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 10 

Abstract  11 

Sacrificial anodes are attached to the hulls of boats and marine structures to prevent 12 

corrosion. Their use inevitably leads to release of zinc as well as impurities in the zinc alloy 13 

such as cadmium to the saline environment. Risk assessments and source apportionment 14 

exercises require accurate assessments of the potential loads of chemicals into the 15 

environment. This research has surveyed a wide variety of zinc anodes for their composition 16 

to compare against  a reported industry standard as well as using differing methodologies to 17 

determine the dissolution rate of zinc and cadmium from anodes. A zinc dissolution rate of 18 

477 g/yr/kg of anode is proposed. Although most anodes tested had concentrations of 19 

cadmium within the prescribed limits set by the reported standard, calculated leaching rates 20 

from laboratory dissolution experiments suggested as much as 400 g per year of cadmium 21 

could leach from zinc anodes used on leisure vessels within UK waters.  22 

Keywords: Sacrificial anode; zinc; cadmium; dissolution rates; saline water 23 

1. Introduction  24 

Sacrificial anodes attached to the steel on boats (typically on hulls and propeller shafts) and 25 

marine structures to prevent corrosion. It is thought they corrode at varying rates due to 26 

factors such as salinity variations and stray currents associated with any number of leakages, 27 

including for example electrical hook-ups in marinas. This is particularly significant in 28 

estuarine environments where salinities can vary from near freshwater to full seawater on 29 

each tide (Matthiesen et al., 1999; Deborde et al., 2015). Many fish and shellfish species, as 30 

well as other biota, found within such habitats can be sensitive to elevated levels of metals 31 

in the water column and therefore in locations where there are high boat densities (e.g. ports, 32 

marinas or channel moorings), dissolution characteristics of anodes needs to be assessed 33 

https://doi.org/10.1016/j.marpolbul.2020.111433


2 
 

(Nam et al., 2005; Denton et al., 2009; Pearson et al., 2018).  This in turn would allow for 34 

introduction of better management and mitigation measures that would reduce impact on 35 

ecosystem health (Rees et al., 2017). Whilst sheltered estuaries such as the Hamble attract 36 

1000’s of leisure craft to moor throughout its length (Rees et al., 2017), this issue is 37 

exacerbated in marinas where lock gates ensure boats are continuously afloat, thereby 38 

restricting tidal flushing leading to further elevated zinc concentrations (Bird et al., 1996; 39 

Cathery 2014; Harrison 2015; Wood 2014). In addition to zinc, anodes contain a range of 40 

impurities which may also present a threat to the aquatic environment. Of particular concern 41 

is the highly toxic element cadmium (Cd), a priority hazardous substance under the Water 42 

Framework Directive (2000),  which regulators are further required to control.  43 

Zinc is a specific pollutant under the WFD (2000) and the current Environmental Quality 44 

Standard (EQS) in UK estuaries is 7.9 µg/l for dissolved zinc (which includes a background 45 

level of 1.1µg/l) (Maycock et al, 2012). This value is significantly lower than the previous 46 

value of 40 µg/l. Within estuaries and marinas with high boat density, under certain 47 

conditions zinc released from anodes has the potential to contribute to concentrations 48 

exceeding the EQS (Bird et al., 1996; Boxall et al., 2000). Previous studies have reported 49 

concentrations of up to 19.9 µg/l dissolved zinc in Poole Harbour, for example, which was 50 

significantly above the control sites of 2 µg/l (Bird et al., 1996). Similarly, elevated 51 

concentrations above the revised EQS have been observed on the Hamble and Orwell 52 

estuaries, as well as in harbours, bays and estuaries in California (Bird et al., 1996: Boxall 53 

et al., 2000: Matthiessen et al., 1999; Singhasemanon et al., 2009). The French port of 54 

Camargue in the Mediterranean also had raised zinc levels in sediments likely due to marine 55 

paints and zinc anodes. The harbour has around 500 moorings and maintenance yards, with 56 

zinc concentrations reanging from 17 and 475µg/g within the Harbour sediments, an 57 

enrichment factor (compared with control areas) of 9 was observed in areas of boat 58 

maintenance (Briant et al., 2013). Studies on anode use and dissolution rates were also 59 

carried out in the Plymouth area by Wood (2014), Cathery, (2014) and Harrison (2015), 60 

which showed marinas to have higher zinc concentrations in water and sediment samples, 61 

compared with nearby control sites. The alternative material to zinc anodes in the marine 62 

environment is aluminium (Mao et al, 2011), although they seem to be used less frequently 63 

than zinc, mainly due to habits of boat owners related to perceived performance and cost.  64 

In order to safeguard vulnerable ecosystems it is necessary to manage the sources of 65 

contaminants. Therefore, to determine the risk posed by zinc anodes in estuaries, ports and 66 

marinas it is necessary to accurately determine their rate of dissolution in order to derive 67 
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predicted environmental concentrations which can then be compared against environment 68 

quality standards to assess risk. However, determining dissolution rates is not nescessarily 69 

straightforward as environmental factors such as salinity may play a significant role in the 70 

dissolution rates. Furthermore, there is also a question as to whether the elemental 71 

composition of the anode varies among suppliers and if that could also impact the zinc 72 

dissolution rate. Anode impurities may also pose a risk to the aquatic environment, 73 

particularly for metals of international concern including cadmium. Concerns regarding the 74 

quality and effectiveness of zinc anodes resulted in the current U.S. Military Specification, 75 

A-18001K (Boat US, 2016) which was set on the basis of different effectiveness of corrosion 76 

control being observed for similar vessels treated with apparently the same zinc anode 77 

protection. Some anodes were observed to become passivated when a white crust formed on 78 

their surface, identified as iron oxides caused by excessive impurities (mainly iron) in the 79 

product. The formation of the crust made the anodes inactive allowing corrosion to take 80 

place elsewhere in the vessel. The set specification therefore limited the amount of impurities 81 

in the zinc used, resulting in the requirement to use high grade zinc and strict manufacturing 82 

practices to guarantee performance.   83 

It is imperative that zinc anode composition and its variability across brands is fully 84 

understood as well as the dissolution rates, with the objective of deriving a representative 85 

dissolution rate for use in environmental risk assessments and source apportionment 86 

exercises. A number of methods may be used to estimate metal dissolution rates from anodes 87 

of varying complexity, including chemical analysis of anode composition, laboratory based 88 

dissolution experiments, field testing, anecdotal boat owner surveys and environmental 89 

modelling. The research reported here has determined the composition of a variety of 90 

commercially available zinc anodes to compare against the US Military Specification and to 91 

determine the levels of impurities present, particularly cadmium owing to its toxicity and 92 

regulatory control. Zinc dissolution rates were determined using a variety of survey, in situ 93 

and modelling methods to propose a definitive dissolution rate.   94 

 95 

2. Method  96 

A combination of chemical composition analysis combined with survey data and in situ 97 

monitoring was undertaken to determine zinc anode quality, the presence of impurities which 98 

could impact on anode performance (e.g. iron) or negatively impact on the environment (e.g. 99 

cadmium) and to determine a definitive dissolution rate with respect to salinity.      100 
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2.1 Survey of boat owners 101 

A survey was sent out to boat owners on the Hamble via email covering marinas and mid 102 

channel moored boats and to the wider Solent and UK via yachting forums. Furthermore, 103 

another paper-based questionnaire was produced for berth holders at Sutton Harbour in 104 

Plymouth. Boat owners were also asked what antifouling paint they used to determine if they 105 

included zinc based products. The anode survey was piloted by email to four boat owners, 106 

with minor adjustments made to question wording before distribution. Boat owners within 107 

marinas (with electrical hook-up) and those without electrical supply in mid-channel were 108 

approached to determine if they observed different anode corrosion rates. Boat owners 109 

supplied information on the length of their boats, how many anodes they used, their 110 

approximate weight, how frequently they changed their anodes and the amount of anode 111 

remaining when the anode was replaced. In addition to this, the marina manager of Sutton 112 

Harbour and a local chandlery (Force 4 Chandlery) were interviewed to provide data 113 

regarding the harbour (berth numbers, volume of water, the lock freeflow – period when the 114 

gate is open,  etc for use when modelling zinc dissolution rates), and the masses of various 115 

anodes available on the market.  116 

In total 69 responses were obtained from boat owners in the Hamble with boats moored in 117 

the channel and 15 responses from boat owners based in marinas. For Plymouth marinas, 42 118 

questionnaires were returned for marina based vessels. Other responses included 11 for 119 

marina locations in Southampton Water and 13 others from boat owners in marinas around 120 

England. Based on initial size, replacement rate and estimated wear, loss rates for zinc per 121 

kg of anode could be calculated along with total loads emitted into the receiving water. 122 

Additionally, a comparison between the mid channel moorings and marinas could be carried 123 

out to see whether possible electrical hooks within marinas could result in increased anode 124 

dissolution through stray electrical currents.     125 

Furthermore, detailed data were gathered from one boat owner who had kept extensive 126 

records of anode use over a 15 year period, which he weighed to determine their corrosion 127 

rates. The corrosion rate for these anodes was estimated using the weight of the new anode 128 

installed on the vessel in 2016. 129 

2.2 In situ anode dissolution experiment 130 

Hanging anodes were also acquired for an in situ anode experiment, these were weighed to 131 

two decimal places before the experiment and again after the experiment to determine the 132 
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dissolution rates at each site in the river. The anodes were analysed using X Ray 133 

Fluorescence (XRF) to determine their elemental composition (see section 2.3 for details).  134 

Once the anodes were weighed and analysed for initial elemental composition, they were 135 

securely attached to steel piles within the estuary from Hamble-Le-Rice up to Bursledon 136 

Bridge (Figure 1) at three different depths close to the low water level to maximise the time 137 

anodes were in the water during the tidal cycle. The anodes were installed in the estuary for 138 

1 year between February 2016 and 2017. 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

Figure 1. Location of anode sites for in-situ anode experiment (site NGR 154 

coordinates: A3 = SU487,060; D9 = SU485,069; HP20 = SU487,072; G49 = SU488,075; 155 

I42 = SU488,079; TG= SU487,083; L25= SU489,087; V8 = SU492,092; Z1= 156 

SU491,094) 157 

 158 

Salinity profiling was carried out to determine the salinity variations in the estuary and used 159 

along with Environment Agency data to determine salinity regimes. This was carried out at 160 
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each pile with anodes present at high and low tide on spring and neap tides during 2016 on July 161 

4th (spring tide), July 15th (neap tide), October 12th (neap tide) and October 21st (spring tide). 162 

The salinity was measured using a YSI 556 MPS probe at 1m intervals from the surface to 163 

sediment (between 3 and 8m depending on site and whether neap or spring tides). All data were 164 

pooled at each site and the mean used to determine the salinity to which the anodes were 165 

exposed. The anodes were gently cleaned during salinity profiling, with a toothbrush to remove 166 

algae, mud and any iron and/or zinc oxides/hydroxide that may have built up on the anodes. 167 

Care was taken not to abrade the surface of the anodes. This occurred as the anodes were not 168 

moving through the water as would be the case on a vessel, although tidal currents either side 169 

of slack water would obviously ensure a certain movement of water across the anode surface. 170 

Anodes were removed from the estuary in February 2017 after a one year deployment. Once 171 

back in the laboratory the three anodes were, cleaned dried at air temperature and then weighed 172 

to three decimal places and analysed using XRF. An anode dissolution rate was derived by 173 

simply calculating the weight difference of the anodes before and after deployment.   174 

 175 

2.3 XRF analyses of zinc anodes 176 

A number of new zinc anodes were analysed for their metal content using an XRF (Niton XL 177 

3T Gold Plus) instrument. Each anode was analysed 8 times at an exposure time of between 60 178 

and 180s, in differing positions to determine the elemental composition at the surface of the 179 

etectrode (it was assumed that the anodes were of a consistent composition throughout given 180 

they are cast. All data are reported as a percentage with a limit of detection of 0.01%. Niton 181 

supplied certified reference materials were analysed to provide analytical quality control. 182 

Although XRF determination meant only the surface of the material was analysed, it was 183 

assumed composition was consistent throughout, and it is noted that any dissolution by saline 184 

water is a surface-based process.      185 

Zinc anodes of different sizes and weights, from a number of suppliers were tested: 186 

1) 1 x 2.1kg, pear anode has a code of ZD77 standard size  187 

2) 1 x Homemade pear electrode (2.1kg), in style of ZD77 188 

3) 2 x Piranha anodes hull, 4kg each, L310mm x W75mm x H40mm 189 

4) 1 x  MGDuff prop anode 40mm diameter, no weight available online 190 

5) 1 x Volvo Penta hull anode, Length 267mm, width 85mm, height 30mm. 191 
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6) 3 x Martyr bolt on 50mm diameter disk anode, ca. 65g 192 

7) 3 x Techno-seal bolt on 50mm diameter disk anode, ca. 80g 193 

8) 3 x MME (MME 03ZB-UK) bolt on 50mm diameter 35mm deep anode, ca. 250g 194 

9) 27 x Hanging anodes 2kg each, used for in situ dissolution test 195 

10) 9 x 700g bar anodes  196 

2.4 Concentrations of zinc in marina water 197 

All samples were collected from subsurface (approximately 0.5m depth), filtered through acid 198 

washed (10% HCl) polycarbonate 0.4µm 47mm diameter membranes under vacuum. Analysis 199 

was by Inductively Coupled Plasma – Mass Spectrometry – Thermo Scientific X Series 2 (after 200 

50% dilution to reduce the salinity).  Limits of detection (0.03 µg/l) were based on 3 times the 201 

standard deviation of the blank and quality assurance was provided by certified reference 202 

waters (SLEW-2, Natural Resources Canada) with recoveries of 99% +/- 5.4% standard 203 

deviation.    204 

2.5   Laboratory experiments and water analysis for cadmium dissolution experiment   205 

A laboratory test included nine, 5 litre buckets that were filled with 3 litres of sea water, 206 

collected from Queen Anne’s Battery in Plymouth, UK. Three different types of disk anodes 207 

were tested in triplicate (Anodes 6, 7 and 8 above). An electrochemical coupling was set up by 208 

bolting each anode to a square of sheet steel. One anode was placed in each bucket and the 209 

bucket kept covered throughout the duration of the test.  210 

Each bucket was sampled 24, 48 and 72 hours after they had been set up. Then weekly for a 211 

total of 11 weeks. The study ran for a total of 79 days. Blank control samples were taken to 212 

take account of any potential leaching of metal from the plastic buckets. Water samples were 213 

taken using a 50ml centrifuge tube and stabilised using 200 μl of 20% nitric acid. Metal 214 

concentrations in each sample were determined using a Thermo ICP-MS. Cadmium limit of 215 

detection using ICP-MS was 0.016 μg/l based on 3 times the standard deviation of the blank.  216 

2.6 Anode corrosion rate calculation  217 

The corrosion rate was calculated using the weight of each new anode and the percentage of 218 

the anode reported to have corroded after one year (the recommenced service life for an anode). 219 

Where anodes were replaced at longer or shorter time intervals then the weight and percentages 220 

were calculated and normalised to a year. To account for the different numbers and sizes of 221 



8 
 

anodes used on different vessels, all calculations were normalised to g of zinc dissolved per 222 

year per kg of anode used. Using this basic unit it was then possible to multiply up by the mean 223 

or median mass of each anode and mean or median number of anodes per vessel to generate a 224 

dissolution rate per vessel.  225 

2.7 Marine Antifoulant Model to Predict Environmental Concentrations (MAMPEC) 226 
modelling  227 

 228 
To predict the zinc dissolution rate from anodes using a combination of monitoring and 229 

modelling data, the MAMPEC model (Deltares, 2019) was utilised as it is simple, requires 230 

relatively few inputs, is comprehensive and is open source and hence freely available. The 231 

model is designed to predict concentrations of zinc in the surface water based on a number of 232 

scenarios including a locked marina. The restricted flow of water into and out of a locked 233 

marina, maximises the opportunity for zinc concentrations to build up from leaching from 234 

anodes and therefore to register an increase over and above background concentrations. 235 

Assuming the model can be parameterised with dimensions and flushing rates to predict 236 

dilution, combined with boat numbers and anode dissolution rates, it is possible to predict 237 

dissolved concentrations and any partitioning of zinc between the dissolved phase and the 238 

sediment. If the sediment and water concentrations and boat numbers are already known, then 239 

it is realtively striaghtforward to adjust the dissolution rate for the anodes attached to boats 240 

until the predicted concentration in the marina water is equivalent to that observed; thus 241 

arriving at an impled leaching rate for the given scenario.    242 

 243 

Consequently, the model was set up using the tidally locked Sutton Harbour marina in 244 

Plymouth as a case study owing to a high boat density and it being well characterised in terms 245 

of physical size, tidal range, boat numbers and flushing rate. Furthermore, water quality data 246 

was available across a number of years (2013 to 2018) from this and other studies as well as 247 

sediment data (2014 and 2015) (Cathery, 2014; Wood, 2014; Harrison, 2015) thereby 248 

furnishing a robust set of observed concentrations. Not all zinc in surface waters is derived 249 

from anode dissolution, road runoff, minewater drainage, sewage effluent and antifoulant 250 

paints would also contribute to the background geological signature. The input for the model 251 

background zinc concentration was therefore taken as measured concentrations in Queen 252 

Annes Battery directly outside Sutton Marina’s lock gates (Table 1). This provided a mean 253 

background dissolved zinc concentration of 8.3 µg/L based on 2013 to 2018 data from this 254 

study and previous ones (Cathery, 2014; Wood, 2014; Harrison, 2015). The partition 255 
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coeeficient for the distribution of zinc between the sediment and overlying water was calculated 256 

from the measured dissolved and sediment concentrations. With these data input into the 257 

model, it was fully parameterised and the dissolution rate adjested until the predicted water 258 

zinc concentration matched that of the observed.   259 

 260 

The model is described elsewhere (Deltares, 2019) with the key input parameters provided in 261 

Table 1.  262 

 263 

Table 1 MAMPEC input values and defaults    264 

Input parameter Value assigned 

Leaching rate (µg/cm2/day) 28 

Zn sediment:water partition coefficient (m3/kg) based on measured dissolved and 

sediment Zn levels in Sutton Harbour.  

20 

Background Zn (µg/l) based on concentrations in Queen Anne’s Battery outside of 

Sutton Marina (includes road runoff, natural and any antifoulant paint addition) 

8.3 +/- 1.1 

(95% conf, n=57) 

Predicted total Zn (µg/l) 21.4 

Predicted dissolved Zn (µg/l) 19.4 

Observed mean Zn in Sutton Harbour (µg/l) between 2013 and 2018 19.4 +/- 4.8  

(95% conf, n=20)  

Marina length (m) 280 

Marina width (m) 280 

Marina depth (m) 5.5 

Tidal range (m) 3 

Suspended solids concentration (mg/l) measured 5 

Background sediment concentration (measured) mg/kg zinc 387 

Harbour flushing rate (m3/s) default 0.1 

Ships at berth (<10m) measured (surface area predicted m2) 462 (20) 

Ships at berth (10-50m) measured (surface area predicted m2) 83 (120) 

 265 

3. Results and Discussion 266 

3.1 Anode elemental composition and potential to leach impurities 267 

XRF analyses for the surface of new anodes was carried out to determine the metal content and 268 

to see if anodes met the US Military standards for anodes (Wagner et al., 1996; Harris, 2008; 269 

Boat U.S, 2016). Surface samples were used to be representative of the area of the anode 270 
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directly in contact with the water. Within anode elemental composition was reasonably 271 

consistent, but unsurprisingly variation was greater near to the limits of detection, reflecting 272 

both the analytical variability near to the detection limits as well as difficulties in 273 

manufacturing processes controlling impurities at low levels. Anode-to-anode (or among 274 

anode) elemental composition also varied for the same type of product, again relatively low for 275 

zinc but much greater for the minor impurities (Table 2) (Wagner et al., 1996; Boat U.S, 2016). 276 

Zinc levels ranged from 96.8 to 99.5%, with 8 of the 10 types of anode tested having means 277 

less than the US Military specification of 99.3% with 95% confidence (Table 2).   278 
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 279 

Table 3:  XRF analyse of new anodes to indicate metal content present (figure in brackets is the 95% confidence interval for 3 replicate 280 
determinations per anode tested) green cells show compliance with US military specifications (Boat US, 2016), orange below, 281 

red above. n/a means not analysed 282 
 283 

Anode 1 2 3 4 5 6 7 8 9 10 

Element 
% 

US Military 
specification  Description 

2.1 kg  
pear 

2.1 kg pear 
(homemade) 

4 kg 
hull 

40mm 
Prop  

5 kg 
hull  

65g  
disk 

80g  
disk 

250g  
disk 

2 kg Hanging 
anodes 

700g Lab 
anodes 

Replicate anodes  1 1 2 1 1 3 3 3 27 9 

Zn 99.3 Minimum 
96.8  
(1.0) 

98.0  
(0.5) 

97.4 
(0.4) 

96.8  
(0.8) 

98.7 
(0.3) 

99.5  
(0.11) 

99.5  
(0.23) 

99.1 
(0.14) 

97.6 
(0.18) 

98.0 
(0.38) 

Si 0.1  Maximum 
1.2  

(0.4) 
0.94  
(0.2) 

0.88 
(0.2) 

1.4 
(0.46) 

0.81 
(0.1) n/a n/a n/a 

0.83 
(0.07) 

1.47 
(0.2) 

Al 0.1-0.5 Range 
1.4  

(0.8) 
0.85  

(0.09) 
2.0  

(0.15) 
0.15  
(0.3) 

1.0 
(0) <0.005 <0.005 <0.005 

1.2 
(0.11) 

0.76 
(0.2) 

Cd 0.025-0.07 Range 
0.04  

(0.011) 
0.03  
(0) 

0.04  
(0) 

0.05 
(0.01) n/a 

0.057 
(0.0001) 

0.024 
(0.0001) 

0.022 
(0.0005) 

0.034 
(0.025) 

0.04 
(0.007) 

Cr 0.1  Maximum 
0.11  

(0.08) 
0.08  

(0.045) 
0.05  

(0.03) 
0.1 

(0.05) 
0.03 

(0.01) 
0.13 

(0.001) 
0.29  

(0.15) 
0.55 

(0.12) 
0.041 
(0.11) 

n/a 

Cu 0.005 Maximum 
n/a n/a n/a 0.06 

(0) 
n/a 

<0.005 <0.005 <0.005 
n/a 0.02 

Fe 0.005 Maximum 0.03 0.03 
0.07 

(0.02) 
0.03 

(0.01) 
n/a 0.0066 

(0.003) 0.005 
0.0059 
(0.002) 

0.032 
(0.005) 

0.02 
(0.004) 

Pb 0.006 Maximum n/a n/a n/a n/a n/a <0.005 <0.005 <0.005 0.01 n/a 

284 
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Iron impurities are the main concern regarding passivating and poor anode performance and 8 285 

out of 10 of the tested anode types exceeded the 0.005% limit set within the US Military 286 

specification. The presence of cadmium within anodes is of a concern regarding environmental 287 

health. Owing to the environmental toxicity and threat to human health of cadmium, the 288 

Environmental Quality Standard Directive (EQSD) (2008/105/EC) requires that all discharges, 289 

emissions and losses cease over time with an Environmental Quality Standard of 0.2 µg/L set 290 

as an annual average for transitional (estuarine) and coastal waters. Due to the presence of 291 

cadmium impurities, anodes 6, 7 and 8 were submerged in seawater for 11 weeks and water 292 

samples were collected weekly to establish if any of the cadmium could leach into the water 293 

column (Figure 2). Although not necessarily reflective of conditions within an estuary or 294 

marina, the fact that there was an increase of cadmium concentration over time in the buckets 295 

with the anodes present (cmpared with the control)  may be considered of concern with respect 296 

to meeting the requirements of the EU EQSD. Leached concentrations reflected the cadmium 297 

content of the anodes with Anode type 6 (0.057%) leaching concentrations up to 0.84 µg/L into 298 

the seawater after 11 weeks, compared with only 0.4 µg/L and 0.34 µg/L for Anodes 7 (0.022%) 299 

and 8 (0.024%) respectively (Figure 2). A one-way ANOVA applied to the last 3 weeks of data 300 

showed a significant difference between the anodes at a 95% confidence level. Concentrations 301 

of cadmium in estuaries entering the English Channel range consirderaby depending on 302 

upstream sources (historical mining, smelting, urbanisation, but typically range from a few 303 

ng/L to up to 0.2 µg/L (Comber et al., 1995; Mobet 2004) and so observed leaching rates were 304 

greater than this level, although environmental concentrations would be subject to a 305 

combination of dilution, boat density and anode type. Although the cadmium content of all 306 

three anodes was within the range specified by the US Military, from an environmental point 307 

of view to meet the WFD objectives of ceasing discharges to the aquatic environment, it would 308 

be clearly better to minimise the cadmium content as it would not impact on the passivation or 309 

efficacy of the products. Other trace elements were obviosly detectable within the anodes (e.g. 310 

lead, chromium, copper, aluminium and silicon) but were considered of less concern either 311 

because of only because they were present at trace levels or are of lower environmental 312 

concern.     313 
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 314 

Figure 2.   Cadmium concentrations leached into seawater during laboratory testing      315 
(error bars are 95% confidence intervals for the ICP analysis) 316 

 317 

3.2 Zinc anode corrosion rates calculated using survey data   318 

The survey data provided feedback from 145 boat owners in total. Average replacement rates 319 

were 1.2 years in mid channel moorings in the Hamble Estuary and 1.3 years in marinas within 320 

the estuary, a t-test to compare frequency of anode replacement between mid-channel (M=1.19, 321 

SD=0.47) and marina moorings (M=1.28, SD=0.89) indicated no significant difference in 322 

replacement frequency (t(72)=0.40, P>0.05). A significantly less frequent rate of replacement 323 

of 1.75 (95% CI [2.10, 1.40]) years on average (t(86)=2.27, P<0.01) was reported for Plymouth 324 

in the SW of England than for the Hamble mid-channel replacement rate, although this does 325 

not hold true when compared to Hamble marinas (t(61)=0.24, P>0.05). 326 

Using the full dataset, the distribution of number of anodes used (M=3.02, SD=2.70 ; 327 

Mdn=2.00) and their weight (M=2.03kg, SD=2.17 ; Mdn=2.00kg) was highly variable, 328 

reflecting the specific purposes for which they are used. For example propeller shaft anodes 329 

will be smaller in general than hull anodes (Figure 3) consequently there was also an absence 330 

of a relationship between the number of anodes use and the mass of anode. The size of boat, 331 

however, may will have an impact with larger vessels more likely to require more anodes. 332 

Although a Pearson correlation indicated there was no significant correlation between boat 333 

length and number of anodes used (r(77)=0.201, P>0.05) potentially related to the general lack 334 

of understanding of their function or fitment even though advice is available (Harris, 2008; 335 

MGDuff, 2016).  336 
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 337 

Figure 3.  Histograms for the boat owner survey data from the Hamble estuary, showing 338 

number of anodes (top) and weight of anode (bottom) used per vessel 339 
 340 

To account for the variation in anode numbers and weight, zinc dissolution was calculated on 341 

the basis of mass of zinc dissolved per year per kg of anode used. Even taking this into account, 342 

however, there was still significant variability in the dissolution rates for zinc among sites 343 

(Figure 4) which could not be put down to boat size owing to the relatively consistent size 344 

surveyed (M=8.8m, SD=1.8m). A one-way ANOVA indicated no significant differences in the 345 

release rates between locations, either within the Hamble or across the UK (F(16,72)=0.878, 346 

P>0.05), similarly there was no difference between mid-channel (M=518, SD=0.47 g/yr/kg of 347 

anode) or marina moorings (M=558, SD=0.89 g/yr/kg of anode) (F(1,97)=0.356, P>0.05). 348 

The lack of a significant difference in dissolution rates between the channel moored and marina 349 

moored boats suggests that the potential for stray currents from electrical hook-ups in marinas 350 
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is unlikely to have a significant impact on zinc anode corrosion rates. Stray currents in the 351 

marine industry are referred to as the portion of current that flows over a path other than the 352 

intended path (ACE Group, 2014). Stray current (DC) corrosion could occur through poor 353 

wiring and earthing within a vessel or possibly a poorly grounded outside power source 354 

(Corrosionpedia, 2015). It is possible to buy galvanic isolators which break the circuit between 355 

vessels, acting as a filter, blocking the flow of low voltage galvanic (DC) currents but at the 356 

same time maintaining the integrity of the earthing circuit (BoatU.S, 2016). Stray current 357 

may therefore be likely to be an issue at an individual boat level, if not significant when 358 

multiplying up to a population level assessment. However, about 50% of respondents had 359 

galvanic isolators fitted on their vessels moored in marinas and mid channel and this may 360 

explain why there was little difference in reported anode corrosion rates between the location 361 

of the boats and why stray currents may not be a significant issue in the observed variable zinc 362 

dissolution rates. 363 

 364 
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Figure 4.  Boat owner survey data (131 responses) mean and 95% confidence intervals 365 

(brackets). 366 

The reasons for such variation are likely due to salinity changes (discussed further below), 367 

inaccuracies in estimating the loss of zinc from the anodes at replacement, inaccuracy in the 368 

reported replacement frequency, variations in the quality of the anodes impacting their 369 

performance as noted above.  370 

The boat owners with more anodes on smaller vessels had generally experienced corrosion 371 

issues so consequently used more anodes. This once again suggest a lack of knowledge and 372 

awareness as more anodes on the same metal item will not protect it better than one, placed 373 

correctly. High anode corrosion rates suggest a possible fault with boat wiring or the wrong 374 

size anode being used on the vessel (Harris, 2008). A calculation is used by anode 375 

manufacturers and retailers to determine the correct anode for a vessel based on size, type of 376 

metal components protecting, number of metal items, environment, etc. (Harris, 2008; 377 

MGDuff, 2016).  378 

Taking all of the survey data together (131 survey results) the loss of zinc to receiving water 379 

has a calculated mean of 477 g/yr/kg (SD=287 g/yr/kg) of anode (CI 95% [428 to 526 g/yr/kg]). 380 

The median loss rate is 500 g/yr/kg of anode which shows the normalisation of dissolution to 381 

mass of anode leads to a more normally distributed dataset. The Plymouth survey (n=25) 382 

derived a lower mean rate of 484 g/yr/kg (SD=375 g/yr/kg) (CI 95% [337 to 631 g/yr/kg]) zinc 383 

loss of anode, with rates for rest of England (n=13) calculated at the lowest rate of 433 g/yr/kg 384 

of anode (SD=324 g/yr/kg) (CI 95% [257 to 609 g/yr/kg]). Suggesting higher corrosion rates, 385 

albeit an ANOVA found no significant difference (F(2,132)=0.499, P>0.05), may be observed 386 

in the Hamble and Southampton Water.  387 

One owner reported zinc anode usage over the course of 17 years (1999-2016) for a single boat. 388 

The boat was moored in a mid-channel mooring around Mercury marina on the Hamble (close 389 

to site TG in Figure 1) since December 1998, had kept all the anodes from the vessel since that 390 

time. The vessel is in the water for seven months and dry stored ashore for 5 months a year. 391 

The anodes used during this period were weighed , along with a new anode which was deployed 392 

in 2016, from this corrosion rate predictions were made using the weight of the new anode (the 393 

make, and size of anode was consistent) corrected for time in the water. An average rate of 540 394 

g/yr/kg of anode (CI 95% [284 g/yr/kg, 796 g/yr/kg]), with a median of 423 g/yr/kg of anode. 395 
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The mean and median for the dataset were well within the errors reported for the survey data 396 

and therefore provided further evidence for the consistency and accuracy of the datasets.         397 

Previous estimates for the Hamble have reported 2.4 kg/yr/vessel (based on their own survey 398 

data) which equates to 391 and 600 g/yr/kg of anode using mean or median number of anodes 399 

per boat and their weight respectively from the survey data (Boxall et al., 2000). This is again 400 

within the range reported here.    401 

3.3 In situ zinc anode corrosion rates measured in the Hamble Estuary   402 

Salinity profiles were measured at high and low tide on spring and neap tides in July and 403 

October 2016 to determine salinity variations at each site throughout the estuary, which could 404 

then be compared with anode corrosion rates (Figure 5).  An overall zinc dissolution rate of 405 

358 g/yr/kg of anode (CI 95% [272 g/yr/kg, 444 g/yr/kg]) was derived across all sites. This 406 

value was lower than the complete set of survey data (M=477 g/yr/kg of anode), although a t-407 

test for diffences did not find this to be  significant (t(151)=1.71, P>0.05)) (Figure 4). The 408 

lower value could reflect the wider range of salinities the in-situ anodes were exposed to, 409 

compared with the boat owner survey data owing to the fact that boat density is at its highest 410 

further down the estuary where there are more marinas and the estuary is wider.  411 

The river water flow into the Hamble estuary is relatively modest compared with the influence 412 

of saline intrusions and so salinity variation between high and low water, even during spring 413 

tides is relatively low, even for the site furthest up the estuary (site V 8, Figure 1).  The data, 414 

however, do show an increasing dissolution rate for zinc from the anodes with increasing 415 

salinity (Figure 5), with statistically significant differences between salinities below and above 416 

30. The dissolution rates at the higher salinities are similar to the calculated values from the 417 

boat owner surveys, which would have been biased towards higher salinity data based on boat 418 

density increasing down the estuary owing to available space.       419 

 420 

 421 

 422 

 423 

 424 
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 425 

 426 

 427 

 428 

 429 

 430 

 431 

Figure 5.  Impact of salinity on zinc loss from anodes versus salinity (95% confidence 432 
intervals in brackets). Red dashed line denotes calculated mean zinc loss from 433 
anodes from boat owner survey.    434 

 435 

Variations in salinity could therefore be a factor in controlling anode corrosion rates. Low 436 

salinity waters can cause passivation of the anodes through a build-up of impurities on the 437 

anode surface, including hydroxides (often iron-based) and calcareous deposits, which then 438 

affects the rate of corrosion (Rousseau et al., 2009; Caplat et al., 2010).  The zinc anodes should 439 

be made to the US Military specification (Table 1) which are set for seawater conditions. 440 

Consequently, they are likely to be less effective in brackish waters and ineffective in 441 

freshwater (Wagner et al., 1996; Gavrila et al., 2000; Jelmert and Van Leeuwen, 2000; Harris, 442 

2008). Freshwater is 10 times less conductive than seawater, zinc (-0.98 to -1.03V) corrodes at 443 

a higher voltage than magnesium (-1.60 to -1.63V) so is better suited to seawater (Morgan, 444 

1987). If zinc anodes are removed from water they coat over with a layer of iron and/or zinc 445 

hydroxide and calcium which prevents corrosion, this can also occur if boats moorings dry out 446 

at low water or if boats are inactive for long periods of time (Gavrila et al., 2000).  447 

The data in Figure 5 suggests corrosion rates do decrease at lower salinities, but the range is 448 

rather narrow. Fitting a trend line to the dataset generates an r2 of 0.74 and if accepted, then 449 

little dissolution of zinc would be expected below a salinity of 26. However, owing to the 450 

considerable variability, there is little confidence in this prediction and a further experiment in 451 

an estuary with much wider salinity ranges would be required to generate firm conclusions.  452 

Anecdotally from the survey data, most boat owners which have reported a varied and 453 

accelerated dissolution rate are moored at Bursledon or upstream of Bursledon on the Hamble 454 
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estuary (above site V8 in Figure 1). The salinity in this area ranges between 17 Aluminium 455 

could be an alternative for some brackish conditions in the upper reaches of the Hamble, as can 456 

be used in brackish and seawater (Harris, 2008; MGDuff, 2016). Aluminium is considered less 457 

of an environmental concern regarding potential toxicity than zinc in marine waters and 458 

currently has no EQS set (Harris, 2008: Mao et al, 2011; Gabelle et al., 2012) and so may be 459 

more suited. Aluminium anodes are relatively widely used on marine structures such as wind 460 

farms and larger vessels, so can become more widely used on pleasure craft (Gabelle et al., 461 

2012). The survey and discussions with boats owners indicated that only a very small 462 

percentage (4 out of 131 responses) were, however, using aluminium anodes, partly due to zinc 463 

being more commonly used in the past and zinc being recommended over aluminium by anode 464 

manufacturers and suppliers in high to mid salinity regions. If aluminium anodes became more 465 

commonly used this could reduce zinc loads to estuaries (albeit increasing aluminium loads) 466 

and boat owners could experience a steadier anode corrosion rate.  467 

3.4  MAMPEC modelled dissolution rates  468 

The use of Sutton Harbour in Plymouth as a study site offered the advantages of water 469 

monitoring data available over a number of years (2013 through to 2018) as well as the fact 470 

that the marina has lock gates which reduce flushing considerably and therefore makes 471 

modelling the dissolution of zinc much easier as the ‘system’ is in steadier state than a fully 472 

flushed estuary, for example. The marina has a near full compliment of boats all year round 473 

and so year on year number of boats held within the marina is relatively stable. The dissolved 474 

zinc concentrations measured in the harbour (20 occasions with at least 3 replicate points within 475 

the harbour each time (Figure 6) was statistically analysed to generate means and medians 476 

which were input into the MAMPEC model (Deltares, 2019). Combined with measured 477 

sediment concentrations (3 sites within the marina on 2 occasions), it was possible to predict 478 

concentrations in the water column with relatively few input parameters fed into the model 479 

(Table 2). Default values are available where monitoring information is absent. The model had 480 

been thoroughly validated and used for the regulation of antifoulant paints. MAMPEC uses a 481 

partitioning algorithm along with leaching rates for the anodes (or antifoulant paints) and 482 

marina dimensions to apportion any chemical between the dissolved and particulate phases.  483 
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 484 

Figure 6.   Measured concentrations of zinc in Sutton Marina Harbour (95% confidence 485 
intervals in brackets) 486 

 487 
The anode leaching rate (µg/cm2/day) is derived from an estimate of wetted surface area of a 488 

vessel which is assumed to be painted with antifoulant paint. In the case of zinc dissolution 489 

from anodes, g/yr/kg of anode from the survey data generated in this work can easily be 490 

converted into the appropriate units using a combination of assumed boat lengths in the marina 491 

(mean of 8.8m) from which the wetted surface area is generated from an algorithm within 492 

MAMPEC. The leaching rate was then adjusted until the predicted dissolved concentration of 493 

zinc (taking account of measured sediment and background dissolved zinc concentrations) 494 

matched the observed mean. Using this back calculation a dissolution rate of 28 µg/cm2/day 495 

required to generate 19.4 µg/l of zinc in the marina produced a zinc dissolution value of 587 496 

g/yr/kg of anode, which was in line with survey estimates taking account of 95% confidence 497 

intervals (Figure 7).  498 

It has to be accepted, however, that this is an overestimation as there are a number of other 499 

sources that contribute to Zn loading (e.g. natural background, direct and diffuse sources), also 500 

there are a number of assumptions used to generate this value including flushing rates, the 501 

salinity being stable over time and numbers and weights of anodes, and that variability in these 502 

assumptions or estimates can be considerable. However, the fact that the prediction produces a 503 

dissolution rate similar to the survey data, yet uses a completely different technique to generate 504 

the outcome, provides further confidence that the loss of zinc from anodes of boats is within 505 

this range. 506 
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 512 

 513 

 514 

 515 

 516 

Figure 7.  Zinc dissolution rates for all methods tested   517 

4. Conclusions 518 

Based on the varying methodologies presented here, it is recommended that for future risk 519 

assessments or source apportionment exercises that a value of 477 g/yr/kg of anode be applied. 520 

This is the mean value for all survey data from 131 boat owners across the UK. For a more 521 

conservative value (from the perspective of impacting dissolved zinc concentrations) 526 522 

g/yr/kg of anode which is the mean value for the boat owner survey plus the 95% confidence 523 

interval. Furthermore using a mean weight of 2.0 kg per boat, generates a total loss of zinc per 524 

boat per year of 2.9 and 1.9 kg whether using the mean or median number of anodes per vessel 525 

respectively (using a dissolution rate of 477 g/yr/kg of anode). Scaling up this dissolution rate 526 

for an estimated 382,000 leisure boats in England and Wales (BMF et al, 2013), generates a 527 

total load of zinc from leisure boats of between 740 and 1117 tonnes per year depending on 528 

using the mean or median number of anodes per boat respectively.    529 

It may be further concluded that from the laboratory experiments, a cadmium dissolution rate 530 

of between 23 and 173 µg/yr/kg of anode is calculated depending on the anode type, which if 531 

multiplied up by the mass and number of anodes used in England and Wales generates a 532 

cadmium release into estuarine and coastal environments of between 53 and 405kg per year. 533 

Survey Model In situ 1 boat 
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Accepting that the laboratory tests may not be a true representation of the actual environment 534 

this is still a significant discharge for a priority hazardous substance.  535 

This data therefore clearly shows that there are significant benefits to limiting the amount of 536 

cadmium present in the commercially available anodes, without impacting on their efficiency. 537 

It may therefore be recommended that the quality of zinc anodes be more consistent and inline 538 

with the specification set out by the US Military, with a review of the cadmium content to set 539 

it as low as practicable.      540 
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