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Abstract 

Kathryn Anne O’Shaughnessy 

Eco-engineering of coastal infrastructure: a design for life. 

Coastal urbanisation has driven humans to build artificial defences to protect 

infrastructure from rising sea level, erosion and stormier seas. Artificial structures are 

proliferating in the coastal and marine environments (“ocean sprawl”), resulting in a 

loss of natural habitat, species diversity and ecosystem services. To mitigate the impacts 

of ocean sprawl, the practice of eco-engineering of coastal infrastructure has been 

developed. A strong evidence base in support of eco-engineering is growing, yet there 

remain critical knowledge gaps. This work investigated the ecology of artificial 

structures and their ability to be enhanced in order to increase species diversity, 

addressing five knowledge gaps in the eco-engineering literature: (1) understanding of 

occurrence of non-native species in intertidal natural and artificial habitats along the 

south coasts of England; (2) looking beyond conventional measures of species diversity 

to better understand the differences in communities between natural and artificial 

habitats at multiple spatial scales; (3) comparing how topographic complexity shapes 

species diversity in both intertidal and subtidal habitats; (4) seeking generality of 

patterns of eco-engineering interventions across geographic localities; and (5) making 

the outcomes of eco-engineering research accessible in a practitioner-focused format for 

stakeholders. To address the first knowledge gap, Rapid Assessment Surveys (RAS) 

were conducted along the south coast of England. The central region of the south of 

England supported the most non-native species, while artificial and natural habitats 

differed in their assemblages of non-native species. Biological surveys in Plymouth 

Sound (UK) were conducted to address the second knowledge gap. α-diversity (taxon 

richness) was greater in natural compared to artificial habitats at multiple spatial scales, 

but β-diversity was greater in artificial compared to natural habitats at the larger spatial 

scale (m-km). To address the third and fourth knowledge gaps, habitat enhancement 

eco-engineering trials in Plymouth Sound in intertidal and subtidal habitats were 

conducted. Results were informally compared to those from equivalent experiments 

done along the Mediterranean coast of Israel. In general, habitat complexity had an 

effect on species diversity, but results were dependent on habitat and location. Lastly, an 

eco-engineering “user-guide” for practitioners was created that can serve as a template 

for future guides and frameworks as the science evolves and becomes freely accessible 

to end-users. This thesis evaluates outcomes in the context of their application to the 

management of eco-engineering in order to mitigate the negative effects of ocean 

sprawl.
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1. CHAPTER ONE 

General Introduction 

 

1.1. Ocean sprawl 

The human population continues to grow, exerting pressure on natural resources 

and transforming landscapes globally (Vitousek et al., 1997; Halpern et al., 2008; 

Gerland et al., 2014; Cloern et al., 2016). Marine and coastal environments in particular 

have been drastically modified by global shipping and transport (Halpern et al., 2008; 

Yigitcanlar et al., 2008), industry (Lin, 1996; Carballo and Naranjo, 2002; Romano et 

al., 2009), aquaculture (Tovar et al., 2000; Arvanitoyannis and Kassaveti, 2008), 

overfishing (Parsons, 1996; Jackson et al., 2001) energy extraction (Kingston, 1992; 

Wiese et al., 2001) and the need to protect coastal infrastructure from rising sea level 

(Vitousek et al., 1997; Griggs, 2005; Firth and Hawkins, 2011; Stocker et al., 2013; 

Firth et al., 2016b). Many of these anthropogenic activities have contributed to “ocean 

sprawl” – a term that was recently coined (Duarte et al., 2012) to describe the 

proliferation of artificial structures (i.e., seawalls, floating pontoons, breakwaters, oil 

and gas platforms, groynes, revetment) in marine and coastal environments, and the 

subsequent modification and loss of natural habitats (i.e., saltmarsh, seagrass, 

mangroves, sandy beaches, natural rocky shores; Duarte et al., 2012; Firth et al., 2016b; 

Bishop et al., 2017).  

The major anthropogenic threats to the natural environment have been 

summarised using the acronym, H.I.P.P.O.; with H. standing for habitat destruction, I. 

representing invasive species, P. signifying pollution, P. representing population of 

humans and O. standing for over exploitation (Torrance, 2009; UNESCO, 2017). Ocean 

sprawl is undoubtedly an anthropogenic phenomenon that destroys natural habitat, 

placing extraordinary stress on estuarine, coastal and marine environments. Ocean 
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sprawl may facilitate overfishing and exploitation of coastal and marine resources by 

providing transportation hubs for commercial fisherman and structures from which to 

fish (e.g., jetties and piers). Overexploitation of natural resources alters natural trophic 

dynamics (Daskalov, 2002; Scheffer et al., 2005), and can even cause a collapse in 

ecosystems (Jackson et al., 2001; Post, 2013). For example, in the Aleutian Islands, 

Alaska, sea otters – a keystone species – have traditionally been harvested for their fur. 

Therefore, since the 1980s, this area saw a drastic decline in otter numbers, which 

resulted in an increase abundance of their prey – sea urchins – which feed voraciously 

on kelp (Estes and Palmisano, 1974). Subsequently, the cover of kelp in the Aleutian 

Islands has declined significantly (Dean et al., 2000; Reisewitz et al., 2006). Human 

activities in urban ecosystems also affect water quality and pollution load in coastal 

waters. For instance, impermeable surfaces that are a common feature of urban systems 

(e.g., roads, buildings, concrete seawalls and bulkheads), increase runoff into adjacent 

water bodies (Arnold Jr and Gibbons, 1996; Barnes et al., 2001), often facilitating 

increased input of nutrients and pollutants (e.g., agricultural fertilizers, heavy metals; 

Arnold Jr and Gibbons, 1996; Wicke et al., 2012), which have the potential to cause red 

tide events (Hodgkiss and Ho, 1997) and create “dead zones” (Rabalais et al., 2002). 

Polluted waters can result in the closure of beaches (Rabinovici et al., 2004), decline of 

recreational activities and investment in coastal development (Ofiara and Seneca, 2006) 

and closure of fisheries (Lipton and Strand, 1997; Evans et al., 2016), which can have 

severe implications for fishing- and tourist-dependent communities. Invasive species 

utilise stationary and mobile artificial structures, such as jetties and sailing vessels, 

respectively, to establish and spread (Bax et al., 2002; Foster et al., 2016; Johnson et al., 

2017), using these structures as stepping stones across otherwise uninhabitable 

environments (Floerl and Inglis, 2005; Floerl et al., 2009; Sammarco, 2015). 
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1.2. Coastal artificial structures  

Coastal artificial structures are generally built to reclaim land and/or protect it 

from flooding and erosion (Govarets and Lauwaert, 2009; Dugan et al., 2011; Dafforn 

et al., 2015b). Artificial coastal structures are often built in sedimentary environments at 

greater risk of flooding and erosion (Griggs, 2005; Govarets and Lauwaert, 2009; 

Dugan et al., 2011; Firth et al., 2013a). They can be built along the shoreline, 

completely separating land from sea (e.g., seawalls, bulkhead, rock revetment; Govarets 

and Lauwaert, 2009; Dugan et al., 2011), shore-perpendicular and intended to maintain 

the integrity of a sandy beach (e.g., groynes, jetties; Govarets and Lauwaert, 2009; 

Dugan et al., 2011) or detached and shore-parallel built with intentions to retard waves 

reaching the shore and decrease erosion (e.g., breakwaters, low crested structures; 

Figure 1-1; Airoldi et al., 2005a; Burcharth and Lamberti, 2007; Govarets and 

Lauwaert, 2009; Dugan et al., 2011; Dafforn et al., 2015b). Coastal artificial structures 

are now so ubiquitous that in some regions, the extent of artificial coastlines dominates 

over natural (Dafforn et al., 2015a). For example, > 50% of the Italian North Adriatic 

shoreline is lined with artificial structures (Airoldi et al., 2005a); 74% of San Diego Bay 

is armoured with rock revetment (Davis et al., 2002); and nearly 60% of coastal 

mainland China is now protected by seawalls (Ma et al., 2014).  
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Figure 1-1. Examples of various coastal artificial structures: (A) sacrificial wave-

breaker block units placed on the seaward side of Plymouth Breakwater; (B) seawall 

composed of granite and sandstone separating the land from the sea; (C) metal sheet 

piling structure making up a protective harbour wall; (D) a recreational marina with 

metal sheet piling walls for protection from the sea and floating pontoons for vessel 

docking; (E) rip rap rock revetment is positioned where land meets sea to reduce erosion 

of land; (F) jetties and groynes are positioned perpendicular to the shore to maintain 

integrity of a sandy beach. 

 

1.3. Impacts of artificial structures  

1.3.1. Environmental impacts 

Artificial structures directly replace natural habitat (Airoldi and Beck, 2007; 

Airoldi et al., 2009; Govarets and Lauwaert, 2009; Dugan et al., 2011); the effects of 

which are more pronounced in soft bottom habitats because the footprint of an artificial 

structure completely replaces soft bottom habitat (“placement loss”; Heery et al., 2017). 
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On sandy beaches, artificial structures such as groynes and jetties alter normal wave 

activity and subsequently affect longshore transport and sediment deposition on a local 

and regional level (Dugan et al., 2011). Alongshore structures, such as seawalls, alter 

the local hydrodynamics, as waves reflecting off vertical seawalls can create turbulence 

and can interact with incoming waves, causing increased sand scour along the structure; 

this can cause a loss of beach area in nearby soft-bottom habitats (French, 2002; Bush et 

al., 2004; Govarets and Lauwaert, 2009; Dugan et al., 2011). Overwater artificial 

structures such as piers and bridges, can reduce light intensity reaching the sea floor, 

which can have negative effects on migrating fish species and seagrass communities 

(Shafer and Robinson, 2001; Shafer, 2002; Ono and Simenstad, 2014; Munsch et al., 

2017).  

1.3.2. Ecological impacts 

1.3.2.1. Biodiversity  

Biodiversity of a community changes as organisms colonise available space and 

biotic succession progresses over time (Bazzaz, 1975; Benedetti-Cecchi, 2000; Noël et 

al., 2009; Maggi et al., 2011; Bergeron and Fenton, 2012). Biological succession is 

largely influenced by direct and indirect interactions among species (Connell and 

Slatyer, 1977; Sousa, 1984; Benedetti-Cecchi, 2000; Benedetti-Cecchi et al., 2000) and 

the available area of substrate that can be colonised (Sousa, 1984; Benedetti-Cecchi and 

Cinelli, 1994), as well as the frequency of physical disturbances (Sousa, 1980; McCook 

and Chapman, 1991). Early colonisers can inhibit or facilitate later colonising species 

(Connell and Slatyer, 1977; Sousa, 1979), with these interactions typically depending 

on species life history traits (Sousa, 1980; Tilman, 1985; Walker et al., 1986; Benedetti-

Cecchi, 2000). On intertidal rocky shores, for instance, grazing herbivores (e.g., chitons, 

patellids and littorinids) remove early colonising species, such as ephemeral green 

algae, facilitating the establishment of other longer-lived, highly seasonal and/or slow-
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growing species (e.g., corticated red algae, kelp; Connell and Slatyer, 1977; Sousa, 

1979; Hawkins et al., 1983; Benedetti-Cecchi and Cinelli, 1994; Anderson and 

Underwood, 1997; Benedetti-Cecchi, 2000; Aguilera and Navarrete, 2007). In the 

absence of grazing species, early colonisers inhibit the recruitment of larvae and spores 

of other species by monopolizing space (Lubchenco, 1983; Geller, 1991; Benedetti-

Cecchi, 2000; Benedetti-Cecchi et al., 2000), subsequently keeping biodiversity 

relatively low over time (Lubchenco and Menge, 1978; Maggi et al., 2011).  

Biological succession may initially be influenced by characteristics of the 

available substrate ('basal' substrate; Marsden and Lansky, 2000; Boyero, 2003; 

Moschella et al., 2005; Borsje et al., 2011; Coombes et al., 2015). Complex substrate, 

by design, provides more space for organisms compared to less complex habitat or 

smaller areas (the 'species-area relationship'; Preston, 1960; Connor and McCoy, 1979; 

Losos and Schluter, 2000; Chapman and Underwood, 2011; Gatti et al., 2017). A 

variety of available habitat niches (Whittaker et al., 1973) allows for reduced influence 

of competition for resources (Schoener, 1989; Dudley and D'Antonio, 1991), thus 

resulting in an increase in establishment of organisms and thus a diverse assemblage of 

species surviving in an ecosystem (MacArthur and MacArthur, 1961; Ricklefs, 2010; 

Pocheville, 2015). Niches can vary throughout time and space (Whittaker et al., 1973; 

Schoener, 1989; Pocheville, 2015), and can involve more than just ‘habitat’ niche; any 

type of resource required for survival, such as space (Whittaker et al., 1973; Smith et al., 

2014), food (Schoener, 1989) or light availability (Diehl, 1988) can contribute to a 

niche. The initial colonising community provides biological complexity upon which 

secondary colonisers will settle, contributing to the process of succession (Turner, 1983; 

Buhl‐Mortensen et al., 2010; Smith et al., 2014). In fact, biological complexity may be 

more important than basal substrate complexity for determining the biodiversity of a 

particular substrate, as this new habitat changes as organisms move, die off or are 
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overgrown over time (Benedetti-Cecchi, 2000; Maggi et al., 2011; Smith et al., 2014). 

As such, available niches temporally change and increase in number with biological 

succession; niches become more specialized and allow for species coexistence as 

communities reach maturity (Connell and Slatyer, 1977; Huston and DeAngelis, 1994). 

In this way, effects of basal substrate complexity may lessen over time due to the 

original basal complexity being overwhelmed by biotic complexity (Chapman and 

Underwood, 2011; Smith et al., 2014). 

Biodiversity is determined not only by the complexity of a substrate, but also by 

surrounding environmental factors, often with the suite of species varying over 

environmental gradients (Heino, 2005; Heino et al., 2007; Dole‐Olivier et al., 2009; 

Gomes-Filho et al., 2010). For example, Gomes-Filho et al. (2010) found that the 

assemblage of barnacles shifted from dominated by native species to dominated by the 

non-native barnacle, Austrominius modestus, in Plymouth Sound, UK as one moves 

further up the estuary where salinity values were lower. Similarly, Jenkins and Hartnoll 

(2001) found that limpet herbivory was greater on exposed intertidal rocky shores than 

on sheltered shores. Both examples illustrate that environmental gradients can directly 

and indirectly determine the initial colonising species, as well as the successional 

communities.  

Habitat degradation and destruction is one of the major drivers of biodiversity 

loss globally (Brooks et al., 2002; Krauss et al., 2010; Mantyka‐Pringle et al., 2012). 

Loss of biodiversity has consequences for ecosystem functioning, such as biofiltration 

(Hawkins et al., 1992b; Wilkinson et al., 1996) and primary productivity (Costanza et 

al., 2007). This has knock on effects on ecosystem services such as water quality 

(Hawkins et al., 1992b; Wilkinson et al., 1996), habitat provision for fisheries (Moyle 

and Leidy, 1992; Rogers et al., 2014), recreation, tourism and aesthetic appeal (Allen et 

al., 1992; Hawkins et al., 1992a). Coastal artificial structures are generally considered 
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poor substitutes for their analogous natural rocky shore counterparts (Thompson et al., 

2002; Chapman, 2003; Moschella et al., 2005; Geist and Hawkins, 2016; Lai et al., 

2018). They are typically characterised by lower species richness (Moschella et al., 

2005; Gacia et al., 2007; Firth et al., 2013b), different community composition (Bulleri 

et al., 2005; Lai et al., 2018), fewer mobile and rare species (Chapman, 2003; Chapman, 

2006; Pister, 2009; Chapman and Underwood, 2011) and greater numbers of non-native 

species (Glasby et al., 2007; Dafforn et al., 2009; Dafforn et al., 2012). In general, many 

studies agree that artificial and natural habitats support a similar suite of common 

species, but artificial structures typically have lower abundances of these species 

(Chapman and Bulleri, 2003; Bulleri et al., 2005; Moschella et al., 2005; Lai et al., 

2018). 

1.3.2.2. Non-native species 

Artificial structures provide hard substrate for attachment of non-native species. 

Coastal areas characterised by hard built structures, such as international shipping ports, 

provide a substantial amount of substrate for non-native species colonisation. Global 

shipping and transportation hubs are often built in heavily urbanised and sheltered 

estuaries, and as such, typically receive urban and industrial runoff and pollution 

(Johnston et al., 2017). Ecosystems characterised by lower biodiversity (Stachowicz et 

al., 1999), sheltered conditions (Bulleri and Airoldi, 2005; Vaselli et al., 2008), greater 

rates of pollution (Johnston and Roberts, 2009; Johnston et al., 2017) and of which 

experience disturbance events (Bulleri and Chapman, 2010; Airoldi and Bulleri, 2011) 

are generally more vulnerable to invasions by non-native species (Arenas et al., 2006b; 

Dafforn et al., 2012; Mineur et al., 2012). It is commonly accepted that occurrence of 

non-native species is higher on artificial structures in particular compared to nearby 

natural habitats (Bulleri, 2005b; Bulleri and Airoldi, 2005; Glasby et al., 2007; Dafforn 

et al., 2012; Mineur et al., 2012), and many studies have identified artificial structures 
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as the first point of introduction (Griffith et al., 2009; Bishop et al., 2013; Bishop et al., 

2015b). Non-native species can negatively affect native biotic communities through 

competition (Haag et al., 1993; Schloesser and Nalepa, 1994; Blossey and Notzold, 

1995), predation (Cohen et al., 1995) and hybridisation (Gray et al., 1991), as well as 

introduction of new diseases and parasites (Bower et al., 1994; Bishop et al., 2006; 

Peeler et al., 2011).  

Artificial structures provide new hard substrate that can act as ‘stepping-stones’ 

across sedimentary habitats (Airoldi et al., 2005a; Hawkins et al., 2008; Dafforn et al., 

2009; Floerl et al., 2009; Firth et al., 2013a). This effectively increases connectivity 

(i.e., the facilitation of movement of organisms among habitats and resources through 

space; Bishop et al., 2017) between isolated or distant hard bottom habitats 

(Johannesson and Warmoes, 1990; Sammarco et al., 2004; Airoldi et al., 2005a; Dafforn 

et al., 2009; Mineur et al., 2012; Bishop et al., 2017). This is especially concerning in 

the context of non-native species, as increased connectivity can promote introduction 

and spread of new arrivals (Airoldi et al., 2015b; Bishop et al., 2017), thereby 

facilitating biotic homogenisation (McKinney and Lockwood, 1999; McKinney, 2006). 

Disturbance events, such as maintenance to a structure (Bulleri and Chapman, 2010; 

Airoldi and Bulleri, 2011), harvesting organisms (Airoldi et al., 2005b) and docking and 

tying up of boats (K. O’Shaughnessy, pers. obs.) can often create bare space where 

dense biological assemblages occurred previously. Consequently, bare space may 

become colonised by non-native and opportunistic species (Stachowicz et al., 1999; 

Airoldi and Bulleri, 2011). This may in turn affect the structure and functioning 

(physical and ecological) of the surrounding environment (McKinney and Lockwood, 

1999; McKinney, 2006; Dugan et al., 2011). 

Early detection and horizon scanning are key to preventing establishment of 

non-native species (Manchester and Bullock, 2000; Mehta et al., 2007; Roy et al., 2014; 
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Kakkonen et al., 2019). Rapid Assessment Surveys (RAS) are a common method used 

to cover a large number of locations in a reasonable amount of time for documenting 

distribution of non-native species and detecting new arrivals (Pederson et al., 2005; 

Arenas et al., 2006a; Bishop et al., 2015a; Bishop et al., 2015b). As densities of new 

arrivals are typically low in the initial stages of introduction, sampling methods may 

need to involve surveying multiple different habitats (i.e., subtidal and intertidal) and 

not focusing only on where non-natives are known to invade (e.g., floating pontoons in 

marinas; see Chapter 2). 

 

1.4. Characteristics of artificial structures 

Coastal artificial structures lack topographic features that are commonly found 

on natural rocky shores (Chapman, 2003; Moschella et al., 2005; Bulleri and Chapman, 

2010; Aguilera et al., 2014). At the smallest scale, these features include millimetre to 

centimetre size grooves, crevices and cracks (Moschella et al., 2005), while at the 

medium scale (metres), features include rock pools and gaps between boulders 

(Chapman, 2017; Liversage et al., 2017). At the largest scale, areas of natural rocky 

shores vary in complexity at the kilometre scale (Johnson et al., 2003). These complex 

features are important in providing water and moisture retention (Firth et al., 2013b; 

Firth et al., 2014b), shade and relief from desiccation (Moschella et al., 2005; Bulleri 

and Chapman, 2010) and refuge from predation (Fairweather, 1988; Johnson et al., 

1998; Skov et al., 2011). Additionally, natural habitats are usually gently sloping, 

extending the intertidal zone, thereby providing a greater area available for biological 

recruitment and colonisation (Chapman and Underwood, 2011). Conversely, artificial 

structures are typically featureless and vertical in design and have a smaller areal extent 

than natural rocky shores, providing less area for recruitment and colonisation 

(Chapman and Bulleri, 2003; Moschella et al., 2005; Chapman and Underwood, 2011). 
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Additionally, the type of material used for construction of artificial structures and the 

geological origin can influence the colonising communities (Davis et al., 2002; 

Moschella et al., 2005; Herbert and Hawkins, 2006; Moreira, 2006; Green et al., 2012; 

Firth et al., 2014b; Dennis et al., 2017).  

 

1.5. Ecological engineering  

Ecologists have developed a suite of terms to define and differentiate 

ecosystems based on their degree of human alteration (Morse et al., 2014). Regardless 

of whether these ecosystems are defined as “novel” (Hobbs et al., 2006; Morse et al., 

2014), “emerging” (Milton, 2003; Hobbs et al., 2006), “impacted” (Morse et al., 2014), 

“synthetic” (Odum, 1962; Hobbs et al., 2006) or “designed” (Morse et al., 2014), it is 

clear that human interventions are leading to the development of new ecosystems 

without natural analogues. In response, some ecologists are calling for a paradigm shift 

from a focus on the negative impacts of these new ecosystems to considering how to 

appropriately manage them for ecological and societal benefit (Milton, 2003; Hobbs et 

al., 2006; Francis, 2014). The design of such sustainable ecosystems which integrate 

human society with the natural environment for the benefit of both by combining 

ecological principles with the planning, design and modification of artificial structures, 

has been labelled “ecological engineering” (or “eco-engineering”; Odum, 1962; Mitsch 

and Jorgensen, 1989; Mitsch, 1996; Bergen et al., 2001; Odum and Odum, 2003).  

Eco-engineering techniques are widely tested and accepted in terrestrial urban 

ecosystems (e.g., Alberti et al., 2003; Oberndorfer et al., 2007; Francis, 2011; Francis 

and Lorimer, 2011) and river and wetland ecosystems (e.g., Palmer et al., 2005; Roni et 

al., 2006; Francis and Hoggart, 2009; Radspinner et al., 2010; Zhang et al., 2010). 

Application of eco-engineering in the marine and coastal environments, however, has 

only gained momentum within about the last decade (Strain et al., 2017a). Results from 
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a variety of eco-engineering trials have been contributing to the growing evidence base 

to support eco-engineering as a sustainable answer to ocean sprawl (e.g., Moschella et 

al., 2005; Chapman and Blockley, 2009; Martins et al., 2010; Browne and Chapman, 

2011; Chapman and Underwood, 2011; Browne and Chapman, 2014; Firth et al., 

2014b; Perkol-Finkel and Sella, 2015; Evans et al., 2016a; Perkol-Finkel et al., 2017; 

Strain et al., 2017a; Strain et al., 2017b). Emerging concepts from these trials show that, 

generally, effects of interventions are usually positive for local biodiversity. Effects, 

however, differ based on local conditions, habitat context and specific taxa targeted 

(Strain et al., 2017a). Whilst extremely informative for the location of interest, most of 

these experiments have drawn conclusions based on an intervention at only one 

geographic location at one time point (e.g., Martins et al., 2010; Chapman and 

Underwood, 2011; Browne and Chapman, 2014; Firth et al., 2014b; Evans et al., 2016a; 

Strain et al., 2017b; Hanlon et al., 2018; reviewed in Strain et al. 2017a). Thus, there is 

a clear need to test interventions across multiple geographic locations for ecologically 

relevant timeframes across seasons and under different environmental conditions to 

better understand generalities of effects of habitat enhancements (see Chapters 4 and 5).  

Artificial structures in the marine environment are not surrogates for the natural 

habitats they replace, and even the best eco-engineering designs will not replicate 

nature. The “no active intervention” management policy (Welsh Government, 2011; 

Environment Agency, 2013) is the best option for maintaining healthy ecosystem 

functioning (Hoggart et al., 2014). However, the “hold the line” or “advance the line” 

policies in which existing artificial structures are maintained or new ones are created  

are currently the most practiced policies in developed nations (Environment Agency, 

2013; Hoggart et al., 2014). There is emerging concern that the promise of eco-

engineering to deliver beneficial ecological benefits might be used to facilitate harmful 

activities and developments in coastal environments where development would not 
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otherwise be approved (Firth et al., in prep). It is important, therefore, for ecologists to 

be aware that the way they communicate eco-engineering information to managers, 

decision-makers and the general public should be without exaggeration or promise of 

desired results, and recognise that the best advice might be to do nothing or implement 

soft or hybrid eco-engineering approaches. 

1.5.1. Hard approaches to eco-engineering 

Although soft approaches (using vegetation, ecosystem engineering organisms 

or sand fills for coastal protection; Morris et al., 2018a) and hybrid designs 

(combination of soft and hard techniques; Bilkovic and Mitchell, 2013) for eco-

engineering of coastal structures are preferred (Morris et al., 2018a), quite often in 

urbanised areas, the only feasible approach is to build hard structures due to lack of 

space and the immediate need to protect valuable coastal infrastructure (Borsje et al., 

2011; Chee et al., 2017; Morris et al., 2018a). This thesis focuses only on hard 

approaches to eco-engineering of coastal structures to provide secondary ecological 

benefits.  

Eco-engineering of artificial structures in coastal environments typically 

involves adding topographic complexity to encourage biological recruitment and 

colonisation in order to increase biodiversity (Moschella et al., 2005; Borsje et al., 2011; 

Chapman and Underwood, 2011; Firth et al., 2014b; Evans et al., 2016a; Loke and 

Todd, 2016; Martins et al., 2016; Strain et al., 2017a) and discourage non-native species 

(Paalvast et al., 2012; Sella and Perkol-Finkel, 2015; Morris et al., 2017b). Designs can 

add complexity in the form of microscale texture (< 1 cm) such as grooves and pits, fine 

scale (1 - 100 cm) and larger scale (1 - 100 m) habitats such as crevices, rock pools and 

gaps between boulders (Moschella et al., 2005; Firth et al., 2013b; Coombes et al., 

2015; Liversage et al., 2017). At the smallest scale (millimetres), incorporating 

microtexture into built structures has been shown to increase larval recruitment and 
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survival of barnacles (Coombes et al., 2015). Medium scale interventions (centimetres 

to metres) have included drilling pits (Chapman and Underwood, 2011; Firth et al., 

2014b; Martins et al., 2016; Hall et al., 2018), creating water-retaining features 

(Chapman and Underwood, 2011; Browne and Chapman, 2014; Evans et al., 2016a; 

Firth et al., 2016a), manipulating wet mortar to create pits during the construction phase 

of a seawall (Firth et al., 2014b; Jackson, 2015) and attaching complex tiles or panels 

(Toft et al., 2014; Cordell et al., 2017; Perkol-Finkel et al., 2017) onto artificial 

structures to enhance species diversity. Larger scale interventions (> 1 m) involve 

placement of precast habitat-enhancement units within the existing structure or during 

construction (Firth et al., 2014b; Perkol-Finkel and Sella, 2015; Sella and Perkol-Finkel, 

2015). If eco-engineering is incorporated during the construction phase, designs can be 

more creative, less expensive and implemented on a much larger scale than if fitted 

retrospectively (Firth et al., 2014b; Sella and Perkol-Finkel, 2015).  

Eco-engineering interventions can also involve the use of habitat-forming 

organisms, such as macroalgae and calcifying organisms, in order to achieve a variety 

of desired secondary ecological benefits. For example, past trials have involved 

transplantation of target species onto artificial structures to rehabilitate the population 

(Marzinelli et al., 2009; Campbell et al., 2014) or for conservation or habitat functioning 

purposes (Perkol‐Finkel et al., 2012; Ng et al., 2015; Ferrario et al., 2016). Abundances 

of filter feeding and photosynthesising organisms, such as mussels and algae, can vary 

greatly on artificial structures (Hawkins et al., 1992a; Layman et al., 2014; Ferrario et 

al., 2016). These organisms provide habitat and improve water quality (Russell et al., 

1983; Allen et al., 1992; Layman et al., 2014), and thus are desirable species to 

incorporate into eco-engineering interventions. For example, corals and sponges have 

been transplanted onto artificial structures to enhance habitat and provide food to fish 

and gastropods (Ng et al., 2015), and mussel cultivation operations have been set-up in 
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urban docks to improve water quality (Allen et al., 1992; Hawkins et al., 1992a; 

Wilkinson et al., 1996). Chapter 6 of this thesis provides a review of hard eco-

engineering designs representing a range of interventions in a variety of habitats and 

geographic locations. 

An emerging trend in eco-engineering is the utilisation of natural materials in 

concrete to replace standard Portland cement, which may help mitigate the negative 

effects of concrete structures in the marine environment (Meyer, 2009; Neo et al., 2009; 

Perkol-Finkel and Sella, 2013; Perkol-Finkel and Sella, 2015; The World Harbour 

Project, 2018; ECOncrete Inc., 2019; Seattle Office of the Waterfront and Civic 

Projects, 2019). Perkol-Finkel and Sella (2013) tested the effects of a range of concrete 

matrices compared to standard Portland cement on biological recruitment, and found 

that ecosystem engineers such as oysters, serpulid worms, barnacles and corals were 

more abundant on the innovative concrete matrices and contributed to the strength of 

the structure. Novel experiments have found that ground-up crustose coralline algae, 

molluscs and hemp fibres can also be used as aggregate replacement to attract larvae 

and increase native species richness, respectively (Neo et al., 2009; Dennis et al., 2017; 

Hanlon et al., 2018).  

The majority of hard eco-engineering interventions to date have been tested in 

the intertidal zone (but see Sella and Perkol-Finkel, 2015; Perkol-Finkel et al., 2017), 

yet many structures in urbanised harbours are located within shallow subtidal habitats 

(National Institute of Coastal and Marine Management of the Netherlands, 2004). Since 

diversity tends to be greater at lower tidal heights (Saier, 2002; Chapman and Bulleri, 

2003; Bulleri et al., 2005; Moschella et al., 2005; Chapman and Blockley, 2009; Firth et 

al., 2013a; Firth et al., 2013b) and non-native species tend to be more abundant in 

subtidal compared to intertidal habitats (Dafforn et al., 2012), trials in subtidal habitats 

are urgently needed (see Chapter 5).   
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1.5.2. Artificial reefs and lessons learned 

Artificial reefs are created from the placement of non-natural substrate in the sea 

intended to mimic characteristics of natural habitat, and which have traditionally been 

used to aggregate or produce marine biomass (e.g., fish) for human benefit (Bohnsack, 

1991; Carr and Hixon, 1997; Baine, 2001). Any hard substrate placed in the sea will 

inevitably become colonised by marine life through the artificial reef effect (Langhamer 

et al., 2009). This concept holds true even for structures that unintentionally become 

artificial reefs, such as oil and gas platforms (Stephan et al., 1990; Kaiser and Pulsipher, 

2005; Kaiser, 2006a; Langhamer, 2012; Ajemian et al., 2015), sunken ships (Stephan et 

al., 1990; Arena et al., 2007), piers and jetties (Hueckel and Stayton, 1982; Coleman 

and Connell, 2001).  

Artificial reef research and design started in Japan (Bohnsack and Sutherland, 

1985), but to date, artificial reefs have been utilised worldwide for a myriad of purposes 

(Lima et al., 2019), including water quality improvement (Antsulevich, 1994; Falcão et 

al., 2009), habitat mitigation for human impacts, nursey habitat (West et al., 1994; 

Patranella et al., 2017) and recreational purposes such as SCUBA diving (Wilhelmsson 

et al., 1998; Stolk et al., 2007), surfing (Jackson et al., 2005; Rendle and Rodwell, 2014; 

Herbert et al., 2017) and angling (Milon, 1989; Hooper et al., 2017). The infancy of 

artificial reef design was often less ‘design’ and more often involved the dumping of 

indiscriminate materials of opportunity (Harris et al., 1996), such as tyres (Stephan et 

al., 1990; Collins et al., 2002; Sherman and Spieler, 2006; Morley et al., 2008) and 

bridge rubble (Stephan et al., 1990; Harris et al., 1996; Bortone et al., 1998; Harris and 

Pardee Woodring, 2003). The dumping of these materials has led to complications with 

waterway safety and navigation (Stephan et al., 1990; Challinor and Hall, 2008),  

fishing line entanglement (Stephan et al., 1990), inaccessible fishing sites and expensive 

hazard markings (Stephan et al., 1990). The objectives of artificial reefs have not always 
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been defined at the onset of creation and many structures have actually failed to 

function as fish enhancement structures (Baine, 2001), and thus, there has been much 

scrutiny over their effectiveness (Stephan et al., 1990). 

Creating artificial reefs from decommissioned oil and gas platforms was first 

explored in the late 1970s and early 1980s in the Gulf of Mexico with the reefing of a 

subsea production system, and shortly following, the reefing of an oil platform jacket 

(Dauterive, 2000). Since then, the concept and methods have evolved to maximise cost 

savings, minimise environmental disruption and boost angling and SCUBA diving 

opportunities (Stephan et al., 1990; Kaiser and Pulsipher, 2005; Twomey, 2011; Kaiser 

et al., 2019). Government bodies from the Gulf of Mexico, in particular, are active in 

transforming platforms into reefs, as thousands of current platforms are nearing the end 

of their functional life and oil and gas exploration is moving into deeper offshore waters 

(Stephan et al., 1990; Dauterive, 2000; Macreadie et al., 2011).  

Recently, research and design development has shifted to multifunctional 

artificial reefs that are purposefully designed to provide multiple benefits for humans 

and nature on a variety of coastal and marine structures such as coastal defence 

structures (Challinor and Hall, 2008; Cordell et al., 2017), wave and tidal energy 

devices (Callaway et al., 2017) and offshore wind devices (Langhamer and 

Wilhelmsson, 2009; Lacroix and Pioch, 2011). As the research and design of 

ecologically engineered coastal structures are similar to that of artificial reefs, it is 

imperative that researchers involved in the development of multifunctional coastal 

structures be knowledgeable on the decades of research into the effectiveness of 

intentionally built artificial reefs, as well as the policy and management of these 

structures. For example, artificial reef projects traditionally go through environmental 

and archaeological assessments, as well as permitting and siting processes that may 

involve reviewing hydrological, geographical, geological, biological, ecological, 
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economic and social criteria before material can be placed in the sea (Stephan et al., 

1990; Kaiser, 2006a; Kaiser et al., 2019); all these processes involve multiple parties 

and many years to complete. In locations where artificial reefs are common, policies are 

in place (NEFA, 1984; Stone, 1986), and guidance manuals (Atlantic and Gulf States 

Marine Fisheries Commission, 2004; US DoC and NOAA, 2007; Rousseau, 2008) are 

available concerning the planning, design, siting and materials that should be used for 

artificial reef construction. In the Gulf of Mexico, government legislators and state 

agencies closely regulate the planning, management and monitoring of artificial reefs 

(Stephan et al., 1990; Kaiser, 2006a; Kaiser et al., 2019). 

Ecologists leading eco-engineering projects can learn from the decades of 

research and development, successes and failures and immense scrutiny that artificial 

reefs have experienced. Although the field of eco-engineering has not seen the same of 

criticism that artificial reefs have, it is important for eco-engineering projects to 

consider these potential criticisms early on in order to push the field forward with little 

resistance from the public, conservation groups, economists and government bodies. 

Artificial reefs have been blamed for mortality of sea turtles (Barnette, 2017; Texas 

Parks and Wildlife Artificial Reefs Program, pers. comm.), interference in shrimping 

and other trawling and bottom-fishing activities (Texas Parks and Wildlife Artificial 

Reefs Program, pers. comm.) and influencing the adjacent soft sediment habitat 

(Ambrose and Anderson, 1990; Stephan et al., 1990; Danovaro et al., 2002; Langhamer, 

2012; Heery et al., 2017). There remains a contentious debate over the ability of 

artificial reefs to produce organisms rather than simply concentrate the already existing 

biomass in a region (Bohnsack and Sutherland, 1985; DeMartini et al., 1994; Grossman 

et al., 1997; Pickering and Whitmarsh, 1997; Shipp, 1999; Brickhill et al., 2005; Smith 

et al., 2015). Some studies argue that artificial reefs increase catch rates by aggregating 

recreational fish, thereby creating a situation in which previously unexploited 
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populations are now available to be fished (and thus overexploited; Polovina, 1989; 

Grossman et al., 1997). Other studies have shown that the addition of essential hard 

substrate to a habitat facilitates the addition of new individuals with an increase in 

overall abundance and biomass (Claisse et al., 2014; Claisse et al., 2015; Smith et al., 

2015; Smith et al., 2016; Streich et al., 2017). Popular game fish are known residents 

and visitors to artificial reefs (Stephan et al., 1990; Bohnsack et al., 1994; Streich et al., 

2017), with these fisheries attracting anglers and SCUBA divers, boosting tourism, and 

representing a vital source of income for local communities (Stephan et al., 1990; 

Adams et al., 2006; Stolk et al., 2007; Rendle and Rodwell, 2014). Reviews on the 

production versus attraction debate have concluded that carefully controlled studies with 

high replication, adequate temporal sampling capturing all life history stages and 

analysis of fish age and length data over time are necessary to resolve this contentious 

issue (Bohnsack and Sutherland, 1985; Brickhill et al., 2005), and that clearly defined 

management strategies are vital in assessing the success of an artificial reef (Pickering 

and Whitmarsh, 1997). 

 

1.6. Measuring biodiversity  

The current biodiversity crisis (Singh, 2002; Koh et al., 2004; Monastersky, 

2014) has caused a growing need for efficient and cost-effective sampling methods to 

quantify biodiversity for a variety of purposes such as environmental impact 

assessments (Michelsen, 2008; Koellner et al., 2013), monitoring biotic responses to 

anthropogenic change (Chapman, 2003; Sattler et al., 2010) and tracking range 

expansions of climate migrants (Herbert et al., 2003; Mieszkowska et al., 2006; 

Hawkins et al., 2009). Biodiversity is the variety of life within and between species and 

of ecosystems; it considers genetic diversity, species diversity and ecosystem diversity 

(Convention on Biological Diversity, 2006; Colwell, 2009). Species diversity is only a 
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part of biodiversity, composed of species richness (number of different species present 

in a given area regardless of identity) and relative abundance (number of individuals of 

each species; Colwell, 2009; Tuomisto, 2010b). Ecologists and conservationists have 

traditionally labelled “species diversity” as “biodiversity”, neglecting the other 

components of biodiversity (Colwell, 2009). Moreover, total and mean species richness 

are often used as the only response variables in habitat assessment studies in terrestrial, 

freshwater and marine systems (e.g., Brönmark, 1985; Kohn and Walsh, 1994; 

Chapman, 2003; Sattler et al., 2010; Nielsen et al., 2011; Firth et al., 2013b; Firth et al., 

2014a). It is a concern that mean species richness may not be sensitive enough to detect 

important differences between habitats of interest or levels of factors in an experiment, 

and therefore may overlook ecological information necessary for conservation and 

management decisions (Warwick and Clarke, 1998; Chapman et al., 2009; Winfree et 

al., 2015; Hillebrand et al., 2018). Information concerning abundances of species in 

particular has been recognised as more valuable in assessing ecosystem functioning 

compared to species richness alone (Yee and Juliano, 2007; Dirzo et al., 2014; Winfree 

et al., 2015). Furthermore, biodiversity assessments that consider multiple spatial scales 

may be more valuable for landscape scale management decisions compared to focussing 

on biodiversity at a single scale (Legendre et al., 2005; Devictor et al., 2010; Socolar et 

al., 2016), as response of taxa can differ across spatial scales (Terlizzi et al., 2008; 

Morris et al., 2018c; Porter et al., 2018). The use of β-diversity – the variation in 

identities of species among sampling units in a given area (Anderson et al., 2011) – has 

been shown as an effective measure to detect differences in species diversity at multiple 

spatial scales (Terlizzi et al., 2008; Bevilacqua et al., 2012; Barros et al., 2014; Porter et 

al., 2018; see Chapter 3).  
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1.7. Policy drivers and potential for application of eco-engineering in coastal 

development 

Throughout this section, the potential of applying eco-engineering in coastal 

developments as routine practice are discussed, and two barriers to eco-engineering 

designs becoming part of real practice are introduced: (1) policy concerning the use of 

nature-based solutions (e.g., eco-engineering) during coastal development in the UK is 

non-statutory (UK Parliament, 2009; HM Government, 2011; Welsh Government, 

2017b; Welsh Government, 2017a); and (2) evidence supporting eco-engineering is 

locked away in academic literature – the synthesis of research into a practitioner-

focused format is lacking (McNie, 2007; Holmes and Clark, 2008; Evans et al., 2019). 

In this chapter and Chapter 7, relevant policies in the UK are discussed, but more 

specifically, policies from a Welsh perspective are highlighted. 

Despite the mounting evidence supporting eco-engineering as a sustainable 

option to mitigate the effects of ocean sprawl (Strain et al., 2017a) and increasing 

government and stakeholder awareness of the ecological benefits of eco-engineered 

structures (Evans et al., 2017; Evans et al., 2019), consideration of eco-engineering at 

the policy level in Wales and the wider UK is still non-statutory (Table 1-1; UK 

Parliament, 2009; HM Government, 2011; Welsh Government, 2016; Welsh 

Government, 2017a). There has been recent progress, however, in shifting perceptions 

from traditional hard built structures to nature-based solutions for flood and coastal 

erosion management in the UK and Wales (HM Government, 2011; Naylor et al., 2012; 

Evans et al., 2017; Welsh Government, 2017a; Welsh Government, 2017b) and around 

the world (Dafforn et al., 2015a; Dafforn et al., 2016; Mayer-Pinto et al., 2017). In the 

2011 National Strategy for Flood and Coastal Erosion Risk Management in Wales, there 

was no mention of working with natural processes for coastal adaptation (Welsh 

Government, 2011). Although still in the development stage, the 2019 National Strategy 
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for Flood and Coastal Erosion Risk Management has an entire section dedicated to 

nature-based solutions, in which the concept is introduced, recommendation for 

application is put forward and case studies are presented (WG FCERM team, pers. 

comm.). The 2017 Draft Welsh National Marine Plan (due to be released summer 2019) 

and the Marine Policy Statement (UK) encourage innovative coastal developments that 

restore marine habitats and build resilient ecosystems by increasing biodiversity and 

supporting ecosystem services. The 2017 Draft Welsh National Marine Plan in 

particular highlights the need to build with alternative substrate that favours biotic 

settlement and colonisation and encourages incorporation of additional habitat 

complexity to support a more biodiverse community (Table 1-1). Although these 

policies are far from statutory requirements, they are undoubtedly setting the stage for 

future obligatory regulations for sustainable coastal development in Wales and the 

wider UK.  

In Wales, polices such as the Well-Being of Future Generations Act and the 

Environment (Wales) Act (Table 1-1) have helped foster support (albeit theoretical) for 

using nature-based solutions as an alternative to traditional building in both terrestrial 

and coastal systems. Although this is encouraging, the WG FCERM team has expressed 

concern over access to evidence supporting eco-engineering as a useful tool for coastal 

adaptation, as most research is locked away in inaccessible academic journals. Even if 

this information were made freely available to government bodies and practitioners, the 

overwhelming amount of literature at hand would probably discourage them from 

pursuing these options. Thus, there is a clear need to provide practitioners with the 

appropriate evidence and guidance on using eco-engineering as a sustainable alternative 

to traditional hard engineering of coastal structures (Evans et al., 2019; see Chapter 6).  
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Table 1-1. Current environmental policy relevant to sustainable coastal development in the EU, UK and Wales. 

Policy Relevant sections Relevant key points Steered by/product of 

EU and UK 

The Marine Strategy 

Framework Directive 

(2008) 

- 
One of the main aims is the "achievement of good environmental 

status in our marine and coastal waters" by 2020. 
European Commission 

Habitats Directive 

92/43/EEC (1992) 
- 

Advises "on the conservation of natural habitats and of wild fauna and 

flora" and "aims to promote the maintenance of biodiversity, taking 

account of economic, social, cultural and regional requirements." 

European Commission 

Water Framework 

Directive (2000) 
- Aims to achieve "good ecological status" in all European waterbodies. European Commission 

Convention on Biological 

Diversity (CBD) (1992) 
 

The main aims include "the conservation of biological diversity, the 

sustainable use of its components and the fair and equitable sharing of 

the benefits arising out of the utilization of genetic resources." 

United Nations Environment 

Programme (UNEP) 

Environment Act (1995) - 

Promotes the "conservation of natural resources and the conservation or 

enhancement of the environment." Creation of the Environment Agency 

(EA). 

UK Parliament (implementation 

of EU Directive) 

Marine and Coastal Access 

Act (2009) 
- 

Policy to oversee marine functions and activities. Creation and 

protection of Marine Conservation Zones (MCZ) and national nature 

reserves. Creation of the Marine Management Organisation (MMO). 

UK Parliament (implementation 

of EU Directive) 

Marine Policy Statement 

(2011) 

2.6.1. Marine ecology and 

biodiversity 

"Development proposals may provide, where appropriate, opportunities 

for building-in beneficial features for marine ecology, biodiversity and 

geodiversity as part of good design; for example, incorporating use of 

shelter for juvenile fish alongside proposals for structures in the sea." 

Marine and Coastal Access Act 

2009 
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Wales 

Draft Welsh Marine Plan 

(2017) 

General policy – Living 

within environmental limits; 

Protection, restoration and 

enhancement of marine 

ecosystems 

"When developing proposals, the sensitivities of marine ecosystems 

should be taken into account and where possible, proposals should 

demonstrate how they will contribute to their protection." More 

specifically, by "using different substrates for building on the foreshore 

that are favourable to post-construction colonisation by a range of 

species. Small changes to intertidal structures that allow the formation 

of crevices in walls or pools at low tide as opposed to the structure 

drying out entirely can provide an additional environment for rock pool 

species that would otherwise be unable to exist there." 

Marine and Coastal Access Act 

2009 (UK) 

The Well-Being of Future 

Generations (Wales) Act 

(2015) 

Part 2: Improving Well-

Being; Sustainable 

development and well-being 

duty on public bodies 

A resilient Wales means "a nation which maintains and enhances a 

biodiverse natural environment with healthy functioning ecosystems 

that support social, economic and ecological resilience and the capacity 

to adapt to change (for example climate change)." 

Welsh Government 

The Environment (Wales) 

Act (2016) 

Section 6: Biodiversity and 

resilience of ecosystems 

duty 

Requires that "public authorities must seek to maintain and enhance 

biodiversity so far as consistent with the proper exercise of their 

functions and in so doing promote the resilience of ecosystems." 
Well-Being of Future 

Generations Act (2015) Section 7: Biodiversity lists 

and duty to take steps to 

maintain and enhance 

biodiversity 

The Welsh Government must publish "lists of priority habitats and 

species that it considers 'of principal importance for the purpose of 

maintaining and enhancing biodiversity in relation to Wales'." 

Sustainable Management 

of Natural Resources 

(SMNR) (2018) 

- 

The SMNsssR aims to deliver "a strategy on the integrated management 

of land, water and living resources that promotes conservation and 

sustainable use in an equitable way."  

Part 1: Environment (Wales) Act 

2016 

The Natural Resources 

Policy (NRP) (2016) 

Section 4.3: Nature-based 

solutions and maximising 

our contribution across the 

well-being goals 

The NRP guilds the delivery of nature-based solutions with a particular 

focus on the following: 

• Developing resilient ecological networks 

• Increasing green infrastructure in and around urban areas 

• Coastal zone management and adaptation                                                                                                                                                      

Part 1: Environment (Wales) Act 

2016 
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1.8. Overview and aims of the thesis 

The overall aim of this thesis was to investigate the ecology of artificial 

structures and their ability to be enhanced in order to increase species diversity, with the 

view to enhancing ecosystem functioning, offsetting the establishment of non-native 

species and promoting ecosystem services. This research addressed five knowledge 

gaps in the current eco-engineering literature: (1) understanding of occurrence and 

patterns of non-native species in intertidal natural and artificial habitats along the south 

coasts of England (Chapter 2); (2) looking beyond conventional measures (α-diversity) 

of species diversity to better understand the differences in communities between natural 

and artificial habitats at multiple spatial scales (Chapter 3); (3) comparing how 

topographic complexity shapes species diversity in both intertidal and subtidal habitats 

(Chapters 4 and 5); (4) seeking generality of patterns of eco-engineering interventions 

across geographic localities (Chapters 4 and 5); and (5) making the outcomes of eco-

engineering research accessible in a user-friendly and practitioner-focused format for 

stakeholders and end-users (Chapter 6). Each knowledge gap is addressed in detail in 

Chapters 2 - 6. 

 

Chapter 2: Occurrence of non-native species recorded from Rapid Assessment 

Surveys (RAS) in natural and artificial intertidal habitats 

Coastal artificial structures may facilitate the spread of non-native species 

(Airoldi et al., 2015b; Bishop et al., 2017), thus, one of the goals of eco-engineering is 

to encourage native assemblages, thereby offsetting non-natives (Paalvast et al., 2012; 

Firth et al., 2014b; Dafforn et al., 2015b; Chapman et al., 2018). Therefore, providing a 

baseline of current non-native species occurrence and abundance in the geographic 

region of interest is necessary for monitoring success of eco-engineering designs 

(Dafforn et al., 2015b; Mayer-Pinto et al., 2017). Moreover, patterns of occurrence and 
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observed differences in non-native species assemblages between natural and artificial 

habitats can inform eco-engineering designs in order to discourage non-native species 

colonisation. The south coast of England is well studied in regards to occurrence of 

subtidal non-native species in marinas, but comprehensive records from intertidal 

habitats, especially natural rocky shores, are lacking. Rapid Assessment Surveys (RAS) 

in harbours along the south coast of England were conducted to quantify intertidal non-

native species on artificial structures and compare assemblages between natural and 

artificial habitats. Information from this chapter will contribute to a more 

comprehensive view of non-native species present in the south of England to provide an 

“intertidal baseline” and allow for the predictive capability to identify harbours at high 

risk of invasion, which can aid in effective horizon scanning.  

 

Chapter 3: Impacts of coastal urbanisation on species diversity are scale and 

metric dependent 

Species diversity (usually measured as mean taxon richness) is often the 

response variable of choice for measuring success of eco-engineering interventions or 

monitoring community composition among habitats (e.g., Chapman, 2003; Firth et al., 

2013b; Firth et al., 2014a). Moreover, measurements are often done at one spatial scale 

and using one metric of analysis, which can sometimes overlook valuable ecological 

information. To better understand differences in biotic communities between natural 

and artificial habitats, intertidal natural rocky shores and artificial structures in 

Plymouth Sound were surveyed. Plymouth Sound was used because it is an ideal model 

system due to its mosaic of natural and artificial habitats. Data were analysed at two 

spatial scales and using multiple measures of species diversity in order to capture as 

much ecological information as possible. Results from this chapter can inform future 

monitoring practices and analyses. 
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Chapter 4: Effects of habitat complexity and mussel seeding on species diversity in 

intertidal habitats across two geographic locations 

Experiments for this chapter were part of the Sydney Institute of Marine 

Science’s World Harbour Project (World Harbour Project, 2019) – a global initiative 

aimed at building ecologically-stable and resilient harbours in urbanised port cities 

around the world. The project consisted of 15 partner cities from across the globe 

running the same experiment to test the effects of eco-engineering techniques in 

enhancing native biodiversity in intertidal habitats. To investigate effects of added 

complexity on species diversity, tiles of various topographic complexities and mussel 

seeding were attached to intertidal seawalls. Although data collected from these 

experiments contributed to the global analysis done by Sydney Institute of Marine 

Science, statistical analysis of these data were done on their own to draw conclusions at 

a local level. Additionally, informal comparisons were made of local results with those 

obtained from similar intertidal eco-engineering trials conducted at a marina in the 

Mediterranean Sea in order to understand the generality of patterns of effects across two 

geographic locations. 

 

Chapter 5: Effects of habitat complexity, mussel seeding and shade on species 

diversity in subtidal habitats across two geographic locations 

The majority of eco-engineering studies to date have been trialled in intertidal 

habitats (Strain et al., 2017a), with very few subtidal examples (but see Sella and 

Perkol-Finkel, 2015; Perkol-Finkel et al., 2017). To address the knowledge gap 

concerning the potential of eco-engineering to enhance species diversity in subtidal 

habitats, tiles of various levels of topographic complexity and mussel seeding as well as 

tiles that were shaded or unshaded were deployed subtidally off floating pontoons. 
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Results from these experiments were informally compared to those from similar eco-

engineering subtidal trials conducted at a marina in the Mediterranean Sea. The 

rationale for this comparison was to address the knowledge gap concerning comparison 

of results across geographic localities for generality of patterns.   

 

Chapter 6: Design catalogue for eco-engineering of marine and coastal artificial 

structures: a multifunctional approach for stakeholders and end-users 

This chapter addressed the need for a practitioner-focused and structured “user 

guide” for eco-engineering in marine, coastal and estuarine environments. It is 

presented as an accessible review and catalogue of possible eco-engineering options and 

a summary of guidance for a range of different structures tailored for practitioners. It 

includes an introduction to eco-engineering in marine, coastal and estuarine 

environments, provides a step-by-step approach to choosing the appropriate eco-

engineering intervention, broadly describes different types of eco-engineering and 

concludes with a photographic catalogue of a range of examples. This work can serve as 

a template for future eco-engineering guides that should evolve in tandem with 

emerging proof-of-concept evidence.  

 

Chapter 7: General Discussion 

This chapter is a synthesis of major findings from the PhD set in the context of 

potential application and current policy. This section concludes with recommendations 

for future work.  
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2. CHAPTER TWO 

Occurrence of non-native species recorded from Rapid Assessment Surveys (RAS) 

in natural and artificial intertidal habitats 

 

Abstract 

Loss of natural habitat from ocean sprawl coupled with non-native species (NNS) 

introductions are among the top threats to marine biodiversity globally. Effective 

methods of early detection and eradication of NNS are urgently needed. Rapid 

Assessment Surveys (RAS) combining both quantitative and semi-quantitative 

techniques were conducted to compare NNS richness and assemblage composition on 

both intertidal natural rocky shores and artificial structures along the south coast of 

England. Additionally, surveys were conducted to assessed NNS richness and 

assemblage composition on groynes that retained a constant connection to the sea at low 

water compared with those that were exposed at low water. Overall, 26 NNS were 

found, with two species discovered in new localities (the carpet sea squirt, Didemnum 

vexillum Kott, 2002 and the red alga, Chrysymenia wrightii (Harvey) Yamada, 1932. 

NNS assemblage composition varied significantly between natural and artificial 

habitats, with artificial habitats supporting greater numbers of NNS only when 

quantitative data were analysed. Assemblage composition differed among harbours and 

regions (West, Central, East), with the Central region supporting the greatest number of 

NNS. There was a positive relationship between NNS richness and average number of 

vessels arriving to each region. Groynes that maintained a constant connection to the sea 

at low water supported significantly more NNS and different NNS assemblage 

composition compared to “unconnected” groynes. Overall, semi-qualitative sampling 

techniques detected more NNS than quantitative techniques, but neither method 

captured all NNS recorded on their own, highlighting the importance of a combined 
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sampling approach for early detection of new arrivals. Results indicate that international 

transport and artificial structures likely play important synergistic roles in the 

introduction and spread of NNS into harbours.  

 

2.1 Introduction 

The world is experiencing a biodiversity crisis (Singh, 2002; Monastersky, 

2014). Natural habitat loss and the introduction and spread of non-native species (NNS) 

are modifying natural ecosystems and threatening global biodiversity (Manchester and 

Bullock, 2000; Bax et al., 2003; Simberloff, 2005; Brooks et al., 2006). “Ocean sprawl” 

– the proliferation of artificial structures (e.g., seawalls, groynes, piers, floating 

pontoons, offshore platforms) in coastal and marine environments is leading to the 

replacement of natural habitats with a variety of hard engineered structures built to 

support human activities (e.g., aquaculture, transportation, industry, shipping, energy 

extraction) and stabilise and protect shorelines from rising seas (Griggs, 2005; Duarte et 

al., 2012; Firth et al., 2016b; Bishop et al., 2017). Ocean sprawl provides substrata for 

attachment of NNS, facilitating ecological connectivity among global transportation and 

shipping hubs (Bishop et al., 2017) and aiding the spread of cryptogenic (i.e., it is 

unclear whether the species is native or introduced; Kinzie, 1984; Carlton, 1996a), 

opportunistic (i.e., a species adapted to exploit new or disturbed habitats; Whitlatch and 

Zajac, 1985) and non-native species (Carlton and Geller, 1993; Cohen and Carlton, 

1997; Ruiz et al., 1997; Dafforn et al., 2009; Firth et al., 2016b). Artificial structures 

facilitate the homogenisation of biological communities, supporting species 

assemblages not encountered in natural habitats and affecting the structure and 

functioning (physical and ecological) of the surrounding environment (McKinney and 

Lockwood, 1999; McKinney, 2006; Dugan et al., 2011).  
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NNS can have detrimental impacts on the receiving natural environment through 

competition and predation with native species (Blossey and Notzold, 1995; Cohen et al., 

1995; Lengyel et al., 2009), as well as introduction of new diseases and parasites 

(Bower et al., 1994; Bishop et al., 2006; Peeler et al., 2011), with consequences for 

local biodiversity and ecosystem structure and functioning (Mack et al., 2000; Molnar et 

al., 2008; Dafforn et al., 2012). As such, NNS can affect local and regional economies 

(Pimentel et al., 2005; Williams et al., 2010). For example, the carpet sea squirt, 

Didemnum vexillum Kott 2002, is considered a global invader (Osman and Whitlatch, 

2007; Herborg et al., 2009; Lambert, 2009). It is known to smother native sessile 

communities (Griffith et al., 2009; Lengyel et al., 2009) and foul marina equipment and 

boat hulls in great abundances (Coutts and Forrest, 2007). The European zebra mussel, 

Dreissena polymorpha (Pallas), was introduced to the US Great Lakes in the mid-1980s 

via ballast water discharged from ships travelling from Europe and has since spread to 

adjacent aquatic waterways (Hebert et al., 1989; O’Neill Jr and Dextrase, 1994; Benson 

and Boydstun, 1995; Pimentel et al., 2005). D. polymorpha outcompetes native 

molluscs and clogs water filtration systems, intake pipes and electric generating plants, 

costing US $1 billion per year in control measures (Stein and Flack, 1996; Pimentel et 

al., 2005).  

The importance of horizon scanning (i.e., investigating future potential NNS 

threats; Roy et al., 2014; Gallardo et al., 2016) and regular monitoring (Eno et al., 1997; 

Manchester and Bullock, 2000; Mehta et al., 2007; Kakkonen et al., 2019) for 

preventing establishment and/or spread of NNS (Witte et al., 2010; McDonald, 2012; 

Gallagher et al., 2017) cannot be overstated. As many NNS are rare/low in numbers or 

are cryptogenic during initial introduction (Mehta et al., 2007; Rees et al., 2014; Bishop 

et al., 2015b), approaches that utilise multiple measures and are sensitive enough to 

detect low species densities (e.g., eDNA; Rees et al., 2014; Klymus et al., 2015; Xia et 
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al., 2018) are necessary for early detection and prevention of establishment (Mehta et 

al., 2007; Kakkonen et al., 2019). For example, the Asian green mussel, Perna viridis 

(Linnaeus, 1758), has invaded marine waters around the world (Baker et al., 2007), 

fouling artificial structures such as intake pipes (Benson et al., 2001). A horizon scan 

determined that P. viridis was a non-native species of high priority in Australian waters 

(Hayes et al., 2005). Subsequently, potential receiving habitats and pathways of 

introduction (hulls and ballast water of foreign vessels) have been meticulously 

monitored (Stafford et al., 2007; Wells, 2017) and legally binding conditions have been 

set out that require developers to make efforts to minimise NNS introductions (Wells, 

2017). These early detection methods were vital when a small population of P. viridis 

was found in 2011 in Western Australia, as immediate response and thus eradication 

was possible (McDonald, 2012). 

The rise in global shipping and transportation has meant that harbours have 

become characterised by a range of different artificial structures, with many harbours 

seeing an extraordinary amount of shipping traffic from around the world every day 

(Seebens et al., 2013; Marine Traffic, 2019; World Port Source, 2019). Mobile vectors 

(e.g., small leisure craft to large commercial tankers) are facilitated by static structures 

(i.e., artificial structures; e.g., breakwaters, groynes and offshore oil and gas platforms) 

in acting as stepping-stones or reservoirs contributing to the introduction and spread of 

NNS globally (Floerl and Inglis, 2005; Clarke Murray et al., 2011; Mineur et al., 2012). 

The primary vectors of initial introduction are typically transoceanic ships, barges and 

floating platforms (i.e., mobile vectors) that dock in large international harbours 

(Carlton and Geller, 1993; Ruiz et al., 1997). These vessels transport species in two 

main ways: (1) as larvae in ship ballast water and (2) as adults fouling ship hulls 

(Gollasch, 2002; Gollasch, 2008; Molnar et al., 2008). Thus, initial NNS colonisation 

and settlement tend to be highest within major shipping ports compared to surrounding 
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areas (Eno et al., 1997; Molnar et al., 2008; Keller et al., 2011; Wood et al., 2015; 

Foster et al., 2016). Secondary spread of NNS is likely through a combination of mobile 

vectors and artificial structures (Carlton and Geller, 1993; Sammarco et al., 2004; 

Clarke Murray et al., 2011; Airoldi et al., 2015b). NNS can hitchhike on smaller local 

vessels, such as leisure craft and fishing boats, that travel amongst multiple ports 

regionally; they can then break off or spawn in the visited locations (Floerl and Inglis, 

2005; Clarke Murray et al., 2011). Planktonic larvae of NNS can also be carried away 

from the port of introduction by wave-driven currents (McQuaid and Phillips, 2000), 

settling on artificial structures along the coast (Wasson et al., 2001). For example, in a 

study investigating dispersal of mussel larvae, propagules travelled up to nearly 100 km 

from the source population, but dispersal was highly dependent on local hydrography 

and time of year (McQuaid and Phillips, 2000). In this way, artificial structures act as 

‘stepping stones’, allowing non-natives to persist or spread by provision of hard 

substrate amongst otherwise uninhabitable habitats (e.g., 'soft bottom' sediment habitat;  

Apte et al., 2000; Floerl et al., 2009; Airoldi et al., 2015a; Sammarco, 2015; Bishop et 

al., 2017). 

Artificial structures are a common feature of heavily urbanised harbours, 

necessary for supporting industry, commercial and naval shipping, cruise liners and 

ferry traffic (Mineur et al., 2012). Biotic communities on artificial structures are 

typically less diverse with greater numbers of non-native species than comparable 

natural rocky shore habitat (Glasby et al., 2007; Vaselli et al., 2008; Airoldi et al., 

2015a). This disparity has been attributed to the physical design of artificial structures; 

they typically have steep profiles and reduced surface area and limited topographic 

complexity compared to their natural analogues (Moschella et al., 2005; Chapman and 

Underwood, 2011). Human activities in harbours (e.g., vessel docking, fishing, 

maintenance work) can exacerbate effects of artificial structures on the biotic 
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communities by physically dislodging communities from substrate, creating bare space 

for new colonisers to exploit and thereby influencing successional dynamics of the 

community (e.g., removal of predators, loss of canopy algae; Stachowicz et al., 1999; 

Byers, 2002). Additionally, ports are usually located within sheltered bays or estuaries, 

which by nature, experience greater fluxes in temperature and salinity (Whitehead et al., 

2009), nutrients (Statham, 2012) and pollution (Stark, 1998; Johnston et al., 2017; 

Hitchcock and Mitrovic, 2019) compared to open coasts. Additionally, shipping 

activities introduce pollutants from waste discharges (Butt, 2007), fuel spillages 

(Walkup, 1971; Simpson et al., 1995) and anti-fouling paints (Floerl and Inglis, 2005; 

Turner, 2010). These physical and chemical stressors may synergistically interact, 

leaving severely disturbed areas vulnerable to more resilient and opportunistic invaders 

(Stachowicz et al., 1999; Piola and Johnston, 2008; Airoldi and Bulleri, 2011; Johnston 

et al., 2017). 

Depending on their primary function, artificial structures in intertidal habitats 

can be built in the low-, mid- or high-shore (Dugan et al., 2011). For example, seawalls 

are shoreline structures built directly abutting land so as to separate land and water, 

primarily functioning to retain land and prevent erosion (Govarets and Lauwaert, 2009; 

Chapman and Underwood, 2011; Dugan et al., 2011). They can be placed in mid- or 

upper-intertidal habitats, or span the entire intertidal zone, remaining connected to the 

sea at low tide (Dugan et al., 2011). Shore-perpendicular groynes however are built to 

preserve the width of sandy beaches by preventing sediment transport away from the 

concerned area (Dugan et al., 2011). These structures can reach into the lower intertidal 

or shallow subtidal zones, retaining a constant connection to the sea even at extreme 

low water. There is general agreement that biodiversity is greater in the lower compared 

to the upper intertidal zone on artificial structures (Moschella et al., 2005; Chapman and 

Underwood, 2011; Dugan et al., 2011; Firth et al., 2016a), likely due to longer 
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immersion periods which is when structures are exposed to the pool of colonising 

species. Little research, however, has been done to investigate occurrence of NNS on 

structures that maintain a constant connection to the sea compared to structures that are 

completely exposed at low water. Such research may inform the study of artificial 

structures as ‘stepping stones’ for NNS spread between distant locations (Floerl and 

Inglis, 2005; Airoldi et al., 2015b; De Mesel et al., 2015), which may disrupt natural 

ecological connectivity (Trakhtenbrot et al., 2005; De Mesel et al., 2015; Bishop et al., 

2017). Providing additional hard substrate where it is naturally absent represents a 

potential pathway by which opportunistic and non-native fouling species can proliferate 

in an otherwise uninhabitable environment (Sammarco et al., 2004; Floerl et al., 2009; 

De Mesel et al., 2015; Bishop et al., 2017). This knowledge will be critical as coastal 

urbanisation continues and decisions will be made regarding coastal development to 

work with nature and support native biotic communities (Dafforn, 2017; Mayer-Pinto et 

al., 2017). 

Interest in the field of urban ecology is growing, as humans are increasingly 

aware of their impact on the natural environment and realising the value of natural 

capital (i.e., essential ecosystem services for humans; Schultz et al., 2015; Norton et al., 

2016; Ouyang et al., 2016). Urban ecology strives to understand the relationship 

between living organisms and the surrounding urban environment, in particular, 

examining anthropogenic effects on biological communities (Collins et al., 2000; 

Alberti et al., 2003; Alberti, 2005). In urbanised coastal environments, there have been a 

multitude of surveys conducted to investigate the differences in biodiversity between 

natural and artificial intertidal habitats (Chapman, 2003; Bulleri and Chapman, 2004; 

Knott et al., 2004; Airoldi et al., 2005a; Bulleri et al., 2005; Moschella et al., 2005; Firth 

et al., 2016c; Mayer-Pinto et al., 2018b). Information from these studies should serve as 

a benchmark against which to measure change to biotic communities over time, and is 
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essential in informing management decisions concerning ecological engineering of 

artificial coastal structures. Ecological engineering (or “eco-engineering”) is an 

approach that combines ecology and engineering techniques to manage hard engineered 

structures for ecological and societal benefits (Odum, 1962; Mitsch and Jorgensen, 

1989; Mitsch, 1996; Milton, 2003; Odum and Odum, 2003). Increasing interest in eco-

engineering of coastlines in urbanised harbours (Cordell et al., 2017; World Harbour 

Project, 2018; Living Seawalls, 2019) has heightened the need for a variety of 

ecological survey information at local and regional scales (Mayer-Pinto et al., 2017). 

Studies investigating the distribution and assemblage of NNS on artificial 

structures in intertidal habitats are lacking (but see Arenas et al., 2006a; Ashton et al., 

2006; Bishop et al., 2013; Bishop et al., 2015a; Bishop et al., 2015b for studies in 

subtidal habitats ), and even less attention has been paid to understanding differences in 

NNS assemblages between natural and artificial intertidal habitats (but see Glasby et al., 

2007; Dafforn et al., 2012 for natural and artificial comparison in subtidal habitats). It 

has been well documented that NNS invade and proliferate on subtidal artificial 

structures (i.e., floating pontoons; Arenas et al., 2006a; Ashton et al., 2006; Glasby et 

al., 2007; Dafforn et al., 2012; Bishop et al., 2015a; Bishop et al., 2015b; Wood et al., 

2015; Foster et al., 2016). This should not mean, however, that surveys focus on these 

structures alone, as there have been documented cases of NNS ‘spill over’ into natural 

habitats (Coutts and Forrest, 2007; Valentine et al., 2007; Carman and Grunden, 2010; 

Epstein and Smale, 2018). Understanding the mechanisms underpinning the diversity 

deficit and difference in NNS assemblages between natural and artificial habitats is 

critical to develop a robust foundation of evidence upon which to base eco-engineering 

and coastal management decisions.   

Initial records of introduction to the British Isles are often from the south coast 

of England due to its proximity to Europe and high volume of local (usually 
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recreational) and international traffic (Fletcher and Manfredi, 1995; Arenas et al., 

2006a; Minchin et al., 2013; Defra, 2015; Foster et al., 2016; Defra, 2019). The south 

coast of England can be separated into three regions: West, Central and East (Bishop et 

al., 2015b). International shipping, industry, and cruise traffic is greatest in the Central 

region (i.e., Poole, Southampton and Portsmouth [the Solent]; Marine Traffic, 2019) . In 

the East, Dover is UK’s closest connection to France, and thus supports cargo and 

passenger ships from Calais (Marine Traffic, 2019). In the West, there is less 

international shipping than in the Central region, but two of the harbours support 

military bases (i.e., Falmouth and Plymouth; Marine Traffic, 2019). Previous surveys in 

subtidal habitats in these areas have found higher occurrences of NNS in the Central 

region compared to the other two regions (Bishop et al., 2015b; Foster et al., 2016), 

suggesting that shipping patterns may influence the number of NNS found in each of 

the three regions. Moreover, it is likely that NNS which have become established in 

Europe have crossed the English Channel from Europe to the UK (Eno et al., 1997). 

One study found that marinas in the north of France shared a similar suite of NNS to 

marinas in the southwest of England, with higher abundances of NNS in France (Bishop 

et al., 2015a). This suggests the general movement of NNS has been from France across 

the Channel to England. For example, the orange-tipped sea squirt, Corella eumyota 

Traustedt, 1882, was first recorded in Gosport (Portsmouth area) in 2004, but has been 

known in France since 2002 (Bishop et al., 2015b). Similarly, the red ripple bryozoan, 

Watersipora subatra (Ortmann, 1890), was first discovered in Plymouth and Poole in 

2008, but was already established in France since 1999 (Bishop et al., 2015a; Bishop et 

al., 2015b). The current study builds on existing background knowledge from previous 

studies conducted in subtidal habitats along the south coast of England (i.e., Arenas et 

al., 2006a; Minchin et al., 2013; Bishop et al., 2015a; Bishop et al., 2015b). 
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Rapid Assessment Surveys (RAS) are used as a practical method of covering a 

large number of locations in a reasonable amount of time, being particularly useful in 

detecting new arrivals of non-native species and tracking their spatio-temporal spread 

(Pederson et al., 2005; Arenas et al., 2006a; Bishop et al., 2015a; Bishop et al., 2015b). 

RAS are typically a qualitative approach, involving timed searches of targeted areas and 

habitats (i.e., undersides of floating pontoons). In biodiversity surveys, however, the 

most common means of gathering data is predominantly through quantitative quadrat 

sampling (Chapman, 2003; Chapman, 2006; Airoldi and Bulleri, 2011; Lai et al., 2018), 

often avoiding topographically complex surfaces (Bulleri et al., 2005; Dafforn et al., 

2012; Firth et al., 2016c). Recording of species using the latter strategy, however, 

depends entirely on where the quadrats fall, and most likely fails to capture presence of 

rare species and/or species that live in complex and hidden habitats such as cracks, rock 

pools and the undersides of boulders. To address the current knowledge gaps 

concerning occurrence of NNS on natural rocky shores and artificial structures in 

intertidal habitats, we conducted Rapid Assessment Surveys of NNS in intertidal natural 

and artificial habitats using both qualitative and quantitative techniques within 11 

harbours along the south coast of England to test the following hypotheses:  

1. Total and mean NNS richness will be greater, and NNS assemblage composition 

will be different in artificial compared to natural habitats (Study 1). 

2. Total and mean NNS richness and NNS composition in artificial habitats will 

differ among harbours and regions; specifically, total and mean richness will be 

highest in the Central region (Study 2). 

3. The number of NNS per harbour and region will be positively correlated with 

average number of arriving vessels (Study 2). 

4. Artificial structures that maintained a connection to the sea at low water will 

support greater total and mean NNS richness, and different assemblage 
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composition, compared to structures that were not connected to the sea at low 

water (Study 3).  

 

2.2 Materials and methods 

2.2.1 Study region 

The harbours along the south coast of England are ideally positioned in the 

English Channel for supporting international and regional shipping traffic, military 

traffic and ferries to continental Europe. Major international shipping ports along the 

south coast include Southampton, Portsmouth and Dover, while major cross-channel 

ferry terminals are located in Plymouth, Poole, Southampton, Portsmouth and Dover 

(Table 2-1; Figure 2-1; Marine Traffic, 2019). This area has a long history of supporting 

wartime activities, and many of these ports still support active military bases (i.e., 

Falmouth, Plymouth, Poole and Portsmouth; The Royal Navy, 2019). At the nearest 

point between England and France, the distance is only 33 km (i.e., the Straight of 

Dover; Sea Routes, 2019). Plymouth, Southampton and Portsmouth are major hubs for 

yachting enthusiasts from around Europe and the world, while Poole and Southampton 

are proximal to shellfish aquaculture sites which have had a history of international 

shellfish translocation (Arenas et al., 2006a); an activity that is known to be a major 

pathway for the introduction of NNS (Minchin, 1996; Ruesink et al., 2005; Molnar et 

al., 2008). Consequently, the south coast of England has traditionally been susceptible 

to invasions and is known as the point of introduction for many NNS from Europe and 

around the world (Farnham et al., 1973; Fletcher and Manfredi, 1995; Eno et al., 1997; 

Bishop et al., 2015a; Bishop et al., 2015b). 

In this study, harbours were grouped into geographic regions following Bishop et al. 

(2015b). Harbours in the ‘West’ are located west of Portland Bill. ‘Central’ harbours are 

located within the Solent region, including Poole Harbour. ‘East’ harbours are located 
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east of the Solent (Table 2-1). All harbours had artificial substrata, but only harbours in 

the West had natural rocky shore (contained within the larger natural harbour) for 

comparison. Therefore, sites east of Portland Bill were not included in the natural and 

artificial comparison study (Study 1; Appendix 1).
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Table 2-1. Details for NNS RAS conducted along the south coast of England, including survey details, type of vessels by harbour and harbour 

characteristics. Natural and artificial habitat comparisons were only done in the West region (FAL, LOE, PLY, SAL, TOR). Vessel information was 

obtained from Marine Traffic (2019) and World Port Source (2019). *Continental passenger ferries travel from south England to northern Europe. 

†Dominant natural habitat is rocky shore (‘RS’) or soft bottom (‘SB’) habitat. ‡Main features include asize of harbour (‘v. sm’ = very small, ‘sm’ = 

small, ‘med’ = medium and ‘lg’ = large); btype of harbour (natural coastal inlet, coastal breakwater); cfreshwater input; ddepth of main channel 

(‘shallow’ = < 5 m, ‘average’ = 5-9 m and ‘deep’ = > 9 m) and eaverage tidal range as recorded in July 2018 from Tide Plotter (v. 5.8, Belfield 

Software Ltd). Information on size and type of harbour, as well as depth of main channel were obtained from World Port Source (2019). 

 
 

Har 

code

Harbour/ 

city
Region

Int'l shipping 

(types of 

destinations) 

Cont'l 

passenger 

ferry (no. of 

destinations)

*

Int'l cruise 

lines (types 

of 

destinations)

Military

Fishing 

vessels & 

leisure 

craft

Dom nat 

hab†
Main features‡

FAL Falmouth West 0 0 0 ✓ ✓ RS meda; natural coastal inletb; moderate inputc; averaged; 3.6 me

LOE Looe West 0 0 0 0 ✓ RS v. sma; natural coastal inletb; major inputc; shallowd; 3.5 me

PLY Plymouth West Global 2 0 ✓ ✓ RS meda;  natural coastal inletb; moderate inputc; deepd; 3.6 me

SAL Salcombe West 0 0 0 0 ✓ RS v. sma; natural coastal inletb; minimal inputc; shallowd; 3.3 me

TOR Torbay West 0 0 0 0 ✓ RS v. sma; coastal breakwaterb; no inputc; averaged; 3.0 me

POL Poole Central 0 1 0 0 ✓ SB sma; natural coastal inletb; l imited inputc; shallowd; 1.0 me

SHN Southampton Central Global 0 Global 0 ✓ SB lga; natural coastal inletb; moderate inputc; averaged; 2.9 me

PMH Portsmouth Central 0 6 0 ✓ ✓ SB meda; natural coastal inletb; l imited inputc; average; deepd; 3.1 me

SHM Shoreham East 0 0 0 0 ✓ SB v. sma; natural coastal inletb; major inputc; shallowd; 4.5 me

FOL Folkestone East 0 0 0 0 ✓ SB v. sma; coastal breakwaterb; no inputc; averaged; 5.2 me

DOV Dover East European 2 European 0 ✓ SB sma; coastal breakwaterb; no inputc; averaged; 4.7 me

Survey details Type of vessels Harbour characteristics
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 Figure 2-1. (A) Map of the British Isles, with the English Channel indicated in the black box. (B) Continental 

ferry routes across the English Channel are shown by the light dashes and internationally sailing vessels (cargo 

ships or luxury cruise liners) are shown by the dark dashes. Lines representing shipping routes do not reflect 

the numbers of vessels arriving and departing. *International cargo ships and cruise liners include only those 

vessels that travel outside of northern Europe (e.g., Dover supports cargo-shipping activities, but these ships 

regularly sail only to European destinations). Southampton and Plymouth are the only harbours with ships that 

sail internationally on a regular basis (dark dashes). Harbours within the West region include Falmouth, Looe, 

Plymouth, Salcombe and Torbay. Harbours within the Central region include Poole, Southampton and 

Portsmouth. Harbours within the East region include Shoreham, Folkestone and Dover. See Table 2-1 for 

Harbour codes. Information was obtained from Marine Traffic (2019) and World Port Source (2019). 



 

43 

 

2.2.2 Sampling methods  

2.2.2.1 Study 1: NNS richness and assemblage composition in natural 

compared to artificial habitats 

To investigate differences of occurrence of NNS between natural and artificial 

habitats, 10 surveys (‘Sites’) in natural habitats (i.e., rocky shores) and 11 surveys 

(‘Sites’) in artificial habitats (artificial structures) in the West region were conducted 

(Appendix 1; Table 1, 2) between May and July 2018. Natural sites were chosen based 

on location to closest harbour and were as sheltered as possible to reduce the influence 

of wave exposure gradients on assemblage composition. Water temperature and salinity 

were recorded at each site during time of sampling (low water of spring tides). Artificial 

structures surveyed included seawalls composed of locally sourced rock. There was no 

restriction placed on size of structure. 

To capture NNS richness and abundance, a combined approach that consisted of 

employing quantitative and semi-quantitative techniques was used; native biota were 

not quantified. Quantitative techniques involved haphazardly placing 20 quadrats (25 x 

25 cm) in the lower intertidal within a 10 x 10 m area. Often, this area was condensed 

because the steeper slope of artificial structures resulted in reduced area available to 

survey. All NNS visible to the naked eye within the quadrats were identified and 

quantified. The surveyor was trained by expert taxonomists who specialise in NNS 

identification. Voucher specimens and photographs were transported back to the 

laboratory where experts confirmed the identities of NNS. To positively identify and 

quantify the non-native barnacle, Austrominius modestus (Darwin, 1854), 5 x 5 cm 

photo-quadrat images (n = 20) were taken in the densest barnacle zone and photographs 

were later analysed using ImageJ (Schneider et al., 2012). Slope and substrate were 

standardised by surveying vertical or sloping substrate (≥ 45° angle) and avoiding 

topographically complex surfaces (i.e., gaps, grooves, pits, crevices, rock pools). To 
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locate rare species, a 30-minute timed search was conducted across the study area, 

including complex surfaces and microhabitats that were avoided during the quantitative 

assessment. A semi-quantitative assessment of overall abundance of each NNS was 

made on a scale of 0-3 (0 = absent, 1 = rare-occasional, 2 = frequent-common, 3 = 

abundant-superabundant; Bishop et al., 2015b). Thus, the quantitative method produced 

20 quadrat replicates per site, while the semi-quantitative technique produced one 

abundance score for each NNS per site. Species that could not be identified in the field 

(e.g., bryozoans such as Tricellaria inopinata (d'Hondt & Occhipinti Ambrogi, 1985) 

and Bugulina spp.) were preserved in 70% ethanol and transported back to the 

laboratory where they were examined using microscopy.  

2.2.2.2 Study 2: Comparison of NNS richness and assemblage composition 

among harbours and regions and general description of NNS present on artificial 

structures   

Eleven harbours spanning three regions across the south coast of England were 

surveyed (West: Falmouth, Looe, Plymouth, Salcombe, Torbay; Central: Poole, 

Southampton, Portsmouth; East: Shoreham, Folkestone, Dover) between May and 

October 2018. As many artificial structures (‘Sites’) as possible with public access were 

surveyed in each harbour, with no restriction on size of structure. Artificial structures 

surveyed extended into the lower intertidal zone when low water was ≤ 1 m, and 

included seawalls, breakwaters, groynes, discharge pipes and piers. Some of these 

structures extended into the subtidal zone. The same sampling methodologies used for 

Study 1 were also followed for Study 2. 
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2.2.2.3 Study 3: NNS richness and assemblage composition on groynes 

constantly connected to the sea compared to groynes not constantly connected to 

the sea 

To determine if there was a difference in NNS richness and assemblage 

composition between artificial structures with a constant connection to the sea 

compared to structures that are exposed at low water, eight rock armour groynes were 

surveyed on Sandbanks Beach just outside Poole Harbour (50.686761, -1.938103) 

during mean low water spring tides (approx. 0.3 m above CD) in September 2018. Four 

of these groynes retained a connection to the sea even at extreme low water, while the 

other four were fully exposed at low water (Figure 2-2). The same sampling 

methodologies used for Study 1 were also followed for Study 3. Quadrats were placed 

at the same tidal height across all groynes (i.e., lower intertidal). Comparable tidal 

heights on each groyne were determined by moving between structures and noting the 

position of the receding water on groynes. Groynes were positioned perpendicular to the 

beach, therefore both sides of the structures were sampled using both sampling 

techniques. 
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Figure 2-2. Example of an “unconnected” groyne that becomes exposed at low water 

(foreground) compared to a “connected” groyne that retains a constant connection with 

the sea even at low water (background).  

 

2.2.3 Statistical analyses 

2.2.3.1 Study 1: NNS richness and assemblage composition in natural 

compared to artificial habitats 

To compare NNS richness and assemblage composition between natural and 

artificial habitats, comparisons were made between 10 natural sites and 11 nearby 

artificial sites. NNS richness and assemblage composition were assessed using 

quantitative and semi-quantitative data. Two-way nested designs with fixed factor 

Habitat (2 levels: natural, artificial) and random factor Site (nested in Habitat) were 

employed. PERMANOVA tests were based on 9999 permutations of residuals under a 

reduced model. Tests for differences were conducted in PRIMER v6 with the 

PERMANOVA+ add-on using the PERMANOVA routine (PRIMER-E Ltd, Plymouth, 

UK; Anderson et al., 2008), and ordination of samples were visualised using two-

dimensional non-metric multidimensional scaling (nMDS) plots. Contributions to 
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dissimilarities among regions from each species was determined using the similarity 

percentages routine (SIMPER).  

2.2.3.2 Study 2: Comparison of NNS richness and assemblage composition 

among harbours and regions and general description of NNS present on artificial 

structures 

Differences in NNS richness and assemblage composition among harbours and 

regions were assessed using data from both the quantitative and semi-quantitative 

surveys. For both sampling methods, where abundance information was used, data were 

fourth-root transformed to down-weight the influence of very abundant species 

(Anderson et al., 2008). Bray-Curtis dissimilarly matrices were then computed, and 

permutational multivariate analysis of variance tests (PERMANOVA; Anderson, 2001) 

were used to test for differences in species richness and assemblage composition. For 

quantitative data, a three-way nested design was used for each test with random factor 

Site (number of levels depended on number of surveys done in each harbour) nested in 

fixed factor Harbour (10 levels: Falmouth, Looe, Plymouth, Torbay, Poole, 

Southampton, Portsmouth, Shoreham, Folkestone, Dover) nested in fixed factor Region 

(3 levels: West, Central, East). As quantitative sampling was not undertaken in 

Salcombe, only 10 harbours were included in quantitative analyses. Because there was 

not replication at the ‘Site’ level when semi-quantitative data were analysed (i.e., there 

was one abundance value per site), two-way nested designs with fixed factor Harbour 

(11 levels: Falmouth, Looe, Plymouth, Salcombe, Torbay, Poole, Southampton, 

Portsmouth, Shoreham, Folkestone, Dover) nested in fixed factor Region (3 levels) 

were used. Correlations between NNS richness and number of vessels per harbour and 

region were assessed using Spearman Rank-order correlations in SigmaPlot v13. 

Information about vessel type and the average number of vessels per harbour over a 60-
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day period as a proxy for boat traffic in general was obtained from the Marine Traffic 

website (Marine Traffic, 2019). 

2.2.3.3 Study 3: NNS richness and assemblage composition on groynes 

constantly connected to the sea compared to groynes not constantly connected to 

the sea 

Differences in NNS species richness and assemblage composition between 

“connected” and “unconnected” groynes were analysed using data from both the 

quantitative and semi-quantitative surveys. One-way permutational multivariate 

analysis of variance tests (PERMANOVA; Anderson, 2001) were used to test for 

differences in species richness and assemblage composition between “connected” and 

“unconnected” groynes with fixed factor Connection (2 levels: connected, not 

connected) after Bray-Curtis dissimilarity matrices were computed. Where abundance 

information was used, data were square root transformed to down-weight the influence 

of very abundant species (Anderson et al., 2008).  

 

2.3 Results 

2.3.1 General overview 

Water temperature and salinity collected during surveys ranged from 12.5-25.2 

°C and 29-35 psu, respectively (Appendix 1, Table 2). In Study 1, a total of 15 NNS 

were recorded across artificial and natural habitats, with artificial habitats supporting 

more NNS (12 taxa) than natural habitats (9 taxa). In Study 2, a total of 26 NNS were 

recorded in surveys conducted on artificial structures (Table 2-2), with Poole and the 

Central region supporting the greatest mean and total NNS richness. In Study 3, a total 

of 13 NNS were recorded, with 13 NNS found on groynes with a constant connection to 

the sea, while only 3 NNS were found on groynes that were not connected at low water. 
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Table 2-2. Summary table of NNS recorded during the quantitative and semi-quantitative surveys, and within natural and artificial habitats, as well as 

the number of harbours occupied. NNS included under the ‘Artificial’ column are species recorded in all artificial habitats during Study 1 and 2, but 

asterisks (*) indicate NNS that were also recorded on artificial structures in the natural and artificial habitats comparison study (Study 1).  
†Botrylloides sp. indet. represents a species of Botrylloides that is likely either B. diegensis or B. violaceus but could not be positively distinguished 

between the two (Bishop et al., 2015b). ††Crepidula fornicata was regularly observed at the base of artificial structures amongst rock rubble; it was 

rarely seen directly on artificial structures. C. fornicata was included in all analyses. 

 

  
Total no. of 

harbours 
Quantitative 

Semi-
quantitative 

Natural Artificial 

Bryozoa           

Watersipora subatra (Ortmann, 1890)  7 ✓ ✓ ✓ ✓* 

Tricellaria inopinata d'Hondt & Occhipinti Ambrogi, 1985  5 ✓ ✓   ✓* 

Bugulina stolonifera (Ryland, 1960) 2 ✓     ✓ 

Bugulina simplex (Hincks, 1886)  1   ✓   ✓ 

Bugula neritina (Linnaeus, 1758)  3 ✓ ✓   ✓ 

Ascidian           

Didemnum vexillum Kott, 2002 2 ✓ ✓   ✓ 

Botrylloides diegensis Ritter & Forsyth, 1917 3 ✓ ✓   ✓ 

Botrylloides violaceus Oka, 1927 3 ✓ ✓   ✓* 

Botrylloides sp. indet.† 3 ✓ ✓   ✓* 

Aplidium cf. glabrum (Verrill, 1871)  2 ✓ ✓   ✓ 

Styela clava Herdman, 1881  6 ✓ ✓   ✓* 

Corella eumyota Traustedt, 1882  1   ✓   ✓ 

Mollusca           

Magallana gigas (Thunberg, 1793)  10 ✓ ✓ ✓ ✓* 

Crepidula fornicata (Linnaeus, 1758) ††  5 ✓ ✓   ✓* 

Cnidaria           

Diadumene lineata (Verrill, 1869) 1   ✓   ✓ 
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Arthropoda           

Austrominius modestus (Darwin, 1854) 11 ✓ ✓ ✓ ✓* 

Annelida           

Ficopomatus enigmaticus (Fauvel, 1923)  2   ✓   ✓ 

Ochrophyta           

Undaria pinnatifida (Harvey) Suringar, 1873  2 ✓ ✓ ✓ ✓ 

Sargassum muticum (Yendo) Fensholt, 1955  6 ✓ ✓ ✓ ✓* 

Colpomenia peregrina Sauvageau, 1927  4 ✓ ✓ ✓ ✓* 

Rhodophyta           

Grateloupia turuturu Yamada, 1941  2 ✓ ✓ ✓ ✓ 

Chrysymenia wrightii (Harvey) Yamada, 1932  1   ✓   ✓ 

Caulacanthus okamurae Yamada, 1933  8 ✓ ✓ ✓ ✓* 

Bonnemaisonia hamifera Hariot, 1891  1   ✓   ✓* 

Asparagopsis armata Harvey, 1855  1   ✓ ✓   

Chlorophyta           

Codium fragile subsp. fragile (Suringar) Hariot, 1889  1   ✓   ✓ 

Total number of species 26 18 25 9 25 
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2.3.2  Study 1: NNS richness and assemblage composition in natural compared 

to artificial habitats 

Of the 15 NNS that were recorded along the southwest coast of England (Table 

2-2), nine and 12 were recorded in natural (60% of total) and artificial habitats (80% of 

total), respectively. Species that were unique to natural habitat included the brown alga, 

Undaria pinnatifida (Harvey) Suringar, 1873 and the red algae, Grateloupia turuturu 

Yamada, 1941 and Asparagopsis armata Harvey, 1855. Species unique to artificial 

habitat included the erect bryozoan, T. inopinata, the orange cloak sea squirt, 

Botrylloides violaceus Oka, 1927, an unidentified Botrylloides species, Botrylloides sp. 

indet. (Bishop et al., 2015b), the leathery sea squirt, Styela clava Herdman, 1881, the 

slipper limpet, Crepidula fornicata (Linnaeus, 1758) and the red alga, Bonnemaisonia 

hamifera Hariot, 1891 (Figure 2-2). The artificial structures sampled in this study 

consisted of ten seawalls composed of medium to large natural stone and one seawall 

composed of large Portland concrete blocks. The seawalls made of natural stone 

supported more NNS (10 species) compared to the seawall composed of Portland 

concrete (8 species). Semi-quantitative techniques found 15 NNS across natural and 

artificial habitat, while quantitative techniques yielded only eight species. The use of 

quantitative techniques alone failed to record B. violaceus, C. fornicata, U. pinnatifida, 

G. turuturu, A. armata, B. hamifera and the brown alga, Sargassum muticum (Yendo) 

Fensholt, 1955.  
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Figure 2-3. The number of sites occupied by non-native species along the southwest 

coast of England within natural and artificial habitats. 

 

Statistical analysis of the quantitative data found that mean NNS richness per site 

was significantly greater in artificial compared to natural habitats (Table 2-3a, Figure 2-

4a), and similarly, assemblage composition of NNS varied significantly between natural 

and artificial habitats (Table 2-3a). Statistical analysis of the semi-quantitative data 

showed that the mean number of NNS per site did not differ significantly between 

habitats (Table 2-3b, Figure 2-4b), although community assemblage did differ (Table 2-

3b, Figure 2-5). SIMPER analysis of quantitative data showed that over 80% of 

dissimilarity in assemblage composition between natural and artificial habitats was 

attributed to A. modestus (32.6%), W. subatra (30.9%) and the red alga, Caulacanthus 

okamurae Yamada, 1933 (23.1%), with all three species more abundant in artificial 

habitats (Table 2-4a). SIMPER analysis of semi-quantitative data revealed that over 

50% of dissimilarity in assemblage composition between natural and artificial habitats 

was attributable to four species: S. muticum (17.3%), the red ripple bryozoan, W. 

subatra (14.5%), the brown alga, Colpomenia peregrina Sauvageau, 1927 (12.4%) and 

the Pacific oyster, Magallana gigas (Thunberg, 1793) (11.8%). S. muticum and C. 
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peregrina were more abundant in natural habitats, while W. subatra and M. gigas were 

more common in artificial habitats (Table 2-4b). 

 

Table 2-3. PERMANOVA results comparing NNS richness and assemblage 

composition between natural and artificial habitats using (a) quantitative data and (b) 

semi-quantitative data. Significant p-values are bolded.  

(a) Quantitative data 

Two-way PERMANOVA comparing species richness between natural 
and artificial habitats. 

Source df SS MS Pseudo-F P(perm) 

Habitat 1 18976 18976 7.1199 0.0009 

Site(Habitat) 18 47985 2665.8 33.327 0.0001 

Residual 380 30396 79.989                  

Total 399 97274                  
Transformation: pres/abs     

      

Two-way PERMANOVA comparing assemblage composition between 
natural and artificial habitats. 

Source df SS MS Pseudo-F P(perm) 

Habitat 1 24297 24297 6.3912 0.0006 

Site(Habitat) 18 68443 3802.4 16.724 0.0001 

Residual 380 86397 227.36                  

Total 399 179000                         

Transformation: fourth root    

      

      

(b) Semi-quantitative data 

One-way ANOVA comparing species richness between natural and 
artificial habitats. 

Source df SS MS Pseudo-F P(perm) 

Habitat 1 94.912 94.912 0.59709 0.4781 

Residual 19 3020.2 158.96                  

Total 20 3115.1          

Transformation: pres/abs     

      

One-way PERMANOVA comparing assemblage composition between 
natural and artificial habitats. 

Source df SS MS Pseudo-F P(perm) 

Habitat 1 4854.7 4854.7 9.041 0.0001 

Residual 19 10202 536.96                  

Total 20 15057                  
Transformation: fourth root    

 



 

54 

 

 

 

Figure 2-4. Comparison of mean number of NNS per site in natural and artificial 

habtitat using (a) quantitative and (b) semi-quantitative sampling techniques. NNS 

richness was significantly greater in artifical compared to natural habitats using 

quantitative techniques (p = 0.0009) but not using semi-quantitative methods (natural 

sites, n = 10; artificial sites, n = 11). Error bars show standard error.  

 

 

 

 

Figure 2-5. Non-metric multi-dimensional scaling plot (nMDS) showing significant 

variation in assemblage composition of NNS between natural and artificial habitats 

recorded from Rapid Assessment Surveys (RAS). Assemblage composition between the 

two habitats varied significantly (p = 0.0001). The blue envelopes indicate that the 

assemblages within the envelopes are 75% similar. 
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Table 2-4. Differences in average abundances (indicated by > or <) and contributions 

(%) of individual species to assemblage composition dissimilarities between natural and 

artificial habitats using (a) quantitative and (b) semi-quantitative techniques. 

Consistency of contribution is shown by ‘Diss/SD’, which is the dissimilarity divided 

by standard deviation of contributions across all pairs of samples. 

(a) 
Average dissimilarity = 
42.0% Natural >/< Artificial Contr% Diss/SD 

  Austrominius modestus (%) 0.8 < 1.0 32.6 0.4 
  Watersipora subatra (%) 0.0 < 0.5 30.9 0.6 
  Caulacanthus okamurae (%) 0.2 < 0.3 23.1 0.5 
              

(b) 
Average dissimilarity = 
50.0% Natural >/< Artificial Contr% Diss/SD 

  Sargassum muticum (%) 1.0 > 0.2 17.3 1.7 
  Watersipora subatra (%) 0.2 < 0.8 14.5 1.3 
  Colponemia peregrina (%) 0.7 > 0.2 12.4 1.1 
  Magallana gigas (%) 0.6 < 1.0 11.8 1.0 
  Caulacanthus okamurae (%) 1.1 > 0.8 7.3 0.8 
  Asparagopsis armata (%) 0.3 > 0.0 6.6 0.6 
  Undaria pinnatifida (%) 0.3 > 0.0 5.5 0.6 

 

 

2.3.3  Study 2: Comparison of NNS richness and assemblage composition 

among harbours and regions and general description of NNS present on artificial 

structures   

Overall, 26 NNS were recorded on artificial structures across 11 harbours along 

the south coast of England (Table 2-2). The barnacle, A. modestus, had the highest 

frequency of occurrence (43 sites), while the erect bryozoan, Bugulina simplex (Hincks, 

1886), C. eumyota, the red alga, Chrysymenia wrightii (Harvey) Yamada, 1932, the 

green alga, Codium fragile subsp. fragile (Suringar) Hariot, 1889 and U. pinnatifida 

were only found at a single site each (Figure 2-6). Groynes composed of large natural 

boulders (n = 4) supported the greatest number of NNS at 17, while seawalls composed 

of Portland cement mixed with stone (n = 2) supported the fewest number of NNS at 6 

species. Metal pipes and piers (n = 5) supported 14 NNS, seawalls composed of 

medium and large natural stone (n = 12) supported 13 NNS, wave breaker walls 
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composed of metal sheet piling (n = 5) and reinforced concrete structures (n = 3) both 

supported 12 NNS, wooden structures that included wave break walls and piers (n = 7) 

supported 11 NNS and structures composed of concrete, which included bridge support 

structures and old boat ramps (n = 5), supported 10 NNS. Results are reported from both 

sampling methods, but only the semi-quantitative data are used to produce figures. 
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Figure 2-6. Frequency of occurrence of NNS recorded from Rapid Assessment Surveys (RAS) on artificial structures along the south coast 

of England, with year of first record in the British Isles indicated above the bar. A dash above the bar indicates where dates could not be 

found or are not applicable (i.e., Botrylloides sp. indet. represents a Botrylloides spp. that is likely either B. diegensis or B. violaceus but 

could not be positively distinguished between the two). 
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Quantitative sampling found that the greatest total number of NNS was in Poole, 

while Looe and Folkestone supported the fewest NNS. The total number of NNS was 

greatest in the Central region and lowest in the West (Table 2-5). Statistical analysis of 

the quantitative data revealed that mean NNS richness and assemblage composition 

were significantly different among harbours and regions (Table 2-6a). For NNS 

richness, post-hoc pairwise comparisons showed significantly greater numbers of NNS 

in Torbay compared to Looe (p = 0.0084) in the West, Southampton compared to 

Portsmouth (p = 0.003) in the Central region and Shoreham compared to Folkestone (p 

= 0.0045) in the East. On average, significantly more NNS were found in the Central 

region compared to the West and East regions. For NNS assemblage composition, post-

hoc pairwise comparison tests revealed significant variation between Falmouth and 

Looe (p = 0.0232), Falmouth and Plymouth (p = 0.0292), Falmouth and Torbay (p = 

0.0244) and Looe and Torbay (p = 0.0073) in the West, Poole and Southampton (p = 

0.0090) and Southampton and Portsmouth (p = 0.0002) in the Central region and 

Shoreham and Folkestone (p = 0.0034) in the East. Post-hoc pairwise tests for NNS 

assemblage composition comparing regions showed that the West and Central (p = 

0.0012) and the Central and East (p = 0.0012) regions differed significantly. SIMPER 

analysis found that the average dissimilarity in assemblage composition was 54.5% 

between West and East regions, 60.0% between West and Central regions and 68.5% 

between Central and East regions (Table 2-7a). The erect bryozoan, Bugula neritina 

(Linnaeus, 1758) contributed the most to the dissimilarity between West and Central 

(15%; greater in Central), while W. subatra contributed the most to dissimilarities 

between West and East (37.3%; greater in West) and Central and East regions (22.1%; 

greater in Central). 

Statistical analysis of semi-quantitative data revealed a significant difference in 

mean NNS richness among regions, with Central supporting more NNS, on average and 
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in total, per harbour compared to West and East (Table 2-5, 2-6b; Figure 2-7). There 

were no significant differences, however, in mean NNS richness among harbours within 

regions (Table 2-6b). Assemblage composition varied significantly among both 

harbours and regions (Table 2-6b; Figure 2-8). Post-hoc pairwise comparisons revealed 

significant variation in assemblage composition between Falmouth and Plymouth (p = 

0.0355) in the West region and Poole and Portsmouth (p = 0.0131), Poole and 

Southampton (p = 0.0014) and Portsmouth and Southampton (p = 0.0013) in the Central 

region. Post-hoc pairwise tests comparing regions showed that the West and Central (p 

= 0.0144) and Central and East assemblage compositions (p = 0.0326) differed 

significantly (Figure 2-8). SIMPER analysis showed that the average dissimilarity in 

assemblage composition was 38.5% between West and East, 57.0% between West and 

Central and 64.9% between Central and East regions (Table 2-7b). W. subatra 

contributed the most to the dissimilarity between West and East regions (25.4%; greater 

in West), while C. okamurae contributed the most to dissimilarities between West and 

Central (11.4%; greater in West) and Central and East regions (1.6%; greater in East).  

 

Table 2-5. Summary of NNS found using the quantitative and the semi-quantitative 

techniques by harbour and region. A dash (-) represents no survey undertaken. 
 

    Total no. NNS 

Harbour  Region Quantitative Semi-quantitative 

    harbour region harbour region 

FAL West 7 

8 

9 

12 

LOE West 1 3 

PLY West 4 4 

SAL West - 4 

TOR West 5 7 

POL Central 14 

17 

15 

22 SHN Central 11 12 

PMH Central 12 17 

SHM East 3 

5 

5 

6 FOL East 1 2 

DOV East 3 6 
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Table 2-6. PERMANOVA results for comparison of NNS richness and assemblage 

composition using (a) quantitative data and (b) semi-quantitative data among harbours 

and regions. Significant p-values are bolded. 

(a) Quantitative data 

Three-way PERMANOVA comparing species richness among regions, 
harbours and sites. 

Source df SS MS Pseudo-F P(perm) 

Region 2 60707 30354 7.0537 0.0025 

Harbour(Region) 7 118340 16905 3.9287 0.0019 

Site(Harbour(Region)) 30 118340 4303.2 15.623 0.0001 

Residual 760 118340 275.44                  

Total 799 118340          

Transformation: pres/abs     

      

Three-way PERMANOVA comparing assemblage composition among regions, 
harbours and sites. 

Source df SS MS Pseudo-F P(perm) 

Region 2 75905 37953 4.5881 0.0040 

Harbour(Region) 7 221400 31628 3.8236 0.0001 

Site(Harbour(Region)) 30 248160 8272 11.922 0.0001 

Residual 760 527330 693.85                  

Total 799 1155800          

Transformation: fourth root    

      

      

(b) Semi-quantitative data 

Two-way PERMANOVA comparing non-native species richness among 
regions and harbours. 

Source df SS MS Pseudo-F P(perm) 

Region 2 4014 2007 7.0275 0.0012 

Harbour(Region) 8 2399.2 299.9 1.0501 0.4183 

Residual 33 9424.5 285.59                  

Total 43 18170          

Transformation: pres/abs     

      

Two-way PERMANOVA comparing non-native assemblage composition 
among regions and harbours. 

Source df SS MS Pseudo-F P(perm) 

Region 2 12842 6420.9 7.586 0.0001 

Harbour(Region) 8 15168 1896 2.24 0.0028 

Residual 33 27931 846.41                  

Total 43 65127    

Transformation: fourth root    
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Figure 2-7. The number of NNS recorded per harbour along the south coast of England ranged from 2-17. Size of circles represents the 

total number of species recorded per harbour. Harbours from West to East: Falmouth, Looe, Plymouth, Salcombe, Torbay (West region), 

Poole, Southampton, Portsmouth (Central region), Shoreham, Folkestone and Dover (East region). The bar charts in the upper right corner 

show (a) total NNS richness and (b) mean (± 1 SE) NNS richness by region.
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Figure 2-8. Non-metric multi-dimensional scaling plot (nMDS) showing significant 

variation in NNS assemblage composition from Rapid Assessment Surveys (RAS) on 

artificial structures among harbours (p = 0.0028) and regions (p = 0.0001) along the 

south coast of England. Dark shapes represent harbours in the West region, open shapes 

indicate harbours in the Central region and grey shaded shapes represent harbours in the 

East. The blue envelopes indicate that the assemblages within the envelopes are 75% 

similar. 

  

 

Table 2-7. Differences in average abundances (indicated by > or <) and contributions 

(%) of individual species to assemblage composition dissimilarities between regions for 

West versus East, West versus Central and Central versus East using (a) quantitative 

data and (b) semi-quantitative data. Consistency of contribution is shown by ‘Diss/SD’, 

which is the dissimilarity divided by standard deviation of contributions across all pairs 

of samples. 
 

(a) Quantitative data       

Average dissimilarity = 54.5% West >/<  East   % Contr. Diss/SD 

Watersipora subatra (%) 1.1 >  0.0  37.3 1.7 

Caulacanthus okamurae (%) 0.8 >  0.0  29.1 1.1 

Magallana gigas (%) 0.5 >  0.1  18.3 0.9 

  
 

    

Average dissimilarity = 60.0% West >/<   Central   % Contr. Diss/SD 

Bugula neritina (%) 0.0 <  1.1  15.0 1.3 

Caulacanthus okamurae (%) 0.8 >  0.0  13.9 1.0 

Watersipora subatra (%) 1.1 <  1.2  13.6 1.1 

Tricellaria inopinata (%) 0.2 <  0.9  11.9 1.4 
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Styela clava (%) 0.1 <  0.8  10.6 1.1 

Magallana gigas (%) 0.5 >  0.4  10.3 1.0 

  
 

    

Average dissimilarity = 68.5% Central >/<   East   % Contr. Diss/SD 

Watersipora subatra (%) 1.2 >  0.0  22.1 1.5 

Bugula neritina (%) 1.1 >  0.0  17.1 1.3 

Tricellaria inopinata (%) 0.9 >  0.0  13.6 1.4 

Styela clava (%) 0.8 >  0.0  11.9 1.1 

Magallana gigas (%) 0.4 >  0.1  6.8 0.7 

       

(b) Semi-quantitative data       

Average dissimilarity = 38.5% West  >/<  East   % Contr. Diss/SD 

Watersipora subatra (%) 0.8 >  0.0  25.4 1.5 

Caulacanthus okamurae (%) 0.8 <  0.9  13.9 0.8 

Magallana gigas (%) 1.0 >  0.8  12.8 0.8 

Bonnemaisonia hamifera (%) 0.3 >  0.0  7.3 0.6 

Styela clava (%) 0.1 <  0.2  6.4 0.5 

Crepidula fornicata (%)† 0.1 <  0.2  6.3 0.5 

       

Average dissimilarity = 57.0% West >/<   Central   % Contr. Diss/SD 

Caulacanthus okamurae (%) 0.8 >  0.1  11.4 1.3 

Bugula neritina (%) 0.0 <  0.8  10.8 1.4 

Tricellaria inopinata (%) 0.2 <  0.8  10.5 1.4 

Styela clava (%) 0.1 <  0.6  8.7 1.1 

Watersipora subatra (%) 0.8 = 0.8  8.0 0.9 

Magallana gigas (%) 1.0 >  0.7  7.9 0.9 

Sargassum muticum (%) 0.2 <  0.4  6.9 0.8 

Botrylloides diegensis (%) 0.0 <  0.5  6.7 0.9 

       

Average dissimilarity = 64.9% Central >/<   East   % Contr. Diss/SD 

Caulacanthus okamurae (%) 0.1 <  0.9  1.6 12.2 

Watersipora subatra (%) 0.8 >  0.0  1.5 11.9 

Tricellaria inopinata (%) 0.8 >  0.0  1.6 11.5 

Bugula neritina (%) 0.8 >  0.0  1.4 10.8 

Styela clava (%) 0.6 >  0.2  1.1 8.6 

Magallana gigas (%) 0.7 <  0.8  0.8 6.8 

Botrylloides diegensis (%) 0.5 >  0.0  0.9 6.7 

Sargassum muticum (%) 0.4 >  0.0  0.7 6.3 
 

† Crepidula fornicata was regularly observed at the base of artificial structures amongst 

rock rubble; it was rarely seen directly on artificial structures. C. fornicata was included 

in all analyses. 
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Two NNS were discovered in new localities: the carpet sea squirt, Didemnum 

vexillum Kott, 2002 was found in Poole and Portsmouth, and the red alga, Chrysymenia 

wrightii (Harvey) Yamada, 1932 was found in Portsmouth. Colonies of D. vexillum 

within Poole Harbour were found on the seaward side of a wooden wave breaker wall 

(50.688439, -1.9456) and a metal pipe positioned perpendicular to the shore 

(50.702722, -1.944408). Colonies in Portsmouth were both located on concrete fishing 

piers perpendicular to the shore (50.789144, -1.106972; 50.788917, -1.028583). C. 

wrightii was found in a small water-retaining pool along a stepped seawall in 

Portsmouth (50.777714, -1.086403). The only previously confirmed record of C. 

wrightii was from marinas in Falmouth (Wood et al., 2015). 

Portsmouth and Southampton supported the greatest average number of vessel 

arrivals per day at 86.4 and 83.1, respectively, while Folkestone supported the fewest 

(0.4; Figure 2-9). Spearman Rank-order correlations using semi-quantitative methods 

revealed a significant positive relationship between average number of vessel arrivals 

per region and NNS richness (rs = 0.502, p < 0.001). There was, however, no significant 

relationship between average number of vessel arrivals per harbour and non-native 

species richness (rs = 0.213, p = 0.171). 
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Figure 2-9. Mean number of vessels per day averaged over 60 days. Data was obtained 

from Marine Traffic (2019). 

 

2.3.1 Study 3: NNS richness and assemblage composition on groynes constantly 

connected to the sea compared to groynes not constantly connected to the sea 

Overall, 13 NNS were recorded across all groynes at Sandbanks (Table 2-8). All 

13 NNS were present on groynes connected to the sea, while only three NNS were 

present on groynes unconnected to the sea. The three species recorded on 

“unconnected” groynes were T. inopinata, G. turuturu and A. modestus. The 

quantitative technique captured 10 NNS, while the semi-quantitative method captured 

12 NNS. B. violaceus was unique to the quantitative technique, while M. gigas, the erect 

bryozoa, Bugulina stolonifera (Ryland, 1960) and S. muticum were unique to the semi-

quantitative techniques. Data from both sampling methods were analysed but only semi-

quantitative data was used for figures, as the semi-quantitative method found more 

NNS.  
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Table 2-8. Summary table for NNS recorded from groynes with a constant connection to the sea and groynes without a connection to the 

sea at low water. Numbers are included for both quantitative and semi-quantitative sampling techniques.  

  Connected Unconnected Quantitative Semi-quantitative 

Bugulina stolonifera (Ryland, 1960) ✓     ✓ 

Bugula neritina (Linnaeus, 1758) ✓   ✓ ✓ 

Botrylloides diegensis Ritter & Forsyth, 1917  ✓   ✓ ✓ 

Botrylloides violaceus Oka, 1927 ✓   ✓   

Watersipora subatra (Ortmann, 1890) ✓   ✓ ✓ 

Tricellaria inopinata d'Hondt & Occhipinti Ambrogi, 1985 ✓ ✓ ✓ ✓ 

Magallana gigas (Thunberg, 1793) ✓     ✓ 

Austrominius modestus (Darwin, 1854)  ✓ ✓ ✓ ✓ 

Codium fragile subsp. fragile (Suringar) Hariot, 1889 ✓   ✓ ✓ 

Grateloupia turuturu Yamada, 1941 ✓ ✓ ✓ ✓ 

Sargassum muticum (Yendo) Fensholt, 1955  ✓     ✓ 

Colpomenia peregrina Sauvageau, 1927 ✓   ✓ ✓ 

Undaria pinnatifida (Harvey) Suringar, 1873 ✓   ✓ ✓ 

Total number of species 13 3 10 12 
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The results differed with sampling method. Groynes with a constant connection 

to the sea supported significantly greater mean NNS richness using semi-quantitative 

(Table 2-9b; Figure 2-10) but not quantitative techniques (Table 2-9a). NNS assemblage 

composition was significantly different between “connected” and “unconnected” 

groynes using both sampling methods (Table 2-9a, b; Figure 2-11). SIMPER analysis 

showed that, when analysing quantitative data, the average dissimilarity between 

“connected” and “unconnected” groynes was 97.4%, of which over 75% of those 

differences were attributed to T. inopinata (63.5%) and W. subatra (15.0%). 

Abundances of T. inopinata were greater on “unconnected” groynes, while W. subatra 

abundances were greater on “connected” groynes (Table 2-10a). SIMPER analysis of 

semi-quantitative data revealed that NNS assemblage compositions on “connected” and 

“unconnected” groynes were 83.7% dissimilar, with over a third of the dissimilarity 

attributable to G. turuturu (12.5%), T. inopinata (12.2%) and A. modestus (11.5%), with 

all species more abundant on “connected” groynes (Table 2-10b). 

 

Table 2-9. PERMANOVA results for NNS richness and assemblage composition using 

(a) quantitative data and (b) semi-quantitative data between structures connected to the 

sea compared to structures not connected to the sea. Where unique permutations were < 

100, Monte Carlo tests were run and P(MC) values were used to determine significance. 

Significant p-values are bolded. 

(a) Quantitative data       

One-way ANOVA comparing NNS richness between structures connected and not 
connected to the sea. 

Source 
df  SS MS Pseudo-F P(perm) 

 Unique 
perms 

P(MC) 

Connection 1 141.03 141.03 0.61079 0.4368 68 0.4477 

Residual 158 36483 230.91                                
Total 159 36624       

Transform pres/abs       

        

One-way PERMANOVA comparing NNS assemblage composition between structures 
connected and not connected to the sea.  

Source df  SS MS Pseudo-F P(perm)   

Connection 1 1688.7 1688.7 6.1388 0.0008   

Residual 158 43464 275.09                    
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Total 159 45153                           

Transform square root      

        

        

(b) Semi-quantitative data      

One-way ANOVA comparing NNS richness between structures connected and not 
connected to the sea. 

Source 
df  SS MS Pseudo-F P(perm) 

 Unique 
perms 

P(MC) 

Connection 1 5514 5514 8.6482 0.0591 18 0.0123 

Residual 6 3825.5 637.59                                

Total 7 9339.5      

Transform pres/abs       

        

One-way PERMANOVA comparing NNS assemblage composition between structures 
connected and not connected to the sea.  

Source 
df  SS MS Pseudo-F P(perm) 

 Unique 
perms 

 (MC) 

Connection 1 5318.1 5318.1 4.6495 0.0572 25 0.0323 

Residual 6 6862.7 1143.8                                

Total 7 12181      

Transform square root      
 

 

 

Figure 2-10. Comparison of NNS richness between structures connected to the sea and 

structures not connected to the sea. Numbers of NNS were significantly greater on 

“connected” structures compared to “unconnected” structures (semi-quantitative data; 

connected, n = 4; not connected, n = 4; p = 0.0123). 
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Figure 2-11. Non-metric multi-dimensional scaling plot (nMDS) showing significant 

variation in NNS assemblage composition on structures connected to the sea compared 

to structures not connected to the sea (semi-quantitative data; connected, n = 4; not 

connected, n = 4; p = 0.0323). 
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Table 2-10. Differences in average abundances (indicated by > or <) and contributions 

(%) of individual species to assemblage composition dissimilarities between 

"connected" and "unconnected" groynes using (a) quantitative data and (b) semi-

quantitative data. Consistency of contribution is shown by ‘Diss/SD’, which is the 

dissimilarity divided by standard deviation of contributions across all pairs of samples. 

(a) Quantitative data 

Average dissimilarity = 97.4% 
No 

connection 
>/<  

Connection   
% 

Contr. 
Diss/SD 

Tricellaria inoptinata (%) 0.2 > 0.1   63.5 1.4 

Watersipora subatra (%)  0.0 < 0.1   15.0 0.5 

              

(b) Semi-quantitative data 

Average dissimilarity = 83.7% 
No 

connection 
>/<  

Connection   
% 

Contr. 
Diss/SD 

Grateloupia turuturu (%) 0.3 < 0.8   12.5 0.9 

Tricellaria inopinata (%) 0.6 < 0.8   12.2 0.9 

Austrominius modestus (%) 0.3 < 0.7   11.5 1.0 

Watersipora subatra (%) 0.0 < 0.8   10.9 1.5 

Botrylloides diegensis (%) 0.0 < 0.8   10.9 1.5 

Undaria pinnatifida (%) 0.0 < 0.8   10.9 1.5 

Codium fragile ssp. fragile (%) 0.0 < 0.5   10.9 0.8 

 

 

2.4 Discussion 

This study addressed knowledge gaps concerning occurrence of NNS in natural 

and artificial intertidal habitats along the south coast of England. The surveys found that 

artificial structures supported different assemblage compositions of NNS compared to 

natural rocky shores. Differences in NNS richness, however, depended on sampling 

method used: quantitative methods detected significantly greater numbers of NNS in 

artificial compared to natural habitats, while semi-quantitative methods found no 

differences. NNS assemblage composition was significantly different among regions 

and harbours within regions. NNS richness among regions was significantly different, 
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while differences among harbours within regions depended on sampling technique: 

quantitative sampling showed significant differences among harbours, but semi-

quantitative did not show differences. Artificial structures in the Central region 

supported the greatest number of NNS compared to the West and East regions, and this 

was positively correlated with the average number of vessel arrivals per day. Finally, as 

predicted, groynes with a constant connection to the sea at low water supported greater 

numbers and different NNS assemblage compositions compared to “unconnected” 

groynes.  

Artificial structures supported more NNS than natural rocky shores and the suite 

of species varied markedly when quantitative data were analysed, corroborating results 

from previous studies (Glasby et al., 2007; Tyrrell and Byers, 2007; Dafforn et al., 

2012). However, semi-quantitative methods, which involved timed searches of entire 

sites, did not detect significant differences between habitats. This is because the semi-

quantitative method allowed complex habitats, such as rock pools and undersides of 

boulders, to be searched for presence of NNS. The algae, U. pinnatifida, G. turuturu 

and A. armata, were present only in natural habitats; C. peregrina and S. muticum were 

more abundant in natural compared to artificial habitats. These algae were only found in 

rock pools (and in the case of artificial habitats, water-retaining gaps in the structures), 

implying that if quantitative measures were to have been used alone, this suite of NNS 

would have been almost entirely overlooked.  

The jump from artificial structures to natural habitats is not uncommon for NNS 

(Floc'h et al., 1991; Connell, 2001; Coutts and Forrest, 2007; Dafforn et al., 2012; 

Heiser et al., 2014; Epstein and Smale, 2018). In the southwest of England, U. 

pinnatifida in particular is commonly found attached to floating pontoons in marinas in 

a state of continuous immersion (Fletcher and Manfredi, 1995; Arenas et al., 2006a; 

Epstein and Smale, 2018), but information about its abundance in intertidal natural and 
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artificial habitats is lacking (but see Heiser et al., 2014). A recent report found U. 

pinnatifida in the intertidal to shallow subtidal fringe on natural rocky shores in 

harbours in the southwest of England (Epstein and Smale, 2018). Results from Epstein 

and Smale (2018) suggested that the natural rocky shore populations were a result of a 

‘spillover’ from populations in marinas, as there was a positive correlation between 

proximity to marinas supporting U. pinnatifida and its abundance on natural shores. The 

current study found U. pinnatifida on natural rocky shores in Plymouth and Torbay, 

both sites of which are adjacent to marinas where U. pinnatifida has been recorded 

(Arenas et al., 2006a; Farrell and Fletcher, 2006; Epstein and Smale, 2018). Findings 

from natural habitats surveyed in this study support results from previous studies and 

emphasize the high probability of NNS spread out from artificial into natural habitats.  

Results from the current study found that NNS richness among regions was 

significantly different, with the Central region supporting the greatest number of NNS. 

This result supports those from previous surveys (Bishop et al., 2015b; Wood et al., 

2015; Foster et al., 2016), which found the greatest number of NNS in marinas within 

the Central region of England. Similar to results from the current study, Bishop et al. 

(2015b) recorded the fewest numbers of NNS in the eastern English Channel compared 

to the central and western English Channel. Although a relative paucity of suitable sites 

limited the number of potential sample sites available for this study and Bishop et al. 

(2015b), the close similarity of NNS richness in our study suggests that NNS richness is 

actually lower in the East (6 NNS found in this study; 5 NNS found in Bishop et al. 

2015b). As the Central region sees the most vessels per day by a significant amount, it 

is no surprise that this area supports the greatest number of NNS. Dover (East region), 

however, sees a relatively large amount of vessel traffic, yet counter to what would be 

expected, NNS richness was relatively low here. Variation in local environmental 

conditions and estuary morphology might explain these biological differences. For 
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example, previous studies have shown that industrial and urban runoff adversely affects 

native composition and ecological functioning of marine communities (Johnston and 

Roberts, 2009; Burton and Johnston, 2010), and that species response (recolonisation) 

can vary depending on exposure to particular contaminants (Trannum et al., 2004). 

Additionally, NNS have been shown to tolerate contaminants and pollution while 

abundances of native species decline under the same conditions (Crooks et al., 2011; 

Dafforn et al., 2011; McKenzie et al., 2011). Thus, a decline in native biotic 

communities can easily give NNS a competitive advantage where conditions are 

unfavourable for native species (Johnson et al., 2017). Southampton in particular is 

characterised by commercial shipping and industry. The western bank of the River Test 

has a large industrial park that houses a power station, which intakes local water for 

coolant and discharges much warmer water relative to ambient conditions (~5 °C; K. 

O’Shaughnessy, pers. obs; Appendix 1, Table 2). These unnatural conditions 

undoubtedly affect the biotic communities on structures adjacent to the power plant, 

with potential effects downstream. The relatively high number of NNS in Poole 

(considering the low occurrence of vessel traffic) compared to neighbouring harbours 

might be explained by differences in estuary morphology and hydrography. Poole has 

been described as a “lagoon-like” harbour, as it is a shallow and warm body of water 

with a narrow estuary mouth and a small tidal range (approx. 1.8 m; Humphries, 2005; 

May, 2005; World Port Source, 2019). A double high water holds water above mean 

tide for up to 16 hours (May, 2005), and slow flushing times allow for retention of 

water and particles, including metal and organic pollutants (May, 2005; May and 

Humphreys, 2005). Compared to the larger and deeper harbours in the Central region 

that support larger and more vessels – Southampton and Portsmouth – Poole would 

logically support many fewer NNS. It is possible that more NNS are found in Poole 

Harbour relative to other Central harbours because the warm conditions are favourable 
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to NNS that originate from subtropical waters (Walther et al., 2009), such as the carpet 

sea squirt, D. vexillum. Moreover, slow and incomplete flushing of the harbour means 

larvae of NNS are present in the water for long periods of time, potentially allowing 

increased settlement compared to harbours with faster flushing times. Findings from 

these surveys therefore highlight the difficulty in teasing apart potential factors driving 

NNS colonisation on artificial structures in a variety of harbours and regions. 

Observed variation in NNS assemblage composition among harbours and 

regions is probably linked to the numbers and types of vessels arriving in harbours and 

the subsequent secondary destinations to which species can be transported, facilitating 

immigration and spread of NNS (Carlton, 1996b; Floerl and Inglis, 2005; Defra, 2015). 

For example, Portsmouth and Southampton (Central region) are, on average, the busiest 

harbours along the south coast of England (Associated British Ports, 2019), but the 

types of vessels, and their embarkation ports, vary greatly. The Port of Southampton is 

unique in our survey in being one of the largest cruise ship and container ports in the 

UK, accommodating vessels that travel worldwide (Associated British Ports, 2019). 

Additionally, it hosts one of the largest oil refineries in the UK, which sees over 2,000 

vessels annually (Exxon Mobile, 2019). Consequently, many more vessels sail 

internationally from here compared to other ports along the south coast of England. 

Southampton also has significant recreational marinas adjacent to the port in former 

commercial docks, with a large concentration of marinas in Southampton Water and the 

Solent more generally. By contrast, the majority of passenger vessels in Portsmouth and 

Poole are ferries sailing no further than Northern France, and most other traffic 

(excluding the naval ships at Portsmouth) being local fishing and pleasure craft. 

Therefore, at least two invasion scenarios are possible: (1) international container ships 

and cruise liners transport NNS as fouling adults or as planktonic larvae in ballast water 

into the Port of Southampton (Ruiz et al., 2000); or (2) trans-channel vessels carry NNS 
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(originating from Europe or introduced from other parts of the world) from the north of 

France and Spain into Portsmouth and Poole Harbours (Bax et al., 2002; Bishop et al., 

2013). Species originating in the Pacific (i.e., B. violaceus, M. gigas, D. vexillum) were 

most likely introduced to the British Isles by way of vessel traffic from Europe (Eno et 

al., 1997; Bishop et al., 2015a; Defra, 2015; Foster et al., 2016). In both scenarios, NNS 

then probably spread to neighbouring ports via local vessel traffic (Clarke Murray et al., 

2011; Zabin et al., 2014; Roche et al., 2015) and/or using artificial structures (e.g., 

groynes; Mineur et al., 2012; Airoldi et al., 2015a) as ‘stepping stones’ (Floerl and 

Inglis, 2005; Bishop et al., 2017; Johnson et al., 2017). It is likely that both scenarios act 

in synergy to create a constant influx of hitchhiking species on large trans-channel and 

international vessels into ports along the south coast of England. 

Artificial structures are characterised by low species diversity compared to 

natural rocky shores (Chapman, 2003; Bulleri and Chapman, 2010), which means they 

are less resilient to colonisation by NNS (Maron and Vilà, 2001; Stachowicz et al., 

2002). They endure regular disturbances from human trampling, maintenance (Airoldi 

and Bulleri, 2011), vessel docking (K. O’Shaughnessy, pers. obs.) and wash from 

propellers on large vessels. Moreover, their proximity to transoceanic vessels means 

artificial structures endure increased propagule pressure and repeated introductions. For 

example, an average of over 80 vessels per day dock in Portsmouth Harbour, which is 

likely to cause dislodgement of species fouling docks, chains and other equipment. This 

opens up bare space for opportunistic and NNS to colonise (Airoldi and Bulleri, 2011; 

Bracewell et al., 2012). Smaller harbours with less vessel traffic and fewer artificial 

structures, such as Salcombe and Looe, experience fewer disturbances and have less 

hard substrate present, contributing to lower invasion success. 

Artificial structures may play an important role in the introduction, 

establishment and spread of NNS. They are typically built in soft sediment habitats 
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because of the lack of hard substrate that naturally protects the coastline against 

flooding and erosion (Dugan et al., 2011; Firth et al., 2013a). On a regional scale, 

artificial structures provide new substrata for the spread of opportunistic and NNS by 

acting as ‘stepping stones’ across soft sediment habitat (Floerl and Inglis, 2005; Coutts 

and Forrest, 2007; Dafforn et al., 2009; Bishop et al., 2017). In so doing these structures 

may increase connectivity between distant or isolated ‘hard bottom’ habitats (Sammarco 

et al., 2004; Airoldi et al., 2005a; Mineur et al., 2012). In this study, harbours east of 

Torbay (Central and East regions) were dominated by soft sediment habitats, thus 

fouling organisms typical of natural rocky shores were only able to survive by 

colonising hard artificial substrate in these harbours (e.g., floating pontoons, seawalls, 

groynes). It is therefore possible that artificial structures in soft sediment habitats act as 

simplified surrogates of natural rocky shore (Thompson et al., 2002; Moschella et al., 

2005), in that NNS would not have otherwise been able to become established without 

these structures in place.  

Groynes that retained a constant connection to the sea at low tide supported 

greater numbers of NNS compared to groynes that did not retain a connection at low 

tide. This result was not surprising, as structures in subtidal habitats are continually 

exposed to a pool of colonising species throughout the entire tidal cycle. These results 

agree with past reports of greater species diversity in lower intertidal to subtidal habitats 

(Saier, 2002; Moschella et al., 2005; Burcharth and Lamberti, 2007; Chapman and 

Underwood, 2011; Dugan et al., 2011; Firth et al., 2016a). Even though sampling was 

conducted at about the same tidal height for both “connected” and “unconnected” 

groynes, the differences in NNS richness might be due to the susceptibility of the 

structure to invasion. For example, it is possible that once a structure is colonised, 

species will reproduce and spread across the structure where physical conditions allow. 

And since subtidal structures are more likely to be colonised (Moschella et al., 2005; 
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Chapman and Underwood, 2011; Dugan et al., 2011), the connected structures are more 

susceptible to NNS colonisation in general. Additionally, “connected” groynes are 

exposed to frequent wave action, and therefore will experience more disturbances 

(Griggs, 2005; Dugan et al., 2011), which create bare space for NNS colonisation 

(Airoldi and Bulleri, 2011). NNS recorded on “unconnected” groynes might be regarded 

as high-risk species, as they are able to take advantage of substrate regardless of 

connection to a constant supply of propagules, allowing for their proliferation and 

spread. More importantly, groynes placed along a sandy beach that extend into subtidal 

habitats are likely to act as corridors or ‘stepping stones’ for NNS between distant areas 

(Floerl and Inglis, 2005; Airoldi et al., 2015b; Bishop et al., 2017). This may be of 

particular concern in situations where groynes are built along a sandy beach adjacent to 

a major international shipping harbour that is known to support an abundance of NNS. 

Potential implications of increased connectivity (i.e., presence of artificial structures) 

between international ports and distant habitats might involve increased facilitation of 

NNS spread from these ports – ‘hot spots’ for ecological invasion (Carlton and Geller, 

1993; Ruiz et al., 1997; Drake and Lodge, 2004) – to natural habitats (Epstein and 

Smale, 2018), where the new species may outcompete or smother native biota (e.g., the 

carpet sea squirt, D. vexillum; Lengyel et al., 2009).    

Study 3 (comparison of “connected” versus “unconnected” groynes) was an 

opportunistic and preliminary study done on a small-scale with few replicates. Tidal 

height was determined by estimating similar shore heights from observations of the tide 

receding. Methods to determine exact tidal height on each structure did not utilise beach 

profiling equipment, thus the established tidal height on each groyne was not precise. 

This may be an important consideration because this study was conducted in Poole, 

which is a microtidal environment (1.8 m tidal range); therefore, the differences in 

physical and biological factors between mid- and lower intertidal are minimal and 
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difficult to determine without appropriate scientific equipment. Therefore, further 

surveys with precise measurements of tidal height on groynes that incorporate many 

replicates are still needed. 

Horizon scanning, early detection measures and continual monitoring are key to 

preventing the establishment of NNS (Eno et al., 1997; Manchester and Bullock, 2000; 

Mehta et al., 2007). Horizon scanning identifies potential future invaders, assesses the 

impact they may have on the receiving ecosystem and develops a management plan so 

that action can be taken in the early stages of introduction (Eno et al., 1997; Manchester 

and Bullock, 2000; Coutts and Forrest, 2007). Management plans should take a joined-

up approach, in which all interested and responsible parties (e.g., stakeholders, 

scientists, government, permitting bodies) are included throughout the planning process 

for rapid response (Bax et al., 2002; Wotton et al., 2004; Anderson, 2005), as delays in 

action can compromise the eradication process (see Coutts and Forrest, 2007). 

Successful eradication or control is dependent on early detection of NNS, which is 

difficult due to low densities during initial introduction stage (Mehta et al., 2007; Rees 

et al., 2014). This means that detection by traditional methods is often ineffective 

(Mehta et al 2007). Traditional methods of detection involve visual surveys usually 

conducted by expert taxonomists in marinas known to be hotspots for invasion (e.g., the 

Solent region in southern England; Tidbury et al., 2014; Bishop et al., 2015b; Defra, 

2015; Foster et al., 2016). The high numbers and abundances of NNS recorded from 

intertidal surveys during the current study, however, demonstrate that surveys should be 

conducted in a range of different habitats (e.g., low-, mid- and high-intertidal, subtidal; 

artificial, natural), and not confined to the most common structures known to support 

NNS (i.e., marina pontoons). This is because vital information about NNS introduction 

and distribution could be overlooked if some habitats are neglected. For example, some 

NNS, such as S. muticum, were actually first recorded in the British Isles from natural 
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habitats (Farnham et al., 1973; Boalch and Potts, 1977). Moreover, the current study 

showed that S. muticum was more abundant in natural habitats, arguably posing a threat 

to natural ecosystems, as they may facilitate biotic homogenization of natural rocky 

shores (McKinney and Lockwood, 1999; McKinney, 2006). As demonstrated in the 

current study, a combined approach to sampling may be most effective in capturing all 

NNS present. For example, S. muticum and C. peregrina were rarely detected by 

quantitative measures in natural habitats, despite their abundances being relatively large. 

This was due to the ability of semi-quantitative methods to capture species in complex 

habitats, such as crevices, rock pools and undersides of boulders, which were the 

favourable habitats of these NNS. Although using combined sampling techniques in a 

variety of habitats may be the best traditional approach, these certainly are not the most 

efficient means of detection. Non-traditional methods for detecting NNS have recently 

included employing eDNA techniques (Valentin et al., 2018; Xia et al., 2018). This 

novel method identifies presence of all species within a single sample of material (e.g., 

soil, permafrost, snow) or water (freshwater, saltwater) and is a more sensitive and less 

destructive alternative to traditional monitoring (Takahara et al., 2013; Rees et al., 2014; 

Klymus et al., 2015). Unfortunately, there is not a “one size fits all” approach for early 

detection of NNS, thus, a range of different approaches employed in a variety of 

habitats may be the most comprehensive option. 

Eradication and control of NNS are more effective if managed from the early stages 

of introduction before the NNS establishes a reproducing population and becomes 

widely distributed (Eno et al., 1997; Coutts and Forrest, 2007; Mehta et al., 2007). 

Methods of eradication and control can be physical (Coutts and Forrest, 2007; Guy and 

Roberts, 2010), biological (Atalah et al., 2016) or chemical (Coutts and Forrest, 2007) 

in nature. Physical techniques involve mechanical removal or smothering of the NNS. 

For example, a cull on the non-native Pacific oyster, M. gigas, in Northern Ireland 
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involved destroying oysters with hammers, reducing the population by nearly 100% 

(Guy and Roberts, 2010). Subsequently, similar eradication techniques have been 

implemented in the southeast of England (Herbert et al., 2012). Coutts and Forrest 

(2007) wrapped pilings infected with D. vexillum in polyethylene to reduce water flow 

to the animal and cause anoxic conditions. Removal of any space-occupying organism, 

however, puts the bare substrate at risk of being recolonised by NNS. Biological 

control, or “biocontrol” uses native enemies or parasites (use of NNS is highly 

discouraged; Atalah et al., 2015) to reduce or control the density-dependent adverse 

effects of NNS or pests (Atalah et al., 2015; Great Britain Non-Native Species 

Secretariat, 2019) . While biocontrol methods are widely used to control NNS in 

terrestrial systems, there are few marine examples that have been tested in situ (Secord, 

2003) and considerable knowledge gaps exist which need addressing before biocontrol 

can be used as a reliable NNS management tool in the marine environment (Secord, 

2003; Atalah et al., 2016). Chemical controls utilise substances such as chlorine to kill 

NNS (Coutts and Forrest, 2007; Sambrook et al., 2014) or copper to discourage 

settlement of fouling organisms (i.e., anti-fouling paints; Eno et al., 1997; Maréchal and 

Hellio, 2009; Lindgren et al., 2018). Copper-based anti-fouling paints have been shown 

to be toxic to native biotic communities (Eno et al., 1997; Maréchal and Hellio, 2009; 

Piola et al., 2009; Dafforn et al., 2011), and some NNS actually show resistance to these 

paints (Piola et al., 2009). Regulatory bodies have responded by increasing regulations 

on biocides (i.e., copper; Dafforn et al., 2011), which has subsequently prompted 

research and development into non-toxic alternatives (Maréchal and Hellio, 2009; PML 

Applications Ltd, 2019). One such alternative mimics the characteristics of natural 

physical surface topography of marine organisms (e.g., molluscan shells, crustose 

coralline algae, marine mammal skin, shark skin) – which are often naturally free of 

fouling organisms – to discourage settlement (Scardino, 2009; "bio-inspired anti-
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fouling"; Kirschner and Brennan, 2012; Nir and Reches, 2016; Pradhan et al., 2019). 

Bio-inspired anti-fouling techniques are still to a large extent in the experimental phase 

(Damodaran and Murthy, 2016; Pradhan et al., 2019); however, future application may 

help aid in NNS management, especially if used in concert with traditional techniques.   

Results from these surveys clearly demonstrate that eco-engineering designs 

must consider the potential for colonisation by NNS (Sella and Perkol-Finkel, 2015; 

Dafforn, 2017; Strain et al., 2017a). This is of particular concern when designs involve 

adding new hard substrate to an existing structure, as any substrate placed in the sea is a 

blank canvass for opportunistic and NNS colonisation (Airoldi, 2000; Bulleri and 

Airoldi, 2005; Airoldi and Bulleri, 2011). Results from Study 3, testing the effects of 

groyne connection to the sea on NNS occurrence, can inform eco-engineering decisions 

regarding placement of interventions in relation to tidal height. As biodiversity in 

general is greater in lower compared to upper intertidal habitats (Moschella et al., 2005; 

Dugan et al., 2011), eco-engineering intervention outcomes would likely be maximised 

with placement in the lower intertidal (Chapman and Underwood, 2011; Firth et al., 

2016a); yet interventions placed here run the risk of facilitating spread of NNS. 

Additionally, NNS may have different reproductive seasons than their native 

counterparts, meaning there is less competition for space when larvae settle. For 

example, in the British Isles, the native barnacle, Semibalanus balanoides (Linnaeus, 

1767), reproduces in the spring (Barnes and Barnes, 1968), while reproduction of the 

non-native barnacle, A. modestus, is year-round with a peak in the autumn (O'Riordan 

and Murphy, 2000; Gallagher et al., 2015). Therefore, the timing (Airoldi and Bulleri, 

2011; Evans, 2016) and placement (Chapman and Underwood, 2011; Firth et al., 2016a) 

of artificial structures and eco-engineering interventions may be important (but difficult 

to achieve in practice) in allowing native communities to develop, thereby discouraging 

settlement of NNS.  
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There are considerations that should be noted for future rapid assessment 

surveys of NNS. In these studies, sampling effort among harbours was not equal in 

Study 1 (comparing occurrence of NNS between natural and artificial habitats) and 

Study 2 (comparing occurrence of NNS among harbours and regions along the south 

coast of England). For example, more surveys were done in larger harbours such as 

Portsmouth (n = 11), while fewer surveys were conducted in smaller harbours such as 

Folkestone (n = 1). The rationale for varying the number of surveys by harbour was to 

reflect the size of the harbour so as to not oversample small harbours. Chapman et al. 

(2018) noted that species are more likely to be sampled in a smaller area where there is 

a more intense sampling effort. The goal of the current methods was to keep the ratio of 

surveys to available habitat fairly constant (i.e., fewer number of surveys in small 

harbours and greater number of surveys in large harbours). Future rapid assessment 

surveys should ensure that sampling effort is appropriate for hypotheses posed. Also, as 

artificial structures are often located in difficult to access areas that pose safety hazards, 

no restriction on type and size of structure was imposed during these studies in order to 

ensure an adequate sampling effort (i.e., many structures could not be safely accessed so 

they were removed from the list of potential sampling sites from the onset of the study). 

Therefore, criteria for structures surveyed was ease of access to structure and the 

structure reaching into the lower intertidal. Thus, structures of different types (e.g., rip 

rap revetment, groynes, seawalls) and composition (e.g., wood, rock) were sampled 

without consideration of differences. These may be important considerations (Connell, 

2001; Hanlon et al., 2018), as Hall (2018) demonstrated that wooden groynes supported 

greater numbers of species than rock groynes. Study 3 was a preliminary study that had 

certain limitations, including qualitative methods in locating tidal height in a microtidal 

environment (Poole, UK) and low replication and sampling effort. These data are 

valuable as preliminary results, but future studies using equipment for measuring exact 
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tidal height should be employed in specific locations prior to planning coastal 

construction. 

2.4.1 Concluding remarks 

This study provided an inventory of intertidal NNS in harbours along the south 

coast of England, complementing previous Rapid Assessment Surveys conducted along 

the same geographic region in subtidal habitats (Arenas et al., 2006a; Bishop et al., 

2015a; Bishop et al., 2015b). As such, this and previous reports provide a 

comprehensive summary of the suite of NNS present in harbours along the south coast 

of England. 

Our results highlight the importance of global shipping and transportation for the 

primary introduction of NNS and the role of artificial structures and smaller vessels in 

facilitating secondary spread to neighbouring harbours and bays. Our surveys also 

suggest that most hard substrates along the coast will host some NNS, but the suite of 

species will vary between topographically complex natural, and less complex artificial 

habitats. 

Ocean sprawl is accelerating the rate of NNS introduction and spread, 

contributing to biotic homogenisation and the growing biodiversity crisis. 

Understanding the ecological role of artificial structures in the marine and coastal 

environments is critical for preserving native biodiversity and building resilience to 

establishment of NNS. Factors affecting the degree of invasibility need urgent 

investigation so that ecologists might develop the predictive capability to identify 

harbours at high risk of invasion, which can aid in effective horizon scanning.  
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3. CHAPTER THREE 

Impacts of coastal urbanisation on species diversity are scale and metric dependent 

 

Abstract 

Burgeoning human population and habitat modification is driving a global biodiversity 

crisis. Population growth is focussed on coastlines worldwide leading to accelerated 

habitat transformation to accommodate industry, commerce, transport and residential 

development. Furthermore, coastlines are being squeezed by rising and stormier seas as 

a consequence of climate change. Subsequently, artificial structures (e.g., seawalls, 

groynes, breakwaters) have replaced natural habitats, placing extraordinary stress on 

coastal and marine biodiversity and ecosystem functioning, with knock-on effects for 

ecosystem services. The need for reliable measures to obtain baseline diversity data, 

detect changes in biological communities in response to human drivers and inform and 

measure success of restoration efforts is becoming increasingly important. In this study, 

sites were surveyed within an urbanised harbour to assess species diversity in natural 

and artificial habitats at two spatial scales: within-site (centimetres - metres) and 

among-site (metres - kilometres) using different diversity measures (taxon and 

functional richness, taxon and functional abundance and β-diversity). Regional species 

diversity (γ-diversity) did not differ between natural and artificial habitats, while mean 

taxon (α-diversity) and functional richness were greater in natural compared to artificial 

habitats at both spatial scales. Within-site β-diversity was greater in natural compared to 

artificial habitats, while among-site β-diversity was greater in artificial compared to 

natural habitats. Taxon richness and abundance of mobile organisms were greater in 

natural habitats, while taxon richness but not abundance of sessile organisms was 

greater in natural habitats. Differences in taxon and functional abundance depended on 

specific taxonomic and functional groups. Different results obtained under various 
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measures and scales of analyses highlight the importance of looking beyond simple 

conventional methods of measuring diversity (i.e., taxon richness) to reduce the risk of 

overlooking valuable ecological information. Understanding the ecological role of 

artificial structures is critical for preserving biodiversity in the face of continued coastal 

development and is the first step in informing management decisions for eco-

engineering interventions for restoring urban coastlines.  

 

3.1 Introduction 

The global human population continues to grow (Bloom, 2011; Gerland et al., 

2014), with markedly higher population growth in coastal areas (Hugo, 2011; Barragán 

and de Andrés, 2015; Neumann et al., 2015; Firth et al., 2016b); all while the world is 

facing the certainty of sea level rise and stormier seas (Church and White, 2006; 

Nicholls and Cazenave, 2010; Bader et al., 2011; Field et al., 2012). The majority of 

mega-cities are located within the coastal zone (Timmerman and White, 1997; Firth et 

al., 2016b), hence ways in which to protect human lives and infrastructure from rising 

sea levels are becoming increasingly necessary, giving rise to coastlines dominated by 

engineered artificial structures (e.g. seawalls, groynes, breakwaters; Vitousek et al., 

1997; Duarte, 2014; Firth et al., 2016b). One of the many consequences of hard 

engineered coastlines is the degradation or loss of coastal and marine habitats (i.e., salt 

marshes, rocky shores, coral reefs, seagrass beds; Bulleri and Chapman, 2010; Firth et 

al., 2016b; Morris et al., 2019). Subsequently, the biodiversity (Bulleri and Chapman, 

2004; Bulleri et al., 2005; Moschella et al., 2005), ecological structure (Airoldi and 

Beck, 2007; Jackson et al., 2008b; Aguilera et al., 2014), functioning (Airoldi and Beck, 

2007; Mayer-Pinto et al., 2018a) and connectivity (Firth et al., 2016b; Bishop et al., 

2017) of coastal and marine ecosystems has become compromised. Furthermore, the 

movement of climate migrants (Mieszkowska et al., 2006) and opportunistic and non-
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native species (Dafforn et al., 2009; Dafforn et al., 2012; Sammarco, 2015; Bishop et 

al., 2017), as well as biotic homogenization (McKinney and Lockwood, 1999; 

McKinney, 2006) is aided in some instances by artificial structures themselves (Mineur 

et al., 2012; Airoldi et al., 2015a). Thus, there is a growing need to measure 

anthropogenic impacts on biodiversity so that risks can be evaluated and management 

strategies, such as mitigation and compensation, can be implemented (Bas et al., 2016). 

Biodiversity is composed of three components: genetic diversity, species 

diversity and ecosystem diversity (Convention on Biological Diversity, 2006; Colwell, 

2009). Species diversity is comprised of both species richness (number of different 

species present in a given area regardless of identity) and relative abundance (number of 

individuals of each species; Colwell, 2009; Tuomisto, 2010a). Ecologists and 

conservationists frequently focus only on the ‘species’ part of biodiversity, often 

mislabelling “species diversity” as “biodiversity” (Colwell, 2009). Furthermore, mean 

species richness is commonly used in ecological-based studies as the sole measurement 

of biodiversity (e.g., Chapman, 2003; Firth et al., 2013b; Firth et al., 2014a). Using 

species richness as a proxy for biodiversity is an imperfect measure (Costanza et al., 

2007), but it is often the only way to assess diversity with limited resources. It is 

becoming evident, however, that assessments should consider more than number of 

species alone, as this measure ignores other aspects of biodiversity, such as identity and 

abundance of species, functional roles and spatial scales (Chapman et al., 2009; Winfree 

et al., 2015), as well as habitat patch diversity (Hawkins, 2003; Giller et al., 2004). 

Moreover, mean species richness may not be sensitive enough to detect important 

differences between levels of factors in a study or experiment, and therefore may 

overlook ecological information necessary for conservation and management decisions 

(Warwick and Clarke, 1998; Winfree et al., 2015; Hillebrand et al., 2018). For example, 

when examining differences in species richness between artificial rock pools in the 
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lower and upper intertidal zone, Firth et al. (2016a) found no significant difference in 

mean species richness between treatments, despite there being nearly double the total 

number of species found in lower (63) compared to upper (37) pools; in addition to 

significant differences in β-diversity and community composition between shore 

heights. Whilst the relative difference in average species richness was ecologically 

relevant, this was not detected through a statistical comparison of means. This same 

study examined species richness from two different time points (12 mos. and 24 mos.), 

with nearly four times the number of species observed at month 24 compared to the first 

sampling event. These differential results emerging from one experiment highlight the 

importance of looking beyond simple diversity measures (mean α-diversity) and 

considering different spatial and temporal scales where possible. Ecologists must 

therefore be aware that diversity values may be perceived differently based on how they 

are quantified.  

At the smallest scale, alpha (α) diversity is a measure of local species diversity 

(number of species) within a particular patch or sampling unit. At the broadest scale, 

gamma (γ) diversity is a measure of regional species diversity and represents the total 

pool of species in a defined area (Tuomisto, 2010b; Anderson et al., 2011). In between, 

beta (β) diversity is a measure of the variation in identities of species among sampling 

units in a given area (Anderson et al., 2011). β-diversity was originally defined by 

Whittaker (1960) as βw = γ/α, and has since been debated at length and it has 

subsequently been modified to describe diversity in different ways (e.g., relative 

abundnace, Shannon Index; Gering et al., 2003; Anderson et al., 2006; Anderson et al., 

2011). β-diversity is commonly used to examine the scale at which community 

composition differs among groups, shedding light on factors and processes driving 

differences among communities (Bevilacqua et al., 2012; Barros et al., 2014; Porter et 

al., 2018). 
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Coastal artificial structures are generally considered poor substitutes for their 

natural rocky shore counterparts (Thompson et al., 2002; Chapman, 2003; Lai et al., 

2018) and can at best be described as “ersatz” rocky shores (poor substitutes for rocky 

shores; Moschella et al., 2005; Geist and Hawkins, 2016). Numerous studies have 

investigated differences in species diversity between natural and artificial habitats, but 

interestingly, the direction of results does not always agree. Many of these studies have 

found that natural habitats support greater numbers (Chapman, 2003; Moschella et al., 

2005) and abundances (Chapman and Bulleri, 2003; Lai et al., 2018) of species 

compared to artificial habitats. However, other studies detected no differences between 

habitats (Bulleri et al., 2005), although results were dependent on a variety of factors 

such as tidal height (Chapman and Bulleri, 2003; Bulleri et al., 2005), orientation of 

substrate (Knott et al., 2004) and spatial scale of assessment (Bulleri et al., 2004; Firth 

et al., 2016a). Deficits in species diversity compared to natural shores have repeatedly 

been attributed to reduced topographic complexity (Moschella et al., 2005; Firth et al., 

2013b), increased incline and reduced spatial extent of structures (Chapman and 

Underwood, 2011), as well as scouring as they often abut coarse sand, gravel or shingle 

shores (Dugan et al., 2011).  

Interest among ecologists, governments and stakeholders in preserving and 

enhancing biodiversity and ecosystem functioning in heavily urbanised areas is 

increasing, and the shift towards ecologically-sensitive coastal engineering is gaining 

momentum (Evans et al., 2017, 2019; Morris et al., 2018a; Morris et al., 2019; Strain et 

al., 2019b). Ecologically-sensitive coastal development is a relatively new concept; the 

field is still very much in the “experimental phase”, with the majority of tested designs 

focussing on enhancement of species diversity through addition of topographic 

complexity on artificial structures (e.g., Moschella et al., 2005; Borsje et al., 2011; 

Chapman and Underwood, 2011; Firth et al., 2014b; Loke and Todd, 2016). Baseline 
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survey data can help understand the biodiversity and ecological functioning of artificial 

structures compared to natural habitat, and is the first step in informing conservation 

and management decisions, as well as assessing the suitability of the habitats for eco-

engineering interventions (Mayer-Pinto et al., 2017). As baseline survey data is often 

lacking or not adequate for informing management decisions (Legg and Nagy, 2006; 

Chee et al., 2017), species diversity surveys are urgently needed to support the 

development of eco-engineering designs that address site- and species-specific targets. 

Whilst there is a general consensus that local mean species richness (α-diversity) 

is lower on artificial structures compared to natural rocky shores (e.g., Chapman, 2003; 

Gacia et al., 2007; Firth et al., 2013b), it is imperative to move beyond this simple 

biodiversity measure and consider a broader suite of response variables at a range of 

spatial scales. Using Plymouth Sound as a model system, in this study, we employed 

multiple different species diversity measures (taxon and functional richness, abundance 

and composition, as well as β-diversity) to assess species diversity differences between 

natural and artificial habitats. We used “taxon richness” rather than “species richness” 

because many organisms could not be identified down to species level. We predicted 

that all diversity measures would exhibit some difference among natural and artificial 

habitats, but that mean taxon richness alone would fail to capture the full scope of 

differences. We surveyed biological communities at 54 sites within natural and artificial 

habitats at two spatial scales – within-site (i.e., comparing quadrats (cm-m); α- and β-

diversity) and among-site (i.e., comparing sites (m-km); α- and β-diversity) – to 

specifically test the following hypotheses: (1) natural habitats would support greater 

mean taxon and functional richness, taxon and functional abundance (number of 

individuals or percent cover per taxa or functional group) and different taxon and 

functional composition compared to artificial habitats at both spatial scales; and (2) 

natural habitats would support greater β-diversity compared to artificial habitats at both 
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spatial scales. As Plymouth Sound receives freshwater input from multiple sources (see 

sec 3.2.1), we addressed salinity as a potential driver of differences in species diversity 

between habitats. Finally, maps of continuous α-diversity values were generated to 

visualise diversity patterns across Plymouth Sound. 

3.2 Materials and methods 

3.2.1  Model system: Plymouth Sound 

Plymouth Sound (50.352222, -4.135556; Figure 3-1) is an outer estuarine inlet 

comprising a range of habitat types, including rocky reef, sandy beaches and mudflats, 

with a long history of reclamation and human modification of the land-sea interface; a 

third of the Sound is classified as artificial (Knights et al., 2016). Many areas in the 

Sound are designated as Sites of Special Scientific Interest (SSSI) and Special Areas of 

Conservation (SAC), with the area as a whole listed as a European Marine Site 

(Langston et al., 2003). Moreover, Plymouth Sound is soon to be the first National 

Marine Park in the UK, placing it at the same status as the UK’s 15 National Parks. 

There is freshwater input from several rivers, the largest including the Rivers Tamar, 

Tavy, Plym and Lynher (Langston et al., 2003; Knights et al., 2016). The Sound is 

flanked by sloping natural rocky shores composed of Palaeozoic shale and limestone, 

which extend along the west and east coasts (Knights et al., 2016). Artificial structures 

to support human activity (i.e., piers, discharge pipes, breakwaters, seawalls) are 

interspersed among the natural habitats.  
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Figure 3-1. Surveys were conducted in (A.) the UK within (B.) Plymouth Sound. In (B.) 

green circles represent sites within natural habitats and grey triangles show sites within 

artificial habitats. 

 

3.2.2  Survey design 

Fifty-four sites were surveyed around Plymouth Sound, stretching from Penlee 

Point in the west to Wembury in the east; 29 surveys were conducted on natural rocky 

shores and 25 surveys were conducted on seawalls created from naturally sourced stone 

(Figure 3-1; see Appendix 2, Table 1 for site details). There were no natural sites 

surveyed up the mouths of both rivers, as natural sites are absent from these areas, and 

similarly, very few artificial sites were sampled in the south east and south west regions 

of the Sound due to the limited presence of artificial structures. Surveys were made in 

the mid-intertidal zone (1.5-2.5 m above CD) during low tide, within a 5 x 5 m “site”; 

although this area was slightly condensed in artificial habitats because the steeper slope 

of artificial structures results in reduced area available to survey and avoided problems 

of surveying a greater spread of tidal elevations. Surveys were made during summer and 
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autumn of 2017 and 2018. At each site, 15 quadrats (25 x 25 cm) were haphazardly 

placed and all space-occupying biota within were identified and quantified. Recorded 

biota were > 1 mm and excluded epiphytes and species dwelling in trapped material 

such as silt and mud. Mobile organisms were counted, and sessile organisms were 

quantified using percentage cover. Organisms were positively identified down to 

species level whenever possible. When species-level identification was not possible, 

however, consistent morphotaxa were used (e.g., “Corallinaceae crust” for all 

calcareous encrusting red algal species). To standardise for slope and topographic 

complexity, only vertical or sloping (≥ 45° angle) substrata were sampled and ensuring 

quadrats were placed on freely draining smooth surfaces, rejecting those with pools or 

deep crevices. At each site, salinity (psu) and temperature (°C) were measured during 

the time of sampling (low water). Salinity was opportunistically measured at a subset of 

sites at high water under normal weather conditions, as well as following a severe 

rainfall event (December 2018) to obtain an estimate of low salinity extremes. To attain 

a more comprehensive picture of salinity in the area, field measurements were 

supplemented with historical observations from around Plymouth Sound (Milne, 1938; 

Butler and Tibbitts, 1972; Uncles et al., 1986; Uncles and Stephens, 1990; Siddorn et 

al., 2003). These sources included observations and modelled data from high and low 

water, spring and neap tides and year-round measurements.  

3.2.3 Response variables 

This study investigated the effects of habitat (natural, artificial) on the following 

response variables: (1) mean taxon richness (number of taxa); (2) mean functional 

richness (number of functional groups); (3) taxon abundance (number of individuals or 

percent cover per taxa); (4) functional abundance (number of individuals or percent 

cover per functional group); (5) taxon composition (number of taxa and their relative 

abundance); (6) functional composition (number of functional groups and their relative 
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abundance); (7) β-diversity within sites (comparing quadrats) and (8) β-diversity among 

sites (comparing sites).  

3.2.4  Statistical analyses 

Taxon and functional richness (α-diversity; presence/absence data) and 

abundance were analysed at the quadrat and site scales separately. Taxa were 

categorised into major taxonomic (patellids, littorinids, trochids, Cirripedia, Porifera, 

Chlorophyta, Ochrophyta and Rhodophyta) and functional groups (grazer, omnivore, 

predator, lichen, thin filamentous, foliose, corticated macrophyte, leathery macrophyte, 

articulated calcareous, crustose, other algae and cyanobacteria; Littler and Arnold, 

1982; Phillips, 1996; Arenas et al., 2006b). For mean richness, only taxonomic and 

functional groups with ≥ 5 individuals per group were used for analyses and shown in 

figures. Similarly, for mean abundance comparisons, only taxonomic and functional 

groups with ≥ 1 individual or 1% mean abundance were used for analyses and shown in 

figures. Prior to analyses, abundance data were square root-transformed to reduce the 

influence of very abundant species (Anderson et al., 2008). Data were “zero-adjusted” 

by adding a dummy species to every sample when necessary, and then Bray-Curtis 

similarity matrices were computed. Permutational multivariate analysis of variance tests 

(PERMANOVA; Anderson, 2001) were used to test for community composition 

differences between natural and artificial habitats, and were based on 9999 permutations 

of residuals under a reduced model. A two-way nested design was used for each test, 

with random factor Site nested in fixed factor Habitat (2 levels: natural and artificial).  

To address the hypothesis regarding β-diversity, both classic (Whittaker, 1960) 

and multivariate (Anderson et al., 2006; Anderson et al., 2011) measures were 

employed to analyse differences in species assemblages at the quadrat (within-site) and 

site (among-site) scales (Figure 3-2). In terms of classic measures, additive βw (β = γ - 

α̅) was used because α̅ and γ are expressed in the same units, allowing for easy 
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interpretation and direct comparisons of α- and β-diversities across multiple studies 

(Gering et al., 2003; Crist and Veech, 2006; Anderson et al., 2011). Within-site α̅ was 

obtained from the mean taxon richness of all quadrats by site; while within-site γ was 

the total number of taxa recorded for each site. Among-site α̅ was calculated from mean 

taxon richness of all sites by habitat; while among-site γ was the total number of taxa 

recorded for each habitat. Multivariate measures were also used because Whittaker’s β-

diversity measures diversity for a given area, but cannot statistically test for differences 

among different areas (Anderson et al., 2006). Distance-based permutational tests for 

homogeneity of multivariate dispersions (PERMDISP) based on Sørensen distance 

matrices (presence/absence data) among a-priori groups were performed on the full 

communities (i.e., both sessile and mobile organisms; Anderson, 2006; Anderson et al., 

2006). To statistically analyse β-diversity using abundance information, PERMDISP 

tests based on Bray-Curtis similarity matrices were run on mobile and sessile data 

separately after data were square-root transformed. PERMDISP tests were based on 

distances to centroids with 9999 permutations.  

Ordination of samples was visualised using non-metric multi-dimensional 

scaling (nMDS) plots. β-diversity among sites within natural and artificial habitats were 

visualised separately using correlation plots created in R Studio (version 1.1.423) using 

the ‘corrplot’ package (R Core Team, 2017) and based on Sørensen distance matrices. 

To test for percentage contributions of individual taxa to dissimilarities between natural 

and artificial habitats, a similarity percentage (SIMPER) test was run. Tests for 

differences were conducted in PRIMER v6 with the PERMANOVA+ add-on 

(PRIMER-E Ltd, Plymouth, UK; Anderson et al., 2008) using the PERMANOVA and 

PERMDISP routines, and visualised using the nMDS routine. Taxon accumulation 

curves were generated using the ‘species observed’ (‘Sobs’) routine in PRIMER v.7 

from 9999 random permutations. To create a map of predicted α-diversity values within 
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Plymouth Sound from the current dataset, the kriging technique in ArcMap (v.10.4) was 

employed. Kriging is a type of interpolation that understands the underlying spatial 

behaviour of a limited number of data points, and from it predicts values for areas 

without data points. Salinity was measured at low water at every site during biological 

data collection, and then a representative subsample of sites was measured again at high 

water during an extreme rainfall event to capture extremes in salinity. The difference in 

salinity measured at high water between natural and artificial habitats was statistically 

tested. Salinity at high water was used for analysis because these data would thus give 

us the most extreme scenario in salinity variation. Salinity data were square-root 

transformed and then normalised. Euclidean dissimilarity matrices were then computed 

and a one-way PERMANOVA test was run based on 9999 permutations of unrestricted 

permutation of raw data. 
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Figure 3-2. Schematic diagram of (a) within-site and (b) among-site β-diversity. β-diversity is the variation in identities of species among 

sampling units in a given area. β = γ - 𝛼̅, where α is the average taxon richness in quadrats and γ is the site for within-site β-diversity; and α 

is the average taxon richness per site and γ is Plymouth Sound for among-site β-diversity.
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3.3 Results  

3.3.1  Environmental context and general results 

Water temperatures ranged from 9.7 °C in December to 21.3 °C in September 

reflecting seasonal differences at time of sampling. Salinity ranged from 30-35 psu at 

low water across all sites showing these sites are generally fully marine in character. 

Values of 13-32 psu were measured at high water following a severe rainfall event, and 

32-35 psu at high water under normal weather conditions. This demonstrates that, 

although fully marine conditions at high water are typical, short-term reductions in 

salinity can occur when immersed. The lowest salinity values were all recorded in 

artificial habitats: Admirals Hard in Stonehouse (2 sites) at the mouth of the River 

Tamar, under Laira Bridge (1 site) and at Oreston (2 sites) at the mouth of the River 

Plym (Figure 3-3). Historical records and modelled estimates of salinity in Plymouth 

Sound and the mouth of the River Tamar measured at all states of the tide ranged from 

19.5-34.5 psu. Mean salinity values (measured at high water after an extreme event) 

were significantly greater in natural compared to artificial habitats (p < 0.001). 
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Figure 3-3. (a) Habitats in Plymouth Sound that were surveyed in this study. The majority of the urbanised areas of Plymouth are either artificial or a 

mix of artificial and patchy natural reefs. Habitats that flank the Sound on the east and west sides are dominated by natural substrate. (b) Continuous 

values of salinity (psu) across Plymouth Sound were generated from salinity measurements from a subset of the study sites using the kriging method in 

ArcGIS. Natural sites are represented by green circles and artificial sites are represented by black squares. The English Channel is to the south, and the 

Rivers Tamar and Plym are to the northwest and northeast, respectively. Measurements of salinity used here were taken at high water immediately 

following an extreme rainfall event (December 2019) to demonstrate salinity range in the Sound. Salinity values following the extreme rainfall 

between natural and artificial sites were significantly different (p < 0.001).  Salinity measurements under normal conditions were not different between 

natural and artificial sites (not shown here).
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Mean taxon richness (α-diversity) was significantly greater in natural compared 

to artificial habitats at the within-site scale (Figure 3-4a), as well as at the among-site 

scale (Table 3-1a; Figure 3-4b). Within-site β-diversity was significantly greater in 

natural compared to artificial habitats (Figure 3-4c), whereas, among-site β-diversity 

was significantly greater in artifical compared to natural habitats (Figure 3-4d), 

A total of 59 taxa were recorded across the 54 sites (Appendix 2, Table 2). γ-

diversity was similar in natural (50) and artificial (49) habitats. Ten taxa were unique to 

natural habitats, whilst nine taxa were unique to artificial habitats (Table 3-1a). Overall, 

Rhodophyta was the dominant taxonomic group (18 taxa), with the next most speciose 

groups the Cirripedia and Ochrophyta (6 taxa; Table 3-1b). A total of 13 functional 

groups were recorded across all surveys, with functional richness greater in artificial (12 

taxa) compared to natural (10 taxa; Table 3-1b). The functional group with the greatest 

number of taxa was the filter feeders (17 taxa); with the next most speciose group being 

the grazers (11 taxa).  

 Four non-native species were found in both natural and artificial habitats: 

Darwin’s barnacle, Austrominius modestus (Darwin, 1854) was found in 79% of natural 

and 84% of artificial sites; the red alga, Caulacanthus okamurae Yamada, 1933 was 

found in 17% of natural and 12% of artificial sites; the Pacific oyster, Magallana gigas 

(Thunberg, 1793) was found in 14% of natural and 32% of artificial sites; and the red 

ripple bryozoan, Watersipora subatra (Ortmann, 1890) was found in 10% of natural and 

8% of artificial sites. One additional non-native species – the orange-striped anemone, 

Diadumene lineata (Verrill, 1869) – was found in 4% of natural sites (Appendix 2, 

Table 2).
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Figure 3-4. Mean α-diversity (taxon richness) of community composition was significantly greater in natural compared to artificial habitats 

both (a) within-site and (b) among-sites. Mean β-diversity using Whittaker’s β was significantly greater in natural compared to artificial 

habitats at the (c) within-site level, but was significantly lower in natural compared to artificial habitat at the (d) among-site level.  Because 

Whittaker’s β-diversity measures diversity for a given area and cannot statistically test for differences among areas, multivariate measures 

were employed (e, f). (e) Within sites (α = quadrat), variation in species composition was greater in natural compared to artificial habitats. 

(f) Among sites (α = site), variation in species composition was greater in artificial compared to natural habitats. Box plots were based on 

mean distances from group centroids calculated from distance-based permutational tests for homogeneity of multivariate dispersions 

(PERMDISP). The dashed and solid lines represent the mean and median, respectively. The box itself contains the middle range of the 

data, with the upper boundary representing the 75th percentile, and the lower boundary representing the 25th percentile. Black dots represent 

outliers. Asterisk (*) indicates significant differences between natural and artificial habitats. 
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Table 3-1. (a) General summary of taxon and functional richness recorded in natural and 

artificial habitats, and (b) summary of total richness, mean richness and abundance of 

taxa in each major taxonomic and functional group. Mean abundance in (b) is by 

quadrat. '>/<' indicates the direction of significance. 'c' and '%' indicate counts of mobile 

and percent cover of sessile organisms, respectively. If differences are significant, there 

is '*' or '**' in the significance column ('sig.'), indicating a p-value of < 0.05 or < 0.01, 

respectively. 'no test' in the significance column indicates that no statistical test was run 

due to number of taxa per group being < 5 taxa for mean richness and < 1 individual or 

1% coverage for mean abundance. A '†' in the 'dif' column indicates where tests for 

mean richness and abundance disagreed.  

 

(a) Total Natural >/< Artificial sig.

Total taxon richness (γ) 59 50 > 49 -

Taxon richness - quadrat (α) - 6.5 ± 0.1 > 4.5 ± 0.1 **

Taxon richness - site (α) - 18.1 ± 0.9 > 11.1± 0.9 **

Functional richness 13 10 < 12 -

Non-native species richness 5 5 > 4 -

Unique taxa - 10 > 9 -
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(b)

Total Natural >/< Artificial Natural >/< Artificial sig. Natural >/< Artificial sig. dif.

Mobility

mobile 13 8 <  12 6.1 ± 0.3 > 3.7 ± 0.4 ** 19.6 ± 0.7 >  11.5 ± 0.8 **

sessile 46 42 >  37 12.7 ± 0.8 > 7.9 ± 0.8 * 93.3 ± 2.2 >  88.5 ± 3.4 no †

Patellids (c) 2 2 = 2 1.8 ± 0.1 > 1.1 ± 0.1 no test 15.5 ± 0.5 >  7.7 ± 0.5 **

Littorinids (c) 4 2 < 4 0.4 ± 0.1 < 0.6 ± 0.2 no test 1.9 ± 0.4 <  2.3 ± 0.6 no

Trochids (c) 3 2 < 3 1.5 ± 0.1 > 1.0 ± 0.2 no test 2.3 ± 0.2 >  0.6 ± 0.1 no test

Cirripedia (%) 5 5 = 5 4.2 ± 0.2 > 2.5 ± 0.2 ** 48.1 ± 1.7 >  39.0 ± 1.8 **

Porifera (%) 2 2 = 2 1.1 ± 0.2 > 1.0 ± 0.2 no test 1.6 ± 0.3 >  0.8 ± 0.1 no test

Chlorophyta (%) 2 2 = 2 1.0 ± 0.1 > 0.8 ± 0.1 no test 2.3 ± 0.5 < 5.7 ± 0.9 **

Ochrophyta (%) 5 5 = 5 1.6 ± 0.2 = 1.6 ± 0.3 no 8.2 ± 1.1 <  29.3 ± 2.4 ** †
Rhodophyta (%) 18 16 > 15 5.5 ± 0.4 > 2.3 ± 0.4 ** 31.6 ± 2.0 >  16.1 ± 1.6 **

Grazer (c) 11 7 < 10 3.8 ± 0.2 > 2.7 ± 0.3 ** 13.9 ± 0.4 > 9.0 ± 0.7 **

Omnivore (c) 1 0 < 1 0.0 ± 0.0 < 0.1 ± 0.1 no test 0.0 ± 0.0 = 0.0 ± 0.0 no test

Predator (c) 1 1 = 1 0.8 ± 0.1 > 0.1 ± 0.1 no test 0.2 ± 0.0 > 0.1 ± 0.3 no test

Filter feeder (%) 17 17 > 14 4.1 ± 0.4 > 3.0 ± 0.3 no 49.5 ± 1.7 > 38.7 ± 1.7 ** †

Lichen (%) 2 2 > 0 0.1 ± 0.0 > 0.0 ± 0.0 no test 0.1 ± 0.1 >  0.0 ± 0.0 no test

Thin fi lamentous (%) 6 5 = 5 0.8 ± 0.2 > 0.7 ± 0.2 no 0.8 ± 0.2 < 8.1 ± 1.2 * †

Foliose (%) 3 3 = 3 1.4 ± 0.1 > 1.0 ± 0.2 no test 4.3 ± 0.7 < 8.4 ± 1.2 no

Corticated macrophyte (%) 8 8 > 6 3.0 ± 0.2 > 1.0 ± 0.2 ** 22.1 ± 1.5 > 4.5 ± 0.8 **

Leathery macrophyte (%) 6 5 > 4 1.4 ± 0.2 > 1.2 ± 0.3 no 9.0 ± 1.1 < 24.5 ± 2.2 ** †

Articulated calcareous (%) 1 1 = 1 0.3 ± 0.1 > 0.1 ± 0.1 no test 0.2 ± 0.1 > 0.1 ± 0.1 no test

Crustose  (%) 1 1 = 1 0.9 ± 0.0 > 0.3 ± 0.1 no test 8.7 ± 0.9 > 3.2 ± 0.6 **

Other algae (%) 1 0 < 2 0.0 ± 0.0 < 0.1 ± 0.1 no test 0.0 ± 0.0 < 0.2 ± 0.1 no test

Cyanobacteria (%) 1 0 < 1 0.0 ± 0.0 < 0.1 ± 0.0 no test 0.0 ± 0.0 < 0.7 ± 0.3 no test

Functional group

Mean (± 1 SE) abundance

Major taxonomic group

Total richness Mean (± 1 SE) richness
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3.3.2 Taxon and functional richness  

Mean taxon richness was significantly greater at both the quadrat and the site 

scales (Figure 3-4a, b). The mean number of taxa accumulated over quadrats in natural 

habitats increased quicker and was consistently greater than in artificial habitats (Figure 

3-5a), while over sites, the rate of taxon accumulation, and ultimately γ-diversity, was 

similar between natural and artificial habitats (Figure 3-5b). Numbers of mobile and 

sessile organisms were significantly greater in natural than artificial habitats. Amongst 

the major taxonomic groups with ≥ 5 taxa per group, mean taxon richness of the 

Cirripedia and Rhodophyta was greater in natural compared to artificial habitats, while 

no significant difference was detected in the Ochrophyta between habitats (Table 3-1b).  

Mean functional richness was significantly greater in natural compared to 

artificial habitats at both spatial scales. Of the functional groups that were statistically 

compared between habitats, the grazers and corticated macrophytes had significantly 

greater numbers of taxa in natural than artificial habitats, while there were no significant 

differences in filter feeders, thin filamentous, and leathery macrophytes between 

habitats (Table 3-1b). 

 

Figure 3-5. Mean cumulative number of taxa (± 95% confidence intervals) over (a) 

quadrats (n = 15) and (b) sites (natural, n = 29; artificial, n = 25). Natural habitat 

supported 50 taxa, while artificial habitat supported 49 taxa.  
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3.3.3 β-diversity 

β-diversity was dependent on the scale at which species assemblages were 

examined. Results from the classic (βW) and the multivariate (PERMDISP) measures 

supported each other at both spatial scales (Table 3-2). Within-site β-diversity was 

significantly greater in natural compared to artificial habitats (Figure 3-4c), meaning 

that taxon richness of quadrats per site in natural habitats varied more compared to 

taxon richness of quadrats in sites within artificial habitats. Among-site β-diversity was 

however, significantly greater in artifical compared to natural habitats (Figure 3-4d, 

Figure 3-6), meaning that the number of taxa among sites in artificial habitats varied 

more than the number of taxa among sites in natural habitats. Tests for homogeneity of 

multivariate dispersion (PERMDISP) of mobile and sessile taxa using abundance data 

supported presence/absence results (Table 3-3), with greater within-site β-diversity in 

natural compared to artificial habitats (Figure 3-4e), but greater among-site β-diversity 

in artificial compared to natural habitats (Figure 3-4f; Table 3-2). These analyses 

showed that there was a similar variation around the mean between habitats for within-

site β-diversity, but that there was more variation around the mean in artifical compared 

to natural habtiats for among-site β-diversity. 
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Table 3-2. Summary of classic and multivariate β-diversity results in natural and 

artificial habitats at two spatial scales: (a) within-site and (b) among-site. Mean dcen 

values are average distances from group centroids, which is a measure of dispersion 

among groups. All calculation methods found that β-diversity was lower in artificial 

compared to natural habitats when measured within sites, but was higher in artificial 

compared to natural habitats when measured among sites. 

  (a) Within sites (b) Among sites 

  Natural Artificial Natural Artificial 

Classic β-diversity measures 

 βw† 12.00 ± 0.66 7.05 ± 0.70 33.24 41.4 

Multivariate dispersion (mean dcen) 

 Sørensen† 28.16 ± 1.07 23.69 ± 1.25 26.11 ± 1.01 44.25 ± 1.40 

 Bray-Curtis mobile‡ 21.99 ± 0.77 17.96 ± 1.72 18.38 ± 1.40 38.41 ± 2.07 

 Bray-Curtis sessile ‡ 33.33 ± 1.50 24.79 ± 2.03 29.98 ± 1.47 41.76 ± 1.74 

†Calculations carried out using presence/absence data.    

‡Calculations carried out using abundance data. 

  

  

 

Figure 3-6. Correlation plots of β-diversity of sites in (a) natural and (b) artificial 

habitats. Plots were based on Sørensen resemblance matrices. β-diversity was greater in 

artificial than natural habitats. The coloured bar indicates the degree of dissimilarity 

between sites, with the darkest colour (values closest to 1) representing the most 

dissimilar assemblages. 
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Table 3-3. PERMANOVA tests comparing within-site and among-site β-diversity 

between natural and artificial habitats for (a) taxon richness (full community), (b) 

mobile taxa and (c) sessile taxa. PERMANOVAs were based on tests for homogeneity 

of multivariate dispersion (PERMDISP). Significant P-values are bolded. 

(a) PERMANOVA comparing average distance to centroids from 

taxon richness data (full community) between natural and artificial 

habitats. 

Within-site   

Source df SS MS Pseudo-F P(perm) 

Habitat 1 2.774 2.774 7.6691 0.0072 

Residual 52 18.809 0.36172   
Total 53 21.583    
Transformation: pres/abs    

      
Among-site   

Source df SS MS Pseudo-F P(perm) 

Habitat 1 4419.9 4419.9 114.97 0.0001 

Residual 52 1999.1 38.443   
Total 53 6418.9    
Transformation: pres/abs    

      
(b) PERMANOVA comparing average distance to centroids from 

community composition abundance data of mobile taxa between 

natural and artificial habitats. 

Within-site   

Source df SS MS Pseudo-F P(perm) 

Habitat 1 218.23 218.23 4.9955 0.0305 

Residual 52 2271.6 43.684   
Total 53 2489.8    
Transformation: SQRT + zero-adjusted   

      
Among-site   

Source df SS MS Pseudo-F P(perm) 

Habitat 1 5384.2 5384.2 67.324 0.0001 

Residual 52 4158.7 79.975   
Total 53 9542.9    
Transformation: SQRT + zero-adjusted   

      
(c) PERMANOVA comparing average distance to centroids from 

community composition abundance data of sessile taxa between 

natural and artificial habitats. 

Within-site   

Source df SS MS Pseudo-F P(perm) 

Habitat 1 978.84 978.84 11.848 0.0016 

Residual 52 4295.9 82.614   

Total 53 5274.8    
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Transformation: SQRT + zero-adjusted   

      
Among-site   

Source df SS MS Pseudo-F P(perm) 

Habitat 1 1861.7 1861.7 27.202 0.0001 

Residual 52 3559 68.442   

Total 53 5420.7    

Transformation: SQRT + zero- adjusted   
 

 

3.3.4 Taxon and functional abundance 

Mean abundance of mobile organisms was significantly greater in natural 

compared to artificial habitats, while mean abundance of sessile organisms did not 

differ (Table 3-1b). Of the major taxonomic groups tested for differences between 

habitats (mean abundance ≥ 1 individual or 1%), the patellids, Cirripedia and 

Rhodophyta were significantly more abundant in natural compared to artificial habitats, 

while the Chlorophyta and Ochrophyta were significantly more abundant in artificial 

habitats, and the littorinids did not differ between habitats (Table 3-1b, Figure 3-7a, b). 

Of the functional groups that significantly differed between habitats, the grazers, filter 

feeders, corticated macrophytes and crustose algae were significantly more abundant in 

natural compared to artificial habitats. Conversely, the thin filamentous and leathery 

macrophytes were significantly greater in artificial compared to natural habitats. There 

were no significant differences detected between habitats for the foliose functional 

group (Table 3-1b, Figure 3-8a, b). 

 



 

108 

 

 

Figure 3-7. Mean abundance of major taxonomic groups of (a) mobile taxa in counts 

and (b) sessile taxa in percentage cover per quadrat in natural and artificial habitats. 

Asterisk (*) above bars indicates a significant difference in abundance between natural 

and artificial habitats. All p-values were < 0.01. Taxonomic groups with < 1 individual 

or 1% mean abundance were omitted from analysis and figures.
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Figure 3-8. Mean abundance of functional groups of (a) mobile and (b) sessile taxa in natural and artificial habitats. Asterisks indicate 

significant difference between habitats (‘*’, p < 0.05; ‘**’, p < 0.01). Functional groups with < 1 individual or 1% mean abundance were 

omitted from analysis and figures.
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3.3.5 Taxonomic and functional composition  

Taxonomic and functional composition were both significantly different 

between natural and artificial habitats (Table 3-4a, b, Figure 3-9). An analysis of the 

contribution from individual taxa (SIMPER) showed that, in terms of mobile taxa, the 

common limpet, Patella vulgata, contributed the most to the dissimilarity between 

artificial and natural habitats, with P. vulgata more abundant in natural compared to 

artificial habitats (Table 3-5a). Approximately 50% of the dissimilarity observed in 

sessile communities between natural and artificial habitats was attributed to Cirripedia, 

Osmundea spp., Corallinaceae and Catenella caespitosa, with all taxa being more 

abundant in natural compared to artificial habitats (Table 3-5b).  

 

Table 3-4. PERMANOVAs comparing (a) taxonomic and (b) functional composition 

between natural and artificial habitats. Significant P-values are bolded.  

(a) PERMANOVA comparing taxonomic composition 

between natural and artificial habitats. 

Source  df       SS     MS 
Pseudo-

F 
P(perm) 

Habitat 1 98542 98542 6.4704 0.0001 

Site(Habitat) 52 792000 15230 15.574 0.0001 

Res 756 739310 977.92                  

Total 809 1629800       

Transform: sqrt + zero adjusted     

            

(b) PERMANOVA comparing functional composition 

between natural and artificial habitats. 

Source  df       SS     MS 
Pseudo-

F 
P(perm) 

Habitat 1 76778 76778 8.1827 0.0003 

Site(Habitat) 52 488000 9382.9 18.703 0.0001 

Res 756 379000 501.67                  

Total 809 944000            

Transform: SQRT + zero adjusted     
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Figure 3-9. Non-metric MDS ordination plot of community composition comparing 

sites within natural and artificial habitats with functional groups overlaid. Sites in 

artificial habitats were more different from each other compared to sites in natural 

habitats. Vector lines indicate the directions in which functional group numbers 

increase, and the lengths of the lines represent the strength of pattern in those group 

counts along that direction.  

 

 

Table 3-5. SIMPER table showing differences in average abundances (square root 

transformed; indicated by > or <) and contributions of individual species to assemblage 

composition dissimilarities between natural and artificial habitats for (a) mobile and (b) 

sessile taxa. Consistency of contribution is shown by ‘Diss/SD’, which is the 

dissimilarity divided by standard deviation of contributions across all pairs of samples. 

(a) Mobile:  Average dissimilarity = 61.9% Natural >/<  Artificial 

% 

Contr Diss/SD 

  Patella vulgata (%) 3.1 > 1.9 50.1 1.1 

  Steromphala umbilicalis (c) 0.9 > 0.2 18.1 0.8 

  Patella depressa (%) 0.3 > 0.2 7.7 0.6 

              

(b) Sessile: Average dissimilarity = 66.8% Natural >/<   Artificial 

% 

Contr Diss/SD 

  Cirripedia (%) 5.9  > 5.1 23.6 1.1 

  Osmundea sp. (%) 2.1  > 0.2 10.5 0.8 

  Corallinaceae (%) 1.6  > 0.6 9.2 0.7 

  Catenella caespitosa (%) 1.2  > 0.2 7.0 0.6 

  Ulva spp. (%)  0.5  < 1.2 6.9 0.5 

  Fucus spiralis (%) 0.8  > 0.7 6.3 0.5 
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  Ascophyllum nodosum (%) 0.1  < 1.4 5.5 0.5 

  Fucus vesiculosus (%) 0.2  < 0.9 4.3 0.4 

 

SIMPER analysis showed that five functional groups contributed 78% towards 

the overall dissimilarity between habitats: corticated macrophyte (21.1%), leathery 

macrophyte (18.5%), filter feeder (13.7%), crustose algae (13.0%) and foliose algae 

(11.3%). The corticated macrophyte, filter feeder and crustose algae groups were 

significantly more abundant in natural habitats, while the leathery macrophyte group 

was significantly more abundant in artificial habitats, with no significant differences 

between habitats in foliose algae (Figure 3-8).  

3.3.6 Kriging analysis 

Continuous values of α-diversity by site around Plymouth Sound generated by 

the kriging method generally showed that diversity increases with increasing distance 

from the central urbanised and lower salinity areas of the Sound (Figure 3-10). Species 

diversity “hot spots” were located on the east and west sides of the Sound in both 

natural and artificial habitats. These areas of the Sound are dominated by natural rocky 

shores. Lower α-diversity was noticable at sites in natural and artificial habitats at the 

mouth of the River Tamar, while diversity at sites in artifical habitats were relatively 

high at the mouth of the River Plym (natural habitats are absent in the River Plym). 

Both rivers are dominated by hard artificial structures.  



 

113 

 

 

Figure 3-10. Kriging analysis maps showing α-diversity in (a) natural and (b) artificial 

habitats per site. Points on the map represent total taxon richness of each site, with red 

indicating higher taxon richness and blue representing lower taxon richness. Sites in 

natural habitats are positioned further south towards the English Channel, while sites in 

artificial habitats are positioned further up the rivers. Note the different scales between 

(a) natural and (b) artificial habitat maps. 

 

 

 

3.4 Discussion 

This study aimed to quantify the differences in biological communities between 

natural and artificial habitats using a number of different response variables at two 

spatial scales. Surveys found that species diversity was different in natural compared to 

artificial habitats, but the direction and magnitude of differences were dependent on the 

scale of assessment and diversity measure used. As expected, mean taxon (α-diversity) 

and functional richness were greater on natural rocky shores compared to artificial 

structures at both the within- and among-site scales, while mean abundance of taxon 

and functional groups depended on the groups analysed. β-diversity was greater in 

natural compared to artificial habitats at the within-site scale, but counter to our 

prediction, at the among-site scale, β-diversity was greater in artificial than natural 

habitats.  

If this study were to have only analysed mean taxon richness – one of the most 

common response variables used in ecological studies – there would have been a simple 
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conclusion that natural habitats supported greater numbers of taxa compared to artificial 

habitats. The differences in biotic communities between the habitats were, however, 

much more complex. Although mean taxon richness was greater in natural compared to 

artificial habitats at both spatial scales, the total number of taxa (γ-diversity) was nearly 

equal between natural and artificial habitats, and moreover, diversity among sites (β-

diversity) in artificial habitat varied much more than expected. The fact that differential 

results were obtained using different diversity measures at two spatial scales highlights 

the importance of employing the most appropriate analyses for the question being asked 

or for the specific management goals, with the understanding that consideration of 

multiple diversity measures and scales may be necessary.   

β-diversity was predicted to be greater in natural compared to artificial habitats 

at both the within- and among-site levels, as natural rocky shores are topographically 

more complex than artificial structures at a range of spatial scales (mm-km; Knott et al., 

2004; Moschella et al., 2005). Variation in the identities of species among sites, 

however, was greater in artificial compared to natural habitats, indicating that biological 

communities can differ based on the scale in which they are analysed. 

There were limitations with the experimental design of the current study, as 80% 

(20 of 25) of the sites in artificial habitat were located in sheltered estuarine conditions; 

these locations were slightly up the Rivers Plym and Tamar or at the mouths of these 

rivers. This was in contrast to natural sites being more evenly distributed across 

Plymouth Sound (Figure 3-1). In general, artificial structures tend to be built in heavily 

urbanised and polluted areas and are often located in sheltered estuaries, which by 

nature, experience fluxes in environmental variables such as nutrients (Statham, 2012), 

salinity and water temperature (Whitehead et al., 2009). In Plymouth Sound, almost the 

entire seafront, as well as up the Rivers Plym and Tamar, are armoured; whereas 

habitats further from the urbanised areas of Plymouth are natural (Figure 3-3a). Sites 
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surveyed, therefore, experienced differences in salinity and exposure gradients (see 

Appendix 2, Table 1 for rankings of exposure by site), which may confound the results. 

Thus, salinity and exposure gradients cannot be eliminated as potential factors in 

influencing biological community composition between natural and artificial habitats. 

This is important to acknowledge because environmental and physical factors have been 

shown to affect the assemblage of local biological communities (Coates, 1998; 

McQuaid and Lindsay, 2000; Przeslawski, 2004). For example, Gomes-Filho et al. 

(2010) found that the non-native barnacle, Austrominius modestus, was present further 

up estuaries compared to native barnacles, and native species showed clear patterns of 

distribution throughout the entire profile of estuaries in Plymouth Sound, likely due to 

salinity gradient. Photosynthetic micro-organisms that are important for the functioning 

of rocky shores were found in greater abundances on exposed compared to sheltered 

shores (Thompson et al., 2005), biomass of intertidal organisms has been shown to be 

influenced by exposure gradient (McQuaid and Branch, 1984) and grazing activity in 

limpets is greater on exposed compared to sheltered intertidal rocky shores (Jenkins and 

Hartnoll, 2001). In the current study, salinity values taken at the time of surveys were 

measured at low water and did not vary greatly. However, measurements taken at high 

water following an extreme rainfall event showed that sites near the mouths of the 

Rivers Tamar and Plym experienced lower salinity conditions than sites closer to the 

English Channel. Salinity reports from historical records and past studies showed that in 

Plymouth Sound, including at the mouths of both rivers, salinity did not drop below 

19.5 psu and fluctuated approximately 6-15 psu depending on the study (Milne, 1938; 

Butler and Tibbitts, 1972; Uncles et al., 1986; Uncles and Stephens, 1990; Siddorn et 

al., 2003). These lower salinity sites are likely exposed to such conditions only during 

heavy rainfall, with effects being exacerbated during spring tides. To ensure unbiased 

sampling effort, future studies should consider surveying sites with uniform exposure 
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and salinity gradients, as well as any other relevant physical factors, such as 

temperature, light availability and pollution load.   

Processes driving variation in community composition among sites in artificial 

habitats are probably localised, as artificial structures in Plymouth Sound can be 

considered fragmented landscapes, with little physical connectivity amongst them (they 

are not contiguous in design). This is in comparison to natural rocky shores in Plymouth 

Sound. In the northern section, around the City of Plymouth, natural rocky shores are 

non-contiguous and fragmented, while natural rocky shores on the east and west sides 

of Plymouth Sound are contiguous, only occasionally being interspersed by natural 

beaches and artificial structures. Artificial structures can change the physical 

environment immediately surrounding the structure, modifying normal coastal 

processes both in the immediate vicinity and downstream (Airoldi et al., 2005a; Dugan 

et al., 2011), such as hydrodynamics, sediment accumulation and deposition, wave 

impact and sand scour (Miles et al., 2001; Govarets and Lauwaert, 2009; Dugan et al., 

2011). Moreover, artificial structures are more vulnerable to short-term disturbances 

through trampling from humans, regular maintenance (Govarets and Lauwaert, 2009; 

Airoldi and Bulleri, 2011), locality to other maritime activities such as docking of boats 

(K. O’Shaughnessy, pers. obs.) and use of antifouling paints (Weis and Weis, 1996). 

Effects from short-term disturbances can be exacerbated by the altered hydrodynamics 

around a structure; in particular, waves reflected off vertical seawalls can create 

turbulence and may actually interact with incoming waves, causing increased sand scour 

along the structure (French, 2002; Bush et al., 2004). Disturbances may dislodge or 

crush mobile invertebrates (e.g., limpets and snails) and sessile species (e.g., mussels 

and algae), creating bare space for colonisation by non-native or opportunistic species 

(Govarets and Lauwaert, 2009; Airoldi and Bulleri, 2011; Bracewell et al., 2012). Thus, 

depending on when artificial structures were constructed or last disturbed, they may be 
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in different stages of ecological succession (Benedetti-Cecchi et al., 2000; Chiantore et 

al., 2018), resulting in different emergent community composition among structures 

(Airoldi, 2000; Reed et al., 2000). In this study, the majority of artificial structures 

surveyed were concentrated in the urbanised areas of Plymouth Sound, in particular, at 

the mouths of the Rivers Tamar and Plym. Two surveys were conducted on seawalls at 

the mouth of the River Plym, where a local engineering company operates on a regular 

basis. Additionally, one survey was conducted on a seawall immediately beneath a 

major bridge connecting Plymouth city centre to the neighbouring suburbs. Immediately 

adjacent to the bridge is an associated cycle and pedestrian bridge. Construction work 

was recently undertaken on this bridge to transform it from a rail to a pedestrian bridge, 

probably causing disturbance to flora and fauna on the seawall. At the mouth of the 

River Tamar, two surveys were conducted on seawalls adjacent to a vehicle ferry 

terminal, while one survey was done on a seawall adjacent to a smaller pedestrian ferry 

dock. It is likely that these ferries cause intermittent disturbance to the local biotic 

communities in the form of docking/tying-up or resuspending sediment from the sea 

floor (i.e., increasing turbidity;  Rhoads and Boyer, 1982; Ellis et al., 2002; Airoldi and 

Hawkins, 2007). Moreover, many of the sites in artificial habitat were located in the 

urbanised areas of Plymouth Sound, meaning they likely received elevated levels of 

runoff from terrestrial sources compared to less urbanised areas of the Sound. O’Connor 

(2013) found that, although differences in species diversity were not detected, there was 

greater spatial variability of rocky shore communities near sewage discharge points 

compared to communities without a sewage outfall present. It is possible that these 

human activities act in concert with environmental disturbances (e.g., waves, sand 

scour, sedimentation) to arrest artificial structures in early successional stages, affecting 

their ability to support fully stabilised communities (Dean and Connell, 1987).  
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Biological processes likely act in synergy with physical disturbances to 

determine colonising communities in natural and artificial habitats. Morphologically 

simple and fast growing filamentous and foliose algae were more abundant in artificial 

compared to natural habitats in these surveys. These groups included highly productive 

and ephemeral species such as Ulva spp., Polysiphonia spp., Porphyra spp. and 

Ceramium spp. (Littler and Arnold, 1982; Steneck and Dethier, 1994; Phillips, 1996). 

They are characteristic of early successional stages (Murray and Littler, 1978; Sousa, 

1980) that are known to rapidly colonise new or cleared substrata (Sousa, 1979; Noël et 

al., 2009). In conditions where these opportunist taxa persist (e.g., lack of grazers, 

presence of physical disturbances), their presence can restrict the settlement of longer-

lived algal species (Sousa, 1979; Sousa, 1980). Where, however, conditions are not 

favourable for opportunistic algae, settlement of perennial algae and barnacles occurs 

(Sousa, 1979; Sousa, 1980), allowing for diverse and stabilised communities. Similarly, 

grazers are known to be facilitators of succession, as they graze down algae and create 

space for spores and larvae of other species (Benedetti-Cecchi, 2000; Benedetti-Cecchi 

et al., 2000). As abundances of grazing invertebrates on artificial structures in this study 

were low, succession of biotic communities to a stabilized state might not occur, 

preserving communities in early successional stages.  

Among-site β-diversity may be considered a surrogate measure for ecological 

connectivity because it describes the relationship between the regional species pool (γ-

diversity) and species richness of sites (α-diversity; Whittaker, 1960; Witman et al., 

2004; Chiantore et al., 2018). Among-site β-diversity is negatively related to biological 

homogeneity, meaning that sites with similar community composition are likely to be 

highly connected to the regional species pool (Chiantore et al., 2018). In this study, 

among-site β-diversity was lower among natural sites, thus, sites in natural habitats may 

have been more connected to the regional species pool compared to sites in artificial 
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habitats. Our study was conducted at the meso- (1-100 km) and local (1 m-1 km) scales 

(greatest distance between sites was 9 km). It is therefore possible that all sites in this 

study had equal access to the regional species pool, but local physical (e.g., desiccation 

stress, wave exposure) and biological (e.g., competition, predation) conditions were 

likely to have influenced larval recruitment, survival to adulthood and reproductive 

success (Sousa, 1984; Reed et al., 2000).  

Community composition of functional groups differed between natural and 

artificial habitats, suggesting that the ecological functioning of artificial structures is 

different to natural rocky shores. Greater abundances of grazers and filter feeders were 

found in natural compared to artificial habitats, while greater abundances of leathery 

macrophytes (mostly fucoids) were recorded in artificial compared to natural habitats. 

Gastropod and other marine invertebrate larvae have been shown to be positively 

affected by red algae; they are known to settle on encrusting reds, being induced by 

chemical cues on the algal substrate (Morse et al., 1984; Morse and Morse, 1984; 

Johnson et al., 1991). Moreover, encrusting red algal species have been found in gut 

contents of grazing invertebrates (Lai et al., 2018). In the current study, crustose algae 

were limited on artificial structures, suggesting that the lack of these algae may explain 

the low abundances of grazing invertebrates in artificial habitats. On the other hand, 

grazer abundance may be negatively influenced by dense patches of mature algae, 

which have been shown to limit the grazing ability of gastropods as they are unable to 

adhere to the slippery algae or penetrate to the substrate below (Underwood and 

Jernakoff, 1981). Alternatively, leathery macrophytes may not have been able to 

establish on natural rocky shores due to the regulating effect of limpets on the growth of 

larger canopy algae (Hawkins, 1983b; Hawkins, 1983a; Jenkins et al., 2005; Coleman et 

al., 2006). Limpets are voracious predators of the spores of fucoid algae in temperate 

intertidal rocky shores (Hawkins, 1983b; Hawkins, 1983a; Jenkins et al., 2001; Jenkins 
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et al., 2005). Two common mid-shore limpet species on natural rocky shores in the 

southwest of England, Patella vulgata and P. depressa, are known to experience 

reduced feeding activity during their respective reproductive seasons (i.e., winter for P. 

vulgata and spring/summer for P. depressa; Jenkins et al., 2001; Moore et al., 2007). 

Although P. vulgata was more abundant than its conspecific in both habitats, even 

during the season when P. vulgata reduced its feeding, P. depressa was actively 

foraging on fucoid species, thereby creating a year-round limiting effect on settlement 

and growth of leathery macrophytes (Moore et al., 2007), with this effect more 

pronounced in natural compared to artificial habitats. The ability of grazers to limit the 

growth of large canopy algae allows barnacles to persist (Hawkins, 1981; Hawkins, 

1983b; Moore et al., 2007). In the current study, there were significantly lower 

abundances of Cirripedia in artificial habitats, demonstrating that artificial structures in 

Plymouth Sound may lack the biological interactions that allow for barnacle settlement 

and survival. Therefore, artificial habitats potentially support lower rates of water 

filtration compared to natural rocky shores, which can have clear negative effects on 

water quality for the wider ecosystem, especially in heavily urbanised harbours.   

Past studies have assessed diversity differences between artificial and natural 

habitats, finding lower species richness (Moschella et al., 2005; Gacia et al., 2007; Firth 

et al., 2013b), different community composition (Bulleri et al., 2005; Lai et al., 2018), 

fewer mobile species (Chapman, 2003; Pister, 2009) and greater numbers of non-native 

species (Glasby et al., 2007; Dafforn et al., 2009; Dafforn et al., 2012) on artificial 

structures. However, other studies have found either the opposite pattern or no pattern in 

response variables depending on taxa examined (Lam et al., 2009; Marzinelli et al., 

2009), tidal height (Chapman and Bulleri, 2003; Bulleri et al., 2005), structure type 

(Bulleri and Chapman, 2004; Chapman, 2006) and time of sampling (Bulleri and 

Chapman, 2004; Bulleri et al., 2004; Chapman, 2012; Firth et al., 2016a), as well as 
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chosen diversity measures and analyses (Martin et al., 2005; Firth et al., 2016a). Our 

surveys concurred to some extent with previous studies, in that artificial structures 

supported lower mean taxon richness, and biotic communities in natural and artificial 

habitats supported similar assemblages of common taxa, but significant differences 

between groups were attributed to abundance and frequency of occurrence of individual 

species (Chapman and Bulleri, 2003; Lai et al., 2018). However, our study also raises 

the argument that assessing species diversity is more complicated than simply 

quantifying the number of species between two habitats; assessment should depend on 

overall conservation and management goals.  

Capturing the full species diversity picture can reveal essential information on 

dominance and rarity of species (Chapman, 2003; Matias et al., 2012; Firth et al., 

2016a), as well as provision of ecosystem services for future management strategies 

(Chapman, 1999; O'Connor and Crowe, 2005; Hillebrand et al., 2018). The current 

study measured species diversity, which by definition, considers the number of species 

and the relative abundance of species in a given community (Hawksworth, 1995; 

Tuomisto, 2010a; Hillebrand et al., 2018). Interpreting the productivity of a population 

relies on knowing the number of individuals in the community (Yee and Juliano, 2007), 

as this provides information on the viability of a population and the probability of its 

extinction in that ecosystem (Storch et al., 2018). The numbers (and indeed sizes) of 

individuals within a community can also influence the provision of ecosystem services 

(Winfree et al., 2015), such as water filtration and primary production (Wilkinson et al., 

1996). For example, in this study, analyses of abundance data revealed greater 

abundance of filter feeders in natural compared to artificial habitats, while analysis of 

numbers of taxa within the filter feeders showed no difference between habitats. When 

abundance data is considered here, results suggest that natural habitats provide better 

substrate and conditions for settlement and growth of filter feeding species, which 



 

122 

 

subsequently affects rates of water filtration and quality. Similarly, no difference was 

detected in taxon richness of the leathery macrophytes, but there was a significant 

difference in abundance of this group between habitats. There are clear benefits in 

knowing abundance information for macroalgae, as they are considered important 

carbon fixators (Gao and McKinley, 1994; Muraoka, 2004; Chung et al., 2011). 

Although the Ochrophyta (i.e., leathery macrophytes) are the least photosynthetically 

active of the macroalgae (Steneck and Dethier, 1994; Phillips, 1996; Chung et al., 

2011), in large abundances like found on artificial structures in Plymouth Sound, they 

have the potential to draw out substantial amounts of carbon from the atmosphere 

(Chung et al., 2011). It is therefore imperative to consider abundance of individuals as 

well as the number of species present when conducting species diversity surveys, as this 

will provide information on the ecological functioning and emergent services of 

habitats. 

Trait-based and functional approaches are becoming more common in the field 

of community ecology (Litchman and Klausmeier, 2008; Schleuning et al., 2015; 

Santini et al., 2016). Hawksworth (1995) argued that ecologists should no longer rely on 

numbers of species present as an adequate measure of species diversity, as using a 

single number to measure diversity assumes that all species within a given area 

contribute equally to a community. This is because species richness measures do not 

detect the loss and replacement of specific species and their functioning within the 

ecosystem. For example, if one species is replaced by another species of different 

morphology and functioning, changes in the genetic and ecological roles of that system 

may change without the number of species actually changing (Hillebrand et al., 2018). 

In the southwest of England, it is predicted that climate change will cause “northern” 

cold water species, such as P. vulgata, and “southern” warm water species such as the 

top shells, Phorcus lineatus and Steromphala umbilicalis, to move north (Mieszkowska 



 

123 

 

et al., 2006; Hawkins et al., 2009). On temperate intertidal rocky shores, all three 

species are important grazers of microalgae (Hawkins et al., 1989) and P. vulgata is an 

important consumer of macroalgal spores (Hawkins, 1983b; Hawkins, 1983a). Southern 

species may move in to replace these species (Mieszkowska et al., 2006; Firth et al., 

2009; Hawkins et al., 2009), and if the new species fill a different ecological role than 

their predecessors (i.e., grazers), micro- and macroalgae may grow unchecked with 

subsequent effects on barnacles and other filter feeders (Hawkins, 1983b). Therefore, 

community structure may be reorganised, with consequences for the ecological 

functioning of ecosystems. The surveys in this study showed that grazing invertebrates, 

and in particular, patellids, were more abundant on natural rocky shores compared to 

artificial structures, suggesting that climate change may restructure natural habitat to 

function more like artificial habitats in Plymouth Sound (i.e., low abundance of grazers 

and high abundance of leathery macroalgae). Regardless of the effects and to which 

habitats, if continuous monitoring efforts do not collect species abundance data, vital 

information predicting effects of climate change could be overlooked.  

3.4.1. Ecological engineering of urban coastlines   

Continued coastal development to protect human lives and infrastructure is 

inevitable. Fortunately, the impetus to consider ecologically sensitive designs of coastal 

infrastructure to preserve biodiversity is gaining momentum (Evans et al., 2017; Strain 

et al., 2017a; Strain et al., 2019a). Ecological engineering – the design of sustainable 

ecosystems for the benefit of human society and the natural environment (Odum, 1962; 

Odum and Odum, 2003) – is an emerging field in coastal and marine environments. 

Over about the last decade, a wide range of designs have been trialled globally that have 

included addition of topographic complexity on hard built structures to create desirable 

habitats (Martins et al., 2010; Chapman and Underwood, 2011; Browne and Chapman, 

2014; Firth et al., 2014b; Evans et al., 2016a; Perkol-Finkel et al., 2017; Strain et al., 
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2017b; Hall et al., 2018), incorporating precast habitat enhancement units into pre-

existing structures (Firth et al., 2014b; Sella and Perkol-Finkel, 2015) and hybrid 

designs, which involve constructing a hard stabilising structure on the seaward side of 

planted vegetation (Kamali et al., 2010; Bilkovic and Mitchell, 2013). More recently, 

there has been a push to trial designs on larger spatial scales (Sella and Perkol-Finkel, 

2015; Cordell et al., 2017; Living Seawalls, 2019). The ability to forecast the identities 

and numbers of species that may recruit to, and survive on, artificial structures with 

some level of confidence will be imperative in informing ecological engineering designs 

(Airoldi et al., 2005a). One of the first steps in employing ecologically sensitive designs 

in coastal development is to conduct ecological surveys in the location of interest 

(Mayer-Pinto et al., 2017). Baseline ecological surveys can help determine the 

secondary (ecological) management objectives and identify the drivers of diversity 

differences between natural and artificial habitats, which can then inform small-scale 

trials in the location of interest before implemented on a larger scale. For example, in 

this study, abundance of mobile grazing organisms was significantly lower on artificial 

structures compared to natural rocky shores. A potential driver of this pattern might be 

the lack of complex microhabitats, which grazers have been shown to inhabit on natural 

rocky shores (Chapman and Bulleri, 2003; Bulleri and Chapman, 2004; Lam et al., 

2009; Aguilera et al., 2014). Additionally, specific plant material such as turf algae and 

microbial film has been found in the gut contents of grazing invertebrates (Hawkins et 

al., 1989; Burgos-Rubio et al., 2015; Lai et al., 2018). Therefore, interventions to 

encourage mobile grazers should also aim to encourage settlement of turf algae and 

growth of biofilm. Thus, potential ecological engineering experiments could involve 

installing small (cm) pits or grooves on artificial structures to provide complexity for 

algal spore settlement and habitat for mobile grazers (Martins et al., 2010; Chapman and 

Underwood, 2011; Firth et al., 2014b). 
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The kriging method was employed to visualise species diversity at a landscape 

scale (i.e., Plymouth Sound). In this way, managers can target heavily urbanised areas 

that might have potential to support eco-engineering interventions with an aim to boost 

species diversity. Artificial structures of interest might be those adjacent to natural 

rocky shores, where the species pool will be larger in terms of abundance of species, 

and that suite of species will be more characteristic of natural rocky shore assemblages. 

This technique can help maximise the ecological gains while minimising cost to 

stakeholders.  

3.4.2. Concluding remarks  

This study showed that, although natural and artificial habitats supported similar 

total taxon richness (γ-diversity), at both spatial scales on average, artificial structures 

supported different species assemblages and fewer numbers of species compared to 

natural rocky shores. Interestingly, variation in community composition (β-diversity) 

was greater in artificial habitat compared to natural habitat at the site scale. If total 

number of taxa at one spatial scale would have been the only response variable 

measured, conclusions drawn concerning species diversity in natural and artificial 

habitats would have been much less informative. 

The world is experiencing a biodiversity crisis (Wheeler et al., 2004; 

Monastersky, 2014). The way ecologists interpret biodiversity can have major 

implications for conservation management of threatened species or entire ecosystems 

(Rogers et al., 1999). Thus, despite the increasing urgency to monitor diversity in a 

timely and inexpensive manner, the future of species diversity monitoring must consider 

more than the conventional measures alone (i.e., species richness) so that we do not 

overlook valuable ecological information. This may seem like a challenging task, but 

the consequences of continuing with the status quo may include living in a world that 
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contains many fewer species, with severe implications for the structure and functioning 

of ecosystems and their emergent services. 
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4. CHAPTER FOUR 

Effects of habitat complexity and mussel seeding in intertidal habitats across two 

geographic locations 

 

Abstract 

Urbanisation along coastlines and estuaries has driven humans to build defences to 

protect infrastructure from rising sea levels, erosion and stormier seas worldwide. 

Artificial structures are proliferating in the coastal and marine environments (“ocean 

sprawl”), resulting in a loss of natural habitat, species diversity and ecosystem 

functioning. To mitigate the impacts of natural habitat loss, the practice of ecological 

engineering – or “eco-engineering” – of coastal infrastructure has been developed and 

tested over the past decade. Eco-engineering techniques are designed to achieve 

sustainable ecosystems that integrate human society with its natural environment for the 

benefit of both. This study tested the effects of habitat complexity and mussel seeding 

on intertidal seawalls in two geographic locations (Plymouth, British Isles and Tel Aviv, 

Israel). Although no formal comparisons were made between the geographic regions, 

the results are presented together here to emphasize that eco-engineering experiments 

should involve comparisons across geographic localities to understand generalities of 

patterns of effects at larger scales. Taxon and functional richness and community 

composition were compared among flat tiles, 2.5 cm tiles, 5 cm tiles, seawall plots and 

control tiles (control tiles were only used in Tel Aviv) and between seeded and 

unseeded tiles (seeding was only used in Plymouth). Results differed between the 

locations. In general, in Plymouth, habitat complexity had no effect on taxon richness; 

differences were between seawall and tiles only. Habitat complexity did, however effect 

community composition, with differences between flat and complex tiles, as well as 

seawall plots and all other tiles. In Tel Aviv, complex tiles supported greater taxon 
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richness and different community composition compared to flat tiles and seawall plots. 

The differential results obtained from these experiments demonstrates the need for 

continued testing of eco-engineering interventions in a variety of different geographic 

locations under different environmental conditions.  

 

4.1 Introduction 

Urbanisation of coastal areas is rapidly increasing, with reports estimating as 

much as 40% of the global population living within 100 km of the coastline (Cohen et 

al., 1997; Small and Nicholls, 2003; UNEP, 2006; Firth et al., 2016b). Driven by 

climate change, rising sea levels and stormier seas are leading to greater erosion of 

coastlines, with severity predicted to increase over the coming decades (Rodwell et al., 

1999; Grevemeyer et al., 2000; Thompson et al., 2002; Brown et al., 2013; Neumann et 

al., 2015; Vitousek et al., 2017). Human response has traditionally been to build 

artificial structures to protect valuable coastal infrastructure and allow for continued 

development of the coast (Airoldi and Beck, 2007; Govarets and Lauwaert, 2009; 

Dugan et al., 2011; Firth et al., 2013a). Artificial structures are now so ubiquitous that 

in some regions, they cover more than half the coastline (Davis et al., 2002; Dafforn et 

al., 2015b; Firth et al., 2016b). These structures contribute to “ocean sprawl” – a term 

that has recently been coined (Duarte et al., 2012) to describe the proliferation of 

artificial structures (i.e., seawalls, breakwaters, jetties) in marine and coastal 

environments (also see Firth et al., 2016b; Bishop et al., 2017; Heery et al., 2017).  

The rapid development of coastlines worldwide has led to the damage or loss of 

natural habitats (Airoldi et al., 2005a; Dugan et al., 2011; Firth et al., 2016b), placing 

extraordinary stress on coastal environments, with knock-on effects on ecosystem 

services, such as habitat provision (Sugden et al., 2009; Barbier et al., 2011; Engle, 

2011; Grabowski et al., 2012), carbon sequestration (Barbier et al., 2011; Engle, 2011), 



 

129 

 

water filtration and nutrient cycling (Coen et al., 2007; Sugden et al., 2009; Barbier et 

al., 2011; Engle, 2011). Ocean sprawl has facilitated the spread of non-native species 

(Bax et al., 2002; Airoldi et al., 2015a; see Firth et al., 2016b; Dafforn, 2017 for 

reviews) and species spreading in response to climate change (Mieszkowska et al., 

2006; Hawkins et al., 2008; Hawkins et al., 2009; Firth et al., 2015). Increasing 

occurrence of non-native species has resulted in biotic homogenization (McKinney and 

Lockwood, 1999; McKinney, 2006; Bishop et al., 2017), threatening global biodiversity 

(Bax et al., 2003) and altering the ecological functioning of coastal environments 

(Griffiths et al., 1992; Stachowicz et al., 2002; Mayer-Pinto et al., 2018a).   

Artificial structures in coastal and marine environments provide hard substrate 

for biological colonisation (Pratt, 1994; Chapman and Bulleri, 2003; Chapman, 2006; 

Qvarfordt et al., 2006). Past studies have found that artificial structures support lower 

biodiversity and different community composition compared to their natural 

counterparts (i.e., rocky shore; Thompson et al., 2002; Chapman, 2003; Chapman and 

Bulleri, 2003; Martin et al., 2005; Moschella et al., 2005; Lai et al., 2018). However, 

some studies detected no differences between habitats, but differences were dependent 

on a variety of factors such as tidal height (Chapman and Bulleri, 2003; Bulleri et al., 

2005), orientation of substrate (Knott et al., 2004) and spatial scale of assessment 

(Bulleri et al., 2004; Firth et al., 2016a). Differences in species diversity between natural 

and artificial habitats have been attributed to the lack of topographic (or habitat) 

complexity on artificial structures (Chapman, 2003; Moschella et al., 2005; Bulleri and 

Chapman, 2010; Aguilera et al., 2014). Habitat complexity includes microtexture (< 1 

cm) such as grooves and pits, and small (centimetres) and larger scale (centimetres - 

metres) habitats such as crevices, rock pools and gaps between boulders (Moschella et 

al., 2005; Firth et al., 2013b; Coombes et al., 2015; Liversage et al., 2017). Artificial 

structures are typically built with a steep or vertical inclination (Knott et al., 2004; 
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Chapman and Underwood, 2011; Firth et al., 2016c) and are smaller in areal extent 

compared to natural rocky shores, effectively condensing the area where species can 

occupy (Chapman, 2003; Chapman and Bulleri, 2003; Knott et al., 2004; Bulleri and 

Chapman, 2010; Chapman and Underwood, 2011). The materials used for construction 

of artificial structures are typically hard in nature and featureless in design (lack of 

microhabitats), which influences the composition of the colonising community (Davis et 

al., 2002; Burcharth and Lamberti, 2007; Iveša et al., 2010; Chapman and Underwood, 

2011; Green et al., 2012). Artificial structures, therefore, are by no means complete 

surrogates for the natural habitats they replace (Chapman, 2003; Moschella et al., 2005).  

Ecological studies across multiple ecosystems have traditionally found that 

greater habitat complexity supports greater biodiversity (Kohn, 1967; Kohn and 

Leviten, 1976; Heck Jr and Wetstone, 1977; Kostylev et al., 2005; Smith et al., 2014; 

Lavender et al., 2017). Colonisation of substrate depends on available space (Johnson et 

al., 2003; Bulleri, 2005a; Chapman and Underwood, 2011; Chapman, 2017) and can 

change over time (Smith et al., 2014). Smith et al. (2014) showed that sessile 

invertebrate recruitment to bare substrate was high initially, but over time, slowed as 

substrate became colonised, as there was naturally less space for recruitment. Once the 

basal substrate is completely colonised, secondary biological complexity dominates 

(Smith et al., 2014). Although studies have suggested that the increased surface area of 

complex habitats is responsible for greater diversity (i.e., the ‘species-area relationship’; 

Preston, 1960; Connor and McCoy, 1979; Kostylev et al., 2005; Chapman, 2017; Gatti 

et al., 2017), Loke and Todd (2016) found greater species diversity with greater 

complexity independent of surface area, and that species diversity was influenced by the 

type of structural complexity provided. This finding highlights the importance of 

available resources for species coexistence in a particular habitat (Schoener, 1974; 

Finke and Snyder, 2008). 
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There is now a growing awareness that traditional hard engineering is no longer 

ecologically and economically sustainable (Airoldi et al., 2005a; Airoldi et al., 2009; 

Dugan et al., 2011), especially under future climate change scenarios (Fankhauser and 

Tol, 2005; Koch, 2010; Narayan et al., 2016). As a response, ecologists have been 

developing techniques in ecological engineering (or "eco-engineering"; Odum, 1962) in 

coastal and marine environments. Eco-engineering is the combination of engineering 

with ecological knowledge to create a sustainable ecosystem for the benefit of both 

nature and human society (Odum, 1962; Mitsch, 1996; Mitsch and Jørgensen, 2003; 

Odum and Odum, 2003). The field of eco-engineering acknowledges that artificial 

structures have potential beyond their primary function to mitigate ecological impacts of 

urbanisation by secondarily functioning to enhance ecosystem services (Chapman and 

Underwood, 2011; Firth et al., 2014b; Toft et al., 2014; Dafforn et al., 2015b; Cordell et 

al., 2017; Evans et al., 2017; Mayer-Pinto et al., 2017).  

Eco-engineering of artificial structures typically involves adding topographic 

complexity (on the scale of millimetres - metres) to hard built structures to enhance 

species diversity (Moschella et al., 2005; Borsje et al., 2011; Firth et al., 2014b; Perkol-

Finkel and Sella, 2015; Perkol-Finkel et al., 2017; Hall et al., 2018) and discourage the 

spread of non-native species (Stachowicz et al., 1999; Dafforn, 2017; Morris et al., 

2017b). Eco-engineering can also involve transplanting (Perkol‐Finkel et al., 2012; 

Campbell et al., 2014; Ferrario et al., 2016) or seeding (Strain et al., 2017b) threatened 

species for conservation purposes or providing nursery habitat for commercial species 

(Martins et al., 2010). Also, larval settlement of target species to enhance associated 

assemblages can be encouraged (O'Connor and Crowe, 2007; Neo et al., 2009; Ng et al., 

2015; Strain et al., 2017b). Previous designs have added topographic complexity to 

structures through a variety of techniques ranging from small (millimetres - centimetres) 

to large (metres) scale, and have included creating pits, grooves and crevices (Moschella 
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et al., 2005; Martins et al., 2010; Chapman and Underwood, 2011; Firth et al., 2014b; 

Jackson, 2015), adding rock pools (Chapman and Blockley, 2009; Browne and 

Chapman, 2011; Firth et al., 2013b; Browne and Chapman, 2014; Firth et al., 2014b; 

Perkol-Finkel and Sella, 2015; Evans et al., 2016a), retrofitting complex tiles or panels 

(Goff, 2010; Perkol-Finkel and Sella, 2013; Loke and Todd, 2016; Cordell et al., 2017) 

and placing pre-cast habitat enhancement units within a rock armour breakwater to 

function as boulders (Firth et al., 2014b; Sella and Perkol-Finkel, 2015).  

Eco-engineering of artificial structures along the coast can have a myriad of 

positive secondary functional effects. The primary goal of most eco-engineering designs 

is to enhance biodiversity and ecosystem functioning by adding complex habitats 

(Chapman and Underwood, 2011; Firth et al., 2014b; Perkol-Finkel and Sella, 2015; 

Sella and Perkol-Finkel, 2015; Evans et al., 2016a; Firth et al., 2016a; Morris et al., 

2017a; Perkol-Finkel et al., 2017; Hall et al., 2018; Morris et al., 2018b), which can also 

help to reduce the establishment of non-native species and create a more resilient 

ecosystem (Stachowicz et al., 1999; Dafforn, 2017). Eco-engineering can also provide 

habitat to support fisheries and aquaculture (Hawkins et al., 1992b; Whitmarsh et al., 

2008), improve water quality through biofiltration (Allen and Hawkins, 1993; 

Wilkinson et al., 1996) and promote education (Hall et al., 2019) and general aesthetic 

appeal of biodiversity in urban areas which can contribute to human well-being 

(Millennium Ecosystem Assessment, 2005; Sugden et al., 2009; Faith et al., 2010). 

Eco-engineering can target certain colonising organisms such as barnacles, 

mussels, oysters and algae can have a “bioprotective effect” through physical 

strengthening of the materials, protection from salt-water ingress, temperature extremes 

and wave action (Coombes et al., 2013; Naylor et al., 2017). These initial colonising 

organisms also create biological complexity, which has been shown to be important for 

the subsequent colonising community (Bros, 1987; Pinn et al., 2008; Coombes et al., 
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2015). For example, Bros (1987) found that the removal of barnacles from settlement 

tiles reduced further colonisation by other organisms compared to tiles with barnacles 

remaining. Ecosystem engineers, such as mussels and oysters, create biologically-

induced habitat that enhances the three-dimensional structure of a reef, which increases 

surface area, subsequently providing more space for more organisms (Borthagaray and 

Carranza, 2007; Jackson et al., 2008a; Pinn et al., 2008; Romero et al., 2015). Chemical 

cues from adult bivalves encourage intraspecies settlement (Tamburri et al., 2008; Smee 

et al., 2013), thereby enhancing the three-dimensional structure of the habitat. 

Moreover, naturally occurring biofilm known to develop on bivalves has been shown to 

increase bivalve larval recruitment (Bao et al., 2007; Ganesan et al., 2010; Wang et al., 

2012), which in turn, encourages colonisation of other organisms (Bros, 1987; Pinn et 

al., 2008). Furthermore, many restoration projects have used ecosystem engineers to 

enhance and restore degraded habitat and preserve valuable ecosystem services 

(Grabowski and Peterson, 2007, Klinger, 2007, Borsje et al., 2010).   

4.1.1 The World Harbour Project 

The World Harbour Project is a global initiative directed by the Sydney Institute 

of Marine Science, and is aimed at building ecologically stable and resilient harbours in 

urbanised port cities around the world (World Harbour Project, 2018). The project was 

initiated as a response to climate change and sea level rise affecting the economy and 

ecology of major harbour cities across the globe. This project has developed objectives 

for better understanding ecosystem functioning and developing and implementing best-

management practices for heavily urbanised harbours. This has been achieved through 

workshops, collaboration of researchers and specific research projects. University of 

Plymouth was invited to participate in the “Green Engineering” workgroup, of which 

there were 15 partner cities that conducted the same experiment in intertidal habitats in 

a range of different climates worldwide. The goal was for all partners to follow standard 
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protocol and use the same materials to obtain results that can be comparable across 

geographic regions. Results obtained in Plymouth contributed to the overall global 

analysis but were also retained for individual analysis for this thesis.  

The overarching aim of this study was to test the efficacy of enhancing 

topographic complexity on species diversity in intertidal habitats in Plymouth, British 

Isles and Tel Aviv, Israel. Both locations used the protocol designed by the World 

Harbour Project, thus results can be more comparable than results from experiments 

using different protocols. Although there were no formal statistical comparisons 

conducted between the two geographic locations, both were included to make the point 

that eco-engineering experiments need to go beyond testing in one location under 

similar conditions, so that we can investigate the generalities of effects of 

enhancements. The effects of an additional factor on species diversity in Plymouth was 

investigated: The effects of bivalve seeding using mussels (Mytilus spp. Linnaeus, 

1758), as mussels are ecosystem engineers (Borthagaray and Carranza, 2007; Pinn et 

al., 2008). Mussels enhance the three-dimensional structure of a habitat by adding 

biological complexity. In particular, bivalves have been shown to provide habitat and 

refuge for colonising species such as algae, micro- and macroinvertebrates (O'Connor 

and Crowe, 2007; O'Connor and Crowe, 2008), as well as promote intraspecific 

settlement of larvae (Tamburri et al., 2008; Smee et al., 2013). Species diversity was 

measured using taxon and functional richness and community composition. Complex 

(two different levels), flat and control tiles, as well as cleared seawall plots were 

employed to test the following hypotheses:  

1. Taxon and functional richness will be greater on, and community composition 

will differ between, complex tiles compared to control tiles/cleared seawall 

plots. 
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2. Taxon and functional richness will be greater on, and community composition 

will differ between, seeded compared to unseeded tiles (British Isles only).  

 

4.2 Materials and methods 

4.2.1 Study Sites 

Experiments were run in Plymouth, British Isles and Tel Aviv, Israel (Figure 4-

1). Experiments were undertaken at two sites in Plymouth and one site in Tel Aviv. The 

study sites in Plymouth were located at Mayflower Marina (50.364558, -4.172333) and 

Turnchapel Wharf (50.3593, -4.117736) in Plymouth Sound, which is located along the 

southwest coast of England. Both sites contained vertical and featureless intertidal 

seawalls with naturally occurring populations of the mussel, Mytilus spp. The seawall at 

Mayflower Marina faces southeast, while the seawall at Turnchapel Wharf faces west. 

Both seawalls are located on the landward side of Plymouth Breakwater, and are thus 

sheltered from wave action. Plymouth Sound is a heavily urbanised harbour with a long 

history of human modification. The Sound is flanked by sloping natural rocky shores 

composed of Palaeozoic shale and limestone, which extend along the west and east 

coasts (Knights et al., 2016). Along these areas, artificial structures to support human 

activity (i.e., fishing piers, discharge pipes, breakwaters, seawalls) are interspersed 

among the natural rocky shores. A recent publication estimated that up to a third of 

Plymouth’s coastline is armoured, with most of the artificial structures being 

constructed from naturally-sourced rock (Knights et al., 2016).  

Experiments in Israel were conducted in a single marina in Tel Aviv (Herzliya 

Marina; 32.162333, 34.794083), which is positioned along the most densely populated 

area on the Israeli Mediterranean coast. The experimental seawall at Herzliya Marina 

faces west and is located in a sheltered environment. Herzliya Marina is the largest 

marina in the eastern Mediterranean Sea, and provides docking for tens of thousands of 
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global visitors annually (ECOncrete Inc., 2019). Arid climate conditions coupled with 

its geological position in the Mediterranean Sea, results in species-poor waters off the 

Tel Aviv coast (Azov, 1991). 
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Figure 4-1. Study sites in (A.) Plymouth Sound, British Isles included Mayflower Marina and Turnchapel Wharf, while the study site in 

(B.) Tel Aviv, Israel was Marina Herzliya in the eastern Mediterranean Sea.
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4.2.2 Description of experimental tiles and plots 

Concrete tiles were created from moulds using 3-D printing, and were composed 

of sand, cement and glass fibres (Reef Design Lab, Melbourne, Australia; Figure 4-2). 

Sand and glass fibres were used in the mix to offset the negative effects of cement in the 

marine environment (see section 1.5.1 for more information on effects of concrete). The 

design of tiles was determined by the World Harbour Project, and all study locations 

were required to use these specific tiles. Tile treatments included: (1) flat tiles without 

crevices or ridges; (2) complex tiles, with 2.5 cm high and 1.7-6.5 cm wide ridges, each 

separated by 1.5-5 cm wide crevices (‘2.5 cm’ treatment); and (3) complex tiles, with 

ridges and crevices as described for the 2.5 cm treatment, except ridges were 5 cm high 

(‘5 cm’ treatment). All tiles were created with fine-scale microtexture (< 1 mm grooves) 

on the ridges. The three levels of tile complexity were chosen to test the effects of high 

elevation complexity compared to no complexity, with an intermediate complexity also 

included to determine how much complexity is enough to cause a biological effect. 

Microtexture was added to tiles because small scale texture has been shown to enhance 

recruitment and survival of larvae (Coombes et al., 2015). Furthermore, increasing the 

number of microhabitats and space available for colonisation will likely increase the 

number of individuals utilising the space (Kostylev et al., 2005). For experiments in Tel 

Aviv, two additional treatments were used: flat control tiles without microtexture (made 

of 80% sand and 20% Portland cement) and cleared seawall plots. For experiments in 

Plymouth, an additional cleared seawall plot treatment was used.  
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Figure 4-2. Eco-friendly experimental tiles (a) showing the flat, 2.5 cm and 5 cm 

complexity treatments (from left to right), with tiles seeded with mussels shown above, 

and (b) attached to the seawall at Turnchapel Wharf, Plymouth, British Isles. 

 

4.2.3 Seeded mussels 

The mussel, Mytilus spp., was chosen to be seeded on British tiles because it is a 

habitat-forming species common on some areas of rocky intertidal habitats in Plymouth 

Sound (Hilbish et al., 2002). Plymouth is located within the range of the more cold-

water blue mussel, Mytilus edulis Linnaeus, 1758, and the warm-water Mytilus 

galloprovincialis Lamarck 1819; the latter is expanding in response to climate change 

but has always been present in the British Isles (Seed, 1971; Ahmad and Beardmore, 
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1976). It is likely that that M. galloprovincialis, M. edulis and hybrids (Skibinski et al., 

1978) of these two species were used in this experiment, therefore all mussel species 

will be referred to here  as ‘mussels’ or ‘Mytilus spp.’ 

4.2.4 Experimental design  

Experiments from the two countries were treated separately for the following 

reasons: (1) Mussel seeding was added as a factor to the British experiments but not the 

Israeli experiments; (2) The control treatments differed between the countries; and (3) 

In Plymouth Sound, mean high water spring tides are 5.5 m (Natural Environment 

Research Council), while tides in the Mediterranean are on the order of centimetres 

(McElderry, 1963). Regardless of the differences in experimental designs between 

countries, we maintain it is useful to informally compare localities to observe 

generalities in patterns of effects. 

4.2.4.1 Plymouth, British Isles 

At both sites, ten tiles of each of the three complexity treatments were affixed to 

intertidal seawalls in a randomised order at mean low water neap (2.5 m above CD) in a 

single horizontal row. Five of the ten tiles from each treatment were seeded with 65 

individuals of Mytilus spp. (20-25 mm shell length; 22.5 ± 0.1, mean ± 1 SE) in clusters 

of five individuals (seven clusters in crevices; six clusters on ridges) using non-toxic 

Gorilla® superglue (Cincinnati, OH, USA). The number and size of mussels was chosen 

based on World Harbour Project protocol, which stated that 30-35% of each tile needed 

to be covered in bivalves. Individuals of Mytilus spp. were sourced from Whitsand Bay 

(50.346086, -4.255325). An additional five cleared plots (0.25 x 0.25 m) served as 

seawall controls and were arranged amongst tile treatments in a randomised order. Prior 

to tile attachment, a 0.30 x 0.30 m area on the seawall where each tile was to be affixed 

was cleared of all flora and fauna using chisels and wire brushes. Each tile was attached 

in the same orientation with ridges running vertically so that water would not be 
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retained at low tide, and tiles were spaced a minimum of 0.5 m from each other. 

Experiments commenced at both sites in August 2016, and were left in place for 12 

months. All the above methods followed World Harbour Project protocol. 

4.2.4.2 Tel Aviv, Israel 

Five tiles of each of the three complexity treatments were affixed to an intertidal 

seawall in a single horizontal row in a randomised order in the intertidal. All 

experimental tiles were oriented with ridges running vertically so that water would 

completely drain from the tiles at low tide. An additional five concrete tiles composed 

from the same material as the seawall without crevices, ridges and microtexture, and 

five cleared plots were included amongst the experimental tiles to serve as controls. No 

tiles were seeded with bivalves. Experiments commenced in August 2016 and were left 

in place for 12 months. All the above methods followed World Harbour Project 

protocol.  

4.2.5 Sampling procedure 

4.2.5.1 Plymouth, British Isles 

Experimental tiles and seawall control plots were monitored at months 1, 3, 6, 9 

and 12 for counts of mobile taxa and percentage cover of sessile taxa in case tiles were 

lost before the conclusion of the experiment. Photographs were taken of each tile and 

seawall plot in the field, and then percentage cover of sessile organisms was estimated 

by digitally overlaying a grid of 10 x 10 boxes on each photograph using freely 

available grid-drawing software (ArtTudor; Liverpool, UK). After 12 months, 

experimental tiles were removed from seawalls and placed into sealable bags to retain 

all organisms. Percentage cover of sessile taxa and counts of mobile taxa within control 

seawall plots were obtained in the field (in case scraping action damaged organisms for 

downstream identification) before all visible flora and fauna were scraped from the plots 

and placed in sealable bags. All experimental tiles and scrapings were transported back 
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to the laboratory for analysis. In the laboratory, all organisms were removed from tiles 

and identified, and counts of mobile taxa and percentage cover of sessile taxa were 

obtained separately for crevices and ridges on 2.5 cm and 5 cm complexity tiles (flat 

tiles did not contain crevices and ridges). Organisms were identified down to the lowest 

taxonomic resolution possible. Salinity (psu) and water temperature (°C) were measured 

with a refractometer and a Testo 206 instrument (Testo SE & Co., UK), respectively, at 

months 1, 3, 6, 9 and 12 (Appendix 3, Table 1). 

4.2.5.2 Tel Aviv, Israel 

Experimental tiles and seawall control plots were monitored at months 1, 3, 6, 9 

and 12 for counts of mobile taxa and percentage cover of sessile taxa in case tiles were 

lost before the conclusion of the experiment. After 12 months, final data were collected 

by taking photographs of each tiles and seawall plot in the field, and analysis of 

percentage cover (no mobile organisms were present) was estimated using CoralNet 

software (Beijbom et al., 2012). Organisms were identified down to the lowest 

taxonomic resolution possible. Salinity (specific gravity, Sg) and temperature (°C) were 

measured using a hydrometer (Sera, D 52518, Heinsberg, Germany) and a temperature 

probe, respectively, at months 1, 3, 6, 9 and 12 (Appendix 3, Table 1). 

4.2.6 Statistical analyses 

4.2.6.1 Plymouth, British Isles 

Species diversity was quantified using final taxon and functional richness and 

community composition data from the conclusion of the experiment. To investigate 

differences among treatments in functional groups, taxa were classified into three 

functional groups: grazers, filter feeders and primary producers. Mean taxon and 

functional richness were quantified using univariate analysis of variance tests 

(ANOVA) on untransformed presence/absence data on Bray-Curtis similarity matrices. 

Community composition was analysed using permutational multivariate analysis of 
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variance tests (PERMANOVA) using fourth root transformed abundance data to reduce 

the influence of very abundant species (Anderson, Gorley, & Clarke, 2008) after Bray-

Curtis similarity matrices were computed.  

The hypothesis that tiles seeded with mussels will support greater taxon and 

functional richness, and different community composition, compared to unseeded tiles 

was not tested, as mussels were lost to predation within one month of experiment 

commencement. There were initially, however, remaining mussel shell fragments and 

glue on tiles from the seeded mussels. Thus, to test the effects of shell fragments and 

glue, we ran a 3-way PERMANOVA on Site (random; 2 levels: Mayflower Marina, 

Turnchapel Wharf), Treatment (fixed; 4 levels: seawall, flat, 2.5 cm, 5 cm) and Mussel 

Seeding (fixed; 2 levels: seeded and unseeded). There were no effects of remaining shell 

fragments and glue on taxon richness and composition; therefore, “seeded” and 

“unseeded” tile treatments were pooled for analysis.  

To test the hypothesis about differences in taxon and functional richness and 

community composition among tile treatments, a two-way PERMANOVA was used 

with factors: Site (random; 2 levels: Mayflower Marina, Turnchapel Wharf) and 

Treatment (fixed; 4 levels: seawall plot, flat, 2.5 cm, 5 cm). PERMANOVAs were 

based on 9999 permutations of residuals under a reduced model and post-hoc pairwise 

tests were run where applicable. Where there were not enough possible permutations to 

perform a reasonable test, Monte Carlo tests were run to obtain more meaningful P-

values (Anderson et al., 2008) 

4.2.6.2 Tel Aviv, Israel 

Species diversity was quantified using final taxon and functional diversity and 

community composition data collected at the conclusion of the experiment. To 

investigate differences among treatments in functional groups, taxa were classified into 

three functional groups: filter feeders, primary producers and detritivore/scavengers. 
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Mean taxon and functional richness were quantified using univariate analysis of 

variance tests (ANOVA) on untransformed presence/absence data after Bray-Curtis 

similarity matrices were computed. Community composition was analysed using one-

way permutational multivariate analysis of variance tests (PERMANOVA) using square 

root transformed abundance data to reduce the influence of abundant species (Anderson, 

Gorley, & Clarke, 2008) after Bray-Curtis similarity matrices were computed.  

To test the hypothesis about differences in taxon and functional richness and 

community composition among tile treatments, a one-way PERMANOVA was used 

with factor Treatment (fixed; 5 levels: seawall plot, control, flat, 2.5 cm, 5 cm) and was 

based on 9999 permutations of residuals under a reduced model. Post-hoc pairwise tests 

were run where applicable. Where there were not enough possible permutations to 

perform a reasonable test, Monte Carlo tests were run to obtain more meaningful P-

values (Anderson et al., 2008). 

4.2.6.3 Plymouth, British Isles and Tel Aviv, Israel 

All multivariate data sets were visualised using non-metric multi-dimensional 

scaling (nMDS) plots. In cases where stress on the two-dimensional nMDS plot was 

high (~0.2), the three-dimensional solutions (lower stress) were visualised to confirm 

observed patterns, and the two-dimensional plots were retained. All statistical tests were 

run in PRIMER v6 with the PERMANOVA+ add-on (PRIMER-E Ltd, Plymouth, UK; 

Anderson et al., 2008) using the PERMANOVA routine, and data visualised using the 

nMDS routine. Where significant differences in community composition were detected 

among treatments, percentage contributions of individual taxa to dissimilarities between 

treatments were analysed using the similarity percentage (SIMPER) routine in PRIMER 

v6.  
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4.3 Results 

4.3.1 Plymouth, British Isles: General overview 

Overall, 13 taxa were observed on tiles, with one species unique to complex tiles 

(the Pacific oyster, Magallana gigas [Thunberg, 1793]) and two species unique to 2.5 

cm complexity tiles (an encrusting bryozoan, Cryptosula pallasiana [Moll, 1803] and a 

lichen, Verrucaria maura Wahlenberg, 1803). There were seven mobile taxa and six 

sessile taxa. Overall, two non-native species were observed in treatments at Turnchapel 

Wharf (a barnacle, Austrominius modestus [Darwin, 1854] and M. gigas), while only A. 

modestus was recorded at Mayflower Marina (Table 4-1); M. gigas was present on the 

surrounding seawall but did not settle on the experimental plots.  

At the conclusion of the experimental period, total taxon richness of tile 

treatments was greatest on 2.5 cm tiles at Turnchapel Wharf (10 taxa) and lowest on 5 

cm tiles at Mayflower Marina (3 taxa). Total functional richness was greatest on flat and 

2.5 cm tiles at both sites (3 taxa) and lowest on 5 cm tiles at both sites (2 taxa). Cleared 

seawall plots at Mayflower Marina and Turnchapel Wharf supported taxon richness of 1 

and 4, respectively, and functional richness of 1 and 2, respectively (Figure 4-3). 

Salinity ranged from 25-35 psu, while temperature ranged from 7.7-19.2 °C (Appendix 

3, Table 1). Taxon richness of treatments varied over the 12-month experimental period 

at both sites (Figure 4-4). 
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Table 4-1. Summary table for taxa recorded by functional group on experimental tiles and cleared seawall plots in Plymouth, British Isles recorded 

throughout the 12-month experiment. Non-native species are indicated by ‘NNS’ superscript.  

 
*Littorina obtusata or L. fabalis 

**Fucus vesiculosus or F. spiralis 

Taxa seawall flat 2.5 cm 5 cm
Mayflower 

Marina

Turnchapel 

Wharf

Grazers

Patella vulgata (Linnaeus, 1758) ✓ ✓ ✓ ✓ ✓ ✓

Patella depressa (Pennant, 1777) ✓ ✓ ✓ ✓ ✓ ✓

Gibbula umbilicalis (da Costa, 1778) ✓ ✓ ✓ ✓ ✓

Phorcus lineatus (da Costa, 1778) ✓ ✓ ✓ ✓ ✓

Littorina littorea (Linnaeus, 1758) ✓ ✓ ✓ ✓ ✓

Littorina saxatilis  (Olivi, 1792) ✓ ✓ ✓ ✓ ✓

Littorina spp.* ✓ ✓ ✓

Filter Feeders

Austrominius modestus (Darwin, 1854)
NNS

✓ ✓ ✓ ✓ ✓ ✓

Magallana gigas (Thunberg, 1793)NNS
✓ ✓ ✓

Cryptosula pallasiana (Moll, 1803) ✓ ✓

Primary Producers

Ulva spp. ✓ ✓ ✓ ✓ ✓ ✓

Fucus spp.** ✓ ✓ ✓ ✓ ✓

Verrucaria maura  (Wahlenberg, 1803) ✓ ✓

Total taxon richness 8 10 13 10 5 13

Tile Treatment Site
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Figure 4-3. Number of taxa within each functional group by tile treatment at Mayflower Marina and Turnchapel Wharf in Plymouth, British Isles 

recorded at the conclusion of the 12-month experimental period. 
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Figure 4-4. Temporal changes in taxon richness by tile treatment at (a) Mayflower Marina and (b) Turnchapel Wharf over the course of the 12-month 

experiment. Taxon richness was recorded at months 1, 3, 6, 9 and 12.  Note the different scales for taxon richness. 
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4.3.2 Plymouth, British Isles: Comparison of taxon and functional richness 

among tile treatments 

There was a significant main effect of treatment on both taxon and functional 

richness (Table 4-2; Figure 4-5) with all three tile types supporting significantly greater 

taxon and functional richness compared to the seawall.  The average number of taxa 

recorded in the seawall plots was 0.8 ± 0.1, while flat tiles supported 2.1 ± 0.1, 2.5 cm 

tiles supported 2.6 ± 0.1 and 5 cm tiles supported 2.5 ± 01. 

 

Table 4-2. Two-way ANOVAs comparing mean (a) taxon and (b) functional richness 

among tile treatments in Plymouth, British Isles recorded at the conclusion of the 12-

month experimental period. Where unique permutations were < 100, Monte Carlo tests 

were run and P(MC) values were used to determine significance. Significant p-values 

are bolded. 

 

Source df SS MS Pseudo-F P(perm)

Site 1 2.89 2.89 4.8038 0.0343

Treatment 3 23.693 7.8976 19.173 0.0474

Si x Tr 3 1.2357 0.4119 0.68467 0.5729

Residual 62 37.3 0.60161                

Total 69 65.443  

Transform: no transformation

Source df SS MS Pseudo-F P(perm) Unique perms P(MC)

Site 1 0.04 0.04 0.496 0.5131 351 0.4824

Treatment 3 13.89 4.63 97.2 0.1181 140 0.0021

Si x Tr 3 0.14 0.05 0.59048 0.6236 1809 0.6200

Residual 62 5.00 0.08                            

Total 69 19.09

Transform: no transformation

(a) Taxon

(b) Functional
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Figure 4-5. Comparison of mean (a) taxon and (b) functional richness among tile 

treatments in Plymouth, British Isles recorded at the conclusion of the 12-month 

experimental period. Error bars represent standard error. Letters show where there are 

significant differences between treatments determined by post-hoc pairwise 

comparisons (both (a) and (b): seawall, n = 5; flat, n = 10; 2.5 cm, n = 10; 5 cm, n = 10; 

(a): p = 0.0474; (b): p = 0.0021). Significant differences were seen between the seawall 

and all experimental tile treatments for (a) taxon richness and (b) functional richness. 

 

 

4.3.3 Plymouth, British Isles: Comparison of taxon and functional composition 

among tile treatments 

There was a significant interaction between treatment and site for both taxon and 

function composition (Figure 4-6; Table 4-3a, b). Post-hoc pairwise comparisons 

revealed significant differences in taxon composition between seawall plots and all 

other treatments, as well as flat tiles and all other treatments at both sites. Post-hoc 

pairwise comparisons for functional composition showed that there were significant 

differences between seawall plots and all other treatments at both sites, but at 

Mayflower, there were also significant differences between flat tiles and 2.5 cm and 5 

cm tiles. 

SIMPER analyses from Mayflower Marina showed that differences between 

seawall plots and tiles were driven by Ulva spp. and A. modestus, with both being more 

abundant on tiles than seawall plots. Over 60% of dissimilarity between flat tiles and 

complex tiles (2.5 cm and 5 cm) were attributed to Ulva spp. and A. modestus, with both 
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being more abundant on complex tiles than flat tiles. Over 75% of dissimilarity between 

2.5 cm and 5 cm tiles were attributed to M. gigas, Ulva spp., A. modestus and Patella 

vulgata, with M. gigas more abundant on 5 cm tiles, and Ulva sp., A. modestus and P. 

vulgata more abundant on 2.5 cm tiles. SIMPER analysis from Turnchapel Wharf 

revealed that dissimilarities between seawall plots and tiles were attributed to A. 

modestus and Ulva spp., with both being more abundant on tiles compared to seawall 

plots. Over 20% of the dissimilarity between flat and complex tiles (2.5 cm and 5 cm) 

was attributed to A. modestus, with abundances greater on complex tiles compared to 

flat tiles. Greater than 60% of the dissimilarity between 2.5 cm and 5 cm tiles was 

attributed to M. gigas, Littorina littorea, P. vulgata, Littorina spp. and Steromphala 

umbilicalis, with all taxa more abundant on 5 cm tiles except L. littorea (Table 4-4). 

 

Table 4-3. Two-way PERMANOVAs comparing (a) taxon and (b) functional 

composition among tile treatments in Plymouth, British Isles recorded at the conclusion 

of the 12-month experimental period. Significant p-values are bolded. 

 

 

Source df     SS     MS Pseudo-F P(perm)

Site 1 7567 7567 26.271 0.0001

Treatment 3 30448 10149 4.6888 0.074

Si x Tr 3 6493.9 2164.6 7.5151 0.0001

Residual 62 17858 288.03                

Total 69 68764

Transform: fourth root

Source df     SS     MS Pseudo-F P(perm)

Site 1 5356.8 5356.8 44.161 0.0001

Treatment 3 26447 8815.6 4.8656 0.1036

Si x Tr 3 5435.5 1811.8 14.937 0.0001

Residual 102 12373 121.3                

Total 109 62585  

Transform: fourth root

(a) Taxon

(b) Functional
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Figure 4-6. nMDS ordination plot comparing community composition among tile 

treatments in Plymouth, British Isles recorded at the conclusion of the 12-month 

experimental period, with functional groups overlaid.  There was a significant site by 

treatment effect (p = 0.0001).
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Table 4-4. Differences in average abundances (fourth-root transformed; indicated by > 

or <) and contributions ('%' for percentage or 'c' for counts) of individual species to 

community composition dissimilarities between treatments at (i) Mayflower Marina and 

(ii) Turnchapel Wharf in Plymouth, British Isles recorded at the conclusion of the 12-

month experimental period for (a) seawall and flat tiles, (b) seawall and 2.5 cm tiles, (c) 

seawall and 5 cm tiles (d) flat and 2.5 cm tiles, (e) flat and 5 cm tiles and (f) 2.5 cm and 

5 cm tiles. Consistency of contribution is shown by ‘Diss/SD’, which is the dissimilarity 

divided by standard deviation of contributions across all pairs of samples. 

(i) Mayflower Marina      

(a) Average dissimilarity = 91.5% seawall >/< flat 
% 

Contr Diss/SD 

 Austrominius modestus (%) 0.0 < 2.8 47.7 4.5 

 Ulva spp. (%) 0.0 < 2.2 33.2 1.5 

       

(b) Average dissimilarity = 96.7% seawall >/< 2.5 cm  
% 

Contr Diss/SD 

 Ulva spp. (%) 0.0 < 3.6 42.7 5.5 

 Austrominius modestus (%) 0.0 < 3.4 40.3 6.1 

       

(c) 
Average dissimilarity = 
100.0% seawall >/< 5 cm  

% 
Contr Diss/SD 

 Ulva spp. (%) 0.0 < 3.3 41.9 6.7 

 Austrominius modestus (%) 0.0 < 3.3 40.8 8.4 

       

(d) Average dissimilarity = 25.2% flat >/< 2.5 cm  
% 

Contr Diss/SD 

 Ulva spp. (%) 2.2 < 3.6 45.3 0.9 

 Austrominius modestus (%) 2.8 < 3.4 16.9 2.8 

 Patella vulgata (c) 0.4 > 0.2 13.7 0.8 

       

(e) Average dissimilarity = 21.6% flat >/< 5 cm 
% 

Contr Diss/SD 

 Ulva spp. (%) 2.2 < 3.3 46.8 0.8 

 Austrominius modestus (%) 2.8 < 3.3 16.6 1.8 

 Magallana gigas (%) 0.1 < 0.4 16.3 0.6 

       

(f) Average dissimilarity = 11.5% 2.5 cm  >/< 5 cm  
% 

Contr Diss/SD 

 Magallana gigas (%) 0.2 < 0.4 28.4 0.6 

 Ulva spp. (%) 3.6 > 3.3 19.6 1.4 

 Austrominius modestus (%) 3.4 > 3.3 15.3 1.1 

 Patella vulgata (c) 0.2 > 0.0 11.9 0.5 
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(ii) Turnchapel Wharf      

(a) 
Average dissimilarity = 
75.9% seawall >/< flat 

% 
Contr Diss/SD 

 Austrominius modestus (%) 0.0 < 2.8 60.2 4.3 

 Patella vulgata (c) 0.9 < 1.4 15.7 1.0 

       

(b) 
Average dissimilarity = 
80.1% seawall >/< 2.5 cm 

% 
Contr Diss/SD 

 Austrominius modestus (%) 0.0 < 3.4 55.5 4.0 

 Patella vulgata (c) 0.9 < 1.4 12.0 1.0 

 Ulva spp. (%) 0.6 > 0.0 8.4 0.5 

       

(c) 
Average dissimilarity = 
77.7% seawall >/< 5 cm  

% 
Contr Diss/SD 

 Austrominius modestus (%) 0.0 < 3.3 55.5 4.3 

 Patella vulgata (c) 0.9 < 1.5 14.2 1.1 

 Ulva spp. (%) 0.6 > 0.0 8.9 0.5 

       

(d) 
Average dissimilarity = 
23.3% flat >/< 2.5 cm 

% 
Contr Diss/SD 

 Austrominius modestus (%) 2.8 < 3.4 23.5 2.5 

 Littorina littorea (c) 0.0 < 0.4 15.5 0.8 

 Patella vulgata (c) 1.4 = 1.4 13.7 1.1 

 Fucus sp. (%) 0.2 = 0.2 10.7 0.5 

 Magallana gigas (%) 0.1 < 0.2 10.6 0.5 

                      

(e) 
Average dissimilarity = 
20.6% flat >/< 5 cm 

% 
Contr Diss/SD 

 Austrominius modestus (%) 2.8 < 3.3 21.0 1.8 

 Magallana gigas (%) 0.1 < 0.4 20.1 0.6 

 Patella vulgata (c) 1.4 < 1.5 16.2 1.6 

 Littorina spp. (c) 0.1 < 0.3 15.4 0.7 

       

(f) 
Average dissimilarity = 
23.5% 2.5 cm >/< 5 cm 

% 
Contr Diss/SD 

 Magallana gigas (%) 0.2 < 0.4 16.6 0.6 

 Littorina littorea (c) 0.4 > 0.1 14.6 0.8 

 Patella vulgata (c) 1.4 < 1.5 13.8 1.1 

 Littorina spp. (c) 0.1 < 0.3 11.9 0.7 

 Steromphala umbilicalis (c) 0.1 < 0.3 11.5 0.7 

 Austrominius modestus (%) 3.4 > 3.3 9.5 1.0 
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4.3.4 Tel Aviv, Israel: General overview 

A total of 13 taxa were recorded across all experimental and control tiles and 

plots, one of which was a non-native species: the fingerprint oyster, Alectryonella 

plicatula (Gmelin, 1791). The 2.5 cm and 5 cm tiles supported the greatest number of 

taxa (11 taxa) and functional groups (3 groups; Table 4-5; Figure 4-7). Taxon richness 

of treatments varied over the 12-month experimental period (Figure 4-8). Throughout 

the experiment, salinity ranged from 1.0248-1.0266 Sg (approx. 32.9-35.3 psu), pH 

ranged from 8.0-8.1 and temperature ranged from 15.7-30.4 °C (Appendix 3, Table 1). 

 

Table 4-5. Summary table for taxa recorded by functional group on experimental tiles, 

control tiles and cleared seawall plots in Tel Aviv, Israel recorded at the conclusion of 

the 12-month experimental period. Non-native species are indicated by ‘NNS’ 

superscript. 

 

Taxa

Cleared 

seawall

Control 

tile
Flat 5 cm 2.5 cm

Filter feeder

Alectryonella plicatula  (Gmelin, 1791)NNS 
✓ ✓

Amphibalanus amphitrite (Darwin, 1854) ✓ ✓ ✓ ✓ ✓

Crambe crambe (Schmidt, 1862) ✓ ✓

Encrusting bryozoan ✓ ✓ ✓

Ostrea edulis  Linnaeus, 1758 ✓ ✓ ✓

Schizoporella sp. ✓ ✓ ✓

Serpulidae ✓ ✓ ✓ ✓

Spirorbidae ✓ ✓ ✓ ✓ ✓

Watersipora cucullata (Busk, 1854) ✓

Primary producer

Crustose coralline algae ✓ ✓

Turf ✓ ✓ ✓ ✓

Scavenger/detritivore

Palaemon serratus (Pennant, 1777) ✓ ✓ ✓

Other

Unidentified fouling organism ✓

Total taxon richness 3 7 6 11 11
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Figure 4-7. Number of taxa within each functional group by tile treatment in Tel Aviv, 

Israel recorded at the conclusion of the 12-month experimental period.  

 

 

 

Figure 4-8. Temporal changes in taxon richness in Tel Aviv, Israel over the 12 month 

experimental period. Taxon richness was recorded at months 1, 3, 6, 9 and 12. 
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4.3.5 Tel Aviv, Israel: Comparison of taxon and functional richness among tile 

treatments 

Mean taxon and functional richness was significantly different among tile treatments 

(Table 4-6a, b). Post-hoc pairwise tests showed there was significantly greater taxon 

richness on the 2.5 cm and 5 cm tiles compared to seawall plots; and significantly 

greater taxon richness on the 5cm tiles compared to the control and flat tiles (Figure 4-

9a). Post-hoc pairwise comparisons revealed significantly greater functional richness on 

all tile treatments compared to seawall plots and 5 cm tiles compared to flat tiles (Figure 

4-9b).   

 

Table 4-6. One-way ANOVAs comparing mean (a) taxon and (b) functional richness 

among tile treatments in Tel Aviv, Israel. Significant p-values are bolded. 

 

 

Source df SS MS Pseudo-F P(perm)

Treatment 4 11693 2923.3 3.0281 0.0053

Residual 20 19308 965.39                

Total 24 31001

Transform: no transformation

Source df SS MS Pseudo-F P(perm)

Treatment 4 3550.3 887.58 8.3731 0.0002

Residual 20 2120.1 106                

Total 24 5670.4

Transform: no transformation

(a) Taxon

(b) Functional
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Figure 4-9. Comparison of mean (a) taxon and (b) functional richness among tile 

treatments in Tel Aviv, Israel recorded at the conclusion of the 12-month experimental 

period. Error bars represent standard error. Letters show where there are significant 

differences between treatments determined by post-hoc pairwise comparisons (both (a) 

and (b): seawall, n = 5; control, n = 5; flat, n = 5; 2.5 cm, n = 5; 5 cm, n = 5; (a): p = 

0.0053; (b): p = 0.0002). There were significant differences between the seawall and the 

2.5 cm and 5 cm tile treatments, as well as between the control and the 5 cm tiles, and 

the flat and 5 cm tiles for (a) taxon richness. Significant differences were observed 

between the seawall and all tile treatments, as well as between flat and 5 cm tiles for (b) 

functional richness.  

 

 

4.3.6 Tel Aviv, Israel: Comparison of taxon and functional composition among 

tile treatments 

There was a significant effect of tile treatment on both taxon and functional 

composition (Table 4-7a, b). Post-hoc pairwise comparison tests for taxon composition 

showed significant differences between seawall plots and flat and 5 cm tiles, control 

tiles and 2.5 cm and 5 cm tiles and flat tiles and 2.5 cm tiles (Figure 4-10). Post-hoc 

pairwise comparison tests for functional composition showed that there were significant 

differences between seawall plots and all other treatments, control tiles and 5 cm tiles 

and flat tiles and 5 cm tiles. SIMPER analysis revealed that turf-forming algae was the 

highest contributor to dissimilarities among all treatments (Table 4-8). Of the treatments 

that significantly differed in community composition abundance of turf algae was 

greater on: control tiles, flat tiles and 5 cm tiles compared to seawall plots; 2.5 cm and 5 

cm tiles compared to control tiles; and 2.5 cm tiles compared to flat tiles. 
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Table 4-7. One-way PERMANOVA comparing mean (a) taxon and (b) functional 

composition among tile treatments in Tel Aviv, Israel recorded at the conclusion of the 

12-month experimental period. Significant p-values are bolded. 

 

 

 

 

Figure 4-10. nMDS ordination plots comparing community composition among tile 

treatments in Tel Aviv, Israel (p = 0.0001) recorded at the conclusion of the 12-month 

experimental period, with functional groups overlaid. 

 

 

Source df SS MS Pseudo-F P(perm)

Treatment 4 23626 5906.5 3.2363 0.0001

Residual 20 36501 1825.1                

Total 24 60127

Transform: square root

Source df SS MS Pseudo-F P(perm)

Treatment 4 21736 5434.1 3.9753 0.0002

Residual 20 27340 1367                

Total 24 49076    

Transform: square root

(a) Taxon

(b) Functional
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Table 4-8. Differences in average abundances (square root transformed; indicated by > 

or <) and contributions ('%' for percentage) of individual species to assemblage 

composition dissimilarities between tile treatments in Tel Aviv, Israel recorded at the 

conclusion of the 12-month experimental period for (a) seawall compared to tile control, 

(b) seawall compared to flat tile, (c) seawall compared to 2.5 cm tile, (d) seawall 

compared to 5 cm tile, (e) tile control compared to flat tile, (f) tile control compared to 

2.5 cm tile, (g) tile control compared to 5 cm tile, (h) flat tile compared to 2.5 cm tile, (i) 

flat tile compared to 5 cm tile and (j) 2.5 cm compared to 5 cm tile. Consistency of 

contribution is shown by ‘Diss/SD’, which is the dissimilarity divided by standard 

deviation of contributions across all pairs of samples. 

(a) Average dissimilarity = 85.7% seawall  >/< 
tile 

control % Contr Diss/SD 

  Turf algae (%) 0.0 < 3.1 47.5 2.5 

  Amphibalanus amphitrite (%) 1.8 > 0.5 23.9 1.2 

              

(b) Average dissimilarity = 80.0% seawall >/<  flat % Contr Diss/SD 

  Turf algae (%) 0.0 < 1.9 32.9 1.5 

  Amphibalanus amphitrite (%) 1.8 > 0.6 28.5 1.3 

  Spirorbidae (%) 0.6 < 1.0 22.0 0.8 

              

(c) Average dissimilarity = 72.7% seawall >/<  2.5 cm % Contr Diss/SD 

  Turf algae (%) 0.0 < 3.3 19.9 1.5 

  Encrusting bryozoan (%) 0.0 < 2.2 15.1 1.9 

  Spirorbidae (%) 0.6 < 1.8 13.6 1.2 

  Palaemon serratus (%) 0.0 < 0.9 13.2 0.8 

  Amphibalanus amphitrite (%) 1.8 = 1.8 11.2 0.6 

              

(d) Average dissimilarity = 83.4% seawall  >/< 5 cm % Contr Diss/SD 

  Turf algae (%) 0.0 < 5.2 28.8 2.3 

  Spirorbidae (%) 0.6 < 2.3 15.4 1.1 

  Ostrea edulis (%) 0.0 < 2.3 12.4 1.8 

  Encrusting bryozoan (%) 0.0 < 2.2 12.0 1.7 

  Palaemon serratus (%) 0.0 < 1.1 8.2 1.6 

              

(e) Average dissimilarity = 51.5% 
tile 

control >/<  flat % Contr Diss/SD 

  Turf algae (%) 3.1 > 1.9 34.4 1.0 

  Spirorbidae (%) 1.5 > 1.0 25.0 1.2 

  Amphibalanus amphitrite (%) 0.5 < 0.6 12.5 1.1 

              

(f) Average dissimilarity = 69.9% 
tile 

control  >/< 2.5 cm % Contr Diss/SD 

  Turf algae (%) 3.1 < 3.3 22.6 1.6 

  Amphibalanus amphitrite (%) 0.5 < 1.8 15.9 1.1 

  Encrusting bryozoan (%) 0.0 < 2.2 13.3 1.8 
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  Spirorbidae (%) 1.5 < 1.8 11.6 1.1 

  Palaemon serratus (%) 0.3 < 0.9 10.0 0.8 

              

(g) Average dissimilarity = 61.6% 
tile 

control >/<  5 cm % Contr Diss/SD 

  Turf algae (%) 3.1 < 5.2 23.6 2.3 

  Ostrea edulis (%) 0.0 < 2.3 14.6 1.7 

  Encrusting bryozoan (%) 0.0 < 2.2 14.2 1.6 

  Spirorbidae (%) 1.5 < 2.3 12.8 0.9 

  Palaemon serratus (%) 0.3 < 1.1 8.4 1.4 

              

(h) Average dissimilarity = 71.6% flat  >/< 2.5 cm % Contr Diss/SD 

  Turf algae (%) 1.9 < 3.3 20.4 1.6 

  Amphibalanus amphitrite (%) 0.6 < 1.8 15.7 1.1 

  Encrusting bryozoan (%) 0.2 < 2.2 13.4 1.9 

  Spirorbidae (%) 1.0 < 1.8 12.4 1.1 

  Palaemon serratus (%) 0.0 < 0.9 11.1 0.8 

              

(i) Average dissimilarity = 67.7% flat >/<  5 cm % Contr Diss/SD 

  Turf algae (%) 1.9 < 5.2 25.0 1.8 

  Spirorbidae (%) 1.0 < 2.3 14.7 1.1 

  Encrusting bryozoan (%) 0.2 < 2.2 13.1 1.6 

  Ostrea edulis (%) 0.4 < 2.3 12.8 1.7 

  Palaemon serratus (c) 0.0 < 1.1 9.1 1.6 

              

(j) Average dissimilarity = 50.8% 2.5 cm >/<  5 cm  % Contr Diss/SD 

  Turf algae (%) 3.3 < 5.2 25.0 1.2 

  Ostrea edulis (%) 1.6 < 2.3 11.9 1.3 

  Encrusting bryozoan (%) 2.2 = 2.2 11.8 1.3 

  Spirorbidae (%) 1.8 < 2.3 11.3 0.8 

  Amphibalanus amphitrite (%) 1.8 > 0.8 8.8 1.7 

  Schizoporella sp.  (%) 1.1 < 1.4 8.8 1.1 

 

4.4 Discussion 

This study tested the effects of enhanced complexity on species diversity on 

intertidal seawalls in Plymouth, British Isles and Tel Aviv, Israel. In Plymouth, we also 

tested the effects of mussel seeding on species diversity. We predicted that complex 

tiles and tiles seeded with mussels would support greater taxon and functional richness 

and different community composition than control tiles/cleared seawall plots and 

unseeded tiles.  
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In Plymouth, the addition of habitat complexity had an effect on community 

composition, with different communities observed on flat compared to complex tiles, as 

well as in seawall plots compared to all other experimental tiles. Contrary to our 

prediction, however, habitat complexity had no effect on number of taxa living on 

experimental tiles and seawall plots. This means that the presence of tiles had a greater 

influence than the complexity of tiles on the numbers of colonising taxa. Therefore, the 

addition of habitat complexity did not cause differences in number of taxa, but 

differences did emerge when identities of taxa and abundances of individuals were 

analysed. The hypothesis about seeded mussel effects on species diversity could not be 

tested because mussels were lost to predation within the first month of experiment 

commencement.  

In Israel, as hypothesised, the complex tiles supported greater taxon richness and 

different community composition compared to flat tiles and seawall plots. For taxon 

richness, seawall plots differed from complex tiles, but did not differ from the control 

and flat tiles. This suggests that crevices, but not microtexture, were important in 

supporting greater numbers of taxa. However, for community composition, seawall 

plots did differ from control and flat tiles, as well as complex tiles, suggesting that the 

presence of tiles and crevices played a role in influencing the colonising community.  

Previous studies examining effects of adding topographic complexity have 

found positive effects on mean taxon richness and community composition. In an 

experiment testing the effects of different structural complexities on species diversity, 

complex tiles were found to support greater numbers of taxa and different biological 

communities compared to granite control tiles after 13 months (Loke and Todd, 2016). 

This same experiment also tested these effects at two tidal heights (low and high), and 

found that effects were only detected at the lower tidal height. Similarly, Perkol-Finkel 

et al. (2017) found that panels made with topographic complexity, including holes (3 cm 
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and 12 cm deep), supported greater mean taxon richness compared to seawall control 

plots in the intertidal after 22 months. This study was conducted in the Mediterranean 

Sea where the tidal range is approximately 30 cm (Einav et al., 1995), and so mid- and 

high-intertidal heights are virtually absent. During the current experiment, the lack of 

complexity effects in Plymouth could be attributed to the position of experimental tiles 

in the mid- rather than the lower intertidal. This is because placement of interventions in 

the lower intertidal usually results in greater species diversity, as this area is immersed 

on every tidal cycle and the potential pool of colonising species is greater (Moschella et 

al., 2005; Chapman and Underwood, 2011; Firth et al., 2016a; Loke and Todd, 2016).  

A meta-analysis of eco-engineering interventions in estuarine and coastal 

environments found that the most effective interventions in intertidal habitats for 

enhancement of number of sessile species were water retaining features, crevices and 

seeding of habitat-forming taxa, while for number of mobile species, the addition of 

crevices and pits were the most effective (Strain et al., 2017a). The study also found that 

cover of barnacles and bivalves was most influenced by the addition of crevices and pits 

compared to other tested interventions. In the current experiment, in Plymouth, there 

was no effect of crevices on numbers of sessile and mobile organisms, while 

conversely, in Tel Aviv, there were clear effects of crevices on taxon richness. 

Differential results between the two locations might be explained by dissimilar climates 

and thus different temperature stress. Tel Aviv has a Mediterranean climate with an 

average yearly temperature of 20 °C and roughly 140 days of sunshine. Conversely, 

Plymouth is known for its wet and mild climate, with an average temperature of 11.4°C 

and about 70 days of sunshine per year (Met Office, 2019). The findings here highlight 

the importance of testing eco-engineering interventions across multiple locations to 

understand effects of interventions on different taxa under different environmental 

conditions. 
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The current experiments ran for 12 months, with an installation date in August. 

Taxa that colonised Plymouth tiles vary in their reproductive seasons (Fish, 1972; 

McCarthy et al., 2008; Bunker et al., 2017), but many reproduce in the spring and 

summer months (Orton and Southward, 1961; Underwood, 1972; Bunker et al., 2017). 

Therefore, initial colonisation was likely from opportunistic species and immigration of 

mobile species currently on the seawall (observation of larger animals) rather than 

settlement of new larvae and spores. An early recruiter was the invasive barnacle, 

Austrominius modestus, which has a year-round reproductive season (Muxagata et al., 

2004), with a peak of well-developed gonads in September and October (O'Riordan and 

Murphy, 2000). The absence of other barnacle species on tiles and in seawall plots 

throughout the duration of the experiment suggests that A. modestus occupied space that 

might otherwise have been colonised by native barnacle competitors (Gallagher et al., 

2015). Additionally, the estuarine nature of the location of experiments in Plymouth 

favoured settlement of A. modestus over native species, as  A. modestus is typically 

found in brackish conditions, while Semibalanus balanoides (Linnaeus, 1767) and 

Chthamalus montagui Southward, 1976 (both native species) prefer marine conditions 

(Gomes-Filho et al., 2010). Moreover, it is also possible that A. modestus is now so 

ubiquitous in natural and artificial habitats in the British Isles (Crisp, 1958; Gallagher et 

al., 2015), that its larvae outcompete native barnacle larvae for settlement on bare space 

(Bracewell et al., 2013). It is certainly possible to facilitate settlement of desirable 

native species if the timing of eco-engineering intervention coincides with target taxa 

reproductive season. For example, Firth et al. (2014b) showed that placement of an 

engineering “BIOBLOCK” in a breakwater in February supported early settlement of 

the native S. balanoides rather than A. modestus (L. Firth, pers. comm.). Thus, the 

timing of installation is a vital consideration for targeting native species to offset 
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colonisation by non-native and nuisance species where possible (Airoldi et al., 2005b; 

Airoldi and Bulleri, 2011; Evans, 2016).  

To date, the duration of eco-engineering experiments is typically 12 months 

(reviewed in Strain et al., 2017a), after which, treatments are destructively sampled and 

success of the design is evaluated. Despite there being some evidence to suggest early 

successional stages in artificial and natural habitats differ (Bulleri, 2005b; Bulleri et al., 

2005), succession of an intertidal community typically takes well beyond 12 months to 

stabilize (Hawkins et al., 1983; Bulleri, 2005b). For example, in a study investigating 

the effects of eco-engineering enhancements in energy dissipation units on a causeway, 

Firth et al. (2016a) found contrasting results between sampling conducted at 12 and 24 

months, with nearly four times the number of species observed at month 24 compared to 

the first sampling event. New substrate placed in intertidal habitats will experience 

fluctuations in recruitment, growth and stabilization of algae, filter feeding invertebrates 

and grazing mobile species over timescales of years to decades (Hawkins, 1981; 

Hawkins et al., 1983). In a survey of sacrificial breakwater blocks of varying ages, 

Hawkins et al. (1983) found that barnacle cover took 20-25 years to stabilise, Fucus 

spp. took 15-20 years to stabilise and the Patella vulgata population structure stabilised 

at 18 years, with the youngest blocks (1-3 years) supporting very different community 

assemblages compared to older blocks (20-25 years). Grazing invertebrates are 

important facilitators of succession, as they graze down algae (Hawkins, 1981; Jenkins 

et al., 2005; Coleman et al., 2006) and create space for algal propagules and larvae of 

other species breaking inhibition by mid successional species (Sousa, 1979; Hawkins et 

al., 1983; Benedetti-Cecchi, 2000; Benedetti-Cecchi et al., 2000). In Tel Aviv, no 

grazers were observed on tiles at the end of the 12-month experiment, suggesting that 

these tiles might still be in early successional stages. Thus, there are clear limitations to 

the results obtained from the current experiments; we should only evaluate success from 
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an early successional stage point of view with the understanding that recruitment and 

colonisation would likely increase over time, increasing the number of taxa and 

abundance of individuals, inevitably changing community composition and potentially 

resulting in divergent communities among treatments.  

Physical factors can also affect the success of the eco-engineering intervention 

over the course of months to years. In an experiment testing the efficacy of a precast 

habitat enhancement unit (“BIOBLOCK”) on increasing biodiversity, Firth et al. 

(2014b) found that after 12 months, the “BIOBLOCK” supported greater species 

diversity compared to surrounding boulders, but 24 months post installation, the 

“BIOBLOCK” became inundated with sediment following extreme winter storms. In 

our experiments, no tiles were lost to environmental factors. There is, however, 

potential for storm events and regular wave action to dislodge tiles from the seawall (see 

Browne and Chapman, 2014), as materials used to attach tiles (i.e., anchor screws, 

bolts) age and rust over time. Loss of tiles would open up new patches of bare substrate 

and allow for secondary biological succession (Connell and Slatyer, 1977; Benedetti-

Cecchi, 2000), which may positively affect the biodiversity of the seawall, as primary 

and secondary succession work naturally in tandem on diverse rocky shores. Bare space, 

however, can also facilitate colonisation by non-native and opportunistic species 

(Airoldi and Bulleri, 2011; Bracewell et al., 2013). The duration of the current 

experiments, therefore, may not have been long enough to ultimately determine long-

term success (or indeed failure) of the interventions.  

Variation in community assemblage and species richness among tile treatments 

may be due to differences in surface area of treatments. The 5 cm tile treatment had a 

surface area of 1,490 cm2, the 2.5 cm tile treatment had a surface area of 1,023 cm2 and 

the flat tile treatment had the lowest surface area of 625 cm2. Surface area naturally 

increases with higher surface complexity (Kostylev et al., 2005), creating more space 
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for organisms to occupy, relating to the ‘species-area relationship’ (Preston, 1960; 

Connor and McCoy, 1979; Losos and Schluter, 2000; Gatti et al., 2017). More available 

space allows for organisms to exploit habitat niches (Whittaker et al., 1973), which 

effectively reduces competition for resources (Schoener, 1989; Dudley and D'Antonio, 

1991) and therefore allows for a more diverse assemblage of species to establish 

(MacArthur and MacArthur, 1961; Pocheville, 2015). In this light, future eco-

engineering experiments that utilise topographic complexity as a factor should consider 

the additional surface area provided by the higher complexity treatments by 

standardising for this extra area. This can provide information on the effects of 

complexity independent of surface area (see Loke and Todd, 2016).  

Ecological engineering designs should maximize the ecological and social 

benefits whilst minimizing the cost to stakeholders (Narayan et al., 2016; Morris et al., 

2018a). It is therefore desirable to determine the most cost-effective design, which may 

be the smallest intervention possible to achieve the desired ecological goals. Previous 

eco-engineering experiments tested the efficacy of interventions at multiple scales on 

species diversity. In a study investigating the effects of drill-cored rock pools on 

biodiversity, Evans et al. (2016a) found that the 5 cm and 12 cm deep pools supported 

similar taxon richness and community composition. Similarly, an experiment examining 

the effects of 14 mm and 22 mm diameter drilled pits on a concrete wave breaker unit, 

found no significant difference in species richness between the two pit depths (Firth et 

al., 2014b; Jackson, 2015). In the current experiment, there were no differences in taxon 

richness and community composition between 2.5 cm and 5 cm tiles in both Plymouth 

and Tel Aviv, suggesting that the 2.5 cm ridge was a large enough enhancement to 

influence the colonising community. This result can inform future designs that 

incorporate ridges and crevices, so that the cost to stakeholders is minimised. 
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Secondary management goals of eco-engineering designs often include 

enhancing ecosystem services, such as habitat provision to support fisheries and 

aquaculture (Hawkins et al., 1992b; Bohnsack et al., 1994; Whitmarsh et al., 2008), 

water quality improvement through biofiltration (Allen et al., 1992) and education and 

general aesthetic appeal of biodiversity in urban areas contributing to human well-being 

(Airoldi et al., 2005a; Sugden et al., 2009; Mayer-Pinto et al., 2017). In both geographic 

locations, complex tiles supported greater functional richness compared to flat and 

control tiles and seawall plots. In particular, in Plymouth, experimental tiles supported 

three filter feeders and two primary producers, while seawall plots supported just one of 

each. Similarly, in Israel, complex tiles supported eight filter-feeding taxa, while flat 

tiles, control tiles and seawall plots supported only five, four and three, respectively. 

The number of primary producers in Israel was greater on complex tiles (2 taxa) 

compared to flat and control tiles (1 taxa) and seawall plots (0 taxa). Although on a 

small scale, these experiments clearly demonstrate the ability of complex tiles to 

enhance valuable ecosystem services such as carbon sequestration, primary productivity 

(i.e., through addition of macroalgae) and water filtration (i.e., through addition of filter 

feeders).  

There are concerns that eco-engineering may facilitate the spread of non-native 

species (Dafforn et al., 2012; Evans et al., 2017; Naylor et al., 2017). Eco-engineering, 

however, aims to encourage diverse native biological communities, which can prevent 

the establishment of non-native species (Stachowicz et al., 1999; Stachowicz et al., 

2002; Arenas et al., 2006b). In the current experiment, all tiles and seawall plots 

supported at least one non-native species in Plymouth. Austrominius modestus was 

found on all tiles and seawall plots, while Magallana gigas was only found on complex 

tiles. Both species were already present on the seawall prior to experiment 

implementation; the settlement of M. gigas on complex tiles only should therefore not 
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be attributed to the design of the tiles, but rather regarded as chance. In Tel Aviv, 

complex tiles, but not flat tiles, control tiles and seawall plots, supported the one non-

native species (Alectryonella plicatula). It is important to consider each non-native 

species on a case-by-case basis, as some non-natives are well established and ubiquitous 

throughout their expanded range (e.g., Austrominius modestus; Crisp, 1958; Gomes-

Filho et al., 2010; Bracewell et al., 2012) and attempts at discouraging settlement will 

not be cost effective. Other non-native species, such as the Pacific oyster (Magallana 

gigas), pose a threat to native biodiversity through competition and displacement 

(Humphreys et al., 2014; Herbert et al., 2016). There have been attempts to eradicate 

populations around the British Isles (Guy and Roberts, 2010), although there remains 

support for use of M. gigas in aquaculture practices (Herbert et al., 2016). The current 

experiments demonstrate the difficulty in discouraging non-native species recruitment 

to eco-engineering interventions, and highlight the importance of future research to 

address methods of offsetting colonisation of specific non-native species. 

4.4.1 Concluding remarks 

There is increasing awareness that traditional hard built coastal defence 

structures are not ecologically sustainable (Airoldi et al., 2005a; Airoldi et al., 2009; 

Dugan et al., 2011), and under future climate change scenarios, they may not be 

economically viable (Fankhauser and Tol, 2005; Koch, 2010; Narayan et al., 2016). The 

impetus among scientists, coastal managers, government and the public to build 

multifunctional structures with built-in secondary ecological benefits is growing 

(Naylor et al., 2012; Evans et al., 2017; Evans et al., 2019; Strain et al., 2019a; Strain et 

al., 2019b). The field of eco-engineering of coastal structures, however, is still largely in 

the experimental phase; the evidence upon which to base large-scale installations in a 

variety of locations and conditions is lacking (Strain et al., 2017a). To inform sound 

eco-engineering practice, there is a need for wider testing of existing designs in different 
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environmental settings, and to develop the predictive capability to forecast ecological 

outcomes (Airoldi et al., 2005a; Hulme, 2014; Evans, 2016). Our experiments addressed 

these concerns, as we tested equivalent designs in two different locations with different 

environmental conditions. Not surprising, we found that results varied between 

locations, reinforcing the idea that eco-engineering designs should consider site-specific 

conditions and taxa (Strain et al., 2017a). Here we found that: (1) In Plymouth, crevices 

influenced the colonising community but had no effect on taxon richness; (2) In Tel 

Aviv, crevices had a positive effect on both community composition and taxon richness, 

with complex tiles supporting greater numbers of taxa. Thus, depending on the 

secondary management goals (e.g., increase number of taxa, increase abundance of 

specific taxa, increase specific functional groups), further testing of eco-engineering 

interventions in Plymouth is necessary before interventions at the scale of entire 

structures can be undertaken. In Tel Aviv, however, future research can build on these 

effective interventions to develop site-specific approaches and more targeted secondary 

management goals that match the local taxa and address local conditions.  

In order to move from small-scale trials to large-scale implementation at the 

entire structure level, a sound evidence base must underpin future eco-engineering 

designs. This means that reporting of failed designs and interventions with no effects is 

imperative. With careful planning, setting, and monitoring of secondary management 

goals, even heavily stressed coastal and marine ecosystems can support greater species 

diversity and provide valuable ecosystem services for humans and nature.  
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5. CHAPTER FIVE 

Effects of habitat complexity, mussel seeding and shade on species diversity in 

subtidal habitats across two geographic locations 

 

Abstract 

The burgeoning human population has caused an increase in coastal development to 

accommodate industry, shipping, energy extraction, travel and aquaculture, as well as 

residential development and recreational activities. Climate change and sea level rise 

have exacerbated the effects of these human activities, resulting in a loss of natural 

habitat and irreversible damage to coastal ecosystems worldwide. As a response, 

ecologists are testing ecological engineering (or “eco-engineering”) techniques to 

enhance biodiversity, and ultimately resiliency, of coastal ecosystems. Eco-engineering 

is the practice of combining ecological with engineering design to achieve sustainable 

ecosystems for the benefit of humans and nature. This study tested the effects of habitat 

complexity, mussel seeding and shade in subtidal habitats in two geographic locations 

(Plymouth, British Isles and Tel Aviv, Israel). Although no formal comparisons were 

made between the geographic regions, the results are presented together here to 

emphasize that eco-engineering experiments should involve comparisons across 

geographic localities to understand generalities of patterns of effects at larger scales. 

Taxon and functional richness and community composition were compared among flat 

tiles, 2.5 cm tiles, 5 cm tiles, seawall plots (seawall plots were used in Tel Aviv only) 

and control tiles. In Plymouth only, taxon and functional richness and community 

composition were compared between tiles seeded with mussels and unseeded tiles, as 

well as shaded and unshaded tiles. Results differed between the locations. In general, in 

Plymouth, there was no effect of habitat complexity; however, the seeding of mussels 

did have an effect, with unseeded tiles supporting greater taxon richness than seeded 
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tiles. Community composition, but not taxon richness, were significantly different 

between shaded and unshaded tiles. In Israel, habitat complexity had no effect on taxon 

richness but did effect community composition. The differential results obtained from 

these experiments highlight the importance of testing multiple interventions in more 

than one geographic location. The majority of eco-engineering studies have been 

conducted in intertidal habitats, with only a few examples from subtidal habitats. There 

are clear challenges to implementing eco-engineering interventions in subtidal habitats, 

yet continued experimentation is urgently needed in all habitats to contribute to an 

evidence base that will inform future large-scale eco-engineering designs. 

 

5.1 Introduction 

The human population continues to grow, with the majority of the world’s 

megacities located along the coastal zone (Brown et al., 2013; Neumann et al., 2015; 

Firth et al., 2016b). Concurrently, climate change is causing rising sea level and 

stormier seas, with increased frequency and intensity of coastal flooding and erosion 

(Neumann et al., 2015; Hansen et al., 2016; Vitousek et al., 2017). As a response, 

humans have built hard engineered coastal structures (‘artificial structures’) to protect 

valuable infrastructure and safeguard human lives at the expense of natural habitats, 

contributing to the irreversible modification of coastal systems globally (Thompson et 

al., 2002; Airoldi et al., 2005a; Halpern et al., 2008; Airoldi et al., 2009; Dugan et al., 

2011). These artificial structures have contributed to “ocean sprawl” (Duarte et al., 

2012) – a term that is used to describe the proliferation of man-made structures (i.e., 

seawalls, breakwaters, floating pontoons) in marine and coastal environments, and the 

subsequent modification and loss of natural habitats (also see Thompson et al., 2002; 

Firth et al., 2016b; Bishop et al., 2017; Heery et al., 2017).   
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Artificial structures typically have steep profiles and reduced surface area and 

topographic complexity (Moschella et al., 2005; Chapman and Underwood, 2011), and 

as such, they generally support different biological communities compared to analogous 

natural habitats (i.e., rocky shores; Knott et al., 2004; Moschella et al., 2005; Chapman 

and Underwood, 2011). These communities typically comprise lower numbers 

(Chapman, 2003; Geist and Hawkins, 2016) and abundances (Lam et al., 2009; Lai et 

al., 2018) of species, and many are dominated by invasive and opportunistic species 

(Dafforn et al., 2012; Bishop et al., 2015b; Dafforn, 2017), facilitating biotic 

homogenization (McKinney and Lockwood, 1999; McKinney, 2006; Bishop et al., 

2017). Subsequently, artificial structures have a different ecological role in an 

ecosystem compared to natural habitats (Bulleri et al., 2004; Jackson et al., 2008b; 

Aguilera et al., 2014; Mayer-Pinto et al., 2018a; Mayer-Pinto et al., 2018b), with 

negative knock-on effects on ecosystem services rendered (e.g., carbon sequestration, 

water filtration, primary productivity). 

Some of the largest cities in the world are located in coastal areas, with many of 

these cities ideally positioned to support global activities, such as commercial trade and 

transport (Nicholls, 1995; Timmerman and White, 1997; Tibbetts, 2002; Firth et al., 

2016b). To facilitate these activities, large docks and associated hard engineered 

structures in working harbours have been built, replacing or degrading natural habitat 

(Chou, 2006; Firth et al., 2016b). Thus, these large working harbours represent novel 

ecosystems that are not encountered in the natural environment (Hobbs et al., 2006; 

Morse et al., 2014). These novel ecosystems have been shown to alter natural animal 

behaviours (Bulleri et al., 2005; Munsch et al., 2014; Munsch et al., 2017), and support 

different biological assemblages than analogous natural habitats (Chapman, 2003; 

Bulleri et al., 2005; Green et al., 2012; Lai et al., 2018). Recreational marinas – which 

are common features of harbours of all sizes – are typically composed of floating 
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pontoons (docks), which are vastly different than natural habitats, as the pontoons stay 

fixed at the surface of the water and rise and fall with the tides (Holloway and Connell, 

2002). These pontoons have been found to support non-native species (Arenas et al., 

2006a; Ashton et al., 2006; Bishop et al., 2015b; Epstein and Smale, 2018), and thus, 

there is impetus to engineer pontoons and marinas to support a diverse assemblage of 

natural species, resisting biological invasion by enhancing native biodiversity (Hair and 

Bell, 1992; Stachowicz et al., 1999; Stachowicz et al., 2002; Paalvast et al., 2012). 

Ecosystems in harbours can also be enhanced by reducing pollution and improving 

water quality through biofiltration (Hawkins et al., 1992a; Hawkins et al., 1992b). In 

this way, harbours can support multiple uses and users so that there is a realistic balance 

between the people of the harbours and the resident marine flora and fauna (World 

Harbour Project, 2018).  

Some ecologists are considering how to manage hard engineered structures 

within marinas and harbours for ecological and societal benefit (Milton, 2003; Odum 

and Odum, 2003; Hobbs et al., 2006; Macdonald and King, 2018). The design of such 

ecosystems, which combine human society with the natural environment for the benefit 

of both, has been labelled ecological engineering (or “eco-engineering”; Odum, 1962; 

Mitsch and Jorgensen, 1989; Odum and Odum, 2003). Despite ecological engineering 

in urban terrestrial and freshwater environments being well accepted by society, 

governments and scientists alike (Francis and Lorimer, 2011; Francis, 2014; Lepczyk et 

al., 2017; Naylor et al., 2017; Evans et al., 2019), eco-engineering of coastal and marine 

structures is a relatively new field. Ecologists are, however, beginning to build a robust 

foundation of evidence upon which to base future designs for large-scale 

implementation (Goff, 2010; Cordell et al., 2017; Perkol-Finkel et al., 2017), and are 

working to shift perceptions on multifunctionality of structures in the marine and 

coastal environments (Langhamer and Wilhelmsson, 2009; Zanuttigh et al., 2015; 
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Callaway et al., 2017; Evans et al., 2017; Evans et al., 2019) Most working harbours 

and marinas have practices in place to actively discourage the colonisation of artificial 

structures and vessels by fouling organisms (i.e., vessel hull cleaning; use of antifouling 

substances). Thus, experiments testing the effects of eco-engineering on organisms that 

can benefit marina users are urgently needed. Such experiments can target certain 

groups of organisms that are known to provide ecosystem services (i.e., improved water 

quality and photosynthesis; Ferrario et al., 2016) and discourage settlement of pest 

species (e.g., invasive species such as the carpet sea quirt, Didemnum vexillum; Coutts 

and Forrest, 2007). There have been many eco-engineering designs tested over the past 

decade, with a common emerging theme of adding habitat complexity to enhance 

species diversity (Moschella et al., 2005; Chapman and Underwood, 2011; Firth et al., 

2014b; Strain et al., 2017a). Habitat complexity includes microtexture (< 1 cm) such as 

grooves and pits, and small (centimetres) and larger scale (centimetres - metres) habitats 

such as crevices, rock pools and gaps between boulders (Moschella et al., 2005; Firth et 

al., 2013b; Coombes et al., 2015; Liversage et al., 2017). At the microscale (mm), 

incorporating fine scale texture into built structures has been shown to increase larval 

recruitment and survival (Coombes et al., 2015). Interventions at the scale of 

centimetres to metres have included drilling pits (Chapman and Underwood, 2011; Firth 

et al., 2014b; Martins et al., 2016; Hall et al., 2018), creating rock pools (Chapman and 

Underwood, 2011; Browne and Chapman, 2014; Evans et al., 2016a; Firth et al., 2016a) 

and scoring grooves (Firth et al., 2014b; Hall et al., 2018) into artificial structures to 

enhance species diversity. Large-scale interventions (> 1 m) involve placement of 

precast habitat-enhancement units within the existing structure or during construction 

(Firth et al., 2014b; Perkol-Finkel and Sella, 2015; Sella and Perkol-Finkel, 2015). 

Moreover, habitat-forming species, such as mussels (World Harbour Project, 2018), 

corals (Ng et al., 2015) and canopy forming algae (Falace et al., 2006; Neo et al., 2009; 
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Perkol‐Finkel et al., 2012; Ferrario et al., 2016), can be seeded on artificial structures to 

increase their abundance and promote greater species diversity through provision of 

space and enhancement of ecosystem services. This is done by targeting specific 

organisms such as barnacles, mussels, oysters and algae, which can have a 

“bioprotective effect” by enhancing the structural integrity and protecting the structure 

from saltwater, temperature extremes and intense wave action (Coombes et al., 2013; 

Naylor et al., 2017). In addition to adding support to the structure, these organisms 

contribute to biological complexity, which has been shown to be important for the 

subsequent colonising community (Bros, 1987; Pinn et al., 2008; Coombes et al., 2015). 

These organisms are called ecosystem engineers, as they create biological habitat that 

adds to the three-dimensional structure of a reef and enhances biodiversity (Borthagaray 

and Carranza, 2007; Romero et al., 2015) and encourages intraspecies settlement 

(Tamburri et al., 2008; Smee et al., 2013). 

The field of eco-engineering, especially in subtidal environments, can learn from 

the decades of research and development on near- and offshore artificial reefs. Artificial 

reef programs in the Gulf of Mexico, in particular, are now well-established, having 

streamlined the permitting and siting processes (Stephan et al., 1990; Kaiser, 2006a), 

made strict regulations on materials (Stephan et al., 1990; Atlantic and Gulf States 

Marine Fisheries Commission, 2004; Sherman and Spieler, 2006) and developed 

programs on reefing of decommissioned oil and gas platforms (Stephan et al., 1990; 

Kaiser and Pulsipher, 2005; Kaiser, 2006b). But it was only with extensive research on 

the effectiveness of artificial reef designs to produce biomass and enhance fisheries 

(Bohnsack and Sutherland, 1985; Claisse et al., 2014; Smith et al., 2016; Streich et al., 

2017; Lima et al., 2019), boosting recreational angling activities (Bohnsack et al., 1994; 

Streich et al., 2017), and supporting local tourism representing a vital source of income 

for local communities (Stephan et al., 1990; Adams et al., 2006; Stolk et al., 2007; 



 

177 

 

Rendle and Rodwell, 2014), that these artificial reef programs have become accepted by 

government bodies, commercial enterprises and the general public. Still, artificial reefs 

endure criticism. They have been blamed for mortalities of marine life (Barnette, 2017; 

Texas Parks and Wildlife Artificial Reefs Program, pers. comm.) and complications 

during trawling and bottom-fishing activities (Texas Parks and Wildlife Artificial Reefs 

Program, pers. comm.). There remains a contentious debate over the ability of artificial 

reefs to produce biomass rather than simply aggregate existing biomass in a condensed 

area, effectively making it easier to overfish a region (Bohnsack and Sutherland, 1985; 

DeMartini et al., 1994; Grossman et al., 1997; Pickering and Whitmarsh, 1997; Shipp, 

1999; Brickhill et al., 2005; Smith et al., 2015). Although the field of coastal and marine 

eco-engineering has not seen this level of criticism, it is important for eco-engineering 

projects to consider these criticisms experienced by artificial reefs and implement these 

into early planning and design (see Introduction section 1.5.2 for more information on 

artificial reefs). 

Localised environmental factors, such as temperature, sedimentation and light 

intensity can influence the colonising communities on artificial structures and natural 

rocky shores alike (Irving and Connell, 2002; Knott et al., 2004; Blockley and 

Chapman, 2006; Miller et al., 2009; Gallardo et al., 2013). Shading in particular has 

been shown to influence recruitment and survival of specific species and functional 

groups (Fitzpatrick and Kirkman, 1995; Glasby, 1999; Blockley and Chapman, 2006; 

Miller and Etter, 2008; Hanlon et al., 2018). There is general agreement that macroalgae 

and mobile invertebrates prefer unshaded substrate (Kennelly, 1989; Fitzpatrick and 

Kirkman, 1995; Baynes, 1999; Blockley and Chapman, 2006), while sessile 

invertebrates prefer shaded substrate (Blockley and Chapman, 2006; Miller and Etter, 

2008; Hanlon et al., 2018). Few eco-engineering studies have formally incorporated 

shade as a factor in the experimental design (but see Hanlon et al., 2018), despite the 
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need for investigation of multiple intervention types and development of site-specific 

methods that address local stressors (Strain et al., 2017a).  

The vast majority of eco-engineering trials have been small-scale, tested in 

intertidal habitats and centred only in a few geographical hotspots such as the UK, US 

and Australia (but see Sella and Perkol-Finkel, 2015; Loke and Todd, 2016; Cordell et 

al., 2017; Perkol-Finkel et al., 2017). Results from experimental manipulations in the 

lower intertidal combined with descriptive studies (Glasby, 1998; Bulleri et al., 2005; 

Firth et al., 2016a) suggest that ecological engineering designs may be most effective in 

increasing species diversity the lower in the coastal zone the design is placed, as these 

areas are constantly submerged or immersed on every tidal cycle. The few studies that 

have successfully implemented ecological engineering interventions in the subtidal on 

coastal defences required heavy machinery and/or technical dive teams due to the large 

scale of the designs (Langhamer and Wilhelmsson, 2009; Firth et al., 2014b; Sella and 

Perkol-Finkel, 2015; Perkol-Finkel et al., 2017; ECOncrete Inc., 2019). For example, 

Sella and Perkol-Finkel (2015) installed ecologically enhanced precast ECOncrete© 

Antifer units that were 1 m³ and weighed 2.3-2.5 tonnes on a subtidal breakwater, and 

Langhamer and Wilhelmsson (2009) deployed wave energy structure foundation units 

that were 3 m in diameter, 1 m high and weighed 10 tonnes. As such, the cost of 

interventions in the subtidal are substantially higher and likely require special licensing 

and permissions (Firth et al., 2014b). Research on eco-engineering in subtidal habitats is 

urgently needed to overcome these challenges, as most artificial structures in urbanised 

harbours are located within the intertidal and shallow subtidal zones (National Institute 

of Coastal and Marine Management of the Netherlands, 2004). Moreover, non-native 

species tend to be more abundant on artificial structures in the subtidal compared to the 

intertidal (Dafforn et al., 2012; Airoldi et al., 2015a), thus eco-engineering interventions 

designed to discourage non-natives in the subtidal need trialling. The long history of 
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nearshore and offshore artificial reef installations and their general ability to enhance 

local biodiversity (for reviews see Baine, 2001; Lokesha et al., 2013) is encouraging for 

the future of subtidal eco-engineering of coastal structures.  More importantly, scientists 

and engineers working on eco-engineering subtidal structures can learn from the 

decades of artificial reef trials, as there have been a multitude of studies in various 

environmental settings in order to optimise designs for specific ecological or societal 

goals (Gascon and Miller, 1981; Ogden and Ebersole, 1981; Benayahu and Loya, 1987; 

Bombace, 1989; Polovina and Sakai, 1989; Bortone et al., 1994; Folpp et al., 2011; 

Herbert et al., 2017). Despite many common threads between the eco-engineering of 

subtidal structures and creation of nearshore artificial reefs, I do not investigate 

engineering of artificial reefs in this study as the subject falls outside the remit of this 

thesis. 

The overarching aim of this study was to test the efficacy of habitat 

enhancements and bivalve seeding on species diversity in subtidal habitats in two 

different geographic locations (Plymouth, British Isles and Tel Aviv, Israel). Both 

locations followed similar protocol to that designed by the World Harbour Project (see 

Chapter 4), thus results can be more comparable than results from experiments using 

different protocols. Although results between locations were not compared statistically, 

both locations were included here to make the point that eco-engineering experiments 

need to go beyond testing in one habitat (i.e., intertidal), and should involve 

comparisons across geographic localities to understand generalities of patterns of effects 

at larger scales. The effects of two additional factors on species diversity were 

investigated in the UK: (1) bivalve seeding using mussels (Mytilus spp.), as they 

provide habitat and refuge for algae, micro- and macroinvertebrates (O'Connor and 

Crowe, 2007; O'Connor and Crowe, 2008); and (2) shading using shaded and unshaded 

tiles. Species diversity was measured using taxon and functional richness and 
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community composition. Complex, flat and control tiles, as well as cleared seawall plots 

were employed to test the following hypotheses:  

1. Taxon and functional richness will be greater on, and community composition 

will differ between, complex tiles compared to control tiles/cleared seawall plots. 

2. Taxon and functional richness will be greater on, and community composition 

will differ between, seeded compared to unseeded tiles (British Isles only).  

3. Taxon and functional richness will be greater on, and community composition 

will differ between, shaded compared to unshaded tiles (British Isles only). 

 

5.2 Materials and methods 

5.2.1 Study sites 

Experiments were run in Plymouth, British Isles and Tel Aviv, Israel (Figure 5-

1). Experiments were undertaken in two marinas in Plymouth and one marina in Tel 

Aviv. The marinas in Plymouth included Mayflower Marina (50.364558, -4.172333) 

and Plymouth Yacht Haven (50.359619, -4.120661) in Plymouth Sound, which is 

located along the southwest coast of England. Both marinas provided floating pontoons 

with a north and a south-facing side and supported naturally occurring populations of 

Mytilus spp. Plymouth Sound is a heavily urbanised harbour with a long history of 

human modification (Knights et al., 2016). The Sound is flanked by sloping natural 

rocky shores composed of Palaeozoic shale and limestone, which extend along the west 

and east coasts. Along these areas, artificial structures to support human activity (i.e., 

fishing piers, recreational marinas, discharge pipes, breakwaters, seawalls) are 

interspersed among the natural rocky shores. A recent publication estimated that up to a 

third of Plymouth’s coastline is armoured, with most of the artificial structures being 

constructed from naturally-sourced rock (Knights et al., 2016).  



 

181 

 

Experiments conducted in Israel were located in a single marina in Tel Aviv 

(Herzliya Marina; 32.162333, 34.794083), which is positioned along the most densely 

populated area on the Israeli Mediterranean coast. The experimental seawall within the 

marina faces west. Herzliya Marina is the largest marina in the eastern Mediterranean 

Sea, and provides docking for tens of thousands of global visitors annually (ECOncrete 

Inc., 2019). Arid climate conditions coupled with its geological position in the 

Mediterranean Sea, results in species-poor waters off the Tel Aviv coast (Azov, 1991). 
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Figure 5-1. Study sites in (A.) Plymouth Sound, British Isles included Mayflower Marina and Plymouth Yacht Haven, while the study site 

in (B.) Tel Aviv, Israel was Marina Herzliya in the eastern Mediterranean Sea.
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5.2.2 Description of experimental tiles and plots 

Concrete tiles were created from moulds using 3-D printing, and were composed 

of sand, cement and glass fibres (Reef Design Lab, Melbourne, Australia; Figure 5-2). 

Experimental tiles were made with sand and glass fibres to offset the negative effects of 

cement in the marine environment (see section 1.5.1 for more information on effects of 

concrete). The World Harbour Project determined the tile design (see Chapter 4), and all 

study locations were required to use these specific tiles. Tile treatments included: (1) 

flat tiles without crevices or ridges; (2) complex tiles, with 2.5 cm high and 1.7-6.5 cm 

wide ridges, each separated by 1.5-5 cm wide crevices (‘2.5 cm’ treatment); and (3) 

complex tiles, with ridges and crevices as described for the 2.5 cm treatment, except 

ridges were 5 cm high (‘5 cm’ treatment). All tiles were created with fine-scale 

microtexture (< 1 mm grooves) on the ridges (for justification of choice of experimental 

tiles, see Chapter 4, section 4.2.2). For experiments in Israel, two additional treatments 

were used: flat control tiles without microtexture (made of 80% sand and 20% standard 

Portland cement) and cleared seawall plots. For experiments in Plymouth, one 

additional treatment was used: flat control tiles made of standard Portland cement 

without microtexture.  

 

Figure 5-2. Experimental tiles showing (from left to right) the flat, 2.5 cm and 5 cm 

complexity treatments, with seeded tiles (mussels) shown above.   
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5.2.3 Seeded mussels 

The mussel, Mytilus spp., was chosen to be seeded on British tiles because it is a 

habitat-forming species common on some areas of rocky intertidal habitats in Plymouth 

Sound (Hilbish et al., 2002). Plymouth is located within the range of the more cold-

water blue mussel, Mytilus edulis Linnaeus, 1758, and the warm-water Mytilus 

galloprovincialis Lamarck 1819; the latter is expanding in response to climate change 

but has always been present in the British Isles (Seed, 1971; Ahmad and Beardmore, 

1976). It is likely that that M. galloprovincialis, M. edulis and hybrids (Skibinski et al., 

1978) of these two species were used in this experiment, therefore all mussel species 

will be referred to here  as ‘mussels’ or ‘Mytilus spp.’ 

5.2.4 Experimental design  

Experiments from the two geographic locations were treated separately for the 

following reasons: (1) experiments were implemented during different times of the year 

and for different lengths of time; (2) mussel seeding was added as a factor to the British 

Isles experiments but not the Israel experiments; (3) the control treatments differed 

between the locations; and (4) tiles in Plymouth were deployed off pontoons, suspended 

approximately 1.5 m below the surface of the water and moving with the tide, while 

tiles in Tel Aviv were affixed to a subtidal seawall approximately 1 m below the surface 

of the water. Regardless of the differences in experimental designs between countries, it 

is useful to informally compare localities to observe generalities in patterns of effects. 

5.2.4.1 Plymouth, British Isles 

At both sites, ten tiles of each of the three complexity treatments were deployed 

off floating pontoons (Figure 5-3). Five of the ten tiles from each treatment were seeded 

with 30 individuals of Mytilus spp. (30-35 mm shell length: 32.9 ± 0.1, mean ± 1 SE) in 

clusters of three individuals (five clusters in crevices; five clusters on ridges) using non-
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toxic Gorilla® superglue (Cincinnati, OH, USA) following World Harbour Project 

protocol (described in Chapter 4). The protocol stated that 30-35% of each tile needed 

to be covered in bivalves. The size of the mussels used in this experiment differed from 

those used in the intertidal experiments (Chapter 4) because all mussels of the 20-25 

mm shell length were lost to predation in the previous experiments. Therefore, in order 

to achieve the 30-35% coverage using the larger sized mussels, 30 individuals needed to 

be used per tile. Clusters of mussels were used because mussels live aggregated in 

groups in nature. The clusters were divided equally between crevices and ridges because 

questions regarding the survival and effects of mussels on recruiting biota on different 

positions on tiles were asked for analysis done outside of this thesis. Individuals of 

Mytilus spp. were sourced from Whitsand Bay (50.346086, -4.255325). An additional 

six concrete tiles made of standard Portland cement were used as tile controls. Tiles 

were attached to 3.6 m long recycled plastic boards and hung from the south-facing 

sides of pontoons 1.5 m below the water’s surface facing out from the pontoon. The 

south-facing side of pontoons was chosen to maximize light reaching the tiles. To test 

the effects of shading on colonisation of tiles, six concrete tiles made of standard 

Portland cement were hung on the same boards but facing beneath the pontoon (‘shaded 

tiles’) to compare with the light-exposed Portland cement tiles (mentioned above). All 

tiles were attached to boards in the same orientation (ridges running vertically), 

arranged in a random order and with 0.4 m spacing in between them following World 

Harbour Project protocol (see Chapter 4). Tiles were deployed at both sites in April 

2017, and were left in place for 14 months. 
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Figure 5-3. Schematic representation of the experimental design in Plymouth, British 

Isles. All tiles were hung on boards off floating pontoons 1.5 m below the surface of the 

water at two marinas.  

 

5.2.4.2 Tel Aviv, Israel 

Five tiles of each of the three complexity treatments were affixed to a subtidal 

seawall in a single horizontal row at approximately 1 m below the water’s surface. An 

additional five concrete tiles composed of the same material as the seawall (without 

crevices, ridges and microtexture) and five cleared plots were included amongst the 

experimental tiles to serve as controls. As tides in the Mediterranean Sea are on the 

order of centimetres (McElderry, 1963), the tiles remained fixed at approximately 1 m 

below the water’s surface at all times. No tiles were seeded with bivalves. Experiments 

commenced in August 2016, and were left in place for 12 months.  

5.2.5 Sampling procedure 

5.2.5.1 Plymouth, British Isles 

Tiles were monitored quarterly by temporarily removing boards from the water 

and taking photographs of each tile. No attempt to identify and quantify taxa was made 

during this time because tiles supported multiple layers of organisms, many of which 

required microscopic analysis for positive identification. In July 2018 (after 14 months 

of immersion), tiles were removed from the pontoons, placed in mesh bags (< 5 mm 

holes) to retain all organisms, placed in cool boxes filled with ambient seawater and 
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transported back to the laboratory. In the laboratory, organisms were kept alive until 

analysis (< 96 h) by storing tiles in flow-through seawater tanks at ambient conditions. 

Before sampling, tiles were removed from mesh bags and photographed in case 

organisms died before identification was possible. All organisms were removed from 

one crevice and one ridge on each complex tile. The same crevice and ridge were 

sampled across all tiles. On flat and control tiles, where crevices and ridges were absent, 

the same area was sampled on those tiles using a template created from the complex 

tiles. All organisms were identified down to the lowest taxonomic resolution possible. 

Hobo Pendent® temperature loggers were attached to the unshaded sides of boards (n = 

2 loggers per site) using cable ties and were set to record temperature (°C) every hour. 

Every three months, the loggers were collected to download data and then redeployed 

on different boards. Salinity (psu) data were also collected during each sampling event 

using a refractometer (Appendix 3, Table 1). 

5.2.5.2 Tel Aviv, Israel 

Experimental tiles and seawall control plots were monitored at months 1, 3, 6, 9 

and 12 for counts of mobile taxa and percentage cover of sessile taxa in case tiles were 

lost before the conclusion of the experiment. After 12 months, final data were collected 

by taking photographs of each tile and seawall plot in the field, and then percentage 

cover of sessile organisms (no mobile organisms present) was estimated using CoralNet 

software (Beijbom et al., 2012). Organisms were identified down to the lowest 

taxonomic resolution possible. Salinity (specific gravity, Sg) and temperature (°C) were 

measured using a hydrometer (Sera, D 52518, Heinsberg, Germany) and a temperature 

probe, respectively, at months 1, 3, 6, 9 and 12 (Appendix 3, Table 1).  
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5.2.6 Statistical analysis 

5.2.6.1 Plymouth, British Isles 

Species diversity was quantified using final taxon and functional diversity and 

community composition data from the conclusion of the experiment. To investigate 

differences among treatments in functional groups, taxa were classified into eight 

functional groups: filter feeders, omnivores, detritivores/scavengers, predators, 

corticated foliose algae, filamentous algae, leathery macrophytes and corticated 

macrophytes. Mean taxon and functional richness were quantified using univariate 

analysis of variance tests (ANOVA) on untransformed presence/absence data on Bray-

Curtis similarity matrices. Community composition was analysed using permutational 

multivariate analysis of variance tests (PERMANOVA) using fourth root transformed 

abundance data to reduce the influence of very abundant species (Anderson, Gorley, & 

Clarke, 2008) after Bray-Curtis similarity matrices were computed.  

To test the hypotheses about differences in taxon and functional richness and 

community composition among tile treatments and mussel seeding, a three-way 

PERMANOVA was used with factors: Site (random; 2 levels: Mayflower Marina, 

Plymouth Yacht Haven), Treatment (fixed; 4 levels: control, flat, 2.5 cm, 5 cm) and 

Mussel Seeding (fixed; 2 levels: seeded, unseeded). To test the hypothesis about 

differences in taxon and functional richness and community composition between 

shaded and unshaded tiles, a two-way PERMANOVA was used with factors: Site 

(random; 2 levels: Mayflower Marina, Plymouth Yacht Haven) and Shade (fixed; 2 

levels: shaded, unshaded). PERMANOVAs were based on 9999 permutations of 

residuals under a reduced model. Post-hoc pairwise tests were employed where 

applicable. Where there were not enough possible permutations to perform a reasonable 

test, Monte Carlo tests were run to obtain more meaningful P-values (Anderson et al., 

2008). 
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5.2.6.2 Tel Aviv, Israel 

Species diversity was quantified using final taxon diversity and community 

composition data collected at the conclusion of the experiment. Functional richness was 

not assessed because there were only two functional groups present on tiles and seawall 

plots. Mean taxon richness was quantified using univariate analysis of variance tests 

(ANOVA) on untransformed presence/absence data on Bray-Curtis similarity matrices. 

Community composition was analysed using permutational multivariate analysis of 

variance tests (PERMANOVA) using square root transformed abundance data to reduce 

the influence of very abundant species (Anderson, Gorley, & Clarke, 2008) after Bray-

Curtis similarity matrices were computed.  

To test the hypothesis about differences in taxon richness and community 

composition among tile treatments, a one-way PERMANOVA was used with factor 

Treatment (fixed; 5 levels: seawall plot, control, flat, 2.5 cm, 5 cm) and was based on 

9999 permutations of residuals under a reduced model. Post-hoc pairwise tests were run 

where applicable. Where there were not enough possible permutations to perform a 

reasonable test, Monte Carlo tests were run to obtain more meaningful P-values 

(Anderson et al., 2008). 

5.2.6.3 Plymouth, British Isles and Tel Aviv, Israel 

All multivariate data sets were visualised using non-metric multi-dimensional 

scaling (nMDS) plots. In cases where stress on the two-dimensional nMDS plot was 

high (~0.2), the three-dimensional solutions (lower stress) were visualised to confirm 

observed patterns, and the two-dimensional plots were retained. All statistical tests were 

run in PRIMER v6 with the PERMANOVA+ add-on (PRIMER-E Ltd, Plymouth, UK; 

Anderson et al., 2008) using the PERMANOVA routine, and data were visualised using 

the nMDS routine. Where significant differences in community composition were 

detected among treatments, percentage contributions of individual taxa to dissimilarities 
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between treatments were analysed using the similarity percentage (SIMPER) routine in 

PRIMER v6.   

 

5.3 Results 

5.3.1 Plymouth, British Isles: General overview 

Overall, 78 taxa were recorded on tiles, with 16 taxa being non-native (20% 

non-native; Appendix 3, Table 2). Thirteen mobile and 51 sessile animals were recorded 

overall, while 14 macroalgal taxa were recorded overall. Salinity ranged from 30-35 

psu, while temperature ranged from 5.1-24 °C (Appendix 3, Table 1).  

Tiles at Mayflower Marina supported greater numbers of total taxa (64) 

compared to tiles at Plymouth Yacht Haven (52 taxa). Overall, complex tiles (2.5 cm 

and 5 cm tiles) supported similar numbers of total taxa (58 and 56, respectively), while 

flat tiles supported the greatest number of total taxa (66), and control tiles supported the 

lowest number of total taxa (33). Seeded and unseeded tiles supported the same number 

of taxa (65 taxa; Appendix 3, Table 2). Eight functional groups were represented, with 

filter feeders being the most numerically dominant group (53 taxa). Flat and 5 cm tiles 

supported the greatest number of functional groups (8), while control tiles supported the 

fewest (5 groups; Figure 5-4). One seeded 5 cm tile at Mayflower Marina and one 

unseeded 5 cm tile at Plymouth Yacht Haven were lost during the experiment. 
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Figure 5-4. Number of taxa within each functional group by tile treatment at (a) Mayflower Marina and (b) Plymouth Yacht Haven, 

Plymouth, British Isles recorded at the conclusion of the 14-month experimental period. The most numerically dominant group at both sites 

was the filter feeders. 
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5.3.2 Plymouth, British Isles: Comparison of taxon and functional richness 

among tile treatments and mussel seeding 

There were no significant differences in mean taxon richness among tile 

treatments (Table 5-1a, Figure 5-5a). Mean taxon richness, however, was significantly 

greater on unseeded tiles compared to tiles seeded with mussels, (Table 5-1a; Figure 5-

6). For mean functional richness, the effects of tile treatments differed significantly 

between the two study sites (Table 5-1b). At Mayflower Marina, functional richness 

was significantly greater on 2.5 cm tiles compared to control tiles, as well as on 2.5 cm 

tiles compared to 5 cm tiles (Figure 5-5b). While at Plymouth Yacht Haven, significant 

differences were only detected between control tiles and 2.5 cm tiles and control tiles 

and 5 cm tiles (Figure 5-5b), with the complex tiles supporting greater richness than 

controls. There was no significant difference between mussel treatments for functional 

richness (Table 5-1b). 
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Table 5-1. Three-way ANOVAs comparing mean (a) taxon and (b) functional richness 

among tile treatments in Plymouth, British Isles recorded at the conclusion of the 14-

month experimental period. Where unique permutations were < 100, Monte Carlo tests 

were run and P(MC) values were used to determine significance. Significant p-values 

are bolded.  

 

 

 

Source df     SS     MS Pseudo-F P(perm)  Unique perms  P(MC)

Site 1 263.82 263.82 3.037 0.086 9929 0.0814

Treatment 3 305.37 101.79 3.269 0.1433 6361 0.1627

Mussel 1 286.95 286.95 56.743 0.1684 6 0.0438

Si x Tr 3 93.415 31.138 0.35845 0.8017 9968 0.7983

Si x Mu 1 5.0569 5.0569 0.0582 0.8616 9918 0.8713

Tr x Mu 2 34.796 17.398 0.27758 0.7926 9968 0.8032

Si x Tr x Mu 2 125.35 62.676 0.7215 0.4919 9964 0.4919

Residual 55 4777.8 86.869                             

Total 68 5757.7

Transform: no transformation

Source df     SS     MS Pseudo-F P(perm)  Unique perms  P(MC)

Site 1 2439.9 2439.9 10.404 0.0006 9939 0.0006

Treatment 3 10757 3585.8 3.0077 0.1194 6385 0.1554

Mussel 1 1312.1 1312.1 4.8132 0.3354 6 0.2076

Si x Tr 3 3576.5 1192.2 5.0837 0.0012 9943 0.001

Si x Mu 1 272.6 272.6 1.1624 0.2903 9934 0.2804

Tr x Mu 2 728.53 364.26 6.8206 0.083 9972 0.0749

Si x Tr x Mu 2 106.81 53.407 0.22774 0.8706 9957 0.8734

Residual 55 12898 234.51                            

Total 68 32518

Transform: no transformation

(b) Functional richness

(a) Taxon richness



 

194 

 

 

Figure 5-5. Comparison of mean (a) taxon and (b) functional richness among tile treatments at Mayflower Marina and Plymouth Yacht 

Haven in Plymouth, British Isles recorded at the conclusion of the 14-month experimental period. There was a significant site by treatment 

interaction for (b) functional richness (p = 0.0012). Error bars represent standard error. Letters show where there are significant differences 

between treatments determined by post-hoc pairwise comparisons ((a): control, n = 12; flat, n = 20; 2.5 cm, n = 20; 5 cm, n = 20; (b): 

control, n = 6; flat, n = 10; 2.5 cm, n = 10; 5 cm, n =10 per site). ‘ns’ indicates no significant differences among treatments in (a). There 

was a significant difference between control tiles and 2.5 cm tiles and 2.5 cm tiles and 5 cm tiles in (b) at Mayflower Marina. There were 

significant differences between control tiles and 2.5 cm tiles and control tiles and 5 cm tiles in (b) at Plymouth Yacht Haven.  
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Figure 5-6. Comparison of mean taxon richness between seeded and unseeded tiles at 

both sites in Plymouth, British Isles recorded at the conclusion of the 14-month 

experimental period. Error bars represent standard error. Letters show that there are 

significant differences between treatments (seeded, n = 30; unseeded, n = 30; p = 

0.0438). 

 

5.3.3 Plymouth, British Isles: Comparison of community composition among 

tile treatments and mussel seeding 

There were no differences in community composition among tile treatments 

(Table 5-2; Figures 5-7), but community composition between mussel seeding 

treatments did differ significantly (Table 5-2, Figure 5-8).  An analysis of the 

contribution from individual taxa (SIMPER) showed that many taxa contributed to the 

dissimilarity between seeded and unseeded tiles (Table 5-3). Approximately 45% of the 

dissimilarity observed was due to contributions from 14 taxa: Ascidiella aspersa (4.5%), 

Styela clava (3.9%), Corella eumyota (3.7%), Mytilus spp. (3.6%), Aplidium cf. 

glabrum (3.5%), Cryptosula pallasiana (3.5%), Bugulina fulva (3.1%), Tricellaria 

inopinata (3.1%), Asterocarpa humilis (3.0%), Amphipod spp. (2.8%), Spirobranchus 

sp. (2.7%), Ciona intestinalis (2.5%), Conopeum reticulum (2.5%) and Botrylloides 
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violaceus (2.5%). A. aspersa, Mytilus spp., Aplidium cf. glabrum, A. humilis and C. 

intestinalis were more abundant on seeded tiles. S. clava, C. pallasiana, B. fulva, 

Amphipod spp. and Spirobranchus sp. were more abundant on unseeded tiles. C. 

eumyota, T. inopinata, C. reticulum and B. violaceus were equally abundant on seeded 

and unseeded tiles.  

 

Table 5-2. Three-way PERMANOVA comparing community composition among tile 

treatments in Plymouth, British Isles recorded at the conclusion of the 14-month 

experimental period. Where unique permutations were < 100, Monte Carlo tests were 

run and P(MC) values were used to determine significance. Significant p-values are 

bolded. 

 

 

Source df     SS     MS Pseudo-F P(perm)  Unique perms  P(MC)

Site 1 13438 13438 15.968 0.0001 9917 0.0001

Treatment 3 3534 1178 1.0791 0.4588 6338 0.4094

Mussel 1 2456 2456 5.0897 0.4992 6 0.0039

Si x Tr 3 3275 1091.7 1.2972 0.0873 9872 0.1124

Si x Mu 1 482.54 482.54 0.57337 0.9054 9909 0.8794

Tr x Mu 2 1076.6 538.31 0.60037 0.7516 9952 0.8998

Si x Tr x Mu 2 1793.3 896.63 1.0654 0.3748 9889 0.375

Residual 55 46287 841.58                            

Total 68 72973   

Transform: fourth root

Community composition
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Figure 5-7. nMDS ordination plot comparing community composition among tile 

treatments in the Plymouth, British Isles recorded at the conclusion of the 14-month 

experimental period. 

 

 

Figure 5-8. nMDS ordination plot comparing community composition between seeded 

and unseeded tiles in Plymouth, British Isles recorded at the conclusion of the 14-month 

experimental period (p = 0.0039). 
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Table 5-3. Differences in average abundances (fourth root transformed; indicated by > 

or <) and contributions ('%' for percentage or 'c' for counts) of individual species to 

community composition dissimilarities between seeded and unseeded tiles in Plymouth, 

British Isles recorded at the conclusion of the 14-month experimental period. 

Consistency of contribution is shown by ‘Diss/SD’, which is the dissimilarity divided 

by standard deviation of contributions across all pairs of samples. 

Average dissimilarity = 45.8% seeded >/< unseeded Contr% Diss/SD 

Ascidiella aspersa (%) 1.7 > 1.6 4.5 1.3 
Styela clava (%) 1.0 < 1.5 3.9 1.3 
Corella eumyota (%) 1.2 = 1.2 3.7 1.3 
Mytilus spp. (%) 2.2 > 1.6 3.6 1.1 
Aplidium cf. glabrum (%) 1.0 > 0.9 3.5 1.3 

Cryptosula pallasiana (%) 0.7 < 0.9 3.5 1.2 
Bugulina fulva (%) 0.5 < 0.6 3.1 1.0 
Tricellaria inopinata (%) 1.1 = 1.1 3.1 1.2 
Asterocarpa humilis (%) 0.7 > 0.6 3.0 1.2 
Amphipod spp. (%) 1.6 < 1.7 2.8 1.1 
Spirobranchus sp. (%) 1.2 < 1.6 2.7 1.4 
Ciona intestinalis (%) 2.0 > 1.9 2.5 0.9 
Conopeum reticulum (%) 0.4 = 0.4 2.5 0.7 
Botrylloides violaceus (%) 0.4 = 0.4 2.5 0.8 
Anomia ephippium (%) 0.8 < 1.0 2.5 1.3 
Molgula sp. (%) 0.5 > 0.4 2.4 1.0 

Caprella spp. (c) 0.5 = 0.5 2.4 1.1 
Modiolarca sp. (%) 0.6 = 0.6 2.3 1.2 
Bugula neritina (%) 0.2 < 0.5 2.3 0.8 
Hydroid spp. (%) 0.4 = 0.4 2.3 0.9 
Watersipora subatra (%) 0.2 < 0.5 2.2 0.8 
Polychaete spp. (%) 0.6 > 0.4 2.2 1.2 
Polysiphonia spp. (%) 0.2 < 0.5 2.1 1.0 
Orange sponge sp. 1 (%) 0.3 < 0.4 2.0 0.8 
Red fan sp. (%) 0.3 = 0.3 2.0 0.8 
Soft tube worms (%) 0.3 < 0.4 1.9 1.0 

 

 

5.3.4 Plymouth, British Isles: Comparison of taxon and functional richness on 

shaded and unshaded tiles 

Shaded and unshaded tiles supported equal numbers of taxa (43). Mean taxon 

richness did not differ significantly between shaded and unshaded tiles (Table 5-4a), but 

mean functional richness was significantly greater on shaded compared to unshaded 

tiles (Table 5-4b; Figure 5-9). One unshaded tile at Plymouth Yacht Haven was lost 

during the experiment.  
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Table 5-4. Two-way PERMANOVAs comparing mean (a) taxon and (b) functional 

richness between shaded and unshaded tiles in Plymouth, British Isles recorded at the 

conclusion of the 14-month experimental period. Where unique permutations were < 

100, Monte Carlo tests were run and P(MC) values were used to determine significance. 

Significant p-values are bolded. 

 

 

Figure 5-9. Comparison of mean functional richness between unshaded and shaded tiles 

in Plymouth, British Isles recorded at the conclusion of the 14-month experimental 

period. Error bars represent standard error. Letters show that there are significant 

differences between treatments (unshaded tiles, n = 11; shaded tiles, n = 12; p = 

0.0211). 

 

(a) Taxon richness

Source df  SS   MS Pseudo-F P(perm)

Site 1 996.51 996.51 9.2953 0.0053

Treatment 1 796.68 796.68 6.2491 0.4942

Si x Tr 1 127.49 127.49 1.1892 0.2846

Residual 19 2036.9 107.21                

Total 22 3944.2

Transform: no transformation

Source df  SS   MS Pseudo-F P(perm)  Unique perms  P(MC)

Site 1 293.03 293.03 2.059 0.154 9913 0.1597

Treatment 1 2194.1 2194.1 85.433 0.3329 6 0.0211

Si x Tr 1 25.683 25.683 0.18046 0.7691 9934 0.7752

Residual 19 2704.1 142.32                            

Total 22 5136.6                            

Transform: no transformation

(b) Functional richness
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5.3.5 Plymouth, British Isles: Comparison of community composition on 

shaded and unshaded tiles 

Community composition between shaded and unshaded tiles was significantly 

different, with a significant interaction of site and shade treatment (Table 5-5; Figure 5-

10). An analysis of the contribution from individual taxa (SIMPER) showed that over 

10% of dissimilarity between shaded and unshaded tiles at Mayflower Marina was 

attributed to Amphipod spp. (11.1%), with a greater abundance on shaded compared to 

unshaded tiles. At Plymouth Yacht Haven, A. aspersa (10.3%) was the top driver of 

differences between the treatments, with greater abundance on unshaded compared to 

shaded tiles (Table 5-6). In general, unshaded tiles at both sites supported more numbers 

and abundances of ascidians, while shaded tiles at both sites supported greater 

abundances of Polyshiphonia spp. and Amphipod spp. 

 

 

Table 5-5. Two-way PERMANOVA comparing community composition on shaded and 

unshaded tiles in Plymouth, British Isles recorded at the conclusion of the 14-month 

experimental period. Where unique permutations were < 100, Monte Carlo tests were 

run and P(MC) values were used to determine significance. Significant p-values are 

bolded. 

 

 

 

Source df  SS   MS Pseudo-F P(perm)  Unique perms  P(MC)

Site 1 6519.9 6519.9 7.3318 0.0001 9925 0.0002

Treatment 1 10981 10981 4.1322 0.5033 6 0.0496

Si x Tr 1 2657.4 2657.4 2.9883 0.0010 9923 0.0072

Residual 19 16896 889.27                            

Total 22 36728

Transform: square root

Community composition
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Figure 5-10. nMDS ordination plot comparing community composition between shaded 

and unshaded tiles at two sites in Plymouth, British Isles (p = 0.0496) recorded at the 

conclusion of the 14-month experimental period. There was a significant site by 

treatment effect (p = 0.0010). 

 

 

Table 5-6. Differences in average abundances (square-root transformed; indicated by > 

or <) and contributions ('%' for percentage) of individual species to community 

composition dissimilarities between shaded and unshaded tiles at (a) Mayflower Marina 

and (b) Plymouth Yacht Haven in Plymouth, British Isles recorded at the conclusion of 

the 14-month experimental period. Consistency of contribution is shown by ‘Diss/SD’, 

which is the dissimilarity divided by standard deviation of contributions across all pairs 

of samples. 

(a) Mayflower Marina      

Average dissimilarity = 61.7% Unshaded >/< Shaded Contr% Diss/SD 

Amphipod spp. (%) 3.3 < 7.3 11.1 1.7 

Mytilus spp. (%) 5.6 > 2.6 7.8 1.9 

Ciona intestinalis (%) 2.6 > 0.0 6.2 1.7 

Diplosoma listerianum (%) 2.0 > 0.0 5.1 1.9 

Styela clava (%) 2.3 > 2.0 4.6 1.3 

Saccharina latissima (%) 0.0 < 1.9 4.5 1.3 

Spirobranchus sp. (%) 3.7 < 4.0 4.3 1.2 

Polysiphonia spp. (%) 0.5 < 2.0 4.1 1.6 

Hiatella sp. (%) 0.8 < 2.4 4.1 1.8 

Anomia ephippium (%) 1.9 > 0.5 4.0 2.0 

Red fan sp. (%) 0.8 < 1.8 3.8 1.2 

Corella eumyota (%) 1.6 > 0.0 3.7 1.1 

Aplidium cf. glabrum (%) 1.9 > 0.5 3.7 1.5 
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Bugulina fulva (%) 1.4 > 0.0 3.4 1.2 

            

(b) Plymouth Yacht Haven                        

Average dissimilarity = 60.5% Unshaded >/< Shaded Contr% Diss/SD 

Ascidiella aspersa (%) 7.0 > 2.0 10.3 1.7 

Ciona intestinalis (%) 4.8 > 1.0 7.6 2.4 

Diplosoma listerianum (%) 4.0 > 0.3 7.6 3.1 

Corella eumyota (%) 4.0 > 0.4 7.2 3.0 

Amphipod spp. (%) 3.0 < 6.2 6.6 1.7 

Mytilus spp. (%) 2.3 < 2.5 4.1 1.4 

Styela clava (%) 3.8 > 1.7 4.1 1.6 

Polysiphonia spp. (%) 0.5 < 2.4 3.8 1.6 

Watersipora subatra (%) 1.9 > 0.2 3.4 1.8 

Cryptosula pallasiana (%) 1.7 > 0.5 3.3 1.4 

Austrominius modestus (%) 0.1 < 1.7 3.1 1.6 

Hydroid spp. (%) 1.7 > 1.4 2.5 1.4 

Botrylloides violaceus (%) 1.3 > 0.6 2.4 1.1 

Asterocarpa humilis (%) 1.2 > 0.0 2.4 1.2 

Orange sponge sp. 1 (%) 1.5 > 0.9 2.4 1.3 

 

 

5.3.6 Tel Aviv, Israel: General overview 

In total, there were 13 taxa recorded on experimental tiles and controls, with one 

being a non-native species (8% non-native; Table 5-7). Of the thirteen taxa, 11 were 

sessile animals and two were macroalgae, with no mobile animals recorded. Control 

tiles supported the greatest number of taxa (12), while flat and 2.5 cm tiles supported 

the fewest number of taxa (9). Taxon richness of treatments generally increased over the 

12-month experimental period (Figure 5-11). 
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Table 5-7. Summary table for taxa recorded by functional group on experimental tiles, 

control tiles and cleared seawall plots in Tel Aviv, Israel recorded at the conclusion of 

the 12-month experimental period. Non-native species are indicated by ‘NNS’ 

superscript. 

 

 

 

Taxa

Cleared 

seawall

Control 

tile
Flat 2.5 cm 5 cm

Filter feeder

Alectryonella plicatula  (Gmelin, 1791)NNS 
✓ ✓ ✓

Amphibalanus amphitrite (Darwin, 1854) ✓ ✓ ✓ ✓ ✓

Crambe crambe (Schmidt, 1862) ✓ ✓ ✓ ✓ ✓

Encrusting bryozoan ✓ ✓ ✓ ✓ ✓

Ircinia sp. ✓

Ostrea edulis  Linnaeus, 1758 ✓ ✓ ✓ ✓ ✓

Schizoporella sp. ✓ ✓ ✓ ✓

Serpulidae ✓ ✓ ✓ ✓

Spirorbidae ✓ ✓ ✓ ✓ ✓

Watersipora cucullata (Busk, 1854) ✓ ✓

Primary producer

Crustose coralline algae ✓ ✓ ✓

Turf ✓ ✓ ✓ ✓ ✓

Other

Unidentified fouling organism ✓ ✓ ✓ ✓

Total taxon richness 11 12 9 9 10
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Figure 5-11. Temporal changes in taxon richness over the course of the 12-month 

experimental period in Tel Aviv, Israel. Taxon richness was recorded at 1, 3, 6, 9 and 12 

months. 

 

 

5.3.7 Tel Aviv, Israel: Comparison of taxon richness among tile treatments 

There was no significant difference in mean taxon richness among tile 

treatments (Table 5-8a, Figure 5-12). The control tile supported the greatest mean 

richness (6.0 ± 0.8), while the 2.5 cm tile supported the lowest mean richness (3.8 ± 

1.4). 

 

 

Table 5-8. One-way ANOVAs comparing mean taxon richness among treatments in Tel 

Aviv, Israel recorded at the conclusion of the 12-month experimental period.  

 

 

Source df SS MS Pseudo-F P(perm)

Treatment 4 3360.2 840.05 1.895 0.101

Residual 20 8866 443.3                      

Total 24 12226

Transform: no transformation

Source df SS MS Pseudo-F P(perm) Unique perms  P(MC)

Treatment 4 1600 400 6 0.0217 3 0.0019

Residual 20 1333.3 66.667                            

Total 24 2933.3  

Transform: no transformation

(a) Taxon richness

(b) Functional richness
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Figure 5-12. Comparison of mean taxon richness among tile treatments in Tel Aviv, 

Israel recorded at the conclusion of the 12-month experimental period. Error bars 

represent standard error (seawall, n = 5; tile control, n = 5; flat, n = 5; 2.5 cm, n = 5; 5 

cm, n = 5). ‘ns’ indicates no significant difference among treatments. 

 

5.3.8 Tel Aviv, Israel: Comparison of community composition among tile 

treatments 

Community composition was significantly different among tile treatments 

(Table 5-9; Figure 5-13), with post-hoc pairwise comparisons revealing significant 

differences between control, flat and 2.5 cm tiles and seawall plots, as well as between 

control and 2.5 cm tiles. SIMPER analyses showed that, of the treatments that were 

significantly different from each other, the species that contributed the most to 

dissimilarities between seawall plots and control tiles, and seawall plots and flat tiles, 

was the sponge, Crambe crambe (24.9% and 22.8%, respectively), with abundances 

greater on seawall plots. The taxon that contributed the most to dissimilarities between 

seawall plots and 2.5 cm tiles, and control and 2.5 cm tiles, was turf algae (28.3% and 

40.3%, respectively; Table 5-10), with abundances greater on seawall plots and control 

tiles compared to 2.5 cm tiles.  
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Table 5-9. One-way ANOVA comparing community composition among treatments in 

Tel Aviv, Israel recorded at the conclusion of the 12-month experimental period. 

Significant p-values are bolded. 

 

 

 

 

 

 

Figure 5-13. nMDS ordination plots comparing community composition among tile 

treatments in Tel Aviv, Israel (p = 0.0018) recorded at the conclusion of the 12-month 

experimental period. 

  

 

 

 

 

 

 

 

Source df SS MS Pseudo-F P(perm)

Treatment 4 14757 3689.3 3.5654 0.0018

Residual 20 20695 1034.7                

Total 24 35452       

Transform: square root

Community composition
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Table 5-10. Differences in average abundances (square root transformed; indicated by > 

or <) and percent contributions ('%' for percentage) of individual species to community 

composition dissimilarities between tile treatments in Tel Aviv, Israel for (a) seawall 

compared to tile control, (b) seawall compared to flat tile, (c) seawall compared to 2.5 

cm tile, (d) seawall compared to 5 cm tile, (e) tile control compared to flat tile, (f) tile 

control compared to 2.5 cm tile, (g) tile control compared to 5 cm tile, (h) flat tile 

compared to 2.5 cm tile, (i) flat tile compared to 5 cm tile and (j) 2.5 cm compared to 5 

cm tile. Consistency of contribution is shown by ‘Diss/SD’, which is the dissimilarity 

divided by standard deviation of contributions across all pairs of samples. 

(a) Average dissimilarity = 32.7% seawall >/< tile control Contr% Diss/SD 

 
Crambe crambe (%) 3.7 > 0.7 24.9 1.9 

 
Encrusting Bryozoan spp. (%) 3.6 > 3.2 14.6 1.2 

 
Spirorbid worms (%) 2.8 > 2.3 13.6 1.1 

 
Turf algae (%) 6.8 < 8.5 13.6 1.8 

 
Ostrea edulis (%) 1.0 < 1.8 8.1 1.4 

       
(b) Average dissimilarity = 35.5% seawall >/< flat Contr% Diss/SD 

 
Crambe crambe (%) 3.7 > 0.7 22.8 1.9 

 
Encrusting Bryozoan spp. (%) 3.6 > 1.9 19.1 2.0 

 
Turf algae (%) 6.8 < 8.9 16.6 2.2 

 
Spirorbidae (%) 2.8 = 2.8 11.4 1.2 

 
Ostrea edulis (%) 1.0 < 1.3 7.4 1.3 

       
(c) Average dissimilarity = 72.0% seawall >/< 2.5 cm Contr% Diss/SD 

 
Turf algae (%) 6.8 > 2.3 28.3 1.4 

 
Crambe crambe (%) 3.7 > 0.4 18.0 1.7 

 
Encrusting Bryozoan spp. (%) 3.6 > 1.1 16.7 1.3 

 
Spirorbidae (%) 2.8 > 1.0 10.5 1.0 

       
(d) Average dissimilarity = 47.4% seawall >/< 5 cm Contr% Diss/SD 

 
Crambe crambe (%) 3.7 > 0.9 19.4 1.6 

 
Encrusting Bryozoan spp. (%) 3.6 > 1.6 17.4 1.3 

 
Turf algae (%) 6.8 > 5.1 16.2 1.0 

 
Spirorbidae (%) 2.8 < 3.3 13.1 1.9 

 
Ostrea edulis (%) 1.0 < 2.6 12.0 1.8 

       
(e) Average dissimilarity = 23.5% tile control >/< flat Contr% Diss/SD 

 
Encrusting Bryozoan spp. (%) 3.2 > 1.9 21.8 1.6 

 
Spirorbid worms (%) 2.3 < 2.8 16.0 1.3 
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Crambe crambe (%) 0.7 = 0.7 9.7 1.2 

 
Amphibalanus amphitrite (%) 0.4 < 0.7 9.6 1.3 

 
Spirorbidae (%) 0.3 < 0.9 9.4 1.1 

 
Ostrea edulis (%) 1.8 > 1.3 8.9 1.1 

       
(f) Average dissimilarity = 69.3% tile control >/< 2.5 cm Contr% Diss/SD 

 
Turf algae (%) 8.5 > 2.3 40.3 1.6 

 
Encrusting Bryozoan spp. (%) 3.2 > 1.1 15.3 1.4 

 
Ostrea edulis (%) 1.8 > 1.6 10.8 3.4 

 
Spirorbidae (%) 2.3 > 1.0 8.9 0.8 

       
(g) Average dissimilarity = 43.7% tile control >/< 5 cm Contr% Diss/SD 

 
Turf algae (%) 8.5 > 5.1 26.5 1.2 

 
Encrusting Bryozoan spp. (%) 3.2 > 1.6 15.7 1.2 

 
Spirorbidae (%) 2.3 < 3.3 14.8 2.2 

 
Ostrea edulis (%) 1.8 < 2.6 12.0 3.3 

 
Crambe crambe (%) 0.7 < 0.9 7.3 0.9 

       
(h) Average dissimilarity = 67.9% flat >/< 2.5 cm Contr% Diss/SD 

 
Turf algae (%) 8.9 > 2.3 46.0 1.6 

 
Spirorbidae (%) 2.8 > 1.0 11.1 1.4 

 
Ostrea edulis (%) 1.3 < 1.6 10.0 2.0 

 
Encrusting Bryozoan spp. (%) 1.9 > 1.1 9.8 1.2 

       
(i) Average dissimilarity = 41.5% flat >/< 5 cm Contr% Diss/SD 

 
Turf algae (%) 8.9 > 5.1 32.6 1.3 

 
Ostrea edulis (%) 1.3 < 2.6 13.7 2.0 

 
Spirorbidae (%) 2.8 < 3.3 12.2 1.7 

 
Encrusting Bryozoan spp. (%) 1.9 > 1.6 10.9 1.1 

 
Crambe crambe (%) 0.7 < 0.9 7.7 1.1 

       
(j) Average dissimilarity = 68.4% 2.5 cm >/< 5 cm Contr% Diss/SD 

 
Turf algae (%) 2.3 < 5.1 27.7 1.7 

 
Spirorbidae (%) 1.0 < 3.3 21.2 1.3 

 
Ostrea edulis (%) 1.6 < 2.6 14.0 1.4 

 
Encrusting Bryozoan spp. (%) 1.1 < 1.6 8.3 1.1 
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5.4 Discussion 

These experiments tested the effects of added habitat complexity on species 

diversity in two geologic locations. In Plymouth, British Isles, the effects of mussel 

seeding and shade on species diversity were also tested. It was predicted that complex 

tiles, tiles seeded with mussels and unshaded tiles would support greater taxon and 

functional richness, and different community composition than control tiles/cleared 

seawall plots, unseeded tiles and shaded tiles. 

In Plymouth, British Isles, contrary to the prediction, habitat complexity had no 

effect on taxon richness and community composition. The seeding of mussels had an 

effect on community composition and taxon richness, with unseeded tiles supporting 

greater taxon richness than seeded tiles. Control tiles had lower functional richness 

compared to complex tiles, and at Mayflower Marina, control tiles also had lower 

functional richness than flat tiles. There was no effect of shade on taxon richness, but as 

expected, shade had an effect on community composition. Shade also had a significant 

effect on functional richness, with shaded tiles supporting greater numbers of functional 

groups compared to unshaded tiles.  

In Tel Aviv, Israel, habitat complexity had no effect on taxon richness. 

Community composition differed among tile treatments, with differences between 

seawall plots and tiles, as well as control tiles and complex tiles, indicating that the 

presence of tiles and added habitat complexity influenced the colonising community. 

There were no differences in community composition between control and flat tiles, 

indicating that microtexture had no effect during this experiment.  

In a meta-analysis of eco-engineering interventions, Strain et al. (2017a) found 

that in subtidal habitats, small-scale holes (≥ 5 cm deep) supported greater abundances 

of mobile organisms, as these depressions provided refuge from predation and wave 
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activity for new recruits. Additionally, for abundance of sessile organisms, pits (> 1 mm 

to 5 cm deep) and microtexture (≤ 1 mm grooves) had significant positive effects, while 

crevices (> 1 mm deep) and seeding with habitat-forming taxa (e.g., oysters, mussels) 

had no effect. During the current study, in both countries, there were no significant 

effects of crevices and microtexture on numbers of taxa. In Tel Aviv, community 

composition was different among tile treatments, with an effect of crevice but not 

microtexture (control tiles did not vary from flat [textured] tiles). In Plymouth, there 

was an effect of mussel seeding, but the direction of effect was surprisingly negative 

(seeded tiles supported fewer numbers of taxa). These findings show that biotic 

responses to eco-engineering interventions will differ across locations and conditions.  

Enhancing species diversity can also reduce the likelihood of the establishment 

of non-native species. Marinas provide ideal habitat for non-native species, as they are 

typically sheltered (Bax et al., 2002; Holloway and Connell, 2002) and provide docking 

for vessels from neighbouring regions and sometimes from around the world, with 

vessels acting as vectors for non-native species transport (Bax et al., 2002; Clarke 

Murray et al., 2011; Bishop et al., 2015b). Non-native species have been responsible for 

smothering marina pontoons and pilings (Bullard et al., 2007; Coutts and Forrest, 2007; 

Dafforn et al., 2009), costing marina managers and boat owners extra expenses in 

control and anti-fouling remedies (e.g., the carpet sea squirt, Didemnum vexillum; the 

erect bryozoan, Tricellaria inopinata; Coutts and Forrest, 2007; Piola et al., 2009). It is 

commonly accepted that diverse biological assemblages and biotic communities with 

habitat-forming or space-occupying species are more resilient to invasion by non-native 

species compared to less diverse assemblages (Stachowicz et al., 1999; Stachowicz et 

al., 2002; Arenas et al., 2006b; Dafforn et al., 2012). In the current experiment, non-

native species were found on all tile and mussel seeding treatments in the British Isles, 

and the one non-native observed in Israel (Alectryonella plicatula) was found on 
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control, 2.5 cm and 5 cm tiles. Although species diversity did not differ among tile 

treatments in the British Isles, diversity was different between seeded and unseeded 

tiles. Ecosystem engineers, such as oysters, mussels and reef-forming worms, provide a 

3-dimensional habitat (Buschbaum et al., 2009) and have been shown to support greater 

numbers of associated taxa compared to areas without reef-forming taxa (Smyth and 

Roberts, 2010; Romero et al., 2015), which may reduce the establishment of non-native 

species (Stachowicz et al., 1999; Arenas et al., 2006b; Byers et al., 2006). Surprisingly, 

in the current study, unseeded tiles supported greater taxon richness than seeded 

mussels. Moreover, of the top contributing taxa to the differences in community 

composition between seeded and unseeded tiles, 35% were non-native species, with 

over 50% of those species more or equally abundant on seeded tiles. Therefore, results 

from our experiments do not provide evidence that habitat complexity and seeding of 

habitat-forming species discourage the spread of non-native species, and highlights the 

need for continued eco-engineering trials in marina settings.  

In Plymouth, British Isles, the effects of shade on species diversity was tested by 

suspending tiles from floating pontoons positioned facing outward (unshaded) or facing 

under (shaded) the pontoons. This study had no hypothesis about sedimentation relating 

to shaded versus unshaded tiles and did not formally measure sedimentation. Greater 

accumulation of sediment on shaded compared to unshaded tiles was, however, 

observed at both sites. Unsurprisingly, shaded tiles supported different biological 

communities compared to unshaded tiles. Although the two study sites supported 

different communities, there were similarities in the identities of species driving the 

differences in communities between the treatments. Space-occupying ascidians (i.e., 

Styela clava, Ascidiella aspersa) were more abundant on unshaded tiles, while 

Amphipod spp. were more abundant on shaded tiles. Amphipods naturally live in low 

ambient light conditions (Meyer-Rochow and Tiang, 1979), as exposure to high 
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intensity light has been shown to cause elevated levels of stress (Simčič and Brancelj, 

2007). As these were tube-dwelling amphipods, it is possible that the animals utilized 

debris, organic matter and sediment to create tubes (Ulrich et al., 1995; Karez and 

Ludynia, 2003) which allowed them to proliferate where other taxa could not. Exposure 

to light has been shown to prevent settlement of certain species, thus inhibiting the 

development of a fully formed community (Irving and Connell, 2002; Hanlon et al., 

2018), while sedimentation under shaded conditions compared to lit conditions was 

found to have greater negative effects on the colonising community (Irving and Connell, 

2002). Many studies have investigated effects of shade on species diversity in intertidal 

and subtidal habitats, with a common emerging theme that shaded substrate favours fast 

growing sessile invertebrates (Baynes, 1999; Blockley and Chapman, 2006; Miller and 

Etter, 2008; Hanlon et al., 2018), such as ascidians (Kennelly, 1989; Miller and Etter, 

2008; Hanlon et al., 2018) and bryozoans (Kennelly, 1989; Miller and Etter, 2008), 

while unshaded substrate favours macroalgae (Reed and Foster, 1984; Kennelly, 1989; 

Fitzpatrick and Kirkman, 1995; Baynes, 1999; Blockley and Chapman, 2006) and 

mobile invertebrates (Blockley and Chapman, 2006). Results from the present 

experiment, however, disagreed with previous studies, finding greater abundances of 

macroalgae on shaded tiles and greater abundances of ascidians on unshaded tiles. 

Many of these previous studies used substrate orientation (horizontal versus vertical; 

downward versus upward facing) as a proxy for shade (Baynes, 1999; Irving and 

Connell, 2002; Blockley and Chapman, 2006; Miller and Etter, 2008; Hanlon et al., 

2018).  As orientation of substrate is known to affect colonising communities due to a 

number of factors such as temperature, sedimentation and light (Connell, 1999; Glasby 

and Connell, 2001; Irving and Connell, 2002; Knott et al., 2004; Miller and Etter, 

2008), results from these studies may not be directly comparable to the current study, 

which used only vertically oriented tiles. Grazing pressure may explain fewer 
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macroalgae on unshaded tiles, however, very few (numbers and abundances) grazing 

invertebrates were found on any of the tiles in this experiment. Similarly, fish could 

have had an effect on controlling densities of certain algal or invertebrate species on 

tiles (Morris et al., 2017a; Strain et al., 2017b); however, recording fish visits was 

outside the remit of this experiment, and there are virtually no herbivorous fish this far 

north in the North Atlantic Ocean (S. Hawkins, pers. comms.). Non-biological factors 

might have driven community composition differences. For example, less sedimentation 

on the unshaded tiles suggests that these tiles experienced greater amounts of wave 

swash while shaded tiles were more sheltered. Although levels of exposure in the 

context of this experiment were probably very small, exposure levels have been found 

to have clear determining effects on colonising communities (Faucci and Boero, 2000; 

Moschella et al., 2005; Walker et al., 2008; Firth et al., 2016a). In fact, relationships 

between wave activity, sedimentation and available light have been documented 

(Madsen et al., 2001); with measurements of sedimentation being inversely related to 

wave exposure (Schiel et al., 2006), and with increased sedimentation causing reduction 

in light availability (Madsen et al., 2001). It is thus possible that the lack of light 

experienced by shaded tiles was further exacerbated by sediments limiting light 

availability to organisms living under the sediment layer. Moreover, water movement 

and sedimentation have been found to adversely affect species diversity (Loya, 1976) 

and different community assemblages have been found to result from different levels of 

wave exposure (Maughan and Barnes, 2000). Although level of sedimentation and 

water movement probably played important roles in determining the biotic community 

on tiles (Maughan, 2001), this experiment did not formally test either of these factors; 

thus, future experiments should consider testing sedimentation and record wave activity 

when comparing communities on shaded and unshaded tiles. Nevertheless, the current 

experiment demonstrated the ability of certain eco-engineering interventions (e.g., 
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shade) to target specific species and functional groups, and highlighted the importance 

of teasing apart the effects of all factors of a design (Miller and Etter, 2008; Hanlon et 

al., 2018).  

One of the goals of eco-engineering is to enhance valuable ecosystem services 

and improve the ecological functioning of artificial structures (Allen and Hawkins, 

1993; Mayer-Pinto et al., 2018a). Experiments in Plymouth, British Isles clearly 

demonstrated that hard substrate placed in subtidal habitats will readily become 

colonised by sessile and mobile organisms, regardless of tile complexity and 

microtexture. The colonising communities, however, may be ephemeral or undesirable 

(Pratt, 1994), and so designs should strive to target specific taxa that will have 

beneficial effects. The majority of organisms recorded on British tiles were filter feeders 

(66%), which have positive knock-on effects on water filtration for the surrounding 

marina. In Tel Aviv, tile complexity influenced community composition, with the 

orange encrusting sponge (Crambe crambe) and an encrusting bryozoan species driving 

the differences between seawall plots and control and flat tiles. Interestingly, both 

species were more abundant on seawall plots compared to the tiles, indicating that 

communities living directly on the seawall were providing greater water filtration 

services compared to communities on tiles. Turf algae drove differences between 

seawall plots and 2.5 cm tiles and control tiles and 2.5 cm tiles, with abundances greater 

in the seawall plots and on the control tiles. Turf algae has high photosynthetic 

capabilities (Steneck and Dethier, 1994; Phillips, 1996) and thus may be desirable target 

taxa for eco-engineering designs. Moreover, turfs have been shown to be important in 

the diets of grazing invertebrates (Steneck and Watling, 1982; Boaventura et al., 2002), 

and where turf is low in abundance, there may be limitations on grazer populations (Lai 

et al., 2018). It is difficult, however, to make any conclusions regarding effects of turf 
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algae abundance on biotic communities in Tel Aviv, as grazing invertebrates were 

absent from all tiles and seawall plots.  

Experiments in this study addressed recent concerns that the majority of eco-

engineering interventions examined only single types of habitat enhancing interventions 

under one set of environmental conditions (Strain et al., 2017a; but see Loke and Todd, 

2016; Morris et al., 2017b; Hanlon et al., 2018 for studies that focussed on multiple 

types of habitat enhancements). This study implemented eco-engineering designs across 

two locations (UK and Israel) and tested multiple habitat enhancement interventions 

simultaneously (microtexture, crevices and mussel seeding [Plymouth only]) in an 

understudied habitat (subtidal) to examine effects on species diversity. By testing 

habitat enhancement interventions simultaneously, experiments in Tel Aviv showed that 

crevices but not microtexture were important in determining the colonising 

communities; whilst in Plymouth, results suggest there needs to be continued research 

to identify interventions that will have positive effects on species diversity. Strain et al. 

(2017a) found that the majority of eco-engineering trials were carried out over 12 

months, with intervention effects on a longer time scale largely unknown. In the present 

study, it is possible that different results will have emerged if tiles would have been left 

in place longer than the 12- (Tel Aviv) and 14-month (Plymouth) experimental periods. 

To quantify the stabilized community, future eco-engineering trials should thus 

investigate colonising communities after years rather than months (Hawkins et al., 

1983; Bulleri, 2005b; Firth et al., 2016a), with the best option to allow a period of 

“constancy” where no more major changes in response variables are observed over the 

course of the experiment (Menge, 1997). Duration of experiments should be defined 

from the onset of the project and may focus on life histories of target taxa (i.e., run the 

experiment for at least one life cycle; Hairston, 1989) or terminate when a mature 

biological community is achieved. Yet biological succession has been known to 
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fluctuate over space and time, with individuals dying off, migrating, stabilizing and 

becoming grown over at timescales of months to years (Hawkins, 1981; Hawkins, 

1983); these processes can change species richness and abundance over time (Connell 

and Slatyer, 1977; Benedetti-Cecchi, 2000; Benedetti-Cecchi et al., 2000; Maggi et al., 

2011). If the community is within a highly disturbed or unstable environment, bare 

space may be created, thereby creating a cyclical process of succession (Oshurkov, 

1992). Therefore, confidence that a climax community has been reached may only be 

possible in well-studied systems (Oshurkov, 1992), and thus it may be challenging to 

define the duration of the experiment in lesser-studied systems. The British experiment 

considered the life history of ascidian species, which go through a boom and bust cycle 

over the course of approximately 12 months in temperate waters (Stachowicz et al., 

1999; Hawkins et al., 2017; A. Yunnie, pers. comm). If the experiment would have been 

terminated at 12 months, taxon richness would be markedly lower and community 

assemblage would be noticeably different, as ascidians went through a winter die-off at 

the 12-month mark. In this way, the results obtained likely show greater than average 

taxon richness experienced over the entire experimental period, with this “boom” period 

buffering the winter “bust” period (Levine, 2000). In seasonal temperate waters it may 

be important, therefore, to create a spring and autumn sampling regime to capture the 

full species diversity picture. Regardless, these experiments reinforced the idea that the 

future of eco-engineering will have to address multiple intervention types across 

latitudinal scales in order to build an evidence base for large-scale implementation.  

5.4.1 Concluding remarks 

The success of any eco-engineering design will ultimately depend on well-

informed planning underpinned by sound evidence, as well as setting and monitoring of 

secondary management goals, which might include enhancing specific ecosystem 

services such as water filtration or provision of fish habitat, transplanting species of 
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commercial or conservation interests or mitigating spread of non-native species. 

Moreover, it is vital to understand under which environmental conditions interventions 

will have the greatest positive effects so that eco-engineering can be an effective tool for 

achieving management goals (Dafforn et al., 2015b; Dafforn et al., 2016; Mayer-Pinto 

et al., 2017; Strain et al., 2017a). The present study found that: (1) under the current 

environmental conditions in Plymouth, there were limited effects of microtexture and 

crevices on species diversity; (2) in Plymouth, unseeded tiles surprisingly supported 

greater taxon richness than seeded tiles, and community composition differed between 

seeded and unseeded tiles; and (3) in Tel Aviv, despite no difference in taxon richness, 

community composition was influenced by crevices, but not microtexture. Thus, in 

Plymouth, British Isles, further testing of eco-engineering designs in subtidal habitats is 

necessary before interventions at the scale of entire structures can be undertaken. In Tel 

Aviv, Israel, however, future research can build on these effective interventions to 

develop site-specific approaches that match the local taxa and address the 

environmental conditions.  

Artificial structures will never be exact surrogates for the natural habitats they 

replace, and even the best eco-engineering designs cannot replicate nature. However, if 

decision-making is well informed and secondary management goals are determined 

from the onset, eco-engineering interventions can support greater species diversity, 

therefore providing valuable ecosystem services for humans and nature. This means that 

interventions underpinned by a sound evidence base will be an essential prerequisite for 

the future of ecological engineering in coastal and marine environments. 
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6. CHAPTER SIX 

Design catalogue for eco-engineering of marine and coastal artificial structures: a 

multifunctional approach for stakeholders and end-users 

 

Abstract 

Coastal urbanisation, energy extraction and food production have led to a global 

proliferation of artificial structures within the coastal and marine environments (sensu 

“ocean sprawl”). To mitigate impacts on natural habitats and biodiversity, the practice 

of eco-engineering of artificial structures has been developed over the past decade. Eco-

engineering aims to create sustainable ecosystems that integrate human society with the 

natural environment for the benefit of both. The science of eco-engineering has grown 

markedly, yet synthesis of research into a user-friendly and practitioner-focused format 

is lacking. Feedback from stakeholders has repeatedly stated that a “photo user guide” 

or “manual” covering the range of eco-engineering options available for coastal and 

marine artificial structures would be beneficial. However, a detailed and structured 

“user guide” for eco-engineering in coastal and marine environments is not yet possible; 

therefore we present an accessible review and catalogue of possible eco-engineering 

options and a summary of guidance for a range of different structures tailored for 

stakeholders and end-users as the first step towards a structured manual. This work can 

thus serve as a potential template for future eco-engineering guides. Structures covered 

here include: (1) rock revetment, breakwaters and groynes composed of armour stones 

or concrete units; (2) vertical and sloping seawalls; (3) over-water structures (i.e., piers) 

and associated support structures; (4) tidal river walls; and (5) offshore structures (i.e., 

offshore energy systems). The overall aim of this paper is to suggest potential eco-

engineering designs for biodiversity enhancement of coastal and marine artificial 

structures.  



 

219 

 

6.1. Introduction 

Urbanisation, aquaculture and the increasing demand for energy are driving the 

drastic and irreversible modification of aquatic systems globally (Vitousek et al., 1997; 

Halpern et al., 2008; Knights et al., 2015). Many of these anthropogenic activities have 

contributed to “ocean sprawl” – a term that was recently coined to describe the 

proliferation of artificial structures (i.e., seawalls, breakwaters, groynes) in marine and 

coastal environments, and the subsequent modification and loss of natural substrata 

(Duarte et al., 2012; Firth et al., 2016b; Bishop et al., 2017).   

Artificial structures typically have steep profiles and reduced surface area and 

complexity, and as such, they generally support different species assemblages than 

natural habitats in similar environmental settings (Knott et al., 2004; Chapman and 

Underwood, 2011). Any hard substrate placed in the sea will inevitably become 

colonised by marine organisms, which can be perceived either favourably or 

unfavourably depending on the environmental context and the colonising biological 

community (“community” is used to describe a group of interacting species in a given 

area). These communities are typically composed of fewer numbers of species 

(Chapman, 2003; Geist and Hawkins, 2016) and many are dominated by invasive 

species (organisms that are not native to the ecosystem) and opportunistic species 

(organisms that make up the initial stages of succession) compared to natural habitats 

(Dafforn et al., 2012; Bishop et al., 2015b; Dafforn, 2017). As a result, the functional 

role of artificial substrate in an ecosystem is often different to natural habitats (Bulleri et 

al., 2004; Jackson et al., 2008b; Aguilera et al., 2014).  

  Regardless of the specific ecological impacts, it is clear that human actions are 

leading to the development of new habitats and ecosystems without natural analogues 

(Hobbs et al., 2006; Morse et al., 2014). In response, some ecologists are considering 

how to manage these new habitats for ecological and societal benefit (Milton, 2003; 
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Hobbs et al., 2006; Macdonald and King, 2018). The design of such ecosystems, which 

integrate human society with the natural environment for the benefit of both, has been 

labelled ecological engineering or “eco-engineering” (Odum, 1962; Mitsch and 

Jorgensen, 1989; Odum and Odum, 2003). Whilst the environmental context of artificial 

structures is likely to be fixed, their biodiversity (i.e., the variety of living organisms; 

Colwell, 2009) and role in ecosystem functioning (i.e., biotic processes such as water 

purification) can be enhanced through eco-engineering techniques.  

The field of eco-engineering is beginning to provide practitioners with options 

for the design and management of artificial structures in marine (in the sea), coastal 

(where land meets sea) and estuarine (body of water where river meets sea) 

environments to support biodiversity and provide desirable secondary benefits to both 

society and nature – often referred to as “ecosystem services” (Figure 6-1). The overall 

aim of eco-engineering is to promote biodiversity and enhance provision of ecosystem 

services whilst not compromising the primary function of a structure such as coastal 

defence, safe berthing in a port or energy provision by offshore renewables. The 

organisms that colonise artificial structures can provide important ecological and socio-

economic services, such as habitat provision to support fisheries and aquaculture 

(Hawkins et al., 1992b; Bohnsack et al., 1994; Whitmarsh et al., 2008), water quality 

improvement through biofiltration (Allen et al., 1992) and education and general 

aesthetic appeal of biodiversity in urban areas contributing to human well-being (Figure 

6-1; Airoldi et al., 2005a; Sugden et al., 2009; Mayer-Pinto et al., 2017).  
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Figure 6-1. Typical characteristics of artificial structures and how eco-engineering 

optimises the potential ecosystem services as outlined by the Millennium Ecosystem 

Assessment (red boxes) (Millennium Ecosystem Assessment 2005; Everard 2017). The 

arrows show the potential linkages and feedbacks between services (e.g., improved 

fisheries [provisioning service] can have beneficial knock-on effects to recreational 

fishing and tourism [cultural service]). Other potential desirable outcomes of eco-

engineering are highlighted in black boxes. *Eco-engineering enhances biodiversity and 

ecosystem services only compared to the ecological condition of the same structure 

without eco-engineering applications. 

 

There is increasing impetus for eco-engineering of artificial structures to support 

ecosystem services. Evans et al. (2017) interviewed different stakeholder groups about 

their perceptions of artificial coastal defence structures and their potential to provide 

built-in secondary benefits. Respondents prioritised ecological benefits over economic, 
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social and technical ones. At the same time, stakeholders have raised concerns relating 

to the impacts of eco-engineering interventions; engineers are concerned with impacts 

on the performance and durability of the structure whilst conservationists are concerned 

about invasive species (Dafforn et al., 2012; Evans et al., 2017; Naylor et al., 2017). 

Research has shown that the encouragement of certain colonising organisms such as 

barnacles, mussels, oysters and algae can have a positive “bioprotective effect” through 

physical strengthening of the materials and protection from temperature extremes and 

wave action (Risinger, 2012; Coombes et al., 2013; Coombes et al., 2015). Furthermore, 

one of the primary functions of eco-engineering is to promote diverse native biological 

communities that can prevent the establishment of invasive species (Figure 6-1; 

Stachowicz et al., 1999; Stachowicz et al., 2002; Arenas et al., 2006b). 

Whilst efforts should be focused on maximising ecological benefits through eco-

engineering of artificial structures, the best option is to allow natural defences to persist 

where possible and avoid building infrastructure and associated defences unless 

absolutely necessary – the “do nothing” approach (Hoggart et al., 2014). Where and 

when human intervention is needed for reasons of safety, infrastructure protection or 

energy development, the use of “soft” engineering approaches should be used (Dafforn 

et al., 2015a; Morris et al., 2018a). These are typically non-structural interventions that 

involve working with nature, such as the modification or removal of artificial structures 

to allow the sea to re-inundate previously reclaimed land (commonly called “managed 

realignment”; French, 2006; Masselink et al., 2017; Mayer-Pinto et al., 2017), or using 

vegetation, sand-fills and sand nourishment as coastal protection (Erdle et al., 2006; 

Stive et al., 2013; Hanley et al., 2014; Morris et al., 2018a). Where these soft designs 

are not possible, a combination of hard and soft techniques, such as the “hybrid 

stabilisation” approach, should be considered (Bilkovic and Mitchell, 2013; 

Temmerman et al., 2013; Sutton-Grier et al., 2015). Quite often in urbanised areas, 
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however, the only feasible approach is to build hard structures due to lack of space and 

the immediate need to protect valuable coastal infrastructure (Chee et al., 2017). In this 

paper, we assume that the reader has already explored and rejected soft engineering 

options, leading to an informed decision to move forward with necessary eco-

engineering of hard structures to provide secondary functional benefits. 

Feedback from stakeholders and end-users has repeatedly informed us that a 

“photo user guide” or “manual” covering the range of eco-engineering options available 

would be much easier than having to sift through the rapidly expanding body of 

academic literature (see Dafforn et al., 2015a; Geist and Hawkins, 2016; Mayer-Pinto et 

al., 2017 for reviews). It is increasingly accepted that one role of scientists and 

engineers is to inform coastal managers of current research (Chapman and Underwood, 

2011; Evans et al., 2017). Thus, structured guides and frameworks (e.g., Naylor et al., 

2017) tailored for decision-makers will become essential for eco-engineering to 

progress. Therefore, in this chapter, a user-friendly, illustrated review of possible eco-

engineering options and a summary of potential guidance for a range of different 

artificial structures is provided for practitioners involved in development of coastal and 

marine environments. This work can thus serve as a template or model for future guides 

and frameworks as the field of eco-engineering grows. Here, various types of structures 

are considered in turn, with guidance given on appropriate eco-engineering 

interventions (Appendix 4), and generic and contextual considerations on application of 

eco-engineering designs are discussed.  

6.2. Methods  

6.2.1.  Literature search 

Using literature identified by Strain et al. (2017a) as a foundation and 

supplemented with subsequent searches for scientific articles, conference papers and 
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government reports, studies and projects on eco-engineering interventions in coastal, 

estuarine, tidal river and offshore systems from around the world that included 

measurable ecological or environmental outcomes were reviewed. The focus was only 

on measurable ecological effects because the vast majority of eco-engineering studies 

measured only these outcomes, although social, cultural and economic knock-on effects 

are expected (Airoldi et al., 2005a). A systematic literature review of eco-engineering 

studies was not done here because Strain et al. (2017a) conducted a meta-analysis on 

experimental eco-engineering studies in intertidal and subtidal coastal and marine 

environments that examined the ecological effects of adding complexity to artificial 

structures. Thus, this current work aimed to build on the review done by Strain et al. 

(2017a) and identify more recent studies and government work. Results from the 

literature search are displayed in Table 6-1 as intervention types for each type of 

artificial structure, including the number of studies that have tested each intervention. 

Studies from the literature search that represented the range of options for the most 

common types of structures were selected, and these were presented as separate tables 

for each type in a visual framework included in Appendix 4 (see section 6.3. for 

descriptions of structures). Information for each selected study includes design details, 

intended outcomes, success, photographs, habitats, key references and associated costs 

(if known). It is important to note that the cost of interventions was not scaled up or 

standardised across all studies presented. As much consistent information from these 

studies as possible was included, but only the information derived from the authors’ 

original interpretations was used.  
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Table 6-1. Summary of intervention types tested by artificial structure type.  

Artificial structure type Eco-engineering intervention No. of studies 

Rock revetment, breakwaters and 
groynes made of armour stones or 

concrete units 
 

Hybrid stabilisation 20 
Pits, holes, crevices, grooves, cuts, roughness, gaps 5 

Precast habitat enhancement units 3 
Rock/tidal pools 4 

Seeded, textured or complex tiles or panels 3 
Transplant target species 5 

Vertical and sloping seawalls  

Addition of natural material  1 
Gabion baskets 2 

Hybrid stabilisation 1 
Modifying seawall slope or seawall removal 4 

Pits, holes, crevices, grooves, cuts, roughness, gaps 5 
Rock/tidal pools 7 

Seeded, textured or complex tiles or panels 8 
Transplant target species 2 

Over-water structures 
Light-penetrating designs 7 

Seeded, textured or complex tiles or panels 2 

Pier pilings 

Addition of synthetic material 1 
Precast habitat enhancement units 1 

Seeded, textured or complex tiles or panels 1 
Transplant target species 1 

Tidal river walls 

Addition of natural material  1 
Floating island habitats 1 

Timber fenders & ledges  1 
Wall boxes 2 

Offshore structures 
Create artificial reefs from oil & gas platforms 2 

Pits, holes, crevices, grooves, cuts, roughness, gaps 1 

Floating pontoons 
Addition of synthetic material 1 

Seeded, textured or complex tiles or panels 3 
 

6.3.  What structures are covered?  

A range of coastal, estuarine and offshore structures were considered: (1) Rock 

revetment, breakwaters and groynes include structures perpendicular and parallel to the 

shore composed of armour stones or concrete units, which are typically sloping 

structures that function to retain land, shelter a coastal area from incident waves or 
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dissipate wave energy. (2) Vertical and sloping seawalls are solid, protective structures, 

including harbour walls and docks, designed to retain land and reflect wave energy. (3) 

Over-water structures include bridges and piers (and their supportive pilings). (4) Tidal 

river walls are typically vertical or sloping structures that provide flood defence and 

erosion mitigation where riverine freshwater meets the sea. (5) Offshore structures 

include structures associated with renewable energy and oil and gas platforms. (6) 

Vulnerable, degraded and culturally valuable structures include structures that are not 

permitted to be manipulated because of cultural or heritage value, or because of their 

state of deterioration. (7) Floating pontoons (or floating docks) are hollow structures 

used as walkways and for docking boats, most often within marinas. All of the studies 

reviewed consisted of interventions made to existing structures or incorporated within 

structures during their construction. Artificial reefs and eco-engineering of the upper 

reaches of rivers were not considered because comprehensive reviews on these subjects 

exist (e.g., Pickering et al., 1999; Baine, 2001; Palmer et al., 2005; Radspinner et al., 

2010; Lokesha et al., 2013) and these habitats fall outside the remit of this paper. 

6.4. How to use this guide 

Whilst it is strongly advised that the secondary management goals for any eco-

engineering are clearly defined at the outset, it is understandable that managers may not 

be aware of the range of potential interventions (see Evans et al. (2017) for a list of 

potential secondary benefits of designing multi-functional engineered structures 

suggested by a group of stakeholders). Consequently, this chapter offers a step-by-step 

approach that will direct the user to relevant information and help guide the user 

through the range of eco-engineering options currently available.  

Step 1 – Refer to Figure 6-2 which illustrates a series of questions that managers should 

consider in relation to incorporating eco-engineering into a planned development. The 
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user should move through the questions sequentially, although some questions may not 

be applicable in every case.  

Step 2 – Refer to the appropriate section and table. Figure 6-2 directs users to the 

appropriate section (in-text) and table (Appendix 4) containing information and 

photographs from previous studies for the particular structure type that they are working 

with. It is important to note that some enhancement designs may be applicable to 

structure types across multiple groups. 

Step 3 – Refer to Table 6-2 which details additional generic considerations that may be 

applicable.  
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Figure 6-2. Considerations for developers and managers relating to eco-engineering 

decisions for coastal and marine artificial structures. Question #8 prompts the user to 

choose the structure type of interest and refer to the associated section (in-text) and table 

(Appendix 4) for design details and examples. Symbols represent different 

consideration types: ○ Engineering, ● Environmental, ◊ Governmental, ♦ Societal. 

 

6.5. Eco-engineering of different artificial structures  

Much progress has been made in eco-engineering trials, and a wide range of 

options is becoming available and is provided within this paper. It is cautioned, 

however, that many designs have only been trialled once, or only under certain 

environmental conditions or regions (i.e., temperate regions), and so it is unclear 

whether the same results would emerge under different environmental conditions. When 

choosing an eco-engineering intervention, all physical (e.g., wave action, storm 

frequency, sediment loading, turbidity), chemical (e.g., salinity regime, nutrient supply, 

pollution loading) and biological factors (e.g., pool of potential colonising species, 

larval supply, proximity to point of introduction of invasive species) should be 

considered. It is crucial that developers and engineers engage with local ecologists, 

oceanographers and experts to discuss the feasibility of options so that valuable 

resources are not wasted and the outcomes of eco-engineering installations maximised.  

 

6.5.1. Rock revetment, breakwaters and groynes made of armour stones or 

concrete units (Appendix 4, Table 1)  

There are many options for eco-engineering these structures. Small-scale 

physical modifications involve drilling pits and rock pools (Firth et al., 2014b; Evans et 

al., 2016a; Hall et al., 2018). Large-scale physical interventions involve placement of 

precast habitat-enhancement units within the existing structure or during construction 

(Firth et al., 2014b; Perkol-Finkel and Sella, 2015; Sella and Perkol-Finkel, 2015). 
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Biological modifications include transplanting target species to the structure for habitat 

enhancement or conservation purposes (Perkol‐Finkel et al., 2012; Ng et al., 2015; 

Ferrario et al., 2016). Hybrid methods consist of combining planted vegetation (e.g., 

saltmarsh cordgrass, mangrove trees) or reef-forming animals (e.g., oysters, coral) with 

built structures to mitigate erosion and rehabilitate coastal habitat (Hashim et al., 2010; 

Kamali et al., 2010; Bilkovic and Mitchell, 2013). 

 

6.5.2. Vertical and sloping seawalls (Appendix 4, Table 2) 

Options for eco-engineering seawalls include drilling pits into pre-existing 

seawalls (Martins et al., 2010; Martins et al., 2016), manipulating wet mortar to create 

grooves and pits in new seawalls (Firth et al., 2014b; Jackson, 2015) and transplanting 

target species or species of conservation concern directly onto seawalls (Perkol‐Finkel 

et al., 2012; Ng et al., 2015). Structural complexity can be added by attaching eco-

friendly concrete panels to seawalls (Loke and Todd, 2016; Cordell et al., 2017; Perkol-

Finkel et al., 2017; World Harbour Project, 2019), and water-retaining features can be 

created by retro-fitting precast concrete units on seawalls or replacing blocks with 

cavities during seawall construction (Chapman and Blockley, 2009; Browne and 

Chapman, 2014; Morris et al., 2018b). 

6.5.3.  Over-water structures, such as bridges and piers, and their associated 

supporting pilings (Appendix 4, Table 3) 

Over-water structures and their associated foundational support structures may 

alter physical characteristics, such as hydrodynamics, sediment movement and light 

penetration in the immediate area (Smith and Mezich, 1999; Shafer, 2002; Gaston et al., 

2013; Li et al., 2014). These physical modifications result in changes to ecosystem 
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functioning, including fish migration behaviour (Ono and Simenstad, 2014; Munsch et 

al., 2017) and seagrass survival (Blanton et al., 2002; Shafer, 2002). To alleviate some 

of the negative effects associated with over-water structures, ecologists have 

experimented with light-penetrating materials (Shafer and Lundin, 1999; Alexander, 

2012; Cordell et al., 2017) and artificial lighting (Ono and Simenstad, 2014). Ecological 

encasement jackets and synthetic free-hanging ropes have been trialled on pier pilings 

(Paalvast et al., 2012; Perkol-Finkel and Sella, 2015), which had positive effects on 

biodiversity and local water quality through biofiltration, and without compromising the 

functional integrity of pilings. 

6.5.4. Tidal river walls and embankments (Appendix 4, Table 4) 

Tidal rivers and estuaries are among the most degraded and altered aquatic 

ecosystems in the world (Malmqvist and Rundle, 2002; Lotze et al., 2006), yet there has 

been a paucity of eco-engineering interventions attempted in these systems (but see 

Francis et al., 2008; Francis, 2009; Hoggart and Francis, 2014). Eco-engineering 

options for tidal river walls include attachment of timber fenders, wall modules and 

wire mesh to river walls. These can act as roughness elements, reducing flow velocity 

and facilitating seed trapping and germination of vegetation (Steele, 1999; Schanze et 

al., 2004; Hoggart and Francis, 2014). The use of floating structures such as fish hotels 

is not a direct enhancement to an artificial structure, but such designs do facilitate 

recruitment of riparian vegetation and invertebrate species, as well as provide shelter 

and habitat for fish and haul-out sites for seals (Francis, 2009; Yellin, 2014). 

6.5.5. Offshore structures (Appendix 4, Table 5)       

Offshore renewable and non-renewable energy exploration has led to the 

construction of tens of thousands of platforms worldwide (Francois, 1993; Parente et al., 
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2006), which often involve multiple structures spanning several square kilometres 

(International Energy Agency, 2007). These structures have been referred to as “de 

facto marine protected areas”, as their very presence makes it problematic for other 

marine activities to take place (e.g., aggregate extraction and trawling; Schroeder and 

Love, 2004; Inger et al., 2009; Ashley et al., 2014). These structures therefore have the 

potential to passively “benefit” the surrounding environment by providing habitat for 

marine life and refuges from fishing pressure (Sammarco et al., 2004; Wilhelmsson et 

al., 2006; Pearce et al., 2014). With the increasing recognition of the expense of their 

removal and their potential to support a wide range of ecosystem services, programmes 

such as Rigs-to-Reefs in the Gulf of Mexico (Kaiser and Pulsipher, 2005; Kaiser, 

2006b; Kaiser, 2006a) and the more recent concept of “renewables-to-reefs” (Smyth et 

al., 2015), are being developed to manage platform decommissioning and create 

artificial reefs. 

The continued development of petroleum platforms and the emerging field of 

offshore renewable energy (see Firth et al., 2016b for global map of existing and 

proposed wind farms) means it will be important to develop methods for eco-

engineering these types of structures to minimise impacts on the receiving environment 

and maximise ecological benefit (Zanuttigh et al., 2015). To date, only one study has 

tested the effects of eco-engineering offshore energy structures. Langhamer and 

Wilhelmsson (2009) created large pits in foundation units of wave energy structures to 

enhance the abundance of local fish and crustaceans. Coastal interventions, such as the 

use of precast habitat enhancement units (e.g., ReefballsTM; Reef Ball Foundation, Inc., 

2017) or boulders (Liversage et al., 2017), have the potential to be applied to the base of 

offshore structures for protection whilst also functioning as habitat for marine life.  
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6.5.6. Vulnerable, degraded and culturally valuable artificial structures on which 

manipulations are not permitted   

Some artificial structures are degraded or have cultural or heritage value, which 

can make it challenging to obtain permissions for retrofitting eco-engineering 

interventions, especially interventions that involve drilling or attaching heavy materials. 

For example, Plymouth Breakwater, built between 1812-1841, is a 1.6 km long 

structure (Southward and Orton, 1954; Hawkins et al., 1983) that is considered a 

historic monument (Knights et al., 2016) and that is not permitted to be manipulated. As 

the original structure has become undermined over the years, sacrificial concrete wave-

breaker blocks (100 tonne) are systematically placed on the seaward side of the 

breakwater as an additional form of protection from wave action. These blocks may 

function similarly to boulders or rubble placed at the base of seawalls, in that they create 

additional habitat that supports species that do not live on the original structure itself 

(Chapman, 2012; Firth et al., 2014b; Jackson, 2015; Chapman, 2017).  

To our knowledge, formal tests to enhance biodiversity on vulnerable structures 

have not been conducted, thus information contained within this section consists only of 

suggested interventions, and a guidance table on eco-engineering approaches has not 

been offered. Nevertheless, designs that have been trialled for other structures have the 

potential to be implemented in front of vulnerable structures for protection and 

provision of habitat for marine life. For example, if the goal is to provide a secondary 

form of protection for the structure and enhance the habitat potential, artificial boulder 

fields (Chapman, 2012; Chapman, 2017) or precast armouring units (Firth et al., 2014b; 

Sella and Perkol-Finkel, 2015; Reef Ball Foundation, Inc., 2017; ARC Marine, 2019) 

could be placed in front of the structure. If located within a sheltered environment, 

vegetation (i.e., saltmarsh cordgrass, mangrove trees) could be planted in front of the 
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structure, or combined with a hard stabilising structure for extra protection (i.e., hybrid 

stabilisation; Hashim et al., 2010; Bilkovic and Mitchell, 2013).   

6.5.7. Floating pontoons  

Floating pontoons (also known as floating docks) are some of the most 

ubiquitous artificial structures in urban harbours. They are hollow structures made of 

materials such as concrete or fibreglass which are used as walkways and for berthing 

boats, and also inevitably provide substrate for biotic colonisation (Connell, 2001; Toh 

et al., 2017). There are no natural analogues to pontoons, as they stay fixed in relation to 

the water level (they rise and fall with the tide so that the water depth below them 

varies), provide permanent shading and are typically located within enclosed 

environments (i.e., marinas; Hair and Bell, 1992; Glasby and Connell, 2001; Holloway 

and Connell, 2002).  

To date, descriptive work on pontoons has characterised the biological 

assemblages and has shown that these structures support invasive species (Arenas et al., 

2006a; Perkol-Finkel et al., 2008; Bishop et al., 2015a; Toh et al., 2017), although few 

eco-engineering studies have been carried out on pontoons (but see Hair and Bell, 1992; 

Stachowicz et al., 2002; Paalvast et al., 2012). This knowledge gap is reflected in the 

absence of a guidance table on eco-engineering approaches to pontoons in this paper. It 

is important to note that eco-engineering pontoons may be undesirable for marina 

operators because additional material on pontoons may affect buoyancy of pontoons and 

impede mooring of boats, and the associated organisms typically cover boat hulls and 

marina equipment (Connell, 2001). In particular, invasive species (e.g., the carpet sea 

squirt) have been responsible for smothering pontoons, marina equipment and boat hulls 



 

235 

 

and engines, costing marina managers and boat owners extra expenses in anti-

fouling remedies (Coutts and Forrest, 2007; Piola et al., 2009; Bishop et al., 2015b). 

Thus, trials are urgently needed to test eco-engineering interventions that will support 

native biodiversity, thereby offsetting the success of invasive species.  

 

Table 6-2. Checklist for additional generic considerations that may be applicable to the 

chosen eco-engineering intervention 

 

Considerations References

Implementation
Implementation of design can be during construction or retrofitted

- During construction: Designs may be covered by the licence for the construction work, be more Firth et a l . 2014b; Sel la  & Perkol -Finkel  2015

creative, less expensive & implemented on a larger scale than if fitted retrospectively 

- Retrofitting existing structures: Cost-effective options are available, such as affixing additional Browne & Chapman 2011; Perkol -Finkel  et a l .

material, drilling pits, grooves & pools & transplanting desirable habitats or species 2012; Evans  et a l . 2016; Stra in et a l . 2017b

Materials 
Geological origin of material used can affect colonising communities, therefore try to:

- Use material local to the region Burcharth & Lamberti  2007; Green et a l . 2012

- Use eco-friendly or natural material ECOncrete Inc.; Dennis  et a l . 2017

- Use cement replacements (ground granulated blast-furnace slag) McManus  et a l . 2017

Placement 
Performance of eco-engineering designs may be influenced by:

- Immersion gradient

Subtidal and lower intertidal: Placement of interventions here yields markedly Browne & Chapman 2011; Fi rth et a l . 2016a

greater biodiversity as this area is immersed on every tidal cycle & the

 potential pool of colonising species is greater; however the risk of sand scour 

is greater, which may result in loss of the intervention 

Middle and high intertidal: Placement of interventions here may help extend the Perkol -Finkel  & Sel la  2015

area of suitable habitat , which is normally compressed & greatly reduced 

compared to the intertidal zone in natural rocky shore 

- Exposure gradient

Sheltered sites: Design may becoming inundated with sediment Evans  et a l . 2016; Fi rth et a l . 2016a

Exposed sites: Design may be lost to currents & waves Francis  et a l . 2008; Browne & Chapman 2014

- Aspect

Directionality (north vs. south in particular) determines the magnitude Chapman & Blockley 2009 

of shading & thermal stress a structure receives Chapman & Underwood 2011

- Inclination

Substrate slope may determine the colonising community, as survivability Francis  & Hoggart 2008; Dafforn et a l . 2012

on horizontal vs. vertical substrate is species-specific, & thus might 

influence success of invasive species 

Timing of installation
Timing of installation of eco-engineering interventions is important, as recruitment periods Airoldi  & Bul leri  2011; Evans  2016

of marine life & subsequent community development vary throughout the year 

Maintenance of structure
Maintenance can result in disturbance, often creating bare space where dense biological Stachowicz et a l . 1999; Airoldi  & Bul leri  2011

 assemblages occurred previously, increasing the risk of colonisation by invasive species 

Uncontrollable factors
The precise effects of eco-engineering interventions are difficult to predict because coastal 

& marine systems are highly variable, with many uncontrollable conditions

- Local conditions: Consider the success of past designs in similar locations & conditions 

- Extreme weather events: Use information on weather trends in the region 

- Obtaining permissions to install a design: Many structural design features of artificial 

structures are non-negotiable because of their primary function & cost restrictions
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6.6. Concluding remarks 

Artificial structures in the coastal, estuarine and marine environments are not 

equivalent surrogates for the natural habitats they replace; even the best eco-engineering 

designs cannot replicate nature. The best option for maintaining biodiversity and 

healthy ecosystem functioning is to minimise intervention and work with natural 

habitats whenever possible (e.g., sand banks, saltmarshes, mangroves; Airoldi et al., 

2005a; Hanley et al., 2014; Morris et al., 2018a). 

The future of eco-engineering will necessarily include a wider ecosystem 

perspective; this will include combining “hard” and “soft” engineering (Bilkovic and 

Mitchell, 2013; Temmerman et al., 2013; Hanley et al., 2014; Chee et al., 2017), and 

will involve a multifunctional approach to design structures that can synergistically 

support aquaculture, energy production, diverse biological communities and healthy 

ecosystems (Zanuttigh et al., 2015; Evans et al., 2017). As a response, ecologists have 

developed a wide range of eco-engineering options and are beginning to develop user-

friendly frameworks and guidelines for coastal managers, government bodies and other 

practitioners (Dafforn et al., 2015b; Dyson and Yocom, 2015; Mayer-Pinto et al., 2017); 

but we caution that significant knowledge gaps remain regarding the applicability of 

these techniques outside the environmental scenarios in which they were trialled, and all 

designs carry with them an associated risk. As Bulleri and Chapman (2010) warned, it is 

not yet possible to provide a full “recipe book” of interventions from which engineers 

and developers may select the best approach with absolute confidence to possible 

outcomes (see also Evans et al., 2017). To inform sound eco-engineering practice, there 

is a need for wider testing of existing designs in different environmental settings, and to 

develop the predictive capability to forecast ecological outcomes (Airoldi et al., 2005a; 

Hulme, 2014; Evans, 2016). Meticulous planning, informed decision-making and 
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setting and measuring secondary management goals are vital in maximising the 

ecological and societal benefits of eco-engineering (Russell et al., 1983; Hawkins et al., 

1992a). Collaboration between developers, ecologists and engineers is an essential 

prerequisite for maximising biodiversity gains and minimising ecological impacts of 

coastal development (Department for Communities and Local Government, 2012). 

Ecologists should acknowledge concerns from engineers, coastal managers and 

government bodies at the onset of any eco-engineering project. Although managers are 

typically concerned with the elevated costs of using eco-engineering in the design of 

coastal development, Strain et al. (2019b) found that this group was supportive of eco-

engineering for lessening the effects of pollution and enhancing biodiversity in 

harbours. Civil and construction engineers hesitate to incorporate ecological design into 

new developments because these are unconventional concepts that go against “business 

as usual”, and working with natural processes is not part of the curriculum in most 

engineering education programs (Pioch et al., 2018). Additionally, societal, economic 

and structural considerations still hold precedent over environmental concerns (Pioch et 

al., 2018). Mitsch (2014) argued that eco-engineering will become part of routine 

practice only when ecologists learn about engineering, and engineers learn about 

ecology. Recently, government bodies have shown interest in building coastal artificial 

structures with secondary ecological benefits, and policies are evolving to reflect this 

shift in perception (Naylor et al., 2012; Evans et al., 2017; Evans et al., 2019); yet 

governments have limited access to academic journals and lack the time and resources 

to research and implement relevant designs. (Evans et al., 2019; Welsh Government, 

pers. comm.). Although formal economic assessments of eco-engineering coastal 

artificial structures are yet to be done, the field of eco-engineering can learn from 

concerns raised about and assessments done on the economic value of artificial reefs 

(Kawasaki, 1984; Bohnsack, 1991; Adams et al., 2006; Macreadie et al., 2011).  
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Arguably more is learnt from failure than from success (see Firth et al., 2016a), 

and we advocate that reporting of failure is imperative. Reflecting the restricted 

distribution of these trials grouped in a few geographical hotspots (i.e., Australia, Italy, 

Singapore, UK, USA; Firth et al., 2016b; Strain et al., 2017a) and limited types of 

structures studied (i.e., limited research on pontoons, offshore and subtidal structures), 

we caution against unconsidered implementation of these recommendations without full 

consideration of the environmental context, overall management goals and desired 

target effects. With careful planning and consultation with the appropriate team of 

experts – local ecologists, engineers and societal stakeholders – even heavily stressed 

coastal and marine ecosystems can support greater biodiversity, enhancing functioning, 

thereby providing valuable ecosystem services for both nature and society.  
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7. CHAPTER SEVEN 

General Discussion 

 

7.1. Thesis overview 

This thesis addressed five key knowledge gaps in the current eco-engineering 

literature: (1) understanding of occurrence and patterns of non-native species in 

intertidal natural and artificial habitats along the south coast of England (an invasion 

hotspot; Chapter 2); (2) looking beyond conventional measures (α-diversity) of species 

diversity to better understand the differences in communities between natural and 

artificial habitats at multiple spatial scales (Chapter 3); (3) comparing how topographic 

complexity shapes species diversity in both intertidal and subtidal habitats (Chapters 4 

and 5); (4) seeking generality of patterns of eco-engineering interventions across 

geographic localities (Chapters 4 and 5); and (5) making the outcomes of eco-

engineering research accessible in a user-friendly and practitioner-focussed format for 

stakeholders and end-users (Chapter 6). In this chapter, main findings of this research is 

summarized in the context of these knowledge gaps (Section 7.1.) and this is put in the 

context of information necessary for eco-engineering to become routine practice at 

larger scales (Section 7.2.). The areas that need further attention are identified and 

suggestions for future work are discussed (Section 7.3.). This chapter then concludes 

with some final remarks (Section 7.4.).  

7.1.1. Understanding the occurrence and patterns of non-native species 

in intertidal natural and artificial habitats along the south coast of England. 

Many studies in the British Isles have documented non-native species in subtidal 

habitats (i.e., floating pontoons; Ashton et al., 2006; Griffith et al., 2009; Bishop et al., 

2013; Foster et al., 2016), with the south coast of England being particularly well-

studied (Arenas et al., 2006a; Bishop et al., 2015a; Bishop et al., 2015b; Wood et al., 
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2015). These studies did not survey intertidal habitats and natural rocky shores, thus, 

there remained a gap in the understanding of the full non-native species picture along 

the south coast of England. This thesis showed that the Central region of the south coast 

of England (Poole, Southampton, Portsmouth) supported more non-native species than 

the West (Falmouth, Looe, Plymouth, Salcombe, Torbay) and the East (Shoreham, 

Folkestone, Dover), agreeing with results from previous surveys in the same geographic 

region (Bishop et al., 2015a; Bishop et al., 2015b). These results may be explained by 

vessel traffic arriving in ports, as vessels are known vectors of non-native introductions 

(Carlton and Geller, 1993; Ruiz et al., 1997; Gollasch, 2002; Gollasch, 2008; Molnar et 

al., 2008; Clarke Murray et al., 2011). Unsurprisingly, the number of non-native species 

was positively correlated with the number of vessel arrivals in the region. Additionally, 

non-native species assemblage composition differed between natural and artificial 

habitats, with most of the non-natives that were more abundant in natural found almost 

exclusively in rock pools (e.g., Grateloupia turuturu, Sargassum muticum, Undaria 

pinnatifida). These organisms are lower intertidal and shallow subtidal algal species 

(Bunker et al., 2017) and are common in assemblages found on floating pontoons 

(Arenas et al., 2006a; Epstein and Smale, 2018). These species, therefore, are 

opportunistically taking advantage of any available submerged substrate, and thus the 

probability of further spread out from invaded marinas is likely (Epstein and Smale, 

2018). Knowledge gained from these surveys can contribute immensely to the 

understanding of the “invasibility” of a structure (see Section 7.3.1. of this chapter; 

Alpert et al., 2000; Arenas et al., 2006b; Dafforn et al., 2012). Although Rapid 

Assessment Surveys (RAS) are a common and effective method for quantifying non-

native species presence and abundance (Bishop et al., 2015b), there are limitations to 

the area which surveyors can realistically cover during a low tide. It is therefore 

important to acknowledge that non-native species reports here are likely conservative 
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ones; the absence of a species from any report does not necessarily equate to real 

absence in the ecosystem.  

7.1.2. Looking beyond conventional measures (α-diversity) of species 

diversity to better understand the differences in communities between natural 

and artificial habitats at multiple spatial scales 

This thesis showed that taxon richness (α-diversity) – a common measurement 

of species diversity in marine and coastal ecology (e.g., Chapman, 2003; Firth et al., 

2013b; Firth et al., 2014a) – was greater in natural compared to artificial habitats at two 

spatial scales. However, patterns of β-diversity (the measure of the variation in 

identities of species among sampling units in a given area; Anderson et al., 2011) were 

different depending on the scale examined. As expected, variation in taxon richness (β-

diversity) was greater in natural compared to artificial habitats at the within-site scale. 

Surprisingly, the variation in taxon richness (β-diversity) at the among-site scale, 

however, was greater in artificial compared to natural habitats. If α-diversity were 

chosen as the only measure of species diversity in this study, valuable landscape scale 

information would have been overlooked. Taking a landscape scale approach is not a 

new concept in assessing species diversity in terrestrial systems (Noss, 1983; Knopf and 

Samson, 1994; Duelli, 1997; Brockway, 1998; Gabriel et al., 2006; Lawrence et al., 

2018). Importantly, management plans for conservation sites and species are often 

determined by these assessments (Siderits and Radtke, 1977; Margules and Usher, 

1981; Smith and Theberge, 1986; Asaad et al., 2017). Noss (1983) stated that all 

ecosystems are open, and that biotic (e.g., organisms) and abiotic (e.g., nutrients) factors 

are constantly exchanged among neighbouring ecosystems. Thus, determining the 

appropriate spatial scale and units of measurement for quantifying patterns in species 

diversity is difficult; consequently, landscape scale approaches are not commonly used 

in coastal ecology studies (but see Jenkins et al., 2001; Johnson et al., 2003; Jenkins et 
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al., 2005; Coleman et al., 2006; Porter et al., 2018). Findings from this study show that 

diversity values may be perceived differently based on how they are quantified; this has 

clear implications for determining species and habitat management priorities.   

7.1.3. Understanding how topographic complexity shapes species 

diversity in intertidal and subtidal habitats across geographic localities 

The effects of added habitat complexity on species diversity was measured in 

different habitats (intertidal, subtidal) in two different geographic localities (Plymouth, 

British Isles and Tel Aviv, Israel). Results differed depending on habitat and location. In 

general, in intertidal habitats in Plymouth, habitat complexity had no effect on taxon 

richness (differences were between seawall plots and tiles only), while habitat 

complexity had an effect on community composition. In intertidal habitats in Tel Aviv, 

Israel, complex tiles supported greater taxon richness and different community 

composition compared to flat tiles and seawall plots. In subtidal habitats in Plymouth, 

habitat complexity had no effect on taxon richness or community composition, while in 

Tel Aviv, habitat complexity had no effect on taxon richness but did effect community 

composition.  

A notable result was that complexity had no effect on taxon richness but did 

influence community composition in intertidal habitats in Plymouth. This is of interest, 

as it may be favourable to target a specific colonising community or species of 

conservation (Perkol‐Finkel et al., 2012; Ferrario et al., 2016) or commercial (Martins et 

al., 2010; Martins et al., 2016) interest through the application of eco-engineering. In 

this case, differences between seawall plots and complex tiles were driven by 

abundances of Austrominius modestus, a non-native barnacle (albeit “ubiquitous”; 

Crisp, 1958; Tøttrup et al., 2010; Gallagher et al., 2015 in the British Isles), and Ulva 

spp., an ephemeral opportunistic green alga, with both generally being more abundant 

on complex tiles. Differences in community composition were also driven by the 
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common limpet, Patella vulgata, which was more abundant on complex tiles compared 

to seawall plots. As A. modestus and Ulva spp. are both undesirable species, these 

interventions would probably not be chosen for large scale implementation in Plymouth 

Sound. On the other hand, these interventions enhanced abundance of mobile grazers, 

which are known to be in low abundances on artificial structures compared to natural 

rocky shores (Chapman, 2003; Martin et al., 2005; Moreira et al., 2006; Lam et al., 

2009). In fact, grazing organisms are essential in controlling abundances of micro- 

(Hawkins et al., 1989; Skov et al., 2011) and macroalgae (Hawkins, 1983b; Hawkins, 

1983a), which influence the trophic structure of natural rocky shores (Hawkins, 1983b; 

Hawkins, 1983a; Arrontes et al., 2004; Coleman et al., 2006). Thus, it is possible with 

modification of design and continued trials, interventions may be optimised for 

addressing the need to increase grazing organisms on seawalls in Plymouth. The 

differential results obtained highlight the need to design interventions that are site- (and 

therefore, condition-) specific (Strain et al., 2017a). Future designs in Plymouth Sound 

(and indeed worldwide) might therefore aim to quantify environmental conditions such 

as turbidity or water velocity as part of the sampling regime in order to catalogue 

performance of intervention under various conditions. These experiments demonstrate 

that eco-engineering of coastal structures in subtidal habitats is very much in the 

“experimental” phase. Engineering in subtidal habitats for the purpose of enhancing 

species diversity is not new; humans have been creating artificial reefs to improve 

fisheries in nearshore and offshore waters for hundreds of years (reviewed in  Bohnsack 

and Sutherland, 1985). This means much can be learned from the decades-long research 

and development of artificial reefs (Gascon and Miller, 1981; Bohnsack et al., 1994; 

Carr and Hixon, 1997; Burt et al., 2009; Harris, 2009; Folpp et al., 2011; Herbert et al., 

2017), including offshore oil and gas platforms converted to reefs (e.g., Rigs-to-Reefs 

Program; Kaiser and Pulsipher, 2005; Kaiser, 2006a), as well as early discussions on 
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eco-engineering of renewable energy structures (i.e., wind turbines, wave and tidal 

harnessing devices; Zanuttigh et al., 2015; Callaway et al., 2017). 

7.2. Knowledge gaps and application of research 

This research will contribute to information necessary for eco-engineering to 

become routine practice at larger scales. This thesis provides a benchmark of intertidal 

biological community data in Plymouth Sound and intertidal non-native species 

assemblages across the south of England that can be used for assessment of suitability 

of eco-engineering interventions. This work also provides information about 

performance of eco-engineering interventions tested in different habitats and locations. 

Lastly, this work fills a key knowledge gap by addressing how to make eco-engineering 

evidence available to practitioners. This information is discussed in detail below.  

7.2.1. Potential for biological community survey data to be used for 

assessment of suitability and success of eco-engineering interventions  

Strategic planning (Mayer-Pinto et al., 2017) informed decision-making 

(Dafforn et al., 2015a; Mayer-Pinto et al., 2017; Chapman et al., 2018), setting and 

measuring secondary (ecological) management goals (Hobbs and Norton, 1996; Cairns 

Jr, 2000; Coen and Luckenbach, 2000; Chapman et al., 2018) and an understanding of 

local environmental and ecological conditions (Coen and Luckenbach, 2000; Mayer-

Pinto et al., 2017) are vital in maximising the ecological and societal benefits of any 

restoration effort. In particular, comprehensive baseline surveys measuring relevant 

response variables based on overall management goals are essential for informing 

strategic planning at the initiation of the project (Mayer-Pinto et al., 2017). Baseline 

data available for eco-engineering (Chee et al., 2017) and wider conservation and 

restoration (Legg and Nagy, 2006) planning is often lacking, which can hamper 

management efforts. Even when this information is available, restoring a particular 

system to a historical baseline is extremely challenging, as natural ecosystems are in 
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constant flux of biotic and abiotic change (Kloor, 2000; Harris et al., 2006; Stewart, 

2010; Alagona et al., 2012). For any restoration effort, ecologists need to understand the 

biotic communities that existed before degradation or loss of habitat, how communities 

have changed in response to this loss of habitat and what the new communities should 

look like after intervention (Kloor, 2000; Dafforn et al., 2015b; Mayer-Pinto et al., 

2017; Chapman et al., 2018).  

Biological survey data, coupled with physical site data, collected at the initiation 

of eco-engineering projects can assist in determining which structures are ecologically 

capable of delivering specific secondary management goals (Mayer-Pinto et al., 2017). 

This can reveal which artificial structure(s) in particular has the most potential to 

support a particular suite of species or one target species based on the existing biotic 

community and physical factors. In Chapter 3 of this thesis, multiple diversity measures 

were employed to show that community composition among artificial structures in 

Plymouth Sound varied markedly (high β-diversity), suggesting that biotic communities 

on different structures would respond differently to eco-engineering interventions and 

therefore ecological goals may have to be site- (or structure-) specific to accommodate 

different taxa (Strain et al., 2017a). For instance, if the ecological goal were to enhance 

habitat by transplanting canopy-forming algae, the ideal structure for implementation 

would be one with physical conditions that mimic structures that support reproductive 

populations of macroalgae of the same species or functional group. Additionally, the 

structure of interest should be close enough to a reproducing population so as to receive 

a sufficient supply of propagules (e.g., close to natural rocky shores; Sousa, 1984). 

Propagule supply to a particular location within a harbour could be predicted with a 

high level of confidence using hydrodynamic and particle tracking models (Gilbert et 

al., 2010; Hall, 2018) or in situ assessments (McQuaid and Phillips, 2000).  
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Considerations for assessing the suitability of an intervention should include 

physical and environmental factors (Mayer-Pinto et al., 2017), taking note of which 

factors are uncontrollable and based on local conditions (Figure 7-1; Firth et al., 2014b). 

For example, it is important to note biogeographic range edges and distance from major 

shipping ports, which often facilitate non-native species introductions (Carlton, 1996b; 

Ruiz et al., 1997; Ruiz et al., 2000), and thus eco-engineering designs may inadvertently 

assist in the migration of invasive species (Airoldi et al., 2015b; Bishop et al., 2017; 

Chapman et al., 2018). Physical environmental gradients, such as exposure (wave-

exposed or sheltered), tidal height (low-, mid-, upper-intertidal zones) and bathymetry 

(in the subtidal zone), although largely uncontrollable, should be assessed prior to 

implementation to maximise ecological benefits of the design (Moschella et al., 2005; 

Burcharth and Lamberti, 2007; Firth et al., 2014b; Dafforn et al., 2016). There will 

always be a degree of environmental variation that cannot be controlled (Firth et al., 

2014b), but considering all controllable and uncontrollable factors will at least give a 

more comprehensive view of how the eco-engineering intervention will perform under 

the known conditions.  
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Figure 7-1. It is important that managers and engineers understand what factors are 

uncontrollable (context-dependent) when considering eco-engineering designs, as this 

will help determine the level of intervention. The above examples are common 

uncontrollable factors, but may vary based on the location of the artificial structure.   

 

In Chapter 2 of this thesis, the need for baseline survey data in the context of 

non-native species was addressed. Occurrence of non-native species in intertidal 

habitats (both artificial and natural) along the south coast of England were recorded. 

The majority of the non-native species recorded in these surveys from natural rocky 

shores (i.e., Sargassum muticum, Grateloupia turuturu, Colpomenia peregrina) were 

regularly observed within rock pools or other water-retaining features. This may be of 

particular concern for eco-engineering interventions that incorporate water-retaining 

features, such as attachment of flowerpots to seawalls (Browne and Chapman, 2014; 

Hall, 2018; Morris et al., 2018b), drill-cored rock pools in a breakwater (Evans et al., 

2016a), in-filled cores in a boulder breakwater (Firth et al., 2014b), pools in precast 

habitat enhancement units (Firth et al., 2014b; Perkol-Finkel and Sella, 2015), cavities 

in a seawall (Chapman and Blockley, 2009; Chapman and Underwood, 2011), drilled 

pits in a wave breaker unit (Firth et al., 2014b; Jackson, 2015) and creation of pools in 

wave energy-dissipating units (Firth et al., 2016a). Of all of these studies, only two 

reported on non-native species (Firth et al., 2016a; Morris et al., 2018b), with Morris et 

al. (2018b) specifically testing the ability of eco-engineering interventions to discourage 

native species settlement. Additionally, there are very few eco-engineering designs in 

general with specific objectives concerning discouraging non-native species settlement 

(but see Paalvast et al., 2012; Sella and Perkol-Finkel, 2015; McManus et al., 2017; 

Morris et al., 2017b). This affirms the concerns of Strain et al. (2017a) and Chapman et 

al. (2018) regarding an inadequate number of eco-engineering experiments reporting the 

proportion of native to non-native species colonising eco-engineered designs. There is 

concern that eco-engineering may facilitate the spread of non-native species (Naylor et 
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al., 2017; Chapman et al., 2018); thus, it is essential to gather data to serve as a 

benchmark of current non-native species pre-installation, with continued monitoring 

post-installation. 

The positive correlation between numbers of non-native species and vessel 

arrivals per day in the current study has clear implications for application of eco-

engineering interventions in heavily trafficked harbours. Extra care must be taken in 

these harbours to avoid facilitating the spread of non-native species via eco-engineering 

interventions (Chapman et al., 2018). This could be done by limiting the amount of 

additional hard substrate placed in the sea (difficult in practice) or avoiding the use of 

substrate preferred by specific non-native species of high priority (i.e., species that 

cause a noticeably negative impact; e.g., Didemnum vexillum; Bullard et al., 2007). A 

recent study examining colonising communities on substrate made of different chemical 

composition found that, although all substrate treatments supported non-native species, 

the non-native barnacle, A. modestus was unique only to the ground granulated blast-

furnace slag (GGBS) treatment and the mixed treatment (GGBS and pulverized fly ash 

(PFA); McManus et al., 2017). Moreover, Glasby et al. (2007) found greater numbers of 

non-native species on fibreglass and concrete pontoons compared to wooden structures, 

sandstone seawalls and natural rocky reefs in Sydney Harbour. In fact, of all the 

artificial structures examined, sandstone seawalls supported the lowest number of non-

natives (Glasby et al., 2007), suggesting eco-engineering designs should consider using 

sandstone material over concrete. Hall (2018), however, found no significant difference 

in number of non-native species between wooden and rock groynes along the south of 

England, indicating that species responses vary by geographic location. Any hard 

substrate placed in the sea will likely become colonised by marine life, regardless of 

intention of the substrate. For example, artificial surf reefs such as the Boscombe 

Artificial Surf Reef in the south of England, are built to enhance the surfing experience, 
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with positive knock-on effects on tourism (Fletcher et al., 2011; Rendle and Rodwell, 

2014). However, this new bare substrate placed in the sea can easily be colonised by 

non-native species (Herbert et al., 2017), facilitating the ‘stepping stone’ effect (Airoldi 

et al., 2005a; Dafforn et al., 2009; Floerl et al., 2009). It is largely unknown what the 

role is for eco-engineering to facilitate non-native species, but it is a real concern for 

mangers and conservationists (L. Firth, pers. comm.; Evans et al., 2017; Chapman et al., 

2018), and therefore it is crucial to measure presence and abundance of non-native 

species during assessment surveys and eco-engineering monitoring.   

7.2.2. Importance of testing eco-engineering interventions in the same 

environmental and ecological context of desired large-scale installation  

In contrast to a range of other studies that found that increasing complexity 

supported greater species diversity (Moschella et al., 2005; Chapman and Underwood, 

2011; Firth et al., 2014b; Loke and Todd, 2016; Perkol-Finkel et al., 2017; Strain et al., 

2017a), this research found that species response (colonisation) to varying levels of 

complexity and mussel seeding differed depending on geographic location (i.e., Britain, 

Israel) and habitat (i.e., intertidal, subtidal; Chapters 4 and 5). Results were very 

context-dependent, suggesting that documenting physical and chemical environmental 

conditions will be imperative in explaining biological differences across localities. 

General comparisons between the two locations showed only some commonalities in 

species response to added habitat complexity, with response variables from the 

locations agreeing in only two out of the five common tests (Table 7-1). For example, in 

intertidal habitats there was a main effect of treatment for taxon richness in both 

locations, but in Plymouth, the effect was simply from the presence of the tiles 

compared to bare seawall (i.e., there were no difference in taxon richness among tile 

treatments). Whereas in Tel Aviv, the differences in taxon richness among treatments 

was attributable to the complexity of tiles. Thus, with the current state of knowledge, it 
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would be difficult to draw sweeping inferences concerning effects of added habitat 

complexity on species diversity across these two geographic locations. Nevertheless, 

these tests highlight the importance of replicating eco-engineering experiments in many 

different locations and habitats.  

 

Table 7-1. Informal comparison of effects of added habitat complexity in intertidal and 

subtidal habitats in Plymouth, British Isles and Tel Aviv, Israel. 'Main effect' indicates if 

there were significant differences in species diversity among any of the treatments. 

'Effect of complexity' indicates if there were differences in species diversity among tile 

treatments (i.e., not just differences between seawall plots and tiles). 'Agree?' indicates 

if results from the two locations concurred. A dash (-) represents where no test was run. 

 

 

Results from the eco-engineering experiments in this thesis shed light on the 

need for carefully thought-out bespoke experimental trials in the same environmental 

and ecological conditions as those where they intend to be implemented, and with clear 

secondary (ecological) management goals identified at the commencement of the 

project (Mayer-Pinto et al., 2017; Strain et al., 2017a). For example, along the 

waterfront of Seattle in the USA, large-scale eco-engineered seawalls were installed in 

2017 as part of a larger waterfront regeneration project (Seattle Office of the Waterfront 

and Civic Projects, 2019). The waterfront seawall installations (Cordell et al., 2017) 

were based on eco-engineering trials of bespoke designs at a small scale (see Goff, 2010 

for the small scale trials). Similarly, in Sydney (Australia), the ‘Living Seawalls’ project 
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(Living Seawalls, 2019) – an initiative that uses retrofitted habitats on existing seawalls 

to enhance and improve the ecological performance of artificial structures – is a product 

of extensive eco-engineering trials in the same location as the large-scale ecological 

enhancements (Strain et al., 2017b; World Harbour Project; Strain et al., 2019b). 

Moreover, these designs were shaped by years of structured assessments of biotic 

communities on seawalls compared to natural habitats in Sydney Harbour (see 

Chapman, 2003; Chapman and Bulleri, 2003; Knott et al., 2004; Bulleri et al., 2005; 

Blockley and Chapman, 2006; Chapman, 2006; Moreira et al., 2007; Chapman and 

Underwood, 2011). 

7.2.3. Potential for the application of eco-engineering in coastal 

development 

The field of eco-engineering is beginning to provide practitioners with a variety 

of proof-of-concept options for the design and management of artificial structures in 

marine and coastal environments to support biodiversity and provide desirable 

ecological benefits to both society and nature (Dafforn et al., 2016; Naylor et al., 2017; 

Strain et al., 2017a; Evans et al., 2019). Stakeholder support for eco-engineering at the 

theoretical level is high (Evans et al., 2017), however there are still barriers to 

ecologically sensitive designs becoming part of real practice: (1) policy concerning the 

use of nature based solutions (e.g., eco-engineering) during coastal development in the 

UK is non-statutory (UK Parliament, 2009; Welsh Government, 2016; Welsh 

Government, 2017a); and (2) evidence to support eco-engineering is locked away in 

academic literature which is inaccessible to practitioners; the synthesis of research into a 

practitioner-focused format is lacking (McNie, 2007; Holmes and Clark, 2008; Evans et 

al., 2019; but see Naylor et al. 2017 for a freely available framework for integrated 

green-grey infrastructure).  
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In Wales, there is a clear “policy push” (Naylor et al., 2012) to find nature based 

solutions for both terrestrial and coastal adaptation to climate change (Welsh 

Government, 2016; Welsh Government, 2017a; Welsh Government, 2017b). Members 

of the Welsh Government (WG) Flood and Coastal Erosion Risk Management 

(FCERM) team have communicated, however, that the limited availability of 

information about ecologically sensitive designs in coastal engineering has discouraged 

them from pursuing alternative options. It is, therefore, essential that ecologists provide 

scientific evidence in a usable and freely accessible format if practitioners are expected 

to transition from traditional techniques to nature based methods. This is even more 

imperative if ecologists advocate for new policies to include statutory guidelines for 

eco-engineering (McNie, 2007; Holmes and Clark, 2008; Evans, 2016; Evans et al., 

2019). Evans (2016) suggested that key eco-engineering research could be 

communicated to practitioners through an evolving catalogue of design options with 

associated ecological outcomes ranked by level of confidence in delivering ecological 

goals. Furthermore, Evans et al (2019) suggested that “packaging the evidence in a 

useful form to support planning and decision-making” would aid in the “uptake” of eco-

engineering by practitioners. Chapter 6 of this thesis addressed this need by providing a 

template for future eco-engineering “user guides” tailored for coastal developers, 

government bodies and stakeholders. Although this “user guide” is a step in the right 

direction, it is clearly a small contribution to wider efforts that are needed for eco-

engineering to become part of routine practice in coastal developments. There is one 

project, however, that has recently been initiated to address this very issue. The 

Ecostrucure Project – a collaborative project among eco-engineering researchers in 

Ireland and Wales – provides coastal developers and regulators with free on-line tools 

and access to a reliable evidence base for eco-engineering solutions for coastal 

adaptation globally (Ecostructure, 2019). Although still in the development stage, 
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Ecostructure will translate useful scientific evidence from the eco-engineering literature 

into a user-friendly catalogue format. Ideally, freely accessible resources like the ones 

provided by Ecostructure will develop in tandem with evolving scientific research in 

various locations globally, and will include a wide range of nature based solution 

options (e.g., soft, hybrid, hard) for coastal developers and mangers.  

7.3. Future work 

This research filled important knowledge gaps concerning the ecological role of 

artificial structures and their ability to be ecologically enhanced for beneficial 

ecological outcomes. This research, however, brought to light more questions and 

revealed areas that need further attention. These areas are addressed below. 

7.3.1. Non-native species management 

Surveys documenting non-native species introduction and spread are becoming 

increasingly common (Cohen, 2005; Pederson et al., 2005; Arenas et al., 2006a; 

Minchin, 2007; Bishop et al., 2013; Bishop et al., 2015a; Bishop et al., 2015b; Wood et 

al., 2015; Foster et al., 2016). Attention now needs to turn to assessing the factors that 

affect the degree of “invasibility” of a habitat (Alpert et al., 2000; Dafforn et al., 2012). 

Whilst the concept is well developed in terrestrial habitats (especially amongst plant 

species; e.g., Robinson et al., 1995; Brooks, 1999; Lonsdale, 1999; Richardson and 

Pyšek, 2006), assessing the “invasibility” of a habitat in coastal environments is 

comparatively understudied (but see Arenas et al., 2006b; Wang et al., 2006; Dafforn et 

al., 2012; Simkanin et al., 2017 for marine and coastal examples). Highly “invasible” 

habitats are typically lacking in biodiversity (Osman et al., 1992; Stachowicz et al., 

1999; Levine et al., 2004; Dafforn et al., 2012), highly disturbed (Airoldi, 2000; Alpert 

et al., 2000; Airoldi and Bulleri, 2011) and have high resource availability (Dukes and 

Mooney, 1999; Alpert et al., 2000). In the context of coastal artificial structures, 

“invasible” factors might also include material composition of the structure (e.g., wood, 
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concrete, metal, fibreglass; Glasby et al., 2007; Hall, 2018), habitat (e.g., hard bottom, 

sandy shores; Airoldi et al., 2015a), tidal height (i.e., low-, mid-, high-intertidal, 

subtidal) and level of exposure (i.e., sheltered, exposed; Bulleri and Airoldi, 2005). 

Horizon scanning techniques could benefit substantially from being able to predict the 

colonising community based on a suite of factors, as efforts could target specific 

“invasible” habitats (Mehta et al., 2007; Roy et al., 2014). Evans (2016) showed that 

broad community structure could be predicted with 60% confidence based on a suite of 

environmental and physical factors. Thus, in concert with expert and historical 

knowledge, there is scope for the use of predictive models for the future of non-native 

species management. 

7.3.2. Biodiversity monitoring 

Despite the growing urgency to develop timely and inexpensive methods to 

measure biodiversity, the value of expert knowledge, effective sampling techniques and 

use of appropriate analyses cannot be overstated. In this thesis, the analysis of species 

diversity between natural and artificial habitats at multiple spatial scales using a variety 

of different analyses revealed differential results based on the resolution of observation 

and metric used. This exposed the realisation that the way ecologists interpret 

biodiversity can have major implications for conservation management of ecosystems 

and future eco-engineering interventions. It is crucial that future biodiversity surveys 

carefully consider the appropriate method and scale of sampling and analysis for the 

overall ecological goal at the onset of the study.  

7.3.3. Eco-engineering 

Even the best eco-engineering intervention cannot replicate nature. Where there 

is an option to do nothing, that option should be thoroughly explored (Hoggart et al., 

2014). Moreover, there is growing concern that eco-engineering might be used as a 

strategy for gaining consent for potentially harmful new developments in under- or 
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undeveloped areas (Firth et al., in prep). These previously undeveloped coastal areas 

should rather be protected and preserved in their current state. If, however, construction 

is proceeding anyway, or the area of interest is located in an already degraded 

environment (e.g., heavily urbanised harbours, disused docks), then there are methods 

to influence the design so as to achieve ecologically beneficial outcomes. For example, 

the Liverpool Docks in the River Mersey fell into disuse in the 1970s with the onset of 

containerisation, providing opportunities for urban renewal projects in the 1970s and 

1980s (Russell et al., 1983; Allen et al., 1992; Hawkins et al., 1992a). An airlift water 

circulation and aerator system was installed to promote oxygenation and mixing of the 

water column (Russell et al., 1983; Hawkins et al., 1992a) and a mussel culture was 

created within the docks to help improve water quality which provided a favourable 

environment for biodiversity (Hawkins et al., 1992b; Allen and Hawkins, 1993). Due to 

the significant ecological improvements, the Liverpool Docks has successfully been 

developed for luxury accommodation, restaurants, museums, office space and 

frequently used for water sports (Hawkins et al., 1992a). This example can therefore be 

looked upon for future development of degraded environments in order to add in 

valuable ecosystem services where they would otherwise be lacking.  

The future of eco-engineering will probably feature a wider approach where 

multifunctional structures with built-in secondary benefits (e.g., structures 

simultaneously supporting renewable energy, aquaculture and transport; Zanuttigh et 

al., 2015; Callaway et al., 2017) or natural structures and ecosystem engineers (e.g., 

saltmarsh, mangrove forests, oyster reefs) will be used for coastal protection 

(Temmerman et al., 2013; Morris et al., 2018a). In the context of biodiversity and the 

wider ecosystem, the use of “soft” engineering approaches is favoured over “hard” 

approaches (Narayan et al., 2016; Morris et al., 2018a); they are typically non-structural 

and involve complete removal of artificial structures to allow the sea to re-inundate 
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previously reclaimed land (commonly called “managed realignment”; French, 2006; 

Chapman and Underwood, 2011; Mayer-Pinto et al., 2017). Other “soft” engineering 

techniques involve using vegetative plantings or sand nourishment as coastal protection 

(Erdle et al., 2006; Stive et al., 2013; Hanley et al., 2014). Where these soft designs are 

not possible, a combination of hard engineering (i.e., built structures) and soft 

techniques should be considered (i.e., hybrid designs). The “hybrid stabilisation” 

approach involves planting vegetation (e.g., salt marsh, mangrove forest) on the 

landward side of a stabilising structure (e.g., stone sill or breakwater) to allow for 

sedimentation and subsequent habitat stabilisation (Hashim et al., 2010; Kamali et al., 

2010; Bilkovic and Mitchell, 2013; Temmerman et al., 2013).  

Although “soft” approaches and hybrid designs for coastal adaptation and 

protection are preferred (Temmerman et al., 2013; Morris et al., 2018a), quite often in 

urbanised areas, it is necessary to build hard structures due to lack of space and the 

urgent need to protect coastal infrastructure (Borsje et al., 2011; Chee et al., 2017; 

Morris et al., 2018a). As a response, equivalent eco-engineering designs in different 

geographic locations (British Isles, Israel) and habitats (intertidal, subtidal) were tested 

as part of the current research with the aim to increase species diversity. A surprising 

result was that there was no effect of topographic complexity on species diversity under 

some scenarios (dependent on location, habitat and response variable). This raised two 

important questions: First, was the duration of experiments long enough to allow for full 

community development in order to measure effects of treatments? Secondly, what is 

the proportion of all eco-engineering designs that result in no effect of treatment? These 

experiments were run for 12-14 months, which is a common timeframe for eco-

engineering experiments (Strain et al., 2017a; but see Martins et al., 2016; Perkol-Finkel 

et al., 2017; Hall, 2018 for longer trials). In the restoration ecology literature, concerns 

have been raised regarding the appropriate timescale in which to measure the “success” 
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of an effort (Simenstad and Thom, 1996; Grayson et al., 1999; Irving et al., 2010; Bell 

et al., 2014), as the time allocated to measuring success usually falls short of the 

ecologically relevant timeframe in which to detect improvements (Fonseca et al., 2004; 

Irving et al., 2010; Bell et al., 2014). Premature cessation of monitoring efforts before 

ecological changes can be detected will therefore influence how success is evaluated 

(Grayson et al., 1999; Bell et al., 2014). For example, Jackson et al. (1995) maintained 

that, although positive effects of wetland restoration can be detected within a decade, 

evidence of improved wetland functioning would not be observed for 10-50 years. This 

is a concern in the field of eco-engineering as well (Chapman et al., 2018). For example, 

an experiment run to test the effects of eco-engineering enhancements on species 

diversity in energy dissipating units on a causeway, found differential results between 

sampling conducted at 12 and 24 months, with almost 4 times the number of species 

observed during the latter sampling (Firth et al., 2016a). Few eco-engineering 

experiments with a result of no effect or a failed design have been documented in the 

scientific literature (but see Firth et al., 2016a; Morris et al., 2017b; Morris et al., 

2018b). This may be due to the reluctance of scientific journals to accept papers 

reporting negative results or no effects (Browman, 1999). This stigma, however, needs 

to be overcome, as the reporting of a failed design or negative or no effect of treatment 

in the field of eco-engineering is imperative in order to build a substantial evidence base 

upon which we can make confident recommendations to practitioners (Chapman et al., 

2018) and prevent money wastage and future failures. Moreover, the method of 

communicating these results should be freely available (see Ecostructure, 2019); 

information should not be locked away in inaccessible academic literature (Evans et al., 

2019). In fact, the process of designing optimal eco-engineering interventions is 

iterative, learning from and building on past successes and failures. The future of eco-

engineering should therefore include a central cataloguing of eco-engineering results 
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(including successful and failed designs) with specific design details, intended and 

actual outcomes and environmental conditions under which the design was tested in 

order to conserve efforts across institutions, encourage global collaboration and thereby 

advance the field of eco-engineering substantially. 

7.4. Concluding remarks 

The need to mitigate the effects of ocean sprawl will undoubtedly increase with 

the certainty of sea level rise and increase in coastal urbanisation. Eco-engineering is a 

tool to sustainably assist in managing some of the negative impacts of ocean sprawl; but 

more trials testing a variety of interventions in a range of geographic locations and 

habitats are still urgently needed. Small-scale experiments need to be scaled up to full-

scale demonstration projects, ideally with replicate reference and/or control areas 

(Chapman et al., 2018). Meanwhile, surveys monitoring biotic communities, and 

specifically non-native species, will be vital in assessing the suitability of any proposed 

intervention. The reporting of failed designs and interventions with no effects is of 

critical value to strengthen the evidence base. 

The future of eco-engineering of coastal structures will depend on evolving 

policies, building a strong evidence base ensuring accessibility and usability of 

academic research. A joined-up approach among ecologists, engineers, government 

bodies and coastal managers will be imperative not only for large-scale implementation, 

but also to facilitate a cultural shift in perception from traditional hard engineering to 

working with nature. The human population is projected to increase, with subsequent 

increases in coastal development and hence consequences for the natural environment. 

It is time to be pragmatic and come up with solutions to lessen the negative effects of 

ocean sprawl. Moreover, as scientists, we need to communicate a clear and 

comprehensive message to engineers, coastal managers, the public and importantly, 

decision-makers about the sustainable options for coastal adaptation and explain the 
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consequences of accepting the status quo (i.e., hard built structures). With strategic 

planning and informed decision-making, eco-engineering has the potential to 

compensate and even mitigate the impacts of ocean sprawl, thereby preserving 

biodiversity and safeguarding valuable ecosystem services for future generations.
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Appendix 1. Chapter 2 Supplementary Information 

Table 1. Details of harbours surveyed along the south coast of England. Harbours were separated into regions based on their geographic location. 

Average number of vessel arrivals per day was obtained from Marine Traffic (2019). The last column shows number of surveys conducted in artificial 

compared to natural habitat. Natural habitat was only surveyed west of Torbay because natural rocky shore is rare or absent east of Torbay. All surveys 

were made in the intertidal zone. Harbours were categorised following Bishop et al. (2015b). 

Harbour 

code 
Harbour/City 

Harbour 

coordinates 
Region 

Date of 

surveys 

No. of 

surveys 

No. of 

surveys by 

art:nat 

FAL Falmouth 50.1619, -5.072497 West June 2018 9 5:4 

LOE Looe 50.354117, -4.455525 West May 2018 2 1:1 

PLY Plymouth 50.360558, -4.142894 West June 2018 7 3:4 

SAL Salcombe 50.232272, -3.769097 West June 2018 1 1:0 

TOR Torbay 50.455153, -3.524844 West July 2018 2 1:1 

POL Poole 50.708906, -1.979533 Central Sept 2018 7 7:0 

SHN Southampton 50.877867, -1.387653 Central Aug 2018 8 8:0 

PMH Portsmouth 50.788908, -1.110833 Central July 2018 11 11:0 

SHM Shoreham 50.827919, -0.248131 East Aug 2018 1 1:0 

FOL Folkestone 51.079289, 1.189525 East Oct 2018 1 1:0 

DOV Dover 51.122417, 1.318406 East Oct 2018 4 5:0 
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Table 2. Site and environmental information for each structure surveyed. A dash (-) under 'Composition of structure' indicates natural rocky shore. 

Wave exposure was ranked from 1-3 with 3 being the most exposed. A dash under all other columns indicates unknown information. See Table 1 in 

this appendix for Harbour codes. 

SITE INFORMATION 
ENVIRONMENTAL 

INFORMATION 

Harbour Site coordinates Structure type Composition of structure 
Temperature 

(°C) 

Salinity 

(psu) 
Wave 

exposure 

FAL  50.153245, -5.066497 seawall small-medium natural stone 18.5 35 1 

FAL 50.154978, -5.067719 seawall large Portland cement blocks 18.5 35 1 

FAL 50.156368, -5.070065 seawall large natural stone 18.5 35 1 

FAL 50.139167, -5.076108 natural rocky shore - - 35 2 

FAL 50.140339, -5.073469 natural rocky shore - - 35 2 

FAL 50.144278, -5.041606 natural rocky shore - 15.5 35 2 

FAL 50.145106, -5.042689 natural rocky shore - 15.5 35 2 

FAL 50.161253, -5.073419 seawall small-medium natural stone 18.4 35 1 

FAL 50.1588, -5.072547 seawall small-medium natural stone 18.4 35 1 

LOE 50.350933, -4.450969 seawall large natural stone 12.5 30 2 

LOE 50.352639, -4.448383 natural rocky shore - 12.5 30 2 

PLY  50.363908, -4.162949 seawall large natural stone 17.2 35 1 

PLY 50.363339, -4.139722 natural rocky shore - - 35 2 

PLY 50.363439, -4.139903 seawall large natural stone 15.9 35 1 

PLY 50.360728, -4.129425 seawall large natural stone - - 1 

PLY 50.356944, -4.127864 natural rocky shore - 16.4 35 2 

PLY 50.333383, -4.121997 natural rocky shore - - 35 2 

PYL 50.334306, -4.199042 natural rocky shore - - 35 2 

SAL 50.234670, -3.768665 seawall large natural stone - - 1 

TOR  50.4595, -3.502197 natural rocky shore - 20.1 35 2 
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TOR  50.461575, -3.531375 seawall large natural stone 21.5 35 2 

POL 50.688717, -1.947217 
marina wave breaker 

wall   
wooden 20.3 35 

1 

POL 50.688439, -1.9456 
marina wave breaker 

wall   
wooden 20.3 35 

1 

POL 50.713506, -2.024911 pier wooden 20.1 35 1 

POL 50.700472, -1.941967 pier wooden 18.8 35 1 

POL 50.702722, -1.944408 discharge pipe metal 18.8 35 1 

POL 50.709644, -2.004792 groyne wooden - - 1 

POL 50.682808, -1.945619 groyne natural rock boulders 19.2 35 1 

SHN 50.895386, -1.408497 disused pier metal   20.9 32 2 

SHN 50.855592, -1.330786 pipe metal 21.7 33 2 

SHN 50.850481, -1.325708 pier metal 21.7 33 2 

SHN 50.8955, -1.403469 seawall metal sheet piling 20.7 30 1 

SHN 50.897994, -1.428567 pier metal 25.2 30 2 

SHN 50.890117, -1.387633 pier wooden 20.1 32 1 

SHN 50.852108, -1.30745 boat dock wooden 20.8 32 2 

SHN 50.914406, -1.386164 bridge support structure concrete - 24 1 

PMH 50.777724, -1.086395 seawall 
Portland cement mixed with 

stone 
21.8 35 

3 

PMH 50.777507, -1.089037 seawall 
Portland cement mixed with 

stone  
21.8 35 

3 

PMH 50.792878, -1.109184 side of boat ramp large natural stone 20.8 35 1 

PMH 50.792291, -1.108191 seawall metal sheet piling 20.8 35 1 

PMH 50.796040, -1.024988 side of boat ramp metal sheet piling 24.5 35 1 

PMH 50.796061, -1.024617 side of boat ramp concrete 24.5 35 1 

PMH 50.788900, -1.028503 disused pier reinforced concrete 22.4 35 2 

PMH 50.789168, -1.107047  disused pier reinforced concrete 19.8 35 2 

PMH 50.786188, -1.102138 wharf reinforced concrete 19.8 35 2 
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PMH 50.792991, -1.11692 
marina wave breaker 

wall   
metal sheet piling 21 35 

2 

PMH 50.797481, -1.109744 breakwater concrete 21 35 2 

SHM 50.829339, -0.248061 pier metal sheet piling 20.8 35 2 

FOL 51.078806, 1.189825 tetrapods concrete - - 2 

DOV  51.1247, 1.322469 breakwater large natural stone - 35 2 

DOV 51.125328, 1.327475 old boat ramp concrete - 30 2 

DOV 51.122769, 1.317124 groyne natural rock boulders - 35 2 

DOV 51.121348, 1.315813 groyne natural rock boulders - 35 2 

DOV 51.120142, 1.314172 groyne natural rock boulders - 35 2 
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Table 3. Summary of non-native species recorded in each harbour along the south coast of England. See Table 1 in this Appendix for 

harbour codes. NNS within natural and artificial habitats are included. New species records are indicated with an asterisk (*).  

 

Site FAL LOE PLY SAL TOR POL SHN PMH SHM FOL DOV 

Bryozoan                       

Watersipora subatra (Ortmann, 1890)  ✓   ✓   ✓ ✓ ✓ ✓ ✓     

Tricellaria inopinata d'Hondt & Occhipinti Ambrogi, 1985  ✓         ✓ ✓ ✓ ✓     

Bugulina stolonifera (Ryland, 1960)           ✓ ✓         

Bugulina simplex (Hincks, 1886)                ✓       

Bugula neritina (Linnaeus, 1758)            ✓ ✓ ✓       

Ascidian                       

Didemnum vexillum Kott, 2002           ✓*   ✓       

Botrylloides diegensis Ritter & Forsyth, 1917           ✓ ✓ ✓       

Botrylloides violaceus Oka, 1927           ✓ ✓ ✓       

Botrylloides sp. indet.† ✓             ✓ ✓     

Aplidium cf. glabrum (Verrill, 1871)          ✓* ✓*           

Styela clava Herdman, 1881          ✓ ✓ ✓ ✓ ✓   ✓ 

Corella eumyota Traustedt, 1882                      ✓ 

Mollusca                       

Magallana gigas (Thunberg, 1793)  ✓* ✓ ✓ ✓ ✓* ✓ ✓ ✓ ✓   ✓* 

Crepidula fornicata (Linnaeus, 1758)  ✓     ✓     ✓ ✓     ✓* 

Cnidaria                       

Diadumene lineata (Verrill, 1869)             ✓*         

Arthropoda                       

Austrominius modestus (Darwin, 1854) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓* 

Annelida                       

Ficopomatus enigmaticus (Fauvel, 1923)            ✓ ✓         

Ochrophyta                       

Undaria pinnatifida (Harvey) Suringar, 1873      ✓   ✓ ✓           

Sargassum muticum (Yendo) Fensholt, 1955  ✓ ✓ ✓ ✓ ✓*     ✓       

Colpomenia peregrina Sauvageau, 1927  ✓*   ✓   ✓     ✓       
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Rhodophyta                       

Grateloupia turuturu Yamada, 1941      ✓         ✓       

Chrysymenia wrightii (Harvey) Yamada, 1932                ✓*       

Caulacanthus okamurae Yamada, 1933  ✓* ✓ ✓*   ✓* ✓*   ✓*   ✓ ✓* 

Bonnemaisonia hamifera Hariot, 1891  ✓*                     

Asparagopsis armata Harvey, 1855  ✓                     

Chlorophyta                       

Codium fragile subsp. fragile (Suringar) Hariot, 1889                        

Total number of species 11 4 8 4 9 14 12 17 6 2 6 

 

†Botrylloides sp. indet. represents a Botrylloides spp. that is likely either B. diegensis or B. violaceus but could not be positively 

distinguished between the two. 
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Appendix 2. Chapter 3 Supplementary Information 

Table 1. Details of 54 survey sites. Under ‘Habitat Type’, ‘A’ represents artificial and ‘N’ represents natural habitats. ‘Exposure’ indicates 

level of wave exposure (1-3; with 3 being the most exposed). 

Date 
Surveyed 

Site Name Coordinates 
Habitat 

Type 
Exposure Artificial Structure Type 

Composition of Artificial 
Structure 

13-May-17 Turnchapel_1 50.35935 -4.11782 A  1 seawall medium stone blocks 

13-May-17 Turnchapel_2 50.35878 -4.11822 A  1 seawall medium stone blocks 

11-Jul-17 Hooe Lake 50.35654 -4.11285 A  1 seawall large stone blocks 

13-Jul-17 East of Devil's Point 50.35904 -4.16381 N 3 - - 

22-Jul-17 Richmond Walk  50.36497 -4.16948 A  1 seawall medium stone blocks 

25-Jul-17 Oreston_1 50.36598 -4.10883 A  1 seawall large stone blocks 

27-Jul-17 Laira Bridge 50.36835 -4.10782 A  1 seawall large stone blocks 

07-Sep-17 Millbay Docks_1 50.36524 -4.15495 A  1 stone armour revetment large stone blocks 

07-Sep-17 Waterfront Café_1 50.36288 -4.14791 N 2 - - 

07-Sep-17 Millbay Docks_2 50.36587 -4.15382 A  1 seawall medium stone blocks 

09-Sep-17 Fort Bovisand 50.33756 -4.12749 A  1 seawall large stone blocks 

11-Sep-17 Fort Picklecombe_1  50.34435 -4.17000 A  1 seawall medium stone blocks 

12-Sep-17 Waterfront Café_2 50.36271 -4.14820 N 2 - - 

17-Sep-17 Bovisand Beach_1 50.33371 -4.12154 N 3 - - 

17-Sep-17 Bovisand Beach_2 50.33491 -4.12075 N 2 - - 

19-Sep-17 Mount Batten Pier_2 50.35917 -4.13149 N 3 - - 

19-Sep-17 Mount Batten Pier_1 50.35933 -4.13224 A  3 stone armour revetment large stone boulders 

19-Sep-17 Mount Batten Watersports_1 50.35997 -4.12684 A  1 seawall small and medium stone blocks 

20-Sep-17 Queen Anne's Battery 50.36456 -4.12770 A  2 stone armour revetment large stone blocks 

20-Sep-17 Oreston_2 50.36563 -4.10889 A  1 seawall large stone blocks 

22-Sep-17 Torpoint_1 50.37324 -4.19391 A  1 seawall large stone blocks 

22-Sep-17 Torpoint_2 50.37443 -4.19304 A  1 seawall medium stone blocks 

02-Oct-17 Penlee Point_1 50.31833 -4.18880 N 2 - - 

04-Oct-17 Plymouth Seafront Natural_1 50.36322 -4.13804 N 2 - - 
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04-Oct-17 Plymouth Seafront Natural_2 50.36332 -4.13935 N 2 - - 

06-Oct-17 West of Devil's Point 50.35957 -4.16652 N 3 - - 

06-Oct-17 Firestone Bay_1 50.36108 -4.15814 N 3 - - 

06-Oct-17 Firestone Bay_2 50.36112 -4.15703 N 3 - - 

09-Oct-17 Kingsand Beach_1 50.33443 -4.19847 N 2 - - 

09-Oct-17 Kingsand Wall 50.33254 -4.20072 A  2 seawall large stone blocks 

09-Oct-17 Cawsand Beach 50.33046 -4.20072 N 2 - - 

12-Oct-17 Plymouth Seafront Natural_3 50.36415 -4.14559 N 2 - - 

12-Oct-17 Plymouth Seafront Natural_4 50.36404 -4.14466 N 2 - - 

23-Oct-17 Plymouth Breakwater_1 50.33314 -4.14707 A  3 breakwater/seawall  large stone blocks 

23-Oct-17 Plymouth Breakwater_2 50.33369 -4.13753 A  1 breakwater/seawall large stone blocks 

24-Oct-17 Mount Wise_1 50.36503 -4.17663 A  2 seawall flat concrete 

26-Oct-17 Bovisand Beach_3 50.32840 -4.12150 N 2 - - 

06-Nov-17 Mount Batten Beach_2 50.35606 -4.12607 N 2 - - 

06-Nov-17 Mount Batten Beach_3 50.35719 -4.12699 N 2 - - 

19-Nov-17 Cremyll 50.36069 -4.17516 A  1 seawall medium stone blocks 

19-Nov-17 Mount Edgecumbe_1 50.35899 -4.17164 N 2 - - 

20-Nov-17 Drake's Island_1 50.35629 -4.15648 N 2 - - 

04-Dec-17 Kingsand Beach_2  50.33541 -4.19704 N 2 - - 

04-Dec-17 Kingsand Beach_3  50.33936 -4.19045 N 2 - - 

07-Dec-17 Rum Bay_1 50.35227 -4.12390 N 3 - - 

07-Dec-17 Jennycliff Beach_2 50.34898 -4.12218 N 3 - - 

07-Dec-17 Jennycliff Beach_3 50.34817 -4.12241 N 3 - - 

08-Dec-17 Heybrook Bay_1 50.31930 -4.11971 N 3 - - 

08-Dec-17 Heybrook Bay_2 50.31813 -4.11352 N 3 - - 

09-Dec-17 Mount Edgecumbe_2 50.35185 -4.16693 N 3 - - 

11-Jun-18 Admiral's Hard 50.36485 -4.16342 A  1 seawall medium stone blocks 

11-Jun-18 Freedom Walk  50.36362 -4.16310 A  1 seawall large stone blocks 

16-Jun-18 Plymouth Seafront Artificial_3 50.36359 -4.13997 A  2 seawall medium stone blocks 

28-Jun-18 Plymouth Seafront Artificial_4 50.36372 -4.14625 A  2 seawall medium stone blocks 
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Table 2. Summary of taxa recorded in natural and artificial habitat listed by functional 

group. 'NNS' following a species name indicates a non-native species.  

Taxa 

Habitat 

Natural Artificial 

Grazer/herbivore   

Asterina sp.  ✓ 

Littorina littorea (Linnaeus, 1758)  ✓ ✓ 

Littorina saxatilis (Olivi, 1792)   ✓ 

Littorina obtusata (Linnaeus, 1758)/L. fabalis (W. Turton, 1825) ✓ ✓ 

Melarhaphe neritoides (Linnaeus, 1758)   ✓ 

Patella depressa Pennant, 1777  ✓ ✓ 

Patella vulgata Linnaeus, 1758 ✓ ✓ 

Phorcus lineatus (da Costa, 1778)  ✓ ✓ 

Polyplacophora sp. ✓  

Steromphala umbilicalis (da Costa, 1778) ✓ ✓ 

Steromphala cineraria (Linnaeus, 1758)  ✓ 

Predator   

Nucella lapillus (Linnaeus, 1758)  ✓ ✓ 

Omnivore   

Carcinus maenas (Linnaeus, 1758)   ✓ 

Filter feeder   

Actinia equina (Linnaeus, 1758)  ✓  

Austrominius modestus (Darwin, 1854)NNS ✓ ✓ 

Botryllus schlosseri (Pallas, 1766)  ✓  

Chthamalus montagui Southward, 1976  ✓ ✓ 

Chthamalus stellatus (Poli, 1791)  ✓ ✓ 

Cryptosula pallasiana (Moll, 1803)  ✓ ✓ 

Diadumene lineata (Verrill, 1869)NNS ✓  

Dynamena pumila (Linnaeus, 1758)  ✓ ✓ 

Halichondria panicea (Pallas, 1766)  ✓ ✓ 

Hymeniacidon perlevis (Montagu, 1814) ✓ ✓ 

Magallana gigas (Thunberg, 1793)NNS ✓ ✓ 

Mytilus sp. Linnaeus, 1758 ✓ ✓ 

Neodexiospira sp. Pillai, 1970 ✓ ✓ 

Perforatus perforatus (Bruguière, 1789) ✓ ✓ 

Semibalanus balanoides (Linnaeus, 1767)  ✓ ✓ 

Spirobranchus sp. Blainville, 1818 ✓ ✓ 

Watersipora subatra (Ortmann, 1890)  ✓ ✓ 

Lichen   

Lichina pygmaea (Lightf.) C. Agardh, 1817  ✓  

Verrucaria mucosa Wahlenberg, 1803  ✓  

Thin filamentous   

Ceramium sp. Roth, 1797 ✓ ✓ 

Cladophora rupestris (Linnaeus) Kützing, 1843 ✓ ✓ 

Ectocarpus sp. Lyngbye, 1819  ✓ 
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Polysiphonia sp. Greville, 1823 ✓ ✓ 

Rhodothamniella floridula (Dillwyn) Feldmann, 1978  ✓  

Vertebrata lanosa (Linnaeus) T.A. Christensen, 1967  ✓ ✓ 

Foliose   

Palmaria palmata (Linnaeus) Weber & Mohr, 1805  ✓ ✓ 

Porphyra sp. C. Agardh, 1824 ✓ ✓ 

Ulva spp. Linnaeus, 1753  ✓ ✓ 

Corticated macrophyte   

Catenella caespitosa (Withering) L.M. Irvine, 1976 ✓ ✓ 

Caulacanthus ustulatus (Mertens ex Turner) Kützing, 1843 ✓ ✓ 

Chondrus crispus Stackhouse, 1797 ✓ ✓ 

Gelidium sp. abbottiorum R.E. Norris, 1990 ✓ ✓ 

Lomentaria articulata (Hudson) Lyngbye, 1819  ✓  

Mastocarpus stellatus (Stackhouse) Guiry, 1984  ✓ ✓ 

Osmundea sp. Stackhouse, 1809 ✓ ✓ 

Plumaria plumosa (Hudson) Kuntze, 1891  ✓  

Leathery macrophyte   

Ascophyllum nodosum (Linnaeus) Le Jolis, 1863  ✓ ✓ 

Fucus serratus Linnaeus, 1753  ✓ ✓ 

Fucus spiralis Linnaeus, 1753  ✓ ✓ 

Fucus vesiculosus Linnaeus, 1753  ✓ ✓ 

Himanthalia elongata (Linnaeus) S.F. Gray, 1821  ✓  

Articulated calcareous   

Corallina officinalis Linnaeus, 1758  ✓ ✓ 

Crustose   

Corallinaceae crust ✓ ✓ 

Other algae   

non-calcareous encrusting red  ✓ 

red slimy film  ✓ 

Cyanobacteria   

Oscillatoria sp. Vaucher ex Gomont, 1892   ✓ 
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Appendix 3. Chapters 4 and 5 Supplementary Information 

 

Table 1. Environmental variables measured during the intertidal (IT) and subtidal (ST) tile experiments Tel-Aviv, Israel and Plymouth, 

British Isles. Maximum (MAX) and minimum (MIN) values are shown for dissolved oxygen (DO), salinity, pH and water temperature. 

Salinity was recorded in practical salinity units (psu) in the British Isles and in specific gravity (Sg) in Israel. A dash (-) indicates where 

data was not recorded. Intertidal and subtidal data in Israel were recorded at the same time because tidal range in the Mediterranean Sea is 

on the order of centimetres. 

Tidal Height Country Site MAX/MIN DO (%) Salinity (psu) Salinity (Sg) pH Temperature °C 

IT & ST Israel Marina Hertzelia  
MAX - - 1.0266 8.1 30.4 

MIN - - 1.0248 8.0 15.7 

IT 

UK 

Mayflower Marina 
MAX 100 35 - 8.5 18.4 

IT MIN 73 30 - 7.7 9.5 

IT 
Turnchapel Wharf 

MAX 100 36 - 7.9 19.2 

IT MIN 72 25 - 6.8 7.7 

ST 

UK 

Mayflower Marina 
MAX - 35 - - 24.0 

ST MIN - 30 - - 5.1 

ST 
Plymouth Yacht Haven 

MAX - 35 - - 19.8 

ST MIN - 30 - - 5.2 



 

271 

 

Table 2. Summary table for taxa recorded on subtidal tiles in Plymouth, British Isles. Non-native species are indicated by the superscript 

‘NNS’. 

  Tile Treatment Mussel Treatment Site 

Taxa control flat 2.5 cm 5 cm mussel no mussel 
Mayflower 

Marina 

Plymouth 
Yacht 
Haven 

Filter feeder                 

Corella eumyotaNNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ascidiella aspersa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ciona intestinalis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Clavelina lepadiformis     ✓ ✓ ✓ ✓ ✓   

Asterocarpa humilisNNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Styela clavaNNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Dendrodoa grossularia   ✓   ✓   ✓ ✓   

Molgula sp.   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Botrylloides violaceusNNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Botrylloides leachii   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Botryllus schlosseri    ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Diplosoma listerianum  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Lissoclinum perforatum ✓ ✓ ✓ ✓ ✓     ✓ 

Didemnum spp. ✓   ✓   ✓     ✓ 

Aplidium cf. glabrumNNS   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Didemnum vexillumNNS   ✓     ✓     ✓ 

Botrylloides spp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Polychlinid sp.   ✓       ✓ ✓   

Tricellaria inopinataNNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Bugula neritinaNNS   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Bugulina simplexNNS   ✓     ✓   ✓   

Bugulina stoloniferaNNS 
   ✓     ✓   ✓   

Bugulina avicularia ✓ ✓       ✓ ✓   
Bugulina fulva ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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Crisularia plumosa     ✓ ✓ ✓   ✓   

Bugulina flabellata     ✓   ✓   ✓   

Scrupocellaria scruposa       ✓   ✓ ✓   

Watersipora subatraNNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Cryptosula pallisiana ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Electra pilosa   ✓ ✓ ✓ ✓ ✓ ✓   

Conopeum reticulum   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Celleporella hyalina   ✓   ✓ ✓   ✓   

Unknown encrusting Bryozoan spp.   ✓ ✓ ✓ ✓ ✓ ✓   

Grantia compressa   ✓   ✓   ✓ ✓ ✓ 

Sycon ciliatum ✓ ✓ ✓ ✓ ✓ ✓   ✓ 

Orange sponge sp. 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Austrominius modestusNNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Perforatus perforatus       ✓   ✓   ✓ 

Balanus crenatus   ✓     ✓ ✓   ✓ 

Spirobranchus sp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

soft tube worms ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Polycheate spp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Terebellid sp. ✓ ✓ ✓ ✓ ✓ ✓   ✓ 

Hydroid spp. ✓ ✓ ✓ ✓ ✓ ✓   ✓ 

Tubularia sp.   ✓     ✓ ✓ ✓   

Red anemone   ✓ ✓ ✓ ✓ ✓ ✓   

Grey anemone   ✓ ✓   ✓ ✓ ✓   
Mytilus edulis/galloprovincialis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Anomia ephippium ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Modiolarca sp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Hiatella sp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Crinoid sp.   ✓ ✓ ✓ ✓ ✓ ✓   

Crepidula fornicataNNS   ✓       ✓ ✓   
Detritivore and scavenger                 

Amphipod spp.  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Platyhelminthes sp.   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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Petrolisthes sp. ✓ ✓ ✓ ✓ ✓ ✓   ✓ 

Pilumnus hirtellus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Omnivore                 

Echinidae ✓             ✓ 

Pycnogonid sp.     ✓   ✓   ✓   

Caprella muticaNNS   ✓ ✓ ✓ ✓ ✓   ✓ 

Caprella spp   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Carcinus meanus   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Predator                 

Cancer pagurus       ✓   ✓   ✓ 

Ophiuridae spp.   ✓     ✓   ✓   
Corticated foliose                 

Red fan sp.   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Rhodomenia delicatula   ✓     ✓   ✓   

Ulva spp.   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Corticated macrophyte                 

Strappy red sp. ✓   ✓   ✓ ✓ ✓ ✓ 

Wirey red sp.   ✓ ✓   ✓ ✓   ✓ 

Griffithsia sp.   ✓ ✓   ✓ ✓ ✓   
Filamentous                 

Chlorophyta spp. 1       ✓   ✓ ✓   
Polysiphonia spp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ceramium spp.   ✓ ✓ ✓ ✓ ✓ ✓   
Leathery macrophyte                 

Saccharina latissima     ✓     ✓ ✓ ✓ 

Undaria pinnatifidaNNS   ✓ ✓   ✓ ✓   ✓ 

Fucus spp.   ✓   ✓ ✓ ✓ ✓   

Ascophyllum nodosum   ✓ ✓     ✓ ✓   

Sargassum muticumNNS   ✓       ✓ ✓   

Total taxon richness 33 66 58 56 65 65 64 52 
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Appendix 4. Chapter 6 Supplemental Information 

 

Table 1. Ecological engineering design details for rock revetment (riprap), breakwaters and groynes made of armour stones or 

concrete units. “Type” refers to the general type of eco-engineering. Within each “type”, designs are listed from small to large scale where 

applicable. Success of designs was based on the authors’ own interpretations. “DC or R” describes whether implementation of design can 

be during construction (“DC”) or added retrospectively (“R”). “Habitat” includes 3 pieces of key information about the environmental 

context in which the design was placed: a. intertidal or subtidal zones; b. sheltered or exposed habitats; c. type of shore where artificial 

structure was positioned. We include the climate where the design was tested next to the reference: *temperate, †subtropical, ‡tropical. The 

key reference is indicated by KR, and is the primary source of information for the design or study. The cost column includes only the cost of 

experiments, and costs were not scaled-up or standardised across studies. A dash (-) in any column indicates an unknown.  

Type Specific Design Intended Outcome Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

a.
 P

re
ca

st
 h

ab
it

at
 e

n
h

an
ce

m
e

n
t 

u
n

it
s 

 

Precast rock pools (59 L) 
were incorporated into a 
coastal defence structure 

composed of rock 
armour. 

 To vertically extend 
habitat in which marine 
life can live. To increase 
number of species & live 

cover of marine life 
compared to adjacent 

boulders. 

Yes: The design 
successfully mimicked 
natural high shore rock 

pool conditions. Live 
cover accounted for 89-
100% of water-retaining 

sections. 

 

DC  

a. Intertidal 
(mean 

higher high 
water zone) 

 
b. - 

 
c. - 

(Perkol-
Finkel and 

Sella, 
2015)*KR, 

(ECOncrete 

Inc., 

2019)*/† 

- 

A precast concrete 
BIOBLOCK (1.5 x 1.5 x 1.1 

m; 5.4 t) was placed 
within a rock armour 

(boulder) groyne in front 
of a seawall. It comprised 

multiple habitat types 
including rock pools, pits 

& ledges. 

To test whether the 
BIOBLOCK would support 
more species compared 

to adjacent boulders. 

Yes: BIOBLOCK supported 
over twice as many 
species as adjacent 

boulders (12 months).  

 

R  
 

a. Intertidal 
 

b. - 
  

c. Sandy 
shore  

(Firth et al., 

2014b)*KR 

Approx. 
£2000 for 

mould, 
concrete 

& delivery. 
D Roberts 

ECOncrete 
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Ecologically enhanced 
precast ECOncrete© 

Antifer (EA) units (1 m³; 
2.3-2.5 t) with complex 

surfaces including pits & 
crevices, composed of 3 

different concrete 
matrices, were placed 
within a breakwater 

made of standard 
concrete Antifer (SA) 

units. 

To test whether EA units 
would support more 

species, greater 
abundance of species & 
fewer invasive species 
compared to adjacent 
breakwater SA units. 

Yes: The number of 
species & abundance of 

invertebrates & fish were 
higher. Numbers of 

invasive species were 
lower on EA compared to 

SA. 

 

DC  
 

a. Subtidal 
 

b. - 
 

c. - 
 

(Sella and 
Perkol-
Finkel, 

2015)†KR, 
(ECOncrete 

Inc., 

2019)†  

- 

ECOncrete 
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Type Specific Design Intended Outcome Successful? Photograph DC or R? Habitat Ref Cost 

b
. A

rt
if

ic
ia

l r
o

ck
 p

o
o

ls
 

Drill-cored rock pools of 
2 depths (5 cm, 12 cm; 
both 15 cm diameter) 

were added on the 
horizontal surfaces of 
granite boulders on a 

breakwater. 

To increase number of 
species in drill-cored rock 

pools compared to 
adjacent freely-draining 

rock surfaces on the 
boulders. To mimic 

natural rock pools on 
adjacent shores. 

Yes: Artificial pools 
supported greater 
number of species 

compared to adjacent 
surfaces. Pools supported 

comparable number of 
species to natural rock 

pools; No: Artificial pools 
supported different 

communities of marine 
life compared to natural 

rock pools. 

 

R  

a. Intertidal 
 

b. Exposed 
(seaward 

side of 
breakwater) 

 
c. Sandy 

shore 
 

(Evans et 
al., 

2016a)*K

R, (Firth 
et al., 

2014b)* 

Approx. 
£2000 
which 

included 2 
workers, 4 
days & 40 

drilled 
pools. 

In-filled cores with 
concrete to create rock 

pools (10 cm deep) on an 
intertidal breakwater. 
Cores were originally 

created by engineers to 
test boulder density. 

To increase number of 
species in the pools 

compared to the 
adjacent free-draining 

surfaces of the boulders 
by providing habitat. 

Yes: Pools supported 
significantly greater 

number of species than 
adjacent surfaces. 
Note: This was a 

demonstration project 
with few replicates. 

 DC – cores 
drilled in 

boulders; R 
– cores then 
in-filled with 

concrete 
 

a. Intertidal 
 

b. - 
 

c. Sandy 
shore 

(Firth et 
al., 

2014b)*K

R 
 

< £3 per 
core. It 
took 2 

workers 
approx. 2 
h to in-fill 
9 cores.  

Rock pools were created 
by pouring concrete into 
wave energy-dissipating 
units around buckets at 

high & low shore heights. 
These units were located 

along a causeway that 
had exposed & sheltered 

sides. 

To compare number of 
species & functional 
groups among pools.  

Pools high on the shore 
& sheltered pools were 
expected to fail, whilst 
lower & exposed pools 

were expected to 
succeed. 

Yes: Total number of 
species & functional 

groups: lower shore > 
upper shore. 

No: Mean number of 
species were similar 

between lower & upper. 
 

 
DC – cores 
drilled in 

boulders; R 
– cores then 
in-filled with 

concrete 

a. Intertidal 
(low & high) 

 
b. Exposed 
& sheltered 

 
c. Mixed 
sandy & 
boulder 
shore 

(Firth et 
al., 

2016a)*K

R 

Pools (80) 
were 

created 
using a 
digger, 
truck & 
cement 

mixer over 
5 days; 
approx. 
€38 per 

pool. 

A J Evans 

L B Firth 

L B Firth 
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Type Specific Design 
Intended 
Outcome 

Successful? Photograph DC or R? Habitat Ref Cost 

c.
 D

ri
lle

d
 p

it
s 

Pits (14 & 22 mm 
diameter; 25 mm depth) 
were drilled into vertical 

sides of 100 t wave-
breaker units that were 

deployed on a 
breakwater. Each pit 
was drilled at a slight 
angle to retain water. 

Plots of equivalent area 
with no pits were used 

as controls. 

To increase 
number of species 

in & around pits 
compared to 

control plots with 
no drilled pits. 

Yes: Greater 
number of species 

in & around pits 
compared to 
control plots. 

 

R – after 
blocks were 

cast but 
during the 
hardening 

process 
when 

concrete 
was still soft  

a. Intertidal 
 

b. Exposed 
(seaward side 
of breakwater) 

 
c. Artificial 
boulders 

surrounded by 
deep water 

(Firth et al., 

2014b)*, 
(Jackson, 
2015)*KR 

This is a low-
cost option.  

University staff 
drilled 100 pits 

in 1 h. 

d
. M

o
d

if
yi

n
g 

sl
o

p
e

 

Replaced a structure 
composed of rock 

armour with a pocket 
beach comprising 
pebbles & cobbles 
(approx. 100 m). 

To provide a case 
study for 

increasing habitat 
for invertebrate 

animals & larval & 
juvenile fish. 

Yes: Greater 
number of species 
of invertebrates, & 
increased densities 

of larval fish & 
juvenile salmon 

within the pocket 
beach. 

Note: As this was a 
case study, there 

was only one 
replicate. 

 

R 

a. Intertidal 
 

b. - 
 

c. Shore 
composed of 
mixed sand & 

gravel 
sediments 

(Toft et al., 
2013)*KR 

This design was 
part of a larger 

project that 
consisted of 

reinforcement 
of existing 
seawall & 
associated 

habitat 
enhancements 
(Total = US $5.5 

mil). 

L B Firth 

J Toft 
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Type Specific Design 
Intended 
Outcome 

Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

e
. P

re
ca

st
 p

an
e

ls
 

Concrete panels (30 x 30 cm) 
were attached to horizontal 

& vertical surfaces on an 
intertidal breakwater. Panels 

had 6 large pits (30 mm 
diameter, 20 mm depth), 13 
small pits (15 mm diameter, 
20 mm depth) or 4 large & 4 

small pits. Smooth panels 
were used as controls. 

To test if 
artificially 
enhanced 

complexity at 
a scale of < 10 

cm could 
increase 

number of 
species 

compared to 
controls. 

Yes: Total number of 
species was significantly 

higher on panels with pits 
compared to control 

panels.  

R 

a. 
Intertidal 

(mean tide 
level) 

 
b. Exposed 

 
c. Sandy 

shore 

(Moschella 

et al., 

2005)*KR, 
(Witt et al., 

2012)* 

- 

Concrete panels (75 x 30 cm) 
divided into 6 sections (25 x 
25 cm) were attached to a 

breakwater composed of 22- 
& 30-tonne blocks 

embedded in asphalt. The 6 
sections (treatments) varied 

in geometric shape & 
texture: (1) horizontal 

grooves, (2) vertical grooves, 
(3) pits, (4) coarse texture, 

(5) fine texture & (6) smooth 
texture. 

To investigate 
colonisation 

by marine life 
of panels 

consisting of 
different 

geometric 
shapes & 
textures. 

Yes: Initially, sections 
with pits & fine & coarse 
textures supported more 

green algae than the 
sections with smooth 
texture. Sections with 

grooves & pits supported 
mussels & winkles. In 

general, panels in the low 
& middle intertidal were 
colonised quicker than 

panels in the high 
intertidal. 

 

R 

a. 
Intertidal 
(low, mid, 

high) 
 

b. 
Sheltered 
& exposed 

 
c. - 

 

(Borsje et 
al., 

2011)*KR 
- 

 

 

 

 

 

 

 

 

 

 

 

 

P S Moschella 

Source: ELSEVIER 
Borsje et al., 2011 
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Type Specific Design 
Intended 
Outcome 

Successful? Photograph 
DC 
or 
R? 

Habitat Ref Cost 

f.
 L

iv
in

g 
sh

o
re

lin
e

s/
h

yb
ri

d
 d

e
si

gn
s 

‘Hybrid stabilization.’ 
This is a technique that 

converts a degraded 
intertidal salt marsh & 

associated subtidal 
areas to a sand fill with 

a planted marsh. A 
stabilising structure 

(low-profile stone sill) is 
constructed parallel to 
& on the channel side 

of the marsh.  

To investigate 
changes in biological 

community 
structure, marsh 

plants & sediment of 
marsh sills were 

compared to natural 
fringing marshes, 
unvegetated tidal 

flats & riprap 
revetments. 

Partially: Results varied 
depending on site & tidal 

zone (intertidal versus 
subtidal). Marsh sills 

lagged in primary 
production & 

biogeochemical 
processes by 5-10 yrs. In 
general, however, marsh 
sills were found to be a 

viable option for erosion 
mitigation & enhancing 
habitat & water quality. 

 

DC 

a. 
Intertidal 
& shallow 
subtidal 

 
b. 

Sheltered  
 

c. Salt marsh 

(Bilkovic 
and 

Mitchell, 
2013)*KR 

- 

Mangrove seedlings 
were transplanted on 
the landward side of 

breakwaters. 
Breakwaters dissipated 

wave energy & 
promoted 

sedimentation, which 
facilitated mangrove 

growth. 

To stabilise the 
coastline for 

mangrove seedling 
settlement & 

establishment. This 
should promote 

mangrove 
development & 

protect the eroding 
coastline. 

Yes: The presence of the 
breakwater resulted in 
sediment deposition, & 

substrate elevation 
increased to a height 

appropriate for 
mangrove growth. 

 

DC 

a. 
Intertidal 

 
b. - 

c. Mud flat 
& 

mangrove 
fringe 

(Hashim et 
al., 

2010)‡KR, 

(Kamali et 

al., 2010)‡ 

Approx. US 

$142,000 ha
-1 

which included 
restoration, 

training, 
monitoring, 

construction & 
maintenance. 

Mangroves were 
reared in a nursery (15 

months) & then 
transplanted to 

sheltered & exposed 
field sites within 

armoured concrete 
cultivator pots.  

To test a new 
technique for the 

restoration of 
mangroves in 

exposed 
environments. 

Partially: Mortality rates 
after 2 direct hurricane 
hits was 57% & 26% at 

the exposed & sheltered 
sites, respectively. The 
fully sheltered control 

mangroves suffered 19% 
mortality.  

- 

a. 
Intertidal 

 
b. 

Exposed & 
sheltered 

 
c. Mud flat & 

mangrove 
fringe 

(Krumholz 
and Jadot, 

2009)‡KR 

- 

 

K Duhring, CCRM-VIMS 

J Krumholz  

R Hashim 
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Type Specific Design Intended Outcome Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

g.
 T

ra
n

sp
la

n
t 

Transplanted juveniles of a 
threatened canopy-forming 
algae from degraded sites – 

where severe habitat loss was 
occurring – onto a breakwater 
(landward & seaward sides), 

natural habitat (boulders > 10 
m3) & native habitat (area 
from which juveniles were 
initially collected). Algae 

attached to small, fragmented, 
loose boulders were collected 

from the degraded sites & 
epoxied to substrate in the 

new habitats. 

To test 
establishment 

success of algae on 
natural habitats & on 
landward (sheltered) 
& seaward (exposed) 
sides of breakwaters 

compared to 
degraded sites. 

Greater mortality of 
algae on the seaward 
side compared to the 
landward side of the 
breakwater. Greater 

mortality (nearly 100%) 
in the degraded native 
sites compared to the 
breakwater & natural 

habitat. Note: If 
implementing this 

method on a large scale, 
consider cultivating the 

target species in the 
laboratory. 

 

R 

a. Subtidal 
 

b. Sheltered 
(landward) & 

exposed 
(seaward) 

 
c. Degraded 
sites – rocky 

shore; 
transplanted 

sites – 
breakwater on 

sandy shore 

(Perkol-
Finkel et 

al., 
2012)†KR, 
(Ferrario 

et al., 
2016)† 

- 
 

h
. R

e
vi

e
w

s 

(Subramanian et al., 2008; Firth et al., 2014b; Dafforn et al., 2015a; Dafforn et al., 2015b; Dyson and Yocom, 2015; Dafforn et al., 2016; Firth et al., 2016b; Narayan et al., 
2016; Mayer-Pinto et al., 2017; Munsch et al., 2017) 

 

 

 

S Perkol-Finkel 
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Table 2. Ecological engineering design details for vertical and sloping seawalls. “Type” refers to the general type of eco-engineering. 

Within each “type”, designs are listed from small to large scale where applicable. Success of designs was based on the authors’ own 

interpretations. “DC or R” describes whether implementation of design can be during construction (“DC”) or added retrospectively (“R”). 

“Habitat” includes 3 pieces of key information about the environmental context in which the design was placed: a. intertidal or subtidal 

zones; b. sheltered or exposed habitats; c. type of shore where artificial structure was positioned. We include the climate where the design 

was tested next to the reference: *temperate, †subtropical, ‡tropical. The key reference is indicated by KR, and is the primary source of 

information for the design or study. The cost column includes only the cost of experiments, and costs were not scaled-up or standardised 

across studies. A dash (-) in any column indicates an unknown.  

Type Specific Design Intended Outcome Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

a.
 P

it
s,

 g
ro

o
ve

s 
&

 c
re

vi
ce

s 

Small (12 mm diameter, 10 mm 
depth) & large (24 mm 

diameter, 10 mm depth) pits 
were drilled into a basalt 

seawall (25 x 25 cm areas). 
Evenly spaced pits were drilled 
in 2 density treatments: high 

density (16 pits) & low density 
(8 pits). 

To increase abundance of 
overexploited limpets in & 

around drilled pits compared 
to control areas of a seawall. 

 

Yes: 10x as many limpets 
were observed in & around 

pits. Seven years after 
installation, limpets were 

more abundant in all 
enhanced treatments 
except the small pit 

diameter & lesser pit 
density. 

 

R 

a. Intertidal 
 

b. - 
 

c. Boulder 
shore 

(Martins et 
al., 

2010)*KR, 
(Martins et 
al., 2016)* 

< €600 
total. 
The 

drilling 
took 5 
days (1 

worker). 

Six treatments of pits were 
drilled into a seawall: (i) no 

pits, (ii) 16 small pits (2.5 cm 
diameter, 0.5 cm deep), (iii) 16 
large pits (5 cm diameter, 0.5 
cm deep), (iv) 4 large pits, (v) 
16 grooves (1 cm wide, 5 cm 

long, 0.5 cm deep), (vi) mixture 
of grooves, small & large pits. 

To compare abundance of 
sessile (attached) & 

mobileinvertebrates & algae 
among: (1) pit sizes, (2) pit 

shapes, (3) experimental pits 
compared to mixture of 

habitat, (4) exp’l pits 
compared to control areas of 

without pits. 

Yes: Small & large pits & 
grooved habitats supported 
higher density of chitons, & 

grooves & small pits 
supported greater numbers 

of limpets compared to 
controls during some times 

of sampling. Over time, 
however, effects lessened 
as the pits were filled with 

sessile species. 

 
R  
 

a. Intertidal  
 

b. Sheltered 
 

c. - 

(Chapman 
and 

Underwood, 
2011)*/† KR 

- 

Wet mortar was manipulated 
to create grooves, pits & 

crevices in a newly constructed 
seawall. 

To increase number of 
species compared to 

untreated areas of mortar. 

Yes: Crevices supported 
greater number of species 
compared to grooves, pits 

& control plots. 

 DC 

a. Intertidal 
 

b. - 
 

c. Sandy 
shore 

(Naylor et 
al., 2012; 

Firth et al., 
2014b)*, 
(Jackson, 
2015)* KR 

Pits and 
grooves 

were 
created 

while 
mortar 
was still 

wet.  

G Martins  

Source: ELSEVIER 
Chapman & Underwood, 

2011 

L B Firth 
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Type Specific Design Intended Outcome Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

b
. P

re
ca

st
 p

an
e

ls
 

Concrete panels (400 x 400 x 
32 mm) of 2 levels of 

complexity (complex & simple) 
comprised of 4 sub-panels (200 
mm x 200 mm x 32 mm) each 
with different structure types 
(holes, towers, grooves, darts) 
were deployed at 2 heights on 

seawalls at 2 sites. The 
software program, CASU, was 

used to create the panels while 
controlling for surface area. 
Granite panels were used as 

controls. 

To test the independent 
effects of complexity & 

different structural 
component types among 
treatments & controls in 

order to increase number of 
species, abundance & 

community composition. 

Yes: Complex panels 
supported greater number 

of species & different 
biological community 

composition independent 
of surface area compared 

to simple panels & controls. 
Panels with holes 

supported greatest 
abundance & number of 

species. Structure type had 
an effect on number of 

species that was 
independent of complexity. 

 R 

a. Intertidal 
 

b. 2 sites: 1 
sheltered; 1 

exposed 
 

c. Sandy 
shore 

 

(Loke et al., 
2014)‡, 

(Loke and 
Todd, 

2016)‡KR 

- 

Three treatments of habitat 
enhancement test panels (1.5 x 

2.3 m; flat, finned, stepped) 
with 2 textures (smooth & 
cobbled) were added to a 

seawall. 

To compare number & 
abundance of species among 

the test panels. 

Yes: The finned design & 
the cobbled texture panels 
supported greater species 

abundance. This 
experiment functioned as 
the foundation study for 
construction of seawall 

panels with added benches 
in Seattle, WA, USA (seen in 

photo). 

 

R – test 
panels 
DC – 

seawall 
panels 

& 
benches 

a. Intertidal 
 

b. - 
 

c. - 

(Cordell et 
al., 2017)* 

KR 
- 

 

 

 

 

 

 

 

J Toft 

Grooves 

Holes 

L H L Loke 
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Type Specific Design 
Intended 
Outcome 

Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

c.
 A

rt
if

ic
ia

l r
o

ck
 p

o
o

ls
 

Precast concrete 
“Vertipools” (5 L) 
were attached to 

a seawall.  

To promote 
recruitment of 

species that are 
typically missing 
from seawalls by 

adding water-
retaining features. 

Yes: Additional species 
(incl. species of crabs & 

blennies) were recorded in 
the Vertipools that were 

not present on the seawall 
& within natural pools. 
Overall, the Vertipools 

supported greater number 
of species than the 

seawall.  
Note: Vertipools should 

only be affixed to seawalls 
in sheltered environments. 

 

R 

a. 
Intertidal 

(mid & 
high) 

 
b. - 

 
c. - 

(Artecology)*KR, 
(Hall, 2018)* 

 

£500-1000/ 
unit for 

construction & 
installation 

depending on 
environment. 

Precast concrete 
flowerpots (6 L, 
10 L) were fixed 
to seawalls. The 

pots were 
submerged at 

high tide & 
retained water 
during low tide. 

To support species 
found in natural 
rock pools but 

which are typically 
missing from 
seawalls by 

incorporating 
water-retaining 

features into the 
seawall. To 

compare species 
abundance 

between seawalls 
with pots & 

seawalls with no 
pots. 

Yes: 25 species colonised 
pots that were not found 
on the adjacent seawall. 

Pots also supported 
greater live cover & 

density of marine life 
compared to established 
assemblages on seawalls. 
Shallower pots & those at 

mid-shore supported 
greater abundances & 

number of species than 
deeper pots at high shore 

levels (7 months). At 
certain times, some fish 
were more abundant at 

the seawall with 
flowerpots, but results 
varied throughout the 

year.  
 

 

R 

a. 
Intertidal 

(mid & 
high) 

 
b. - 

 
c. - 

(Browne and 

Chapman, 

2011)*/†KR, 
(Browne and 

Chapman, 2014; 

Morris et al., 

2017a; Morris et 

al., 2018b)*/† 

AU $300 per 
flowerpot for 

manufacture & 
installation. 

R Morris 

I Boyd 
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Addition of 
round-bottom 
cavities into a 

seawall by using 
sandbags in 

place of blocks 
during wall 

repairs, after 
which, bags were 

removed. 
Cavities held 
water at low 

tide. 

To provide habitat 
for larger species of 
organisms that are 
rare on featureless 

seawalls by 
incorporating 

water-retaining 
features. 

Yes: Increased rock pool 
species that are not 
normally found on 

featureless seawalls (i.e., 
octopuses & urchins). 

 

DC 
(repairs) 

a. 
Intertidal 

 
b. - 

 
c. - 

(Chapman and 
Underwood, 
2011)*/†KR 

- 

Omitted 
sandstone blocks 

during seawall 
construction to 
create cavities 

(30 x 30 x 60 cm) 
with outer lips (5 
cm high barrier) 
to retain water 

at low tide. 

To increase 
abundance & 

number of species. 
To compare 

number of species 
in cavities to 

external façade of 
wall & within 
natural pools. 

Yes: Greater number of 
species of algae & sessile 
& mobile invertebrates in 
cavities at all tidal heights 

compared to external 
façade, & expanded 

species distribution over a 
greater tidal range. The 
cavities also provided 

habitat for species that are 
rare on seawalls. 

 

DC  

a. 
Intertidal 

(low, 
mid, 
high) 

 
b. - 

 
c. - 

(Chapman and 
Blockley, 

2009)*/†KR, 
(Chapman and 
Underwood, 

2011)*/† 

- 

Source: ELSEVIER 
Chapman & Underwood, 2011 

Source: ELSEVIER 
Chapman & Underwood, 2011 
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Type Specific Design Intended Outcome Successful? Photograph 
DC 
or 
R? 

Habitat Ref Cost 

d
. M

o
d

if
ie

d
 s

e
aw

al
l s

lo
p

e
 &

 s
e

aw
al

l r
e

m
o

va
l 

Replaced a vertical metal 
wall with a stepped slope 

(vertical & horizontal 
surfaces) of rocks to reduce 

the slope. 

To increase abundance & 
number of species in an 

industrial area. 

No: No observed increase in 
abundance & number of 

species, but did observe more 
species on vertical compared 

to horizontal stepped 
surfaces. 

 

DC 

a. Intertidal 
 

b. Sheltered 
 

c. - 

(Chapman 
and 

Underwood, 
2011)*/†KR 

- 

Replaced vertical seawalls 
with sloping unconsolidated 

boulders in an industrial 
area. A large horizontal area 

at the low tide level was 
included at 2 of these 

seawalls. 

To increase slope & 
expanse of the intertidal 

zone. To compare 
abundance & number of 

species on the slope of the 
unconsolidated seawall to 
the original, & to compare 
abundance & number of 
species on a horizontal 

area to a sloping area over 
the same tidal height. 

No: No observed increase in 
abundance & number of 

species. This was a sheltered 
& biodiversity-poor shore 
with high levels of human 
disturbance. This design 

should work if it can be done 
in a more exposed area, as it 
offers rare boulder habitat. 

 

R 

a. Intertidal 
 

b. Sheltered 
 

c. - 

(Chapman 
and 

Underwood, 
2011)*/†KR 

- 

A low-terrace habitat bench 
(approx. 290 m) was placed 

in front of an existing 
seawall. The bench was 

composed of coarse rocky 
substrate. 

To provide a case study for 
increasing habitat for 

invertebrates, & larval & 
juvenile fish. 

Yes: The habitat bench area 
supported greater number of 

species of invertebrates, & 
increased densities of larval 

fish & juvenile salmon. As this 
was a case study, there was 

only one replicate. 

 

DC 
 

a. Intertidal 
 

b. - 
 

c. Mixed 
sand & 
gravel 

sediments 
 

(Toft et al., 
2013)*KR 

- 

Complete seawall removal 
(including sloping riprap & 
gabion baskets). Replaced 
with a gradual beach slope 

composed of gravel & cobble 
sediment as well as riparian 
vegetation in the upland. A 
nearby natural beach was 

used as a control. 

To measure response of 
macroinvertebrates at 3 
tidal heights (mid, upper, 

supratidal) post 
restoration, & provide a 

case study for future 
seawall removal & beach 

restoration projects. 

Yes: Macroinvertebrates in 
the area directly affected by 
seawall removal (supratidal) 
responded more positively 

than those in the mid- & high 
intertidal. Restored beach 
functions as & resembles a 

natural beach. 

 

 
 
 

R 

a. Intertidal 
(mid, high,  
supratidal 

[splash zone]) 
 

b. - 
 

c. Sandy 
shore 

(Toft et al., 
2014)*KR - 

Source: ELSEVIER 

Chapman & Underwood, 2011 

M G Chapman 

J Toft 

Before 
intervention 

After 
intervention  

J Toft 
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Type Specific Design Intended Outcome Successful? Photograph 
DC 
or 
R? 

Habitat Ref Cost 

e
. T

ra
n

sp
la

n
t 

Transplanted hard & soft 
corals & sponges onto a 

seawall. Animal fragments 
were collected from local 

reefs & reared in a 
mariculture facility (1 month) 

& then self-attachment to 
cement tiles was facilitated 

for the soft corals & sponges 
(hard corals were attached 
directly to seawall). Cement 
tiles were then attached to a 
seawall with marine epoxy. 

To test survivorship of 
corals & sponges after 
transplantation onto 

seawalls. 

Yes: Results were 
mixed, but generally, 
massive & encrusting 

species were more 
successful at 

establishing on the 
seawall, & these 
species provided 

food & shelter to fish 
& gastropods. 

Note: Water quality 
may affect survival of 

sensitive coral 
species. 

 

R 

a. Intertidal 
(low) 

 
b. - 

 
c. - 

(Ng et al., 
2015)‡KR 

- 

f.
 G

ar
d

e
n

in
g 

A seawall was partitioned into 
2 sections, & within it, a salt 

marsh was planted as a 
horizontal garden. 

To observe if a salt marsh 
could persist & grow on a 

seawall, & increase 
abundance & number of 
species. However, there 
were no natural marshes 

in the area for comparison. 

Many salt marsh 
plants continued to 
grow after planting, 
but little monitoring 
has been conducted 

since planting. 

 

R 

a. Intertidal 
 

b. - 
 

c. -  

(Chapman and 
Underwood, 
2011)*/†KR 

- 

g.
 P

la
ce

m
e

n
t 

in
 f

ro
n

t 

o
f 

se
aw

al
l 

No formal study to date; this 
is a suggested intervention. 

 
Artificial boulders of varying 

boulder sizes can be placed in 
front of a seawall if preserving 
the structural integrity of the 

seawall is the objective.  

Boulder fields in nature 
provide habitat for marine 
life. If enhanced through 
addition of gaps, crevices 
or grooves, or by infilling 
density cores (see Firth et 

al., 2014b), artificial 
boulders could function to 

support a wider 
assemblage of marine life. 

Note: Boulders are 
typically constructed 
to be very smooth, 
which offers poor 
habitat for marine 

life. 
This design increases 
the footprint of the 

structure, thus 
design is only 

advisable when the 
structure needs 

protection.  

 

- 

a. 
Intertidal 
& subtidal 
possible 

 
b. 

Typically 
used on 
exposed 
shores 

 
c. - 

(Pister, 2009)*, 
(Chapman, 

2012)*/†, 
(Liversage et 

al., 2017)*/†KR 

- 

h
. R

e
vi

e
w

s 

(Chapman and Underwood, 2011; Dafforn et al., 2015a; Dafforn et al., 2015b; Dyson and Yocom, 2015; Dafforn et al., 2016; Firth et al., 2016b; Mayer-Pinto et al., 2017; 
Munsch et al., 2017) 

 

L Ng  

Sponge 

Coral 

Source: ELSEVIER 
Chapman & Underwood, 2011 

K A O’Shaughnessy 
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Table 3: Ecological engineering design details for over-water structures and their associated supporting pilings. “Type” refers to the 

general type of eco-engineering. Within each “type”, designs are listed from small to large scale where applicable. Success of designs was 

based on the authors’ own interpretations. “DC or R” describes whether implementation of design can be during construction (“DC”) or 

added retrospectively (“R”). “Habitat” includes 3 pieces of key information about the environmental context in which the design was 

placed: a. intertidal or subtidal zones; b. sheltered or exposed habitats; c. type of shore where artificial structure was positioned. We include 

the climate where the design was tested next to the reference: *temperate, †subtropical, ‡tropical. The key reference is indicated by KR, and 

is the primary source of information for the design or study. The cost column includes only the cost of experiments, and costs were not 

scaled-up or standardised across studies. A dash (-) in any column indicates an unknown. 

 

 

 

 

 

Type Specific Design 
Intended 
Outcome 

Successful? Photograph  Habitat Ref Cost 

a.
 L

ig
h

t-
p

e
n

e
tr

at
in

g 
d

e
si

gn
s 

Over-water platforms (2.4 x 
3.7 m) made from fibreglass 

grating material were 
constructed 1.2 & 1.5 m above 

mean high water. 

To compare the 
effects of platform 
height on seagrass 

survival by 
measuring light 

penetration 
compared to an 

unshaded control. 

Yes: Although fibreglass grating 
allowed significantly less light to 

penetrate compared to the 
unshaded control, grating material 
at both heights promoted sufficient 

light penetration for seagrass 
persistence. Current regulatory 

guidelines now recommend 
construction of piers over seagrass 
beds be made with fibreglass grid 

materials. 

 DC 

a. 1.2 & 1.5 
m above 

mean high 
water 

 
b. Sheltered 

 
c. Positioned 

above a 
sandy shore 

(Shafer and 
Lundin, 

1999)†KR,  
(Shafer and 
Robinson, 

2001)†, (Shafer, 
2002)† 

- 

®Sunlight Direct fibre optic 
lighting system was installed 

on one side of a ferry terminal 
(105 x 36 m). Each light cable 

illuminated a 1.5 x 7 m area of 
the water. The system 

collected ambient natural light 
from above & transmitted it to 

below the terminal. 

To alleviate dock 
edge shadow so 

that juvenile 
salmon would swim 
under the terminal. 

Yes: When artificial light was used 
to mitigate dock edge shadow, 

salmon swam closer to the dock. 
No: When artificial light was used 
on a non-shaded area of water, 

salmon avoided the area. 
Note: Artificial light may negatively 

impact other marine life (see 
Gaston et al., 2013; Davies et al., 

2014). 

 

R 

a. - 

 

b. - 

 
c. - 

(Ono and 
Simenstad, 

2014)*KR 
- 

Source: WRAP 
Shafer & Robinson, 2001 

Source: ELSEVIER 
Ono & Simenstad, 2014 
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Type Specific Design Intended Outcome Successful? Photograph 

DC 
or 
R? 

Habitat Ref Cost 

a.
 L

ig
h

t-
p

e
n

e
tr

at
in

g 
d

e
si

gn
s 

(c
o

n
ti

n
u

e
d

) 

Conducted field trials with off-
the-shelf products (SunTunnel©, 

deck prisms, a metal halide 
greenhouse light, metal gratings) 

that promote light passage 
through over-water structures. 

To determine alternative 
means to increase light 

intensity under ferry 
terminals by measuring 

minimum photosynthetically 
active radiation for eelgrass 

primary production. 

Yes: If built ≤ 3 m above 
eelgrass, all products allowed 
enough light to penetrate for 
eelgrass growth. Highest to 

lowest light-penetrating 
material: metal gratings, 

SunTunnel©, metal halide 
greenhouse light, dock prisms. 

 

DC 

a. Approx. 
3 m above 

mean 
water level 
 

b. - 

 
c. - 

(Blanton 
et al., 

2002)*KR 
- 

Light-penetrating walkways 
made of glass brick were 

installed along a waterfront area 
as part of a larger ecosystem 

restoration project. 

To allow enough light to pass 
through an overwater 
structure to facilitate 

improvement to a salmon 
migration corridor & increase 
ecosystem-wide productivity. 

At the time of writing, this 
design was in the construction 

phase. 

 

DC 

a. - 

 

b. - 

 
c. - 

(Cordell 
et al., 

2017)*KR 
- 

J Toft 

Source: WA STATE DPT. OF  
TRANSPORTATION 
Blanton et al., 2002 
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Type Specific Design Intended Outcome Successful? Photograph 
DC 
or 
R? 

Habitat Ref Cost 

b
. P

ie
r 

p
ili

n
g 

e
n

h
an

ce
m

e
n

ts
 

Synthetic, free-hanging 
ropes (“pole-hulas”, 55 cm 

long, 6 cm diameter) 
attached to high-quality 

canvass bands were 
wrapped around metal & 

wooden pier pilings. 

To test techniques to 
increase abundance & 
number of species, & 

reduce invasive species 
abundance on pier pilings. 

Yes: Abundance & 
number of species 
increased on the 

experimental pier pilings. 
The invasive oyster did 
not recruit to the pole 

hulas. 
Note: This design may 

potentially add plastic to 
the environment. 

 

R 

a. 
Intertidal 
& subtidal 
 

b. - 

 
c. - 

(Paalvast et al., 
2012)*KR 

- 

Ecological concrete 
encasement ("jacket“) 

positioned around 
deteriorating pier pilings. 
Jackets were composed of 

concrete with added texture 
to the surface, which has 

previously shown to enhance 
recruitment & growth of 

marine life. 

To increase live cover on 
ecological jackets 

compared to control 
fibreglass jackets. To 

incorporate ecologically-
sensitive designs into 

construction of an urban 
waterfront structure. 

Yes: Jackets showed 70-
100% live cover of marine 
life compared to 20-50% 
on controls (3 months). 

Jackets showed 90-100% 
live cover of marine life 
compared to 40-85% on 

controls (14 months). 

 

R 

a. 
Intertidal 

 

b. - 

 
c. - 

(Perkol-Finkel 
and Sella, 
2015)*KR, 

(ECOncrete Inc., 
2019)*/†  

- 

c.
 R

e
vi

e
w

s 

(Shafer, 2002; Dyson and Yocom, 2015; Geist and Hawkins, 2016; Munsch et al., 2017) 

P Paalvast 

ECOncrete 
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Table 4: Ecological engineering design details for flood defence and erosion mitigating structures in tidal rivers. “Type” refers to the 

general type of eco-engineering. Within each “type”, designs are listed from small to large scale where applicable. Success of designs was 

based on the authors’ own interpretations. “DC or R” describes whether implementation of design can be during construction (“DC”) or 

added retrospectively (“R”). “Habitat” includes 3 pieces of key information about the environmental context in which the design was 

placed: a. intertidal or subtidal zones; b. sheltered or exposed habitats; c. type of shore where artificial structure was positioned. We include 

the climate where the design was tested next to the reference: *temperate, †subtropical, ‡tropical. The key reference is indicated by KR, and 

is the primary source of information for the design or study. The cost column includes only the cost of experiments, and costs were not 

scaled-up or standardised across studies. A dash (-) in any column indicates an unknown.  

Type Specific Design 
Intended 
Outcome 

Successful? Photograph 
DC 
or 
R? 

Habitat Ref Cost 

a.
 W

al
l m

an
ip

u
la

ti
o

n
s 

Green wall modules: 
Plastic modules filled 

with soil & faced 
with coir (coconut 

fibre) & wire mesh. 
Designed for use on 

steep intertidal 
embankment walls. 

To increase 
vegetative 

cover along 
intertidal 

embankment 
walls. 

Yes: Successful recruitment & 
colonisation of plants in the 

modules. Greatest colonisation 
was seen in more sheltered 

locations. 
Note: If possible, use stainless 
steel brackets, as these have a 

longer lifetime & less risk of 
dislodgement & plastic 

pollution. 

 

R 

a. Intertidal 
 

b. - 

 
c. - 

(Francis, 
2009)*, 

(Francis et 
al., 

2015)*KR  

< £4000 
for 40 

modules. 

Timber fenders & 
ledges were installed 

on sheet piling 
crenellations. 

To trap more 
sediment & 

seeds 
compared to 
an adjacent 

concrete river 
wall. 

Yes: Fenders & ledges trapped 
seeds & subsequently 

supported plant communities 
typical of natural intertidal 

rivers. 

 

R 

a. Intertidal 
 

b. - 

 
c. - 

(Steele, 
1999)*KR, 
(Francis et 
al., 2008)* 

- 

C Cockel 

R A Francis 
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Coir roll (coconut 
fibres) seed traps 

were affixed to flood 
defence walls at 12 

sites. At each site, 15 
coir rolls were 

attached in 
horizontal & vertical 

orientations. Rolls 
were installed 
Jun/Jul 2008 & 

removed Jan/Feb 
2009. 

To determine 
the number of 

species of 
seeds caught 
in the traps: 

(1) at 
different trap 

heights; (2) 
downstream 

versus 
upstream; (3) 
vertical versus 

horizontal 
orientation; & 
(4) compared 

to seeds 
spontaneously 
colonising the 

wall. 

Yes: Number of species of 
seeds was higher in coir rolls 

compared to river wall, & some 
of the seeds had germinated. 
Number of species of seeds 

was higher in coir rolls at lower 
tidal height & further 

upstream. No difference in 
number of species of seeds was 

observed between vertical & 
horizontal trap orientations. 

Note: If possible, use stainless 
steel mesh, as it has a longer 

lifespan & less risk of 
dislodgement & plastic 

pollution. 

 

R 

a. Intertidal 
(2 levels 
around 

mean high 
water) 

 

b. - 

 
c. - 

(Hoggart 
and 

Francis, 
2014)*KR 

- 

S P G Hoggart 



 

292 

 

Type Specific Design 
Intended 
Outcome 

Successful? Photograph 
DC 
or 
R? 

Habitat Ref Cost 

b
. S

u
gg

e
st

e
d

 in
te

rv
e

n
ti

o
n

s 
fr

o
m

 o
th

er
 s

ys
te

m
s 

Along a pond embankment, 
3 treatments were 

deployed: (1) coir (coconut 
fibre) geotextile with 
planted grass, (2) coir 
geotextile alone & (3) 

control plot. Although this 
design was within a pond, it 

could be applied to low-
energy tidal river 
embankments. 

To determine the 
effectiveness of 
coir geotextiles 

for slope 
protection & to 

reduce soil 
erosion, increase 

vegetation growth 
& increase soil 

moisture 
compared to non-

coir control. 

Yes: Coir 
geotextiles planted 

with grass 
stabilised slopes, 
reduced erosion, 
promoted grass 

growth & retained 
moisture & 
nutrients 

compared to 
control plot. Coir 
geotextile alone 

had similar effects 
but not as 
significant. 

 

R 

a. Not tidally-
influenced 

 
b. Sheltered 

 
c. Pond 

embankment, 
but application 
for tidal river 
embankment 

possible in low-
flow areas 

(Vishnudas 
et al., 

2006)†/‡KR 
- 

Vetiver – a tropical 
clumping grass that can 

filter sediment, strengthen 
soil & mitigate erosion – 

was planted on an eroding 
road embankment. Geo-

Jute – a biodegradable net 
made of jute (vegetable 
fibre) – was applied over 

the vetiver grass because it 
prevents the displacement 
of soil & it remains wet for 

several days after 
absorption, helping the 

growth of vegetation. An 
area without the Geo-Jute 

application was used as the 
control. 

To increase 
growth of vetiver 
& decrease the 

rate of erosion in 
the areas treated 

with Geo-Jute 
compared to the 

areas without 
Geo-Jute. 

Yes: Geo-Jute 
prevented the 
erosion of soil 
before vetiver 

growth. With time, 
vetiver successfully 

grew at the sites 
with Geo-Jute.  

R  

a. Not tidally-
influenced 

 
b. N/A 

 
c. Road  

embankment, 
but application 
for tidal river 
embankment 

possible in low-
flow areas 

(Islam, 
2013)†/‡KR, 
(Greenfix)* 

Application of 
vetiver & Geo-

Jute for 
erosion 

mitigation is 
less expensive 

than 
traditional 

erosion 
control 

techniques. 

Source: HYDROL. EARTH SYST. SCI 
Vishnudas et al., 2006 

greenfix.co.uk 
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c.
 F

lo
at

in
g 

ra
ft

s 

Floating island rafts can be 
made from a variety of 

materials – here a recycled 
cable drum (approx. 2 m2) 

was used. Rafts can be 
moored in protected 
locations in tidal river 

channels & urban 
waterways. 

To provide a 
surrogate habitat 
for riparian plant 

& animal 
communities in 
urban systems. 

Yes: Plant & animal 
species successfully 

recruited to & 
colonised the rafts. 

Also shown to 
function as bird 

habitat. 

 

R 

a. Intertidal 
 

b. - 

 
c. - 

 

(Francis et 
al., 

2008)*KR 
See 

(Hancock, 
2000)* for 

bird habitat 
& (Yellin, 

2014)* for 
fish habitat 

< £1000 per 
raft. 

d
. R

e
vi

e
w

s 

(Radspinner et al., 2010; Environment Agency, 2013; Dyson and Yocom, 2015; Geist and Hawkins, 2016; Natural Environment Research Council, 2017; The River Restoration 
Centre, 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C Cockel 
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Table 5: Ecological engineering design details for offshore structures. “Type” refers to the general type of eco-engineering. Within each 

“type”, designs are listed from small to large scale where applicable. Success of designs was based on the authors’ own interpretations. 

“DC or R” describes whether implementation of design can be during construction (“DC”) or added retrospectively (“R”). “Habitat” 

includes 3 pieces of key information about the environmental context in which the design was placed: a. intertidal or subtidal zones; b. 

sheltered or exposed habitats; c. type of shore where artificial structure was positioned. We include the climate where the design was tested 

next to the reference: *temperate, †subtropical, ‡tropical. The key reference is indicated by KR, and is the primary source of information for 

the design or study. The cost column includes only the cost of experiments, and costs were not scaled-up or standardised across studies. A 

dash (-) in any column indicates an unknown.  

Type Specific Design Intended Outcome Successful? Photograph  Habitat Ref Cost 

Planning & Existing 

a.
  T

e
st

e
d

 in
te

rv
e

n
ti

o
n

s Large pits (12 x 15 x 30 cm) 
were created in 

foundation units of wave 
energy structures (3 m 

diameter, 1 m height, 10 t) 
at 2 levels. Colonising biota 
in pits were compared to 

control foundations 
without pits & adjacent 

sandy bottom. 

To explore the potential for 
enhancing the abundance 

of associated fish & 
crustaceans at the bottom 
of wave energy structures. 

Partially: There was significantly 
higher abundance of edible crabs 
on the foundation units, but no 

noticeable differences in 
abundance of mobile organisms, 

& a negative effect on abundance 
of spiny starfish compared to 

adjacent soft bottom sediment. 
Presence of pits on the units had 

no effect on fish species. 

 

DC 

a. 
Subtidal 

 
b. - 

 
c. Sandy 
bottom 

(Langhamer 
and 

Wilhelmsson, 
2009)*KR 

- 

b
. S

u
gg

e
st

e
d

 

in
te

rv
e

n
ti

o
n

s 

No formal study to date; 
this is a suggested 

intervention. 
 

Synthetic fronds could be 
secured around the base 

of a turbine. 

The primary function can 
be to aggregate sediment 

around the turbine for 
support, & then secondarily 

function as habitat that 
mimics seagrass for fish & 

invertebrate. 

- 

 

- 

a. 
Subtidal 

 
b. - 

 
c. - 

(Wilson and 
Elliott, 2009)KR 

- 

Source: ELSEVIER 
Langhamer & Wilhelmsson, 

2009 

Source: WILEY INTERSCIENCE   
Wilson & Elliot, 2009 
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c.
 E

n
h

an
ce

 t
ar

ge
t 

sp
e

ci
e

s 

One-tonne tetrapod units 
(4-pronged concrete units) 

were deployed 300 m 
offshore at 14 m depth on 

a mixed sand & gravel 
bottom where no 

seaweeds were naturally 
growing.  

To form beds of a brown 
algal species where it was 

not naturally growing. 

Yes: Initial densities of the algae 
were estimated at 200 individuals 

m-2 (approx. 6 months). Long-
term measurements showed the 

algae were growing on the 
seafloor adjacent to the 

tetrapods (24 months), & after 48 
months, standing crop was 

similar to natural densities in 
nearby areas. 

 

- 

a. 
Subtidal 

 
b. - 

 
c. Mixed 
sand & 
gravel 

(Watanuki and 
Yamamoto, 
1990)*/†KR 

- 

L B Firth 
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Type Specific Design Intended Outcome Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

Planning & Existing 

d
. C

o
as

ta
l i

n
te

rv
e

n
ti

o
n

s 
fo

r 
p

o
te

n
ti

al
 o

ff
sh

o
re

 a
p

p
lic

at
io

n
 

Concrete units typically 
used to create 

submerged nearshore 
artificial reefs (e.g., 

ReefballsTM, 
www.reefball.org) have 
the potential to be used 

as scour protection 
around turbines. 

ReefballsTM (1.2-1.3 m 
high; 1600-2000 kg) 

were deployed in 
nearshore waters (1.6-

2.0 m depth) to create a 
submerged breakwater. 

To trial a new 
application for 
ReefballsTM as 

shoreline stabilisation 
& habitat for marine 

life. 

Yes: The ReefballTM 
breakwater withstood 

hurricanes (categories 3 & 
5) without a single unit 

moving, & created habitat 
for marine life. 

Note: To increase 
resistance to movement, 

ReefballsTM have been 
affixed to the seafloor by: 

(1) driving rods/pilings 
through the units & into 

the seafloor; & (2) 
attaching the units to an 

articulated mat. 

 

- 

a. Intertidal & 
subtidal 
possible 

 
b. - 

 
c. Sandy bottom 

(Harris, 
2009)†/‡KR, 
(Reef Ball 

Foundation 
Inc, 

2017)†/‡, 
(ARC 

Marine, 
2019)* 

- 

No formal study to date; 
this is a suggested 

intervention. 
 

Tetrapods (4-pronged 
concrete units), dolos 

units (unreinforced 
concrete & steel fibres) 
& other precast energy 
dissipating units have 

the potential to be used 
as scour protection 

around turbines. 

If enhanced through 
addition of pits, 

crevices or grooves, 
or using eco-friendly 
concrete, these units 

could function to 
support a wider range 

of marine life. 

Note: Tetrapods are 
typically constructed to be 
very smooth, which offers 

poor habitat for marine life. 

 

- 

a. Intertidal & 
subtidal 
possible 

 
b. Typically 

used on 
exposed 
shores 

 
c. Typically 

used on sandy 
or mixed sand 

& gravel 
bottom 

(Wilson 
and Elliott, 

2009)KR 
- 

reefball.org 

L B Firth 
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No formal study to date; 
this is a suggested 

intervention. 
 

Artificial boulders of 
varying boulder sizes can 

be used as scour 
protection around 

turbines. 

Boulder fields in 
nature provide 

habitat for marine 
life. If enhanced 

through addition of 
gaps, crevices or 

grooves, or by infilling 
density cores (see 

Firth et al., 2014b), 
artificial boulders 
could function to 
support a wider 

assemblage of marine 
life. 

Note: Boulders are typically 
constructed to be very 

smooth, which offers poor 
habitat for marine life. 

 

- 

a. Intertidal & 
subtidal 
possible 

 
b. Typically 

used on 
exposed 
shores 

 
c. - 

(Pister, 
2009)*, 

(Chapman, 

2012)*/†, 

(Liversage 
et al., 

2017)*/†KR 

- 

 

 

K A O’Shaughnessy 
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Type Specific Design 
Intended 
Outcome 

Successful? Photograph 
DC or 

R? 
Habitat Ref Cost 

Decommissioning 
e

. C
re

at
e

 a
rt

if
ic

ia
l r

e
e

fs
 

Rigs-to-reefs program in 
the Gulf of Mexico 

provides 
decommissioning 

options for oil & gas 
platforms that have 

ceased production: (1) 
tow to reef site, (2) 

topple-in-place or (3) 
partially remove the 

platform. 

To provide habitat 
for marine 

organisms & 
preserve habitat 
for established 

marine life on the 
platform. 

 

Yes: This method has been in 
effect in Louisiana & Texas 
waters since 1986 & 1991, 

respectively. As of 2006, the 
Louisiana Artificial Reefs 

Program (LARP) has utilised > 
120 decommissioned oil & gas 

platforms to create > 83 
artificial reefs. Reefs support 
almost all major invertebrate 

groups, which, in turn, support 
fish & other mobile species.  

 DC 

a. Subtidal 
b. - 

c. Typically 
sandy bottom 

(Dauterive, 
2000)†, (Kaiser, 

2006a)†KR, 
(Kaiser and 
Pulsipher, 
2005)†KR, 

(Louisiana Rigs 
to Reefs 

Program)† 

Cost to create 
a reef from a 
platform is 

typically lower 
than 

commissioning 
transport for 

shore disposal. 

The concept of 
“renewables-to-reefs” is 
currently in the planning 

stages. 

To mitigate 
potential negative 

effects of a 
“renewables-to-

reefs” program on 
the deep-sea 

environment while 
providing habitat 
for benthic fish & 

invertebrates. 

- - R 
a. Subtidal 

b. - 
c. - 

(Macreadie et 
al., 2011)KR, 

(Smyth et al., 
2015)KR 

- 

f.
 R

e
vi

e
w

s 

(Kaiser and Pulsipher, 2005; Ekins et al., 2006; Wilhelmsson et al., 2010; Lacroix and Pioch, 2011; Macreadie et al., 2011; Callaway et al., 2017) 

Source: NATIONAL MARINE 
FISHERIES SERVICE—

GALVESTON 
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