mask conditions

the sequence was generated in real-time and fed into the LightHead control system.
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Figure 7.4: Schematic top-down view of the experimental setup illustrating the
positioning of the participants, the number grid and the display showing a face.

Figure 7.5: Schematic side view of the experimental setup. Subjects are facing a
transparent grid with numbers, either from a 0◦ or for a 45◦ angle. Through the
grid different face types can be perceived, of which the gaze needs to be interpreted.

7.3.2 Results

Each participant recorded the sequence of numbers that they thought the face was

looking at. This sequence was compared to the actual sequence and the difference

was calculated using the Euclidean distance, resulting in a mean gaze interpretation

error for each participant. Regarding the different face types, as expected, the

human face was easiest to read, followed by the mask and dome, while the flatscreen

proved hardest to read (see figure 7.6 and figure 7.7).
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A 4 x 2 analysis of variance (ANOVA) on gaze interpretation error showed main

effects of both face type, F (3, 88) = 8.121, p <. 01, and looking angle, F (1, 88) =

14.438, p < .01. However, no interaction effects were observed, F (3, 88) = 0.419, p

= .740. Comparing the different face types to each other, post-hoc comparison of

the ANOVA using Tukey test revealed that the participants’ performance between

the human face condition and all other conditions was significant, while this was not

the case for any other comparison (see table 7.2).

When examining the difference in performance between the two viewing angles,

it is clear that it is much easier for participants to determine the gaze direction when

they are facing the face, as opposed to a side view at 45◦ (error on gaze interpretation

is lower for 0◦ than for 45◦; paired samples t-test with t(23) = −3.133, p = 0.005).

Comparing the performance between the two angles for the different face types, the

performance difference was significant for the human, dome and mask faces, but not

for flat (see table 7.3)

dome flat mask human
0

0.5

1

1.5

2

Face types

M
e

a
n

 e
rr

o
r 

in
 g

a
ze

 r
e

a
d

in
g

Figure 7.6: Results of the gazing experiment for the four different face types.

After the testing participants were also quizzed on their subjective experience.

They were asked to indicate how effective they regarded the different face types

with respect to the ability to convey gaze information, regardless of the viewing

angle. This was measured using a seven-point Likert scale with the following ranges:

1-very ineffective, 2-ineffective, 3-somewhat ineffective, 4- undecided, 5-somewhat
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Figure 7.7: Results of the gazing experiment split into the two viewing angles and
four different face types.

effective, 6-effective, 7-very effective. Unsurprisingly, the human face was rated as

most effective, followed by mask, flat and dome (see figure 7.8). An ANOVA shows

that the mean scores for face effectiveness were statistically significantly different

(F (2.147, 49.39) = 7.321, p = 0.001). A Bonferroni post-hoc test indicated that the

difference between human and dome and between human and flat was significant,

while this was not the case for any of the other comparisons (see table 7.4).
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Figure 7.8: Participants’ subjective rating of different face types in terms of effec-
tiveness in conveying gaze information (seven-point Likert scale, error bars indicate
standard deviation).
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condition versus p
dome flat 0.176

mask 0.146
human 0.000

flat dome 0.176
mask 1.000
human 0.027

mask dome 0.146
flat 1.000
human 0.035

human dome 0.000
flat 0.027
mask 0.035

Table 7.2: Performance comparison of different face types. Difference in performance
between human and all other conditions is significant, while this is not the case for
any of the other comparisons.

dome flat mask human
t-test t = -2.6806 t = -0.9206 t = -2.2175 t = -2.5418

df = 22 df = 22 df = 22 df = 22
p = 0.0137 p = 0.3673 p = 0.0372 p = 0.0186

Table 7.3: Significance tests (two-sample t-test) between the two viewing angles (0◦

and 45◦) for the four face types. Difference in performance is significant for dome,
mask and human, but not for flat.

7.3.3 Discussion

Not surprisingly, people find it easiest to read the gaze direction of another humans

face. Clearly, they are most accustomed for doing this, as it is part of the daily

routine while interacting with other people. However, the LightHead robot does not

a bad job in terms of its ability to convey gaze direction. While it is marginally

better from 0◦ compared to a flatscreen face, from 45◦ it is clearly better, as the

3D surface of the eyeballs provide more precise clues with respect to gaze direction.

This is supported by the fact that compared to the dome (in which there is no 3D

eyeball curvature) interpretation of the mask’s gaze is significantly better interpreted

(two-sample t-test with t(22) = 2.1892, p = 0.0395) from a 45◦ angle.

Based on verbal reports from participants it became apparent that participants

not only tried to infer the gazing direction by observing the angle of the eyes, but

also tried to reason about where they thought the eyes are looking. This was the
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condition versus p
dome flat 1.000

mask 0.080
human 0.001

flat dome 1.000
mask 1.000
human 0.001

mask dome 0.080
flat 1.000
human 0.109

human dome 0.001
flat 0.001
mask 0.109

Table 7.4: Pairwise comparison of participants’ preference for the different face
types. Difference in preference is significant between human and dome and between
human and flat, while this is not the case for any of the other comparisons.

case particularly in the flat condition at 45◦. From this angle a face on the flatscreen

was clearly not looking at the grid when the target was in any of the corners. Rather,

the eyes appeared to be looking at some point in space that was much more on the

side. However, because the participants knew that the gaze they have to interpret

was supposed to be looking at the grid, they could infer that the numerical target

was on the far corners of the grid when the face on the flatscreen was looking at an

extreme corner. So, rather than judging the angle of the gaze based on observations

alone, participants reasoned about where the gaze should be looking at, given the

circumstances.

Participants also reported to find it helpful that the human face (human and

flat conditions) displayed a searching strategy that was recognisable. For instance,

with numerical target ‘66’, the gaze would first vertically drop to the 6th line of the

grid and then follow the numbers horizontally until 6 was found, which is a strategy

that (subconsciously) might have been recognised by participants. In contrast, the

animated face (dome and mask conditions) would immediately direct its gaze in the

correct direction without displaying any searching behaviour.

These two aspects most likely influenced the results as they illustrate that people

employed a range of strategies when interpreting gaze direction (Langton et al.,

2000); the actual judgement of gaze angle is only part of this. Nevertheless, the

experiment described here established that the LightHead face provides a reasonable
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effective platform for HRI, as people are able to read its gaze quite well. While not

on a level of human gaze interpretability yet, the 3D curvature of the eyes does

improve its readability. Other cues, like searching behaviour, can be implemented

quite easily due the flexibility of software animation, allowing for even more realistic

gazing behaviour.

7.4 Social learning experiment

7.4.1 Background

Within developmental robotics the aspect of learning is crucial. Through effective

learning mechanisms a robotic system may gain those skills that are relevant for

its task. As such robots are envisioned to work in the same environment alongside

humans, it would be most natural if people could teach the robot what to do. And

rather than having humans, who may not be familiar and/or trained to instruct

robots, adapt to the robot, it would be better if the robot could adapt to its human

teacher. As such, robots might be instructed in a manner similar to how adults

teach young children. To allow for this kind of teaching, a robot should be able to

tap into the communication channels that come natural to people, such as speech

and non-verbal behaviours like facial expressions, gestures and gaze (section 1.5).

Language and conceptual knowledge lie at the root of human intelligence, and

the acquisition of both relies heavily on social interaction and tutelage (as described

in section 1.5.1). Many social interactions between carers and infants are actively

aimed at providing opportunities for acquiring words and their meanings, with carers

overtly describing objects, actions, sensations and agents and young learners steering

linguistic interactions, for example through deictic points and naming salient fea-

tures in the environment. The experiment described here aims to reproduce some

aspects of word and meaning acquisition in young learners, and study whether a

similar mode of interacting and learning can be reproduced in human-robot inter-

action.

Next to this, the most natural manner of teaching is a type of interaction in
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which the learner is not passively absorbing new knowledge, but rather actively

engages in the learning experience. This notion of active learning was explored in

chapter 5 in simulations, here the active strategies are applied to an HRI setting

using the LightHead robot and human teachers. The work described here has been

published in De Greeff et al. (2012b).

7.4.2 Experimental overview

In order to test the effect of an active learner, we set up a series of experiments in

which the learner tries to influence the interaction with the teacher as to achieve

the most optimal learning experience. This is was done in simulation first and later

tested in a setup in which the LightHead robot embodied a learning agent and human

subjects acted as teachers. As a learning mechanism the language game framework

is used (section 3.2), and the categories of the learning agent are represented through

a conceptual space (section 3.1).

To teach the robot categories, the Zoo dataset from the UCI Machine Learning

Repository (Frank and Asuncion, 2010) was used, which is the same set that was used

to test how the model can represent prototypes (section 4.4). The ‘girl’ exemplar

was removed from the mammal category to avoid confusion. We compared the

performance of learning agents that utilises active learning (AL) to learning agents

that do not (non-AL). With respect to the human teachers, we are also interested

in the strategy they employ when it comes to the choice of learning examples.

7.4.3 Simulated experiment

7.4.3.1 Experimental setup

Active learning in simulation very much followed the setup that is described in

chapter 5. In essence it happens as follows. During a guessing game interaction it is

not the teacher but the learner that decides on the topic of the guessing game. The

learner does this through examination of the context and choosing that item that

is least familiar as the topic of the guessing game. As such, it allows for a quicker

exploration of the conceptual space and thus yields better learning results. Note
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that in the experiments reported in this chapter version AL2 is used (section 5.3).

As such, the agent implements a preference to learn those items that are less familiar

with respect to what it already knows. In the simulation, the teaching agent will

always follow the topic chosen by the learning agent.

The agents played 50 guessing game interactions (NI = 50)5. The context con-

sisted of 3 animal exemplars (C = 3), randomly drawn from the Zoo dataset. The

experiment was replicated 50 times to obtain an average measure (R = 50). These

parameters were chosen based the aim to port this experiment to an HRI setting

(section 7.4.4).

7.4.3.2 Results

We measure the ability of agents to successfully play guessing games over the course

of development. The guessing success is the percentage of language game inter-

actions in which the learner correctly identified the topic from the context based

on the teacher’s word. As can be seen in figure 7.9, on average the AL condition

performs better than the non-AL condition, both in terms of speed (AL reaches

higher guessing game success quicker), and on the long run (difference between final

guessing game success). The difference in performance between the two conditions

is significant (two-sample t-test with t(98) = 8.9559, p < 0.001).

7.4.4 Experimental setup of the robotic experiment

7.4.4.1 Materials

Participants were recruited around the Plymouth University campus. This resulted

in a pool of 41 participants who were randomly assigned to one of the two condi-

tions. Due to technical reasons (the robot facial projection stopped working due to

overheating) two participants were removed from the pool, thus bringing the total to

5In a typical language game experiment agents tend to play much more guessing games (i.e.
in the range of 1000 to 10,000) to more thoroughly consolidate the shared lexicon and reach
communication success of about 90%. However, these numbers are infeasible to run with human
participants. To be able to make a comparison between simulation and real experiment we opted
for running less guessing game interactions in simulation as well. This still provides us with insights
of how language games that employ AL perform in simulation.
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Figure 7.9: Display of guessing success in simulation for the AL and non-AL condi-
tions.

39. The statistical breakdown in terms of native speakers, age and gender is shown

in table 7.5. Participants were paid £7.50 for their participation.

AL non-AL Total

number 19 20 39
native speaker 13 16 29

non-native speaker 6 4 10
female 9 11 20
male 10 9 19

age (average) 24.26 25.35 24.82

Table 7.5: Statistical breakdown of participants.

Participants interacted with the robot by means of a touchscreen. During ev-

ery round of the guessing game the touchscreen displayed 3 pictures of animals

along with 7 buttons to indicate animal categories. See figure 7.10 for an example.

The LightHead robot was placed behind the touchscreen facing the participant and

equipped with speakers to allow for speech. Different modules of the LightHead

robot system that controlled facial animations, the robot speech, the robot arm and

vision were run in a distributed fashion. The robot’s actions were cued by interac-

tion events picked up by the touchscreen; the camera mounted on the robot head

only served to run face tracking.
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Figure 7.10: Display of the GUI which participants used to play guessing games
with the robot.

7.4.4.2 Procedure

Participants were asked to sit in front of the touchscreen facing the robot. Fig-

ure 7.11 illustrates this setup. After a brief explanation by the experimenter they

were invited to sit through a tutorial in which the robot explained how the guessing

game was to be played. After this the robot invited the participant to play some

practice rounds which involved teaching the robot colour categories. When partic-

ipants were confident they knew how to play the guessing game, they could end

the practice at their convenience. Occasionally the experimenter reminded partici-

pants of this option. When participants had practised sufficiently they started the

teaching of animal categories by pressing a button.

The experimenter was present during the experiment, but turned sideways and

occupied with other work. Occasionally participants tended to ask a questions,

mostly about not knowing certain animal categories, after which the experimenter

answered evasive along the lines of “just try to teach as best as you can”, as not to

give any clues.

The guessing game was played in a fashion similar to the one in simulation,

with a human participant acting as teacher and the LightHead robot embodying

the learner. During each round both the teacher and learner examined the context

(3 random animal pictures displayed on the touchscreen), and depending on the
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Figure 7.11: Experimental setup showing the participant, the touchscreen and the
robot.

condition (AL or non-AL) the learner expressed a learning preference. The teacher

mentally decided on a topic and then provided the corresponding category label by

pressing the relevant button. Upon perception of the category the learner tried to

guess which animal exemplar the teacher had in mind. The teacher then indicated

which exemplar was the topic of the guessing game by pressing the corresponding

animal picture, thus providing feedback to the learner. A more detailed description

of how the robot behaved as a learner is provided in section 7.4.4.3 below. Teacher

and learner played 50 guessing games.

After the experiment, participants filled in a questionnaire (appendix C) enquir-

ing about their experience with the robot and their strategy of choosing a topic,

along with a personality test. Then they were given a short debrief and given an

opportunity to ask questions.

7.4.4.3 HRI

The LightHead robot acted as a physically embodied learner, which introduced some

social HRI aspects. A brief description of this is provided here.

During each guessing game the robot appeared to examine the 3 animal exem-

plars through craning over the screen and examining each exemplar in turn. To the
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participants it seemed that the robot was actually looking at the pictures6, but this

was not the case. Rather than relying on computer vision, which, given the state

of the art, would not have allowed us to extract the 16 properties from the animal

pictures alone, we opted for passing the properties directly to the learning agent by

encoding it as a 16 dimensional vector. Instead the camera was used to run face

detection, allowing the robot to follow the participant with its eyes whenever the

robot was facing the participant, thus giving an impression of eye contact.

After ‘examination’ of the context the robot verbally invited the participant to

pick a topic, without revealing the topic to the robot. Depending on the condition,

the robot either moved back a bit and look at the participant (non-AL condition) or

expressed its learning preference through looking back and forth from a particular

exemplar to the participant while making a verbal statement such as “what about

this one?” or “I would like to learn this” (AL condition). For a full list of the active

learning statements the robot uttered, see table C.1 in the appendix.

When the participant had decided on the topic, he or she then pressed the

corresponding category, for example mammal. Upon ‘hearing’ this category, the

robot examined the animals again and guessed which animal the participant had in

mind. To express its guess, the robot fixed its gaze at an animal, and uttered an

appropriate sentence, such as “is this the topic?” or “is this the animal you were

thinking of?”. The participants then had to click on the animal picture they had in

mind, thus confirming or correcting the robot’s guess. After receiving this feedback

to robot expressed either joy or sadness through a facial expression and a verbal

statement, depending on the outcome of the guessing game.

7.4.5 Results of the robotic experiment

7.4.5.1 Guessing game success

All participants succeeded in teaching the robot animal categories. For the final

guessing success, on average the AL group was slightly more successful than the

non-AL group. Final average success for AL was 0.626 (SD = 0.077) and for non-

6Which was plausible enough given the fact that the robot has a camera visibly mounted on
the top of its head (see figure 7.1).
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AL 0.566 (SD = 0.087). This difference was significant (two-sample t-test with

t(37) = 2.2917, p = 0.0277). As can be observed in figure 7.12, the learning trend of

both conditions is very similar to the one obtained in simulation (figure 7.9). What

can also be observed from the figure is that AL speeds up learning: the slope of the

AL curve is steeper and at 10 interactions the difference between AL and non-AL is

significant (two-sample t-test with t(37) = 3.6143, p = 0.0009).

One aspect that may have influenced the guessing game scores is the interpreta-

tion that participants gave to the guessing game rules. As explained above, during

a guessing game the learner tries to guess which item from the topic the teacher has

in mind. When the learner guesses wrong, the teacher provides feedback by making

it clear what was the topic. However, in the HRI setting and with the particular

dataset that was used, an ambiguity can arise in those cases when two or three ani-

mal exemplars are of the same category. For instance, a context might consist of the

following items: [‘bear’, ‘lion’, ‘duck’]. The teacher might choose ‘lion’ as the topic

and thus would indicate mammal to the robot. Upon perception of the category

label and examination of the context the robot might guess the topic is ‘bear’ and

indicate this accordingly. At this point the teacher is faced with a choice: either

indicate that the topic was in fact ‘lion’ and thus the guessing game fails, or click

on the ‘bear’ picture as a confirmation that, although not the topic that was orig-

inally intended, ‘bear’ is indeed a mammal and thus the guessing game succeeds.

Through informal interviews we found out that at least some of the participants

gave the latter interpretation to how the guessing game should be played. Indeed,

upon closer analysis of the results, it was found that some participants, in those

cases in which the context constituted the ambiguity as described above, did concur

with the robot’s choice in a very high number of cases. That is, given a situation in

which there are more than one animal exemplars of the same category and the robot

guessing that one of these exemplars is the topic, the participant confirmed this by

clicking on the respective animal, thus causing the guessing game to succeed.

We have no measure to determine to what extend participants might have chosen

a certain animal as the topic and then acknowledging the robots guess when it picked

164



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25 30 35 40 45

 %
 s

u
c
c
e

s
s

 interactions per agent

AL
non-AL

Figure 7.12: Display of guessing success from the AL and non-AL groups.

a different animal but of the correct category. To gain some insights in how often

this might have happened, we measured for each participant the number instances

during which two animal exemplars were from the same category. We then counted

how often participants confirmed the guess the robot made regarding the topic of

the guessing game for these instances. Dividing this number by the total number

of instances during which the potential ambiguity arose gives a percentage for each

participant. As can be seen in table C.2, for some participants this percentage

is quite high. Thus, it seems justified to assume that indeed, some participants

interpreted the guessing game as described above.

7.4.5.2 Response to active learning

To get an idea of how much participants responded to the active learning behaviour

of the robot, we measured the proportion in which the robot’s preferred topic was

similar to the one the participant indicated they had chosen as the topic. For non-

AL this is 0.32 (SD = 0.08), as the robot does not provide social cues and hence the

topic choice is random. For AL however, this proportion turned out to be 0.56 (SD

= 0.18), indicating that the level at which participants followed the robot’s choice

was more than chance (p < 0.001). Thus, on average, participants did respond

to the robot’s social cues. The individual scores for all participants is shown in
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table C.3. What can be seen clearly is that there are quite some individual differences

amongst the AL group; some participants completely ignored the robot’s social cues,

while others strongly responded to this (most notably participant #8 with 94% and

participant #37 with 86%, table C.3). Figure 7.13 plots the responsiveness to AL

against the final success rate of the teaching. Because of this high variance only a

weak correlation between the participants’ responsiveness to AL and the guessing

game success rate was found (AL condition, Pearson’s r = 0.09).
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Figure 7.13: Distribution of responsiveness to social cues against learning perfor-
mance for AL and non-AL groups. In the AL condition, the robot provided social
cues, which were picked up by some participants and had a positive effect on the
robot’s performance.

7.4.5.3 Category use

Because teachers are free to choose the topic for each guessing game as they see fit7,

the distribution of category use, i.e. the frequency with which the different categories

are chosen as topic for the guessing game, is of interest; this may reveal some

7In simulations this is governed by either AL mechanisms or through random choice.
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aspects of the teaching strategy (if any) that is used by the teacher. A normalised

distribution of category use is derived by dividing the total uses of each category for

all participants from the same condition by the total number of games played. For

instance, in the AL condition, the category mammal was used 261 times in total by

all participants from this condition. This number is divided by 950, the total number

of guessing games that was played in the AL condition (19 participants, 50 games

each), resulting in a normalised use of 27.5%. Figure 7.14 displays these normalised

distributions for the non-AL and AL conditions and for the actual distribution of

the dataset.
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Figure 7.14: Normalised distribution of category use in AL and non-AL condition
compared to the distribution of the dataset.

Because the AL condition constitutes a more optimal use of categories with re-

spect to learning the dataset, that is, AL results in higher communicative success,

it is interesting to see that participants in the AL condition diverge from the dis-

tribution of the dataset. The non-AL group is somewhat halfway, indicating that

participants in this condition still follow a strategy rather than picking topics at

random. The tendency to diverge from the dataset distribution can be seen as an

indication that participants actively try to provide specific learning examples, i.e.

their choice is not random (indeed, when asked for this, participants reported var-

ious reasons, see section 7.4.5.4). If all categories were used equally, each category
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would be used for 14.3% of the cases. If we calculate the difference between category

use and this uniform use for each group, we see that the sum of differences is 0.44

for AL, 0.50 for non-AL and 0.63 for the dataset distribution, indicating that AL

is closest to equal category use, followed by non-AL and the dataset distribution is

the least equal.

7.4.5.4 Questionnaire

As described in section 7.1.2, a questionnaire is a common method to gain insights in

participants’ subjective experiences of an experiment. As such, after the participants

were done with the teaching of the robot, they filled in a questionnaire (appendix C)

asking them to rate the following questions on a seven-point Likert scale:

Q1: How do you rate your interaction with the robot?

Range: [not satisfactory at all - very satisfactory]

Q2: How do you rate the robot’s behaviour?

Range: [not natural at all - very natural]

Q3: Do you have any experience with robots?

Range: [I have no experience with robots - I have a lot of experience with

robots]

Q4: Who was in control of the teaching sessions?

Range: [I was in control - the robot was in control]

Q5: On what basis did you choose the animal examples as topic? Please explain.

Q6: Do you like science fiction (books, film, etc)?

Range: [I don’t like science fiction at all - I very much like science fiction]

Q7: How many emotions do you think the robot has?

Range: [the robot has no emotions - the robot has a lot of emotions]

Q8: How smart do you think the robot is?

Range: [the robot is not smart at all - the robot is very smart]
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Q9: How many hours per week do you spend using a computer?

Q10: General comments

The mean responses to these questions (except questions 5 as this is a qualitative

question) split into AL and non-AL groups do not show any significant differences.

Most results are what was expected, e.g. for Q1 participants rate their interaction

a bit higher in the non-AL condition, presumably because they are more in control.

For Q2 they rate the robot’s behaviour a bit higher in the AL condition, possibly

because the robot is more vocal here. The robot was also perceived to be somewhat

smarter (Q8). Contrary to what was expected, no difference in the perception of

control was found (Q4). Also, participants attribute more emotions to the robot

in the non-AL condition (question 7; however, the difference is not significant, two-

sample t-test with t(37) = −1.7943, p = 0.081). When gender is also taken into

account, some interesting patterns emerge. These are discussed in more detail below

(see figures C.1 and C.2 for all figures). The answers to question 5, which asked

participants on what basis they chose an animal exemplar as topic for the guessing

game varied widely. The following are some examples of the answers participants

gave: “What I thought would be easy for the robot to learn”, “Often where the

robot looked to, what seemed to be the easiest for me”, “Which animal I prefered,

how cute & fluffy it looked, or how interesting I thought it was”. For the full list of

answers, see appendix C.1.1.

A correlation test between the guessing success and all questions is displayed

in table 7.6. Weak negative correlations exist between guessing game success and

Q6 and Q7; a weak positive correlation exist between guessing success and Q8.

Between the responsiveness to AL and the answer to Q4 there exist a weak positive

correlation (AL group, Pearson’s r = 0.24).

7.4.5.5 Gender differences

When examining the guessing game results for gender differences, an interaction

can be found between active learning condition and gender. It appears that in the
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Pearson’s r
Q 1 0.041
Q 2 0.119
Q 3 -0.157
Q 4 -0.059
Q 6 -0.400
Q 7 -0.380
Q 8 0.280
Q 9 -0.154

Table 7.6: Correlation test between guessing success and participants’ questionnaire
answers.
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Figure 7.15: Guessing success split into AL/non-AL and gender.

case of female teachers the robot is more successful in guessing games in the active

learning condition than with male teachers (see figure 7.15). Running an ANOVA

indicates that the interaction is significant with F (1, 35) = 4.5697, p = 0.0396.

Another aspect that indicates gender differences was found in the analysis of the

questionnaire. Particularly Q2, Q4 and Q8 are interesting in this regard, as they

express the participants’ attitude towards the robot. The corresponding figures split

in gender and gender & AL/non-AL are displayed in figures 7.16 to 7.18, an analysis

is provided below.
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• Question 2:“How do you rate the robot’s behaviour?” As can be observed

in the figure, there is a clear difference in rating between genders, as females

rate the robot’s behaviour significantly higher in the AL condition (figure 7.16,

right; an ANOVA shows interaction with F (1, 35) = 8.517, p = 0.006).

• Question 4: “Who was in control of the teaching sessions?” The working

assumption has been that in the case of AL the robot is more explicit in

its learning preference, and therefore participants would perceive the robot

to be more in control. This is not what was observed. However, if the re-

sponse to question 4 is split by gender, we can observe that on average female

participants judge the robot to be much more in control than male partici-

pants (figure 7.17, left; two-sample t-test with t(37) = 3.2805, p = 0.0023).

When the AL/non-AL factor is included as well, opposing patterns can be

observed (figure 7.17, right). No significant interaction was found (ANOVA

with F (1, 35) = 1.814, p = 0.187), but a trend can be observed.

• Question 8:“How smart do you think the robot is?” The difference between

AL and non-AL is not significant (two-sample t-test with t(37) = 1.6366, p =

0.1102), but it does indicate a trend. Looking at the relation between AL/non-

AL and gender, significant interaction is found (ANOVA with F (1, 35) = 6.229,

p = 0.017), clearly indicating that female participants consider the robot to

be smarter when it displays active learning behaviour (figure 7.18, right).

7.4.5.6 Personality test

Along with the questionnaire participants were asked to fill in a personality test

based on the Big Five Inventory (John et al., 2008). This test is very common

in psychology; rather then classifying people into predefined personality types (as

happens in the Myers-Briggs Type Indicator) people are scored on 5 dimensions

(openness, conscientiousness, extraversion, agreeableness, neuroticism) that together

provide an indication of their personality. The main purpose of this was to be able to

check whether or not any outcome from the teaching experiment (e.g. responsiveness

to active learning) could be explained through certain personality traits.
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Figure 7.16: Response to question 2 “How do you rate the robot’s behaviour?” split
by gender (left) and by both gender and AL/non-AL (right).
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Figure 7.17: Response to question 4 “Who was in control of the teaching sessions?”
split by gender (left) and by both gender and AL/non-AL (right).
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Figure 7.18: Response to question 8 “How smart do you think the robot is?” split
by gender (left) and by both gender and AL/non-AL (right).
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Figure 7.19: Personality trait scores split into AL/non-AL and gender, against guess-
ing success.

A medium correlation was found between the responsiveness to AL (AL con-

dition only) and the conscientiousness trait (Pearson’s r = 0.424, not significant

with p = 0.071). Furthermore, the difference in conscientiousness between fe-

male and male participants was significant (two-sample t-test with t(37) = 3.1488,

p = 0.0032). Both these findings fit in with the gender differences described above,

which indicated that females are more responsive to an active learning robot. No

other influences of personality traits on any of the other outcomes were found, and

as such it was concluded that different personality traits do not appear to influ-

ence the effectiveness of active learning by a large amount. Figure 7.19 displays all

personality trait scores split into gender and AL/non-AL against guessing success.

7.4.6 Discussion

The ability for a robot to learn from a human teacher is deemed important for

achieving effective robot systems that can co-exist with humans in an unknown
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environment. Furthermore, to utilise learning experiences to their fullest potential,

an active learner may be able to shape the learning interaction in such a way as to

experience the most effective learning.

This section has presented experiments in which an active learner (in simulation

and embodied in the LightHead robot) is able to positively influence the learning

experience offered by a teacher through utilisation of social clues. This allowed the

learner to learn quicker and more effectively, as illustrated by an improved learning

curve depicting guessing game success. Furthermore, when the learner is embod-

ied in a robot, it was shown that participants are responsive to the social clues

displayed by the robot, albeit to varying degree. Participants interacting with an

active learning robot are more likely to choose as learning examples those categories

that are closer to an optimal distribution of category use, compared to the partici-

pants that interacted with a non-active learning robot. Analysis of the experiment

and responses given to a questionnaire revealed gender differences, indicating that

female teachers were more receptive to the social clues of an active learning robot.

This suggests that there is no optimal strategy that works best for all human tu-

tors, Rather, the most effective learning experience might be achieved by a learner

that personalises its behaviour towards individual teachers, as different teachers may

respond differently to social cues.

7.5 Chapter summary

In this chapter experiments were extended to a real life study through the inclusion

of a robot learner and human teachers. The inclusion of robotic hardware constitutes

a more thorough test environment compared to a simulation-only approach, as a real

environment in which robots and people interact demands more robustness. The

LightHead robot was discussed, which is a new kind of robot specifically targeted

at HRI and which offers benefits over more classic approaches due to the utilisation

of back-projected animations. An experiment in which participants were tested

for their ability to read the robots gaze indicated that the LightHead face is quite

suitable for this, strengthening the use of this robot for HRI purposes, as gaze
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reading is an important social cue.

The LightHead robot was then used in experiments that extend the experiments

as reported in chapter 5 in an incremental fashion, i.e. the assessment of active

learning strategies into a real life setting. In this, human participants acted as tu-

tors for the robot which utilised active strategies. It was shown that these active

strategies were still effective in a real world setting, although the best results might

be achieved when the robot learner’s behaviour is even more tailored towards indi-

vidual teachers. These experiments illustrates that people are willing to engage in

a tutoring relation with a learning robot and moreover that an active robot learner

is able to shape the learning experience to achieve better results through utilisation

of social behaviour.
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Chapter 8

Summary, discussion and future

work

This chapter provides an overview of the topics covered in this thesis as well as con-

cluding remarks. Main themes are recapitulated and reflected upon, contributions

and shortcomings are discussed and some suggestions for future work are provided.

8.1 Summary

This thesis has investigated a range of aspects related to social learning of concepts

by artificial agents, in which agents were both simulated and embodied in physical

robotic hardware. The ability to use concepts as bearers of knowledge has been

identified as a crucial aspect of human cognition; as such, artificial systems that are

intended to operate on a level comparable to humans will need to be able to utilise

conceptual structures in similar vein. To achieve this aim various routes can be

considered; by now it has been fairly well established within cognitive systems and AI

research that an intelligent system cannot be considered in isolation. Rather, a more

holistic approach which takes into account the environment, the embodiment and

the interactions that a system might have with its social and physical surroundings,

is perceived as more viable. Particularly the learning of words and concepts has

been recognised as a two-way process in which both teacher and learner mutually

contribute to the learning experience.
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After reviewing various psychological theories with respect to human concept

use, the standpoint has been adopted that a functional model of concepts should

at least be able to represent concepts as prototypes. Indeed, a model in which

prototype concepts function as abstract summary representations is considered ad-

equate, particularly in light of the ease with which features from exemplar theory

might be incorporated, thus combining two of the main theories from the concep-

tual literature. While prototype and exemplar models are not the ‘final’ solution

to conceptual modelling, as more advanced hybrid models do exist, the former were

nevertheless considered sufficiently adequate with respect to the aims of this work,

and the implementation of these theories through the conceptual spaces framework

can be considered as a minimalistic model of concept representations. As this work

is not necessarily aimed at providing a conceptual model that maximises explana-

tion of empirical data from human concept use, the adoption of a more minimalistic

model is not viewed as a drawback, but could be considered a virtue in light of

notions like Occam’s razor.

The conceptual spaces framework and the language game framework were adopted

as tools to model social concept learning. A model based on conceptual spaces

provides a means of conceptual representation compatible with prototype theory;

adequate functioning of the CS model was established through an exploratory study

involving the formation of prototypes based on a commonly used dataset of zoo

animals. The application of language game dynamics emphasises the interactive

aspects of learning; categories, consisting of word labels associated with points or

regions in the CS, become shared within a population of agents through repeated

linguistic interaction. In this approach, an agent learns the meaning of concepts

through interaction with its environment which includes other agents; the model as

such incorporates social and interactive aspects of concept learning.

Using the model as described above, the notion of active learning was further ex-

plored in a series of experiments based in simulation. In this, the learning strategies

of an agent are augmented with some more elaborated mechanisms which enable the

agent to influence its learning experience. These mechanisms were active learning,
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through which the agent can influence the dynamics of the language game as to

explore unknown stimuli; knowledge querying, which allows the agent to query its

teacher on less well established concepts; and contrastive learning, which contrasts

just learned concepts with other examples as to more firmly establish the association

between words and objects. Of these three mechanisms, active learning turns out to

be the most effective, resulting in a small, yet significant improvement with respect

to the speed and the quality of learning.

Subsequently the role of embodiment was explored, in particular the effect of

difference in embodied perception on the formation of concepts. A remarkable phe-

nomenon is the large degree of agreement expressed by people regarding colour

concepts, despite the fact that there exist relatively large physiological differences

in the retinas of human individuals. This agreement amongst people with respect to

colour naming has led researches to suggest that “neurological factors” play a role in

the stabilisation of colour names; however, how these neurological factors function

is relatively less explored. Running experiments with the model as described above

allowed for the exploration of the hypothesis that this agreement can be explained

through a dynamic interaction in which agents, that on a low level perceive the

world differently, negotiate and align shared vocabulary to describe colours. This

resulted in effective communication systems despite agents’ perceptual differences

in both software simulations and on robotic hardware. We suggested that the ap-

plication of similar dynamics may provide an answer to the question of how people

overcome the stark differences in their cone-ratios while simultaneously being able

to communicate about colours without much problems.

Taking the notions of social, embodied and active learning of concepts to a real-

life situation requires the use of a robot. The LightHead robot constitutes a novel

robotic platform which was specifically developed with HRI in mind. The robot

sports retro-projected animated face technology which allows for a wide range of

facial expressions, as such providing a flexible channel for non-verbal communica-

tion. Given the importance of mutual gaze understanding in social interaction, it

is considered paramount that people interacting with the LightHead robot are able
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to interpret its gaze correctly. To verify this, experiments were conducted in which

participants had to read the robot’s gaze; this was compared to other face types

and led to the conclusion that the LightHead’s gaze can be adequately interpreted,

establishing the robot as a functional platform for further HRI experiments. The

robot was then used in an HRI experiment in which an agent, embodied in the

robot, employs the active learning strategies as described above. In this experiment

a human teacher taught the robot concepts based on animal classifications. Utilis-

ing both verbal and non-verbal channels, it was established that the active learning

strategies can also be beneficial in an HRI setting.

8.2 Discussion

The models and experiments presented in this work are believed to provide a rea-

sonable approach to interactive social learning of concepts by embodied agents.

Nevertheless some remarks and points of discussion can be made. These issues are

discussed in this section.

Advances in science The fact that conceptual structures play a crucial role in

human cognition is considered a given; however, it is relatively less well established

what concepts are exactly, which functional role they play in various cognitive op-

erations and how they intertwine with other aspects of cognition such as memory,

reasoning and perception. This is an ongoing debate and research agenda within

psychology, neuroscience and philosophy. Recent advances particularly in neuro-

science have resulted in increased understanding of the fine grained operation of

the brain; however, it remains clear that this is an ongoing research endeavour as

currently the field is relatively young and a lot of the inner workings of the brain are

not properly understood yet. It is expected that advances in these fields will reflect

on psychological, neurological and computational models of concepts, as neurolog-

ical insights allow for more advanced cognitive models that might better explain

empirical data. These models will subsequently find their way to the more AI and

robotic oriented applications.
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Choice of models Even though the choice of a conceptual model compatible with

prototype/exemplar theory is based on psychological insights and as such is posi-

tioned within empirical data; other, potentially more advanced, models of concepts

are also conceivable. While the models used within this work possess adequate char-

acteristics that support the learning of concepts in interactive embodied agents, it

could nevertheless be argued that these models can not necessarily account for all

aspects of concept modelling. For instance, two crucial aspects of concepts, hier-

archy and compositionality, are not accounted for within the frameworks that were

used. This could be considered a shortcoming if the aim of the model is to be com-

patible with more (if not all) empirical data regarding human concept use. These

aspects are discussed in more detail in section 8.3.1. Another point that could be

made is the fact that the models used in this work are not necessarily biologically

plausible, as the manner in which prototypes are modelled in a conceptual space is

fairly abstract. This is not strictly speaking incompatible with biological plausibil-

ity; however other, more neurologically inspired accounts that more closely model

the fine-grained operations of the brain might provide explanations that are closer

to actual biological systems.

Related to choice of models are the algorithmic and computational choices that

were made for the work described in this thesis. While conceptual spaces provide

adequate means to model prototypical structures (as illustrated in section 4.3), other

techniques exist that can provide similar means of segregating and structuring sen-

sory input space. The language game model provides a reasonable mechanism of

associating perceptual data with linguistic labels; it was chosen particularly because

of the emphasis it places on social and interactive aspects of learning. However, in

similar vein, other techniques exist that can provide comparable means of learning

associations between different modalities and linguistic labels. Fairly common are

Hebbian-like associative mechanisms, for which it has been argued that they resem-

ble learning in natural systems, e.g. (O’Reilly, 1998; Munakata and Pfaffly, 2004).

Indeed, such associative mechanisms are employed by the ERA (Morse et al., 2010)

and the DAIM (Baxter et al., 2011, 2012) cognitive architectures. Overall the view
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is endorsed that a cognitive system needs two components; the first one is a means

to segregate perceptual data streams into manageable and meaningful ‘chunks’, i.e.

to create some kind of order in the “blooming, buzzing confusion” (James, 1890,

p. 488); the second component is a mechanism to form associations between dif-

ferent chunks of perceptual data, potentially governed through language. Whether

language is determining, guiding or merely influencing the formation of associations

between perceptual structures is still a topic of debate (as discussed in section 2.3.1),

but it remains clear that language has a special role in the development and opera-

tion of human cognition.

Abstraction The concepts that have been modelled in this work are relatively

concrete, e.g. colours, shapes and animals, and typically have observable proper-

ties1. In contrast, for more abstract concepts such as unemployment, ethics

or evolution it is much harder to determine the underlying properties on which

these concepts are based. As concepts are to be represented in a conceptual space,

it is vital that the relevant dimensions that are to form the axes on which the

concept is expressed are available. Particularly for more abstract concepts this is

not always that straightforward. Gärdenfors (2000b, p.21) suggests this might be

done in conceptual spaces through techniques like multidimensional scaling (MDS),

which requires similarity judgement data from people regarding a set of (abstract)

concepts. The underlying dimensional space can then be constructed through ap-

plication of the MDS algorithm. However, as Gärdenfors acknowledges, it might be

hard to give a meaningful psychological interpretation for the resulting dimensions.

Various authors have suggested that abstract concepts are somehow based on

lower level cognitive capacities, as such obtaining a hierarchical structure which re-

flects a continuum from concrete to abstract (Wiemer-Hastings et al., 2001). In this

view abstract concepts are envisioned to be based on metaphors (Lakoff, 2008), simu-

lations (Barsalou, 1999) and/or actions (Glenberg and Kaschak, 2002). Embodiment

plays an important role in this, as bodily constraints influence the manner in which

1The properties of the animal exemplars that were used in the experiments are provided by the
dataset; that is, the dataset dictates which animal has which properties, this does not need to be
inferred from visual appearance by e.g. computer vision algorithms.
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these metaphors, simulations and actions can give rise to abstraction (Barsalou,

2008). Related approaches have tailored their proposed solutions towards develop-

mental robotics, e.g. Stramandinoli et al. (2012) illustrate how higher-order concepts

might be indirectly grounded in action primitives directly grounded in sensorimotor

experiences of the iCub robot. In similar manner, it is conceivable that concepts

expressed in conceptual spaces with relative concrete dimensions could be invoked to

play a role in the representation of more abstract concepts, e.g. as building blocks,

metaphors or simulations.

Statistical learning While social and interactive concept learning appears to be

an effective approach with respect to having a robot learn concepts (as illustrated

by the research reported in this work), it is nevertheless not the only manner in

which an artificial system might learn. Other approaches that do not rely on social

and supervised means have been relatively successful. These approaches are mostly

based on aggregation of statistical regularities of the environment in which a system

operates. Examples of these approaches are latent semantic analysis (as discussed

in section 2.4.3), which allows for the formation of a coherent network of semantics

purely though exposing the system to large text corpora.

Another approach is cross-situational learning, which allows a learner to acquire

semantic knowledge in situations where there exist perceptual ambiguity regarding

the referent of a word, i.e. situations in which it is unclear what exactly is meant

with a word label (Belpaeme and Morse, 2012). While compared to social learning

through e.g. language games, cross-situational learning mechanisms perform less well

in terms of speed and performance, they do represent additional means in which a

system might acquire semantic knowledge, as such solving referential uncertainty.

It has been shown that such strategies are employed by both children and adults by

Smith and Yu (2008) and Smith et al. (2011) respectively.

Experiments that combine both social learning mechanisms and mechanisms

based on statistical regularities are presented in (Vogt and Divina, 2007; Vogt and

Haasdijk, 2010). These experiments investigate the relative influence of various

learning mechanisms such as feedback, the principle of contrast, joint attention and
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cross-situational learning on the ability of a population of agents to develop a shared

language. It is concluded that, under varying conditions, both social learning mech-

anisms (such as joint attention) and mechanisms of learning based on statistical

regularities (such as cross-situational learning) contribute to the development of a

successful communication system in a population of agents. As such, a hybrid ap-

proach in which both social learning mechanisms and strategies based on statistical

regularities (both cross-situational learning which is based on statistical occurrence

of word labels in a context provided by a (simulated) environment, but also latent

semantic analysis which relies on statistical occurrence of words within the context

of other words) could constitute a promising approach.

Social learning The notion of social learning applied to cognitive robotics, or

socially guided machine learning, is a relative new research agenda that has not

fully matured yet. Recent advances, as discussed in section 1.5.1, have shown the

feasibility of this approach, indicating that there is much to gain when learning arti-

ficial systems are able to utilise social channels that are, in a sense, readily available

when interacting with people. The reason that this field is relatively unexplored

is mainly due to the fact that only in the last decade or so robots have become

sufficiently advanced in both their cognitive capabilities and appearances that they

can be perceived as ‘natural’ social partners by people. Examples of such robots

are for instance: Kismet, iCub, Asimo, Nao and LightHead. Many more exist, see

Fong et al. (2003) for a survey.. This is a prerequisite for social learning, as crucial

to this strategy is the fact that people interacting with a robot should be able to do

so without any specialised training.

The ability of robots to behave socially appropriate is fundamental, as this can

tap into the teaching, guiding and tutoring behaviours that people naturally possess

(Breazeal et al., 2004; Weiss et al., 2010). Given the relative novelty of this approach

in combination with the promising results so far, it is expected that social learning

will have a growing impact on future applications of cognitive robotics. Indeed, it

appears that most research directed at this topic so far has been of pioneering nature

and as such much more is to be expected. In light of the advances in behaviour,
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capacities and appearances of cognitive robotics, advances in understanding of social

intelligence in humans, and suggestions that robotic learning behaviour personalised

towards individual tutors appears to be even more effective, interactive learning

robots are envisioned to be a very promising approach.

8.3 Future work

In this section we describe some topics that are perceived to be valuable additions

to models dealing with social learning of concepts. Support for the first topic, hi-

erarchy and compositionality, would result in richer conceptual structures; addition

of associative networks and statistical forms of learning would enable the model to

exhibit features such as semantic priming; and thirdly, further utilisation of active

learning through HRI could greatly enhance a robot’s learning effectiveness. These

topics constitute future work and are discussed in more detail below.

8.3.1 Hierarchy and compositionality

While studying the literature and previous work on the topic of concepts, it has

become apparent that two specific properties are important for concepts. These

properties are hierarchy and compositionality. Both are considered as fundamental

of concepts, and any theory or framework that is to capture the manner in which

concepts are used by people will have to address these.

Hierarchy This refers to the fact that concepts are typically part of a hierarchical

network consisting of different levels of description (Murphy and Lassaline, 1997).

For example, are 3-level hierarchical network may consists of higher level concepts

(superordinates) that form a more general level of description, medium level (basic

level) concepts that form a ‘regular’ version of a concept and a lower level (subor-

dinate) concepts that are the most specific version; a typical example is: animal

→ dog → labrador. Basic level concepts (dog) have special status; they strike

a balance between generality and specificity, they are learned earlier and are gener-

ally fastest in retrieval tasks (Rosch et al., 1976; Mervis and Crisafi, 1982; Murphy
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and Brownell, 1985); although this basic-level advantage can be affected by domain

specific knowledge of individuals (Tanaka and Taylor, 1991). Hierarchical levels of

representation have been implemented within language games by Vogt (2004). In

this work it was illustrated how the use of different levels of generality regarding

concept representation (and an incentive for an agent to generalise categorisation as

much as possible) can lead to the emergence of the Zipf-Mandelbrot law.

Compositionality Compositionality refers to the fact that simple concepts can

be concatenated to form more complex ones. For example, the simple concepts fire

and truck can form the more complex concept firetruck. Because firetruck is

evidently something else than simply combining all properties of fire with all prop-

erties of a truck, or taking the intersection of the set of all things that are fire and

the set of all things that are truck, there is clearly more going on. An approach

to deal with compositionality in conceptual spaces was suggested by Gärdenfors

(2000a). In this approach, analogue to the English language, the order of the two

concepts to be combined is important. Thus, when combining the concepts x and

y to xy, x acts as a modifier of y, e.g. red brick describes some kind of brick

and brick red describes some kind of red. Effectively, the properties of x that

correspond to properties of y replace the latter. If y does not have the properties

of x, they are simply added; if y does have overlapping properties with x, they

are overruled2. An illustration of how compositionality can emergence from lan-

guage game learning was reported by Vogt (2005). Common in this type of studies,

the presence of learning mechanisms that can acquire compositional structures is

assumed; as such the study investigates the conditions that favour the emergence

of compositionality. Compositionality is implemented within a set of rewrite rules

that refer to different aspects of the underlying conceptual space representation.

It was shown experimentally that the presence of a ‘transmission bottleneck’ (in

2x may also influence certain other properties of y. For instance, the addition of wooden to
spoon may yield a revision of the ‘size’ property of spoon (making it bigger); or certain properties
may be blocked as in stone lion, where stone blocks properties of lion like ‘living’ and ‘sound’
and ‘habitat’ as they do not apply to stone. In summary, when combining x and y, x may
entail certain properties that can influence y. y however, determines the context in which these
properties of x are applied.
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which the teacher only uses part of it’s language to teach a learning agent) favours

the emergence of compositional structures within the shared language that agents

develop.

Although considered fundamental to concepts, it was decided not to include the-

ses topics in the model and simulations reported here. Yet, some effort was spent on

investigating whether or not hierarchical structures could be included in the language

game framework. In contrast to Vogt (2004), in which different hierarchical levels

are modelled within the conceptual space representation of an agent’s categories,

the aim was to achieve hierarchical structures within the weights of the association

matrix connecting word labels and categories, cf. O’Connor et al. (2009). It was

found that in a basic implementation of language games there is no obvious way to

facilitate different hierarchical levels of concepts by using the weights of the asso-

ciation matrix; the framework will have to be further extended as to support this.

This endeavour was only partially finished and as such constitutes future work. A

description of the exploration regarding if and how hierarchical structures might be

incorporated in language game models through the association matrix is provided

in appendix D.

8.3.2 Addition of associative networks and incorporation of

LSA

As described in previous sections, the manner of modelling concepts in most of this

work is based on a fairly straightforward representation of various quality dimensions

in a conceptual space. Word labels are associated with regions in the conceptual

space through social linguistic interacting which typically results in a one-to-one

mapping between words and concepts. This one-to-one mapping allows for two-way

activations, as perceiving a word activates associated concepts and the other way

around, the perception of various quality data activates perceptual structures in the

conceptual space and subsequently associated word labels. However, particularly in

light of a typical property of the human memory, semantic priming3 (Neely, 1977,

3Semantic priming refers to improvements in speed or accuracy to respond to a stimulus when
this stimulus is preceded by another stimulus that is somehow semantically related.
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1991), it seems prudent to accommodate some kind of semantic associative layer

which places emphasis on linguistic association. More specifically, semantic priming

can refer to priming effects that are purely semantic (e.g. ‘dog’-‘goat’; both words

have similar meanings, they refer to furry mammal of comparable size) or to priming

effects that are more associative in nature (e.g. ‘bread’-‘butter’; these words refer to

concepts that are generally experienced in each others proximity, but they do not

have a lot of overlapping perceptual features). It has been suggested that the human

brain processes these two types of priming in a different manner (Chiarello et al.,

1990). Furthermore, it has been shown that specifically priming effects based on

pure semantic overlap (as opposed to associative priming effects) can be exhibited

by models that extract a high dimensional semantic space from a co-occurrence

matrix based on large text corpora (Lund et al., 1995). These findings illustrate

that semantic priming, being a typical property of human memory and concept use,

can be accounted for solely through analysis of statistical regularities in the linguistic

data a system is exposed to.

As such, the model as described in chapter 3 could be augmented with mecha-

nisms which form associations between words based on the statistical analysis of the

linguistic context in which they are experienced. That is, it is envisioned that the ad-

ditions of LSA-like techniques as described in section 2.4.3 might enable the system

to perform more in line with human memory and concept use through the formation

of an associative network-like structure which can facilitate semantic priming. In

more practical terms, as the language game dynamics provide the formation of as-

sociations between words and concepts, incorporation of functionality as described

above would entail the addition of a network layer which expresses associations be-

tween words only. This structure would be sensitive to statistical regularities in

which words are experienced by the system and modify and update associative con-

nections between words in the lexicon accordingly. Subsequently activation patterns

of this linguistic network could influence lower level cognition and perception in a

top-down fashion.
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8.3.3 Further exploration of active and social learning in

HRI

While the notion of active learning in machine learning has been fairly well estab-

lished (Settles, 2009), active learning in combination with HRI is relatively novel.

A key issue here is the question of how a robot learner should behave in order to

effectively utilise active learning strategies while interacting with a human part-

ner. The active learning strategies as reported in chapters 5 and 7 result in more

effective robot learning. As such, they provide an illustration of how active learn-

ing strategies that have their basis in an algorithmic machine learning context can

be extended to social human-robot interaction, thus broadening their application.

While this highlights the importance of active and appropriate social participation

of a robot learner, the strategies themselves are relatively simple. Also the learning

task in which the robot and human teacher engaged is fairly straightforward and

could be expanded, e.g. through a more challenging environment in which effective

cooperation between robots and humans is required.

Indeed, more elaborated scenarios in which the robot employs more sophisticated

means of interaction are imaginable. For instance, while the active component of

the learning strategy employed in this work was based on a distance measurement

to determine the least known concepts and as such implements only one active

strategy, it is conceivable that a robot learner might have a repertoire of strategies

to choose from. A combination of factors such as the state of the robot, the progress

of the learning experience, the social context and potentially the preferred style of

interaction with a human teacher can govern the selection of certain strategies over

others.

Endowed with more social awareness, that is, a capacity to perceive and express

a range of (non-verbal) social cues, a robot learner might be able to even more

effectively modulate a learning experience. For instance, transparency on the robot

side regarding its current understandings of a task and the deficits in its knowledge

can help a human teacher to provide more effective instructions (Chao et al., 2010);

appropriate turn-taking mechanisms can improve the interaction, increasing the
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initiative of a human partner and resulting in improved task performance (Chao

and Thomaz, 2012). Furthermore, as suggested by Cakmak et al. (2010), and also

confirmed to certain degree through the observed gender differences in reception of

an active learning robot (section 7.4.5.5), the optimal learning strategy may vary

for different users. As such, robots will need to be receptive for these different user

preferences.

In short, while the experiments reported in chapter 7 provide some insights in

learning improvements that can be gained through social and active learning, it is

expected that through increased social awareness and behaviour on the robot side

learning through social interaction can improve even more.
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Appendix A

Zoo dataset

Zoo dataset (UCI Machine Learning Repository; Frank and Asuncion, 2010)

• MAMMAL (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah,

deer, dolphin, elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leop-

ard, lion, lynx, mink, mole, mongoose, opossum, oryx, platypus, polecat, pony,

porpoise, puma, pussycat, raccoon, reindeer, seal, sealion, squirrel, vampire,

vole, wallaby, wolf

• BIRD (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich,

parakeet, penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture,

wren

• REPTILE (5) pitviper, seasnake, slowworm, tortoise, tuatara

• FISH (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha,

seahorse, sole, stingray, tuna

• AMPHIBIAN (4) frog, frog, newt, toad

• INSECT (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp

• INVERTEBRATE (10) clam, crab, crayfish, lobster, octopus, scorpion,

seawasp, slug, starfish, worm
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Appendix B

Colour conversion models

To model varying responsiveness of cone receptors, we first convert RGB colour

triplets to CIE XYZ colour space and then convert to LMS colour space (Fairchild,

2005). Next we weigh the LMS values, as to model the varying responsiveness of

the L, M and S cones.

The LMS colour space gives the response of the three types of cones. For the

conversion from RGB to CIE XYZ we first need to linearise RGB values, this is

done by applying an inverse sRGB companding function to the R, G and B values

v =


V/12.92 V ≤ 0.04045(
V+0.055
1.055

)2.4
V > 0.04045

next the linearized values r, g and b are converted to CIE XYZ using


X

Y

Z

 = MsRGB→XY Z


r

g

b



with MsRGB→XY Z being the sRGB conversion matrix, with white reference D65

MsRGB→XY Z =


0.4124564 0.3575761 0.1804375

0.2126729 0.7151522 0.0721750

0.0193339 0.1191920 0.9503041

 .
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The conversion from CIE XYZ to LMS is given by:


L

M

S

 = MXY Z→LMS


X

Y

Z



with

MXY Z→LMS =


0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296



To model the varying responsiveness of the cones, each agent a weighs the L and

M response with a weight αa and βa, randomly drawn from the range [0.33, 1].


L′

M ′

S ′

 =


αaL

βaM

S

 .

194



Appendix C

Social learning experiment data

“I would like to learn this one”
“could you teach me this one?”
“this one looks interesting”
“now, what about this one?”
“this is interesting”
“em, what about this one?”
“what about this one?”
“I would like to know what this is”
“ok, what do we have here?”
“yes, this looks interesting”
“what about this one?”
“em, I would like to know what this is”

Table C.1: Statements made by the active learning robot.

195



participant # AL tot-case conf-case %
1 0 15 4 26.67%
2 0 12 11 91.67%
3 1 16 11 68.75%
4 1 15 10 66.67%
5 0 15 6 40.00%
8 1 19 10 52.63%
9 1 18 6 33.33%
10 1 14 10 71.43%
11 0 10 2 20.00%
12 1 18 10 55.56%
13 0 18 3 16.67%
14 0 19 9 47.37%
15 0 10 8 80.00%
16 1 17 8 47.06%
17 0 14 4 28.57%
18 0 14 8 57.14%
19 1 17 10 58.82%
20 1 13 7 53.85%
21 1 10 6 60.00%
22 0 20 7 35.00%
23 1 15 6 40.00%
24 0 18 5 27.78%
25 0 23 6 26.09%
26 1 15 9 60.00%
27 1 15 10 66.67%
28 1 15 10 66.67%
29 0 16 6 37.50%
30 0 17 9 52.94%
31 0 15 8 53.33%
32 1 7 4 57.14%
33 0 21 8 38.10%
34 1 14 9 64.29%
35 1 17 7 41.18%
36 0 20 8 40.00%
37 1 15 8 53.33%
38 0 13 4 30.77%
39 1 13 7 53.85%
40 0 16 12 75.00%
41 0 18 10 55.56%

Table C.2: Ambiguity interpretation for all participants. AL denotes the AL (1)
or non-AL (0) condition, ‘tot-case’ denotes the number of cases with two exemplars
from the same category, ‘conf-case’ denotes the number of cases in which participants
confirmed the robot’s guess as being correct and % calculates the percentage (‘conf-
case’ divided by ‘tot-case’).
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participant # AL GG success AL response
1 no 0.48 0.3
2 no 0.64 0.28
5 no 0.56 0.38
11 no 0.6 0.3
13 no 0.46 0.26
14 no 0.54 0.44
15 no 0.68 0.32
17 no 0.56 0.38
18 no 0.64 0.22
22 no 0.54 0.22
24 no 0.4 0.38
25 no 0.42 0.38
29 no 0.62 0.28
30 no 0.68 0.48
31 no 0.54 0.3
33 no 0.48 0.36
36 no 0.62 0.26
38 no 0.54 0.32
40 no 0.7 0.3
41 no 0.62 0.18
3 yes 0.72 0.48
4 yes 0.66 0.76
8 yes 0.62 0.94
9 yes 0.52 0.4
10 yes 0.68 0.46
12 yes 0.64 0.58
16 yes 0.46 0.38
19 yes 0.6 0.46
20 yes 0.62 0.62
21 yes 0.76 0.44
23 yes 0.54 0.46
26 yes 0.62 0.8
27 yes 0.56 0.44
28 yes 0.7 0.44
32 yes 0.7 0.58
34 yes 0.72 0.42
35 yes 0.56 0.38
37 yes 0.62 0.86
39 yes 0.6 0.8

Table C.3: Guessing game success and response to AL of individual participants for
the AL and non-AL group.
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Social Robot Teaching Questionnaire

Participant number: Age:

Gender: F / M Native speaker: yes / no

Please answer the following questions by placing an 'X' on the spot that best reflects your answer. 
Additionally, you can provide comments to elaborate your answers.

1. How do you rate your interaction with the robot?

not satisfactory at all                        very satisfactory
comments

2. How do you rate the robot's behaviour?

not natural at all                              very natural
comments

3. Do you have any experience with robots?

I have no experience with robots              I have a lot of experience with robots
comments

4. Who was in control of the teaching sessions?

I was in control            the robot was in control
comments

C.1 Questionnaire
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5. On what basis did you choose the animal examples as topic? Please explain.

6. Do you like science fiction (books, film, etc)?

I don't like science fiction at all                        I very much like science fiction
comments

7. How many emotions do you think the robot has?

the robot has no emotions                the robot has a lot of emotions
comments

8. How smart do you think the robot is?

the robot is not smart at all                                 the robot is very smart
comments

9. How many hours per week do you spend using a computer?

hours computer use per week (estimate): 

comments

10. General comments
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How I am in general

Here are a number of characteristics that may or may not apply to you.  For example, do you agree that you are 
someone who likes to spend time with others?  Please write a number next to each statement to indicate the 
extent to which you agree or disagree with that statement.

1
Disagree
Strongly

2
Disagree

a little

3
Neither agree
nor disagree

4
Agree
a little

5
Agree

strongly

I am someone who…

1. _____  Is talkative

2. _____  Tends to find fault with others

3. _____  Does a thorough job

4. _____  Is depressed, blue

5. _____  Is original, comes up with new ideas

6. _____  Is reserved

7. _____  Is helpful and unselfish with others

8. _____  Can be somewhat careless

9. _____  Is relaxed, handles stress well

10. _____  Is curious about many different things

11. _____  Is full of energy

12. _____  Starts quarrels with others

13. _____  Is a reliable worker

14. _____  Can be tense

15. _____  Is ingenious, a deep thinker

16. _____  Generates a lot of enthusiasm

17. _____  Has a forgiving nature

18. _____  Tends to be disorganized

19. _____  Worries a lot

20. _____  Has an active imagination

21. _____  Tends to be quiet

22. _____  Is generally trusting

23. _____  Tends to be lazy

24. _____  Is emotionally stable, not easily upset

25. _____  Is inventive

26. _____  Has an assertive personality

27. _____  Can be cold and aloof

28. _____  Perseveres until the task is finished

29. _____  Can be moody

30. _____  Values artistic, aesthetic experiences

31. _____  Is sometimes shy, inhibited

32. _____  Is considerate and kind to almost everyone

33. _____  Does things efficiently

34. _____  Remains calm in tense situations

35. _____  Prefers work that is routine

36. _____  Is outgoing, sociable

37. _____  Is sometimes rude to others

38. _____  Makes plans and follows through with them

39. _____  Gets nervous easily

40. _____  Likes to reflect, play with ideas

41. _____  Has few artistic interests

42. _____  Likes to cooperate with others

43. _____  Is easily distracted

44. _____  Is sophisticated in art, music, or literature
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C.1.1 Participants’ response to Question 5: “On what basis

did you choose the animal examples as topic?”

• “Based on reproductive system”

• “what I thought would be easy for the robot to learn”

• “often where the robot looked to, what seemed to be the easiest for me”

• “1. I choose this animal which I was familiar 2. I choose this picture where the robot was

looking to.”

• “As randomly as possible, though I attempted to introduce new animals when I had the

opportunity”

• “random”

• “By categories I was sure on. Ignored ones I was not sure even I knew.”

• “The picture I felt may challenge the robot”

• “Ones I had not taught the robot. Chose different examples of similar animals to teach the

robot difference in types.”

• “Something that had not appeared for a while, or trickier options such as a chicken being a

bird, but looking like a mammal.”

• “on preference, e.g. because I like a whale better than a bird and based on what animal I

was sure of knowing the right category for”

• “first thing that came to sight.”

• “Ones I like”

• “from my knowledge, learning in school. Also watching nature programs”

• “I wanted to show him the widest range of categories, but also to check he was remembering

what he had learned.”

• “firstly the pictures I liked the most or the animals that were my favourite. Then tried to

include the rest when they came up”

• “I tended to choose an animal I prefered.”

• “On what I was sure of or what the robot stated & looked at when saying ’I want to learn

this one’.”

• “I choose a variety to ensure learning.”

• “At random if I knew all three, if not I would select the one I knew. If two were the same I

would pick one of them.”

• “When 2 animals were same category I chose 3rd animal easier for the robot to learn. When

2+ animals were the same, I made it make a mistake to learn new animals.”

• “whichever one appealed to me, either cuteness or weirdness”

• “when new animals not encountered would pick or animals of group covered but not this

individual species”
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• “I’ve tried to repeat the same groups a couple of times. I avoided one of the groups as I

wasn’t sure what it means :)”

• “I tried to choose ones the robot would learn from.”

• “I had to be certain about the category (i.e., not sure? Whether certain animals were birds

or mammals → platypus)”

• “the categories I actually knew! (have to brush up my biology!!) and the attractiveness of

the pictures”

• “The ones I was certain I knew the categories”

• “what the pictures looked like. Animals I am familiar of”

• “which animal I prefered, how cute & fluffy it looked, or how interesting I thought it was.”

• “The animals I was sure about their category.”

• “I chose ones that I though would be more difficult to guess to see how good the program

was”

• “- random at first then tried to pick some I know I had taught (ie -used same photo) and

then test with other of same category”

• “which ever one stood out the most”

• “I chose based on differences to other parts of the same category such as seals, dolphins &

big cats or based on similarity to others & insects”

• “sometimes the one the robot looked at. Sometimes when there was just one separate

example among two similar, sometimes when there was a typical example of a category”

• “I chose the easiest, those one are easily to be classified”

• “what I recognised first or if one looked more interesting”
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Appendix D

Modelling hierarchical concepts in

language games

In human cognitive systems concepts tend to have a hierarchical structure. That is,

concepts do not exist in isolation, but are embedded within a taxonomy of related

other concepts. Typically, this taxonomy is depicted as a hierarchical tree structure,

with the most general (superordinate) concepts at the top, the ‘ordinary’ concepts in

the middle (basic level) and the most specific concepts at the bottom (subordinate).

In such a taxonomy, items in the tree are instantiations of their parent items or

inhered properties from them, thus defining the hierarchy. So, a golden retriever isa

dog isa animal isa living isa object. There is abundant evidence that ‘basic level’

concepts have special status (Rosch, 1978), i.e. are the most accessible, the most

used etc. Also in child-directed speech caregivers typically use the basic level to

describe something to a child.

It is not clear to what extent people’s use of concepts is truly organised in strict

taxonomic fashion; i.e. some natural taxonomies like animal order are used be

people, but it could be argued that this is learned trough acquisition of knowledge

about genetic inheritance, rather than a ‘real’ feat of conceptual organisation. cat

and dog are both animal is a very typical example of this, but all it would require

is to learn that animal has strong connections to the perceptual properties of both

cat and dog. O’Connor et al. (2009) show that this kind of hierarchical organisation

can spontaneously arise by statistical learning of properties of objects.
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O’Connor et al. show how a 2-level hierarchy (basic level and superordinate)

can be represented in a feature-based attractor network. After training the network

is able to express basic level concepts with very specific features (high weight for a

few defining features) and superordinates with a more moderate pattern of feature

activation.

D.1 Hierarchical CS

Hierarchy could be strictly imposed in a model, i.e. every concept is placed at a cer-

tain level on a taxonomy. However, ‘functional’ hierarchy could also be achieved by

having a network of relations in which a hierarchy can be build through hierarchical

clustering algorithm (based on distance).

Based on the work of O’Connor et al. (2009), we view an agent as having knowl-

edge on different hierarchical levels when it knows some words with a strong con-

nection to only a few features, and some other words with relative weak connections

to a wide range of features. The former words would resemble something at the

level of basic level words, and the latter would be more general, at the level of

superordinates. Using this as a staring point, we can endow an agent with some

predefined knowledge at different hierarchical levels. Such a typical representation

is displayed in figure D.1. In here the agent has a repertoire of words to indicate

colour names and basic shapes that have a strong connection to one particular point

in the agents CS. Next to this the agent knows the words ‘colour’ and ‘shape’ which

have a weaker connection (0.5) to a range of points in the CS. The latter can be

thought of as superordinate concepts.

However, when an agent endowed with the conceptual knowledge as described

above acts as a teacher to another agent with a blank repertoire while engaging in

standard language game interaction, the learning agent fails to learn the superordi-

nates. This is the case because the due to the weak link of the superordinate words,

they are never used to express an item in the context, making it impossible for the

learning agent to acquire these words.

In a natural situation superordinate words would be used (i.e. by caregivers) in
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Figure D.1: Agent knowledge

cases when they don’t just want to name a certain object, but rather speak of the

class of objects that is represented by a particular superordinate. For instance “lets

find all the animals”, when reading a book to a child. Another situation would be

if it is required to contrast a certain object against a group of other type of objects.

I.e. “where is the animal” when trying to discriminate a (picture) of an dog from

pictures of other (non-living) objects. Describing the dog in terms of its property of

being animate contrasts it to the other objects.

In O’Connor et al. (2009) the learning network is first exposed to basic level data

and after that it given superordinate training data. However, rather than doing this

manual, we seek to create a situation in which the speaking agent has good reason

to use the superordinate word as a description of the topic, instead of a more specific

label.

Ideally, within LG the topic should be described occasionally on a superordinate

level in order to have the learning agent acquire superordinate labels. One way of

doing this is to take other items of the context into account. By doing this, a label

that is the most descriptive in terms of the overall context can be used. For instance,

if there are 3 items in the context, of which the topic is superordinate a, and the

two others are superordinate b, than it should be more descriptive to use a to label

the topic, rather than a more specific c, d, e or f basic level labels.

Another way of having an agent occasionally using the superordinate label is by

modifying the way in which labels are selected to describe a stimulus. Normally,

the label with the strongest connection to an observed stimulus would be used,
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but this can be modified into a probabilistic version in which the strength of the

connection determines the chances of selecting the label. So, if an agent is endowed

with predefined knowledge, with labels connecting strongly to specific (basic level)

concepts and somewhat weaker to superordinates, the probability of using the basic

level label would be high and of using the superordinate label would be lower, but

nevertheless present.

Why basic LG modelling is not rich enough for hierarchy representa-

tions. The assumption that hierarchies can be represented in a weighted matrix as

illustrated in Figure D.1 is based on the observations of human hierarchical naming

and modelling using a network architecture, as done by O’Connor et al. (2009).

Using this kind of representation, a ‘basic level’ word would be characterised by

having relatively few but strong connections to a limited number of perceptual fea-

tures, whereas a ‘superordinate’ word would have a relatively large number of weaker

connections to perceptual features.

To model this a teaching agent was equipped with the relevant hierarchical struc-

ture as described above, and engaged in interaction with a learning agent. To make

sure that not only words with the highest connection to perceptions were used (as

would be typical in a normal LG), the choice of word labels was modified in such

a way that the strength of the connection specifies a chance of using that word.

More specifically, all the weights were normalised to ensure a total weight of 1.0,

so that having a weight of 0.4 encodes for 40% chance of using that word label.

Thus, during LG interaction, a teaching agent would most often use the basic level

words (because they have the strongest connection), but would occasionally also

employ superordinate words. Running a LG like this results in the learning more

or less learning the basic level words, and thus achieving some kind of performance

which is above chance level. However, the learning of superordinates is problematic,

as typically the superordinate also tends to become strongly associated with one

specific percept, rather than a weak connection to multiple percepts. This is due

to the nature of the language game. The specific percept that gets associated with

the superordinate label tends to be a percept with a central position in the input
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space, i.e. a greyish colour when the colour domain is used, as (0.5, 0.5, 0.5) is most

general with respect to all possible colours in RGB encoding. However, rather than

concluding that this percept represents a superordinate, it also encodes for the basic

level of grey.

The inability to represent hierarchical structures in LG representation is due to

the manner of organising associations in the word label - percept matrix. Having a

weak connection does not really specify that a certain word has a certain connection

to a percept, but rather encodes that it is not really effective in LG interaction. This

is related to the ‘winner takes all’ strategy that is employed, a language games aim to

find single effective connections between words and percepts, rather than associating

one word with multiple percepts. Synonymy is avoided through the mechanism of

lateral inhibition.

The manner in which training data was generated was also modified. Rather than

having pure random points in the input space (as in basic LG), training data was

generated with the use of prototypes. Thus, each item in the context would be based

on a prototypical structure in such a way the token generated from the (proto)type

would always be closer to its own type than to any other of the prototypes.

The communicative success of a language game with such a probabilistic selection

mechanism is shown in figure D.1, and the teaching agent structure is depicted in

figure D.3, before and after learning.
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Figure D.2: LG with probabilistic label selection, 5000 interactions, 100 replicas

Figure D.3: Teaching agent knowledge, before and after
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