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Abstract 

The wide use of nanoscale materials in food and health care products raises the concern 

of their possible uptake across the gastrointestinal tract, but very limited data are 

available on their uptake kinetics, and the potential hazards for humans. In this study, 

the uptake mechanism of titanium dioxide (TiO2) across the isolated perfused fish 

intestine and human intestinal Caco-2 cells were evaluated. The in vitro preparation of 

the whole gut sac and the isolated perfused intestine of rainbow trout were performed 

using both bulk and nano TiO2 in a concentration of 1 mg l
-1

 for up to 4 h. The results 

showed that the Ti from both bulk and TiO2 NPs were mainly accumulated in the mid 

and hind intestine, with 80% or more of the accumulation in the mucosa rather than the 

underlying muscularis. Perfused intestines showed a saturable, time-dependent 

accumulation of the Ti from TiO2 and the uptake of Ti from exposure to NPs was faster 

than that of the bulk form. The uptake of Ti from exposure to TiO2 NPs increases 10 

fold when the CO2 in the gas mixture was lowered to 0.5%. Subsequently, further 

investigation on the mechanisms of uptake of TiO2 was applied using different kinds of 

inhibitors. Adding 10 mmol l
-1

 cyanide did not stop Ti uptake from TiO2 exposures, and 

100 µmol l
-1

 vanadate (ATPase inhibitor) caused a 2.8 fold reduction in the net uptake 

rate of Ti for the TiO2 NP exposure. Luminal additions of 120 IU ml
-1

 nystatin 

(endocytosis inhibitor) blocked the uptake of Ti from both bulk and TiO2 NPs 

treatments. The results indicate that Ti accumulation from TiO2 exposures was sensitive 
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to both nystatin and vanadate; the former suggesting that there is an endocytosis 

involvement in the uptake of TiO2 across the intestinal epithelium. Human intestinal 

Caco-2 cell showed a steady, saturable and time-dependent accumulation of Ti over 24 

h exposures to 1 mg l
-1

 TiO2 (for all forms of TiO2). A scanning electron microscope 

study indicated the appearance of the particles underneath the cells, increasing the 

evidence of the Ti uptake from different forms of TiO2 by Caco-2 cells. Both nystatin 

and vanadate increase the accumulation of TiO2 which suggests interference of these 

drugs with endocytic pathways. All the data in the thesis demonstrates Ti uptake across 

the intestinal epithelium from TiO2 exposures involving CO2-dependent and nystatin-

sensitive mechanisms. The results in this thesis have contributed to some understanding 

on the behaviour, uptake and effects of the TiO2 NPs across the intestine; and highlight 

the possible dietary hazard of the NPs to human health.  
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1.1 Introduction to nanoparticles and nanotechnology 

Nanotechnology and the use of nano-scale materials is a relatively new area of science 

and technology which has become a significant worldwide industry, and is growing 

rapidly (www.nano.org.uk). Nanoparticles (NPs) are defined as particles with at least 

one dimension less than 100 nm (Masciangioli and Zhang, 2003; Roco, 2003) and the 

range size of these NPs should be between a lower limit of 1 nm and upper limit of 100 

nm (Lövestam et al., 2010). This definition is not absolute, according to toxicological 

studies which have included work on aggregates of particles with dimensions of a few 

hundred nanometers (Handy and Shaw, 2007; Handy et al., 2008a). Clearly for NPs, the 

primary size should be considered (e.g., the diameter of a single particle). In addition, 

the sizes of aggregates of NPs, which can be several hundred nanometers or more, and 

the distribution of particle sizes present in the material also need to be considered. In 

mammalian toxicology particles sizes (PM, particulate matter) have been defined as 

coarse particles (diameter between 10 µm and 2.5 µm, PM 10-2.5), fine particles (2.5 

µm or less, PM 2.5), or ultrafine particles (< 0.1 µm, PM 0.1), so NPs could be regarded 

as ultrafine particles or smaller (Handy et al.,  2008a). 

There are a wide variety of nanomaterials (NMs) and particles at the nanoscale 

range, because these NMs are purposefully designed for a particular application it may 

be difficult to classify these materials into chemical groups, and the use of the product 

(risk according to how products are used) may be more important for the exposure 

aspects of risk assessment of these materials (Hansen et al., 2008). Considerable effort 

has therefore focused on the classification of NMs according to the industrial aspect 

they are used in, for example: domestic appliances, electronics and computers, food and 

food packaging, health and fitness which includes (personal care products, cosmetics, 

sunscreen and sporting goods), home and garden, water treatment technology and 
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environmental remediation  (Masciangioli  and Zhang, 2003; Roco, 2003; Aitken et al.,  

2006; Hansen et al.,  2008). 

 There is also another classification of NMs proposed by Hansen et al. (2007) 

which broadly classifies NMs, not in terms of products, but according to how the 

material is incorporated into the product, including three main categories: whether NMs 

are the bulk of the material in the product, whether they exist on the surface (surface 

coated products), or forming part of the structure (NPs matrix within the product). 

These main categories could be also divided into subcategories; the bulk of the material 

may consist of just one type of NMs or more than two different types (Hansen et al., 

2007). For the surface coated products, the surface coated with NMs consist of the same 

structure material like the bulk, surface covers with un-patterned film of NMs thickness 

different from the substrate material, or the surface is consist of pattern film on a 

substrate (the nanoscale material is either the film or the pattern). The NPs in the third 

category may be present in four subcategories depending on the environment; the NPs 

may be bound to another solid structure surface, suspended in liquid, dispersed into a  

solid, or the NPs can be suspended in air (airborne NPs) (Hansen et al., 2007).       

Risk assessment of new materials is traditionally based on a chemicals approach, 

and so there has also been debate about how to chemically classify NPs and NMs. The 

many different chemical structures may justify the classification of these materials into 

some broad chemical categories initially (Jortner and Rao, 2002; Rao, 2004; Handy et 

al., 2008a; Stone et al., 2010). These chemical classifications of the NPs are shown in 

Table 1.1. 
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Table 1.1 Chemical categories of nanoparticles. 

1.2 Physico-chemical properties of nanoparticles 

One of the main concerns about nanomaterials is that their novel properties will lead to 

new or unknown toxic effects. It is therefore critical to consider the physico-chemistry 

of NPs in toxicology (Lead and Wilkinson, 2006; Handy et al., 2008a; Landsiedel et al., 

2010). There is much research to do on this aspect, but factors of concern include 

surface area, shape, crystal structure, surface reactivity and how aggregation chemistry 

influences toxicity (Handy et al., 2008a, Stone et al., 2010, Von der Kammer et al., 

2012). NPs can show aggregation behaviour which partly depends on the large surface 

area proportional to their volume. Particles may form agglomerates (loosely bound 

particles) which bonded together by weak forces, such as Vander Waals forces, 

electrostatic forces and surface tension. Alternatively, particles may also form 

aggregates (groups of strongly connected particles) that are not easily redispersed 

mechanically (Handy et al., 2008a). These forces are explained by the DLVO theory 

which is named after Derjaguin and Landau, (1941), and Verwey and Overbeek, (1948). 

When the NPs aggregate in a solution they should be follow this theory i.e., remain as 

single particles in a solution, or form aggregates via particle-particle, particle-cluster 

Chemical categories Sub-category Materials 

Carbon based materials 
Nanotubes 

Single-walled carbon nanotubes “SWCNTS” 

Multi-walled carbon nanotubes “MWCNTS” 

Fullerenes C60, buckyballs 

Metal based materials 

Metals Gold, silver, iron 

Metal oxides Titanium dioxide, zinc oxide, silicon oxide 

Metal sulphides Zinc sulphides, copper sulphides 

Nitrides of metals Silicon, cadmium, tellurium 

Organic 
Polymers Polyethyleneglycol, latex 

Dendrimers Polyamidoamide 

Composites 
polymer nanocomposites   Multicomponent nanomaterial 

quantum dots Multicomponent nanomaterial 
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and cluster-cluster interactions (Handy et al., 2008a). The theory also predicts that ionic 

strength (e.g., changes in salinity), and the presence of cations such as Ca
2+

 (e.g., 

changes in water hardness), or other charged particles will influence this aggregation 

behaviour (Borm et al., 2006; Handy et al., 2008a, Von der Kammer et al., 2012). There 

are many physico-chemical properties to investigate in toxicology studies. So far, 

particular emphasis has been given to the surface area issue. The behaviour of NPs can 

be influenced by the increased specific surface area (SSA) proportional to the small size 

of NPs, and this may increase the bioavailability and toxicity of the NPs (Handy et al., 

2008a). According to Oberdörster et al. (2007) the dose effect of NMs can be better 

explained based on the SSA rather than concentration, suggesting the former may be 

more important in the toxicity of NPs. Similar arguments have been made about surface 

reactivity, since it is this surface that presents toxic chemicals to the organism. A huge 

increase in a surface: volume ratio, and hence the presence of more surface molecules 

should result in more intrinsic toxicity of the materials (Donaldson and Tran, 2004), and 

for some particles there is evidence that toxicity may be a function of particle size rather 

than mass concentration (Oberdörster, 2000). Surface charge also is an issue, a study by 

Schaeublin et al. (2011) showed that gold NPs sized at 1.5 nm, either positively 

charged, neutral and negatively charged, cause disrupted to the morphology of human 

keratinocyte cell line (HaCaT); with cell death through apoptosis induced by charged 

NPs and cell necrosis by neutral NPs. Other studies on invertebrates also emphasized 

the differences in acute toxicity of NP is dependent on sample preparation and therefore 

the presence of small or larger aggregates in the test medium (Lovern and Klaper, 

2006). The toxicity of NPs may be further influenced by the shape of the materials. 

Hamilton et al. (2009) showed that anatase nanobelt increased markers of the 

inflammation detected in bronchoalveolar lavage (BAL) of mice in comparison to those 

detected with TiO2 nanospheres in treated animals. 
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1.3 Routes of exposure   

The exposures of humans to manufactured NPs in the environment provide different 

routes to penetrate the human body, i.e. the skin (dermal penetration), respiratory tract 

(inhalation), and gastrointestinal tract (ingestion) (Hoet et al., 2004; Oberdörster et al., 

2005b; Yah et al., 2012). Humans could also be exposed to NPs through other routes 

(medical devices, cosmetics, or clinical procedures using manufactured NMs, Nel et al., 

2006; Arora et al., 2012). Another possible route of exposure is by parental 

administration of NPs in the case of biomedical applications like intravenous, 

intradermal and peritoneal exposures (Yah et al., 2012). 

1.3.1 Skin  

The skin is the largest organ of the body and interfaces with the environment. The skin 

is considered as the largest primary defence of the body against external interferences. 

The skin is directly exposed to NPs through the application of sunscreen creams, 

cosmetics, skin care products and drug treatments (Oberdörster et al., 2005b; Hagens et 

al., 2007). Then the NPs could penetrate into the deeper parts of the skin; and have been 

localized within the epidermal and dermal layers (e.g., Fullerene-based peptides, Rouse 

et al., 2006; TiO2 NPs, Gontier et al., 2008).  

1.3.2 Respiratory system 

Inhalation is considered as the main route of exposure to NPs in humans and recently 

researchers found different pathogenic effects after inhalation of different manufactured 

NPs (Oberdörster et al., 2005a; Donaldson et al., 2006; Lam et al., 2006; Song et al., 

2009). An in vitro study on the exposure of human bronchial epithelial cells (BEAS-2B) 

to different concentrations of SWCNT (0.06 mg ml
-1

, 0.12 mg ml
-1

 or 0.24 mg ml
-1

) for 

18 h at 37 ºC showed that SWCNT caused structural and morphological changes, 

cellular toxicity, apoptosis and induced an oxidative stress effect in the lung (Shvedova  
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et al., 2003). Other studies showed that the absorption of NPs by the lung epithelium, 

primarily through the alveolar region, could reach different internal body systems or 

organs like the spleen, liver, bone marrow, lymph nodes, heart and brain via blood and 

lymph (Nemmar et al., 2001; Kreyling et al., 2002; Oberdörster et al., 2005a; Hagens et 

al., 2007).  

1.3.3 Gastrointestinal tract (GIT) 

Another important route of exposure to NPs is via ingestion. Gastrointestinal tract 

exposure to NPs could be happening either via an indirect route through the respiratory 

system after excretion of inhaled particles by the mucociliary escalator and then 

ingested into GIT (Oberdörster et al., 2005b; Hagens et al., 2007), or directly ingested 

via food, water, drugs, cosmetics and drug delivery devices (Oberdörster et al., 2005b; 

Arora et al., 2012; Yah et al., 2012). There is a wide concern about NPs toxicity through 

food (Tiede et al., 2008; Fröhlich and Roblegg, 2012). Weir et al. (2012) shows that 

body exposure to TiO2 via food was on average between 1-3 mg TiO2/Kg body weight 

/day depending on the age and dietary habits considered 36% of these particles in 

nanoscale range. 

Absorption of NPs through the gut epithelium have been shown by some studies 

and with sometimes with evidence of translocatone into other internal organs (Jani et 

al., 1990; Borm and Kreyling, 2004; Oberdörster et al., 2005a; Oberdörster et al., 

2005b; Chung et al., 2010). Koeneman et al. (2010) showed that TiO2 NP at 10 µg ml
-1

 

and above could cross the  human intestinal cell line (Caco-2) and penetrate through the 

cells via a transcellular vesicular trafficking pathway without disturbing junctional 

complexes.  

Oral and dietary exposures to TiO2 NPs in vivo show some toxic effects to the 

GIT in different organisms. A study by Wang et al. (2007) indicates some pathology in 

liver and kidney (hepatic injury and nephrotoxicity) of mice after single oral gavage of 
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TiO2 NPs (25 or 80 nm) and observed Ti accumulation in spleen, kidney and lung. 

However, the dietary exposure of TiO2 NPs showed less toxicity to the GIT and 

detected Ti accumulation in different organs (e.g., rat, Jani et al., 1994; fish, Ramsden et 

al., 2009).         

1.4 Toxic effects of NPs on different organisms   

Studies on the toxic effects of NPs have been applied to different groups of organisms 

including human, mammals, birds, fish, invertebrates, plants, as well as bacteria. A 

number of vertebrates (amphibians and reptiles) still lack information on NPs toxicity to 

date. Some key findings on different groups of organisms are summarised below. 

1.4.1 Mammals and birds  

There are many studies on NPs toxicity on mammals, and most of these studies have 

focused on the respiratory toxicity. Pathologies are observed in rodents after 

intratracheal instillation or aerosol inhalation of different NPs, including the formation 

of epithelial granuloma, fibrosis and inflammation according to the type of particle used 

(Bermudez et al., 2004; Lam et al., 2004; Warheit et al., 2004; Warheit et al., 2006). 

Lam et al. (2004) showed that exposure of mice to 0.5 mg/mouse of SWCNT induced 

56% mortality with lung lesions, necrosis, macrophages and granulomas, interstitial and 

peribronchial inflammation.  

Also, there is NP toxicity detected in liver, spleen, and kidney of mice after 

dietary exposures (Chen et al., 2006; Wang et al., 2006). Mice exposed to copper NPs 

via oral gavage demonstrated acute toxicity with pathological damage to kidney, liver 

and spleen compare to bulk copper; and observed colour changes (staining intensity) in 

both spleen and kidney with the atrophy of spleen after ingesting nano-copper particles 

(Chen et al., 2006). While the exposure of adult mice to nano-zinc suspensions showed 

the symptoms of lethargy, nausea, vomiting and diarrhoea (Wang et al., 2006). Liver 
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and heart damage, disturbances of energy and amino acid metabolism was observed 

after oral administration of TiO2 NP in rats (Bu et al., 2010).  

There is a very limited data on NP exposures to birds. All the studies have been 

focused on silver NPs with no significant effects shown for different parameters (white 

blood cells, blood enzymes, embryonic growth and development) in broiler chicken or 

chicken embryo (Grodzik and Sawosz, 2006; Sawosz et al., 2007; Ahmadi and 

Kurdestany, 2010; Pineda et al., 2012).  

1.4.2 Fish, aquatic and terrestrial invertebrates 

For the fishes, most of the studies have been on fresh water fish. There is evidence of a 

range of  different toxic effects with some data on the accumulation of NPs  in different 

organs (Oberdörster, 2004; Oberdörster et al., 2006; Federici et al., 2007; Smith et al., 

2007; Ramsden et al., 2009; Wu et al., 2010; Fraser et al., 2011; Shaw and Handy, 

2011; Jahanbakhshi et al., 2012). Aqueous exposure of rainbow trout (Oncorhynchus 

mykiss) to different sizes
 
of Ag NPs for 10 days resulted in accumulation of silver in the 

gills and liver with oxidative stress effects found in the gills (Scown et al., 2010). The 

accumulation of silver in the liver was twice that found in the gills, which suggests that 

the important route of exposure and uptake of Ag NPs in fish may be via the gut 

epithelium (Scown et al., 2010).  

There are lots of data available on fresh water invertebrates specially in Daphnia 

magna (Lovern and Klaper, 2006; Oberdörster et al., 2006; Lovern et al., 2007; Roberts 

et al., 2007; Gao et al., 2009). The exposure of Daphnia magna to 0.2-10 mg1
-1 

of TiO2 

NPs (10-20 nm) for 48h showed 100 % mortality (Lovern and Klaper, 2006). Daphnia 

magna showed acute toxicity and biomodification when exposed to 20 mg1
-1 

SWCNT 

(Lipid coated) (1.2 nm) and 100% mortality observed after 48 h (Roberts et al., 2007). 

Only a few data have been collected on terrestrial invertebrates (Jemec et al., 

2008; Drobne et al., 2009; Wang et al., 2009; Hu et al., 2010; Li et al., 2011). A study 
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by Li et al. (2011) showed that the exposure of earthworm Eisenia fetida to 1000 mg 

ZnO NP Kg
-1

 agar for short time (96 h) resulted in 100% mortality. However, using the 

filter paper method demonstrated highest mortality rate with lower concentrations (50 

mg l
-1

). This mortality seemed to decline with increasing exposure concentration (Li et 

al., 2011).  

One study on the marine invertebrate (Arenicola marina) lugworm showed a 

significant decrease in casting rate, as well as increases in cellular and DNA damage 

after exposure to 1 g Kg
-1

 TiO2 NP through natural sediments for 10 days. However, no 

significant effects were seen after exposed to 0.03 g Kg
-1

 SWNT (Galloway et al., 

2010).    

1.4.3 Plants  

Only a few data are available on interaction of NPs with plants (Corredor et al., 2009; 

Wang et al., 2011; Lee et al., 2012). In a hydroponics study, a slight reduction on root 

elongation was found in presence of uncoated alumina NPs but not with phenanthrene 

coated NPs (Yang and Watts, 2005). One study on green algae showed some toxic 

effects, observed by a growth reduction after the exposure to TiO2 NPs (Hund-Rinke 

and Simon, 2006). TiO2 also induced a positive effect on the growth of spinach, when 

either administered to the seeds or sprayed onto the leaves (Zheng et al., 2005; Yang et 

al., 2006). 

1.4.4 Bacteria 

Toxicological studies of NPs are limited on bacteria, protozoa, and other microbes 

(Lyon et al., 2005; Adams et al., 2006; Zhu et al., 2006; Zhang et al., 2007; Pelletier et 

al., 2010). Zhu et al. (2006) showed that the uptake of CNTs by unicellular protozoans 

induced a dose-dependent growth inhibition. Inorganic NPs (TiO2, SiO2 and ZnO) had 

toxic effects on bacteria (Escherichia coli and Bacillus Subtilis) represented by 
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enhancing generation of reactive oxygen species associated with the inhibition of 

bacterial growth (Adams et al., 2006). In addition, the presence of light was a 

significant factor for increasing this toxicity (Adams et al., 2006). 

1.5 Systemic toxicity 

The toxicity of certain NPs could be reaching beyond the site of uptake to the major 

internal body systems. In most studies, the lethal dose (LD50) may not be estimated 

because of the difficulty to achieve the  high mg levels needed to achieve acute toxicity 

for many NPs (Handy et al., 2008a). For example, Chen et al. (2006) showed that the 

LD50 determined for 23.5 nm copper NPs and cupric ions in mice exposed via oral 

gavage were 413 and 110 mg kg
-1

 body weight, respectively. Lovern and Klaper (2006) 

also suggest that the medial lethal concentration (LC50) level for 30 nm TiO2 is 5.5 mg l
-

1
 in Daphnia magna. It is therefore likely that the main concern for NPs will be 

sublethal effects on the physiology and biochemistry of the animals. Most of the 

literature on the body systems toxicity of NPs comes from mammalian studies mainly 

on respiratory exposure, or from in vitro cell studies (Handy and Shaw, 2007).  

1.5.1 Respiratory system 

There is an historic literature on respiratory exposure to ultrafine particles, and 

arguably, the respiratory route has been investigated the most. Exposure of the 

respiratory system to NPs has demonstrated lung injury, inflammation and possibly 

tumour formation in the lung in several studies (Bermudez et al., 2004; Lam et al., 

2004; Warheit et al., 2004, 2006). Epithelial cells of the mammalian lung represent a 

typical mucous epithelial tissue, which is not fundamentally different to the structure of 

the epithelia of gill or gut of the aquatic organisms, or the body surface of earth worms 

(Handy et al., 2008b). There is also evidence of the similar epithelial injury observed in 

fish gill (Federici et al., 2007; Smith et al., 2007; Sun et al., 2009).  
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1.5.2 Gastrointestinal tract (GIT) 

The gut is also an important epithelial tissue, and a potential route of uptake of toxic 

chemicals. The data on dietary exposure to NPs is currently limited (Panessa-Warren et 

al., 2006; Arora et al., 2012). However, exposure of mice to 5 g kg
-1

 of zinc NPs (58 

nm) caused severe symptoms of lethargy, vomiting and diarrhoea for the first few days 

and two mortalities after the first week; the dead mice showed aggregation of Zn 

particles in the intestine (Wang et al., 2006). Federici et al. (2007) reported that the 

exposure of rainbow trout to 0.1-1 mg1
-1 

of TiO2 NPs (24 nm) for up to 14 days via the 

water (stress-induced by drinking contaminated water) caused injuries to the intestine 

including erosion of the villi, as well as fusion and vacuolation of the mucosa. Ramsden 

et al. (2009) showed an accumulation of Ti in gut after dietary exposure of rainbow 

trout to 10 or 100 mg kg
-1

 TiO2 NPs. The accumulation of arsenic in the stomach and 

intestine of carp had been significantly increased by 132% in presence of 10 mg l
-1 

TiO2 

NPs after 25 days aqueous exposure (Sun et al., 2007). Effects on NPs on nutritional 

performance are not currently clear, and data on aspects such as growth rate, functions 

of digestive enzymes and absorption remain to be determined. 

1.5.3 Integumentary system (skin) 

There are limited in vivo studies that have been conducted on the cutaneous toxicity of 

NPS. Studies on skin cultures, subcutaneous implantation (1 and 4 weeks) in rats 

exposed to carbon nanofibers and carbon nanotubes (0.1 mg l
-1

) observed foreign body 

granuloma (Sato et al., 2005; Yokoyama et al., 2005).  

1.5.4 Cardiovascular and immunology system 

Once the NP has crossed the lung (gill), gut or skin it will have access to the 

cardiovascular system and body fluids. There is little data on the cardiotoxicity of NPs. 

The heart is very sensitive to oxidative stress and low oxygen conditions (e.g., carbon 
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monoxide exposure, Patel et al., 2004), and this is a concern for NPs that may be 

oxidising agents. The administration by oral gavages of 5 mg kg
-1

 TiO2 NPs (25 and 80 

nm) in adult mice produced a significant enhancement of serum lactate dehydrogenase 

(LDH), and alpha-hydroxybutyrate dehydrogenase (HBDH) suggesting myocardial 

damage (Wang et al., 2007). The exposure of human red blood cells (cell culture) to 5 

µg ml
-1

 ultrafine TiO2 (30-40 nm) for 4-24 h showed by electronic microscope 

intracellular NPs aggregates (RBCs uptake) with no morphological changes (no cell 

damage) (Rothen-Rutishauser et al., 2006).  

The intraperitoneal injection of male rats with 1 ml of different concentrations 

(25, 50 and 100 mg l
-1

) of cerium oxide NPs showed an immune response to the NPs 

exposure indicated by the increase in number of white blood cells. Subsequently, 

increasing the exposure with 200 mg l
-1

 of cerium oxide NPs caused severely reduced 

numbers of white blood cells compared to the control and other lower exposure 

concentrations (Hamrahi-michak et al., 2012).  

1.5.5 Brain and central nervous system  

The effects of NPs on the brain and central nervous system are also a concern. The 

inhalation of 30 nm MnO2 NP in rats was associated with elevated levels of Mn in the 

brain, including the frontal cortex, striatum and cerebellum (Elder et al., 2006). An in 

vitro study by Hussain et al. (2006) indicated the ability of manganese NPs to induce 

adverse effects in neuronal cells, including loss of cell viability, induction of oxidative 

stress, and dopamine depletion. Studies on trout brain showed pathological 

deformations including possible aneurisms or swellings on the ventral surface of the 

cerebellum after exposure to 0.25 mg l
-1

 SWCNT (Smith et al., 2007). Oberdörster 

(2004) showed a significant elevation of the lipid peroxidation in the brain after 

exposure of the juvenile largemouth bass to 0.5 mg l
-1

 C60 fullerenes for up to 48 h, but 

did not include a vehicle control in their experiment. 
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1.5.6 Internal organs (kidney, liver and spleen) and reproductive system   

There is some information on the effects of NPs on internal organs. Exposure of mice to 

copper NPs (23.5 nm diameter), dosed with different concentrations (108, 158, 232, 

341, 501, 736 and 1080 mg kg
-1

) via oral gavage, induced toxicological effects 

indicated by significant injuries in the kidney, liver and spleen (Chen et al., 2006). In 

the kidney, the pathology included swelling of renal glomeruli, degeneration and 

irreversibly massive necrobiosis of epithelial cells of renal proximal convoluted tubules. 

In the liver, steatosis around the venae centrals of hepatic tissue was reported and 

atrophic changes in the spleen (Chen et al., 2006).  

In fish, the exposure of rainbow trout to TiO2 NPs or SWCNT showed minor 

fatty change and lipidosis in liver cells, and some hepatocytes showed condensed 

nuclear bodies (apoptotic bodies) (Federici et al., 2007; Smith et al., 2007). After 

aqueous exposure to 100 and 200 mg l
-1

 TiO2 NPs for 20 days in carp, different 

pathologies was observed in the liver including necrotic and apoptosis hepatocytes with 

depletion of antioxidant enzymes activities and elevation of liver lipid peroxidation 

(Hao et al., 2009). Ti accumulations were observed in the liver and spleen after dietary 

exposure of 10 or 100 mg kg
-1

 TiO2 NPs for up to 8 weeks (Ramsden et al., 2009).  

Data on the effects of NPs on reproductive behaviours, gamete production, and 

reproductive success appear to be lacking. In vitro study by Komatsu et al. (2008) found 

effects on  Leydig cells, including changes in cell viability  and gene expression after 

expose of mouse Leydig TM3 cells to diesel exhaust NPs (DEPs), TiO2 and carbon 

black (CB) NPs.  

1.6 Titanium dioxide NPs (TiO2) 

TiO2 is a non-combustible and odourless white powder which naturally exists in three 

mineral structures that include anatase, rutile and brookite crystal forms (Chen and Mao, 
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2007; Macwan et al., 2011). The anatase and rutile forms are manufactured 

commercially and both of them have a tetragonal crystal system, whereas the rutile form 

has a denser arrangement of atoms (Iavicoli et al., 2011). TiO2 NPs are being used as a 

white pigment for a wide range of paints, paper, plastic, ceramics, and with the ability to 

absorb and reflect UV light, it has been used in sunscreens and cosmetics (Aitken et al., 

2006; Hansen et al., 2008). These wide applications cause wariness about the ability of 

TiO2 NPs to penetrate the human, or animal bodies, by different routes of exposure 

(Sayes et al., 2006; Wang et al., 2007; Warheit et al., 2007b; Xie et al., 2011) which 

raise the concern about the toxicity of TiO2 NPs.  

1.6.1 Toxic effects of TiO2 NPs   

Several studies in rodents and aquatic organisms have demonstrated some toxic effects 

of TiO2 NPs. Examples of in vivo and in vitro toxicity data are shown in Table 1.2 and 

1.3. Ultrafine-TiO2 particles have been considered as more toxic than fine particles 

(Oberdörster et al., 1992; Bermudez et al., 2002; Bermudez et al., 2004; Warheit et al., 

2007a). There may also be different biological effects of these materials such as 

inflammation and fibrosis of the lung (Oberdörster et al., 1992; Bermudez et al., 2004; 

Warheit et al., 2006), or even lung tumours after chronic exposures (Heinrich et al., 

1995), see Table 1.2 and 1.3. 

Both the anatase and rutile crystal forms of TiO2 are toxic (Warheit et al., 

2007b), but the anatase crystal form is considered as a superior catalysts, a better 

generator of reactive oxygen species (ROS), and therefore more cytotoxic compared to 

the rutile particle form (Uchino et al., 2002; Sayes et al., 2006). The data so far suggests 

that TiO2 NPs may be toxic via several mechanisms. 

Cytotoxicity of different concentrations of TiO2 NP have been observed after 

exposure of the human bronchial epithelial cell line (BEAS-2B), which led to cell death, 

increases of reactive oxygen species (ROS), and decreased glutathione (GSH)  (Park et 
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al., 2008). Alterations in thiobarbituric acid substances (TBARS), which indicates 

general changes in oxidative stress, were observed in tissues from trout after exposure 

to the TiO2 NP (Federici et al., 2007). TiO2 NPs in the anatase form produced the most 

ROS generation and the largest cytotoxic responses following in vitro exposures to 

human dermal fibroblasts or to human lung epithelial cells (Sayes et al., 2006).  

TiO2 NPs may also be neurotoxic. The exposure of mouse brain microglia cells 

(BV2 cells) to different concentrations of TiO2 NPs (P25) stimulated the production of 

ROS by the microglia through an oxidative burst suggesting interference with 

mitochondrial energy production (Long et al., 2006). Exposure of mice to different 

concentrations of TiO2 NP for 60 days via intragastric administration caused brain 

damage and a decline in behaviours associated with memory of spatial recognition (Hu 

et al., 2010).  

DNA damage has also been observed in several studies (Gurr et al., 2005; 

Trouiller et al., 2009; Shukla et al., 2011), see Table 1.2 and 1.3. Vevers and Jha (2008) 

showed the induction of DNA strand breaks (including oxidative damage to the DNA) 

after the interactive toxic potential of TiO2 NPs with ultraviolet radiation (UVA) and 

also lysosomal membrane integrity using neutral red retention (NRR) assay in an 

established fish cell line.  

The exposure to TiO2 NPs can influence the uptake of other pollutants. For 

example, there was a 146% increase in the accumulation of cadmium (Cd) in the 

presence of TiO2 NPs compared with a control of Cd exposure alone in carp (Zhang et 

al., 2007) as well as Daphnia magna and Lumbriculus variegatus (Hartmann et al., 

2012). Some of these effects may relate to the surface properties of NPs.  
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Table 1.2 Toxic effects of TiO2 NPs in vivo on mammals and aquatic organisms. 

TiO2 NPs 

Information 
Dose / Time Exposure Route Species Toxic Effects Author 

Ultrafine TiO2 

average size 

21 nm 

0.5, 2.0 or 10mg 

m
-3

 for 6h/day for 

5 days a week 

over 13 weeks 

Aerosol inhalation 

Mice, 

rats and 

hamsters 

Pulmonary inflammation in rats and mice (increased number of macrophages and 

neutrophils) fibrosis in rats, elevated protein and lactate dehydrogenase levels. 

Bronchoalveolar  hyperplasia and metaplasia, pulmonary tumorigenesis   

Bermudez  et al. 

(2004) 

Ultrafine  

TiO2 ~20 nm 

104 µg or 200 µg 

for 24 h 

Intra tracheal 

instillation 
Rats 

Ultrafine particles TiO2 increased pulmonary toxicity, as indicated by increased 

alveolar epithelial permeability (protein leakage), and acute pulmonary 

inflammation and lung injury. 

Oberdörster  et 

al. (1992) 

Ultrafine TiO2 

P25 or fine 

(25-300 nm)  

10 mg m
-3 

for 24 

months 

Inhalation 

exposures 
Rats 

Chronic inhalation exposure to10 mg m
-3

 TiO2 for 24 months causes pulmonary 

fibrosis and lung tumours. 

Heinrich et al. 

(1995) 

TiO2, rods 

(~35 nm) and 

dots (~10 nm) 

1 or 5 mg single 

dose exposure 

and the recovery 

up to 3 months 

Intra tracheal 

instillation 
Rats 

The exposure to nanoscale TiO2 rods or dots particles produced temporary lung 

inflammation and fibrosis with cell injury effects at 24 h of exposure. Dots 

exhibit moderate to severe aggregation while rods are individually separated with 

little or no aggregation.  

Warheit et al. 

(2006) 

Nano sized 

TiO2 (25 and 

80 nm)  

5 g kg
-1

 for 2 

weeks 
Oral administration Mice 

TiO2 (25 and 80 nm) groups showed acute toxicity indicated by high coefficients 

of liver with hepatic injury, nephrotoxicity, myocardial damage and 

accumulation of TiO2 particles in spleen, kidney and lung tissue.  

Wang et al. 

(2007) 

TiO2 (21 nm) 
60–600 mg l

-1
 for 

5 days 

Orally via drinking 

water 
Mice Inflammation, oxidative stress and DNA damage in various tissues.   

Trouiller et al. 

(2009) 

TiO2 (50-120 

nm) 

5 g kg
-1

 for 7 

days 
Oral administration Mice Liver and kidney damage only in combination with lead acetate. 

Zhang et al. 

(2010)  

 

TiO2 (5 nm) 
5–50 mg Kg

−1
 for 

60 days 

Intragastric 

administration 
Mice 

Brain damage morphological signs, neurobehavioral performance decline and 

damage of spatial recognition memory behavior.  
Hu et al. (2010) 
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Table 1.2 Continued. 

TiO2 NPs 

Information 
Dose / Time 

Exposure 

Route 
Species Toxic Effects Author 

Ultrafine TiO2 

(21 nm) P25 

75% anatase, 

25% rutile.    

0.1,0.5 or 1.0 mg l
-1

 

for 14 days 

Aqueous 

exposure 

Rainbow trout 

(Oncorhynchus 

mykiss) 

Mainly the anatase form: gill pathologies including oedema, 

thickening of the lamellae and injuries with respiratory toxicity and 

some irritation to the gut showing erosion of the villi tips, fusion and 

vacuolation of the mucosa epithelium. 

Federici et al. (2007) 

TiO2 (50 nm) 
0–250 mg l

−1
 for 20 

days 

Aqueous 

exposure 

Juvenile 

Common carp 

(Cyprinus 

carpio) 

Exposed the fish to 100 and 200 mg l
-1

 TiO2 NPs for 20 days caused 

respiratory distress including oedema and thickening of gill lamellae, 

liver pathologies including necrotic and apoptosis hepatocytes and 

oxidative stress.  

Hao et al. (2009) 

TiO2 (24 nm) 
0-100 mg Kg

-1 
for 8 

weeks 

Dietary 

exposure 

Rainbow trout 

(Oncorhynchus 

mykiss) 

50% inhibition of Na+/K+-ATPase activity seen in the brain and a 

50% reduction in thiobarbituric acid reactive substances (TBARS) in 

the gill and intestine with Ti accumulation in gill, gut, liver, spleen 

and brain. 

Ramsden  et al. (2009) 

TiO2 NPs 30 

nm filtered / 

100-500 nm 

unfiltered 

0.2-10 mg l
-1 

for 48 

h filtered / 50-500 

mg l
-1 

unfiltered for 

48 h 

Aqueous 

exposure 
Daphnia magna 

100% mortality rate for the filtered and 9% mortality rate for the 

unfiltered TiO2  NPs. 

Lovern and Klaper 

(2006) 
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Table 1.3 Toxic effects of TiO2 NPs in vitro.   

TiO2 NPs 

Information 
Dose / Time Exposure Route Toxic Effects Author 

Ultrafine TiO2  

Anatase (10-20 

nm) Rutile  

(200 nm) 

10 µg ml
-1

 (about 

1.77 µg cm
-2

) for 1 h 

 

Human Bronchial 

Epithelial Cells, BEAS-2B 

The anatase form was much more toxic than the rutile form which caused 

DNA damage that detected in treatment with 10 µg ml
-1 

anatase TiO2 10 nm 

particles but no damage was detected with 5 µg ml
-1 

anatase TiO2 10 nm 

particles or with > 200 nm particles, lipid peroxidation and micronuclei 

formation (damage to nucleus). 

Gurr et al. (2005) 

Ultrafine TiO2 

Anatase form 

30-40 nm 

5 µg ml
-1

 suspension 

for 4-24 h 
Human Red Blood Cells 

Electron microscopy showed intracellular NPs aggregates (RBC uptake) with 

no morphological changes (no cellular damage). 

Rothen-Rutishauser 

et al. (2006) 

TiO2 NPs 

different  sizes 

From 3-30 mg ml
-1

 

for up to 48 h 

Human Lung Epithelial 

Cells (A549 cells) 

Dose-dependent decrease in cellular viability, some lactate dehydrogenase 

release from cells at the highest concentration. Inflammatory mediators 

(interleukin 8) induced at the highest concentration. 

Sayes et al. (2006) 

TiO2 (
~
20nm) 0.25-1.5 mg ml

-1
  

Human Fetal Lung 

Fibroblasts (HFL1) 

Dose dependant manner toxicity effect, mitochondrial dysfunction, apoptosis 

and morphological modification.  
Zhang et al. (2011) 

TiO2 (25 nm) 
0.8 µg ml

-1
 and 

above for 6 h 

Human Epidermal Cell 

Line (A431) 

Demonstrate genotoxicity and cytotoxicity of epidermal cells by induces ROS 

and oxidative stress leading to oxidative DNA damage and micronucleus 

formation. 

Shukla et al. (2011) 

TiO2 P25 (30 

nm)  

0.2, 2 and 20 mg 

/cm
-2 

for 24 h 

Primary Human Foreskin 

Keratinocytes 

[PHFK] 

Early keratinocyte differentiation related with decrease cell proliferation and 

altered the calcium homeostasis.   
Simon et al. (2011) 

TiO2 NPs 

different sizes 

10 g l
-1

 water 

suspension added to 

the MD exposure   

for 14-20 h at 36 ºC 

Escherichia coli  and 

Bacillus subtilis in 

Minimal Davis 

medium(MD) 

Bacterial growth inhibition (increased in presence of light). E.coli showed 

72% growth inhibition in cells exposed to 5000 ppm TiO2, B.subtilis showed 

75% growth inhibition with 1000 ppm TiO2 and 99% growth reduction with 

2000 ppm. 

 

Adams et al. (2006) 
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1.6.2 Mechanisms of TiO2 toxicity 

In addition to surface area, and the chemical reactivity of particular crystal structures, 

there are several experiments that suggest the possible mechanisms of toxicity. TiO2 

may not be chemically modified inside organisms. For example, hydrophobic TiO2 

formulations are acutely toxic, but there is no significant difference in hydrophilic and 

hydrophobic functionalized TiO2 after intratracheal instillation (Rehn et al., 2003). 

However, one basic toxic mechanism may involve the generation of reactive oxygen 

species (ROS). TiO2 NPs have been shown to trigger ROS produced by alveolar 

macrophages, phagocytes and microglial cells (Olmedo et al., 2005; Long et al., 2006), 

whereas the ultrafine-TiO2 (TiO2 NPs) appears further enhance the formation of ROS in 

comparison to fine TiO2 (Scherbart et al., 2011). Under ultraviolet (UV) light, TiO2 may 

induce the formation of ROS such as hydrogen peroxide, hydroxyl radicals, and super 

oxides (Fig. 1.1). These oxygen species may lead to cellular toxicity (Blake et al., 1999) 

and observed DNA damage resulting in cell death after exposure to TiO2 NPs (Trouiller 

et al., 2009; Shi et al., 2010). Apoptosis and cell necrosis have been also reported as 

cellular toxic effects of nanoscale TiO2 which may be induced by the formation of ROS 

(Rahman et al., 2002; Braydich-Stolle et al., 2009; Lapied et al., 2011). This apoptosis 

that is induced by TiO2 NPs has been suggested to involve the mitochondrial apoptosis 

pathway (Shi et al., 2010). Moreover, the phototoxic damage associated with a decrease 

in cell viability and an increase in the generation of ROS was also indicated after 

exposure of ARPE-19 cells to TiO2 NPs under UV light (Sanders et al., 2012). 

Furthermore, the photocatalytic properties of TiO2 mediating toxicity have been shown 

to eradicate cancer cells, and it is hypothesized that TiO2 NPs accumulation on cell 

membranes may lead to cell rupture and then cell death (Thevenot et al., 2008). 
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Figure 1.1 Possible toxic mechanisms of TiO2 and the generation of ROS in the cells 

after been exposed to UV light, showing the pathways of these oxygen species which 

may lead to DNA damage, membrane damage and then cell death through different 

cellular toxic effects.    

 

 

 

 

 

 

 

 

TiO2

e-

H+

OH

O2
-

H2O

O2

UV 

Light 

ROS

Lipid 

Peroxidation

Membrane 

Damage

Cell 

Death
DNA 

Damage



                                                                                                                            Chapter 1 

22 

  

1.6.3 Oral uptake of TiO2 NPs and dietary exposure 

Bulk TiO2 powders have been considered safe and used as a digestibility marker (an 

inert marker in the diet that is not appreciably absorbed) in nutrition studies on a range 

of animals including fish (Mamun et al., 2007). Recently the nanoscale versions of TiO2 

have been used in personal care products (lipstick, toothpaste, sunscreens) and food 

(food colours, packaging, food additives E171) (Fröhlich and Roblegg, 2012). This has 

led to some concerns about oral toxicity of TiO2 NPs and their uptake through the 

gastrointestinal tract with potential for subsequent effects on the internal organs. Powell 

et al., (2010) estimated the intake of TiO2 NPs through food at about 5 mg person
-1 

day
-

1
. Another estimation via the food by Weir et al. (2012) showed an average daily TiO2 

intake of 1-3 mg Kg
-1

 day
-1

, about 36% of the TiO2 was estimated to be in the nanoscale 

range. Clearly there is a concern that in the long term, this daily intake may cause 

persistent accumulation of TiO2 NPs in the human body. 

The mechanisms that are involved in the absorption, distribution, metabolism 

and excretion (ADME) of the NPs remain to be investigated (Handy et al., 2008a) and 

they are likely to be influenced by different parameters including the aggregation, 

agglomeration, dispersability, size, solubility, and surface area, charge and other 

physico-chemistry of the NPs (Stone et al., 2010). The physico-chemical properties of 

NPs may play an important role in their absorption. Absorption is the first step of 

biological uptake for substances (Handy and Eddy, 2004). For nanomaterials, the 

considerations include the aggregation or precipitation of NPs during their adsorption 

onto the exterior surface of the organisms. There is some reliable evidence that supports 

this notion through experimental observation, for example, the aggregation of the TiO2 

NPs around the microvilli of the lugworm gut epithelium cells (Galloway et al., 2010). 

The next step is the uptake of the NPs through the cell membrane and the mechanisms 

of this uptake are still unclear. The possible uptake mechanisms of NPs through the gut 
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epithelium are shown in (Fig. 1.2) which is modified from Handy et al. (2008b). The 

NPs are too large to be taken by ion transports across the cell membranes or by 

diffusion, however diffusion cannot be excluded for lipophilic NPs. Additionally, the 

diffusion through the paracellular route is difficult because of the ion-rich environment 

of the tight junctions with Ca
2+

 and Mg
2+

 which suggests that NPs would aggregate 

rather than diffuse. The movement of the NPs across the gut epithelium might occurby 

other processes like endocytotic transvesicular transport, and/or endocytosis by M-cells 

in the Peyer’s patch (Mcclean et al., 1998; Des Rieux et al., 2007). The use of vesicular 

membrane trafficking systems is seemingly the most probable transport modes. 

To date the information on the distribution of the NPs in the body and the target 

organs has yet to be established. However, the measurement of the NP concentrations in 

the tissue can be clarified by using inductively coupled plasma mass spectrometry (ICP-

MS) (Zhang et al., 2010), and particles can also identify in the tissues using electron 

microscopy (Scown et al., 2009). So far there is no specific study regarding the 

metabolism or excretion of the NPs. However, the excretion of the NPs might occur via 

the process of exocytosis (Handy et al., 2008a). Simon et al. (2011) suggest that the 

exocytosis of TiO2 NPs can be mediated by endosomes or other secretory vesicles. 

Limited studies have been performed on the toxicity of TiO2 NPs via oral 

exposure. Aqueous exposure of rainbow trout to 0 - 1.0 mg l
-1

 TiO2 NPs for less than 14 

days caused an increase in thiobarbituric acid reactive substances (TBARS) in the 

intestine that suggested the fish suffered from oxidative stress (Federici et al., 2007). 

Some irritation was observed in the gut showing erosion of the villi tips and also fusion 

and vacuolation of the mucosa epithelium. The fish with severe injuries showed mucous 

residue in the lumen with milky colouration, which raises the possibility of TiO2 NPs 

causing toxic effects via oral exposure (Federici et al., 2007). The administration of 5 g 

kg
-1

 body weight of TiO2 suspension by single oral gavage for 2 weeks in mice has 
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shown the ability of TiO2 NPs (25 and 80 nm) to enter the blood circulation leading to 

damage in both the liver and kidneys with hepatic injury, nephrotoxicity, myocardial 

damage and accumulation of TiO2 particles in spleen, kidney, lung tissue and even the 

brain (Wang et al., 2007). The same observation has been shown after dietary exposure 

(TiO2 incorporated in food pellets) of juvenile rainbow trout to 10 or 100 mg kg
-1

 of 

TiO2 NPs for 8 weeks which resulted in Ti accumulation in the gill, gut, liver, spleen 

and brain (Ramsden et al., 2009). All these findings support the potential of nanoscale 

TiO2 to be absorbed via the gut epithelium and subsequently pass through to other 

internal organs after oral administration. An in vitro study by Koeneman et al. (2010) 

provided the evidence of the ability of TiO2 NPs to cross the  human intestinal cell line 

(Caco-2) at a level of 10 µg ml
-1

 and above. However, the precise mechanism of TiO2 

NPs transfer through the gastrointestinal tract remains to be clarified. Zhu et al. (2010) 

also raised concerns about  potential food chain effects. Their study reported the transfer 

of TiO2 NPs from Daphnia magna to zebrafish (Danio rerio) through dietary exposure.  

1.7 In vitro techniques for studying metal uptake 

There is a strong demand for the use of in vitro techniques in nanotoxicology and 

studying the uptake mechanisms of NPs. These techniques need to be scientifically 

robust and ethically sound by reducing the use of laboratory animals for toxicity testing. 

Low-cost, high throughput in vitro toxicity assays should allow detailed examination 

under controlled conditions of various factors involved in toxicity (Panessa-Warren et 

al., 2006; Kahru  et al., 2008). This will enhance understanding the effects of NPs at the 

level of physiology and aid in predicting the human health hazards.   

The REACH (Registration, Evaluation, Authorisation of Chemicals) legislation 

aims, since it came into force on the 1
st
 June 2007, to improve the protection of human 

health and the environment by the better and earlier identification of the intrinsic 
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properties of chemical substances (Crane et al., 2008). One concern about REACH is 

that the novel and varied properties of NPs will generate a very large number of “new 

substances” that need testing. The increasing use of different NPs in a wide range of 

applications further highlights the need for rapid in vitro techniques for testing those 

NPs. An intelligent strategy of in vitro safety testing was proposed by Roszak et al. 

(2013) for evaluation and prediction of risk assessment of nanomaterials. This includes 

further steps to check cytotoxicity or genotoxicity potential of TiO2 NPs. In vivo testing 

is a good starting point for the overall testing strategy, and could start with simple 

measurements such as an assessment of cell viability. 

1.7.1 Perfused organ preparations  

These preparations were developed to study physiology at the organ level, and have 

been used for the isolated perfused heart (Del Nido et al., 1998; Khairallah et al., 2004), 

isolated perfused liver (Strubelt, 1996; Whihelm et al., 1996), isolated perfused kidney 

(Frödin, 1975), isolated perfused head (gill) (Payan and Matty, 1975; Perry et al., 1984; 

Campbell et al., 1999) and isolated perfused intestine (Wapnir, 1991; Handy et al., 

2000). Many of these isolated perfused preparations were originally used to study ion 

transport processes and have advantages over other techniques because the method is 

rapid, with the avoidance of long periods of ischemia. In addition, the volume of the 

external medium can be modest (e.g., 150 ml for gill perfusion, Perry et al., 1983; 500 

ml for gut perfusion, Handy et al., 2000). These preparations have different layers of 

tissues, which mimics the situation in vivo, allowing the investigation of the uptake and 

metabolism of different materials. This may be particularly important for testing new 

substances like NPs. However, some difficulties are encountered with the perfusion 

techniques such as oedema, leakage of the perfusate and loss of the mucous constituents 

if the composition of the physiological saline is not carefully considered.   
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1.7.2 Metal uptake studies using isolated intestine preparations 

The isolated gut sac preparation has been used to determine which sections of the gut 

are involved in metal uptake, and the perfused intestine has been used to measure the 

uptake kinetics and pharmacology of metal uptake (see Table 1.4). Gut sacs of 

oesophagus, stomach, pyloric caeca, mid and hind intestine were prepared from the 

whole gut and filled with the material under investigation and left for up to 4 h of 

exposure (Handy et al., 2000). The whole gut sac method allows a rapid way to 

determine in which part of the gut the metal uptake is happening. Studies on the uptake 

and accumulation of the metals along the gut sac showed that the main accumulation of 

metals was in the mid and hind intestine with 70% or more being accumulated in the 

mucosa rather than the underlying muscularis (e.g., copper, Handy et al., 2000; 

mercury, Hoyle and Handy, 2005).  

The isolated perfused intestine technique has been used in both mammalian and 

fish physiology for many years to study the uptake of ions and water (e.g., Ando et al., 

1986), and has also been used for measuring the uptake of toxic metals like copper and 

mercury (e.g., Handy et al., 2000). The approach involves removing the intestine from 

the animal, carefully turning it inside out (everted) so that mucosal epithelium is now on 

the “outside” and can be directly bathed in the external media (usually in a static, stirred 

bath of a gut saline and gassed with 95% O2: 5% CO2 at room temperature, for example, 

22 ºC for catfish perfused intestine). This enables the experimenter to change the 

composition of the bath (i.e., the mucosal or luminal-side solution) so that uptake 

mechanisms can be investigated by adding, for instance, different concentrations of the 

test substance or inhibitors to the bath. Criteria for the viability of preparations are 

achieved by observing the normal morphology, steady appearance of the flow rate, low 

LDH leak and normal content of Na
+
, K

+
 and pH in the solution. Only those 

preparations showing normal contractions after 5-10 min resting in oxygenated saline 
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and with healthy morphology should be used. All these aspects (from the well 

preparation of the perfused intestine to good viability criteria with short time gaining 

results) indicate that perfusion techniques can be used effectively to study the 

physiology and the uptake mechanism of NPs. 
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Table 1.4 Uses of the perfused intestine preparations for investigating metal uptake 

Perfused Intestine 

Chemical Concentration Species Measured Factors Author 

Copper (Cu) 10, 50, 100 µmol l
-1 

for 2 h at 22 ºC African walking catfish 

(Clarias gariepinus) 

Intestinal Cu uptake, effects of ion-transport 

inhibitors and manipulating Cl
- 
gradient. 

Handy et al. (2000) 

Inorganic mercury (Hg) 0-100 µmol l
-1 

for 4 h Rainbow trout 

(Oncorhynchus mykiss) 

Regional intestinal uptake of Hg, effects of 

amiloride and Ca
2+

 chelators. 

Hoyle and Handy 

(2005) 

 

Methyl mercury 

CH3Hg(II) 

Different concentrations at 20 or 4 

ºC for 1h and 45 min 

Channel Catfish 

(Ictalurus punctatus) 

Temperature sensitivity, transport mode (active/ 

passive process or energy dependent).  

 

Leaner and Mason 

(2002) 

Inorganic mercury (Hg) 

and methyl mercury 

CH3Hg 

50 ng ml
-1

 for 2 h Blue crab (Callinectes 

 sapidus) 

Accumulation and transport mode of each form  

of mercury in intestine and gill.  

Laporte et al. (2002) 

Copper (Cu) and Sodium Cu 31.5 µm (2 mg l
-1

) in isotonic 

solutions 

Rat Effect of Na
+
 addition on Cu retention, effects of 

amiloride and furosemide. 

Wapnir (1991) 

Cu and Competitor 

Zinc (Zn)/ 

L-histidine (His)  

0.1 mM Cu for 2 h Juvenile Rats Effect of competitors (Zn / His group) on Cu 

absorption, effect of high Na
+
 intake and regional 

accumulation. 

Wapnir and Lee (1993) 

Inorganic mercury (Hg) 

and cadmium (Cd) 

20 µm Hg at 37 ºC for  0.5 or 3 min Rat Jejunal uptake of Hg and Cd, temperature 

sensitivity and mucosal permeability. 

Foulkes and Bergman 

(1993b) 
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1.7.3 Human colon adenocarcinoma cell line (Caco-2 cells) 

The most popular intestine cell line model is the Caco-2 which was originally obtained 

from a human colon adenocarcinoma and has several morphological and functional 

characteristics of the intestinal epithelium including the presence of tight junctions in 

highly polarised cells (Grasset et al., 1985) and a well differentiated brush border on the 

apical surface (Hauri et al., 1985). The Caco-2 cell line has been used in different metal 

studies to assess the  uptake mechanisms and toxic effects (Reeves et al., 1998; Han and 

Wessling-Resnick, 2002; Zerounian et al., 2003).  

The use of NPs as drugs and in food has increased interest in studying the 

transepithelial transport behaviours of Caco-2 cells. The ability of salmon calcitonin 

(sCT) with biodegradable poly (lactic-co-glycolic acid) (PLGA) NPs to transport from 

the apical side to the basolateral side and across the monolayer of the Caco-2 cells was 

shown in comparison with free sCT (Sang Yoo and Gwan Park, 2004). Varied uptake 

capacity has been observed with different concentrations of biodegradable lactic acid – 

glycolic acid copolymer (PLGA 75:25) NPs (over 25-800 µg ml
-1

) and the maximum 

uptake rate occurred after 4 h exposures of Caco-2 cells (Katsikari et al., 2009). 

Exposure of the cells to quantum dots (QDs) coated with hydrophilic thioglycolate 

capping ligands at a concentration of 0.1 mg l
-1

 induced cell death along with disruption 

of the epithelium monolayer (Koeneman et al., 2009). After exposure of Caco-2 cells to 

10 μg ml
-1

 and above of TiO2 NPs, some alteration occurred to the microvillar 

organization on the apical surface and an elevation of the intracellular free calcium was 

noticed with no cell death found or any lethal effects (Koeneman et al., 2010).  
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1.8 Hypothesis 

The hypothesis of this study is that TiO2 NPs can cross the epithelial layer of the 

gastrointestinal tract and are then taken up to the blood side using a number of active 

transport modes (Fig. 1.2). This idea is supported firstly by the translocation of Ti in 

other systemic organs, with some gut pathology indicated in freshwater fish after in vivo 

aqueous exposure (Federici et al., 2007) and dietary exposure (Ramsden et al., 2009) to 

TiO2 NPs, and secondly by the indication of the ability of TiO2 NPs to penetrate and 

cross the epithelial lining of in vitro Caco-2 cells without disrupting junctional 

complexes (Koeneman et al., 2010). 

In this thesis, the following hypotheses are tested: 

i. Bulk TiO2 and TiO2 NPs will be uptake by the intestinal tissue through a form of 

diffusion. This could be tested by the dialysis experiment. 

ii. TiO2 particles might be bind to the strands of mucous in the intestine so that the 

surface binding experiment will be applied to investigate this process.  

iii. Bulk TiO2 and TiO2 NPs will be uptake by the isolated perfused intestine of rainbow 

trout (Oncorhynchus mykiss) as well as by the human intestinal Caco-2 cells using an 

active mode of transport, either by vesicular transport of NPs or through M-cells 

(Fig. 1.2). Different inhibitors will be used to investigate on the uptake mechanisms 

mode of TiO2. 

iv. Uptake will occur without loss of tissue integrity. The viability of the perfused 

intestine can be examined using standard viability markers such as LDH activity, 

histopathology and flow rate of the perfusion along with the leak of K
+
 and Na

+
 

ions. 

    

 

 



                                                                                                                            Chapter 2 

31 

  

                  

                

 

Figure 1.2 An idealised diagram of the freshwater fish gut, showing the mechanisms of 

uptake for electrolytes, toxic metal ions (Me
+
), and small lipophilic organic chemicals 

(CH3–X), compared to NPs. Modified from (Handy et al., 2008b). The substances in the 

gut lumen must diffuse into an unstirred layer (USL) comprising of water/mucus 

secretions, prior to transfer across the gut epithelium. The upper portion of the diagram 

shows electrolytes and toxic metals ions which diffuse into the USL, and may bind to 

strands of mucus (mostly polyanionic) where the exclusion of free anions like Cl
-
 from 

the mucus layer contributes to the Donnan potential at the apical surface. Electrolytes 

and toxic metal ions usually move through the cell using ion transport pathways. In 

contrast, small lipophilic organic chemicals can diffuse into the USL and then through 

the cells (transcellular diffusion), or between the cells via the tight junctions 

(paracellular diffusion). NPs are too large to be taken up by ion or other transporters on 

the cell membranes, and although diffusion cannot be excluded for lipophilic NPs. The 

Ca
2+

 and Mg
2+

 rich environment in the tight junctions suggest that NPs would aggregate 

rather than diffuse through the paracellular route. Diffusion of charged NPs into the 

USL will be affected by the Donnan and transepithelial potentials, in a similar way to 

other charged substances. NP uptake through vesicular transport and M-cells seems 

likely. The phagocytosis active transports are largely restricted to M-cells in Peyer’s 

patch and play an important role in absorbed the larger particles (NPs aggregates).  
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1.9 Aims of the research 

There is a lack of information on the uptake of NPs along with the mechanisms of this 

uptake through the gut epithelium of different organisms. The overall aim of this study 

is to assess the uptake of TiO2 NPs across the gastrointestinal tract of rainbow trout and 

humans using the isolated perfused intestine and Caco-2 cells, respectively. TiO2 NPs 

are selected because of the wide use of these particles in the food industry and because 

they are incorporated in many different healthcare products which are in daily contact 

with humans (Aitken et al., 2006; Weir et al., 2012). Furthermore, some investigations 

on the physiology, behaviour and possible toxic effects will be conducted to evaluate 

the hazards of human exposure to TiO2 NPs. 

The specific objectives of the study are:  

i. The isolated perfused intestine and the whole gut preparation are suitable to be used in 

the study of nanoparticles.   

ii. Determine which part of the gut is responsible for the TiO2 uptake using the isolated 

whole gut sac preparation.  

iii. Measure the uptake rate of TiO2 across the intestinal epithelium of isolated perfused 

trout gut preparation.    

iv. Determine by which mechanism the uptake is happening using different inhibitors. 

v. Comparative study between different gas supplement effects on TiO2 uptake across 

the intestinal epithelium.    

vi. Comparative toxicity, how the above compare to human Caco-2 cells with the 

consequences for hazard and risk assessment in the environment and for human 

health by considering the  important elements of the environmental risk assessments, 

including the exposure and the effects (hazard) assessments. 
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2.1 Stock animals 

Rainbow trout, Oncorhynchus mykiss, weighting 295 ± 10 g (mean ± S.E.M., n = 89), 

were collected from a commercial supplier (Torre Fisheries, Watchet, Somerset, UK). 

The fish were brought into the aquarium facility at Plymouth University and transported 

in water aerated with 100% O2. Fish were then acclimatized in a recirculating system of 

approximately 6 m
3
 of freshwater. Fish were kept in a photoperiod of 12 light:12 dark 

(on at 8 am and off at 8 pm) and held in dechlorinated Plymouth tap water with an ionic 

composition as following (mmol l
-1

): Na
+
, 0.43 ± 0.01; K

+
, 0.03 ± 0.01; Ca

2+
, 0.45 ± 

0.01; Mg
2+

, 0.07 ± 0.01 (mean ± S.E.M., n = 71), and the background Ti concentrations 

in the water was  1 ± 0.1 µg l
-1 

(mean ± S.E.M., n = 8). Water samples were checked 

daily (mean ± S.E.M., n = 85) for pH, 6.95 ± 0.05; temperature, 15.6 ± 0.3 °C and 

oxygen saturation, 100 ± 0.3% (HACH HZ40d multi meter); and monitored weekly 

(mean ± S.E.M., n = 10, in mg l
-1

) for total ammonia, 0.12 ± 0.02 (HI95715, Hanna 

Instruments); total nitrite 0.06 ± 0.01 (HI93707, Hanna Instruments) and total nitrate, 

3.63 ± 0.64 (HI93728, Hanna Instruments). Where necessary, a 10% trickle of new 

water was used to top up the recirculation system. Fish were initially fed with a food top 

dressed with ascorbic acid (vit C) on a normal salmonid commercial diet from EWOS. 

This was used in animal welfare to aid the recovery of the animals from any transport 

stress on arrival at the aquarium facility. Then the fish were feed twice daily with 

(EWOS sigma 50) which they contains: raw material (100 – 40% inclusion), fish meal 

(25 – 10% inclusion), fish oil 23%, protein 45%, fibre 1.0%, Ash 10%, wheat, soya 

bean meal, beans, wheat gluten, sunflower meal, vitamins (vit A, 10 000 IU kg
-1

; vit D, 

1750 IU kg
-1 

and vit E, 240 IU kg
-1

), minerals, copper (Cupric sulphate 8 mg kg
-1

) 

and ethoxyquin (an approved antioxidant). Before the experiments, all fish were starved 

for 48 h to let the gut empty of food and to facilitate the eversion of the gut. 
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2.2 Preparation of the isolated perfused intestine 

Uptake in the preparation is generally recorded in two ways: (i) measurement of the test 

substance in the gut tissue at the end of the experiment, (ii) measurement of the 

appearance of test substance on the blood side of the preparation (i.e, in the serosal 

perfusate). In the latter, which represents transepithelial uptake across the gut into the 

blood, the perfusate is usually flows constantly in the preparation (via a peristaltic 

pump) to prevent the system from coming into a diffusional steady-state so that true 

uptake rates can be measured. In this study the isolated perfused intestine was prepared 

exactly according to Handy et al. (2000). The fish were humanely sacrificed by a blow 

to the head and the brain was pithed. The weight and total length of the fish was 

measured; then the entire intestinal tract (from pyloric caeca to the rectum) was quickly 

removed. The mass and length were also recorded for the mid and hind intestine 

together after cutting the tissue at the junction with the pyloric caeca. The gut was then 

everted, connected to the perfusion apparatus, and bathed in 500 ml of the physiological 

saline which contained (in mmol l
-1

) according to Handy et al. (2000): NaCl, 117.5; 

KCl, 5.7; NaHCO3, 25.0; NaH2PO4
.
2H2O, 1.2; CaCl2

.
2H2O, 5.0; MgSO4, 1.0; glucose, 

5.0; mannitol, 23.0; osmolarity ~320 mosm (Osmomat 030, Gonotec) and adjusted to 

pH 7.4 (Hanna GLP Bench-top pH/mV/ISE/°C meter) with a few drops of 1 mol l
-1

 

HCl, at 18°C (a constant room temperature), gassed with 95% O2: 5% CO2 (a standard 

gas mixture used for gut perfusion work, Handy et al., 2000) or with 99.5% O2: 0.5% 

CO2 (
“
low CO2

” 
gas mixture). The latter, being closer to the acid-base status of trout in 

vivo (Milligan et al., 1991; Goss et al., 1992). The intestine was serosally perfused (1 ml 

min
-1

 via an Ismatec peristaltic pump) using the gut saline described above for up to 4 h 

(Fig. 2.1). This physiological saline is a buffered salt solution which is used for the both 

sides of the tissue (symmetrical perfusion) and is sufficient to meet the ionoregulatory 

and acid-base needs of the tissue. Perfusions were conducted in pairs, with a control (no 
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added TiO2) and treatment (e.g., + TiO2 NP or bulk powder) performed each day (n = 6 

perfusions per treatment; n = 7 perfusions for the control and TiO2 NP treatment gassed 

with the standard gas mix). The eluted serosal perfusate was collected manually in 10 

min fractions, and the volume determined gravimetrically. Five ml of the mucosal 

solution (bath samples) were collected every 30 min for TiO2 analysis (see below), and 

the pH was checked. At the end of each experiment the gut was carefully washed in 

deionised water to remove excess TiO2, and the surface area of the open gut was 

measured (manually using graph paper). Samples of each gut were taken for 

histopathology and electron microscopy. Then the gut was cut into mid and hind 

sections for trace metal analysis and moisture content (see below), while the perfusate 

and mucosal solutions were analysed for TiO2 and biochemistry (see below) (Fig. 2.2).  
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Figure 2.1 Diagram (A) showing the processing and the design of the isolated gut 

perfusion experiment. The images in (B and C) presents the everted mid and hind 

intestine bathed into 500 ml of the physiological saline, gassed with 95% O2: 5% CO2 or 

99.5% O2: 0.5% CO2 and serosally perfused with another volume of physiological 

saline for up to 4 h.  
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Pump 

1ml min-1

TiO2 NPs 

or Bulk

10 minute 

fractions

Gassed and stirred

bath

Mid intestine
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Figure 2.2 Experimental processing of the isolated perfused intestine after a 4 h 

perfusion. Mid and hind intestine were digested in a concentrated nitric acid and then 

analysed by the ICP-OES for the Ti and metal concentrations in the tissue. LDH assay 

was applied to investigate on any tissue damage by testing the perfusate and mucosal 

(bath) solutions and then those solutions were analysed by the ICP-OES for the Ti and 

metal concentrations. Distributions of the TiO2 particles in the mucosal solution were 

further detected using the nanosight. A piece of intestinal tissue were taken from the 

middle part of the gut after 4 h perfusion for histopathology and a small pieces also 

taken from the same area for TEM examination.       
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intestine tissue after 

4 h perfusion 

Tissue digestion in 

concentrated nitric acid

ICP-OES Analysis

Perfusate solution

Mucosal solution
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Histology Processing
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fixed in 10% buffered 

formal saline 

Small pieces of intestine 

tissue fixed in 2.5% 

glutaraldehyde TEM Examination
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2.3 Lactate dehydrogenase (LDH) assay 

The routine viability criteria for the perfused intestine preparation are the presence of 

steady perfusate flow, net efflux of water across the gut in a freshwater fish (see Handy 

et al., 2000), as well as the LDH leak measurements. In the perfused intestine LDH leak 

from the tissue is usually low and negligible (Handy et al., 2000) and any elevation of 

this cytosolic enzyme can indicate tissue damage to the preparation. LDH measurements 

were done, along with perfusate flow and net water flux, to determine if these criteria 

also worked for perfusions with nanomaterials. After each experiment all the samples 

(perfusate and mucosal solutions) were analysed for the LDH activity. The LDH assay 

was determined by the disappearance of nicotine amide adenine dinucleotide (NADH) 

at 340 nm (Helios B, Spectrophotometer) resulting from NADH oxidation by pyruvate 

at 25°C and pH 7.4. According to Campbell et al. (1999), the reaction mixture contained: 

(i) 2.8 ml of 0.6 mmol l
-1

 pyruvate in 50 mmol l
-1

 phosphate buffers (pH 7.4); (ii) 0.1 ml 

of 0.6 mmol l
-1

 NADH solution; (iii) 0.1 ml of sample then mixed directly in a 3 ml 

cuvette. The reaction was allowed to proceed for 2 min and the LDH concentration 

calculated using an extinction coefficient of 6.3 for a path length of 10 mm. LDH 

activity is expressed as IU ml
-1 

(equal to µmol min
-1

 ml
-1

) for individual samples and as 

IU (µmol min
-1

) for the cumulative activity of the LDH. The samples and blanks were 

compared with an LDH standard (0.1 ml of 10.66 IU ml
-1

). Typically, in perfused organ 

preparations from fish, the maximum LDH release into the media from a normal healthy 

tissue would not exceed 1 IU ml
-1 

and the data for all samples here were below this 

value (see results). 

2.4 Trace metal analysis 

The methodology for trace metal analysis in tissues was based on the original nitric acid 

digestion method of Handy et al. (2000) for fish intestine, but with some novel 
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modifications that enable detection of Ti from intact TiO2 NPs dispersed in the tissue 

digest without the need for aggressive hydrofluoric acid or hot sulphuric acid digestion 

(see Lomer et al., 2000 for the traditional H2SO4 method for foods) to completely 

dissolve the Ti metal (Ramsden et al., 2012 in review, and patent pending, UK Patent 

application No: 1207745.9). The modification presented here involved adding Triton X-

100 to a diluted the nitric acid digest, and with mixing/shaking it was possible to get 

good nebulisation of the sample in the spray chamber of the inductively coupled plasma 

optical emission spectrometer (ICP-OES, Varian 725 ES) to detect both the total Ti 

metal concentrations from the NP exposure and other dissolved trace metals in the 

sample. Briefly, tissues from all experiments were oven dried to a constant weight at 

100 °C for up to 48 h (Gallenkamp Oven BS Model OV- 160), then the samples were 

transferred into 20 ml scintillation vials (VWR International Ltd, Poole, UK) and 

digested in 1 or 4 ml (depending on tissue weight) of concentrated nitric acid for 3 h at 

70 °C in a water bath. The digested samples were allowed to cool, and then Triton X-

100 was slowly added to each digested with Milli-Q water (ultra-pure ion free water) to 

achieve a final volume of 2% Triton X-100 in each sample. Typically this involved 

carefully adding around 3.2 or 0.8 ml of 10% Triton X-100 and diluting to a final 

volume of 16 or 4 ml (for tissue weights of ~1g or 0.1g respectively).  Digests were then 

analysed for total Ti metal, Na
+
, K

+
, Ca

2+
 and Mg

2+
 concentrations by ICP-OES. 

Critically, samples were mixed immediately before introduction to the instrument (30 

min, KS501 digital orbital shaker, IKA Labortechnik; set at 145 r min
-1

, or vortexing for 

10 s IKA MS2 Minishaker; set at 2500 r min
-1

), depending on the size/shape of the test 

tubes used. The instrument detection limit (3 x standard deviation of the blank) for 

measuring the gut salines or matrix matched standards was calculated as 1.920 µg l
-1

 

(equivalent to 0.04 µmol l
-1

 of Ti metal), and for the entire digestion protocol 

(procedural blank) was 4.925 µg l
-1

 (equivalent to 0.1 µmol l
-1

 of Ti metal, and for a 
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typical 0.5 g tissue sample equates to 0.0032 µmol Ti metal g
-1

 dry weight of tissue). 

The optimised protocol gave good spike recovery for fish tissue (e.g., mean ± SEM, n = 

6-13; 97.5 ± 2.9% for spiking with Ti metal, and 92.2 ± 1.4% for spiking with TiO2 NPs) 

and low coefficients of variation within and between tissue samples from different stock 

fish (around 5% or less for repeats of the entire protocol). Calibrations with different 

concentration of Triton-X100 in standards had a negligible effect (no problems with 

instrument calibration with metals standards or TiO2 dispersions, Ramsden et al., in 

review). 

Tissue Ti levels are reported as µmol of Ti metal g
-1

 dry weight, being converted 

to molar units in order to allow comparison with gut perfusion studies in the epithelial 

physiology literature and previous Ti measurements in trout tissue (see Federici et al., 

2007). The bath solution was measured for Ti to confirm the TiO2 dosing and for 

convenience the data are reported as mg l
-1

 of TiO2 (for the bath solution only) after 

correcting the Ti metal data using the stoichiometry of the compound (Ti content of 

TiO2 as 60% of the mass). All other data are reported as total Ti metal concentrations 

(in the tissues and eluted perfusates). The moisture content of tissues was determined by 

taking the weight of the tissue before and after oven drying and calculated as: ((wet 

weight – dry weight)/wet weight) x 100. The mucosal solutions from all experiments 

were also analysed using a flame photometer (Corning 480) for Na
+
 and K

+ 

concentrations. The latter instrument burns the sample in an air/acetylene flame, and 

detects changes in absorbance due to the colour intensity of each element (Domingo and 

klyne, 1949). The absorbances are converted to metal concentrations by the software in 

the instrument using standards and the application of the Beer-Lambert law.     

2.5 Preparation of titanium dioxide NP and bulk stock solutions 

A 1 g l
-1

 dispersion of bulk TiO2 was prepared from 1 g of TiO2 powder (ACROS, 

Titanium (IV) oxide, New Jersey, USA; manufactures information: purity of 98.0-
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100.5% TiO2). The manufacturer’s technical support indicated a crystal structure 

mixture of more anatase than rutile, but could not report the exact proportions. Counting 

of crystal shapes on our electron microscopy images (n = 10 random pictures) indicated 

25.3% rutile and 74.7% anatase. The powder was dissolved and stirred (Stuart magnetic 

stirrer, set at half speed) in 1 litre of ultrapure Milli-Q for 20 minutes. The particle size 

was determined by two independent methods. First, sub samples of the 1 g l
-1

 stock 

dispersion in ultrapure Milli-Q water (stirred for 20 min) were examined using 

transmission electron microscopy (TEM, JEOL-JEM.1400) and examples of the 

particles are shown in (Fig. 2.3A) with a primary particle size measurement of 147 ± 9 

nm (mean ± S.E.M., n = 148), while the aggregates viewed by electron microscopy 

were typically 1124 ± 331 nm (mean ± S.E.M., n = 9). The second approach for particle 

sizing was nanoparticle tracking analysis (NTA, using a Nanosight LM 10, Nanosight, 

Salisbury, UK, laser output set at 30 mW at 640 nm). In order to measure particle size 

distribution by NTA the initial stock dispersion (1 g l
-1

) was diluted to 1 mg l
-1

 in the 

physiological saline used for gut perfusions (see below) to account for matrix effects on 

aggregation (0.5 ml of the initial stock into 500 ml of saline, stirred as above), and the 

resulting dispersion gave a mean values of (hydrated radius) 166 ± 20 nm for the 

average particle size and 84.7 ± 19.4 nm mean of the smallest size bin of the particles 

(mean ± S.E.M., n = 3) (Fig. 2.3C). The mucosal samples from the end of the 

experiments using 1 mg l
-1

 bulk TiO2 were also analysed for Ti distribution using the 

Nanosight LM10 (see results, Fig. 2.3E).  

The stock material of TiO2 NP used here was the same as that used by Federici et 

al. (2007). The powder form of ultrafine titanium dioxide NP type “Aeroxide” P25 

(DeGussa AG, supplied by Lawrence Industries, Tamworth, UK) with (revised 

manufactures information): a crystal structure of 25% rutile and 75% anatase TiO2, 

purity was at least 99% TiO2 (maximum impurity stated was 1% Si), the average 
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particle size was 21 nm with a specific surface area of 50 ± 15 m
2
 g

−1
. Chemical 

analysis of stock dispersions revealed no metal impurities (below the detection limit so 

the data are not shown), and the batch purity was high. A stock dispersion of 10 g l
−1

 

TiO2 NPs was made (no solvents) by dispersing the NPs in ultrapure Milli-Q water with 

sonication in a bath-type sonicator (500 ml of stock, 35 kHz frequency, Fisher brand FB 

11010, Germany) for 6 h. A 1 g l
-1

 TiO2 NPs stock solution was prepared from the stock 

above by diluting 10 ml to 100 ml in ultrapure Milli-Q water, and sonicated as above for 

6 h. This second stock dispersion was used for dosing the perfusion bath. Transmission 

electron microscopy showed the structure and the measured primary particle size of 

22.8 ± 0.6 nm (mean ± S.E.M., n = 169), while the mean size of aggregation of NPs 

were 121.7 ± 19.7 nm (mean ± S.E.M., n = 8; Fig. 2.3B) with similar crystals showing 

as the bulk TiO2. These measurements were very similar to that reports for TiO2 NPs in 

Federici et al. (2007). The dosing of the bath was as above for the bulk material, and the 

distribution of the 1 mg l
-1

 TiO2 NPs in the physiological saline prior to the start of 

experiments was also confirmed by NTA. The mean values for particle size were 117 ± 

17 nm and the smallest size bin of particles had a mean of 35 ± 5 nm (mean ± S.E.M., n 

= 3; Fig. 2.3D). The mucosal samples from the end of the experiments following expose 

to 1 mg l
-1

 TiO2 NP were also analysed for Ti concentration using the Nanosight (Fig. 

2.3F). 
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Figure 2.3 Electron micrographs showing (A) bulk and (B) nano TiO2 particles in a 1 g 

l
-1

 stock dispersion. Particle size distributions measured by nanoparticle tracking 

analysis (NTA) are shown below; (C) bulk TiO2 and (D) TiO2 NPs in a 1 mg l
-1

 stock 

dispersion in physiological saline (without the gut present); (E) bulk TiO2 and (F) TiO2 

NP in the same mucosal solution samples at the end of a 4 h intestinal perfusion, graphs 

are individual examples from triplicate measurements of each. 
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2.6 Histology and transmission electron microscopy 

After each perfusion a piece of tissue from the middle of each preparation (so as to 

avoid the ends attached to the apparatus) was carefully collected for light microscopy (n 

= 6 perfusions per treatment; n = 7 perfusions for the control and TiO2 NP treatment 

gassed with the standard gas mix). Histology was performed according to (Handy et al., 

2002b). Briefly, tissues were rinsed and fixed in 10% buffered formal saline for at least 

48 h, dehydrated in graded ethanol solutions to remove excess water, and cleared in 

three graded series of xylene for 1 h each prior to embedding in paraffin blocks. 

Dewaxed sections (8 μm) were stained with haematoxylin and eosin. Slides were 

examined using light microscopy (Olymus Vanox - TAH2) and photographs were taken 

using a digital camera (Olympus camedia C-2020 Z). 

For the transmission electron microscope investigations, small fragments from 

mid and hind intestine (n = 3 per treatment) were fixed in glutaraldehyde (2.5%) at low 

temperatures (4 °C), buffered in 0.1 M sodium caodylate pH 7.2 and post-fixed in 

osmium tetra oxide 2% (OsO4). The pieces were then dehydrated in a graded series of 

ethanol and infiltrated with a graded series of Spur's resin. Embedding as a small 

capsule was performed using pure resin. Thin sections were cut and  stained with 2% 

uranyl-acetate and lead citrate (Au et al., 1999), then examined by transmission electron 

microscope  (TEM, JEOL-JEM.1400).  

2.7 Calculations and terminology 

All calculations on uptake rates were performed according to Handy et al. (2000). 

Briefly, data were graphically presented as the absolute cumulative appearance of Ti 

metal in the perfusate, plotted against exposure time for example perfusions; and with 

cumulative perfusate flow shown on the same graph. The absolute Ti content of each 10 

min fraction (µg) was calculated by multiplying the total Ti metal concentration in each 
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tube (µg ml
-1

) by the total volume of perfusate/tube (ml). Ti contents of each fraction 

were summed for the cumulative plots (reported as nmols absolute of Ti metal). The 

initial (first 10 min) and overall (240 min) net Ti flux rates (Jnet,Ti, in nmol g
-1

 dry tissue 

h
-1

) to the serosal perfusate were calculated from the perfusate Ti content (in nmol) 

divided by the tissue dry mass and corrected to 1 h, while the initial (first 10 min) and 

overall (240 min) net water flux rates (Jnet, H2O, in ml g
-1

 dry tissue  h
-1

) to the eluted 

perfusate were calculated from the differences between the rates of cumulative perfusate 

and effluent flow divided by the tissue dry mass and corrected to 1 h. In the present 

study, precise terminology were used for the absolute amounts of Ti metal in the 

perfusates (nmols, not a concentration), the concentration of total Ti metal in the tissue 

(µmol g
-1

 dry weight of Ti metal, not TiO2 compound), and distinguish this from the mg 

l
-1

 of TiO2 compound added to the bath when confirming the exposure. The phrase 

“total Ti metal concentrations” is used to mean the total mass concentration of Ti (not 

TiO2 compound) in the tissue or relevant salines determined by ICP-OES, it does not 

infer anything about whether the Ti is present as particulate TiO2 or as a dissolved Ti 

species. The term “Ti accumulation” is used to mean a net increase in the total Ti metal 

concentration in the tissue over time, determined by ICP-OES of the tissue digests. The 

phrase “Ti uptake” is used specifically to mean the net uptake of total Ti metal to the 

serosal compartment in relation to the flux calculations above. Again, this relates to 

ICP-OES measurements of Ti in the perfusates and does not infer anything about 

whether the Ti is taken up as particulate TiO2 or as a dissolved Ti species. In relation to 

the dialysis experiments, the phrase “apparent total dissolved Ti” is sometimes used to 

mean the total Ti metal concentration in the aqueous phase of the beaker that has passed 

through the dialysis membrane. Dispersed TiO2 particles are therefore distinguished 

from the apparent total dissolved Ti metal in the text.          
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2.8 Statistical analysis 

All data were presented as mean ± S.E.M (standard error of mean) and analysed using 

Stat Graphics Plus Version 5.1 while figures were drawn using Excel or sigmaplot 12.0. 

The data (treatment and time effects) were tested after checking for kurtosis, 

skewedness, and unequal variance (Bartlett’s test). Parametric data were tested by one-

way ANOVA followed by the least squares difference multiple range test. Non-

parametric data that could not be transformed were tested using the Kruskal–Wallis test 

(analysis by ranks) and differences were located using notched box and whisker plots. 

The Student’s t-test was used as well to investigate the differences between pairs of 

data, or the Mann-Whitney U test where appropriate for non-parametric data. All 

statistical analysis used a 95% confidence limit, so that P-values equal to or greater than 

0.05 were not considered statistically significant. 
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Abstract 

In vivo studies have raised concerns that titanium dioxide nanoparticles (TiO2 NPs) may 

be taken up across the gut of fish, but there are limited data on the uptake kinetics. 

Whole gut sacs and the isolated perfused intestine of rainbow trout (Oncorhynchus 

mykiss) were used to determine the parts of the gut involved in absorption, and the 

intestinal uptake rates of Ti from TiO2 NPs across fish gut. Differences between bulk 

and nanoscale TiO2, and the effects of varying the CO2 content of the perfustae were 

also examined. Luminal exposure of whole gut sacs to 1 mg l
-1

 TiO2 NP for 4 h caused 

accumulation of Ti in the hind and mid intestine, with 80% or more of the Ti in the 

mucosa, rather than underlying muscularis. Perfused intestines exposure to 1 mg l
-1

 

TiO2 NP or the equivalent bulk powder in the mucosal solution for 4 h gassed with 95% 

O2 :5% CO2 showed a time-dependent accumulation of Ti in the serosal perfusate with a 

maximum initial uptake rate (mean ± S.E.M., n = 6 for the bulk TiO2; n = 7 for the 

control and TiO2 NP treatment) of 1.55 ± 0.33, 0.98 ± 0.47, and 0.23 ± 0.16 nmol g
-1

 h
-1

 

for TiO2 NPs, bulk powder, and no-added Ti controls, respectively (statistically 

significant differences on all treatments, ANOVA or Kruskall-Wallis test, P < 0.05) 

demonstrating NP translocation across the gut into the blood side. Notably, there was at 

least a 10 fold increase in Ti from TiO2 NPs uptake to 21.16 ± 18.9  nmol g
-1

 h
-1

 (mean 

± S.E.M., n = 6) when the CO2 content of the perfusate gas was reduced to 0.5% 

(statistically significant, t-test, P < 0.05). In conclusion, the TiO2 NPs are mostly 

absorbed across the mid and hind intestine, the uptake rate for Ti from TiO2 NPs across 

the intestine being much faster than the bulk powder, and the uptake mechanism(s) 

involve a CO2 sensitive component across the mucosal membrane.  
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3.1 Introduction 

The wide applications of TiO2 NPs in food and different consumer products arise from 

the unique physico-chemical properties of TiO2 at the nanoscale including its stability, 

photocatalytic properties, and bright whiteness as a pigment (e.g., Allen et al., 2002; 

Krischok  et al., 2002). The respiratory toxicity of TiO2 NPs is relatively well 

established in mammals (Bermudez et al., 2004; Warheit et al., 2006) and waterborne 

exposure of fish gills to metallic NPs also causes pathology of the respiratory 

epithelium (TiO2 NPs, Federici et al., 2007; Cu NPs, Griffitt et al., 2009).  

For exposure via the gut, fish that drink water containing 1 mg l
-1

 TiO2 NP show 

irritation to the gut mucosa with erosion of the villi tips, fusion and vacuole formation 

in the mucosal epithelium (Federici et al., 2007). However, dietary exposures to TiO2 

NPs in the food are much less toxic, and trout readily eat diets containing 10 or 100 mg 

kg
-1

 of TiO2 NPs for 8 weeks with a normal growth rate and haematology (Ramsden et 

al., 2009). The latter study also showed Ti accumulation in some of the internal organs, 

suggesting dietary uptake across the intestinal epithelium of either Ti metal or TiO2 

NPs. This internal uptake suggests that TiO2 NPs do cross the gut. The uptake of TiO2 

NP across gills and gut epithelium had also been suggested from the appearance of 

metal from metallic NPs in waterborne studies (Federici et al., 2007; Griffitt et al., 

2008; Hao et al., 2009), supports the notion of possible NP transfer across gill epithelia 

with the ability of NPs to cross cell membranes (Geiser et al., 2005) and penetrate into 

and through the cells without disrupting junctional complexes (Koeneman et al., 2010). 

Metallic NPs have also been located on or in gill epithelial cells of trout using coherent 

anti-Stokes Raman scattering (CARS) (Johnston et al., 2010). However, precise 

information on the rates of uptake of TiO2 NPs across epithelia is lacking, especially for 

the intestine. 
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The aim of current study was to determine which part of the gut was involved in 

the Ti accumulation from an exposure to TiO2 NPs by using isolated whole gut sacs 

(Hoyle and Handy, 2005), and then to measure the total Ti uptake rates based on total 

metal concentrations in perfusates using the isolated perfused intestine (Handy et al., 

2000). These long-established in vitro preparations of intact intestinal tissue allow easy 

manipulations of the external media to measure concentration-dependent uptake. An 

additional aim was also to demonstrate the utility of the perfused intestine preparation 

for studies with manufactured NPs, and to show that viability criteria and other 

measurements relating to physiological function could be met. Finally, the work also 

aimed to explore changes of the composition of the media for NP studies by using 

different gas mixtures to reveal a CO2-sensitive component to metal uptake from 

particle exposure that has not been previously reported.  

3.2 Methodology 

3.2.1 Preparation of the whole gut sacs 

Whole gut sacs were used to determine which parts of the gastrointestinal tract are 

mainly involved in Ti absorption from TiO2 exposure and prepared according to Hoyle 

and Handy (2005) derived from the original method of Handy et al. (2000). This well-

established physiological technique involves removing the whole gut from the animal, 

filling the lumen (according to the size of the gut trying not tighten the pressure inside 

the gut) with the test substance of interest, and then suturing closed the different 

anatomical parts of the gut so that regional uptake into the tissue can be measured over a 

few hours (Fig. 3.1). Fish were humanely sacrificed by a blow to the head and the brain 

was pithed. The weight and total length of the fish was measured; then the entire 

gastrointestinal tract was carefully removed, washed and flushed through with the 

physiological saline (described below). The gut was sutured closed at the posterior end, 
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and the lumen filled with 1 mg l
-1 

TiO2 (NP, Bulk, or no added TiO2 control as 

appropriate) in physiological saline which contained (in mmol l
-1

): NaCl, 117.5; KCl, 

5.7; NaHCO3, 25.0; NaH2PO4
.
2H2O, 1.2; CaCl2

.
2H2O, 5.0; MgSO4, 1.0; glucose, 5.0; 

mannitol, 23.0; osmolarity ~320 mOsm (Osmomat 030, Gonotec) and adjusted to pH 

7.4  with a few drops of 1 mol l
-1

 HCl, at 18 °C, gassed with 95% O2: 5% CO2. The 

concentration of 1 mg l
-1 

TiO2 was chosen because it may be physiologically relevant 

and to compare it with previous work on TiO2 by Federici et al. (2007). Then the gut 

was closed with a suture around the upper end of the oesophagus, and further sutures 

applied to separate each region of the gut (oesophagus, stomach, pyloric caeca, mid and 

hind intestine) according to Hoyle and Handy (2005). The gut was then bathed with 500 

ml of the same physiological saline (no added TiO2). The bath (serosal side) was 

continuously stirred and gassed with 95% O2: 5% CO2 at 18 °C for 4 h. The 4 h duration 

time for this experiment was chosen following the previous metal perfusion studies 

which indicated saturable uptake within 4 h (e.g. Cu in catfish gut, Handy et al., 2000; 

Hg in trout gut, Hoyle and Handy, 2005). After each experiment the gut was carefully 

opened and washed with deionised water to remove excess TiO2, then divided into 

sections of intact oesophagus, stomach, pyloric caeca, mid and hind gut for metal 

analysis and histology (see below). In some experiments, each part of the gut was 

further divided longitudinally into two equal parts; one part was stripped of the mucosa, 

while the other part was left whole, to enable calculation of the relative proportion of Ti 

in the mucosa and underlying muscularis (Hoyle and Handy 2005).  

 

A full description of the isolated perfused intestine, LDH assay, trace metal 

analysis, and the stock TiO2 solution preparations, stock animals, histology with TEM, 

calculations and statistical analysis were found and explained in details in Chapter 2.  
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Figure 3.1 An ideal diagram of the whole gut sac preparation technique (A). The images 

(B and C) shows the different parts of the gut filled with the exposure material, sutured 

close each part separately and bathed into 500 ml of physiological saline, continuously 

stirred and gassed with 95% O2: 5% CO2 for up to 4 h incubation.  
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3.3 Results 

3.3.1 Ti accumulation by whole gut sacs experiment 

The whole gut sac preparation was used to determine which regions of the gut were 

accumulating Ti from TiO2 exposures (Table 3.1). All regions of the intact gut showed 

statistically significant elevations of total Ti metal concentrations in the tissues from 

exposure to the bulk TiO2 compared to the unexposed control, with the greatest 

increases in the mid and hind intestine (Kruskal-Wallis test, P = 0.009 and 0.006 for 

mid and hind intestine respectively, Table 3.1). Elevations of total Ti metal 

concentrations in the tissues were also observed for nanoscale TiO2 exposures in all 

regions of the gut, and unlike the bulk material there were no statistically significant 

differences between the regions of the gut in the TiO2 NP treatment (ANOVA, P = 0.25, 

Table 3.1). Within each region of the gut there was no material-type effect (comparison 

of bulk versus nano treatment, ANOVA or Kruskal-Wallis test, P > 0.05) on the tissue 

total Ti metal concentration. Comparison of the proportions of total Ti metal 

concentrations in the mucosa and underlying muscularis of stripped gut confirmed that 

most (74% or more) of the background Ti in the gut of control animals was in the 

mucosa. Similar observations were made for guts exposed to TiO2 NPs and bulk TiO2 

(Table 3.2). However, for bulk TiO2 the proportion of Ti in the mucosa of the mid 

intestine was only 54% and even less for the hind intestine; both gut regions being much 

lower than the TiO2 NP treatment which showed 71% or more of the tissue total Ti 

metal concentration in the mucosa.  

3.3.2 Electrolyte composition and moisture content of whole gut sac experiments 

There were some regional differences in the electrolyte composition of the gut as 

expected (Table 3.1). However, there were no treatment-dependent effects of either bulk 

or nanoscale TiO2 on the Na
+
, K

+
, Ca

2+
, or Mg

2+
 concentrations in the whole gut sacs. A 
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slight increase in the concentrations of K
+
 and Na

+ 
was detected

 
in some regions of the 

gut but this increase was not significantly different (ANOVA or Kruskal-Wallis test, P 

> 0.05) compared to the control values.  A depletion in the concentrations of Ca
2+

 and 

Mg
2+

 was founded in all regions of the gut  exposed to TiO2 (NP or bulk) compared to 

the controls; with a statistically significant difference found only in the mid intestine 

(ANOVA or Kruskal-Wallis test, P < 0.05, Table 3.1). An increase in the moisture 

content was found in all region of the gut except for the oesophagus compared to the 

controls after exposure to bulk or TiO2 NPs with a statistically significant difference 

found in the mid intestine (ANOVA or Kruskal-Wallis test, P < 0.05, Table 3.1).  

Potassium concentration in the stripped (muscularis) was higher than that found 

in the mucosa (Table 3.3) in all gut regions, except for the oesophagus which showed 

lower values of K
+
 than the mucosa. Sodium concentration in mucosa was mainly 

higher than the stripped one after exposed to TiO2 NPs (66% or more) indicated by a 

significantly difference (ANOVA or Kruskal-Wallis test, P < 0.05) compared to the 

control or bulk treatment in mid and hind intestine (Table 3.3). Calcium and magnesium 

concentrations were accumulated in the mucosa more than the stripped gut after 

exposure to TiO2 NPs for all regions of the gut; with values for the magnesium being 

significantly higher than either the control or bulk in the mucosa of mid and hind 

intestine (ANOVA or Kruskal-Wallis test, P < 0.05, Table 3.3). 

3.3.3 Histopathology of the whole gut sac experiment 

Morphological examination of the whole gut sac after 4 h incubation with 1mg l
-1 

TiO2 

NPs or bulk resulted in normal gut morphology with no pathologies detected in gut 

tissue. However, a minor effect was observed in the pyloric caeca represented by the 

appearance of vacuoles in just one out of six fish examined from one treatment (Fig. 

3.2-i).  
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Figure 3.2 Histology of the whole gut sac after 4 h experiment. (a) control oesophagus, 

(b) 1 mg l
-1 

bulk TiO2 oesophagus, (c) 1 mg l
-1 

TiO2 NP oesophagus showing normal 

tissue. (d) control stomach, (e) 1 mg l
-1 

bulk TiO2 stomach, (f) 1 mg l
-1 

TiO2 NP stomach 

showing normal tissue. (g) control pyloric caeca, (h) 1 mg l
-1 

bulk TiO2 pyloric caeca, (i) 

1 mg l
-1 

TiO2 NP pyloric caeca showing appearance of vacuoles (V). (j) control 

intestine, (k) 1 mg l
-1 

bulk TiO2 intestine, (l) 1 mg l
-1 

TiO2 NP intestine showing normal 

tissue. Scale bar = 100 µm, sections were 8 µm thickness and stained with haematoxylin 

and eosin (n = 6 fish per treatment). 
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Table 3.1 Total Ti metal, K
+
, Na

+
, Ca

2+
 and Mg

2+
 concentrations of gut tissue segments from whole gut sacs following exposure to 1 mg l

-1
 of TiO2 in the gut lumen for 4 h. 

[Metal] µmol g
-1

 dry mass 

Parameter    Oesophagus Stomach Pyloric caeca Mid intestine Hind intestine 

[Ti]  

                    Control               < 0.003
a
           0.003 ± 0.001

a
               < 0.003

a
           0.004 ± 0.001

b
          0.006 ± 0.004

a
 

                    Bulk TiO2           0.033 ± 0.009
ab,

*          0.029 ± 0.007
a,
*          0.016 ± 0.003

a,
*           0.062 ± 0.018

b,
*          0.041 ± 0.011

ab,
* 

                    TiO2 NP           0.027 ± 0.009
a,
*          0.017 ± 0.003

a
          0.015 ± 0.003

a,
*           0.027 ± 0.005

a,
*          0.030 ± 0.006

a,
* 

[K
+
] 

                    Control     158.4 ± 16.8
ab

  168.4 ± 23.2
a
  87.5 ± 7.9

b
   224.5 ± 35.1

a
 274.6 ± 71.4

a
 

                    Bulk TiO2     126.7 ± 18.8
ab

   175.8 ± 13.7
b
    81.4 ± 10.4

a
   248.7 ± 15.7

c
 239.4 ± 29.3

c
 

                    TiO2 NP   221.5 ± 86.3
a
   184.7 ± 22.2

ad
  80.5 ± 5.8

b
    203.1 ± 25.9

cd
 239.3 ± 11.1

c
 

[Na
+
] 

                   Control   245.9 ± 21.6
a
 219.6 ± 27.1

a
   121.8 ± 16.8

b
  245.3 ± 44.7

a
 286.4 ± 54.7

a
 

                   Bulk TiO2   207.8 ± 25.9
a
 253.3 ± 12.7

a
 114.9 ± 9.1

b
  353.6 ± 75.3

a
 290.3 ± 53.0

a
 

                   TiO2 NP     311.2 ± 114.8
a
 207.5 ± 23.2

ac
 102.1 ± 7.1

b
  269.7 ± 38.1

c
  305.9 ± 58.9

ac
 

[Ca
2+

]      

                   Control   17.2 ± 2.2
a
 16.8 ± 2.9

a
   10.9 ± 2.8

b
   22.1 ± 8.5

ab
  23.9 ± 9.2

ab
 

                   Bulk TiO2    12.6 ± 1.7
ab

 15.6 ± 1.3
b
     8.9 ± 1.5

a
     21.6 ± 2.9

c,
* 15.9 ± 1.4

b
 

                   TiO2 NP     18.8 ± 7.4
a,
* 12.7 ± 1.7

a
     6.2 ± 0.5

b
     14.9 ± 1.8

ac,#
 17.9 ± 2.4

c
 

[Mg
2+

]      

                   Control   15.9 ± 1.3
a
 15.4 ± 1.7

a
    9.5 ± 0.8

b
  18.6 ± 3.2

a
 22.3 ± 5.1

a
 

                   Bulk TiO2   13.0 ± 1.7
a
  16.3 ± 0.5

ad
    8.7 ± 0.9

b
  20.9 ± 1.5

c
  18.8 ± 2.0

cd
 

                   TiO2 NP   22.4 ± 8.7
a
  15.6 ± 1.4

ac
    8.4 ± 0.4

b
    17.4 ± 1.9

ac
 19.5 ± 0.7

c
 

Moisture (%)      

                   Control   80.2 ± 2.6
a
 77.5 ± 1.8

a
   62.6 ± 7.2

b
  74.5 ± 1.8

a
 78.2 ± 2.9

a
 

                   Bulk TiO2    75.9 ± 0.8
ab

 79.6 ± 0.7
a
   68.6 ± 6.2

b
     83.1 ± 1.4

a,
* 80.1 ± 1.3

a
 

                   TiO2 NP   76.1 ± 0.5
a
 78.7 ± 0.8

a
   66.3 ± 5.8

b
     78.4 ± 2.2

a,
* 81.7 ± 0.7

a
 

Values are means ± S.E.M. (n = 6 for each group) expressed as µmol g
-1

 dry mass of intestinal tissue, except moisture content (%) = ((wet weight – dry weight)/wet weight) x 100. 

Whole gut sacs were filled with physiological saline (control), 1 mg l
-1 

bulk TiO2 and 1 mg l
-1 

TiO2 NP at laboratory temperature (18°C) for 4h. * Statistically significant difference 

from control values within columns and electrolytes (ANOVA or Kruskal-Wallis test, P < 0.05). # Statistically significant difference from bulk TiO2 value within columns and 

electrolytes (ANOVA or Kruskal-Wallis test, P < 0.05). Different letters (within rows) indicate a statistically significant difference between regions of the gut (ANOVA or Kruskal-

Wallis test, P < 0.05). 
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Table 3.2 Total Ti metal concentrations in stripped portions of gut and the corresponding mucosa following exposure of isolated whole gut sacs to 1 mg l
-1

 TiO2 in the gut lumen for 

4 h. 

[Ti] µmol g
-1

 dry mass 

Treatments 

 Oesophagus Stomach Mid intestine Hind intestine 

Control Stripped < 0.003
a
 < 0.003

a
 0.004 ± 0.001

a
    0.005 ± 0.002

a
 

 Mucosa    0.018 ± 0.009
a
   0.010 ± 0.005

a
 0.012 ± 0.008

a
    0.019 ± 0.012

a
 

 % in mucosa    90.0 ± 14.5
a
   83.3 ± 18.3

a
 75.0 ± 16.9

a
    79.2 ± 16.8

a
 

BulkTiO2 Stripped     0.018 ± 0.003
a,
* 0.030 ± 0.009

a
     0.135 ± 0.039

ab,
*      0.252 ± 0.131

b
 

 Mucosa      0.128 ± 0.039
a,
*   0.065 ± 0.019

a,
*     0.159 ± 0.049

a,
*        0.148 ± 0.035

a,
* 

 % in mucosa 87.7 ± 6.6
a
 68.4 ± 5.9

a
 54.1 ± 3.1

b
      37.0 ± 10.8

b
 

TiO2 NP Stripped    0.019 ± 0.005
a,
*   0.021 ± 0.004

ac,
*      0.056 ± 0.010

b,
*        0.040 ± 0.011

bc,
*  

 
Mucosa    0.174 ± 0.019

a,
*   0.060 ± 0.006

b,
*      0.136 ± 0.025

a,
*        0.165 ± 0.026

a,
* 

 
% in mucosa 90.2 ± 2.1

ac
 74.1 ± 4.3

bc
  70.8 ± 4.1

b
    80.1 ± 2.9

c
 

 
Values are means ± S.E.M. (n = 6 for each group) expressed as total Ti metal concentration in µmol Ti g

-1
 dry mass of intestinal tissue. Whole gut sacs were filled with physiological 

saline (control), or the saline containing 1 mg l
-1 

Bulk TiO2 or 1 mg l
-1 

TiO2 NP at laboratory temperature (18°C) for 4h. The mucosa was stripped off each section of gut so that the 

mucosa and underlying sub-mucosa/muscularis (stripped gut) separately analysed for total Ti metal concentration. % Ti in the mucosa is calculated for each region of the gut, % Ti in 

mucosa= [Ti] mucosa/([Ti] stripped + [Ti] mucosa) x 100. * Statistically significant difference from control values within columns (ANOVA or Kruskal-Wallis test, P < 0.05). 

Different letters (within rows) indicate a statistically significant difference between regions of the gut (ANOVA or Kruskal-Wallis test, P < 0.05). There was no material-type effect 

(bulk versus nano treatment) within each region of the gut for the tissue Ti concentrations. 
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Table 3.3 Total K
+
, Na

+
 Ca

2+
 and Mg

2+
 concentrations in stripped portions of gut and the corresponding mucosa following exposure of isolated whole gut sacs to 1 mg l

-1
 TiO2 in the 

gut lumen for 4 h. 

[Metal] µmol g
-1

 dry mass 

Parameters  Oesophagus Stomach Mid intestine Hind intestine 

Potassium Control     Stripped  154.03 ± 13.02
a
     219.29 ± 16.43

ab
     247.64 ± 43.49

b
     201.01 ± 35.76

ab
 

      Mucosa  201.58 ± 52.72
a
   164.73 ± 48.37

a
     092.72 ± 22.09

a
  159.80 ± 7.90

a
 

     % in mucosa                 52.5 ± 6.7
a
             39.2 ± 5.4

ab
              27.6 ± 5

b
                 46.5 ± 4.5

a
 

 Bulk TiO2     Stripped  141.55 ± 12.91
a
     209.97 ± 24.23

ab
     276.31 ± 16.83

b
     308.14 ± 63.70

b
 

      Mucosa  267.92 ± 83.12
a
   172.09 ± 34.56

a
     151.30 ± 20.96

a
     206.89 ± 30.20

a
  

     % in mucosa  59.8 ± 6.8
a
    44.5 ± 4.2

ab 
    34.8 ± 2.9

b
     42.5 ± 6.6

b
 

 TiO2 NP     Stripped  155.76 ± 15.31
a
  204.54 ± 8.48

b
    230.74 ± 16.40

c
     197.41 ± 12.36

bc
 

      Mucosa   241.83 ± 31.36
ac

    118.11 ± 15.65
b
        212.13 ± 41.20

ab,
*       326.88 ± 40.27

c,
*

#
 

  % in mucosa  59.9 ± 4.7
a 

   35.9 ± 2.6
b 

    46.2 ± 3.5
b 

   61.3 ± 3.9
a 

Sodium Control     Stripped  253.18 ± 39.47
a
    245.68 ± 16.23

a
     220.82 ± 30.35

a
    217.07 ± 20.15

a
 

      Mucosa    424.30 ± 79.28
ab

       461.25 ±  149.63
a
     182.22 ± 31.90

b
      217.07 ± 46.28

ab
 

     % in mucosa   60.3 ± 6.2
a
    59.4 ± 5.8

a
     44.9 ± 6.8

a
     47.9 ± 5.7

a
 

 Bulk TiO2     Stripped     222.97 ± 019.95
a
       240.64 ± 027.00

ab
                  333.00 ± 76.18

ab
        343.65 ± 47.26

b,
* 

      Mucosa     542.83 ± 119.89
a
      692.06 ± 177.26

a
       380.72 ± 117.03

b
        400.78 ± 147.91

b
 

     % in mucosa   67.5 ± 5.1
a
    71.6 ± 4.2

a
     51.2 ± 2.9

b
      48.4 ± 7.5

b
 

 TiO2 NP     Stripped  213.63 ± 13.01
a
    215.54 ± 05.20

a,#
     224.85 ± 15.76

a
        231.61 ± 36.90

a,#
 

      Mucosa  516.71 ± 85.86
a
  422.99 ± 56.36

a
        444.52 ± 44.42

a,
*

# 
           528.76 ± 171.66

a,
*

#
 

     % in mucosa     69 ± 3.4
a
 64.9 ± 3.2

a
     65.8 ± 2.4

a
      66.2 ± 3.4

a
 

Calcium Control     Stripped  17.20 ± 2.89
a
 15.97 ± 1.91

a
    21.02 ± 4.35

a
       21.88 ± 7.85

a
 

     Mucosa  24.69 ± 5.42
a
 22.74 ± 6.06

a
      9.57 ± 1.28

b
       12.71 ± 2.60

b
 

   % in mucosa  56.3 ± 6.2
a
 55.4 ± 4.3

a
    34.2 ± 5.6

b
         41.1 ± 6.7

ab
 

Bulk TiO2     Stripped    33.09 ± 18.85
a
 15.59 ± 1.19

b
    27.02 ± 3.92

a
        29.55 ± 7.41

a
 

     Mucosa  33.23 ± 7.72
a
 33.16 ± 7.07

a
    18.30 ± 4.11

b
       16.32 ± 4.28

b
 

   % in mucosa 58.6 ± 5.7
a
    66 ± 3.7

a
    39.6 ± 2.9

b
       38.5 ± 9.7

b
 

TiO2 NP     Stripped  22.99 ± 9.76
a
 13.68 ± 1.61

a
     17.95 ± 1.76

a
      15.26 ± 2.18

a
 

     Mucosa  28.85 ± 3.92
a
 23.48 ± 3.75

a
        18.60 ± 2.02

a,
*      23.57 ± 6.30

a
 

 % in mucosa 60.7 ± 5.6
a
  61.8 ± 4.6

ab
     50.7 ± 2.9

b
        57.9 ± 4.7

ab
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Table 3.3 continued 

 

   [Metal] µmol g
-1

 dry mass    

Parameters   Oesophagus Stomach Mid intestine Hind intestine 

Magnesium Control Stripped 14.74 ± 0.96
a
 18.08 ± 1.52

a
 18.54 ± 2.81

a
 16.66 ± 2.55

a
 

 Mucosa 29.43 ± 7.62
a
   33.03 ± 11.13

a
 11.93 ± 2.71

b
 16.35 ± 1.88

b
 

 % in mucosa                 61.9 ± 5.8
a
            58.6 ± 6.2

a
            38.7 ± 6.5

b
               50.2 ± 3.9

ab
 

Bulk TiO2 Stripped    4.52 ± 0.92
a
  16.61 ± 1.51

a
  20.98 ± 1.77

a
 24.27 ± 4.85

b
 

 Mucosa    40.71 ± 13.70
a
    37.34 ± 10.32

a
  19.40 ± 3.08

b
 19.46 ± 2.74

b
 

 % in mucosa                 67.4 ± 6.2
a
            65.6 ± 4.9

a
             47.2 ± 4.3

b
               46.4 ± 6.8

b
 

TiO2 NP Stripped  15.60 ± 1.31
a
  17.26 ± 0.76

a
   17.08 ± 1.25

a
 15.54 ± 0.90

a
 

 Mucosa  32.74 ± 3.31
a
  23.95 ± 2.82

a
       27.71 ± 3.92

a,
*

#
      31.79 ± 3.79

a,
*

#
 

 % in mucosa  67.2 ± 3.2
a
  57.2 ± 2.8

b
        61 ± 2.5

ab 
 66.2 ± 3.1

a
 

 

Values are means ± S.E.M. (n = 6 for each group) expressed as total electrolytes concentration in µmol g
-1

 dry mass of intestinal tissue. Whole gut sacs were filled with physiological 

saline (control), or the saline containing 1 mg l
-1 

TiO2 NP or 1 mg l
-1 

Bulk TiO2 at laboratory temperature (18 ºC) for 4h. The mucosa was stripped off each section of gut so that the 

mucosa and underlying sub-mucosa/muscularis (stripped gut) separately analysed for total electrolytes concentration. % electrolytes in the mucosa is calculated for each region of the 

gut, % electrolytes in mucosa= [electrolytes] mucosa / ([electrolytes] stripped + [electrolytes] mucosa) x 100. * Statistically significant difference from control values or # 

Statistically significant difference from Bulk TiO2 value (ANOVA or Kruskal-Wallis test, P < 0.05) (within columns). Different letters (within rows) indicate a statistically 

significant difference between regions of the gut.  
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3.3.4 The effect of TiO2 on the viability of the perfused intestine 

All the viability criteria of the perfused intestines were good in general and met in all 

treatments. Measured by the morphological examination of the intestine (light 

microscopy of fixed wax sections), LDH activity for both the perfusate and mucosal 

solution (bath samples), as well as the mucosal solution [K
+
], [Na

+
], and pH. 

3.3.4.1 Histopathology  

The histological examination of the perfusate intestine after 4 h showed normal gut 

morphology (Fig. 3.3). The addition of 1mg l
-1 

TiO2 NP or bulk to the mucosal solution 

had only minor effects on the epithelium regardless of the gas mixture and only 

observed in one or two out of six animals in total, with no clear treatment-related effect. 

These included some slight swelling of the occasional goblet cells (in one out of six 

animals per treatment), minor lifting of the epithelial cell (in two out of six animals per 

treatment) and appearance of vacuoles (in two out of six animals per treatment).  

3.3.4.2 LDH measurements 

The LDH activity in all experiments (n = 6 per treatment; n = 7 for the control and TiO2 

NP treatment gassed with the standard gas mix) in both perfusate and mucosal solutions 

remained low and within the viability criteria for the preparation (< 1 IU ml
-1

). The 

maximum individual perfusate LDH concentrations reached for control, bulk TiO2 and 

TiO2 NP gassed with standard mix gas were 0.71, 0.73 and 0.79 IU ml 
-1

 respectively. 

For the low CO2 experiments, LDH activity also remained low with the maximum 

individual LDH activity reached in the perfusates being 0.76, 0.78 and 0.79 IU ml
-1

 for 

control, bulk TiO2 and TiO2 NP respectively. However, statistically significant lower 

values of the cumulative LDH activity for TiO2 NP (t-test, P = 0.001, Fig. 3.4 A and B) 

were observed compared to the standard gas mix group, and the same situation was seen 

with the bulk TiO2 treatment (t-test, P = 0.006). For the mucosal LDH, the maximum 
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individual values reached for the control, bulk TiO2 and TiO2 NP gassed with standard 

gas mix were 0.54, 0.65 and 0.47 IU ml 
-1

 respectively; while it was 0.35, 0.42 and 0.35 

IU ml 
-1 

gassed with the low CO2. Bulk TiO2 showed statistically significant lower 

mucosal LDH values than the bulk TiO2 with standard gas mix (t-test, P = 0.026, Fig. 

3.5 A and B). The cumulative LDH activity for both perfusate and mucosal solutions 

showed a linear and steady increase over time for all gas mixtures. In the perfusate for 

the standard gas mixture, the bulk TiO2 treatment showed a statistically lower 

cumulative LDH activity by the end of the experiment compared to either control or 

TiO2 NP treatments (Kruskal-Wallis test, P = 0.001, Fig. 3.4 A). The same situation was 

seen with the low CO2 treatments (Kruskal-Wallis test, P = 0.003, Fig. 3.4 B). There 

were no statistically significant differences between treatments in the cumulative LDH 

in the mucosal solutions with either gas mixture (ANOVA, P > 0.05, Fig. 3.5 A and B), 

except for the bulk TiO2 gassed with standard gas mix at 240 min, a statistically 

significant increase in the cumulative LDH was detected in compare to the control and 

TiO2 NP (Kruskal-Wallis test, P = 0.032, Fig. 3.5 A). Additionally, a statistically lower 

of the cumulative LDH was noticed for the TiO2 NP at 120 min gassed with the 

standard gas mix compared to the control and bulk TiO2 (Kruskal-Wallis test, P = 0.02, 

Fig. 3.5 A). 

3.3.4.3 Effects of TiO2 on the mucosal solution [K
+
], [Na

+
], and pH 

There were no TiO2-treatment dependent effects on [K
+
], [Na

+
], or pH of the mucosal 

solution for most experiments (Table 3.4 and 3.5), which indicate that the intestine was 

normal with no measurable leak of electrolytes. The measured levels of [K
+
], [Na

+
] and 

pH in the fresh physiological saline used in the experiments were 5.86, 146 mmol l
-1

 

and 7.4, respectively, and in comparison there were only micromolar increases in 

electrolytes above this background concentration in all experiments. For example, the 

average increase (grand means of both control and treatments) in the [K
+
], [Na

+
] in the 
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mucosal solution gassed with low CO2 were 0.14 ± 0.03 and 0.79 ± 0.19 mmol l
-1 

respectively (mean ± S.E.M., n = 12 experiments) over 4 h, while the increase in the 

mucosal solution gassed with the standard gas mix over 4 h were 0.27 ± 0.04 and  4.49 

± 0.41 mmol l
-1

 respectively (mean ± S.E.M., n = 14 experiments). The grand mean 

change in pH for the standard gas mixture for all experiments was 0.39 ± 0.03, 

indicating the expected normal base secretion of the intestine. However, in the standard 

gas mix experiments there was slightly more (statistically significant, ANOVA, P = 

0.03, Table 3.4) base secretion in the nano treatment compared to bulk or controls 

(mean ± S.E.M., n = 20 experiments; increases of pH; 0.29 ± 0.07, 0.43 ± 0.02 and 0.48 

± 0.04 for control, bulk TiO2 and TiO2 NPs, respectively). There were no treatment-

dependent changes in net acid excretion into the mucosal solution for the 0.5% CO2 

treatment (Table 3.5), with a grand mean changes of 0.81 ± 0.02 pH units for all 

treatments combined (mean ± S.E.M., n = 18 experiments). However, compared to the 

standard gas mixture, the 0.5% CO2 had larger increases in pH; 0.83 ± 0.05, 0.82 ± 0.03 

and 0.79 ± 0.03 for control, bulk TiO2 and TiO2 NPs, respectively (mean ± S.E.M., n = 

18 experiments) indicated that the pH was more stable with standard gas mix 

experiment than that found with low CO2 one. 
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Figure 3.3 Histology of the perfusate intestine after 4 h perfusion. (a) Control gassed 

with standard gas mix showing normal intestine with goblet cells (G), (b) 1 mg l
-1

 bulk 

TiO2 gassed with standard gas mix showing appear of vacuoles (V) and lifting 

epithelium (L), (c) 1 mg l
-1

 TiO2 NP gassed with standard gas mix showing lifting of 

epithelial cell (L), (d) Control gassed with low CO2 showing normal tissue, (e) 1 mg l
-1

 

bulk TiO2 gassed with low CO2 showing minor lifting epithelium (L), and swelling of 

the goblet cells (G), (f) 1 mg l
-1

 TiO2 NP gassed with low CO2 showing appear of 

vaculation (V) and lifting of epithelial cell (L). Scale bar = 50 µm, sections were 8 µm 

thickness and stained with haematoxylin and eosin (n = 6 per treatment; n = 7 for the 

control and TiO2 NP treatment gassed with the standard gas mix).  
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Figure 3.4 The effect of 1 mg l
-1 

TiO2 exposure on the cumulative perfusate LDH 

activity (cumulative sum of international units of LDH activity per minute) over 4 h in 

perfused intestine at 18°C, (A) control, bulk TiO2 and TiO2 NP gassed with standard gas 

mix, (B) Control, bulk TiO2 and TiO2 NP gassed with low CO2. Values are means ± 

S.E.M (n = 6 per treatment; n = 7 for the control and TiO2 NP treatment gassed with the 

standard gas mix). *Statistically significant difference from the control value (ANOVA 

or Kruskal-Wallis test, P < 0.05). # Statistically significant difference from bulk TiO2 

value (ANOVA or Kruskal-Wallis test, P < 0.05).  
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Figure 3.5 The effect of 1 mg l
-1 

TiO2 exposure on the cumulative mucosal solution 

(bath) LDH activity (cumulative sum of international units of LDH activity per minute) 

over 4 h in perfused intestine at 18°C, (A) control, bulk TiO2 and TiO2 NP gassed with 

standard gas mix, (B) Control, bulk TiO2 and TiO2 NP gassed with low CO2. Values are 

means ± S.E.M (n = 6 per treatment; n = 7 for the control and TiO2 NP treatment gassed 

with the standard gas mix). * Statistically significant difference from control values 

(ANOVA or Kruskal-Wallis test, P < 0.05) within each time point. # Statistically 

significant difference from bulk TiO2 value (ANOVA or Kruskal-Wallis test, P < 0.05) 

within each time point.   
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Table 3.4 Total pH, Na
+ 

and K
+
 concentrations in the mucosal solution after exposure of the isolated perfused intestine to 1 mg l

-1
 TiO2 gassed with 95% O2: 5% CO2 for up to 4h. 

 

Values are means ± S.E.M. (n = 6 for the bulk TiO2; n = 7 for the control and TiO2 NP treatment) expressed as mmol l
-1 

for both Na
+ 

and K
+
 in the mucosal solution (bath solution). * 

Statistically significant difference from control values (Kruskal-Wallis test or t-test, P < 0.05) (within rows).    

Time (min) 

Control TiO2 NP Bulk TiO2 

pH 
Bath Na

+ 

(mmol l
-1

) 

Bath K
+ 

(mmol l
-1

) 
pH 

Bath Na
+ 

(mmol l
-1

) 

Bath K
+ 

(mmol l
-1

) 
pH 

        

30 7.6 ± 0.06 148.8 ± 0.58 5.9 ± 0.03    7.8 ± 0.03* 147.4 ± 0.6 5.89 ± 0.03 7.8 ± 0.02* 

60 7.6 ± 0.06 149.2 ± 0.66 6.1 ± 0.05    7.8 ± 0.04*   148.8 ± 0.97 5.97 ± 0.03 7.8 ± 0.02* 

90 7.7 ± 0.07 150.8 ± 1.02 6.2 ± 0.05  7.8 ± 0.04   149.8 ± 0.37   6.02 ± 0.02* 7.8 ± 0.02 

120 7.7 ± 0.07 149.6 ± 0.40 6.1 ± 0.07  7.9 ± 0.04   149.8 ± 0.85 6.05 ± 0.06 7.8 ± 0.02 

150 7.7 ± 0.08 153.4 ± 2.46 6.3 ± 0.13    7.9 ± 0.05*   150.3 ± 0.48 6.08 ± 0.04 7.8 ± 0.02 

180 7.7 ± 0.08 151.4 ± 0.75 6.3 ± 0.11  7.9 ± 0.05   153.3 ± 2.63 6.22 ± 0.16 7.9 ± 0.02 

210 7.7 ± 0.08 151.2 ± 0.73 6.3 ± 0.09    7.9 ± 0.05*   150.8 ± 0.95 6.13 ± 0.07 7.9 ± 0.02 

240 7.8 ± 0.08 152.2 ± 0.66 6.4 ± 0.11  7.9 ± 0.04   151.0 ± 0.71 6.17 ± 0.08 7.9 ± 0.02 
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Table 3.5 Total pH, Na
+ 

and K
+
 concentrations in the mucosal solution after exposure of the isolated perfused intestine to 1 mg l

-1
 TiO2 gassed with 99.5% O2: 0.5% CO2 for up to 4h. 

 

Values are means ± S.E.M. (n = 6 for each group) expressed as mmol l
-1 

for both Na
+ 

and K
+
 in the mucosal solution (bath solution). There was no statistically significant difference 

(Kruskal-Wallis test or t-test, P > 0.05) between groups (control, bulk or nano) within each time point over 4 h perfusion. 

 

 

 

 

Time (min) 

Control TiO2 NP Bulk TiO2 

pH 
Bath Na

+ 

(mmol l
-1

) 

Bath K
+ 

(mmol l
-1

) 
pH 

Bath Na
+ 

(mmol l
-1

) 

Bath K
+ 

(mmol l
-1

) 
pH 

        

30   7.92 ± 0.08   145.7 ± 0.88 5.87 ± 0.04   7.92 ± 0.08   146.7 ± 0.33 5.92 ± 0.02 7.98 ± 0.07 

60   8.07 ± 0.08   146.0 ± 0.58 5.90 ± 0.02   8.05 ± 0.07   145.7 ± 0.33 5.89 ± 0.01 8.10 ± 0.06 

90   8.17 ± 0.06   146.3 ± 0.33 5.92 ± 0.03   8.13 ± 0.03   146.7 ± 0.33 5.93 ± 0.02 8.17 ± 0.02 

120   8.23 ± 0.07   146.3 ± 0.33 5.94 ± 0.03   8.20 ± 0.04   146.3 ± 0.33 5.92 ± 0.03 8.21 ± 0.04 

150   8.30 ± 0.04   147.3 ± 0.33  5.97 ± 0.02   8.25 ± 0.02   146.3 ± 0.33  5.93 ± 0.02 8.25 ± 0.02 

180   8.35 ± 0.04   148.0 ± 0.00   6.10 ± 0.06   8.30 ± 0.03   147.3 ± 0.33  6.05 ± 0.08 8.33 ± 0.02 

210   8.38 ± 0.05   147.7 ± 0.33  6.17 ± 0.17   8.33 ± 0.02   147.3 ± 0.33   6.05 ± 0.08 8.33 ± 0.02 

240  8.42 ± 0.04   148.0 ± 0.00  6.23 ± 0.19   8.36 ± 0.02   147.0 ± 1.00  6.14 ± 0.18 8.38 ± 0.02 
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Table 3.6 Total TiO2 concentration in the mucosal solution after exposure of the isolated perfused intestine to 1 mg l
-1

 TiO2 for up to 4h. 

Mucosal TiO2 (mg l
-1

)   

Time (min) 

Gassed with 95% O2: 5% CO2 Gassed with 99.5% O2: 0.5% CO2 

Control Bulk TiO2 TiO2 NP Control Bulk TiO2 TiO2 NP 

30 < 0.004 0.37 ± 0.05* 0.10 ± 0.02
#
 < 0.004 0.16 ± 0.01* 0.18 ± 0.07* 

60 < 0.004 0.32 ± 0.03*  0.19 ± 0.07* < 0.004  0.08 ± 0.03* 0.21 ± 0.13* 

90 < 0.004 0.36 ± 0.02*   0.12 ± 0.04*
#
 < 0.004  0.09 ± 0.03* 0.21 ± 0.12* 

120 < 0.004 0.34 ± 0.04*   0.17 ± 0.05*
#
 < 0.004  0.08 ± 0.03* 0.13 ± 0.08* 

150 < 0.004 0.35 ± 0.03*   0.18 ± 0.10*
#
 < 0.004  0.05 ± 0.02* 0.05 ± 0.03* 

180 < 0.004  0.34 ± 0.04*   0.09 ± 0.02*
#
 < 0.004  0.03 ± 0.01* 0.07 ± 0.03* 

210 < 0.004  0.35 ± 0.02*   0.14 ± 0.04*
#
 < 0.004  0.03 ± 0.01* 0.07 ± 0.03* 

240 < 0.004  0.38 ± 0.01*   0.16 ± 0.05*
#
 < 0.004 0.02 ± 0.01 0.06 ± 0.03* 

 

Values are means ± S.E.M. (n = 6 per treatment; n = 7 for the control and TiO2 NP treatment gassed with the standard gas mix) expressed as mg l
-1 

for TiO2 in the mucosal solution 

(bath solution) gassed with 95% O2: 5% CO2 and 99.5% O2: 0.5% CO2. * Statistically significant difference from control values or # Statistically significant difference from Bulk 

TiO2 value (ANOVA or Kruskal-Wallis test, P < 0.05) (within columns).  
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3.3.5 TiO2 Distribution in the mucosal solution 

The dispersion of TiO2 was confirmed by the nanoparticles tracking analysis system 

(Nanosight LM 10) which analysed the mucosal solution samples that taken at the 

beginning (at 30 min) and at the end (at 240 min) of the experiments. The bulk TiO2 

material remained stable over the 4 h perfusions, at the start of experiments the bulk 

TiO2 had a mean particle size of 301.50 ± 43.47 nm, with the smallest size bin in the 

distributions being 70.61 ± 14.79 nm (mean ± S.E.M., n = 6, Fig. 3.6. C). The mean 

values for the bulk TiO2 at the end of the experiments were 236.67 ± 24.05 nm, with the 

smallest size bin of 61.5 ± 7.10 nm (mean ± S.E.M., n = 6, neither being statistically 

different from the start of the experiment, t-tests, P > 0.05, Fig. 3.6. D). TiO2 NP 

showed statistically significant lower mean particle size values (t-tests, P < 0.05) 

compared to the bulk TiO2 treatment at each time point. The mean size of the TiO2 NP 

at the beginning of the experiment and after 4 h perfusion were 169.43 ± 18.77 nm and 

140.18 ± 15.85 nm (mean ± S.E.M., n = 10, t-test, P = 0.84), respectively, while the 

smallest size bin of particles had a mean of 50.10 ± 3.71 nm and 46.93 ± 1.88 nm (mean 

± S.E.M., n = 10, t-test, P = 0.66), at the start and end of the experiment respectively 

(see Fig. 3.6. A and B).  
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Figure 3.6 The dispersion of 1 mg l
-1

 TiO2 in the mucosal solution. Nanosight graphs 

are represent examples of individual samples from replicated experiments (TiO2  NP, n 

= 10 and Bulk TiO2, n = 6). (A) TiO2 NP distribution in mucosal solution at the 

beginning of the experiment (at 30 min), mean are 103 nm, started with 26 nm primary 

particle size. (B) TiO2 NP distribution in mucosal solution at the end of the experiment 

(at 240 min), mean are 81 nm, with 28 nm primary particle size. (C) Bulk TiO2 in 

mucosal solution at the beginning of the experiment (at 30 min), mean are 136 nm and 

36 nm primary particle size. (D) Bulk TiO2 in mucosal solution at the end of the 

experiment (at 240 min), mean are 122 nm with 65 nm primary particle size.      
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3.3.6 Ti uptake from TiO2 by the perfused intestine 

3.3.6.1 Titanium accumulation from TiO2 exposures in the perfused intestine 

The accumulation of Ti from TiO2 in the tissue during the perfusions is shown in Fig. 

3.7. As expected, total Ti metal concentrations in the tissues were higher in both of the 

TiO2 treatments compared to the no added TiO2 control. However, there were 

differences between the mid and hind gut depending on both types of TiO2 treatment, 

and the gas supplement used. In general, there was a material-type effect, with TiO2 NP 

treatment showing lower total Ti metal concentrations in the tissue than the equivalent 

bulk treatment when using the standard gas mixture (Fig. 3.7. A). The hind gut also 

generally accumulated less Ti than the mid gut within treatment (statistically significant, 

t-tests, P < 0.05, Fig. 3.7. A). For the mid gut gassed with standard gas mix the total Ti 

metal concentrations in control, bulk TiO2 and TiO2 NP groups were < 0.004, 0.094 ± 

0.041 and 0.019 ± 0.004 µmol g
-1 

dry weight of tissue, respectively (mean ± S.E.M., n = 

6 perfusions for the bulk TiO2; n = 7 perfusions for the control and TiO2 NP treatment, 

Kruskal-Wallis test, P = 0.002). In the hind gut the total Ti metal concentrations in 

control, bulk TiO2 and TiO2 NP groups were 0.003 ± 0.001, 0.022 ± 0.005 and 0.009 ± 

0.003 µmol g
-1 

dry weight of tissue, respectively (mean ± S.E.M., n = 6 perfusions for 

the bulk TiO2; n = 7 perfusions for the control and TiO2 NP treatment, Kruskal-Wallis 

test, P = 0.02). Bulk TiO2 showed significantly higher values than that found in both 

control and TiO2 NP groups for either mid or hind gut. 

The addition of low CO2 into the mucosal solution changed the Ti accumulation 

in the tissue compared to the standard gas mix groups (Fig. 3.7. B); showing higher Ti 

accumulation with TiO2 NP treatment than the equivalent bulk treatment. The Ti 

concentration from TiO2 in the mid gut for control, bulk TiO2 and TiO2 NP groups were 

0.002 ± 0.001, 0.013 ± 0.005 and 0.029 ± 0.009 µmol g
-1 

dry weight of tissue, 

respectively (mean ± S.E.M., n = 6, Kruskal-Wallis test, P = 0.003). The hind gut Ti 
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concentrations were 0.002 ± 0.001, 0.009 ± 0.002 and 0.023 ± 0.009 µmol g
-1

dry weight 

of tissue in control, bulk TiO2 and TiO2 NP groups respectively (mean ± S.E.M., n = 6, 

Kruskal-Wallis test, P = 0.003). The TiO2 NP treatment was significantly higher than 

the bulk TiO2 one. No significantly differences were found for the Ti concentration 

between the mid and hind intestine (t-test, P > 0.05) in all treatment groups.  
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Figure 3.7 Total Ti metal concentrations in the tissues determined by ICP-OES in the 

mid (blue bars) and hind gut (red bars) after 4 h perfusions with a concentration of 1 mg 

l
-1

 TiO2 (bulk or NP) added to the mucosal solution gassed with standard gas mix (A) or 

low CO2 (B). Data are means ± S.E.M. (n = 6 perfusions per treatment; n = 7 perfusions 

for the control and TiO2 NP treatment gassed with the standard gas mix). * Statistically 

significant difference from control values (ANOVA or Kruskal-Wallis test, P < 0.05). # 

Statistically significant difference from bulk TiO2 treatment (ANOVA or Kruskal-

Wallis test, P < 0.05). Letter (a) indicates statistically significant differences between 

mid and hind intestine (t-test, P < 0.05). 
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 3.3.6.2 Net Ti flux to the serosal compartment 

The cumulative Ti metal uptake across the intestine into the serosal perfusate for 

individual experiments at different size (NP and Bulk) and different gas supplement 

(standard gas mix and low CO2) are shown in Fig. 3.8. There was a steady appearance 

of Ti in the eluted perfusate over time in the treated animals compared to controls (Fig. 

3.8). There was also a substantial difference between the TiO2 NP accumulations in the 

perfusate associated with the type of gas mixture. Changing from the standard gas 

mixture to the low CO2 gas mixture greatly enhanced the appearance of Ti in the serosal 

perfusate from both the bulk and nano TiO2 exposures (compare bulk, Fig. 3.8.B and E; 

compare nano, Fig. 3.8.C and F). The maximum initial uptake rate of NP into the 

serosal perfusate with standard gas mix showed a lower values by 13 folds than the low 

CO2 being 1.55 ± 0.33 and 21.16 ± 18.90 nmol g
-1

 h
-1 

(mean ± S.E.M., n = 6 perfusions 

per treatment; n = 7 perfusions for the control and TiO2 NP treatment gassed with the 

standard gas mix), respectively. The bulk TiO2 showed low content of Ti in the serosal 

perfusate being 0.98 ± 0.47 nmol g
-1

 h
-1

 for the standard gas mix (mean ± S.E.M., n = 6) 

and 3.42 ± 0.74 nmol g
-1

 h
-1

 for the low CO2 (mean ± S.E.M., n = 6). Ti content in the 

serosal perfusate from bulk TiO2 represented a significantly lower values than Ti from 

TiO2 NP group for both standard gas mix (t-test, P = 0.04) and low CO2 (t-test, P = 

0.001). However, reduce the appearance of the Ti in the serosal perfusate did not 

compromise the steady perfusate flow (one of the viability criterion for the preparation). 
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Figure 3.8 The cumulative appearance of total Ti metal in the serosal compartment (red 

bars, nmol Ti metal) of perfused intestine preparations from rainbow trout exposed to 1 

mg l
-1

 of TiO2 in the mucosal saline. Cumulative perfusate flow (blue diamonds, ml) is 

also shown. Graphs are representative examples of individual perfusions from replicated 

experiments (n = 6 perfusions per treatment; n = 7 perfusions for the control and TiO2 

NP treatment gassed with the standard gas mix). (A) Control with no added TiO2, (B) 

bulk TiO2, (C) TiO2 NPs, (D) control gassed with low CO2, (E) bulk TiO2 gassed with 

low CO2; (F) TiO2 NPs gassed with low CO2. Fish weights in the examples are 307, 

136.3, 249.9, 229.8, 648.9 and 140.3g, respectively.    
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3.3.6.3 Perfusate Ti from TiO2 and water uptake rates 

Calculated net Ti from TiO2 uptake rates and water flux across the intestine are shown 

(Table 3.7). When using the standard gas mixture, both bulk and nano TiO2 treatments 

showed a trend of higher net fluxes compared to the no-added TiO2 controls. However, 

only the TiO2 NP treated showed a statistically significant higher net flux to the serosal 

compartment (7 and 9 fold higher than controls for initial and overall flux rates 

respectively, Table 3.7). For the standard gas mixture, there were no differences 

between the initial and overall Ti flux rates, indicating that the flux measurements were 

not hampered by saturation of the Ti electrochemical gradient (still movement of Ti 

across the tissue). Importantly, these net fluxes of Ti were in the opposite direction to 

the net water flux across the tissue (not explained by passive solvent drag). Both the 

bulk and TiO2 NP treatments increased the net outward flux of water across the intestine 

compared to the control, and there was a statistically significant material-type effect 

with the bulk treatment causing more net water efflux than the nano treatment for both 

initial and overall rates (Kruskal-Wallis test, P < 0.05, Table 3.7).  

3.3.7 Tissue electrolytes and moisture content of perfused intestine 

Tissue electrolytes concentrations and moisture content of the perfused intestine are 

shown (Table 3.8). Using the standard gas mixture, there was generally no TiO2 

treatment effect on tissue Na
+
 concentrations, but there was a statistically significant 

increase (Kruskal-Wallis test, P < 0.05) in tissue K
+
, Mg

2+ 
(in both the mid and hind 

intestine), and Ca
2+

 (just in the hind intestine) for the bulk TiO2 in comparison with the 

control; and compared to TiO2 NP treatments indicating a material-type effect (Table 

3.8). The moisture content of the intestine was not affected by any treatment (Table 

3.8). 
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3.3.8 Effects of lowering CO2 to 0.5% 

Some of the largest changes in total Ti metal concentration in the tissues and Ti uptake 

observed in these experiments were due to changing the gas mixture for the standard 

95% O2: 5% CO2 to 99.5% O2: 0.5% CO2. In general, the effect of using the lower CO2 

mixture was to cause large increases in the net Ti flux to the serosal compartment 

(Table 3.7, Fig. 3.8), associated with either depletion (bulk material) or elevation (nano 

material) of the total Ti metal concentration in the tissue compared to the standard gas 

mixture (Fig. 3.7B). Most notably for the TiO2 NP treatment, the initial Ti flux rate 

increased from 1.6 to 21.2 nmol g
-1

 h
-1

 (13 fold increase) when the lower CO2 mixture 

was used (Table 3.7). This was accompanied by an increase in the total Ti metal 

concentration in the tissue in the 0.5% CO2 treatment containing TiO2 NPs (mean ± 

S.E.M., n = 6, mid intestine, 0.03 ± 0.01; hind intestine, 0.02 ± 0.01 µmol g
-1

dry weight, 

Fig. 3.7) equating to about a 1.5 and 2.5 fold increase in these tissue respectively due to 

the lower CO2 gas mixture.  

There was a strong effect associated with the type of material and the increase in 

the initial flux rate, due to changing the gas mixture, for the bulk material was from 0.98 

to 3.4 nmol g
-1

 h
-1

 (Table 3.7). This represents a 3.5 fold increase in net Ti flux, but 

even this is small compared to the 13 fold increase with the equivalent nanomaterial 

treatment (statistically significant material-type effect, Table 3.7). For the bulk material, 

unlike the nano scale TiO2, the CO2 mixture effect was to decrease the total Ti metal 

concentration in the tissue (e.g., a 7.2 fold decrease in the mid intestine, Fig. 3.7B). 

Changing the gas mixture had no effect on unexposed control intestines, and there were 

no anatomical regional differences for the gut in terms of the Ti accumulation response 

to the 0.5% CO2 gas mixture (t-test, P > 0.05, Fig. 3.7B). 

Altering the gas mixture had no statistically significant effects on net water 

fluxes in the intestines from control fishes, or from guts in the bulk TiO2 treatment. 
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Unlike the standard gas mix the large rise in net water efflux associated with exposure 

to the TiO2 NP material (Table 3.7), indicating a material-type effect of the CO2 

manipulation on water fluxes.  

Changing the gas mixture generally had no effect on the electrolytes in the 

intestines from unexposed control animals, but did cause an increase (not significantly 

difference) of K
+
, Ca

2+ 
and Mg

2+
 concentrations in the mid intestine from the TiO2 NP 

treatment, but notably in this treatment, the hind intestine also showed depletion of the 

same electrolytes (Table 3.8). Changing the gas mixture in the bulk TiO2 treatment 

generally caused much larger increases in tissue Na
+
, K

+
 and Ca

2+
 concentrations than 

the equivalent nano treatment (combined gas and material-type effect on tissue 

electrolytes, Table 3.8). Moisture content and Mg
2+

 concentrations were generally 

unaffected by changing the gas mixture (Table 3.8). 

3.3.9 Presence of particles within the gut mucosa 

Transmission electron microscopy images of the gut epithelium from control, bulk and 

TiO2 NP treated fish are shown in Fig. 3.9 and 3.10. For all treatments, except the no 

added particle control, electron dense particles are observed inside the epithelial cells 

with some of the particles observed inside vesicles, or associated with tight junctions 

(Fig. 3.9 and 3.10). Damage of the mitochondria (Fig. 3.10) was shown in the gut tissue 

after exposure to the bulk TiO2 represented by degradation with lose of the structure of 

the mitochondria. The damaged mitochondria after exposure to TiO2 NP were exhibited 

by a loss of the structure of the cristae inside the mitochondria. Degeneration of the 

microvilli was also noted in the epithelial cells after being exposed to both bulk and 

TiO2 NP treatments (Fig. 3.9).  
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Table 3.7  Effects of exposure to 1mg l
-1 

TiO2 with/without different gases on the Ti and water fluxes across the isolated perfused trout intestine. 

Mucosal [TiO2]  

(1mg l
-1

) and Drugs 

Concentration 

Net Ti flux, Jnet,Ti 

(nmol g
-1

 h
-1

) 

Net water flux, Jnet,H2O 

(ml g
-1

 h
-1

) 

Initial rate Overall rate Initial rate Overall rate 

Control 0.23 ± 0.16 0.26 ± 0.04   -6.22 ± 0.85    -7.50 ± 1.18 

    Bulk TiO2 0.98 ± 0.47  0.85 ± 0.32    -26.28 ± 2.52*    -28.54 ± 3.19* 

 TiO2 NP     1.55 ± 0.33*
#
     2.38 ± 0.68*

#
     -17.56 ± 4.00*

#
     -18.01 ± 4.16*

#
 

0.5% CO2 Control 0.51 ± 0.14  0.06 ± 0.03   -3.42 ± 1.71   -3.97 ± 0.97 

   0.5% CO2 Bulk TiO2     3.42 ± 0.74*
‡
     3.18 ± 0.42*

‡
          -7.05 ± 2.29

‡
       -8.95 ± 1.78*

‡
 

0.5% CO2 TiO2 NP       21.16 ± 18.90*
#‡

     3.27 ± 1.60*
a
     -17.13 ± 2.37*

#
     -22.30 ± 6.40*

#
 

 

Values are means ± S.E.M. (n = 6 perfusions per treatment; n = 7 perfusions for the control and TiO2 NP treatment gassed with the standard gas mix). expressed per gram dry mass 

of intestine per hour. Negative values indicate a net loss from the serosal solution, initial and overall rates data were calculated from cumulative perfusate data at 10 min and 4 h, 

respectively.* Statistically significant difference from the relevant control values within columns (ANOVA or Kruskal-Wallis test, P < 0.05), # Statistically significant difference 

from bulk TiO2 value within columns (ANOVA or Kruskal-Wallis test, P < 0.05) and ‡ Statistically significant difference from the standard gas mix group values within columns 

(ANOVA or Kruskal-Wallis test, P < 0.05). Letter (a) within rows indicates a statistically significant difference between initial and overall rates (t-test, P < 0.05).   
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Table 3.8 Total K
+
, Na

+
, Ca

2+
,
 
and Mg

2+
 Concentrations of gut tissue following exposure of isolated perfusate trout intestine to 1 mg l

-1
 TiO2 for 4 h. 

 
Mucosal [TiO2]  

(1mg l
-1

) 
Tissue [Metal] µmol g

-1
 dry mass 

Na
+
 K

+
 Ca

2+
 Mg

2+
 Moisture % 

  Mid Intestine      

     Control 145.5 ± 11.9 142.9 ± 16.0 17.0 ± 4.5 14.0 ± 1.7 81.0 ± 1.8 

     Bulk TiO2 156.1 ± 24.3   212.0 ± 15.8* 18.6 ± 3.5   20.2 ± 1.7* 78.4 ± 2.1 

     TiO2 NP 162.8 ± 34.6   136.1 ± 18.3
#
 12.5 ± 1.3   12.1 ± 1.2

#
 82.3 ± 1.7 

0.5% CO2 Control 127.8 ± 11.5  145.6 ± 14.2 15.1 ± 3.8  13.0 ± 0.9 80.5 ± 1.2 

0.5% CO2 Bulk TiO2   329.1 ± 26.1*    283.3 ± 13.8*   35.2 ± 3.1*  16.3 ± 1.7 82.6 ± 0.8 

0.5% CO2 TiO2 NP  118.8 ± 17.9
#
    161.9 ± 24.6

#
   22.9 ± 9.7

#
  14.3 ± 2.6 83.4 ± 1.8 

  Hind Intestine      

     Control 117.4 ± 7.6 127.2 ± 7.9   9.5 ± 0.6   10.8 ± 0.4 81.6 ± 1.4 

     Bulk TiO2 116.5 ± 7.6  168.3 ± 5.9*   18.0 ± 4.2*    15.8 ± 0.7* 81.5 ± 1.8 

     TiO2 NP   98.7 ± 9.5  121.0 ± 7.1
#
     7.9 ± 0.5

#
      9.9 ± 0.6

#
 80.9 ± 1.4 

0.5% CO2 Control 109.3 ± 8.8   135.1 ± 13.1    9.6 ± 0.9   11.0 ± 0.9 81.1 ± 1.6 

0.5% CO2 Bulk TiO2     399.7 ± 25.8*     293.3 ± 11.1*    21.1 ± 2.4*   17.9 ± 1.1 84.4 ± 0.6 

0.5% CO2 TiO2 NP     75.1 ± 8.6
#
    107.8 ± 17.8

#
   14.5 ± 5.0      9.5 ± 1.3

#
 78.5 ± 3.5 

 

Values are means ± S.E.M. (n = 6 perfusions per treatment; n = 7 perfusions for the control and TiO2 NP treatment gassed with the standard gas mix). expressed as µmol g
-1

 dry mass 

of intestinal tissue, except for moisture content (%) = ((wet weight – dry weight)/wet weight) x 100. * Statistically significant difference from control values within columns 

(ANOVA or Kruskal-Wallis test, P < 0.05), # Statistically significant difference from bulk TiO2 value within columns (ANOVA or Kruskal-Wallis test, P < 0.05). 
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Figure 3.9 TEM images of rainbow trout gut epithelium cells. (a,b) control showing 

normal structure of the mitochondria (Mt); (c,d) 1 mg l
-1

 bulk TiO2 showing 

accumulation of assumed bulk TiO2 particles (Bk) and some damaged mitochondria 

(Mt); (e,f) 1 mg l
-1

 TiO2 NP show examples of assumed TiO2 nanoparticles (NP) inside 

the vacuoles and near to the tight junction with some damaged mitochondria (Mt). (c) 

and (e) Images show some occasional fusion or degeneration of parts of the villi (Dg). 

Scale bar = 2 µm in (a, c and e) and 1 µm in (b, d and f) as well as 500 nm, (n = 3 per 

treatment). Composition of the particles was not confirmed in the electron micrographs. 
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Figure 3.10 TEM images of rainbow trout gut epithelium cells (a) control showing 

normal structure of mitochondria (Mt), (b) 1 mg l
-1

 bulk TiO2 showing some damaged 

mitochondria (Mt) represented by degradation with lose of the structure of the 

mitochondria, (c) and (d) 1 mg l
-1

 TiO2 NP showing some damaged mitochondria (Mt) 

represented loss of the structure of the cristae inside the mitochondria. Scale bar = 1 µm 

in (a, b and d) as well as 500 nm, and 2 µm in (c), (n = 3 per treatment). 
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3.4 Discussion 

This is the first reports on transepithelial uptake of NPs by the gut of rainbow trout, 

using the isolated gut perfusion technique. TiO2 is one of the most widely used NPs and 

this is the first study designed to show how particles cross the gut, after the evidence of 

Ti accumulation in the gut, liver, gill, brain and spleen of trout (Federici et al., 2007; 

Ramsden et al., 2009). 

3.4.1 Where is the TiO2 NP absorbed along the gut? 

Previous studies have shown Ti accumulation in rainbow trout gut from ingested water 

containing TiO2 NPs during aqueous exposure studies (Federici et al., 2007) and from 

dietary inclusions of TiO2 NPs (Ramsden et al., 2009). In rodents, Ti accumulation from 

oral exposure to bulk TiO2 has also been reported. For example, oral gavage of high mg 

doses (12.5 mg kg
-1

) of the rutile TiO2 form of the bulk material (500 nm size) in rats 

causes Ti metal accumulation in the internal organs, and notably in the gut associated 

lymphoid tissue (Jani et al., 1994). However, to our knowledge the regional differences 

in total Ti metal concentrations in the tissue associated with exposure to TiO2 particles 

in the gut have not been previously reported in fish. In this study following treatment 

with either the bulk or nanomaterial, Ti accumulated in all the regions of the gut from 

the oesophagus to the hind intestine. For the bulk material treatment, most of the Ti 

accumulation was in the intestinal regions rather than the stomach (Table 3.1), with the 

mid intestine having the highest total Ti metal concentrations. However, the situation 

was different for the TiO2 NP treatment which showed an even accumulation of Ti in 

the different parts of the gut, but with a tendency for the total Ti metal concentrations to 

be higher in the mid and hind gut (not statistically different between gut regions, Table 

3.1). There were no major fluid shifts within the gut tissue, with normal water content 

(66 – 81%) in the different regions of the gut and the absence of disturbances to the 

major electrolyte levels, especially Na
+
 which is crucial to osmoregulation in the tissue 



                                                                                                                            Chapter 3 

85 

  

(Table 3.1). This confirms the tissue was not leaking and that the Ti accumulation 

cannot be explained by osmotic solvent drag. Overall, these data suggest the intestine is 

more important for Ti uptake from TiO2 exposures than other parts of the gut, although 

the form of the accumulated Ti (as particles and/or dissolved Ti) cannot be determined 

from the tissue concentration measurements alone. Nonetheless, the involvement of the 

intestine more than other regions of the gut is consistent with reports on many other 

trace metals (Handy et al., 2000; Hoyle and Handy, 2005). Notably, for both 

experimental treatments of TiO2, the measured total Ti metal concentrations were higher 

in the mucosa, rather than the muscularis (Table 3.2). This suggests a specific 

accumulation of either Ti metal and/or TiO2 particles into the epithelial cells (see 

below). The proportions of the total Ti metal concentration in the mucosa (typically 

70% or more) are broadly similar to previous reports for trace metals in fish gut (e.g. Cu 

in catfish gut, Handy et al., 2000; Hg in trout gut, Hoyle and Handy, 2005).  

3.4.2 Viability of the perfused intestine 

The viability criteria normally employed for the perfusion techniques (Handy et al., 

2000). In the present study, the histology integrity of the gut as a barrier, perfusate and 

mucosal LDH activity, leak of ions into the mucosal solutions ([K
+
], [Na

+
]) and 

perfusate flow were used to assess the viability. These parameters are essential to 

evaluate the viability criteria of the perfusion techniques (Perry et al., 1983; Perry et al., 

1984; Handy et al., 2000), and the accepted results should be obtained only from those 

perfusions which passed all these checks. Current results from this study indicate the 

suitability of using the perfusion technique with the NPs which is met with the viability 

criteria of the preparation.      

3.4.2.1 Histopathology 

Histological examinations of guts after exposure to either bulk or nano TiO2 showed 

normal tissue for the all gut regions. However, some minor effects on gut morphology 
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were shown in one or two animals considered by minor lifting of epithelium, swelling 

of the goblet cells and occasional appearance (occurring at infrequent parts of the tissue)  

of some vacuoles which would not compromise the intestinal barrier (Fig. 3.3). 

3.4.2.2 LDH measurement 

One of the most sensitive indicators of cell injury is the LDH activity and the amount of 

LDH in the normal cells (no damage) compared to that present in the blood stream 

(Moss and Henderson, 1986; Lott and Nemensanszky, 1987). In trout, the blood 

normally contains about 1 IU ml
-1

 LDH in vivo (Hille, 1982). In the perfusate, LDH 

activity is considered as a very sensitive viability indicator (Campbell et al., 1999; 

Handy et al., 2000), and in this study the LDH activity was far below that found in vivo 

(< 1 IU ml 
-1

) in all experiments, in perfusates (Fig. 3.4) and mucosal solutions (Fig. 

3.5). The low LDH leak was evident even when the gas mixture was changed (5% or 

Low CO2). 

3.4.2.3 [K+], [Na+] and pH content in the mucosal solution 

Leak of electrolytes from the tissue was negligible showed only micromolar changes in 

mucosal solution K
+
, and Na

+
 concentration comparing to controls (Table 3.4 and 3.5). 

The steady rates of eluted perfusate flow suggested good viability of the preparations 

(Fig. 3.8). Taken together, the good perfusate flow, low LDH leak, and normal 

electrolytes suggests that the preparations were of good viability and has a utility for 

measuring the uptake of Ti from both bulk and nano forms of TiO2.  

In the normal medium (5% CO2), the steady mucosal solution pH and no leakage 

of the electrolytes also suggests no acidification of the tissue (see Handy et al., 2000; 

Holye and Handy, 2005). However, decreasing the gas supplement to 0.5% CO2 caused 

an elevation of the pH in the mucosal solution from [insert pH] of 7.4 to about pH 7.9, 

suggesting either the uptake of H
+
 ions by the tissue, or the efflux of bicarbonate to 
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result in a more alkaline pH. The secretion of bicarbonate by fish, resulting in decreased 

serosal HCO3
-
 concentration (Grosell et al., 2005), may explain the pH change here. It is 

interesting that the role of this bicarbonate secretion in fish is to ensure the precipitation 

of magnesium and calcium carbonates (e.g., MgCO3), which functions to maintain the 

outward diffusion gradients for divalent ions (Grosell et al., 2005). The generation of 

CO3 may also occur by a spontaneous chemical reaction on the surface of the 

nanoparticle when the CO2 interacts with the alkali atoms on TiO2 (Krischok et al., 

2002). This could therefore alter, the HCO3
-
 equilibrium across the tissue, and therefore 

explain the effect of lowering the CO2 in the presence of TiO2 NPs. 

3.4.3 Ti exposure and the distribution of the TiO2 in the mucosal solution 

The exposure to TiO2 was confirmed by applying different processes to measure the 

mass concentration of TiO2 and particle size distributions in the mucosal solution by 

using nanoparticle tracking analysis (NTA, Fig. 3.6), the appearance of particulate 

material in the mucosa by electron microscopy (Fig. 3.9 and 3.10), as well as total Ti 

metal concentration in the intestinal tissue (Fig. 3.7 A and B). NTA measurements were 

made at 30 and 240 minutes during the experiments using a triplicate samples for each 

time. In general, the distribution of NP and bulk TiO2 was good, with the mean particle 

diameter changing from only 301 to 236 nm for the bulk material, and from 169 to 140 

nm for the NPs. The distribution of particles moving towards slightly smaller sizes in 

the mucosal solution, are probably just a reflection of the faster settling of larger 

aggregates as proposed by other studies (Keller et al., 2010), and should not be 

interpreted as selective uptake of larger particles by the tissue. The concentration of 

TiO2 in the mucosal solution was 0.35 and 0.14 mg l
-1 

of bulk and TiO2 NPs, 

respectively (Table 3.6) after 4 h perfusions and exposure to 1 mg l
-1

 of TiO2 suggesting 

loss of metal and/or particles from the mucosal solution. This phenomena is well known 

for dissolved metals where the intestinal bioavailability is a fractions of the exposure 
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dose, and is associated with the normal protective role of mucus secreted by the 

preparation which will chelate then precipitate metal ions (e.g., for Cu perfusions, 77% 

of the added Cu is lost at exposures of 100 µmol l
-1

, Handy et al., 2000). Obvious 

clumps of white-coloured mucous precipitate appeared in the bath over time (as 

observed with gill mucus during waterborne exposures with TiO2, Federici et al., 2007); 

suggesting precipitation of particles with the mucus. 

3.4.4 The uptake of Ti from TiO2 by the perfused intestine 

3.4.4.1 Tissue TiO2 uptake  

The increase of measured total Ti metal concentrations in the tissue following exposure 

to either the bulk or nano form of TiO2 confirmed that the exposure took place, and that 

Ti (the form cannot be identified from the total tissue Ti measurements) was presents 

in/on the gut tissue after 4 h perfusion. Most of the metal was internalised with the mid 

gut generally accumulating more Ti than the hind gut (Fig. 3.7 A and B). Particulate 

material was also observed inside the epithelial cells using electron microscopy (Fig. 

3.9 and 3.10). Similar observations have been made in rat  gut associated lymphoid 

tissue with measurable Ti metal from rutile TiO2 appearing in/on the tissue (500 nm, 

dose 12.5 mg kg 
-1

 for 10 days, Jani et al., 1994). Galloway et al. (2010) also recently 

reported particles from TiO2 NP exposures in close association with the microvilli in 

marine polychaete worms.  

The intestinal Ti accumulation was greater from the bulk TiO2 compare to nano 

exposure in both mid and hind intestine with different gas supplements; suggesting that 

the bulk TiO2 was accumulated in the tissue rather than diffuse to the serosal side. 

However, this does not imply a “nano effect” on tissue Ti accumulation per se. This 

result could be explained by the fact that the bulk material maintained a slightly higher 

concentration in the mucosal solution than the nano form, or that particle for particle, 

more Ti on a mass basis is inevitably moved into the tissue by uptake of a bulk particle 



                                                                                                                            Chapter 3 

89 

  

compared to a smaller nano one. Regardless of any nano effect, the fact that Ti 

accumulates in the intestine suggests that the efflux of Ti from the gut to the blood must 

be slower than the mucosal (apical) uptake in order to achieve net accumulation in the 

tissue. 

3.4.4.2 Serosal TiO2 uptake 

In all experiments, there was a cumulative increase of total Ti metal in the serosal 

perfusate suggesting transepithelial absorption of either Ti metal and/or particulate 

TiO2. The nano form of TiO2 showed higher values compare to bulk TiO2 in the serosal 

perfusate content which indicated the transfer of the NP into the serosal perfusate rather 

than accumulation in the intestinal tissue (i.e., more transepithelial uptake of the 

nanoform). The steady, and sometimes saturable, appearance of Ti in the eluted 

perfusate over time (Fig. 3.8), suggests a carrier-mediated mechanism(s). This 

hypothesis is supported by net water flux being in the opposite direction to net Ti fluxes 

(Table 3.7) and the absence of dilution of electrolytes in the tissue (Table 3.8); 

excluding passive solvent drag or leak (see Handy et al., 2000) of any (theoretically) 

dissolved Ti. 

3.4.4.3 Perfusate Ti from TiO2 and water uptake rates 

The differences between the initial and overall TiO2 uptake rates (Table 3.7) indicate 

that the serosal solution was at equilibrium with TiO2 during the experiments. However, 

this is not simply explained by diffusion process associated with solvent drag of water 

across the epithelium. First of all this is not a valid scientific argument as NPs are not in 

solution, but in suspension. There is no logical reason why solvent drag would occur. 

Also, the water fluxes are in the opposite direction to the Ti fluxes. The latter is best 

explained by a carrier-mediated process, not by the solvent drag. The same suggestion 
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has been made by Handy et al. (2000) after exposure of the perfused intestine to 

dissolved copper.  

3.4.5 Effects of altering the gas composition on Ti uptake 

Interestingly, the largest increase of net Ti uptake to the serosal compartment was 

caused by changing the gas mixture from 95% O2: 5% CO2 to 99.5% O2: 0.5% CO2. It 

seems unlikely that the small 4% increase in O2 content is physiologically important, 

since the tissue is already saturated with oxygen. The maximum amount of the oxygen 

in fresh water at air saturation (21% oxygen) is about 10 mg l
-1 

(Eddy and Handy, 2012) 

and the gut tissue in the isolated perfused experiment was in direct contact with 99.5% 

of O2 which means it is given at least five times the amount of the O2 in fresh water. 

However, a change of CO2 from 5 to 0.5% represents a profound change in acid-base 

balance for a freshwater fish (review, Goss et al., 1992). It is common practise in fish 

cell culture, and with perfused organ methods to use 95% O2: 5% CO2 as a standard gas 

mixture for in vitro preparations. In this experiment, changing the gas mixture to 99.5% 

O2: 0.5% CO2 (10 fold reductions in CO2 content) caused a 13-fold increase in the 

initial Ti uptake rate in the TiO2 NP exposed intestines (Table 3.7). A statistically 

significant effect was also noted for the bulk material, with a 3-fold increase in the 

initial Ti uptake with the 0.05% CO2 gas mixture (Table 3.7).    

This unexpected finding represents an important nano effect on bioavailability 

(10 fold elevation in Ti uptake with the nano treatment compared to the bulk treatment) 

that may also be of profound importance in real ecosystems because it is related to the 

partial pressure of gases in the external medium. The mechanisms involved require 

further investigation, but there are several possible explanations for this effect. One 

biological explanation is that the 5% CO2 in the standard gas mixture for in vitro studies 

represents a severe acidosis for a freshwater fish (which normally have blood pCO2 ten 

times lower than mammals, Eddy, 1977; Goss et al., 1992). Thus, lowering the CO2 to 
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0.5% is simply moving it closer to in vivo values, and the Ti transport mechanism(s) are 

just recovering their normal (higher) transport rate following acidosis. This argument 

would work well for fish gill, but not the gut mucosa which can see some high CO2 

levels during digestive processes, and has sufficient carbonic anhydrase activity to 

convert CO2 to bicarbonate (Grosell et al., 2009). In the present experimental 

conditions, the elevation of Ti uptake rate with decreasing CO2 content of the gas 

mixture occurred with the expected changes of pH in the external medium associated 

with normal net base excretion in the intestine (> by about 0.4 pH units in the standard 

CO2 mixture, and about 0.8 units in the 0.5% CO2 mixture). The pCO2 effect on Ti 

uptake can be explained by acid-base toxicity in the intestine.  

An alternative explanation is that one of the mechanisms of Ti movement across 

serosal membrane is HCO3
-
-sensitive. Anion-dependent metal efflux pathways are 

known including a DIDS (4,4'-diisothiocyano stilbene-2,2'-disulfonic acid) and Cl
- 

sensitive Cu efflux in fish intestine  (Handy et al., 2000), a Mg-anion transporter in 

mammalian cardiac muscle (Ödblom and Handy, 1999), and uptake of anionic Zn 

species on the Cl
-
/HCO3

-
 exchanger in red blood cells (Torrubia and Garay, 1989). In 

the saline conditions of natural seawater Ti is almost exclusively present as TiO(OH)2 

(Van Den Berg et al., 1994), and water soluble forms of Ti readily form anion 

complexes with anions like citrate (Deng et al., 2007). It therefore seems theoretically 

possible that anion complexes of Ti could be exported to the blood on a basolaterally-

located anion-exchanger, using the downward serosal to apical HCO3
-
 gradient (low 

external CO2) as a driving force. 

The gas mixture effect is not easily explained by the chemical reactivity of TiO2 

with CO2. Carbon dioxide gas spontaneously reacts on the surface of TiO2 particles in 

the presence of alkali metals (e.g., Na
+
 K

+
, present in the gut at mmolar levels) to form 

carbonate ions (Krischok et al., 2002), that would be rapidly converted to  HCO3
- 
ions in 
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the gut lumen by carbonic anhydrase activity. The reaction on the crystal surface of the 

metal oxide normally uses oxygen from water molecules, but can utilise surface oxygen 

atoms from the TiO2, especially where there are point defects in the crystal structure 

(Linsebigler et al., 1995). Thus a reaction of the crystal surface with CO2 could liberate 

Ti ions as the oxygen atoms in the TiO2 structure are used up. However, decreasing CO2 

in the medium would be expected to slow this reaction and therefore the availability of 

Ti ions in solution (less Ti dissolution). This is not consistent with the observed increase 

in Ti uptake at the lower CO2 content (Fig. 3.8; Table 3.7). However, lowering the CO2 

would decrease external HCO3
-
 generated by this reaction in the gut lumen and would 

drive some of the metal-anion transporters above. The gas mixture-dependent increase 

in Ti uptake was also observed with the bulk powder treatment, but to a lesser extent 

than the nano treatment. This is not necessarily a nano size effect, as numerous aspects 

of the crystal structure and spatial arrangement of particle surfaces will alter the CO2 

reaction outline above (Linsebigler et al., 1995), but clearly the gas mixture effect was 

stronger with nano compared to bulk material treatment in the experimental conditions 

used here.   

3.4.6 Is there a material-type effect on tissue electrolytes in the perfused intestine?  

There are some differences of Ti accumulation and uptake rates between bulk and nano 

treatments of TiO2 in the perfused intestine (Fig. 3.7A and B; Table 3.7), but whether or 

not this translates into a nano effect of functional significance to the gut as an important 

osmoregulatory organ is less clear. Exposure to either material increased net water 

efflux across the intestine (Table 3.7, standard gas mix), but the bulk TiO2 treatment 

caused a greater net water efflux than the nano treatment (Table 3.7) without 

dehydrating the tissue or altering tissue Na
+
 (Table 3.8). This suggests the bulk material 

was better at promoting physiological flux of water to the gut lumen, which would be an 

osmoregulatory advantage for a freshwater fish living in a very dilute environment 



                                                                                                                            Chapter 3 

93 

  

(Eddy, 2009). The bulk material also caused Mg
2+

 retention in the gut that was not 

observed in the nano treatment (Table 3.8), suggesting some material-specific effects on 

magnesium homeostasis. In the hind intestine, this was also accompanied by elevation 

of tissue Ca
2+

 due to treatment with the bulk material only (Table 3.8), implying some 

regional effect on calcium homeostasis. Similar observations were made for K
+
 in the 

mid intestine (Table 3.8). The  depolarising effect of increased tissue K
+
 (i.e., more 

positive mucosal membrane potential) might also contribute to the difference in Ti 

uptake rate between the bulk and nano forms in this experiment (positive potential 

slowing Ti influx). The experiment with the 0.5% CO2 gas mix also revealed a bulk 

material-specific elevation of tissue electrolytes compared to all other treatments, 

especially on tissue Na
+ 

(Table 3.8). The reasons for this are unclear, but for example, 

bulk material interference with sodium carbonate co-transport is worthy of 

investigation.  

Some mitochondrial damaged was found in the gut tissue after been exposed to 

both bulk and TiO2 NP (Fig. 3.9 and 3.10). This damage included some degradation of 

the mitochondrial structure and swelling with the loss of definition of the cristae in the 

mitochondria. This observation is consistent with some oxidative injury of some of the 

mitochondria. The same mitochondrial damaged in the gut was shown in earthworms 

treated with 5 g kg 
-1

 of TiO2 NPs (Hu et al., 2010), the authors reported disorganization, 

fracture and reduction (in size) of the mitochondria, and loss of the structure of the 

cristae. The physiological significance of these phenomena relates to the absorptive 

function of the epithelium. For example, during active trace element absorption from the 

food, trout intestinal epithelial cells show intact mitochondria which are aligned directly 

under the microvilli on the apical surface (Kamunde et al., 2003), apparently to provide 

energy for forming absorptive vesicles containing the micronutrients. Disrupted 

mitochondria would be less able to perform such functions.   
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Conclusions  

This study shows that the isolated perfused intestine preparation works with NPs, and 

the viability criteria remain good with these materials. Additionally, this work 

demonstrates that Ti from TiO2 can cross the vertebrate intestine to appear in the serosal 

compartment, and there is a material-type effect with much faster net uptake of Ti from 

the nano form. Ti absorption from both bulk TiO2 and nano form is time-dependent, 

saturable and the uptake mechanism is affected by the gas mixture used. All these 

factors suggest an active absorption mechanism happened. Therefore, from a regulatory 

perspective, a dietary exposure hazard to ecosystems and human health should be 

considered in risk assessments. The net uptake rates reported here for Ti are 

approximately 1-3 nmol g
-1

 h
-1

, identical to those for copper (Handy et al., 2000), but 

about 10 fold less than Hg uptake rates (40-50 nmol g
-1

 h
-1 

for 0.2-2 mg l
-1

 of Hg  metal, 

Hoyle and Handy, 2005) in the perfused intestine. The oral uptake hazard for Ti is 

therefore of a similar magnitude to other metals (see also Ramsden et al., 2009). The 

fact that the nano form is taken up faster than bulk TiO2 also implies that risk 

assessments based on the bulk material will underestimate the nano accumulation 

hazard. The assumption that the traditional bulk forms of TiO2 powders are not 

appreciably absorbed via the gut should also be reconsidered. Notably, the gas mixture 

effect observed in the present study, adds a new dimension to hazard assessment not 

previously considered for metals or NMs. For ecosystems this could include considering 

changes in environmental pCO2 associated with the exposure to TiO2.  
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Chapter 4 

Behaviour of TiO2 NPs in the gut lumen 

and pharmacological studies on the uptake 

mechanism across the isolated perfused 

intestine of rainbow trout: nystatin and 

vanadate sensitive components  
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Abstract 

There is limited information on the uptake mechanism of NPs and their 

pathway(s) across the gastrointestinal tract. In this study, different kinds of 

inhibitors (pharmacology treatments) were used to determine the pathway(s) for the 

uptake of Ti from TiO2 exposures across the gut epithelium of the isolated gut perfusion 

of rainbow trout (Oncorhynchus mykiss). Pharmacological investigations of the 

uptake mechanism(s) of the Ti from TiO2 NPs in perfusions gassed with 95% O2: 5% 

CO2 showed that addition of 10 mmol l
-1

 potassium cyanide (KCN) to the mucosal and 

serosal solutions caused an elevated accumulation of Ti in the tissue, but this did not 

stop transepthelial uptake into the serosal compartment with 2.56 ± 0.65 nmol g
-1

 h
-1

 of 

Ti from the TiO2 NPs (mean ± S.E.M., n = 6). The addition of 100 µmol l
-1

 sodium 

orthovanadate, a P-type ATPase inhibitor, to the serosal solution increased the initial net 

uptake rate of Ti from TiO2 NPs by 1.5 fold to 2.29 ± 0.64 nmol g
-1

 h
-1 

(mean ± S.E.M., 

n = 6) compared to the TiO2 NP treatment without vanadate. However, the overall net 

uptake in 4 h of Ti to the serosal compartment was reduced by 2.8 fold after vanadate 

additions. In contrast, adding 120 IU ml
-1

 nystatin, an endocytosis inhibitor, to the 

mucosal solution completely blocked the uptake of Ti from both TiO2 NPs and the bulk 

powder. The pharmacological responses with TiO2 NPs showed some differences 

compared to their responses with bulk powder. We conclude that the uptake 

mechanism(s) involve a nystatin-sensitive endocytosis across the mucosal 

membrane.        
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4.1 Introduction 

The precise mechanism(s) of NP uptake across the epithelia of fish (and mammals) 

remains controversial (Handy et al., 2008b; Shaw and Handy, 2011). Handy et al. 

(2008b) argues that apical entry of intact NPs into the epithelial cells of fish (gills, gut) 

is unlikely to occur via the traditional ion transport pathways (e.g., by diffusion through 

epithelial ion channels), because the NPs are simply far too large, but uptake into the 

cells by endocytosis remains possible. Similar arguments have been made for the 

mammalian gut (Panessa-Warren et al., 2006), and the cells of invertebrates (Moore, 

2006). The diffusion of intact NPs through the paracellular route (e.g., via tight 

junctions) into the blood also seems unlikely (Handy et al., 2008b), due to the Ca
2+

 and 

Mg
2+

-rich microenvironment of the tight junctions which may lead the NPs forming 

aggregates. It seems more likely that most uptakes would be trans-cellular. However, it 

remains unknown whether any NPs taken up by putative endocytosis from the mucosal 

solution would be exported into the blood as intact particles or broken down to free 

metal ions. Information on the NPs transfer across epithelia is still unclear, relative to 

our knowledge on traditional dissolved metals (e.g., Foulkes and Bergman, 1993a; 

Handy et al., 2002a review).      

 The aim of this study was to pharmacologically investigate the uptake 

mechanisms of NPs using the isolated perfused intestine (Handy et al., 2000), and to 

also interpret any uptake in the context of particle behaviour in the gut lumen as well as 

surface bindings on the intestinal mucosa. The pharmacological investigations here 

involved using: (i) potassium cyanide (KCN) which is a general inhibitor of aerobic 

metabolism and often reduces the availability of ATP in cells for energy-dependent 

processes such as active ion uptake or movement of the cytoskeleton (endocytosis, cell 

volume control, etc.,); (ii) sodium orthovanadate which is a P-type ATPase inhibitor 

which non-specifically blocks the ATPase family of ion pumps including the Na
+
-K

+
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ATPase, Ca
2+

-ATPase, and Mg
2+

-ATPase; (iii) nystatin, a putative inhibitor of the lipid 

raft-caveolae endocytosis pathway in animal cells. To interpret whether apparent uptake 

had any surface-bound components of Ti, some rapid solution dipping experiments 

were done to measure the instantaneous adsorption of TiO2 to the intestine. In addition, 

and the possibility of free metal ion dissolution from the particles was explored using a 

dialysis method to aid interpretation of particle versus free metal ion absorption. 

4.2 Methodology 

4.2.1 Surface binding experiment 

To aid data interpretation on Ti accumulation in the mucosa, some rapid solution 

dipping experiments were done to quantify surface binding of Ti. The approach 

followed a well-established method for fish tissue (Handy and Eddy, 2004) which is 

also well known for metal salts (Shaw and Handy, 2011). The technique involves 

allowing the tissue to instantaneous adsorb metal onto the surface of the epithelium over 

a few seconds (i.e., before true uptake can occur) and then determining the metal 

concentration on/in the tissue. Measurements were made on both mid and hind intestine. 

Briefly, fish were sacrificed and the intestinal tract was quickly removed, everted, and 

then rinsed in clean saline (see Chapter 3). Pieces of mid or hind intestine (n = 6 fish per 

treatment) were then dipped (mucosa facing the solution) in 500 ml of fresh 

physiological saline for 15 sec (control dip to equilibrate the surface of the tissue with 

the saline), then dipped in to 1 mg l
-1

 of TiO2 NPs or bulk TiO2 in 500 ml physiological 

saline for 30 sec. Finally, tissues were rinsed of excess TiO2 by dipping in two 

consecutive 500 ml beakers of clean physiological saline (total of 15 seconds rinsing) 

(Fig. 4.1). Tissues were then digested in nitric acid and analysed for total Ti metal 

concentrations as described in Chapter 2.  
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Figure 4.1 Method of the surface binding tissue experiment showing the processing of 

the everted tissue dipping first in 500 ml of clean physiological saline for 15 sec then 

exposed the tissue to the 1 mg l
-1

 of TiO2 for up to 30 sec and finally dipped in same 

clean saline for 15 sec rinsing. 
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4.2.2 Dialysis experiments 

These experiments were conducted to determine whether an apparent dissolved Ti metal 

fraction could be released from the TiO2 NPs or the bulk material contained within 

dialysis tubing in the experimental conditions used for the gut perfusions. The rates of 

appearance of total apparently dissolved Ti (i.e., measured total Ti that could pass 

through the dialysis membrane into the external media) from the TiO2 NPs or bulk TiO2 

in the physiological saline (described in Chapter 2) was determined using the standard 

gas mix and the low CO2 gas mixture, at pH 7.4. In addition, a saline mimicking 

intracellular conditions (Handy et al., 1996) was also tested, which contained (in mmol 

l
-1

): KCl, 140; NaCl, 10; HEPES, 10 and adjusted to pH 7.2 to represent cytosolic 

intracellular pH. The intracellular saline was also made at pH 3, to determine whether 

an extremely acidic pH in an intracellular compartment (e.g., lysosomes) would cause 

the release of apparently dissolved Ti through the dialysis tubing. All glassware was 

acid washed (5% nitric acid) and triple rinsed in ultrapure Milli-Q water. The dialysis 

method is based on Handy et al. (1989) with modifications for NMs. Briefly, 8 ml of 

100 mg l
-1

 of TiO2 NPs, bulk TiO2 stock dispersions made in the appropriate saline, or a 

control (the appropriate saline with no added TiO2) were placed carefully into dialysis 

bags (7 cm long x 25 mm wide, dialysis tubing product code: D9777, cellulose 

membrane with a molecular weight cut off at 12,000 Da, Sigma-Aldrich, St. Louis, 

USA) and the ends closed with Medi-clips to prevent any leakage. The bags were 

immediately dialysed in a glass beaker containing 492 ml of the appropriate saline 

(bringing the total volume to 500 ml). Care was taken to use beakers of identical 

shape/size for the experiments, and each experiment was performed in triplicate (3 

separate beakers) for each material and external medium (intracellular saline pH 7.2 and 

pH 3, physiological saline with standard gas mix and low gas mixture). The solutions in 

the beakers were gently agitated with a multipoint magnetic stirrer (RO 15P power, Ika-
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Werke GmbH & Co. KG, Staufen, Germany) for 24 h at room temperature (21 °C). 

Samples of the external media (4.5 ml) were taken from each beaker at 0, 0.5, 1, 2, 3, 4, 

6, 8 and 24 h, the pH of the samples was recorded at each time point. At the end of 

experiment, the remaining contents of the dialysis bag were also collected. All samples 

were then analysed by ICP-OES for total Ti metal concentration.  

4.2.3 Preparation of the isolated perfused intestine 

The preparation of isolated perfused intestine was performed exactly as described in 

Chapter 2 with some additions. Briefly, a series of perfusions were used to investigate 

the effects of inhibitors (n = 6 perfusions per treatment for each inhibitor). These 

included experiments with 10 mmol l
-1

 cyanide (KCN) added to both the perfusate and 

mucosal solutions to determine whether Ti uptake from exposure to TiO2 NP had an 

energy-dependent component. Then in experiments using TiO2 or bulk powder, the 

effects of adding 100 µmol l
-1

 sodium orthovanadate (Na3Vo4, an ATPase transporter 

inhibitor, Campbell et al., 1999; Handy et al., 2000) to the serosal solution was tested to 

explore whether ion transport was involved in Ti export from the gut cells to the blood. 

In separate experiments, additions of the endocytosis inhibitor, 120 IU ml
-1

 nystatin 

(dose to produce 100% inhibition, Lewis et al., 1977 ), was added to the mucosal 

solution only. 

   

The stock animals, preparations of the TiO2 stock solutions and trace metal 

analysis, histology, calculations and statistical analysis were described in details in 

Chapter 2.   
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4.3 Results 

4.3.1 Ti accumulation by surface binding experiment 

Measurements from the rapid solution dipping protocol to determine surface-bound Ti 

on the mid and hind intestine revealed low concentrations of Ti metal. The total Ti 

metal concentration of dipped mid intestine was (means ± S.E.M., n = 6); 0.007 ± 0.001, 

0.014 ± 0.005 and 0.012 ± 0.002 µmol g
-1

 for control, bulk and TiO2 NP exposures, 

respectively. The values for the TiO2 treatments were not statistically different from the 

control (Kruskal-Wallis test, P = 0.47, Fig. 4.2), indicating negligible surface binding, 

and tissue concentrations were also significantly lower than those reported in the whole 

gut sacs or perfused intestine (t-tests, P values all < 0.05). Total Ti metal concentration 

in dipped hind intestine was (mean ± S.E.M., n = 6); 0.006 ± 0.001, 0.014 ± 0.002 and 

0.008 ± 0.002 µmol g
-1

 for control, bulk and TiO2 NP exposures, respectively, with only 

the bulk being significantly higher than both control and NPs (ANOVA, P = 0.04, Fig. 

4.2). Total Ti metal concentrations in the hind gut from the surface binding experiments 

were also significantly lower than the values reported in the whole gut sacs or intestinal 

perfusions (t-tests, P values all < 0.05), with the later representing (at the most) 27 and 

26% of the total Ti reported for intact hind gut tissue in Table 3.1. 
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Figure 4.2 Total Ti metal concentrations in the tissues determined by ICP-OES in the 

dibbed mid (blue bars) and hind intestine (red bars) after exposed to 1 mg l
-1

 TiO2 (bulk 

or NP). Data are means ± S.E.M. (n = 6 perfusions per treatment). * Statistically 

significant difference from control values (ANOVA or Kruskal-Wallis test, P < 0.05). # 

Statistically significant difference from bulk TiO2 tretment (ANOVA or Kruskal-Wallis 

test, P < 0.05). There is no significant difference found between mid and hind intestine 

(t-test, P > 0.05).   
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4.3.2 Apparent total dissolved Ti from dialysis experiments with the mucosal solution 

and with intracellular salines 

Dialysis experiments confirmed no measurable appearance of apparent total dissolved 

Ti metal from either the bulk or nano TiO2 in the physiological saline used for the 

mucosal solution, indicating that the tissue was probably only exposed to particles. 

There were no measurable increases in the total Ti metal concentrations in any of the 

beakers from the dialysis experiments with physiological saline over 24 h 

(concentrations below detection limit, all < 1 µg l
-1

), regardless of the gas mixture 

(stand gas mix, or low CO2 mix) or the type of particles added (the same finding for 

bulk and nano, data not shown). However, this was not the case for salines mimicking 

the intracellular environment.  

Unlike the mucosal solution, the dialysis experiments using salines representing 

the intracellular ionic environment did show some appearance of measurable total Ti 

metal in the beakers from dialysis bags containing either the bulk or nano forms of TiO2. 

In the pH 3 experiment (representing the low pH of vesicular compartments such as 

lysosomes) there was a small but detectable increase in apparent total dissolved Ti in 

the external media (beakers) after 3h in the TiO2 treatments. Calculated cumulative Ti 

releases over 24 h were < 0.45 (values below detection in controls), 1.15, and 2.25 µg of 

Ti metal (mean of the triplicate measurement, absolute amount released) in to each 

dialysis bag for control, bulk and nano TiO2, respectively. The rate of appearance of 

total metal in the external media in the beakers was much greater for the intracellular 

solution at pH 7.2 (i.e., representing the general cytosolic pH) with a clear time-

dependent cumulative increase of the apparent total dissolved Ti concentrations in the 

beakers (Fig. 4.3). The maximum rates of appearance of cumulative total metal in the 

beakers (steepest part of the curves, not at equilibrium) were 9.7 and 6.9 µg Ti metal h
-1

 

(or 26 and 18 nmols Ti metal h
-1

) for the bulk and nano TiO2, respectively (control, at or 
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below detection limit). The beakers reached a steady-state maximum release of 46.0, 

and 34.7 µg Ti metal over the 24 h for the bulk and TiO2, respectively (Fig. 4.3).  

                  

                      

Figure 4.3 The cumulative appearance of total Ti metal through dialysis tubing into the 

external medium of beakers for dialysis bags containing either bulk or nano TiO2 using 

a saline mimicking the intracellular environment at pH 3 and pH 7.2. The data points 

are mean values derived from triplicate measurements (n = 3 beakers per treatment). 

Curves are fitted to the data points shown using a rectangular hyperbole function (one 

site, ligand binding to saturation) in SigmaPlot version 12. At pH 3, the bulk: y = 

1.32*abs(x)/(2.51 + abs(x)), r
2
 = 0.96. For TiO2 NPs: y = 2.68*abs(x)/(3.90 + abs(x)), r

2
 

= 0.97. At pH 7.2, the bulk:  y = 46.04*abs(x)/(2.815 + abs(x)), r
2
 = 0.99, and TiO2 NPs: 

y = 34.74*abs(x)/(3.126 + abs(x)), r
2
 = 0.99. The controls were at or below detection 

limits, and so a curve is not fitted, but data points are shown for convenience (i.e., 

cumulative sum of detection limit values). The standard errors were too small to be 

visible on the figures. 
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4.3.3 Effects of inhibitors on the TiO2 NP treatment 

In general, the additions of inhibitors decreased the cumulative uptake of Ti to the 

serosal compartment, but without compromising perfusate flow in the preparations 

(examples in Fig. 4.4). This was confirmed for the TiO2 NP treatment by a statistically 

significant decrease in the overall Ti net flux in the presence of 10 mmol l
-1

 cyanide, 

100 µmol l
-1

 vanadate or 120 IU ml
-1

 nystatin compared to the no added Ti control, or 

the bulk material alone (Kruskal-Wallis test, P < 0.05). Notably, nystatin completely 

abolished the Ti flux associated with the TiO2 NP treatment. The effects of all these 

drugs on the TiO2 NP treatment was accompanied by a statistically significant reduction 

in net water flux compared to the equivalent no-added drug TiO2 treatment, but the 

water fluxes were still higher than the resting values from control intestines (Table 4.1) 

indicating that that additions of inhibitors did not reverse the effects of TiO2 on net 

water efflux across the gut.  

Despite some marked reductions in the net Ti flux associated with TiO2 NPs 

exposure in the presence of inhibitors (Table 4.1), the effects of inhibitors on tissue total 

Ti metal concentrations during the TiO2 NP exposures were modest. Serosal and 

mucosal applications of 10 mmol l
-1 

cyanide (KCN) did not stop Ti accumulation in the 

tissue for the TiO2 NP treatment, but instead, increased the total Ti metal concentration 

in the tissue. Values were 0.08 ± 0.01 and 0.03 ± 0.01 µmol g
-1 

dry weight for the mid 

and hind intestine, respectively with cyanide (mean ± S.E.M., n = 6 for each, Fig. 4.5), 

being 4.1 and 1.4 fold higher than their respective tissue concentration in the presence 

of TiO2 NPs without cyanide (statistically significant cyanide effect, t-tests, p = 0.001 

and 0.035, respectively). For the TiO2 NP treatment with vanadate (Fig. 4.5), some Ti 

accumulation in the tissue was observed in mid and hind intestine (total Ti metal 

concentrations in the tissue, mean ± S.E.M., n = 6; 0.033 ± 0.005 and 0.013 ± 0.004 

µmol g
-1 

dry weight, respectively), representing a small 1.7 fold increase in Ti in the 
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mid intestine compared to the TiO2 treatment without the vanadate for the mid intestine 

(not statistically significant, t-test, P = 0.06), and a 0.4 fold decrease in the hind 

intestine (not statistically significant, t-test, P = 0.45). In the case of nystatin additions, 

the situation was similar with measurable Ti accumulation in the tissue (Fig. 4.5, 0.017 

± 0.004 and 0.007 ± 0.002 µmol g
-1 

dry weight in the mid and hind intestine, 

respectively), but being only 10% and 68% lower than the respective values without the 

drug with TiO2 NPs (t-tests, P = 0.26 and 0.39, mid and hind intestine, respectively).   

Metabolic and ion transport inhibitors are expected to cause some dissipation of 

electrolyte gradients across tissues, all three inhibitors (cyanide, vanadate, and nystatin) 

caused statistically significant elevation of tissue Na
+
 and Ca

2+
 concentrations, and 

depletion of K
+
 in mid intestine, compared to the appropriate drug-free control (Table 

4.2).  For example the TiO2 NP treatment with cyanide (mean ± S.E.M., n = 6, mid 

intestine) showed Na
+
, Ca

2+
 and K

+
 concentrations of 405.2 ± 54.7, 66.5 ± 11.1 and 73.1 

± 10.9 µmol g
-1 

dry weight for each electrolyte, respectively. The same situation found 

in hind intestine, just for the K
+
 concentrations in vanadate and nystatin groups which 

appear significantly higher than TiO2 NP drug free control. There were no drug effects 

on Mg
2+

 concentrations or tissue moisture content for both mid and hind intestine 

(Table 4.2).  

4.3.4 Effects of inhibitors on the bulk TiO2 treatment 

The inhibitory effects of drugs on net Ti fluxes for the bulk material treatment were 

similar to those for the TiO2 NPs (Table 4.1), with the drugs also abolishing or reducing 

the Ti net flux. There was a notable material-type effect on the vanadate-sensitive Ti 

flux (Table 4.1), with the Ti flux associated with the bulk material treatment being 

completely abolished, compared to only partial inhibition in the nano treatment (i.e., 

different sensitivities of the Ti flux associated with the bulk and nano treatments to 

vanadate). The total Ti metal concentrations in tissues following drug treatments in the 
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bulk TiO2 exposure, showed statistically significant reductions in tissue Ti compared to 

the no-added drug Ti control (Fig. 4.5). For example, the addition of 100 µmol l
-1

 

vanadate to the perfusate solution showed total Ti metal concentrations associated with 

the bulk Ti treatment in the mid and hind intestine of 0.028 ± 0.006 and 0.007 ± 0.001 

µmol g
-1

dry weight of tissue, respectively (mean ± S.E.M., n = 6 for each), being 6.6 

and 1.5 fold less than in the TiO2 bulk treatment without drugs for mid and hind 

intestine, respectively (t-tests, P < 0.05). For the 120 IU ml
-1

 nystatin, a similar effect on 

tissue total Ti metal concentrations was observed with Ti from the bulk Ti treatment 

with nystatin in the mid and hind intestine being 0.031 ± 0.004 and 0.008 ± 0.001 µmol 

g
-1

dry weight of tissue, respectively (mean ± S.E.M., n = 6 for each), 6.3 and 1.4 fold 

less than that in the TiO2 bulk treatment without drugs for mid and hind intestine, 

respectively (t-tests, P < 0.05). The tissue electrolyte response to inhibitors was similar 

to that described for the nano TiO2 treatment above (Table 4.2), just for the Mg
2+

 

concentrations with drug treatments which appear significantly lower than TiO2 bulk 

drug free control for both mid and hind intestine (Table 4.2). 

4.3.5 Histopathology  

The histological examination of the perfusate intestine after 4 h perfusion with 1 mg l
-1 

TiO2 NPs or bulk using different inhibitors showed some minor injuries in the intestinal 

tissue (Fig. 4.6 and 4.7), the addition of 10 mmol l
-1

 potassium cyanide to the serosal 

and mucosal solution showed some abnormal structure of the mucosal layer in compare 

to TiO2 NP drug free control in five out of six animals. There were also some lesser 

effects with additions of 120 IU ml
-1

 of nystatin to the mucosal solution in both bulk 

and nano TiO2 which showed in three out of six animals per treatment. Serosal addition 

of 100 µmol l
-1

 of sodium vanadate showed fusion of the occasional intestinal villi with 

the occasional appearance (in one part of the tissue) of vacuoles in the villi with TiO2 
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NPs and shown in two out of six animals, but with the bulk TiO2 the effects was minor, 

just a slight appearance of lifting epithelium which showed in one out of six animals.      
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Figure 4.4 The cumulative appearance of total Ti metal in the serosal compartment (red 

bars, nmol Ti metal) of perfused intestine preparations from rainbow trout exposed to 1 

mg l
-1

 of TiO2 in the mucosal saline. Cumulative perfusate flow (blue diamonds, ml) is 

also shown. Graphs are representative examples of individual perfusions from replicated 

experiments (n = 6 perfusions per treatment; n = 7 perfusions for the control TiO2 NP 

treatment), gassed with 95% O2: 5% CO2. (A) TiO2 NPs as a control without drugs, (B) 

10 mmol l
-1

 cyanide exposure with TiO2 NP, (C) 100 µmol l
-1

 sodium vanadate 

exposure with TiO2 NP, (D) 120 IU ml
-1

 nystatin exposure with TiO2 NP. Fish weights 

in the examples are 249.9, 360.7, 137 and 273.9 g, respectively.  
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Figure 4.5 Total Ti metal concentrations in the tissues determined by ICP-OES in the 

mid (blue bars) and hind intestine (red bars) of rainbow trout after 4 h perfusions with a 

mucosal side exposure to 1 mg l
-1

 of bulk TiO2 or TiO2 nanoparticles (NP). The 

appropriate TiO2 was added to the mucosal solution in the presence of the standard gas 

mixture (95% O2: 5% CO2), and in the presence of inhibitors: 120 IU ml
-1

 nystatin 

(putative endocytosis inhibitor), 100 µmol l
-1

 sodium vanadate (an ATPase inhibitor) 

and 10 mmol l
-1

 cyanide (general inhibitor). Data are means ± S.E.M (n = 6 perfusions 

per treatment; n = 7 perfusions for the control TiO2 NP treatment). * Statistically 

significant difference from the TiO2 NPs drug free control (ANOVA or Kruskal-Wallis 

test, P < 0.05), # statistically significant difference from the bulk TiO2 drug free control 

(ANOVA or Kruskal-Wallis test, P < 0.05). Letter (a) indicates statistically significant 

difference between mid and hind intestine (t-tests, P < 0.05). 
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Table 4.1 Effects of exposure to 1 mg l
-1 

TiO2 with/without drugs on the Ti and water fluxes across the isolated perfused trout intestine. 

Mucosal [TiO2]  

(1 mg l
-1

) and Drugs 

Concentration 

Net Ti flux, Jnet,Ti 

(nmol g
-1

 h
-1

) 

Net water flux, Jnet,H2O 

(ml g
-1

 h
-1

) 

Initial rate Overall rate Initial rate Overall rate 

Bulk TiO2    0.98 ± 0.47    0.85 ± 0.32    -26.28 ± 2.52    -28.54 ± 3.19 

TiO2 NP     1.55 ± 0.33
#
     2.38 ± 0.68

#
     -17.56 ± 4.00

#
     -18.01 ± 4.16

#
 

Bulk TiO2 vanadate  < 0.004
#
   < 0.004

#
     -13.57 ± 1.83

#
      -38.41 ± 0.07

#a
 

Bulk TiO2 nystatin  < 0.004
#
   < 0.004

#
     -09.97 ± 2.05

#
     -31.66 ± 0.08

a
 

TiO2 NP cyanide    2.56 ± 0.65*    0.85 ± 0.17*     -13.40 ± 3.66*      -44.51 ± 2.76*
a
 

TiO2 NP vanadate    2.29 ± 0.64*    0.83 ± 0.22*     -16.26 ± 2.66*       -49.17 ± 3.88*
a
 

TiO2 NP nystatin   < 0.004*   < 0.004*     -13.96 ± 2.29*      -36.42 ± 2.03*
a
 

 

Values are means ± S.E.M. (n = 6 perfusions per treatment; n = 7 perfusions for the control TiO2 NP treatment) expressed per gram dry mass of intestine per hour. Negative values 

indicate a net loss from the serosal solution, initial and overall rates data were calculated from cumulative perfusate data at 10 min and 4 h, respectively.* Statistically significant 

difference from TiO2 NP drug free control values within columns (ANOVA or Kruskal-Wallis test, P < 0.05), # Statistically significant difference from bulk TiO2 drug free control 

values within columns (ANOVA or Kruskal-Wallis test, P < 0.05). Letter (a) within rows indicates a statistically significant difference between initial and overall rates (t-test, P < 

0.05). Drug concentrations were 120 IU ml
-1

 nystatin, 10 mmol l
-1

 cyanide, or 100 µmol l
-1

 vanadate (see text for details).  
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Table 4.2 Total Na
+
, K

+
, Ca

2+
,
 
and Mg

2+
 concentrations of gut tissue following exposure of isolated perfusate trout intestine to 1 mg l

-1
 TiO2 and different drugs for 4 h. 

Mucosal [TiO2]  

(1 mg l
-1

) 
Tissue [Metal] µmol g

-1
 dry mass 

Na
+
 K

+
 Ca

2+
 Mg

2+
 Moisture % 

Mid Intestine      

Bulk TiO2 156.09 ± 24.33 212.02 ± 15.78 18.64 ± 3.45   20.15 ± 1.66 78.36 ± 2.14 

TiO2 NP 162.80 ± 34.59  136.07 ± 18.25
#
 12.51 ± 1.34    12.06 ± 1.24

#
 82.26 ± 1.72 

Bulk TiO2 vanadate 258.92 ± 13.52
#
 158.47 ± 11.76

#
 33.35 ± 6.50    13.69 ± 0.85

#
 81.82 ± 1.23 

Bulk TiO2 nystatin 253.28 ± 15.29
#
 138.97 ± 11.53

#
  36.69 ± 8.16

#
    12.11 ± 0.49

#
 80.65 ± 1.38 

TiO2 NP cyanide  405.20 ± 54.74*   73.09 ± 10.96*     66.48 ± 11.06*   10.87 ± 1.70 88.33 ± 1.09 

TiO2 NP vanadate  427.10 ± 50.53* 160.08 ± 32.49     56.90 ± 10.23*   17.17 ± 2.51 84.94 ± 2.61 

TiO2 NP nystatin  229.45 ± 21.40*  117.95 ± 10.51*   25.90 ± 5.47*   10.91 ± 0.86 84.54 ± 0.93 

Hind Intestine      

Bulk TiO2 116.48 ± 7.57 168.29 ± 5.93 18.00 ± 4.17   15.83 ± 0.69 81.54 ± 1.80 

TiO2 NP   98.65 ± 9.46 121.03 ± 7.05
#
    7.98 ± 0.49

#
      9.99 ± 0.59

#
 80.85 ± 1.39 

Bulk TiO2 vanadate 237.76 ± 8.87
#
 164.60 ± 4.42

#
 13.23 ± 0.33    13.49 ± 0.28

#
 82.08 ± 0.42 

Bulk TiO2 nystatin   222.63 ± 13.25
#
 146.59 ± 5.74 15.30 ± 0.98    11.50 ± 0.46

#
 80.65 ± 1.49 

TiO2 NP cyanide    342.82 ± 26.38*   84.52 ± 8.99   47.57 ± 9.32*   10.05 ± 0.53 88.11 ± 1.05 

TiO2 NP vanadate    251.57 ± 27.68*     174.39 ± 18.22*   19.18 ± 3.59*   14.53 ± 1.29 82.02 ± 2.16 

TiO2 NP nystatin    219.43 ± 11.66*   156.27 ± 7.17* 13.93 ± 0.45   12.60 ± 0.48 85.24 ± 1.34 

 

Values are means ± S.E.M. (n = 6 perfusions per treatment; n = 7 perfusions for the control TiO2 NP treatment) expressed as µmol g
-1

 dry mass of intestinal tissue, except for 

moisture content (%) = ((wet weight – dry weight)/wet weight) x 100. * Statistically significant difference from TiO2 NPs drug free control values within columns (ANOVA or 

Kruskal-Wallis test, P < 0.05), # Statistically significant difference from bulk TiO2 drugs free control values within columns (ANOVA or Kruskal-Wallis test, P < 0.05). 
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Figure 4.6 Histology of the perfusate intestine after 4 h perfusion gassed with standard 

gas mix. (a) 1 mg l
-1

 TiO2 NPs drug free control showing lifting of epithelial cell (L), 

(b) 1 mg l
-1

 TiO2 NPs with 10 mmol l
-1

 potassium cyanide showing abnormal structure 

of the mucosal layer (in five out of six animals), (c) 1 mg l
-1

 TiO2 NPs with 100 µmol l
-1

 

sodium vanadate showing fusion of the intestinal villi (F), and appear of vacuoles (V) 

(in two out of six animals), (d) 1 mg l
-1

 TiO2 NPs with 120 IU ml
-1

 nystatin showing 

abnormal structure of the mucosal layer (in three out of six animals). Scale bar = 100 

µm, sections were 8 µm thickness and stained with haematoxylin and eosin (n = 6 per 

treatment).  
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Figure 4.7 Histology of the perfusate intestine after 4 h perfusion gassed with standard 

gas mix. (a) 1 mg l
-1

 bulk TiO2 drug free control showing lifting of epithelial cell (L), 

(b) 1 mg l
-1

 bulk TiO2 with 100 µmol l
-1

 sodium vanadate showing lifting of epithelial 

cell (L) (in one out of six animals), (c) 1 mg l
-1

 bulk TiO2 with 120 IU ml
-1

 nystatin 

showing abnormal structure of the mucosal layer (in three out of six animals). Scale bar 

= 100 µm, sections were 8 µm thickness and stained with haematoxylin and eosin (n = 6 

per treatment).  
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4.4 Discussion 

This is the first report on the uptake kinetics of NPs across the gut of rainbow trout 

using the isolated gut perfusion technique. Mechanism(s) uptake pathway of Ti from 

both bulk and nano forms of TiO2 showed the effects of nystatin on the uptake, suggest 

at least part of the mucosal influx step is by endocytosis in the intestine. However, the 

effect of solute transport inhibitors also suggests a dissolved Ti component involved in 

Ti export from the tissue to the blood for bulk and nano TiO2. Further investigations 

using the rapid dipping solution experiment observed an apical uptake of the particles 

and the exposure is took place. 

4.4.1 TiO2 uptake through intestinal tissue 

The both forms of TiO2 showed that the Ti was accumulated in the mucosa, rather than 

the underlying muscularis (see Chapter 3, Table 3.2). The observed increases in total Ti 

metal concentrations in the mucosa are not easily explained by surface-binding (i.e., 

assumed adsorption) of TiO2 (and/or Ti metal) to the exterior of the gut, with the rapid 

solution dipping experiments showing only about one fifth of the measured Ti being on 

the exterior within 30 sec (Fig. 4.2). There is usually some time dependence of surface-

binding in such experiments, but only for the first 90 sec (Handy and Eddy, 2004). A 

longer “dip” in the physiological saline of 60 sec might show slightly higher tissue Ti 

metal concentrations, suggesting more instantaneous binding of TiO2 and/or Ti metal. 

However the instantaneous surface binding, of dissolved metals at least, is not linear 

over time with most of the binding occurring in the first 30 sec (Handy and Eddy, 2004) 

and a longer dip would at most add a further fifth (bring the total surface binding to 2/5
th

 

of the overall tissue metal concentration). This would still leave more than half the 

measured total Ti metal concentration representing internalised metal in the whole gut 

sac experiments. After 90 sec, radiotracer studies show that dissolved metals can be 

detected in the blood of trout (indicating transepithelial uptake, Handy and Eddy, 2004) 



                                                                                                                           Chapter 4 

117 

  

and within 5 min the apparent accumulation is dominated by internal uptake of the 

metal. It would therefore seem logical that a 4 h exposure would give mostly 

internalisation (measured total Ti metal on the inside) rather than on the outside of the 

tissue. 

4.4.2 Dissolution of Ti from both bulk and nano TiO2 in different salines 

The dialysis experiments showed that there was no appreciable dissolution of dissolved 

Ti metal from the mucosal saline in 24 h (gassed with 95% O2: 5% CO2 or 99.5% O2: 

0.5% CO2), so the situation here is likely to be associated with the binding and settling 

of particulate TiO2 with the secreted mucus. The notion of some small fraction of 

dissolved Ti ions in the cell is supported by the dialysis experiments, where the 

appearance of total Ti measured in the beaker outside the dialysis bag increased over 

time, but only when using the intracellular saline at pH 7.2 (Fig. 4.3B). This observation 

could be interpreted as a tiny fraction of dissolved Ti metal being released by 

dissolution from the particles, and subsequently diffusing through the dialysis 

membrane into the external media of the beaker. The rate of appearance of total metal in 

the external media in the beakers (18-26 nmol Ti metal h
-1

 depending on particle type) 

represents about 0.01% loss of metal from the particles every hour. If this interpretation 

is correct, this rate of release also represents the maximum dissolution rate of Ti metal 

from the particles in these specific experimental conditions. The dissolution of aqueous 

Ti metal species from TiO2 particles has not been previously investigated in a high KCl 

media typical of the intracellular environment. However, Schmidt and Vogelsberger, 

(2009) recently investigated Ti dissolution from TiO2 NPs (including P25 and anatase 

forms) in 0.1 mol l
-1

 NaCl solution. These experiments were conducted over the whole 

pH range (pH 1-13) and for long durations (up to 1200 h), much longer than the 4 h 

perfusion here; but showed that TiO2 will release metal ions by dissolution in NaCl 

solutions under certain conditions. At pH 3 or less, they detected dissolved Ti (around 
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0.1 and 1µmol l
-1

 Ti for pH 3 and pH 1, respectively). This observation tentatively 

suggests that TiO2 NPs might also dissolve very slowly over several days in very acidic 

intracellular compartments (e.g., lysosomes). Schmidt and Vogelsberger, (2009) also 

measured the equilibrium solubility (at 500 h) of TiO2 particles by absorptive stripping 

voltammetry, and showed that at pH 7, the P25 TiO2 had a solubility of approximately 

10
-9

 mol l
-1

. This is a tiny amount of dissolved Ti from a physical chemistry perspective, 

but biologically, this would be a very relevant free ion concentration for metal 

homeostasis in cells. Schmidt and Vogelsberger, (2009) also calculated that this 

dissolved Ti would be present mainly as the dissolved Ti(OH)4 species at neutral pH, 

with the Gibbs free energy in favour of dissolution (overall solubility product, 10
-9.05

). 

There are some major differences between the dialysis experiments in this study and the 

work of Schmidt and Vogelsberger, (2009). The present study used much shorter 

durations (24 h for dialysis experiments) and so one might expect less dissolution of Ti 

in this experiments. However, KCl was also used instead of NaCl, and this seems to be 

important. The rate of release of apparent total dissolved Ti during dialysis was much 

faster in KCl solution (the intracellular saline, Fig. 4.3B) compared to the NaCl-rich 

mucosal saline. This may interpreted as an apparent difference in Ti dissolution rates 

between Na- and K-containing media. This needs further investigation, but may be due 

to the relative depolarising effect of K
+
 or its greater diffusion coefficient (i.e., more 

mobile) compared to Na
+
 (Robinson and Stokes, 1968). Regardless, considering that 

trace metal homeostasis in cells operates at infinitely small free ion concentrations (e.g., 

Cu, maximally 10
-18

 moles cell
-1

, Rae et al., 1999), the apparent total dissolved metal 

release rates in KCl-containing media here would be more than enough Ti release to 

enable Ti transport. Alternative explanations of the dialysis experiments, such as the 

NPs breaking up inside the dialysis bag (not observed) to release ~1 nm particles that 

might fit through the pore structure of the dialysis tubing cannot be completely excluded 
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in this experiment, but seems very unlikely given the KCl-effect above. It is also hard to 

imagine how primary particles of ~24 nm could weather to ~1-2 nm in 24 h without 

releasing significant quantities of metal ions. Notably, particles of a few nm wide were 

not observed in the electron micrographs of the original stock dispersions. 

4.4.3 How does titanium associated with titanium dioxide particle exposures across 

the apical brush boarder membrane? 

The discussion on events at the mucosal (apical) membrane of epithelia has focused on 

whether or not metallic NPs will be taken up directly across the apical membrane of 

epithelial cells as particles, and/or as dissolved metal (review, Shaw and Handy, 2011). 

In the present study the dialysis experiments showed that the appearance of total Ti 

metal in the mucosal solution was below the detection limits of ICP-OES, suggesting no 

measurable dissolution of dissolved Ti from the particles in the mucosal solution. The 

additions of nystatin (high dose, selected to completely inhibit endocytosis) caused 

about a 50 – 60% block of tissue Ti accumulation (depending on gut region and material, 

Fig. 4.5). Most of the apparent residue total Ti metal concentration in the tissue after 

nystatin treatment may simply represent the small amount of surface bound total Ti 

(regardless of form) detected in the solution dipping experiments (discussed above). 

Together, these observations argue in favour of some direct particle uptake at the 

mucosal membrane. However, the unstirred layer on the surface of epithelia is often a 

different chemical environment to that of the surrounding media (Handy and Eddy, 

2004; Shaw and Handy, 2011) and the possibility of some dissolution of dissolved Ti 

metal from the particles in direct contact with the membrane cannot be excluded. 

Unfortunately the apical solute transport mechanisms for Ti metal are poorly understood, 

but the ionic radius of Ti
2+

 is about 1 Ångstrom (similar to Na
+ 

and Ca
2+

 ions, 

(crystaline values, 0.95 and 0.99, Robinson and Stokes, 1968). A theoretical possibility 

of facilitated diffusion through epithelial ion channels therefore exists (see Handy et al., 
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2002a). Facilitated diffusion would also be supported by the cyanide effect in the 

present study (Fig. 4.5), which did not prevent metal accumulation in the tissue, 

suggesting a passive uptake component across the mucosal membrane down the 

electrochemical gradient (as observed for Hg, Hoyle and Handy, 2005). A transferrin-

like receptor mediated endocytosis (well known for Fe transport, see  Bury and Handy,  

2010), or non-specific uptake on divalent metal ion transporter 1 (Gunshin et al., 1997) 

are also theoretical possibilities. Furthermore, the reduction of net Ti uptake from TiO2 

NPs in the presence of cyanide (Fig. 4.4B) which was also sensitive to serosal additions 

of vanadate (Fig. 4.4C), suggests an energy-dependent efflux of Ti metal ions on a 

basolaterally-located ATPase into the blood as the most likely mechanism. There is no 

evidence in the literature of vanadate-sensitive ATPases being involved in exocytosis of 

particulate material from the gut mucosa to the blood at the serosal membrane. However, 

metal transporting ATPases are known to be involved in loading metal ions into vesicles. 

For example, it is well known that Cu ions are loaded into the Golgi compartment of 

cells via a Cu-ATPase (Dameron and Harrison, 1998), which is followed by subsequent 

vesicular trafficking of Cu to the serosal membrane (Handy et al., 2000). It remains 

possible that Ti could cross the cell using a similar ATPase-dependent trafficking 

system to the well-known Cu pathway, which is also known to be hijacked by other 

non-essential toxic metals like mercury (Hoyle and Handy, 2005). Tentatively, if 

particles are taken up into the tissue, it therefore implies that some dissolution of Ti 

from the materials was occurring in order to enable the vanadate-sensitive serosal efflux 

to occur. A separate nystatin-sensitive exocytosis pathway for particles to move from 

the epithelial cell to the blood is unlikely as nystatin completely abolished 

transepithelial uptake of both materials (e.g., Fig. 4.4D for TiO2 NPs), but further 

research is needed on this aspect. 
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4.4.4 Intestine tissue structure after drug exposures 

Some injuries were observed in the gut tissue after exposed to different inhibitors, 

mainly shown in the mucosal layer, and without effects on the muscularis indicating the 

intestinal barrier was not compromised. The histological observations were limited, and 

with no clear TiO2-dependent effects with the drugs present, and in only a few 

specimens. Potassium cyanide is considered as toxic via its interference with the 

electron transport train in mitochondria, preventing the tissue from using the oxygen 

(Eisler, 1991; Yamamoto, 1989). A localised subsequent hypoxia with metabolic 

acidosis could affect the structure of the mucosal layer. The distribution of the lipid rafts 

in the cell membranes could be altered by nystatin (Semis et al., 2012). It may, in theory, 

be possible for the membrane to be more vulnerable during lipid raft formation, and the 

oxidation potential of nystatin as a foreign substance has not been examined. Further 

work is needed to understand the effects of nystatin on the appearance of the mucosal 

layer in the intestine. For TiO2 NPs, the vanadate treatment showed some vacuole 

formation with appearance of the occasional villi fusion. This was the same injury (but 

to a much lesser extent) to that observed by Federici et al. (2007), suggesting that the 

damage was caused by TiO2 NPs exposure not by the vanadate. The bulk TiO2 

treatment showed a normal tissue appearance after exposure to vanadate with some 

minor lifting of epithelium (likely processing artefact) which appeared to be the same as 

the bulk TiO2 (drug free control). Overall, this suggests no effects of vanadate on 

intestinal tissue integrity. 

Conclusions  

The present study indicates that the uptake of Ti from both bulk and nano TiO2 had 

occurred across the intestine. This uptake was interpreted in the context of limited 

surface binding of Ti metal on the intestinal tissue. The dialysis investigation of the role 
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of dissolved Ti ions tentatively suggests that some limited role in the uptake inside the 

cells. Further evidence of the mechanisms of uptake was found by testing inhibitors of 

the main uptake pathways in the gut; which indicated both nystatin-sensitive and 

vanadate-sensitive Ti uptake associated with TiO2 exposures. This suggests that both 

particulate and dissolved metals components are involved in the overall uptake. This 

implies that environmental regulation for TiO2 NPs cannot simply use the existing 

dissolved metal paradigm (Shaw and Handy, 2011), but a modification for particle 

uptake at the mucosal surface should be included in any biotic ligand model (BLM) for 

TiO2 NPs. Further investigations on the mechanism of uptake are recommended using 

other inhibitors of endocytosis to determine, the sub-types of vesicular trafficking 

involved in the overall uptake. 
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Abstract 

The proposed uses of nanomaterials in food and different healthcare products heights 

the possibility of their uptake through the gastrointestinal tract in humans. The current 

study was applied to investigate the possible uptake of different forms of TiO2 and their 

pathways for uptake into Caco-2 cells. Four different forms of 1 mg l
-1

 TiO2 were used: 

(i) TiO2 NPs as P25 with a composition of 75% anatase and 25% rutile, (ii) bulk TiO2 

with the same crystal structure as the P25, (iii) nano anatase TiO2 and (iv) nano rutile 

TiO2. The bulk TiO2 showed the greatest uptake rate, being 14.1 nmol mg
-1

 protein, 

while the nano rutile TiO2 presents the lowest uptake rate, being 6.9 nmol mg
-1

 protein. 

Another series of experiments investigated the mechanism of uptake of TiO2 using two 

kinds of inhibitors, (i) 120 IU ml
-1

 nystatin, an endocytosis pathway inhibitor and (ii) 

100 µmol l
-1

 sodium orthovanadate, a P-type ATPase inhibitor. Both vanadate and 

nystatin produced an increase in Ti accumulation from different forms of TiO2. It is 

hypothesized that these drugs interfere with one of the endocytosis pathways. The 

results shows that 1 mg l
-1 

TiO2 is actively taken up by Caco-2 cells with rates being 

influenced by the crystal structure and behaviour of TiO2. The electrolyte concentrations 

in Caco-2 cells showed normal concentrations of Na
+ 

and K
+
, but with an elevation in 

Mg
2+ 

and Ca
2+ 

concentration after exposure to different forms of TiO2; suggesting  

specific material-type effects on electrolytes homeostasis .  
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5.1 Introduction 

Growing advances in nanotechnology have stimulated the development of many 

products in areas such as biomedicine, food, and cosmetics which may deliver 

chemicals or nutrients in a targeted and controlled manner to human beings. Titanium 

dioxide (TiO2) is amongst the most widely used of metal oxide nanoparticles (NP) and 

is found in a variety of applications ranging from toothpastes to water treatment 

(Aitken et al., 2006; Fröhlich and Roblegg, 2012) and especially applications of TiO2 

NPs in cosmetics as transparent sunscreen blockers (Calzolai et al., 2012). Bulk TiO2 is 

broadly used in food as a food colouring agent (normal white colour), food additives 

(E171) and in food packaging with daily ingestion estimated to be between 5 and 50 

mg in the USA and Europe (Powell et al., 2010; Weir et al., 2012). According to Weir 

et al. (2012), 36% of the particles in E171 may be considered to be nano TiO2 and its 

ingestion could have potentially toxic effects.  

TiO2 crystal structure and surface chemistry has been found to influence its 

toxicity (Chen and Mao, 2007). TiO2 exists in three distinct forms brookite, anatase, 

and rutile, the latter two being more commonly produced (Chen and Mao, 2007). 

Studies have shown that anatase is more toxic than the rutile form with regards to its 

reactive oxygen species (ROS) promoting ability. This increased capacity for ROS 

generation compared to rutile TiO2 has been shown to elicit cell damage and 

morphological changes (Sayes et al., 2006; Shi et al., 2007; Wang et al., 2008). 

The pathways of inorganic NPs into and out of the cell membrane are still poorly 

understood. Dombu et al. (2010) suggested both endocytosis and exocytosis are 

involved in NP transport through epithelial cells. A study by Ryabachikova et al. 

(2010) examined the MDCK cells under electron microscope after exposure to different 

crystal forms of TiO2 NPs. After 1 h, TEM images showed direct contact of NPs with 

the cell and NP filled and coated vesicles inside the membrane suggesting the 
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possibility of receptor-mediated endocytosis (Ryabachikova et al., 2010). Only one 

study by Koenman et al. (2010) has been applied on Caco-2 human intestinal cell line 

exposure to TiO2 NPs. Exposure of the cells to 10 or 100 µg ml
-1

 of TiO2 NPs did not 

cause death to the cells or disruption of junctional complexes, TiO2 appeared in the 

cells and underneath the cells suggesting that NPs transport through individual 

epithelial cells by transepithelial uptake is likely (Koenman et al., 2010). This has 

prompted research into which mechanisms are responsible for TiO2 cell internalisation 

through the intestinal epithelium.   

The overall aims of current study was to  demonstrate the utility of the Caco-2 

cell line for accumulation studies with TiO2 NPs and then to compare the uptake of Ti 

from the bulk and nano forms (size effect), as well as the effects of different crystal 

structures (anatase and rutile). The approach included detailed pharmacological 

investigations of solute transport pathways for metals, as well as pharmacological 

studies to establish whether the different sizes or forms of TiO2 were using different 

pathways to enter the cells. Finally, measurements of electrolytes in the cells, 

biochemical measurements on cell integrity, and electron microscopy investigations 

were made in the experiments to understand the physiological basis of any differences 

observed.  

5.2 Methodology 

Several experiments were performed using confluent monolayers of Caco-2 cells in 

culture medium (see below). The first series determined the Ti accumulation in 

confluent Caco-2 cells exposed to 1 mg l
-1

 of different forms of TiO2 (bulk, nano, nano 

anatase or nano rutile) over 24 h, and also the effects of the TiO2 exposure on cell 

viability (LDH release, cell morphology) and electrolyte concentrations. The second 

series of experiments involved pharmacological investigations to determine whether or 
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not the observed Ti accumulation involved either solute transport or endocytosis-

related pathways for uptake at the mucosal (apical) membrane. All data on Ti was 

normalized to nmol [Metal] mg
-1

 cell protein (see below). 

5.2.1 Cell culture 

A human intestinal cell line, Caco-2 (brush border expressing, European collection of 

cell cultures) were routinely incubated in 75 cm
2
, 200 ml flasks (Sterilin, Newport, UK) 

containing 15 ml of Dulbecco’s modified eagle medium (DMEM) supplemented with 

10% fetal bovine serum (FBS), 1% glutamine and 1% penicillin-streptomycin (100 IU 

Penicillin-100 μg ml
-1

 Streptomycin), at 37 ºC and gassed with 95% air: 5% CO2, all the 

equipment (DMEM, FBS, glutamine and penicillin-streptomycin) was obtained from 

(Lonza, B-4800 Verviers, Belgium). For routine maintenance, the medium was changed 

every 48 h and the cells were sub-cultured by trypsination. Experiments were conducted 

on cells between passage 60 - 75 (cells were purchased at passage 45) and antibiotic 

were withdrawn to avoid possible interference with ion transport at least 2 passages 

before seeding the cells into 6-well plates (Sterilin, Newport, UK) for experiments. 

Preliminary trials were conducted to determine the optimum seeding density and time to 

confluence of the cells in 6-well plates by measuring the electrical resistance of the 

epithelium using an xCelligence real time label free cellular analysis system (Real-Time 

Cell Analyzer (RTCA), Roche Applied Science). In brief, the instrument monitors the 

electrical resistance of the cells grown on gold-coated wells, as cells adhere the 

resistance of the plate increases until confluence is reached, whereupon the relative 

resistance (cell index) remains constant. A seeding density of 5 x 10
4
 cells/ cm

2
 

produced confluence by 24 h (Fig. 5.1). Subsequently for all experiments, cells were 

seeded at 5 x 10
4
 cells/cm

2
 in the 6-well plates and after an initial 24 h of growth, the 

cells were left for a further 48 h to ensure both 100% confluence and that the cells were 

rested. The cells were also visually inspected (Phase contrast microscope, 
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Olympus/CK30-F200, Japan) each day until they became confluent, a description of 

general experimental methodology shown in Fig. 5.3 and 5.4. Cell viability was also 

checked by trypan blue exclusion, prior to seeding the flasks and 6-well plates, less than 

90% viability was discarded. LDH was also checked in the external and internal cell 

cultures (see below) to measure the cell membrane integrity and the cytotoxic effects of 

different TiO2 in compare to control LDH leak. 

 

 

 

Figure 5.1 The cell index of Caco-2 cells after exposed to 1 mg l
-1

 of different forms of 

TiO2 showing the optimum seeding density of the cells at the 24 h of the exposure. 

Values are means ± S.E.M (n = 4 plates per treatment). 
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5.2.2 Stock dispersions and materials characterisation 

Four different types of TiO2 were used (manufacturer’s information): (i) bulk TiO2 

powder (ACROS, Titanium (IV) oxide, New Jersey, USA), with an unspecified mixture 

of anatase and rutile (but see below), with a purity of 98.0-100.5% TiO2. (ii) Ultrafine 

TiO2 NP type “Aeroxide” P25 (DeGussa AG, supplied by Lawrence Industries, 

Tamworth, UK) with a crystal structure of 25% rutile and 75% anatase TiO2, purity was 

at least 99% TiO2 (maximum impurity stated was 1% Si), the average particle size was 

21 nm. (iii) Anatase TiO2 NP form (US Research Nanomaterials, Inc, Houston, Texas, 

USA) with purity of 99% and 10-25 nm average particle size. (iv) Rutile TiO2 NP form 

(US Research Nanomaterials, Inc, Houston, Texas, USA) with high purity, 99.9% and 

30 nm average particle size. A stock solution of 500 mg l
−1

 for each type of TiO2 was 

made (no solvents) by dispersing the particles in ultrapure Milli-Q water with manually 

vigorous shaking for 1-2 min. Preliminary studies identified the materials as source of 

bacterial infection to cell cultures (data not shown) and subsequently all stock 

dispersions and the dry powder were gamma irradiated to sterilise them (Red Perspex, 

Turntable Irradiation Geometry, Becton Dickinson, Belliver Industrial Estate, 

Plymouth, England). The radiation dose was 36.42 - > 40.72 kGy for 10 h to ensure 

sterility before starting cell culture experiments, and optimised to ensure the radiation 

did not interfere with the crystal structure of the materials. 

The particle characterisation followed the similar protocol in Chapter 2. Briefly, 

the particle sizes were reported by using two methods. First, sub samples of the 500 mg 

l
−1

 stock dispersion were examined using transmission electron microscopy (TEM, 

JEOL-JEM.1400) (Fig. 5.2). The primary particle size measurement of 103.2 ± 16 nm 

(mean ± S.E.M., n = 7), 22.8 ± 0.6 nm (mean ± S.E.M., n = 169), 16.4 ± 2.4 nm (mean 

± S.E.M., n = 6) and 30.8 ± 2.5 (mean ± S.E.M., n = 7) for bulk, P25, anatase and rutile, 

respectively, with the aggregates (viewed by electron microscopy) measuring 1162.8 ± 
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428.6 nm (mean ± S.E.M., n = 6), 121.7 ± 19.7 nm (mean ± S.E.M., n = 8), 106.8 ± 27.1 

(mean ± S.E.M., n = 6) and 115.1 ± 17.9 (mean ± S.E.M., n = 3), respectively. 

The second method was to analyse the dispersion and distribution of TiO2 in the 

medium by using nanoparticle tracking analysis (NTA, using a Nanosight LM 10, 

Nanosight, Salisbury, UK, laser output set at 30 mW at 640 nm). The media (DMEM) 

alone was filled with particles (29 nm smallest particle size and 156 nm mean values) so 

ultrapure Milli-Q water was used instead. TiO2 was prepared by vigorous shaking 

instead of sonication and this may leave the stock full with aggregates particles, for this 

reason the concentration used here was 10 mg l
-1

 to assess the measuring. The 

dispersion results gave a mean values of 179.3 ± 13.7, 7.1 ± 4.1, 142.3 ± 14.4 and 88.3 

± 34.1 nm (mean ± S.E.M., n = 3), for bulk, P25, anatase and rutile, respectively, While 

the mean of the smallest particles were 38.7 ± 3.5, 7.5 ± 1.2, 6.7 ± 1.2 and 7.7 ± 0.3 nm 

(mean ± S.E.M., n = 3), respectively (Fig. 5.2). 

  



                                                                                                                           Chapter 5 

131 

  

 

Figure 5.2 Electron microscope (EM) images showing (A) bulk TiO2 particles (B) P25 

(C) nano anatase and (D) nano rutile in 500 mg l
-1

 stock solution (Milli-Q water). The 

images shows individual examples from triplicates (n = 7, 169, 6 and 7 for bulk, P25, 

anatase and rutile, respectively). Nanosight graphs showing the distribution of bulk 

TiO2, P25, nano anatase and nano rutile in 10 mg l
-1

 stock solution, graphs are 

individual examples from triplicate meaurements (n = 3). 
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5.2.3 Experiment 1: Time course of Ti accumulation from different forms of TiO2 

This experiment determined the time course of Ti accumulation from the different forms 

of TiO2 in Caco-2 cells over 24 h. Confluent cells (72 h after seeding, as above) were 

exposed to the cell culture media (as above minus antibiotics) containing 1 mg l
-1

 of 

either no added TiO2 (control), bulk, P25, anatase or rutile forms of TiO2. Dosing of the 

wells was performed as follows: Media was made fresh on the day, TiO2 (different 

forms) stock solutions were diluted with sterile distilled water from 500 mg l
-1

 to a 

concentration of 10 mg l
-1

 and then performing a 1: 10 dilution with cell culture media 

(1 ml stock: 9 ml media) to obtain a final concentration of 1 mg l
-1

 TiO2 exposure. Cells 

were exposed for 24 h to each material, and then the cell mixture after scraped from the 

flasks was tested (see Fig. 5.3 and 5.4). Six plates per treatment at each time point: 0, 2, 

4, 6, 8 and 24 h were analysed for Ti, electrolytes, LDH leak, and cell morphology (see 

below).  
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Figure 5.3 General experimental methods showing the processes of the experiment from 

seeding the cells till the analysis of samples. In all experiments, the cells were seeded in 

6-well plates (two controls and different forms of TiO2) and conducted in replicates (n = 

6 plates per treatment). For the control, follow the same pattern of the experiment 

method with no exposure to TiO2. 
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Figure 5.4 Experimental processing of the Caco-2 cells after been exposed the cells to 1 

mg l
-1

 TiO2 for 24 h. The cells were stained with Giemsa stain for the morphology 

examination (n = 3 plates per treatment). SEM grids of Caco-2 cells plate wells were 

obtained for the SEM examination (n = 3 plates per treatment). Caco-2 cells were fixed 

in a concentrated nitric acid and then analysed by the ICP-OES for the Ti and metal 

concentrations (n = 6 plates per treatment).   
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5.2.4 Experiment 2: The effect of nystatin and vanadate incubation on Ti 

accumulation 

Having established the time course of Ti accumulation in Caco-2 cells from exposure to 

the different forms of TiO2 the next stage was to assess the effect of mucosal (apical) 

additions of nystatin (a putative, endocytosis inhibitor, Iversen et al., 2011) and sodium 

orthovanadate (a P-type ATPase inhibitor, Cantley et al., 1978) on Ti accumulation. 

Cells were grown and dosed with 1 mg l
-1

 of the forms of TiO2 as above, except that 1 h 

prior to dosing, cells were pre-incubated with either 120 IU ml
-1

 of nystatin (dose to 

produce 100% inhibition, Lewis et al., 1977), or 100 µmol l
-1

 sodium orthovanadate 

(enough to block metal transport in the intestine, Handy et al., 2000), compared to drug-

free controls with and without added TiO2. Both inhibitors were dissolved in 500 ml 

culture media (DMEM) to produce the appropriate concentration (see above) and pre-

incubated for 1 h. This pre-incubation enabled the drugs to have direct contact with the 

cells without the risk of interference from the test materials (i.e., loss of bioavailable 

drug due to adsorption onto particles). The inhibitors remained in the media throughout 

the experiment, and the appropriate TiO2 dose was simply added to the media after the 

initial 1h pre-incubation. Six plates per treatment for each inhibitor were conducted and 

after 24 h the cells was analysed as above. 

5.2.5 Titanium determination and electrolytes in cells  

In all experiments following TiO2 exposure media was aspirated and centrifuged for 1 

min (~160 g, Heraeus instruments, Biofuge pico, Germany) and collected for 

extracellular LDH analysis (see below). The cells were then collected to confirm Ti 

and/or electrolyte composition, the cells were washed twice with 2 ml of a sucrose 

washing buffer (300 mmol l
-1

 sucrose, 0.1 mmol l
-1

 ethylenediaminetetraacetic acid 

(EDTA), 20 mmol l
-1

 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 

buffered to pH 7.4 with a few drops of 2 mol l
-1

 Trizma base. Cells were scraped off the 
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dish (Fisher scientific cell scraper, 250 mm handle, 18 mm blade) and resuspended in 1 

ml of a sucrose lysis buffer (the recipe above, but hypo-osmotic with only 30 mmol l
-1

 

sucrose). The cell solution was sonicated (power 100 Watt, setting 8/ speed 22.5 kHz, 

Misonix incorporated, XL2000-010, New York) for 30 seconds to ensure the lysed 

sample was well mixed, centrifuged and a 200 µl aliquot fresh for LDH activity and 

protein determination (see below). For metal analysis, 1 ml of concentrated nitric acid 

was added to the remaining 800 µl of the cell homogenate for total Ti, Na
+
, K

+
, Ca

2+
 

and Mg
2+

 determination by (ICP-OES, Varian 725 ES). The standards used for ICP-

OES calibrations were between 0-1, 0-20 and 0-200 mg l
-1

 for Ti, K
+ 

and Na
+
, 

respectively and between 0-40 mg l
-1

 for both Ca
2+

 and Mg
2+

. All standards showed 

linear calibration with regression coefficient correlation of 0.99. To ensure acidity of the 

samples did not interfere with ICP- OES readout two sets of standards were made. One 

set were matrix matched and made in 30% nitric acid, the other made in 2% nitric acid. 

For the spike recovery test, samples (cell mixture) were spiked with 1 mg l
-1

 of different 

forms of TiO2 and showed a good recovery of Ti metal measurement from the TiO2 in 

different forms with 80.4 ± 4.2, 82.2 ± 1.5, 76.3 ± 4.7 and 75.7 ± 1.8% for bulk TiO2, 

P25, anatse and rutile respectively (mean ± S.E.M, n = 6 for each material type). Both 

sets of standards and spikes showed low coefficients of variation within and between 

samples (< 5%). 

5.2.6 Lactate dehydrogenase and protein determination 

Lactate dehydrogenase activity was measured in the cell culture media (“extracellular” 

LDH, n = 6 per treatment) and in the cell homogenates (“intracellular” LDH, n = 6 per 

treatment). For the former, 200 µl of cell culture media from each well was gently 

centrifuged for 1 min to remove any cell debris/turbidity (~160 g, Heraeus instruments, 

Biofuge pico, Germany) and 100 µl of the resulting supernatant was used in the LDH 

assay. For the cell homogenate, 200 µl were sonicated, centrifuged (see above) and then 
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100 µl of the resulting homogenate was used in the LDH assay using the method of 

Plummer, (1971), full description found in Chapter 2. LDH activity is expressed as 

µmol min
-1

 ml
-1

 of media, or µmol min
-1

 mg
-1

 cell protein as appropriate. For 

calculation of the % LDH leak from the cells, cells were lysed for total LDH (lysate + 

Media LDH) and then media LDH was calculated as a percentage of the total, % LDH 

leak = (100 X extracellular LDH) / (intracellular LDH). 

LDH activity in cell homogenates was normalised for cell protein content, and 

protein was measured in triplicate using the bicinchoninic acid (BCA) method 

(MC155208, Pierce, Rockford, USA). The BCA reagent is a mixture of two reagents, 

reagent A, containing sodium carbonate, sodium bicarbonate, bicinchoninic acid and 

sodium tartrate in 0.1 M sodium hydroxide; and reagent B, containing 4% cupric 

sulphate. These two reagents were mixed in a ratio of 50:1 of reagent A: B. Briefly, 15 

µl of sample was added to 300 µl of the BCA reagent and the absorbance read at 570 

nm in 96-well plates (VERSA max, Molecular Devices, Berkshire, UK) against bovine 

serum albumin standards. Calibrations spiked with and without 1 mg l
-1

 TiO2 showed no 

interfere with the assay or colour reagent. 

5.2.7 Cell morphology and scanning electron microscopy 

Cell morphology was examined by light and electron microscopy during the cell 

culture, and prior to scraping the dishes at the end of the experiments. Briefly, cells 

were washed in situ on the cell culture dish with Dulbecco’s phosphate buffered saline 

(DPBS) without calcium and magnesium (Lonza, B-4800 Verviers, Belgium), then 

fixed with 5 ml of 100% fresh methanol for 5 minutes, prior to staining with Giemsa 

(Giemsa’s stain solution, IVD, England). Plates were examined wet using light 

microscopy (Nikon, 803923-Japan) and photographs taken using a digital camera 

(Pentax, K-X).  
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For scanning electron microscopy (SEM), the cells were fixed in situ on the 

culture plates and a disk cut out of the plate wells for mounting on SEM grids. Briefly, 

cells were washed in sucrose wash buffer (above) and fixed in 2.5% glutaldehyde in 

cacodylate buffer (0.2 M Sodium Cacodylate in water adjusted to a pH of 7.4) for 1 h. 

The cells were then washed twice in cacodylate buffer prior to being dehydrated in a 

graded series of ethanol. Cells were critically point dried and carbon coated 

(EMITECH-K850, K450X). Samples were imaged and elementally analysed (SEM, 

JEOL / JSM-7001F, Oxford Instruments INCA X-ray analysis system) using a 10 KV 

accelerating voltage, at a working distance of 10 mm. 

5.2.8 Statistics 

All data were statistically analysed used Stat Graphics Plus Version 5.1 and shown as 

means ± S.E.M (standard error of mean), while Figures were drawn using Excel and 

Sigma Plot Version 12.0, full description in details found in Chapter 2.  In the time 

course experiment, two-way ANOVA was used to determine treatment x time effects 

and the curve fitting for time-effects were done using Sigma Plot Version 12.0, and 

curves were fitted to the raw data, although graphs show the mean values for 

convenience.  
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5.3 Results 

5.3.1 Cell health and viability 

The control Caco-2 cells (not exposed to TiO2 or treated with drugs) showed normal 

morphology during the experiments with the cells remained confluent and well attached 

to the dishes (Fig. 5.5a). This was also supported by the LDH activity which remained 

at around 0.1 IU ml
-1

 or less of cumulative LDH release over the 24 h duration of the 

experiments (Fig. 5.6). The control Caco-2 cells also showed normal electrolyte levels 

with negligible variation in cell electrolyte concentrations. For example, in the time 

course experiment (triplicate plates/treatment) the electrolyte levels in control cells were 

(in nmol mg
-1

 protein);  6859.2 ± 237.6, 867.0 ± 26.3, 16.0 ± 4.1 and, 48.0 ± 0.9 for 

Na
+
, K

+
, Ca

2+
 and Mg

2+
, respectively (mean ± S.E.M, n = 6), representing a within 

experiment variation of 1 - 20% depending on the analyte. The controls were also 

reproducible across experiments (and batches of cells). For example, the control cells in 

the second experiment showed cumulative LDH values in the media of 0.1 IU ml
-1

 or 

less, and the electrolyte concentrations in these controls were (in nmol mg
-1

 protein); 

4518.6 ± 160.9, 718.9 ± 14.2, 10.6 ± 1.2 and 42.6 ± 1.1 for Na
+
, K

+
, Ca

2+
 and Mg

2+
 

(mean ± S.E.M, n = 6). Overall across all experiments, the between experiment 

variation for electrolyte concentrations in cells from the unexposed/untreated controls 

was 10 - 30% depending on the analyte, (sodium and calcium varying the most) with 

cumulative LDH activity in the media remaining low (0.1 IU ml
-1

 or less).  

The morphology of the Caco-2 cells after incubating with different forms of 

TiO2 over 24 h exposure showed normal cells with good confluent and well attached to 

the wells in compare to control (Fig. 5.5b, c, d and e). Cumulative LDH activity release 

in the external media over 24 h remained low with 0.1 IU ml
-1

 or less for all different 

forms of TiO2 (Fig. 5.6), the bulk showed the lowest LDH release with 0.04 IU ml
-1

 in 

compare to other forms of TiO2. The percentage LDH leak through the Caco-2 cells 
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after exposed to different forms of TiO2 was not significantly difference in compare to 

controls (ANOVA or Kruskal-Wallis test, P > 0.05, Table 5.1) indicating that the cell 

membrane integrity was not affected by different forms of TiO2. 
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Figure 5.5 Morphology of the Caco-2 cells after 24 h exposure. (a) control (b) 1 mg l
-1 

bulk TiO2 (c) 1 mg l
-1 

P25 (d) 1 mg l
-1

 nano anatase (e) 1 mg l
-1 

nano rutile showing 

normal morphology and well confluent of the cells in control and all treatment groups 

(n = 3 plates per treatment). Scale bar = 100 µm, stained with Giemsa’s stain. 
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Figure 5.6 The effect of 1 mg l
-1 

different forms of TiO2 exposure on the LDH release in 

external media (extracellular LDH) over 24 h in Caco-2 cells. Values are means ± 

S.E.M (n = 6). There were no statistically significant differences (ANOVA or Kruskal-

Wallis test, P > 0.05) between groups (control, different forms of TiO2). 
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Table 5.1 LDH leak in Caco-2 cells over 24 h after incubation with different forms of TiO2. 

TiO2 1 mg l
-1

 
Total LDH activity (µmol min

-1
 ml

-1
) 

Control Bulk TiO2 P25 Anatase Rutile 

Extracellular 

LDH 
0.05 ± 0.01 0.04 ± 0.02   0.09 ± 0.02 0.06 ± 0.03 0.06 ± 0.02 

Intracellular 

LDH 
0.63 ± 0.02 0.61 ± 0.06   0.58 ± 0.07 0.56 ± 0.02 0.60 ± 0.03 

% LDH Leak 7.32 ± 1.67  6.57 ± 2.52 13.18 ± 1.70 9.52 ± 3.96 9.16 ± 3.07 

  

 
The effects of 1 mg l

-1
 different forms of TiO2 exposure on the total LDH activity release after 24 h in 

Caco-2 cells. Values are means ± S.E.M. (n = 3-6). % LDH leak = (100 X extracellular LDH) / 

(intracellular LDH). There were no statistically significant differences (ANOVA or Kruskal-Wallis test, P 

> 0.05) between groups (control, different forms of TiO2). 
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5. 3.2 Experiment 1: Time course of Ti accumulation from different forms of TiO2 

The time course of Ti accumulation for the different forms of TiO2 are shown in Fig. 

5.7, the unexposed control cells remained at a background level of around 2 nmol Ti 

mg
-1

 cell proteins throughout the experiment. However, all the TiO2 treatments showed 

a non-linear hyperbolic rise in the Ti concentration in the cells, which achieved steady-

state concentrations by 24 h. This saturable rise in net Ti accumulation by the cells 

occurred without similar elevations of cell Na
+
 or K

+
 concentrations in all treatments. 

The Na
+
 and K

+
 concentrations remained between 558 - 668 and 779 - 814 nmol mg

-1
 

protein, respectively; indicating that the Ti response was Ti-specific and not an artefact 

of general electrolyte changes in the cells (not observed). There were some differences 

in the time courses of Ti accumulation for the different forms of TiO2 (Fig. 5.7), and 

these were not explained by osmotic disturbances in the cells (no statistical differences 

by TiO2 forms in the cell electrolyte contents, Table 5.2) or by differences in membrane 

permeability across the treatments. For the latter, the cumulative LDH leak by 24 h 

remained low at around 0.1 IU ml
-1

 (not statistically different from the control, and no 

material-type effect, ANOVA, P = 0.066 Table 5.1). The net Ti accumulation by 24 h 

was in the following order by material type: bulk, P25, anatase, rutile and unexposed 

controls. The bulk material and P25 showed the largest net Ti accumulation in 24 h, 

saturating at 14.4 ± 1.7 and 12.9 ± 0.4 nmol mg
-1

 protein respectively, but were not 

statistically different from each other (t-test, P = 0.473). The anatase form showed 

lower values with approximately 40% less Ti accumulation than either the P25 or bulk 

material (statistically different by 24 h, Kruskal Wallis test, P = 0.004). There were also 

some differences in Ti accumulation from the pure anatase and rutile forms, with the 

latter showing saturation at a slightly lower Ti concentration (Fig. 5.7). However, there 

was no statically significantly different showed between the anatase and rutile at 24 h (t-

test, P = 0.295). The initial Ti accumulation rates calculated from the curves followed a 
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similar pattern with Ti accumulation from the bulk and rutile being faster than those 

from anatase or P25 (Fig. 5.7) and were 5.3, 3.73, 3.58 and 4.48 nmol mg
-1

 protein hr
-1 

for bulk, P25, anatase and rutile, respectively. The 50% saturation of Ti from different 

forms of TiO2 were 7.1 nmol mg
-1

 protein at 1 h and 48 min, 6.82 nmol mg
-1

 protein at 

2 h and 42 min, 4.26 nmol mg
-1

 protein at 1 h and 30 min and 3.47 nmol mg
-1

 protein at 

30 min for bulk, P25, anatase and rutile, respectively. The plateau for the Ti 

accumulation from both bulk and P25 were at 8 h with 13.0 and 11.6 nmol mg
-1

 protein, 

respectively. Anatase was plateauing at 4 h with 6.78 nmol mg
-1

 protein while the rutile 

was the most rapid one which plateauing at 2 h and 30 min with 6.08 nmol mg
-1

 protein. 

At 24 h, the Ti from all different forms of TiO2 exhibited statistically significant 

accumulation relative to control values (ANOVA or Kruskal-Wallis, P < 0.05) 

demonstrated a saturable time dependent response to 1 mg l
-1

 different forms of TiO2.  

  



                                                                                                                           Chapter 5 

146 

  

 

 

 

 

Figure 5.7 Titanium uptake in Caco-2 cells incubated with 1 mg l
-1

 different forms of 

TiO2 for 24 h. The data points are mean values derived from triplicate measurements (n 

= 6 plates per treatment for each time point) and are expressed as nmol [Ti] mg
-1

 

protein. Curves are fitted to the data points shown using hyperbolic exponential rise to 

the maximum (single, 3 parameters) in SigmaPlot version 12. The bulk: y = 

2.65+11.54*(1-exp (-0.26*x)), r
2
 = 0.90, P25: y = 1.16+12.54*(1-exp (-0.22*x)), r

2
 = 

0.86, anatase: y = 1.71+7.01*(1-exp (-0.30*x)), r
2
 = 0.95 and rutile: y = 2.07+4.86*(1-

exp (-0.67*x)), r
2
 = 0.73. * Statistically significant difference from control values 

(ANOVA, P < 0.05). The control values were significantly lower than the treatment 

forms and so the curve is not fitted, but data points are shown for convenience.  
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5.3.3 Effects of TiO2 exposure on intracellular electrolytes over 24 h 

Caco-2 cells after exposed to 1 mg l
-1

 of different forms of TiO2 over 24 h exhibited 

different effects on cell electrolytes. Intracellular potassium significantly decrease in all 

treatments groups relative to controls (ANOVA, P = 0.001, Table 5.2). The lowest 

value of K
+
 was seen after rutile exposure, which dropped by 107 nmol mg

-1
 protein 

compared to the control.  

Intracellular magnesium significantly increased in all treatments groups in 

comparison to the control (ANOVA, P = 0.0003, see Table 5.2). P25 caused the highest 

effects on Mg
2+

 levels relative to other treatment groups, showing 10.8 nmol mg
-1 

protein increases in comparison to the control magnesium level.  

Calcium levels rose significantly in cells exposed to different forms of TiO2 in 

comparison to the control (Kruskal-Wallis test, P = 0.04, Table 5.2). P25 caused the 

largest increase in intracellular calcium with a 24 nmol mg
-1

 protein rise compared to 

the control. The exposure of different forms of TiO2 had no statistically significant 

effects on intracellular sodium levels relative to the control (Kruskal-Wallis test, P = 

0.30, Table 5.2). However, changes in electrolyte levels were against the 

electrochemical gradient indicating that the membrane remained operative and did not 

passively leak electrolytes throughout the duration of the experiments. 
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5.3.4 Experiment 2: The effect of nystatin and vanadate incubation on Ti 

accumulation 

Caco-2 cells were pre-incubated with 120 IU ml
-1

 nystatin to establish endocytosis 

inhibition or 100 µmol l
-1

 vanadate (a P-type ATPase inhibitor) to enhance blocking of 

any Ti metal transport through intestine. Nystatin and vanadate treatments showed 

significantly increased levels of bulk Ti accumulation compared to the control 

(ANOVA, P = 0.0002, Fig. 5.8). Bulk Ti accumulation increased by 3 nmol mg
-1

 

protein compared to the control (10.76 nmol mg
-1

 protein) when incubated with 

nystatin, reaching a final concentration of 13.76 nmol mg
-1

 protein at 24 h. Incubating 

with vanadate further increased bulk Ti accumulation to 20.10 nmol mg
-1

 protein at 24 

h, an increase of 10 nmol mg
-1

 protein compared to the control. 

Nystatin caused an increase in P25 Ti accumulation (14.36 nmol mg
-1

 protein), 4 

nmol mg
-1

 greater than the control (9.89 nmol mg
-1

 protein). Incubating with vanadate 

caused additional Ti accumulation reaching a final concentration of 22.26 nmol mg
-1

 

protein, an increase of 12 nmol mg
-1

 protein compared to the control with a significant 

increase  for both drugs (Kruskal-Wallis test, P = 0.0005, Fig. 5.8).  

Anatase Ti accumulation were significantly increased when the cells were 

incubated with nystatin or vanadate (Kruskal-Wallis test, P = 0.0015, Fig. 5.8). 

Incubating with nystatin caused a 2 nmol mg
-1

 protein increase in accumulation 

compared to the control (9.47 nmol mg
-1

 protein). Incubating with vanadate further 

increased anatase Ti accumulation to 22.04 nmol mg
-1

 protein, an increase of 12 nmol 

mg
-1

 protein compared to the control.  

Rutile Ti accumualation did not follow the same pattern in comparison with the 

other forms of TiO2. Nystatin incubation showed a significant increase in Ti 

accumulation from exposure to the rutile form (ANOVA, P = 0.004, Fig. 5.8), by a 4 

nmol mg
-1

 protein increase in compare to the control (5.38 nmol mg
-1

 protein). 
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Vanadate caused just a 0.9 nmol mg
-1

 increases in Ti accumulation, however this was 

not deemed statistically significant in comparison to the control (t-test, P = 0.1602).  

 

 

 

 

Figure 5.8 Drug effects on Ti accumulation in Caco-2 cells incubated with 1 mg l
-1

 

different forms of TiO2 over 24 h. Data are means ± S.E.M (n = 6) and expressed as 

nmol [Ti] mg
-1

 protein. * statistically significant difference from the no drug control 

values (ANOVA or Kruskal-Wallis test, P < 0.05). # statistically significant difference 

from the nystatin values (ANOVA or Kruskal-Wallis test, P < 0.05).   
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5.3.5 Effect of nystatin and vanadate exposure on intracellular electrolytes over 24 h 

The electrolyte levels in Caco-2 cells varied in response to drug incubation and 

remained consistent within TiO2 treatments. Electrolyte levels in nystatin controls were 

6303.7 ± 468.1, 927.9 ± 50.9, 25.7 ± 9.5 and 56.2 ± 2.9 nmol mg
-1

 protein for Na
+
, K

+
, 

Ca
2+

 and Mg
2+

, respectively (mean ± S.E.M, n = 6). Additions of different forms of 

TiO2 to Caco-2 cells incubated with 120 IU ml
-1

 nystatin had no effects on intracellular 

Na
+
, K

+
 and Mg

2+
 levels relative to the no TiO2 positive control (ANOVA or Kruskal-

Wallis test, P > 0.05, Table 5.2). However, Ca
2+ 

values were significantly decreased in 

comparison to the no TiO2 positive control (Kruskal-Wallis, P = 0.04). Cells incubated 

with nystatin exhibited a significant increase in intracellular potassium with all the 

different forms of TiO2 relative to the no drug controls (ANOVA or Kruskal-Wallis test, 

P < 0.05, Table 5.2) and similar to the equivlaentexposures without drugs. The level of 

K
+
 decreased with all forms of TiO2 in comparison to control values with nystatin 

present (see Table 5.2). Intracellular magnesium showed significantly increased levels 

for all the different forms of TiO2 relative to their no drug controls (ANOVA or 

Kruskal-Wallis test, P < 0.05), except in cells exposed to P25 which were found not to 

be significantly different from the no drug control. Nystatin had no effects on 

intracellular calcium or sodium levels in compare to the no drug control (ANOVA or 

Kruskal-Wallis test, P > 0.05). 

Electrolytes levels in the vanadate controls showed lower values than the 

nystatin controls (above) being 3632.0 ± 427.1, 466.9 ± 43.8, 20.9 ± 3.6 and 30.9 ± 3.4 

nmol mg
-1

 protein for Na
+
, K

+
, Ca

2+
 and Mg

2+
, respectively in vanadate-treated cells 

(mean ± S.E.M, n = 6). K
+
 and Mg

2+
 levels in all TiO2 forms incubated with vanadate 

showed a significantly lower values relative to the nystatin in all different forms of TiO2 

(ANOVA or Kruskal-Wallis test, P < 0.05). Caco-2 cells incubated with 100 µmol l
-1

 

vanadate and different forms of TiO2 displayed significantly decreased levels of 
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intracellular potassium in all TiO2 forms relative to the no drug controls (ANOVA or 

Kruskal-Wallis test, P < 0.05), but there were no effects found on potassium levels in all 

TiO2 forms relative to the no TiO2 positive control (ANOVA, P = 0.91, Table 5.2). 

Cells incubated with vanadate cause a significant decrease in intracellular magnesium in 

all different forms of TiO2 relative to the no drug controls (ANOVA or Kruskal-Wallis 

test, P < 0.05), but showed a significantly increase of Mg
2+

 level in the anatase and 

rutile groups comparing to the no TiO2 positive control (ANOVA, P = 0.047). Calcium 

levels increased significantly in cells after incubated with vanadate in both bulk and 

rutile groups relative to the no drug controls (ANOVA or Kruskal-Wallis test, P < 0.05). 

There was no effects on calcium levels in all different forms of TiO2 in presence of 

vanadate relative to the no TiO2 control (ANOVA, P = 0.48). For the intracellular 

sodium levels, there was no significant effect found in compare to no drug control or no 

TiO2 control (ANOVA or Kruskal-Wallis test, P > 0.05). 
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Table 5.2 Total Na
+
, K

+
, Ca

2+
 and Mg

2+
 nmol [Metal] mg

-1
 protein concentration in Caco-2 cells after exposed to 1mg l

-1
 different forms of TiO2 over 24 h.  

 

Data are expressed as means ± S.E.M (n = 6 for each group). * statistically significant difference from the control values within columns, treatments and electrolytes (ANOVA or 

Kruskal-Wallis test, P < 0.05). # statistically significant difference of nystatin values relative to the no drug trials within columns, treatments and electrolytes (ANOVA or Kruskal-

Wallis test, P < 0.05). ~ statistically significant difference of vanadate values relative to the no drug trials within columns, treatments and electrolytes (ANOVA or Kruskal-Wallis 

test, P < 0.05). † statistically significant difference of vanadate values relative to nystatin values within columns, treatments and electrolytes (ANOVA or Kruskal-Wallis test, P < 

0.05).  

TiO2 1 mg l
-1

 
Electrolytes (nmol mg

-1
 protein) 

Na
+
 K

+
 Ca

2+
 Mg

2+
 

No drugs       Control 4518 ± 160 718.8 ± 14.2 10.6 ± 1.2 42.6 ± 1.1 

                     Bulk TiO2 4666 ± 576   663.9 ± 28.3* 14.3 ± 7.0  47.8 ± 2.2 

                         P25 4793 ± 231   643.8 ± 19.6*     28.0 ± 12.4*   53.4 ± 2.7* 

                     Anatase 5109 ± 624   637.9 ± 27.6*   20.8 ± 5.4*   49.8 ± 1.4* 

                       Rutile 4319 ± 350   611.1 ± 11.4*   19.1 ± 8.2*   50.7 ± 1.5* 

Nystatin        Control  6303 ± 468
# 

  927.9 ± 50.8
#
   25.7 ± 9.4

# 
  56.2 ± 2.9

#
 

                     Bulk TiO2 5253 ± 445
 

  828.8 ± 62.3
#
      19.8 ± 2.2*

#
   55.3 ± 2.8

#
 

                         P25 5144 ± 308
 

  815.7 ± 30.0
#
   27.8 ± 5.7  55.0 ± 1.8 

                      Anatase 5748 ± 455
 

  822.7 ± 57.9
#
     14.4 ± 4.6*   56.2 ± 4.4

#
 

                       Rutile 5202 ± 417
 

  807.1 ± 41.2
#
     17.7 ± 3.1*  55.0 ± 3.1

#
 

Vanadate       Control  3632 ± 427†     466.8 ± 43.8†
~
     20.9 ± 3.6

~
     30.9 ± 3.4†

~
 

                     Bulk TiO2 4246 ± 406     479.6 ± 36.9†
~
     25.2 ± 4.6

~
     38.9 ± 3.1†

~ 

                         P25 3982 ± 311     469.3 ± 26.9†
~
   18.0 ± 7.2

 
    39.4 ± 2.7†

~
 

                     Anatase   4457 ± 216†     513.3 ± 16.9†
~
   18.7 ± 4.1       43.8 ± 2.3†*

~
 

                       Rutile 4534 ± 568     490.7 ± 37.1†
~
     29.1 ± 2.4

~ 
      40.9 ± 2.8†*

~
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5.3.6 Presence of particles within the Caco-2 cells 

Scanning electron microscopy (SEM) of the Caco-2 cells was employed to investigate 

the presence, condition and organization of microvilli on the apical surface of control 

cells compared to cells exposed to the different forms of TiO2 (Fig.5.9), and also to 

explore the presence of the TiO2 particles in/on the cells by using the X-ray 

microanalysis detector (Fig. 5.10 and 5.11). Control cells showed good microvilli 

growing on the surface of the cultured cells after 96 h incubation. The exposure of 

Caco-2 cells to 1 mg l
-1

 of different forms of TiO2 for 24 h showed different effects on 

the microvilli growth; bulk and anatase have a good development of the microvilli 

growth which showed similar organization to control cells. P25 and rutile seems to have 

the lowest microvilli growth density with the decreased numbers of the microvilli 

appearance on the apical surface of the cells relative to the no treated control cells (Fig. 

5.9). For all TiO2 forms, the Ti was detected by pinpoint X-ray analysis which observed 

the Ti particles in/on the Caco-2 cells and appear to be penetrate the cells and made a 

contact with the cell membrane (Fig. 5.10), some of the particles are suggest to be 

translocated in the nucleus (Fig. 5.11d-f) and other particles have been shown on the 

cell surface (Fig. 5.11a-c). 
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Figure 5.9 Scanning electron microscopy of Caco-2 cells after 96 h incubation showing 

the microvilli growth density on the apical surface of the cells after exposed to 1 mg l
-1

 

different forms of TiO2 for 24 h. (a) control, (b) bulk, (c) P25, (d) anatase and (e) rutile. 

Scale bar = 1 µm (n = 3 per treatment). 
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Figure 5.10 Scanning electron microscopy of Caco-2 cells after 96 h incubation 

showing presence of the Ti particles underneath the cells after exposed to 1 mg l
-1

 

different forms of TiO2 for 24 h (n = 3 per treatment). (a) Secondary electron image 

(SEI) of the bulk cell surface, scale bar = 1 µm; (b) Backscatter image (BSI) of ‘a’ 

image showing subsurface Ti with xrma spectra; (c) SEI of the P25 cell surface, scale 

bar = 1 µm; (d) BSI of ‘c’ image; (e) SEI of the anatase cell surface, scale bar = 1 µm; 

(f) BSI of ‘e’ image, (g) SEI of the rutile cell surface, scale bar = 100 nm; (h) BSI of ‘g’ 

image. 
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Figure 5.11 Scanning electron microscopy of Caco-2 cells after 96 h incubation 

showing presence of the Ti particles on the surface of the cells after exposed to 1 mg l
-1

 

different forms of TiO2 for 24 h (n = 3 per treatment). (a) Surface bound of P25 with 

spectra, scale bar = 3 µm; (b) Surface bound anatase with associated spectra, scale bar = 

2 µm; (c) Surface bound rutile with associated spectra, scale bar = 2 µm; (d) SEI image 

of the cell surface exposed to P25. The yoke like structure in the centre is the nucleus, 

scale bar = 10 µm; (e) SEI image of the cell surface exposed to rutile showing the 

nucleus in the centre, scale bar = 1 µm; (f) A high magnification BSI of ‘e’ highlighting 

a Ti dense region within the left side of the nucleus. 
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5.4 Discussion 

This experiment investigated the processes involved in the uptake and accumulation of 

different forms of TiO2 using Caco-2 cells. The main findings were that Ti uptake rates 

from bulk TiO2 were greater than that from the different nano forms of TiO2, which 

indicated a material-type effect towards uptake of TiO2 in Caco-2 cells. Following 

nystatin (an endocytosis inhibitor) and vanadate (a P-type ATPase inhibitor) incubation, 

an explanation of the data is that the mechanisms of TiO2 uptake are likely mediated by 

endocytic mechanisms. Furthermore, exposure to different forms of TiO2 (bulk and 

nano) altered cell electrolyte homeostasis. 

5.4.1 Cell health and viability 

The morphology of Caco-2 cells in the control and in all forms of TiO2 was good in 

general, with normal morphology and well-confluent cell appearance (Fig. 5.5). There 

was no effect on the cell structure after exposure to different forms of TiO2 in 

comparison with controls. The present findings seem to be consistent with other 

research which found no alteration in the morphology or density of the Caco-2 cells 

after exposure to 100 µg ml
-1

 TiO2 NPs for 4 h, 24 h and 72 h compared to control cells 

(Fisichella et al., 2012).     

The LDH activity was performed to ensure that the cell membrane integrity had 

been preserved throughout the experiments. There was no LDH leakage shown in either 

the controls or after exposing the cells to 1 mg l
-1 

of different forms of TiO2. Control 

Caco-2 cells showed normal electrolyte levels, with negligible variation in electrolyte 

concentrations after exposure to different forms of TiO2. Taken together, the normal 

morphology of the cells, negligible LDH leak, and normal electrolyte concentrations in 

Caco-2 cells indicate that cells were in good viability and have the utility for measuring 

the accumulation of Ti from different forms of TiO2.  
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5.4.2 Uptake and accumulation of Ti from different forms of TiO2 by Caco-2 cells  

Ti uptake from different forms of TiO2 in Caco-2 cells showed a steady, saturable, time 

dependent appearance over the 24 h experiment. This most likely indicates that Ti 

uptake involves active transport by endocytosis mechanism(s), which are influenced by 

particle characteristics, resulting in the nonlinear (saturable) uptake curves observed 

(Fig. 5.7), so the passive diffusion through the cell membrane or leakage of dissolved Ti 

seems unlikely. This is also indicated by Brun et al. (2011), who argue that no partial 

dissolution occurs for NPs after the Ti is internalised in Caco-2 cells as the 

nanoparticulate state. However, details of their solution preparation, exposure 

conditions, replication and controls were not fully documented in this preliminary 

conference report. Fröhlich and Roblegg (2012) also suggested that endocytosis is the 

most likely mechanism for the uptake of NP into intestinal epithelial cells. 

The net uptake rate of Ti from bulk TiO2 in Caco-2 cells was greater than the 

other NP forms of TiO2. A possible explanation for this might be that the larger 

particles of the TiO2 remained within the submucosa of the intestine and colon (Jani et 

al., 1990) or this might be related to the behaviour of bulk TiO2 in the culture media. 

Bulk TiO2 and the P25 were quickly dispersed in the culture media when prepared for 

the cell exposure, which may have improved cell surface contact and subsequent uptake. 

Anatase and rutile were individually aggregated quickly in the culture media. This 

possibly reduced the particle surface area available, and consequently decreases the cell 

surface contact. This is in agreement with Ryabchikova et al. (2010) who showed that 

TiO2 crystal structure alters particle membrane interactions which can either increase or 

decrease particle internalisation. They hypothesised that the NPs may alter the function 

of the plasma membrane with simple mechanical binding to membrane 

macromolecules. Furthermore, the behaviour of TiO2 in culture media might be related 
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to increased ionic strength from high salt concentrations in the culture media, which 

may lead to aggregation of a portion of NPs (Koeneman et al., 2010). 

5.4.3 Effects of the different forms of TiO2 on Caco-2 cells electrolytes  

Despite the fact that cell culture media is enriched with magnesium and calcium, 

exposure of Caco-2 cells to different forms of TiO2 caused an increase in cellular 

magnesium and calcium concentrations and a decrease in potassium concentration in 

cells compared with the controls (Table 5.2). The increase in Mg
2+

 level was not 

observed after bulk TiO2 exposure; this elevation in Mg
2+

 level was just seen after 

exposure to different forms of TiO2 NPs suggesting a specific material effect on Mg 

homeostasis. Increase the accumulation of cellular Mg
2+ 

requires proper distributions of 

the ions across the cell membrane and any changes in the membrane potential especially 

in the polarized epithelia like intestine as well as changes in pyridine nucleotide levels 

will promote cellular Mg
2+

 accumulation (Romani, 2011). This suggests that the 

exposure to TiO2 may result in changes in the membrane potential. Additionally, the 

decrease of the potassium concentration in cells exposed to different forms of TiO2 

could be related to this change in the membrane permeability associated with the 

mechanical interaction of TiO2 and membrane macromolecules (Ryabchikova et al., 

2010). This potassium reduction might also be happening through the activation of 

single stretch-activated potassium channels which are more permeable than other ion 

channels in the intestinal epithelium (Chang and Loretz, 1992). The same situation as 

Mg
2+

 was seen with the concentration of Ca
2+ 

in the cells, where the bulk TiO2 did not 

cause a marked increase in Ca
2+

 concentration compared to that caused by different 

forms of TiO2 NPs. Scherbart et al. (2011) suggests that calcium influxes after exposure 

to different particle size of TiO2 are nanoparticle type specific. Differences between 

bulk and nano TiO2 could be based on the cell sensitivity to specific material effects on 

the calcium homeostasis. This intracellular calcium homeostasis might be related to the 
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over expression or under expressoin of calcium-binding proteins (Fisichella et al., 

2012). The highest concentration of Ca
2+

 was observed with P25 exposure (Table 5.2), 

which was associated with the altered structural organisation of the cell surface villi 

(Fig. 5.9). The same alteration in villi structure has been noticed by Koeneman et al. 

(2010) who relate this effect to the increase in free cellular calcium concentration. 

5.4.4 How does the Ti from different forms of TiO2 can be taken up by Caco-2 cells? 

Caco-2 cells were pre-incubated for 1 h with either 120 IU ml
-1

 nystatin (an endocytosis 

inhibitor) or 100 µmol l
-1

 sodium orthovanadate (P-type ATPase inhibitor) prior to 

being dosed with 1 mg l
-1

 of different forms of TiO2 for 24 h. These inhibitors were 

applied to investigate whether TiO2 uptake is a cholesterol-dependent endocytic 

mechanism or an energy-dependent process. 

The nystatin exposure resulted in increased cellular Ti concentrations from all 

forms of TiO2 in Caco-2 cells (Fig. 5.8). Nystatin is one of the endocytosis inhibitors 

which inhibit the lipid-raft mediated endocytosis including the caveolae by depleting the 

cholesterol from the plasma membrane (Nabi and Phuong, 2003; Ragnarsson et al., 

2008). Endocytosis inhibition can reduce the transport of particles across the cell 

monolayer (Ragnarsson et al., 2008). Increased cellular Ti concentrations may indicate 

that endocytosis of TiO2 is cholesterol independent, and uptake of TiO2 particles could 

be mediated by another mode of endocytosis. Exposure of prostate PC-3M cells to TiO2 

NPs indicates that cell internalization could be via clathrin-mediated endocytosis, 

caveolin-mediated endocytosis and macropinocytosis (Thurn et al., 2011). Ryabchikova 

et al. (2010) showed clusters of TiO2 NPs within large folds of the plasma membrane in 

TEM images from MDCK cells, suggesting possible uptake by macropinocytosis as 

well as clathrin-mediated endocytosis. 

The increase in cellular Ti concentration from TiO2 in cells incubated with 

nystatin (Fig. 5.8) can be attributed to the blocking of some exocytosis pathways that 
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are cholesterol dependent. This is because the cholesterol depletion increased NP uptake 

by 300% (Dombu et al., 2010) and this could be also explained by the fact that 

cholesterol depletion is totally blocking NP exocytosis (Dombu et al., 2010). However, 

the exocytosis mechanism of the NPs is still not well studied. Simon et al. (2011) 

suggests that TiO2 NPs can enter the cell through different internalization pathways 

which interact with the golgi apparatus, and can be extruded from the cell by exocytosis 

via endosome or secretory vesicles.  

Caco-2 cells after exposed to vanadate showed further elevation in cellular Ti 

concentration after exposure to all forms of TiO2 with the exception of the rutile TiO2 

(Fig. 5.8). This could be due to inhibition of the active ATP metabolism in Caco-2 cells, 

which is required for transport of NPs through endocytic mechanism (Rangnarsson et 

al., 2008). Furthermore, inhibition of ATP-ase may result in inhibition of the GTP-ase 

binding protein Rac-1 to the plasma membrane that stimulates the actin filament and 

membrane ruffling (Ridley, 2001), that essential for the macropinocytosis mechanism 

(Grimmer et al., 2002). Moreover, the vanadate may interrupt TiO2 efflux by inhibiting 

Rho GTPases which play an important role in exocytosis through the organization and 

dynamics of the actin cytoskeleton (Cobbold et al., 2002). Further investigation is 

required to fully characterise the exact endocytic/exocytic pathways that are interfered 

with through vanadate application. 

5.4.5 Effects of nystatin and vanadate on Caco-2 cells electrolytes 

Caco-2 cells pre-incubated with nystatin and then exposed to different forms of TiO2 

showed an increase in cellular potassium and magnesium concentrations in comparison 

to the no drug TiO2 controls (Table 5.2). As mentioned above, nystatin is a cholesterol 

depletion drug and changing the cholesterol content in the plasma membrane may cause 

an alteration in the membrane permeability (Rodal et al., 1999). Since the effect of TiO2 

in the cells is to reduce the level of K
+ 

concentration, the elevated levels of K
+
 in the 
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cells after exposed to nystatin suggest that this elevation is solely caused by the 

nystatine incubation. For the Mg
2+

, the elevation after exposure to nystatin was more 

than that after TiO2 exposure without drugs. This suggests that the elevated level of 

Mg
2+ 

may interfere with the effects of nystatin by altering the cell electrolytes 

homeostasis after cholesterol depletion. 

Cells incubated with vanadate showed a decrease in both potassium and 

magnesium cellular concentrations compared to the no drug TiO2 controls (Table 5.2), 

but an elevation was noticed in cellular Ca
2+ 

concentration. This could be explained by 

the structural differences in the protein and crystallite. E2 was designated for the low 

energy phosphoenzyme which includes the Na
+
, K

+
, ATPase, Mg

2+ 
ATPase and Ca

2+
-

ATPase (Rice et al., 2001). Vanadate is a P-type ATPase inhibitor which inhibits both 

the Na
+
, K

+
, ATPase (Cantly et al., 1978) and Mg

2+ 
ATPase (Rice et al., 2001) by 

making the transition state for phospholyration-dephospholyration mimic the state in 

E2. Ca
2+

-ATPase has different crystallite structure that required EGTA (Stokes and 

Lacapere, 1994), this may lead to more stability of these crystals which are not affected 

by vanadate inhibitor.     

5.4.6 Presence of particles within the Caco-2 cells 

The different forms of TiO2 showed different effects on the microvilli growth on the cell 

surface (Fig. 5.9) indicated by a lower density of the microvilli after exposure to both 

P25 and rutile. The same observation was reported by Koeneman et al. (2010) who 

suggested that the increase in free cellular Ca
2+ 

concentration was the reason for the 

alteration of the microvilli organisation. The current study showed the same increase in 

Ca
2+ 

concentration after exposure to P25 (Table 5.2). The alteration in the microvilli 

organisation may be related to the effects of Ca
2+

 elevation on the villin, a Ca
2+ 

regulated actin binding protein that is associated with the brush border microvilli 

cytoskeleton (Bretscher and Weber, 1980). This effect is caused by the P25, a mixture 
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of anatase and rutile, rather than the individual crystal forms indicating that P25 is more 

toxic than the other forms of TiO2.  

The images from the SEM study showed clearly the penetration of the Ti from 

different forms of TiO2 which was observed underneath the cells and in contact with the 

cell membrane (Fig. 5.10) and sometimes near to the nucleus (Fig. 5.11). This suggests 

that the NPs have the ability to enter the cells by an active transport mode which is 

mediated by a form of endocytic pathways. The same suggestion was made by Brun et 

al. (2011) after observing the appearance of TiO2 NPs by TEM images in Caco-2 cells 

after 24 h exposure. They reported anecdotally, particles mainly grouped together inside 

the cells into heterogeneous clusters of 1-2 μm, and hypothesised that the NPs 

internalization occurred through macropinocytosis.  

The intracellular trafficking of NPs towards the nucleus might be happening by 

microtubules mostly through dynein-dependant of the endosomes processing (Panariti et 

al., 2012). Additionally, the shape and charge may play an important role in localization 

of the NPs near to the nucleus. Rode shape NPs are likely to be moved towards the 

nucleus via microtubules (Xu et al., 2008). Furthermore, positively charged NPs are 

more easily approach the nucleus (Yue et al., 2011).  

Conclusions 

This study shows that Ti uptake in Caco-2 cells from different forms of TiO2 was 

steady, saturable and time dependent over the period of 24 h exposure; this indicates 

that an active absorption mechanism has occurred. The highest uptake rate was 

observed with the bulk TiO2 which was about 2 fold more than that indicated by the in 

vivo study on rats (Jani et al., 1994). The direct contact of Ti from different forms of 

TiO2 with the cell membrane, results in localisation of Ti inside the cell both close to 

the membrane and also in the cytoplasm. This suggests that the mechanism of TiO2 
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uptake involves a number of different active endocytic pathways. Increased cellular Ti 

concentration after exposure to both nystatin and vanadate may also be related to 

interference with the endocytic processes. The nano form of TiO2 showed an alteration 

in cell electrolytes homeostasis. P25 produced the highest increase in cell Ca
2+

 

concentration which altered the microvilli organisation on the cell surface. This raises 

the concern that P25 toxic effects should be considered as a potential hazard to human 

health.   
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Currently there is a very limited data on the uptake of TiO2 NPs via intestine, the 

mechanisms of their uptake, and the material-type effects on Ti uptake (differences 

between bulk and nano). This thesis aimed to give a better understanding of the TiO2 

NPs uptake by the intestine and the possible mechanisms involved, leading to a better 

understanding of the hazard and risk assessment of TiO2 NPs intake by food.  

This work reports regional differences in Ti accumulation from both bulk and 

nano forms of TiO2 by vertebrate intestine (Chapter 3), and demonstrates the uptake of 

Ti from TiO2 particles across the gut of rainbow trout using the isolated gut perfusion 

technique (Chapter 3). The main findings are that Ti from TiO2 particles (bulk or nano) 

are mainly absorbed in the mid and hind regions of trout intestine, with the Ti 

accumulating in the mucosa rather the underlying muscularis. This uptake of the Ti 

from TiO2 leads us to further investigate on the possible mechanism uptake. The effects 

of nystatin which inhibits the uptake of Ti from TiO2, suggest at least part of the 

mucosal influx step is by endocytosis for both bulk and nano forms of TiO2 (Chapter 4). 

However, the effect of solute transport inhibitors also suggests a dissolved Ti 

component involved in Ti export from the tissue to the blood for bulk and nano TiO2 

(Chapter 4). There was also a material-type effect where Ti from NPs crossed the gut 

faster than Ti from the bulk powder, and uptake from the nano form was more sensitive 

to nystatin treatment as well as changes in the gas mixture in the media. A novel effect 

of the partial pressure of carbon dioxide (pCO2) on Ti uptake is also proposed, with 

several possible mechanisms by which CO2 might modulate Ti uptake from particles 

(Chapter 3).  

In human intestinal epithelial cell line (Caco-2 cells), the Ti from all different 

forms of TiO2 were uptake by the cells and the accumulation of Ti was effected by the 

material-type and crystal structures (Chapter 5). Bulk TiO2 shows the greater uptake 

rates relative to the other forms of TiO2. Cells incubated with nystatin or vanadate 
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demonstrate further increases in cellular Ti concentration from all forms of the TiO2 

(Chapter 5) which indicate a different situation from the intestinal tissue (Chapter 4). 

Histopathology and ultrastructural (TEM and SEM) studies of the intestine for 

both cell and tissue provided an indicator of the uptake of Ti from different forms of 

TiO2 (Chapter 3-5).  

6.1 Correlation steps between the in vivo and the in vitro methods 

In vivo studies are complicated by a number of considerations during dietary 

exposure, such as the interaction of NPs with the food components, the transit time from 

the mouth through the GIT, and the varying conditions between each part of the gut 

(pH, enzymes, gas partial pressures and composition of the digesta). All these factors 

could be reasonably controlled to investigate Ti uptake using in vitro methods. 

In this study, different in vitro methods with different organisms were used to 

evaluate them with the in vivo studies. The studies try to mimic the conditions in real 

organisms and offer a direct contact between particles and intestinal epithelium. The 

isolated perfused intestine method is closest to the in vivo condition by having four 

layers of the intestine tissue (from the mucosa to the serosa), as well as a good viability 

criteria of the tissue outside the living organisms. Human intestinal Caco-2 cell is 

another in vitro method used to improve our knowledge on the uptake of NPs across a 

monolayer intestinal cell.  

The results from both in vitro methods in this study gives some similarities to 

the results of in vivo studies, from the uptake of bulk TiO2 by rat intestine (Jani et al., 

1994), TiO2 NP uptake by intestine in mice (Wang et al., 2007) and the Ti accumulation 

in the gut from TiO2 NPs exposure in rainbow trout fish (Ramsden et al., 2009). 

However, some differences were also noticed between the in vitro and in vivo methods 

especially for the electrolyte concentration. Both in vitro methods showed alteration in 
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gut electrolyte homeostasis which is different from what was reported by in vivo 

studies. For example, Ramsden et al. (2009) did not report any effects of TiO2 exposure 

on tissue electrolytes (Na
+
, K

+
 and Ca

2+
). 

6.2 Uptake and accumulation of Ti from TiO2 exposure by the perfused intestine and 

Caco-2 cells    

Both in vitro methods showed that intestinal Ti accumulation from the bulk TiO2 was 

greater than the other TiO2 nano forms. For the perfused intestine, the bulk material 

accumulation in the tissue was greater by 7 and 2 folds for the mid and hind intestine 

respectively compared to the TiO2 NP (P25) over 4 h exposure (Chapter 3, Fig. 3.7). 

This was expected; the results from the serosal perfusate indicated a slower efflux of the 

Ti from the bulk TiO2 across the gut to the blood side relative to the P25 resulting in Ti 

accumulated in the tissue. The same situation was shown in Caco-2 cells; bulk TiO2 

showed greater accumulation by 2, 6 and 8 folds compared to P25, anatase and rutile, 

respectively over 24 h exposure (Chapter 5, Fig. 5.7). This matches the result from the 

hind intestine in the perfusion experiments, in which the accumulation of bulk TiO2 was 

2 fold greater than that of the P25. 

The accumulation of the Ti metal from TiO2 exposure in gut epithelium is 

explained by apical uptake of the Ti in the particulate form rather than the dissolved Ti 

metal from different types of TiO2. This is supported by low proportion of the surface-

bound total Ti metal on the gut mucosa that represented by rapid solution dipping 

experiment (Chapter 4, Fig. 4.3), and also by the measurable appearance of apparent 

dissolved total Ti metal from TiO2 shown by the dialysis experiment with the normal 

physiological saline (mucosal solution). Furthermore, the particles in both methods 

were observed inside the epithelial cells using the TEM for perfused intestine and SEM 

for the Caco-2 cells.  



                                                                                                                           Chapter 6 

169 

  

For the Caco-2, the SEM work was supported by using the x-ray energy 

dispersive spectrophotometry (EDS) measurements which detected the Ti particles in/on 

the cells and within the nucleus of the cells (Chapter 5, Fig. 5.9, 5.10 and 5.11). The 

EDS measurement with the monolayer cells is much easier to detect the particles inside 

the epithelial cells rather than the folded tissue layers of the intestine.    

For the gut perfusion tissue, the EDS measurements can detect Ti metal in large 

aggregates of TiO2 on the surface of tissues (e.g., energy dispersive x-ray on top of 

rodent skin, Adachi et al., 2010), but these techniques have limitations for NPs inside 

cells (see review, Handy et al., 2012). In traditional fixed TEM specimens, there is a 

limitation of EDS represented by the energy beam which can only penetrate about 2-300 

nm into the tissue, detection limit of EDS compared to the concentrations of the TiO2 

used here (1 mg l
-1

, even if it was all absorbed into the cells) would still be far below the 

mass detection limit against the high carbon background in the specimen (e.g., even 

using 10% TiO2, the carbon peaks in Adachi et al. 2010 are off the scale compared to 

the much smaller, variable, Ti peaks in the spectra). A further limitation of EDS is the 

minimum area or cluster size to reliably detect chemical composition of the particles 

relative to the size of the beam (spot size between 1-50 µm). Given these technical 

limitation we did not observe large enough aggregates in the cells, close enough to the 

surface, to make reliable Ti composition measurements by EDS. However, TEM 

instruments especially adapted with new field emission guns for EDS are now 

becoming available that can achieve beams in the nm range (as used by Michel-Jeanjean 

et al., 2012 on skin explants), albeit with the risk that the high brightness needed may 

damage the specimen. Nonetheless, like previous studies with electron microscopy 

images of putative TiO2 NPs inside cells without EDS measurements (e.g., Galloway et 

al., 2010; Powell et al., 2010) inferences may be made from particle morphology. 
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In the TEM images of the gut perfusion tissue, some electron dense particulate 

materials was detected inside the epithelial cells and sometimes located within a vesicle. 

These particles represent a similar morphology to the particles in the TiO2 NPs or bulk 

(Chapter 3, Fig. 3.9 and 3.10), the distinct shape and size of these particles with their 

absence from the controls (no indication of the same particles appearance) suggesting 

they were a TiO2 particles from the exposures. This observation suggests that TiO2 NPs 

or bulk could enter the cells through a form of endocytosis.   

6.3 Possible mechanism uptake of Ti from TiO2 across the intestinal epithelium  

The mechanism uptake of metals and metal oxide NPs is likely by endocytosis 

and an active uptake. The main mechanisms are clathrin-mediated and caveolae-

mediated endocytosis in addition to phagocytosis and macropinocytosis (Fig. 6.1) 

(Iversen et al., 2011; Fröhlich and Roblegg, 2012). The endocytosis of NPs is depending 

on the size, shape and the charge of the NPs, as well as on the cell type (Thurn et al., 

2007). The general diameter of the clathrin-coated vesicles is nearly to 120 nm, while 

the caveosomes range between 50 and 80 nm (Johannes et al., 2002). Thus, it is likely 

for the NPs to be uptake by one of these endocytic mechanisms. Macropinosomes are 

the largest one with a range of diameter between 500 to 2000 nm (Johannes et al., 2002) 

which is possible for the bulk particles and the big aggregations of the NPs to be uptake 

by this mechanism.     

The different crystal forms with so many shapes and sizes of the TiO2 NPs 

possibly affecting on the endocytic pathways of its uptake which is not yet to be fully 

understandable. Also, the differences between the monolayer cells and the gut tissue are 

playing an important role in the particles uptake.    

The present study indicated that the mechanism uptake of TiO2 NPs across the 

epithelial cell of intestine involved one of the possible endocytic mechanisms 
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mentioned above (Fig. 6.1) after the sensitive responses towards the nystatin and 

vanadate inhibitors. Nystatin is a cholesterol depletion component via the lipid rafts and 

the TiO2 NPs here acts differently towards the nystatin in the perfused intestine and 

Caco-2 cells. For the perfused intestine, the mechanism uptake of TiO2 NPs could be 

through caveolae disturbance by cholesterol reduction and this could increase the uptake 

of NPs by the clathrin pathway. Thurn et al. (2011) demonstrated that uptake of TiO2 

NPs in prostate cancer PC-3M cells involved the endocytic pathways via clathrin-

mediated endocytosis, caveolin-mediated endocytosis, and macropinocytosis. 

In Caco-2 cells, cholesterol could be implied in the exocytosis of NPs, and for 

this reason the accumulation of the TiO2 was increased after the cells were exposed to 

the nystatin. The cholesterol via lipid rafts may play an important role in the regulation 

of the exocytosis (Salaun et al., 2004; Chintigary et al., 2006). In addition, caveolae-

mediated endocytosis has been suggested to play a role in the uptake of NPs (Thurn et 

al., 2011), but if this uptake is reduced by cholesterol-depleting agents and these agents 

may also affect the other endocytic mechanisms (Doherty et al., 2009). These results 

were agreed with the study by Dombu et al. (2010) which showed clearly the implied of 

the cholesterol in NP exocytosis.  

Exposure to nystatin and vanadate completely abolished the uptake of the bulk 

TiO2 by the perfused intestine. This made a suggestion of the possible phagocytosis 

involvement in the endocytic uptake of the big particles of TiO2 by phagocytic cells like 

macrophages (Fig. 6.1) or by the macropinocytosis within the early endosome.  
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Figure 6.1 The possible endocytic mechanisms uptake of TiO2 NPs (purple dots) or bulk 

TiO2 (light blue dots) showing the process of their taken up by endocytosis within the 

early endosome or the phagosome and both of them are then combine with the 

lysosome. Four active mechanisms uptake via transcellular pathway are shown in the 

diagram. Phagocytosis is depends on the actin filaments as a receptor mediated and 

largely district to M cells of Peyer’s patches. This process is used for the uptake of large 

particles. Clatherin-mediated endocytosis is a dynamin-dependent mechanism which is 

also a receptor mediated uptake process. Macropinocytosis is an active, actin-dependent 

process used to internalize the fluid surrounding the cell containing particles then taken 

up altogether and located inside the cell. Caveolin-mediated endocytosis is associated 

with protein caveolin which is essential for the endocytosis uptake by pinch off from the 

membrane of the intestinal epithelium.  
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6.4 Material-type effects on the electrolytes of the intestinal tissue and cell  

The exposure to bulk and nano TiO2 caused some effects on intestinal electrolytes 

homeostasis (Mg
2+

, Ca
2+

 and K
+
). Tissue and cell electrolytes showed difference effects 

between the perfused intestine and Caco-2 cells methods. For the isolated perfused 

intestine, the bulk TiO2 caused an alteration in tissue electrolytes homeostasis (Chapter 

3, Table 3.8). This was different for the Caco-2 cells, mainly all TiO2 nano forms was 

responsible for the alteration of the cell electrolytes homeostasis (Chapter 5, Table 5.2). 

These effects should be studied carefully which may indicate that Ti metal may interfere 

with the endogenous electrolytes homeostasis, especially for the Ca
2+ 

which raise the 

concern of the ability of Ti metal to interfere with the calcium homeostasis. Further 

investigations on the precise mechanisms of TiO2 induced changes in electrolyte 

homeostasis are required.     

6.5 Hazard screening of the TiO2 uptake by food to the GIT tract 

Little is known about the potential risk of nanotechnology applications to the human 

body, especially within the gastrointestinal tract which is a target system for food 

applications. The bulk and nano TiO2 are metal oxides that are used, or proposed, for 

many applications, especially in the food sector. There is also a concern that 

environmental releases of TiO2 NPs may enter the food chain and reach higher trophic 

levels including humans. The concentrations of TiO2 NPs in surface water have been 

reported to reach 0.02 µg l
-1

, while the concentration in the sewage treatment water was 

4 µg l
-1

 (Gottschalk et al., 2009). For the intake of TiO2 by food, Powell et al. (2010) 

estimate ingestion of 5 mg TiO2/person/day with an unknown part of it in nanoform. 

Total dietary intake only of nano-TiO2 is estimated to be 2.5 mg/individual/day (Lomer 

et al., 2000). Recently, Weir et al. (2012) reported that daily intake of TiO2 by food is 

between 1-3 mg/Kg body weight/day, with 36% of the particles in nanoscale form. 
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Consequently, this daily intake raises the concern about the expected of chronic effects 

rather than acute toxic effects on humans (Weir et al., 2012).  

The present thesis highlights the possibility of hazard via the food, as relevant 

TiO2 NPs uptake within the intestinal epithelium has been demonstrated. The results 

indicated the ability of the Ti metal from TiO2 exposure to across the intestine, with 

some material-type effects on the Ti metal uptake and accumulation from TiO2 exposure 

(both bulk and nano treatment); and evidence of Ti appearance inside the intestinal 

epithelial cells. This raises the hazard potential of the Ti accumulation from nano TiO2 

exposure which should be reconsidered in risk assessments, in addition to that based 

only on the bulk material. The Ti metal uptake rates from TiO2 exposure in present 

study are identical to other metals like Cu (Handy et al., 2000) but it is lower by 10 fold 

than the Hg uptake in the perfused intestine (Holye and Handy, 2005). Thus the 

absorption hazard of TiO2 is similar to Cu but potentially less toxic than Hg.  

Furthermore, the effects of CO2 in the uptake of the TiO2 NPs through intestine 

also need to be considered for the risk assessment purposes especially for the human 

health and the pCO2 effect on Ti uptake can be explained by acid-base toxicity in the 

intestine. Carbonated fizzy drinks which contain large amount of CO2, when combined 

with food intake, may accelerate the uptake of NPs through the intestine. In addition, 

the role of the CO2 in elevating the uptake rate of Ti metal from TiO2 NPs represents an 

important effect of these NPs in real ecosystems, associated to the partial pressure of the 

gasses in external medium which raise the concern of the environmental hazard from 

TiO2 exposure. All the results in this study indicate an active absorption mechanism for 

TiO2 in the intestinal epithelium, and this should be considered in risk assessments and 

dietary exposure to the TiO2 NPs for both the ecosystems and human health. However, 

further investigations on the TiO2 effects on food-related risk assessments and NPs 

hazards are advisable. 
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6.6 Future work 

A number of areas of work require further investigation, and some suggestions 

are indicated below. 

 Further investigation is required on the mechanism uptake of TiO2 NPs by using 

other inhibitors of endocytic pathways. Chlorpromazine is mainly used as an 

inhibitor of clathrin-mediated endocytosis and known to function as a 

calmodulin antagonist. To further elucidate if the uptake of NPs is by a 

macropinocytosis pathway which is an actin-dependent mechanism, amiloride 

and calmodulin is often used to repress this process. Caveolae-mediated 

endocytosis can be inhibited by using tyrosine kinase inhibitors like genistein. 

More investigations on the precise endocytic/exocytotic mechanisms in 

conjunction with the sub cellular distribution are in demand.  

 Gut rat perfusion is an ideal model to achieve our findings from the gut fish 

perfusion which represent a comparative study between lower vertebrates and 

mammals. Different concentrations of the TiO2 (higher and lower than the 1 mg 

l
-1

) are recommended, to learn more about the cellular uptake and intracellular 

transport of TiO2 NPs across the gastrointestinal tract. Other approaches are 

needed to investigate more deeply about the material-type effects (particle size 

and/or crystal structure) on the uptake of TiO2 by the intestinal epithelium. More 

knowledge on this aspect is important to determine the bioavailability of the 

ingested Ti from both bulk TiO2 and the nano forms. 

 To obtain more information about the uptake of TiO2 NPs across epithelium 

tissue and subsequent biological effects, using the gill perfusion in vitro model 

in order to interpret and aid our data from the gut perfusion. This will enable 

further understanding on the uptake and behaviour of these particles by studying 

different parameters like the presence of organic matter such as dissolved 
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organic matter (DOM) which could affect NP aggregation. The salinity and 

hardness of the water may also alter the bioavailability and therefore the uptake 

of NPs. For example, the additions of Ca
2+

 to water will increase the hardness of 

water and that may affect the uptake and transport of NPs by influencing the 

aggregation of NPs, an effect which could be removed by using the Ca
2+

 

chelator (+EGTA). Furthermore, the addition of NaCl will alter the ionic 

strength and may cause particle aggregation (reduced bioavailability). The 

influence of altering the water pH should be also addressed carefully, for at pH 5 

the chemistry of the water and the aggregation of NPs may be different 

compared with pH 7. 

 To assess our information about the uptake of TiO2 NPs in either Caco-2 cells or 

gut tissue, it will be very useful to study molecular gene expression changes and 

identify the role of individual genes involved in the uptake of TiO2 NPs. The 

genes that may interpret the TiO2 uptake by gastrointestinal tract are dynamin 1, 

caveolin-1 and PTRF (cavin). This will provide a better understanding on the 

uptake mechanisms for NPs across the gut epithelium.      

Research in all these aspects will increase our understanding on TiO2 toxicity. 
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