
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2020-06-04

Rule-Based Security Monitoring of

Containerized Environments

Gantikow, H

http://hdl.handle.net/10026.1/15847

10.1007/978-3-030-49432-2_4

Springer International Publishing

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Rule-based Security Monitoring of Containerized
Environments

Holger Gantikow1, Christoph Reich2, Martin Knahl3, and Nathan Clarke4

1 science+computing ag, Atos, Tübingen, DE
gantikow@gmail.com

2 Institute for Cloud Computing and IT Security, Furtwangen University, Furtwangen, DE
christoph.reich@hs-furtwangen.de

3 Faculty of Business Information Systems, Furtwangen University, Furtwangen, DE
martin.knahl@hs-furtwangen.de

4 Center for Security, Communications and Network Research, Plymouth University, Plymouth,
UK

N.Clarke@plymouth.ac.uk

Abstract. Containers have to be secured in a multi-tenant environment. To se-
cure the use of containerized environments, the effectiveness of a rule-based se-
curity monitoring approach have been investigated.
The approach of this paper can be used to detect a wide range of potentially
malicious behaviour of workloads in containerized environments. Additionally
is able to monitor the actual container runtime for misuse and misconfiguration.
In order to evaluate the detection capabilities of the open-source tools utilized
in a container, various scenarios of undesired behaviour are closely examined.
In addition, the performance overhead and functional limitations associated with
workload monitoring are discussed. The proposed approach is effective in many
of the scenarios examined and its performance overhead is adequate, if appropri-
ate event filtering is applied.

Keywords: Container Virtualization · Docker · Security · Monitoring · Anoma-
lous Behaviour · System Call Tracing

1 INTRODUCTION

Virtualization at the operating system level using containers has gained popularity over
the past few years, mainly driven by the success of Docker. As all containers share the
same kernel of the underlying Linux host system, a lower resource overhead compared
to virtual machines can be achieved with this lightweight virtualization type (Felter
et al., 2015). This is particularly important when deploying an application and its de-
pendencies independently of the underlying host system is at the center of interest, as it
is important with micro-service architectures, for example. Containers are often used to
provide basic components, such as web servers, databases, service discovery services
or message brokers. In addition, containers offer the advantage that they can be eas-
ily integrated into suitable Continuous Integration, Delivery and Deployment (CI/CD)
tools and pipelines and can be distributed to be run on different runtimes with the help



2 Gantikow et al.

of several standards as specified by the Open Container Initiative (OCI) (Open Con-
tainer Initiative, 2017a; Open Container Initiative, 2017b). Containers have also made
their way into the domain of High Performance Computing (HPC). Containerized HPC
environment have the benefits of deploying user-provided code, improving collabora-
tion through simplified distribution, allow simple reproducibility, and have nevertheless
a low performance overhead. For containers used in HPC, a number of solutions were
developed, which differ significantly in terms of isolation mechanisms, that are the fo-
cus of this paper. These HPC specific solutions include Shifter (Jacobsen and Canon,
2015), Charliecloud (Priedhorsky et al., 2017), and above all Singularity (Kurtzer et al.,
2017).

Recent surveys (Sysdig, 2018) show, that Docker deployments are still most widespread,
with a share of 83% of the investigated systems. For this reason, the authors of this pa-
per focuse on the Docker container runtime, although, many aspects can be applied to
other solutions as well. However the development of general purpose container run-
times is ongoing and alternatives to Docker are appearing, such as Podman (Containers
Organization, 2019). Approaches that focus strongly on security, but are characterized
by a much smaller deployment rate, are for example SCONE (Arnautov et al., 2016)
and gVisor (Young et al., 2019). Besides of the great efforts of increasing the secu-
rity of the technology, in particular Docker (Combe et al., 2016), is sometimes viewed
critically. Most frequently it is listed as one of the major challenges (Portworx, 2018),
when deploying container technology in production. It should be noted that the situation
has improved significantly in recent years with the addition of complementary security
options. However, these are often disabled by default or being deactivated to ensure
smooth operation in terms of compatibility with a wide range of applications. How-
ever a current survey indicates that 94% of the participants still have container security
concerns and fear a rise of container security incidents (Tripwire, 2019).

To further increase the security level of containerized environments, this paper pro-
pose applying rule-based security monitoring to containerized environments. This pa-
per 5 explores the suitability of the approach for detecting a) various types of undesired
behaviour that might indicate misuse and attacks of workloads running inside a con-
tainer, and b) misconfigurations and attempts to extend privileges and reduce isolation
mechanisms in place at the container runtime level.

The rest of this paper is organized as follows: Section 2 provides a brief introduc-
tion to security mechanisms that can be applied to containerized environments. Section
3 describes the special monitoring characteristics regarding containerized workloads.
Section 4 discusses related work concerning container virtualization. Section 5 intro-
duces the rule-based security monitoring approach evaluated in Section 6. Section 7
discusses limitations of the proposed approach and future work. The paper concludes
in Section 8.

5 Note: This paper is both a revised and extended version of a previous publication (Gantikow
et al., 2019). The present version is characterized by an extension of the security monitoring
approach beyond the containerized workloads to the container runtime itself, in order to rec-
ognize misconfigurations and attempts to weaken isolation settings or extend privileges there.



Rule-based Security Monitoring of Containerized Environments 3

2 CONTAINERS AND SECURITY

The Linux Kernel features Control Groups (cgroups) and Namespaces are used to pro-
vide resource limiting (CPU, memory, IO) and process isolation and represent the basic
components of containers. These mechanisms are used to protect the host and other
containers from resource starvation by one container and to provide containerized pro-
cesses a confined instance of the underlying global system resources. Linux currently
provides the seven namespaces cgroups, IPC, Network, Mount, PID, User, UTS.

Meanwhile, most container runtimes provide support for already established Linux
security mechanisms that complement the essential mechanisms cgroups and names-
paces. To provide Mandatory Access Control (MAC) AppArmor and SELinux can be
utilized, which use the Linux Security Module (LSM) framework. These technologies
provide means to limit the privileges of a process and thus mitigate harmful effects in
the event of an attack.

Another Linux Kernel feature to decrease risks arising from undesired behaviour is
the Secure Computing Mode (seccomp), which makes it possible to implement a very
basic sandbox in which only a reduced number of system calls are available. In that way,
individual unneeded system calls can be specifically denied. However, this requires
a high degree of knowledge of the system calls required in a specific containerized
workload and must therefore be adapted on a per-container basis. The default seccomp
profile provided with Docker only disables 44 of over 300 system calls (Docker Inc.,
2019) to maintain wide application compatibility while providing a somewhat higher
level of protection. This includes sane defaults that can be applied to all containers,
such as blocking the reboot system call, which denies that a reboot of the host system
can be triggered from inside a container.

There exist further preventive security measures to secure containerized environ-
ments, described in greater detail in an overview paper (Gantikow et al., 2016),

These includes at the Linux Kernel level the possibility to remap the container root
user inside a container to a non-privileged user outside the container (User Namespaces)
or to use the Linux capabilities, which divide the privileges of the superuser into distinct
units, and can be activated or deactivated individually. However, capabilities are inferior
to seccomp in terms of granularity. For example, the capability SYS ADMIN bundles
a very large set of functionalities, which could be used to deactivate further security
measures (Walsh, 2016).

Another important role play tools that perform static analysis for vulnerabilities
on container images (CVE scanner), since they can be used to prevent images with
vulnerable code from being available or launched in the containerized environment in
the first place.

In general, the isolation provided by containers is still to considered to be weaker
than that of hypervisor-based approaches. While for instance Denial of Service (DoS)
protection provided by cgroups is to be considered effective as long as appropriate limits
are defined, better protection against Information Leakage is still in development.

Currently not all Linux subsystems are namespace-aware and in many locations
more information about the host system can be collected than it would be possible in a
virtual machine. Above all the /proc file system should be mentioned here, because it



4 Gantikow et al.

offers many possibilities for information leakage (Gao et al., 2017), which can provide
information for a tailor-made attack.

The risk of privilege escalation, allowing the modification of files on the host system
or a container breakout with full privileges on the host system, pose a serious problem
as well. This is often caused by misconfiguration, for example when containers are
started with elevated privileges or reduced isolation. For example, starting a container
with the –privileged flag causes the container to behave like a process with elevated
rights outside of a container as all capabilities are granted to the container. This flag is
required for special use cases, such as running Docker inside Docker and should never
be used in a regular scenario (Stoler, 2019).

Therefore a complementing preventive security measures is proposed adopting a
rule-based security monitoring, with the aim to detect misuse and common attacks in
containerized workloads, as well as misconfigurations and attempts to weaken isolation
or escalate privileges at the runtime level.

For the scope of this paper, we consider some widespread attack scenarios and take
advantage of containerization specific characteristics for monitoring. Use cases at the
containerized workload level include unauthorized file access as it can precede infor-
mation leakage, unexpected network connections and application startup, and attempted
privilege escalation. Use cases monitored at the runtime level include exposure of the
Docker REST API, various container lifecycle events and modifications to security and
performance isolation settings.

3 CONTAINERS AND MONITORING

The monitoring of containerized workloads requires a new approach, since traditional
agent-based approaches cannot be applied directly. Docker Containers in particular fol-
low the concept of application containers, which are made up of exactly one process per
container. This is in contrast to the operating system containers used by LXC, which,
while using the shared host kernel for all containers, start them as almost full-fledged
Linux systems that behave almost like a VM and allow for several services. Adding a
monitoring agent to a container would break the single process per container model and
moreover require a modification of the container image. The need for image modifica-
tion can be an unacceptable condition in environments where users demand the integrity
of the images they provide. Therefore, adding a process to a container that performs the
monitoring functionality from within a container is usually not advisable.

Also less suitable is the approach of using sidecar containers, which are started ad-
ditionally and take over the monitoring function in a dedicated way. These would have
to be started with elevated privileges and would result in increased resource consump-
tion if a dedicated sidecar container were started for each container.

Therefore, this approach rely on one monitoring agent per host. Thus no image
adjustment has to be performed, the one process per container model can be main-
tained and no additional overhead is caused by sidecar containers. In addition, a feature
of container virtualization is beneficial: containerized workloads are transparent to the
host system as regular processes. This means that a much more accurate view of the
virtualized workload can be collected by the host system with containers than would



Rule-based Security Monitoring of Containerized Environments 5

be possible with VMs. Also, the collected state information can be directly assigned to
the corresponding workload since there are no concurrent activities in a container that
could distort the picture, as likely caused by the guest system in a VM.

As a data source, our approach relies on the system calls that are issued by the
monitored containers. These get enriched with further context by the tools presented
in Section 5. System calls have the advantage that they map exactly what a process
is currently performing. In principle, further traditional performance metrics such as
CPU load, memory usage, I/O throughput could be included in the system described
for additional insights, but is not implemented as of now.

4 RELATED WORK

There are several projects available to increase the security in containerized environ-
ments, that build up on top of the basic container security technologies briefly in-
troduced in Section 2. The use of the complementing Linux Kernel security features
Capabilities, Seccomp and MAC is being recommended by a measurement study on
Container Security (Lin et al., 2018). According to the authors, these mechanisms pro-
vide more effective measures in preventing privilege escalation than the basic isolation
mechanisms (i.e. Namespaces and Cgroups) that build the foundation of containers.

The projects relying on the complementing Linux Kernel security features include
policy generators such as LicShield (Mattetti et al., 2015), which generates container-
specific AppArmor profiles based on a learning phase - or SPEAKER (Lei et al., 2017),
which divides the time a container is running into different phases and assigns optimized
custom seccomp profiles to them. This benefits from the fact that a service usually
requires significantly fewer unique system calls after the start and initialization phase.

The exclusive use of performance metrics collected at the hypervisor level for secu-
rity monitoring is discussed in approaches like (Nikolai, 2014). His effort to detect ma-
licious behaviour in hypervisor-based environments can be transferred to containerized
environments, but does not provide the accuracy system calls can provide. Furthermore,
an approach based on performance data only offers the possibility to determine what is
happening, but not why, unless additional data sources can be analyzed.

The usage of system calls for detecting malicious behaviour dates back to the sem-
inal work of Forrest. She proposed the usage of system call sequences to distinguish
between normal and anomalous behaviour (Forrest et al., 1996). Concurrent processes
such as background processes did however affect the detection accuracy. This situa-
tion is improved by the use of containerized workloads, since the one application per
container approach significantly reduces concurrency that leads to distortion of results.

Abed (Abed et al., 2015) investigates an approach where traces collected by strace
are used for anomaly detection without prior knowledge of the containerized appli-
cation. However, mimicry attacks (Kang et al., 2005) can be used to circumvent the
utilized Bag of System Calls approach.

Borhani (Alex Borhani, 2017) provides a paper that reports on the real-world feasi-
bility of Falco, but focuses less on its limitations but on the Incidence Response aspect.

The combination of system calls to detect anomalies with different approaches from
the field of Machine Learning has been investigated by a number of authors. Among



6 Gantikow et al.

them Maggi (Maggi et al., 2010), who used Markov models for system calls and their
arguments and (Koucham et al., 2015) who extended them with system call specific
context information and domain knowledge. An approach with neural networks based
on convolutional and recurrent network layers is offered by Kolosnjaji (Kolosnjaji et al.,
2016). His approach increased the detection rate of malware. Focus on distributed data
collection and processing of large amounts of data is put by Dymshits (Dymshits et al.,
2017), who uses an LSTM-based architecture and sequences of system call count vec-
tors.

To the best of our knowledge, we are not aware of literature that addresses security
monitoring of the container runtime interfaces.

5 OVERVIEW OF PROPOSED SYSTEM

Our approach is based on the Open Source tools Sysdig (Sysdig, 2019b) and Falco
(Sysdig, 2019a), which will be introduced in the following briefly. They differ from
other options, such as strace and eBPF (Fleming, 2017), by native support for several
container engines, including Docker, LXC and rkt. This support enables filtering of
collected data based on individual containers, specific system calls, file name patterns,
or network connection endpoints. The ability to use filters also significantly reduces
collection and processing effort.

5.1 Sysdig

Sysdig uses two core components to implement its functionality. A kernel module (sys-
dig probe) that uses the Linux Kernel facility tracepoints serves as a collection compo-
nent to capture all system calls of a process (or containerized process) as events. These
traces are then passed to a daemon that serves as the processing component.

Sysdig combines the functionality of a number of well-known analysis tools, includ-
ing strace, tcpdump and lsof and combines them with transaction tracing. The combi-
nation of the individual functionality offers a considerably deeper view of the system
and individual processes than would be possible with a single tool. Therefore, Sysdig
is also well suited for error analysis on a system. As already mentioned, Sysdig offers
various possibilities for filtering to reduce the amount of data collected. In the context
we utilized it, filtering for individual system calls, arguments passed to them, such as
file names, source of an event, like the container or process name,were beneficial.

5.2 Falco

Falco is best described as a behavioural activity monitor that complements Sysdig’s
system call capture functionality with the ability to detect anomalous activities based
on rules. To do so it relies on the same sysdig probe kernel module for system call
capturing.

At the core of the applicable rules are Sysdig filter options, which are referred to as
conditions. If a condition is evaluated as true, meaning that an event matched the given
requirements, the event is flagged as anomalous behaviour. This presupposes, however,



Rule-based Security Monitoring of Containerized Environments 7

that exact knowledge of the desired behaviour of a container is available to be able to
define the conditions that specify a violation. An anomalous activity could include start-
ing an unauthorized process, accessing unusual paths in file systems, outgoing network
connections, or attempts to modify system binaries and configuration files.

However, Falco can only detect point anomalies, i.e. single events where the de-
scribed conditions are met, such as the usage of an undesired system call. The rule set
currently does not provide means to allow the detection of collective anomalies or con-
textual anomalies where multiple conditions or additional preconditions have to be met.
This limits the detection capabilities to a certain extent, as the critical examination in
the evaluation will show. In addition, Falco only detects behavioural anomalies. A sub-
sequent mitigation beyond logging and notification derived therefrom is currently not
provided.

5.3 Architecture

Fig. 1. Proposed Rule-based Security Monitoring Architecture, based on (Gantikow et al., 2019).



8 Gantikow et al.

The architecture (see Fig. 1) is based on the corresponding figure from (Gantikow
et al., 2019), but has been adapted to reflect the extension of the rule-based monitoring
approach to the container runtime.

As already touched, both Sysdig and Falco use the same (sysdig probe) kernel mod-
ule for capturing system calls. System calls are the means by which user-level processes
interact with the operating system when they request services provided by it, such as
opening a file or initiating a network connection. As system calls are the only entry
point into the kernel to request such functionality, they are of high value when it comes
to capturing the behaviour of a process. The Sysdig kernel module not only captures the
identifiers of the system calls, but also the call parameters used and the return values
received, which provides further possibilities for evaluation.

Sysdig is responsible for the display and processing of the recorded events. It was
primarily used to create and test the Sysdig filters to be used as Falco conditions for
classifying an event as anomalous behaviour. The actual classification is carried out by
Falco. Falco uses rules to be created in advance (Figure 1, Rules) to decide on deviant
behaviour and can perform a basic notification (Figure 1, Incident Notification) using
logging frameworks, plain e-mail or messengers after a rule matches.

We are currently investigating how the current Incident Notification can be extended
to Incident Mitigation based on the severity of an event. One feasible and minimal-
istic approach would be to pause the workload, which is characterized by undesired
behaviour, retrieve the full state for further analysis and to restore it after analysis if
appropriate.

6 EVALUATION

In order to examine the applicability of the rule-based approach, security monitoring
was applied to two relevant layers in a containerized environment: a) Container Exe-
cution Level (Section 6.2), which concerns misuse and attacks occurring inside of con-
tainerized workloads, and b) Container Runtime Level (Section 6.3), takes misconfig-
urations and attempts to weaken isolation or extend privileges at the container runtime
interface itself into consideration.

The investigation on the two layers is each divided into two phases. In the initial
phase it was investigated if and how Sysdig can be used to detect the behaviour re-
garded as harmful. If the behaviour was detectable using a Sysdig filter, a Falco rule
was derived from this filter. In the second phase, the rule was then tested for its suitabil-
ity for automated detection of undesired behaviour.

We would like to point out that Sections 6.1 Test Environment and 6.2 Studied Mis-
use and Attacks at Container Execution Level were incorporated unmodified from the
paper (Gantikow et al., 2019), since both the test environment and the evaluated use
cases at container execution level remained unchanged for this extended version. The
same applies to Section 7.1 Performance Evaluation, as the section has remained un-
modified as well.



Rule-based Security Monitoring of Containerized Environments 9

6.1 Test Environment

The evaluation was carried out in a virtualized test environment. This means, referring
to Figure 1, that the host system is actually a virtual machine in our case. However, this
has no influence on the functionality of the described approach. We used the following
components in a VM with 1 Core and 4GB of memory and did not impose additional
container resource limits, unless otherwise noted:

OS: Debian GNU/Linux 9.5 (stretch)
Kernel: 4.9.0-8-amd64
Docker: Docker version 18.06.1-ce, build e68fc7a
Sysdig: 0.24.1
Falco: 0.13.0

Unless otherwise specified Debian GNU/Linux 9.5 (stretch) as container image has
been used.

6.2 Studied Misuse and Attacks at Container Execution Level

In order to examine the rule-based security monitoring approach for its suitability to
detect common misuses and attacks as they may occur in containerized workloads, a
series of scenarios was defined and evaluated for their detectability. In the following
section, these scenarios are briefly presented and the creation of the Sysdig filter and
the Falco rule are presented on an exemplary basis.

Unauthorized File Access
For the test setup of the Unauthorized File Access we used the deliberately insecure web
application WebGoat (OWASP, 2018). We used the already-available webgoat image on
Dockerhub and evaluated the detectability of the task Bypass a Path Based Access Con-
trol Scheme. This represents a directory traversal attack where the successful attacker
can access files outside the root directory of the web server. Such an attack is often used
to gain access to configuration files with passwords.

The following code represents the Sysdig condition, which also serves as the basis
for a Falco rule set.

container.name=webgoat
and evt.type=open
and evt.dir="<"
and fd.type=file
and not (fd.directory contains "/webapp")

The condition is true if the container name 6 is webgoat and the system call open
accesses a file outside a path containing the string /webapp.

6 The container name refers to the name of the running container instance as returned by docker
ps and not to the image name in general. The respective container ID (container.id) could also
be used as an alternative to the name.



10 Gantikow et al.

The example shows that it can be easily generalized and can be used, in addition to
restricting a service to its corresponding root directory, to monitor activity to access to
non-namespaced resources or other resources that could lead to information leakage.
An attempted write access, for example to directories containing system binaries, can
also be detected in this way. Furthermore, the condition itself can be extended by further
event parameters that have to be fulfilled, so that it is possible to detect when a process
not approved for this purpose tries to access a specific device.

Start of Unauthorized Application
A similarly well generalizable test case is the detection of the Start of Unauthorized
Applications inside a container.

list: authorized_processes
items: [ps, hostname]

condition:
container.name=debian-test
and evt.type=execve
and evt.dir="<"
and not (proc.name in (authorized_processes))

The condition thus recognizes the execution of programs that are not ps or hostname.
This can be used to allow a container to start only its corresponding service and to log,
for example, if a crypto miner or a (remote) shell is started, as might be the case in a
successful remote attack. The list authorized processes serves as a white list here.

Container Breakout (using nsenter)
Another test case examined was the detection of certain processes that are related to
specific threats, i.e. are maintained on a black list if necessary. In this example the
command nsenter was used to run a process within the name spaces of another process,
which is detectable by filtering for the system call setns. Although this mechanism is
typically blocked from within a container by other measures, there is still a risk of
misconfiguration. In addition, it can be useful to be able to log the access from the host
into a container by this procedure by adapting the container identifier to container.id =
host.

Unexpected Network Connection
In order to detect if a container establishes undesired connections to the internet, for
example to download malicious code for an exploit or to open a remote shell, the de-
tectability of Unexpected Network Connections was also examined. This can be im-
plemented by creating a white list with approved targets or limiting it to specific TCP
ports.

Loading of Kernel Module
Although it is not possible in the default configuration to load kernel modules on the
host from the container, the recent breakout from a Docker evaluation environment



Rule-based Security Monitoring of Containerized Environments 11

Play with Docker (Stoler, 2019) inspired us to consider this case. As described in the
referenced case, this can lead to a privilege escalation with full administrative privileges
on the host and thus control over additional containers.

Denial of Service (DoS)
Even though (if applied) cgroups can prevent a resource starvation of the host and other
containers in terms of CPU shares and memory, there is the possibility, depending on
the configuration, to fill up shared file systems, which is why this test case had to be
investigated.

Buffer Overflow
The last test case examined was whether it is in principle possible to detect buffer over-
flows using our rule-based approach. Abusing a buffer overflow is a common security
exploit, so that memory areas with executable code are overwritten with malicious code,
which can be the basis for an attack.

6.3 Security Monitoring at Container Runtime Level

Inspired by attacks made possible by misconfigurations that expose the Docker REST
API to the Internet (Chikvashvili, 2019), the previous work of monitoring containerized
workloads was extended to also monitor the container runtime / engine for unwanted
behaviour. This approach is also in line with the recommendations of NIST, which
recommends to examine the container runtime more closely for risks (Souppaya et al.,
2017). The advantage of monitoring on this layer is that these activities are independent
of the workload in the containers, i.e. no prior knowledge is required. Thus the rules
can be activated directly on a large number of hosts in a containerized environment.

We chose three areas of priority for the monitoring of the container runtime: a)
Monitoring the access to the Docker REST API, with the focus of detecting miscon-
figurations that expose the API over network. Monitoring the Docker command-line
interface (CLI) (docker * commands) for b) container lifecycle events and c) the mod-
ification of container security settings. Scenarios b) and c) are particularly relevant for
environments in which users, e.g. members of the docker group, have direct access to
the docker CLI without role-based access control (RBAC) mechanisms or restrictive
wrappers around the CLI being in place. In particular, c) can be misused in various
ways to extend privileges on the host to a level similar to root access and reduce secu-
rity and performance isolation. We have identified a number of misuse scenarios that
are briefly presented below.

Docker REST API
Since Docker 0.5.2 the REST API endpoint, which is used by the Docker CLI to in-
teract with the Docker Engine, switched from a (locally bound) TCP socket to a UNIX
socket, where access is controlled by the traditional UNIX permissions. The configura-
tion option to globally expose the REST API over HTTP(S) can still be enabled. As this
may lead to an attacker taking over the Docker Host, the hosts that are able to connect



12 Gantikow et al.

should be restricted to trusted hosts only and the API endpoints should be secured with
HTTPS and certificates. We identified the following undesired events:

Exposure of API Since exposure of the Docker REST API endpoint over the network
can have high security implications, monitoring for such misconfigurations should be
performed. The indicator used herefore is a process binding to port TCP/2375 (HTTP)
or TCP/2376 (HTTPS).

Connection to API In addition to monitoring for exposure, it should also be monitored
whether connections are established to these ports. This is important, if the monitoring
was started after the exposure of the API endpoints.

Container Lifecycle Events
The Container Lifecycle Events offer a variety of options that are well-suited to be
monitored. We have grouped the commands according to their functionality and their
potential for misuse, which we will describe briefly below.

Typical Lifecycle Events Commands in this group represent typical lifecycle commands
(pull, run, exec, pause, unpause, start, stop, kill), which for instance are used to down-
load images or start a container. These commands usually have no security-critical con-
text, but should be logged for auditing reasons. Especially if exec is used to execute
commands inside an already running container, as this indicates administrative inter-
vention.

Circumvention of Registries On a production system, it is unlikely if an image is not
downloaded from an image registry that might contain curated images, but is loaded
locally from the file system. In such a situation, this could mean that an attacker is
trying to launch an image that he has previously manually downloaded.

Publication of Images The same level of unlikelihood applies to saving, exporting or
uploading an image. Such events appear out of place on a production system and could
indicate that an attacker tries to export container images and extract them.

Exposure of Services In an environment where containers provide network accessible
services, publishing a service from the container is a valid intent. In environments where
this is not the case, the event when container ports are exposed to the host could indicate
misuse, such as to provide access for third parties.

Container Security Settings
Unrestricted access to the Docker CLI provides a variety of controls that may allow a
user to run a container with privileges very close to an administrative account on the
host system. Alternatively, restrictions can be modified to weaken the default isolation
of a container. We have identified a number of attack scenarios that should be monitored
accordingly.



Rule-based Security Monitoring of Containerized Environments 13

Usage of Additional Host Resources It is possible to pass host resources into the con-
tainer. These can be local file system directories, complete devices, including GPUs.
While there are use cases where this can be a practical approach, such an event can
have far-reaching security implications, as this can provide privileged access to the re-
source for the user starting a container this way.

Weakening of DoS Protection When starting a container, a large number of performance
limits can be imposed, such as limits for CPU and memory consumption. There are also
additional settings that may be used to protect against fork bombs (PID limit) or the
Out of Memory (OOM) killer. According to (Chelladhurai et al., 2016), the activation
of these limits is a suitable mean to ward off the effects of an attempted DoS through
a container. Consequently, modifications to these settings must be viewed critically. In
the default setting, no resource limits are active. However, in production operation such
limits should be applied.

Modification of Namespaces An adjustment of the namespace isolation can lead to
reduction of the default isolation, thus reduced security. Especially if a namespace is
set to =host, as this results in a sharing of the corresponding host namespace with the
container. Rare occasions where this would be acceptable include monitoring containers
that require an unrestricted system view.

Extension of Privileges The strongest possibility to extend the privileges through a
container is the option of starting a container in privileged mode. This results in the
container receiving the full set of capabilities and also cgroups-based limitations not
being applied. This results in a containerized process that has at least the same privileges
as if run directly on host. As the security implications are severe (see (Stoler, 2019)) this
behaviour is only justified in very rare cases, such as requiring Docker in Docker or as
a temporary workaround.

Modification of Security Options The –security-opt setting is one of the most powerful
controls as it allows to carry out adjustments on a variety of security tools that were
integrated later, This flag is used to modify SELinux settings, specify the AppArmor
profile to be applied, grant the gaining of new privileges and also specify which sec-
comp profile to use or disable seccomp protection altogether. Modifications made here
should therefore be examined with particular caution.

Modification of Performance Restrictions In addition to the DoS protection settings,
there are other settings to distribute the host’s capacity between multiple containers.
These include measures to limit the IO throughput of devices. Manual adjustments
should be examined critically.

6.4 Results

Table 1 summarizes the detectability of the scenarios presented in Section 6.2 regarding
Misuse and Attacks at Container Execution Level. For each scenario it is shown whether
a filter for general detection can be created with Sysdig, whether a automated detection



14 Gantikow et al.

Table 1. Summary of the detectability of various misuse and attack scenarios using Sysdig and
Falco, based on (Gantikow et al., 2019).

Scenario Sysdig Falco Indicator

Unauthorized File Access Yes Yes Violation of white list with authorized
files and directories

Start of Unauthorized Applications Yes Yes Violation of white list with authorized
application names

Container Breakout Yes Yes Black list - nsenter called - or violation
of white list

Unexpected Network Connection Yes Yes Violation of white list with authorized
communication partners

Loading of Kernel Module Yes Yes Black list - insmod called - or violation
of white list

Denial of Service Yes No Frequency of occurrences
Buffer Overflow No No Not applicable

can be implemented with Falco, and what can be used as an indicator of the undesired
behaviour.

As the table shows, it is possible to create a rule for Falco in almost all of the cases
investigated, if the event can be detected by a Sysdig filter. Many of the examined cases
can be restricted in terms of examined objects through the use of a white list or black list
based approach. This is possible for example with the detection of non-authorized file
access, the start of a non-authorized application - or similar, easily derivable scenarios.
However, this requires an exact knowledge of the workload to be examined and an
adjustment of the lists on a per image basis.

Since Falco does not currently provide support for the occurrence frequency of an
event, it is currently not possible to use Falco for the detection of DoS attacks. One-
time access to a service itself can be captured by Sysdig - and thus also converted into
a Falco condition. However, the frequency of events cannot be taken into account.

The recognition of a buffer overflow is also not feasible as intended, since it can
normally also not be recognized by static analysis. The execution of a particular exploit
that can trigger a buffer overflow could in principle be detected by relying on the system
calls and their respective order. However, Falco can only detect anomalies based on a
single system call, not on their sequence in a particular order. In addition, the approach
would not be generalizable and remain tied to a specific exploit. Blocking the execution
of an exploit using the process identifier or binary name is not worth the effort, as this
can be circumvented by renaming it. The exclusive operation of approved applications
and the detection of unapproved network lines is more effective here.

Tables 2, 3, 4 present the results of the evaluation of Security Monitoring at con-
tainer runtime level, broken down into the three areas, as of Section 6.3. The tables list
in each case the title of the scenario, the feasibility of detection with Sysdig and Falco,
as well as the respective indicators for the occurrence of the threat.

The results show a distinct picture. In all three areas it is possible to detect the
corresponding events through Sysdig filters with very little effort and to convert them



Rule-based Security Monitoring of Containerized Environments 15

into corresponding Falco rules, which allow for an automated monitoring. In most cases
it is sufficient to filter the call of the Docker CLI for the corresponding sub command
or command line parameters. The search terms used are specified in the column of the
respective scenario as indicator.

The proposed approach for monitoring on the container runtime layer offers the
possibility to capture a wide range of potentially malicious behaviour with limited ef-
fort. Even if the lifecycle commands are rather logged for audit purposes, the method is
useful to get an overview of events in the environment, especially if users are granted
interactive access to the Docker CLI. As mentioned before, it is possible to roll out
identical rule sets to monitor the runtime layer to a large number of container hosts
in a containerized environment without having to know about the workloads running
inside the containers. However, one should think about how to classify the severity of
each event 7, since pausing a container is considered much less critical than starting a
privileged container.

Table 2. Summary of the detectability of exposure of and connections to the Docker REST API
using Sysdig and Falco.

Scenario Sysdig Falco Indicator

Exposure of API Yes Yes bind() to TCP/2375 or TCP/2376
Connection to API Yes Yes Connection to TCP/2375 or TCP/2376

Table 3. Summary of the detectability of various Docker Lifecycle Events using Sysdig and Falco.

Scenario Sysdig Falco Indicator

Typical Lifecycle Events Yes Yes pull, run, exec, pause,
unpause, start, stop, kill

Circumvention of Registries Yes Yes import, load
Publication of Images Yes Yes export, save, push
Exposure of Services Yes Yes --publish , -p, --publish-all ,

-P

7 DISCUSSION

Our research has shown that there are a number of limitations in the tools used that
should not go unmentioned. For example, Falco does not support DoS detection because
the rules used do not support the frequency of occurrence of an event. Here one would

7 Currently Falco provides the priority categories emergency, alert, critical, error, warning, no-
tice, informational, debug.



16 Gantikow et al.

Table 4. Summary of the detectability of modifications to Docker Security Settings using Sysdig
and Falco.

Scenario Sysdig Falco Indicator

Usage of Additional Host Resources Yes Yes --mount, -v, --volume,
--device, --gpu

Weakening of DoS Protection Yes Yes -m, --memory, -c, --cpu,
--blkio-, --device-,
--pids-limit, --ulimit
--oom-kill-disable

Modification of Namespaces Yes Yes --ipc, --network, --pid,
--userns, --uts

Extension of Privileges Yes Yes --privileged mode, --cap-add
Modification of Security Options Yes Yes --security-opt
Modification of Performance Restric-
tions

Yes Yes *iops, *bps

wish for a threshold value to be adjustable in the rules, so that notifications take place
only if an event occurred n times during a specific time interval.

Falco’s rules also do not allow the integration of load sensors, so that for example
a notification could be given when certain load thresholds have been reached, or these
could be used as a decision-making assistance for alleged false positives.

It has been shown that profound knowledge about the properties and requirements
of a containerized application is almost mandatory for the creation of rules. Although
there are certainly generalizable rules, the example of the web application (see Section
6.2) shows that applications regularly have a different locations where they keep their
data. Other individual properties include the name of the service to be run in the con-
tainer, so that all other applications can be blocked, or which network connections are
necessary. Depending on the environment, this may not be a concern, for example, if an
environment consists of a large number of containers, all of which are started from the
same image. In this case, the appropriate rule set can be applied to all of the running
containers and be maintained on based on the shared image. In more individual envi-
ronments, or environments in which users may use containers for interactive work, the
configuration effort is significantly higher.

The white/black list approach also has limitations, i.e. when an attacker knows the
content of the lists and can prepare himself accordingly. Especially file name-based
approaches can be bypassed by renaming files easily.

However, the tools used are characterized by the fact that they can also be applied
to other container runtimes. Although we have only tested the use with Docker, rules
for monitoring containers can be applied to containers started with other runtimes. For
the monitoring of the Runtime CLI a higher adaptation effort is necessary, as the rules
utilized where Docker CLI specific.



Rule-based Security Monitoring of Containerized Environments 17

Table 5. Sysdig overhead for various statistics of sysbench-fileio benchmark in comparison to
baseline run without Sysdig.

sysbench-fileio statistic Sysdig with full capture Sysdig with filter

Operations performed (total) 1,81% 0,00%
Requests/sec executed 4,72% 2,97%
Total number of events 4,72% 2,97%
Total time taken by event execution 5,48% 0,67%
Per-request statistics: avg in ms 10,53% 3,51%

Average Overhead 5,45% 2,02%

7.1 Performance Evaluation

To determine the performance overhead caused by security monitoring, we made use
of a traditional benchmark tool: Sysbench (Kopytov, 2019), of which we created a con-
tainerized version. To exclude buffering effects when using the filesystem-level bench-
mark fileio included with Sysbench, we used it with a test file four times the amount
of the available memory. During each 5min run of the benchmark a corresponding cap-
ture file was created with Sysdig and afterwards several performance indicators of the
sysbench-fileio run were evaluated.

In order to be able to rate how high the benefit of using filters is a) a full capture and
b) a capture with an active filter was created, which limited the recording to the open()
system call, as one would use if one only wanted to log file accesses of a container. As
baseline served measurements of the sysbench-fileio without activated Sysdig capturing
and all benchmark runs (deactivated Sysdig, Sysdig with full capture, Sysdig with filter)
were averaged over three runs each. All runs were performed in the same virtual test
environment described in Section 6.1.

It was observed that over several measurements the average overhead in case a)
(full capture) was 5,45%, whereas the use of the filter reduced the overhead in case b)
to 2,02%. The use of the filter also affected the size of the capture file. In b) only 270
events needed to be recorded, resulting in a 1,2MB trace file, whereas the unfiltered case
a) logged 3.270.522 events in a 270MB file on average. This implies, that if possible,
filters should be activated for data and overhead reduction. The overhead, broken down
by individual sysbench-fileio statistic, is shown in Table 5.

8 CONCLUSIONS

The investigated approach has shown the general applicability of a rule-based approach
for monitoring containerized environments. The focus was on the monitoring of work-
loads running in containers and of the interfaces of the Docker Container Runtime. It
has been shown that the approach can detect a variety of undesired behaviour with a
low performance overhead. In addition, the creation of an appropriate set of rules, es-
pecially for the monitoring of commands sent via the CLI, can be done with moderate
effort.



18 Gantikow et al.

However, when monitoring containerized workloads, automated rule creation should
be performed, since the requirements typically differ from workload to workload, i.e.
in most cases they can only be generalized on a per-image basis. In cases where it is
not possible to create a corresponding set of rules, one should consider the use of a be-
haviour monitor that compares the current behaviour against a stored reference model.
However, this approach would also require a certain amount of time for the creation of
a behaviour model, so that this approach cannot be applied directly as well.

Scenarios that are not yet covered should also be considered, e.g. if commands such
as nsenter or the associated system call setns) can be used to execute commands within
a running container by bypassing docker exec since its use is monitored.

It is planned that future work will address security monitoring of distributed work-
loads, where shared workloads strongly interact across host boundaries. Sysdig and
Falco already offer corresponding interfaces that cover container schedulers like Ku-
bernetes. We are also interested in further automating rule generation and introducing
incident mitigation beyond notification.



Bibliography

[Abed et al., 2015]Abed, A. S., Clancy, T. C., and Levy, D. S. (2015). Applying bag of system calls
for anomalous behavior detection of applications in linux containers. 2015 IEEE Globecom
Workshops, GC Wkshps 2015 - Proceedings.

[Alex Borhani, 2017]Alex Borhani (2017). Anomaly Detection, Alerting, and Incident Response for
Containers. SANS Institute InfoSec Reading Room, (GIAC GCIH Gold Certification).

[Arnautov et al., 2016]Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,
J., Muthukumaran, D., Stillwell, M. L., Goltzsche, D., Eyers, D., Pietzuch, P., and Fetzer,
C. (2016). SCONE: Secure Linux Containers with Intel SGX. Osdi, pages 689–704.

[Chelladhurai et al., 2016]Chelladhurai, J., Chelliah, P. R., and Kumar, S. A. (2016). Securing docker
containers from Denial of Service (DoS) attacks. Proceedings - 2016 IEEE International
Conference on Services Computing, SCC 2016, pages 856–859.

[Chikvashvili, 2019]Chikvashvili, Y. (2019). Cryptocurrency Miners Abusing Contain-
ers: Anatomy of an (Attempted) Attack. [ONLINE] Available at: https:
//blog.aquasec.com/cryptocurrency-miners-abusing-containers-anatomy-
of-an-attempted-attack. [Accessed 31 July 2019].

[Combe et al., 2016]Combe, T., Martin, A., and Di Pietro, R. (2016). To Docker or Not to Docker:
A Security Perspective. IEEE Cloud Computing, 3(5):54–62.

[Containers Organization, 2019]Containers Organization (2019). Podman. [ONLINE] Available at:
https://podman.io/. [Accessed 31 July 2019].

[Docker Inc., 2019]Docker Inc. (2019). Seccomp security profiles for Docker. [ONLINE] Available
at: https://docs.docker.com/engine/security/seccomp/. [Accessed 31 July 2019].

[Dymshits et al., 2017]Dymshits, M., Myara, B., and Tolpin, D. (2017). Process monitoring on se-
quences of system call count vectors. Proceedings - International Carnahan Conference on
Security Technology, 2017-October:1–5.

[Felter et al., 2015]Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015). An updated perfor-
mance comparison of virtual machines and linux containers. In 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages 171–172.

[Fleming, 2017]Fleming, M. (2017). A thorough introduction to ebpf. [ONLINE] Available at:
https://lwn.net/Articles/740157/. [Accessed 14 January 2019].

[Forrest et al., 1996]Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T. (1996). A sense of self
for Unix processes. In Proceedings 1996 IEEE Symposium on Security and Privacy, pages
120–128.

[Gantikow et al., 2016]Gantikow, H., Reich, C., Knahl, M., and Clarke, N. (2016). Providing se-
curity in container-based HPC runtime environments. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 9945 LNCS:685–695.

[Gantikow et al., 2019]Gantikow, H., Reich, C., Knahl, M., and Clarke, N. (2019). Rule-based Se-
curity Monitoring of Containerized Workloads. In Proceedings of the 9th International
Conference on Cloud Computing and Services Science, pages 543–550, Heraklion, Crete -
Greece.

[Gao et al., 2017]Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D., and Wang, H. (2017). Contain-
erLeaks: Emerging Security Threats of Information Leakages in Container Clouds. Pro-
ceedings - 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2017, pages 237–248.

[Jacobsen and Canon, 2015]Jacobsen, D. M. and Canon, R. S. (2015). Contain This, Unleashing
Docker for HPC. Cray User Group 2015, page 14.



20 Gantikow et al.

[Kang et al., 2005]Kang, D.-k., Fuller, D., and Honavar, V. (2005). Learning Classifiers for Misuse
Detection Using a Bag of System Calls Representation. Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security United States Military Academy, West
Point, NY, pages 511–516.

[Kolosnjaji et al., 2016]Kolosnjaji, B., Zarras, A., Webster, G., and Eckert, C. (2016). Deep learning
for classification of malware system call sequences. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 9992 LNAI, pages 137–149.

[Kopytov, 2019]Kopytov, A. (2019). Sysbench: Scriptable database and system performance bench-
mark. [ONLINE] Available at: https://github.com/akopytov/sysbench. [Accessed
14 January 2019].

[Koucham et al., 2015]Koucham, O., Rachidi, T., and Assem, N. (2015). Host intrusion detection us-
ing system call argument-based clustering combined with Bayesian classification. IntelliSys
2015 - Proceedings of 2015 SAI Intelligent Systems Conference, pages 1010–1016.

[Kurtzer et al., 2017]Kurtzer, G. M., Sochat, V., Bauer, M. W., Favre, T., Capota, M., and
Chakravarty, M. (2017). Singularity: Scientific containers for mobility of compute. Plos
One, 12(5):e0177459.

[Lei et al., 2017]Lei, L., Sun, J., Sun, K., Shenefiel, C., Ma, R., Wang, Y., and Li, Q. (2017).
SPEAKER: Split-phase execution of application containers. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 10327 LNCS, pages 230–251.

[Lin et al., 2018]Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., and Zhou, Q. (2018). A Measure-
ment Study on Linux Container Security. In 2018 Annual Computer Security Applications
Conference (ACSAC ’18), pages 418–429, San Juan, PR, USA. ACM, New York, NY, USA.

[Maggi et al., 2010]Maggi, F., Matteucci, M., and Zanero, S. (2010). Detecting intrusions through
system call sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing, 7(4):381–395.

[Mattetti et al., 2015]Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S., and Fos-
chini, L. (2015). Securing the infrastructure and the workloads of linux containers. 2015
IEEE Conference on Communications and NetworkSecurity, CNS 2015, (Spc):559–567.

[Nikolai, 2014]Nikolai, J. (2014). Hypervisor-based cloud intrusion detection system. 2014 Inter-
national Conference on Computing, Networking and Communications (ICNC).

[Open Container Initiative, 2017a]Open Container Initiative (2017a). OCI Image Format Specifica-
tion v.1.0.0. Technical report.

[Open Container Initiative, 2017b]Open Container Initiative (2017b). OCI Runtime Specification
v.1.0.0. Technical report.

[OWASP, 2018]OWASP (2018). Owasp webgoat project. [ONLINE] Available at: https://
www.owasp.org/index.php/Category:OWASP_WebGoat_Project. [Accessed 14 Jan-
uary 2019].

[Portworx, 2018]Portworx (2018). 2018 Container Adoption Survey. Technical report.
[Priedhorsky et al., 2017]Priedhorsky, R., Randles, T. C., and Randles, T. (2017). Charliecloud: Un-

privileged containers for user-defined software stacks in HPC. SC17: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, 17:p1–10.

[Souppaya et al., 2017]Souppaya, M., Morello, J., and Scarfone, K. (2017). Application container
security guide. NIST Special Publication 800-190.

[Stoler, 2019]Stoler, N. (2019). How i hacked play-with-docker and remotely ran code on the host.
[ONLINE] Available at: https://www.cyberark.com/threat-research-blog/how-
i-hacked-play-with-docker-and-remotely-ran-code-on-the-host/. [Accessed
14 January 2019].

[Sysdig, 2018]Sysdig (2018). Docker Usage Report 2018 - An inside look at shifting container usage
trends.



Rule-based Security Monitoring of Containerized Environments 21

[Sysdig, 2019a]Sysdig (2019a). Sysdig falco: Behavioral activity monitoring with container sup-
port. [ONLINE] Available at: https://github.com/draios/oss-falco. [Accessed 14
January 2019].

[Sysdig, 2019b]Sysdig (2019b). Sysdig: Linux system exploration and troubleshooting tool with
first class support for containers. [ONLINE] Available at: https://github.com/draios/
sysdig. [Accessed 14 January 2019].

[Tripwire, 2019]Tripwire (2019). State of Container Security Report. Technical Report January.
[Walsh, 2016]Walsh, D. (2016). Container tidbits: Adding capabilities to a container.

[ONLINE] Available at: https://rhelblog.redhat.com/2016/11/30/container-
tidbits-adding-capabilities-to-a-container/. [Accessed 10 January 2019].

[Young et al., 2019]Young, E. G., Zhu, P., Caraza-Harter, T., Arpaci-Dusseau, A. C., and Arpaci-
Dusseau, R. H. (2019). The True Cost of Containing: A gVisor Case Study. In Proceedings
of the 11th USENIX Conference on Hot Topics in Cloud Computing, HotCloud’19, page 16,
Berkeley, CA, USA. USENIX Association.


