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Abstract 
 
Advanced glycation end products as a biomarker for 

accelerated ocular ageing and glaucoma 

 
Leanne Smewing 
 
 

Advanced glycation end products (AGEs) have a large impact on the healthy 

ageing population and those diagnosed with pathology. Studies have linked 

AGEs to glaucomatous optic neuropathy, however there is little consensus on the 

role AGEs play in glaucoma development. Furthermore, it is known that diet is an 

exogenous source of AGEs, however it is not clear how dietary AGE (dAGE) 

influences tissue-bound levels in the body. The overarching theme of this thesis 

was to assess the impact of AGE level, measured both through diet and tissue-

bound levels in the skin (skin autofluoresence, SAF), on retinal vessels and the 

cornea in healthy participants and patients diagnosed with ocular hypertension 

(OHT), early stage normal-tension glaucoma (NTG) and early stage primary open 

angle glaucoma (POAG). 

 

A UK-specific food frequency questionnaire (FFQ) was developed and found to 

reliable and valid. This newly designed FFQ was subsequently used throughout 

the thesis to measure dAGE. In healthy controls, the contribution of dAGE to 

tissue-bound AGE levels appeared to be minimal. The level of AGE taken in via 

diet was similar between healthy, OHT, NTG and POAG participants. 

 

Interestingly, tissue-bound AGE level (SAF) was found to be 16% higher in NTG 

and 14% higher in POAG than healthy control participants. Adding to the 
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evidence that SAF, as an accessible measure, may be a suitable long-term 

biomarker of glaucoma.  

 

Higher SAF was associated with narrower retinal arteries (CRAE) in a healthy 

population, adding to the evidence that AGEs may be an accessible marker of 

vascular health. The NTG group had a significantly narrower CRAE than healthy 

controls as well as the highest SAF level. Increased SAF was also associated 

with a less viscoelastic, stiffer cornea in the NTG group only. These findings pose 

interesting questions about the possible association of SAF with ocular rigidity 

and subsequent increased susceptibility to IOP or arterial blood supply related 

injury, however larger scale studies are needed before any conclusions could be 

drawn. 
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MABP  Mean arterial blood pressure  

MAPKs  Mitogen-activated protein kinases 

MC%  Minimum percentage constriction 

MD%  Maximum percentage dilation 

MDA   Malondialdehyde  

MD   Mean defect / Mean deviation  

MG-H1  5-hydro-5-methyl-4-imidazolon-2-yl-ornithine 

NF-B   Transcription factor kappa B 

NICE  National institute for health and care excellence 

NO   Nitric oxide 

NTG   Normal tension glaucoma 

OAG  Open angle glaucoma  

OBF  Ocular blood flow 

OCT  Optical coherence tomography 

OHT   Ocular hypertension  

OHTS  Ocular hypertension treatment study 

ONH  Optic nerve head 

OPP   Ocular perfusion pressure  

ORA  Ocular response analyser 

POAG   Primary open angle glaucoma  

PI3-K  Phosphatidylinositol-3 kinase  

RAGE  Receptor for advanced glycation end products 

REI   Royal eye infirmary 

RGC   Retinal ganglion cell 

RGC   Retinal ganglion cell  

RNFL   Retinal nerve fibre layer   

RNS   Reactive nitrogen species 

ROS   Reactive oxygen species 

RPE  Retinal pigment epithelium  

RT  Reaction time  

RVP   Retinal venous pressure  

SAF   Skin auto fluorescence 

SBP  Systolic blood pressure 

SDRA  Sequential and diameter response analysis 

SOD  Superoxide dismutase  

sRAGE Soluble RAGE 

TF  Transferrin 

TM  Trabecular meshwork 

TNF-  Tumour necrosis factor 

UPLC–MS/MS Ultra-performance liquid chromatography tandem mass-spectrometry 

VEGF   Vascular endothelial growth factor  

VCAM1  Vascular cell adhesion molecule 1 
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Advanced glycation end products (AGEs) as a biomarker 

for accelerated ocular ageing and glaucoma 

 
 
 

1.  Introduction  
 
Globally, life expectancy has been rising and over the last two centuries it has 

more than doubled (1).  This rise however, is due to global improvement of health 

rather than an increase in understanding or slowing of the ageing process (1-3). 

Increased age is a significant risk factor for both ocular and systemic disease (4, 

5). Advanced glycation end products (AGEs) are a group of reactive compounds 

which accumulate gradually with age in cells, tissues and blood vessels 

throughout the body where they adversely affect structure and function. A 

sustained exposure to high levels of AGEs has been associated with the 

development of a number of chronic age-related systemic and ocular disorders. 

This body of research will utilise recent advances in technology to explore the 

role that AGEs may play in the acceleration of ocular ageing, as well as in the 

pathogenesis of neurodegenerative disease in the form of glaucomatous optic 

neuropathy (GON).   

 

1.1 Accelerated ageing  

The rate of ageing is not the same in all age matched individuals. The concept of 

accelerated ageing suggests that the presence of a number of specific genetic, 

environmental or systemic risk factors may cumulate to accelerate the ageing 

process in some individuals and lead to the development of age-related disease 

(5-7). Understanding the factors that influence accelerated ageing is vital for both 
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patient care and healthcare systems. As AGEs accumulate with age, the 

relationship between AGEs and accelerated ageing is an interesting one.  

 

1.2  Advanced glycation end products (AGEs)  

AGEs are a diverse group of reactive compounds produced naturally when a 

reducing sugar reacts with proteins, lipids or nucleic acids in a non-enzymatic 

way (8, 9). This reaction can occur endogenously within the body (8), and 

exogenously within food and tobacco (8, 10).  

 

It is the tobacco curing process that promotes the formation of AGEs, 

consequently when smoking tobacco, glycotoxins are directly inhaled into the 

lungs where they then form AGEs (10). Smoking also causes increased oxidative 

stress levels (11), which encourages AGE formation. The relationship between 

AGEs and oxidative stress will be discussed further in Section 1.6.  

 

Foods prepared by high heat cooking methods can promote deterioration 

reactions within the food products, including protein degradation, which can 

subsequently lead to AGE formation (12). The amount of AGE formed is 

dependent on a foods nutrient content and method of cooking; with formation of 

AGEs accelerating with exposure to heat (12-14). The relationship between 

AGEs and foods are discussed further in the ‘Dietary AGE’ Section 1.4.  

 

AGEs accumulate gradually with age in cells, tissues and blood vessels 

throughout the body, where over time they can adversely affect structure and 

function by; binding to specific cell surface receptors, forming covalent cross links 
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on proteins such as collagen, creating reactive oxygen species (ROS), and 

oxidative stress (15-19).  Each form of AGE has a complex structure with some 

displaying fluorescent properties (20). Due to AGEs accumulation in all tissues, 

including the skin, levels of AGE can be detected by skin biopsy and through 

measuring skin auto fluorescence (SAF) (21, 22). Skin biopsy is an invasive 

procedure that allows the collagen to be examined in the laboratory. Recent 

technology advances have produced a non-invasive means to measure AGEs by 

utilising SAF properties of tissue bound AGEs in the skin, examples of this 

include; the AGE Reader (DiagnOptics B.V., Groningen, Netherlands) and the 

TrūAge scanner (Morinda, Long Island City, NY) (21-24).  

 

1.3 Formation of AGEs 

AGE formation within the body is influenced by multiple factors such as levels of 

oxidative stress, blood glucose concentration and conversion and concentration 

of proteins (9). There are multiple mechanisms for the formation of AGEs and 

there are three that have been most studied (25). Firstly, the Maillard reaction 

has been studied since the 1900’s particularly by those interested in food, as the 

products from the Maillard reaction add a desired taste to foods along with a 

brownish colour (26). The two other most researched mechanisms include; the 

polyol pathway (27) and the autoxidation of glucose and peroxidation of lipids into 

dicarbonyls derivatives, by increase in oxidative stress (28). All three 

mechanisms are shown in Figure 1.1.  
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Figure 1.1: Formation of AGEs. Green pathway shows the Maillard reaction, blue pathway shows 

the Polyol pathway and purple pathway shows autoxidation of glucose and peroxidation of lipids 

into dicarbonyls derivatives.   

 

 

 

The Maillard reaction is shown in green in Figure 1.1. The first step of the 

reaction is the formation of a Schiff base which has the general structure shown 

in Figure 1.2; it is formed by glucose reacting with a free amino acid. This occurs 

through the nucleophilic addition of a free amino acid from a protein or DNA to 

glucose (8). This reaction takes place over hours and is concentration dependent; 

a decrease in the concentration of glucose would enable the Schiff base reaction 

to be reversed (15). The formation of more stable Amadori products, also known 

as early glycation products, takes a number of days (29, 30). Although more 

stable than a Schiff base the reaction creating Amadori products is still a 

reversible one (8). Amadori products continue to accumulate over a number of 
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weeks where they undergo intra and intermolecular rearrangements via oxidative 

or non-oxidative pathways to create AGEs. This final stage in the Maillard 

reaction is irreversible (15, 31, 32). 

 

 

 

 

 

 

 

 

 

Figure 1.2 – General structure of a Schiff base 

 

 

The alternative pathways to the Maillard reaction are shown in purple and blue in 

Figure 1.1, these pathways occur at a faster rate than the Maillard reaction (33). 

The purple pathway illustrates the autoxidation of glucose and peroxidation of 

lipids, by increase in oxidative stress, into α-oxaldehydes (glyoxal, methylglyoxal, 

and 3-deoxyglucosone) also known as dicarbonyl derivatives. The reaction of the 

α-oxaldehydes with monoacids then produces AGEs (34). The blue pathway is 

known as the polyol pathway. Here glucose is reduced into sorbitol, which in turn 

converts to fructose which then converts to α-oxaldehydes. In the same 

mechanism as previously the α-oxaldehydes react with monoacids to produce 

AGEs (27).  

 

It can be seen from Figure 1.1 that, as a result of the differing pathways of 

production, there is more than one type of AGE, each with different structure and 

properties. Ahmed (2005) categorised AGEs based on their chemical properties, 

R1 R2 

R3 

C 

N 
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creating three subgroups; fluorescent cross-linking AGEs, non-fluorescent cross-

linking AGEs and non-cross-linking AGEs (30). N-Carboxymethyl-lysine (CML), 

N-Carboxyethyl-lysine (CEL), pentosidine, Methylglyoxal-derived 

hydroimidazolone 1 (MG-H1) and pyrraline are some of the most studied AGEs 

and have been previously used as biomarkers for in vivo formation of AGEs (30, 

35-37). The AGE glucosepane, a lysine-arginine product, as shown in Table 1.1 

is a non-fluorescent cross-linking AGE. Although glucosepane previously has had 

less use as a biomarker compared to other AGEs, it is now thought to be one of 

the most abundant AGEs in human tissues (38, 39) and is becoming more widely 

studied. Table 1.1 shows examples of the AGE types mentioned applied to each 

category.  

 

 

Category AGE 

Fluorescent cross-linking AGEs Pentosidine 

Crossline 

Non-fluorescent cross-linking 

AGEs 

 

Imadazolium dilysine 

Alkyl formyl glycosyl pyrrole 

Arginine–lysine imidazole 

Glucosepane 

Non-cross-linking AGEs 

 

Pyrraline 

N-Carboxymethyl-lysine (CML) 

N-Carboxyethyl-lysine (CEL)  

Methylglyoxal-derived hydroimidazolone 1 (MG-

H1) 

Table 1.1: Table categorising well-known AGEs 
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Meerwalt (2004) used the AGEs pentosidine, carboxymethyl-lysine (CML), and 

carboxyethyl-lysine (CEL) to look at AGE levels within the skin using skin biopsy. 

He showed that the fluorescent AGE pentosidine correlated with the non-

fluorescent skin AGE levels of CML and CEL. From this Meerwalt went on to 

validate skin auto fluorescence as a technique for measuring AGEs (21). The use 

of skin auto fluorescence as a measure of AGE levels is discussed further in the 

methods Section 3.3.2.4. 

 

1.4 Dietary AGE 

Foods are a source of exogenous AGE; AGEs are formed during the heating 

process of food (40, 41). In the past, AGEs derived from diet (dAGEs) were 

disregarded as a contributor to circulating AGE levels as it was thought that the 

absorption into the gastrointestinal system was insignificant. It has been shown 

however in multiple studies that dAGEs could have a substantial influence on the 

body’s AGE level and contribute to pathology (42-48). Diabetes is an example of 

this, higher consumption of dAGE is thought to have a pathogenic significance by 

contributing to insulin resistance (49). Although there is a body of literature 

suggesting dAGEs are a risk factor for increasing circulatory AGE levels, a pilot 

study by Piroddi et al. (2011) contradicts this, having looked at the dAGE CML 

and found it did not contribute to circulating levels of AGE in chronic kidney 

disease patients (50). Further research is needed to precisely define the dAGE 

AGE relationship.  

 

The process of heating foods, comprising of sugars and/or lipids and proteins, 

triggers the Maillard reaction, as described in Section 1.3. There are certain 
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influencing factors that determine the level of AGE within food namely; nutrient 

composition, humidity, pH, temperature, and length of time cooked (40). Low pH 

values are thought to slow the Malliard reaction (40), high AGE values are seen 

for foods cooked at high temperatures as well as by certain cooking methods; 

barbequing, grilling, frying and roasting (dry heat methods) (51). The length of 

time a food is cooked for is relevant too, however the temperature and type of 

cooking method is more significant to the AGE value (14, 36).  

 

The AGE carboxymethyl-lysine (CML) is a key type of dAGE and is fairly stable 

and inert, as such it is commonly used as a dAGE marker (14, 40). Goldberg et 

al. (2004) were the first to produce a table showing AGE content from various 

food groups, with 250 foods measured for CML content (40). Uribarri et al. (2010) 

developed upon this database and measured the CML present in 549 foods (14). 

Since then other dAGE databases have been produced (52), with Scheijen et al. 

(2016) measuring other AGEs in addition to CML (53). Dresden University of 

Technology are developing a large dAGE database which different authors can 

contribute to, it currently has measured values for a wide variety of AGE types 

including: CML, CEL, methylglyoxal, Amadori-Product, pentosidine, pyrraline and 

furosine (45).  

 

Foods such as fruits and vegetables in all of the databases have low AGE values 

recorded. The Goldberg et al. (2004) and Uribarri et al. (2010) databases found 

that foods with a high protein and lipid content have the highest AGE value, as 

illustrated by the fat and meat categories having much higher AGE values than 

other foods. Fats such as cheese have the highest dAGE although generally 
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these are eaten in smaller portions than meats (14, 40). The later developed Hull 

et al. (2012) and Scheijen et al. (2016) databases found that foods with a high 

sugar content such as chocolate, sweets and biscuits had the highest values, 

with these food categories having higher values than meats and cheeses (52, 

53). The differences in CML values for similar foods between the databases is 

thought to be due to a different in analytical measurement methods used (48). 

Table 1.2 is a summary of the published AGE databases.  

 

 

AGE database Type of 

AGE 

measured 

Method of 

measurement 

Units Number of 

foods measured  

Goldberg et al. 

(2004) (40). 

CML ELISA CML kU/100 g 249 

Uribarri et al. 

(2010) (14). 

CML ELISA CML kU/100 g 549 

Hull et al. 

(2012) (52). 

CML UPLC–MS/MS mg CML/100 g 257 

Scheijen et al. 

(2016) (53). 

CML 

CEL 

MG-H1 

UPLC–MS/MS mg CML/100g 

mg CEL/100g 

mg MG-

H1/100g 

190 

Table 1.2: Summary of published AGE databases. CML: carboxymethyl-lysine, CEL: 

carboxyethyl-lysine, MG-H1: 5-hydro-5-methyl-4-imidazolon-2-yl-ornithine, ELISA: Enzyme-linked 

immunosorbent assay, UPLC-MS/MS: Ultra-performance liquid chromatography tandem mass-

spectrometry  

 

 

A food frequency questionnaire (FFQ) is considered one of the most suitable 

methods to measure the intake of a specific nutrient, such as dAGE. FFQ’s are 

discussed further in Section 3.3.2.5 and Section 4.3.2. There are currently very 
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few FFQs specifically designed to target dietary intake of AGEs and there are no 

AGE specific FFQs that have been designed for a UK based population. Indeed, 

the only existing validated AGE specific FFQ is that produced by Luevano-

Contreras et al. (2013); which used the database produced by Uribarri et al. 

(2010) for AGE values, to measure dAGE in diabetic patients (54, 55). The 

Uribarri et al. (2010) database is the database most commonly used in the 

literature and has been used for both FFQ’s and food records (49, 54, 56-58). 

Hull et al. (2012) has been used by a 3-day food record (59), but no FFQ. 

Scheijen et al. (2016) database was used by the Scheijen et al. (2018) study 

which used the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) 

non-AGE specific FFQ.   

 

When measuring the dAGE intake of two ethnicity groups with type 2 diabetes it 

was found that those with higher dietary intake of saturated fats had a higher 

dAGE level and those with a higher dAGE were more likely to have a moderate-

high cardiovascular disease risk (55). Animal (rodent) studies have shown that a 

diet high in AGE is associated with increased circulating AGE levels as well as; 

atherosclerosis, weight gain, diabetes progression, lower plasma insulin and 

intolerance to glucose (60-62). Uribarri et al. (2003) found that if human 

participants with renal failure were given a low dAGE diet the circulating AGE 

levels decreased (44). Similarly, Vlassara et al. (2002) found that if participants 

diagnosed with type two diabetes were on a reduced dAGE diet for six weeks 

there would be a reduction of both circulating AGE level and reduction in the 

inflammatory markers tumour necrosis factor  (TNF- and vascular cell 

adhesion molecule 1 (VCAM1) (43). In addition, it has been shown that giving a 
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single dietary oral AGE-rich liquid beverage (free from lipids) results in a rise in 

AGE serum levels. This serum AGE was measured 90 minutes after ingestion of 

the AGE beverage. Endothelial function was measured using flow-mediated 

arterial vasodilation, it was found that the AGE-rich beverage caused impairment 

of endothelial function (63). These studies suggest that restriction of dAGE may 

be a favourable approach for reducing the levels of AGE circulating within the 

body. Additionally they demonstrate the association between dAGE and 

circulating AGE level. Despite there being a number of dAGE studies the 

evidence has been questioned due to a lack of high quality randomised trials 

(64). 

 

1.5 Effect of AGEs on cells and tissues 

The accumulation of AGEs is important for the pathogenesis of different 

pathologies of the body (30). Endogenously AGEs are formed and accumulate 

where glycation reactions occur; in both tissues and bodily fluids. The damaging 

effects that AGEs have on tissues are primarily caused by their interference with 

protein function. There are two ways in which these damaging effects occur; one 

involves the cell surface receptor for AGE known as RAGE, the other is 

independent of RAGE, with AGEs causing direct damage to protein structure 

(30).  

 

1.5.1 AGE – RAGE binding mechanism 

AGE-binding receptors (RAGE) are scavenger receptors that mediate 

intracellular signalling (30, 65). They are expressed on a diverse range of cells; 

monocytes, macrophages, smooth muscle cells, vascular endothelial cells, 



29 
 

pericytes, podocytes, astrocytes, microglia, Müller, glia and retinal pigmented 

epithelial cells (65, 66). RAGE has the ability to bind non-AGE ligands, causing 

inflammation independent of AGE (67), making RAGE complex in itself.  

 

As shown in Figure 1.3, when an AGE binds to RAGE it causes cellular signalling 

reactions; mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3 

kinase (PI3-K) are activated, which in turn activate transcription factor kappa B 

(NF-B) (60, 61). NF-B is also activated due to the sudden increase in 

intracellular oxidative stress caused by NAD(P)H oxidase, created in response to 

the binding of AGE to RAGE (62, 63). Once NF-B is activated it triggers the 

nucleus to begin to transcribe genes for; tissue growth factor, thrombomodulin, 

endothelin-1 and VCAM1, as well as cytokines; interleukin 1 (IL-1 interleukin 

6 (IL-6), TNF-(60, 64). RAGE expression is increased by activation of NF-B; 

hence a positive feedback cycle is also present here. Essentially, the AGE-RAGE 

binding mechanism initiates a state of inflammation and oxidative stress. It can 

also disturb the functioning of the vascular endothelium, which normally acts to 

regulate blood flow to ensure it always meets the demand of the tissues, through 

its action on endothelin-1. Oxidative stress and endothelial function are discussed 

further in Sections 1.6 and 1.8.    
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1.5.2 RAGE independent mechanism 

The second mechanism involves AGEs causing direct damage to structure, 

properties and function independent of RAGE mediated events. AGEs can alter 

molecular recognition and protein binding (30, 38). In addition, as mentioned in 

Section 1.3, the AGEs pentosidine, crossline, imadazolium dilysine, alkyl formyl 

glycosyl pyrrole, arginine–lysine imidazole and glucosepane form covalent cross-

links (30, 68). Cross-linking can occur with short-lived molecules, however since 

time is a factor in cross-link formation it is thought that crosslinking occurs more 

often in long-lived proteins (69, 70), such as extracellular proteins collagen and 

AGE 

RAGE 

MAPK PL3-K 

NF-B 

NAD(P)H 

Nucleus 

Generation of pro-
inflammatory cytokines: 

IL-1 
IL-6 
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Pro-coagulant state: 
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Oxidative stress 
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RAGE 
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Figure 1.3 - AGE-RAGE interaction 
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elastin. The AGE induced cross-link alters the mechanical properties of the 

protein, in collagen these cross-links result in increased stiffness of tissues and 

reduction in elasticity (38, 71, 72). Since normal collagen function is essential for 

organs and tissues throughout the body (19, 73) collagen cross-linking can have 

an adverse effect on physiology. In blood vessels for example, cross-linking 

causes increased stiffness of the protein matrix and decrease elasticity/flexibility, 

which affects cell interactions, as well as cell function and integrity (32, 72-75). 

 

Recent research has found that as a result of their chemical, pro-inflammatory 

and pro-oxidant actions, sustained exposure to high levels of circulating AGEs 

could be a major factor in the development of a number of chronic degenerative 

age-related systemic disorders; diabetes (23), Alzheimer’s disease (76), renal 

disease (77), osteoarthritis (78), atherosclerosis (79, 80), as well as the ocular 

disorders; age-related macular degeneration (AMD) (22, 81), diabetic retinopathy 

(DR) (82, 83), cataract formation (81, 84-86),  primary open angle glaucoma 

(POAG) (20) and other neurodegenerative diseases (76). These links with age-

related disorders make AGEs and their mechanisms of damage an area of 

interest.  

 

1.5.3 Soluble RAGE 

Soluble RAGE (sRAGE) is different to the cell-surface RAGE described in 1.5.1, 

and is considered beneficial. Soluble RAGE contributes to the detoxification of 

AGEs (87). It does this by acting as a ‘decoy’ and competitor to RAGE, blocking 

RAGE-dependent responses (87, 88). It has been shown in a study investigating 

patients with diabetic retinopathy that sRAGE levels were significantly lower in 
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patients non-proliferative and proliferative diabetes compared to healthy controls 

and diabetic patients without retinopathy (88). In addition it has also been shown 

that levels of sRAGE are reduced in patients diagnosed with hypertension (89).  

 

1.6 Oxidative stress  

Oxidative stress is “an imbalance between oxidants and antioxidants in favour of 

the oxidants, potentially leading to damage” (90). Oxidation is the loss of 

electrons during a reaction, carried out by oxidants. Oxidants are products of 

normal cellular metabolism, though in pathological conditions involving 

inflammation and infection oxidants tend to be found in increased amounts. 

Oxidants can be referred to as ‘reactive species’, for example; reactive oxygen 

and nitrogen species (ROS/RNS) (91, 92). They come in two forms, free radical 

and non-radical species and both can be reactive (93). Free radicals are unstable 

molecules which are reactive due to the unpaired electron in their outer orbit (94). 

Free radicals derived from glycation cause oxidation of lipids and DNA as well as 

breaking down proteins (25, 30). Due to the glycation reactions involved in the 

formation of AGEs free radicals are often referred to in AGE literature.  

  

An antioxidant is “any substance that, when present at low concentrations 

compared with that of an oxidisable substrate, significantly delays or inhibits 

oxidation of that substrate” (91). Antioxidants are essentially able to ‘neutralise’ 

free radicals and reactive species as part of the protection mechanism for tissues 

of the body from the damage reactive oxidative species could cause (95, 96). 

Compounds of both oxidant and antioxidant form can be found in human diet 

(97). Vitamins A, C, and E are examples of anti-oxidants derived from foods that 
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are able to neutralise free radicals directly (98). However current clinical research 

on the effectiveness of dietary anti-oxidants at protecting the body is controversial 

as research is contradictory with no clear associations established (99). It has 

however been shown that a balanced diet is healthier than antioxidant 

supplementation (100, 101).  

 

Oxidative stress can cause damage to DNA, proteins, and lipids. It is understood 

that oxidative stress contributes to; atherosclerosis, cardiovascular diseases, 

stroke, diabetes, cancer, rheumatoid arthritis, post-ischaemic perfusion injury, 

age-related neurodegenerative diseases and ageing (93, 96, 102, 103). Oxidative 

stress contributes to neurodegenerative damage via the mechanism of free 

radicals attacking the neural cells (96). The harmful effect the reactive species 

has on cells leads to tissue damage, oxidative injury and ultimately apoptosis (96, 

104).  

 

In more recent years it has been shown that reactive species such as ROS and 

RNS are linked to more than just pathology. They can also act as part of redox 

signalling throughout the body (100). Although generally reactive species are 

thought of as harmful it is not fully understood how damaging they are, as it 

seems to depend upon the circumstances (105). The understanding of oxidative 

stress has principally come through standard laboratory conditions. Laboratory 

conditions are limited in that they may not be related to free radical biology within 

the body (105).  
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Since reactive species are particularly unstable they are challenging to measure 

directly. Oxidative stress biomarkers give an indication of the level of oxidative 

stress present in the body. These biomarkers are molecules that are involved in 

the reactions with reactive oxygen species (106). There are a variety of 

biomarkers that exist, a summary of some commonly used biomarkers are listed 

in Table 1.3.  The molecules; α- tocopherol (vitamin E), ascorbic acid (vitamin C) 

and malondialdehyde each have mechanisms relating to oxidative stress and will 

be used as biomarkers for oxidative stress in this thesis. Each biomarker is 

explained in Section 3.3.2.6.  These are recognised biomarkers of oxidative 

stress in ageing and POAG (107-109) and have been shown to be sensitive to 

variations in AGE levels (110). 

 

 

Oxidants  Descriptor  

Malondialdehyde (MDA) Product of lipid peroxidation 

4-hydroxynonenal (4-HNE) Product of lipid peroxidation 

Acrolein Product of lipid peroxidation 

8‐isoprostane Product of lipid peroxidation 

8-hydroxy-20-deoxyguanosine (8-OH-G) DNA lesion 

Antioxidants Type 

Ascorbic acid (vitamin C) Non-enzymatic antioxidant 

α- tocopherol (vitamin E) Non-enzymatic antioxidant 

Glutathione (GSH) Non-enzymatic antioxidant 

Glutathione peroxidase (GPx) Non-enzymatic antioxidant 

Uric acid Non-enzymatic antioxidant 

Carotenoids Non-enzymatic antioxidant 

Flavonoids Non-enzymatic antioxidant 

Transferrin (TF) Non-enzymatic antioxidant 

Superoxide dismutase (SOD) Enzymatic antioxidant 

Glutathione peroxidase (GPx) Enzymatic antioxidant 

Catalase (CAT) Enzymatic antioxidant 
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Table 1.3: Summary of oxidative stress biomarkers 

 

1.7 AGE and Oxidative stress relationship 

The relationship between AGE levels and oxidative stress is complex, with an 

increase in AGE levels having been shown to be both a cause and an effect of 

elevated oxidative stress (15). Oxidative stress contributes and accelerates the 

process of AGE formation (111). It is produced as a by-product of AGE formation 

and by the AGE-RAGE binding interaction; the interaction causes an intracellular 

generation of free radicals and oxidative stress, as shown in Figure 1.3 (112, 

113). There is a positive feedback cycle between AGEs and oxidative stress; 

hence AGE levels can be influenced by oxidative stress levels and vice versa. 

For this reason it is important to consider the AGE oxidative stress relationship 

when examining the effects of AGEs. 

 

Both AGEs and oxidative stress levels increase with age and are both able to 

cause pathological consequence (8, 45, 114). The majority of the literature 

differentiates between AGEs and oxidative stress, measuring each individually 

while discussing the known connection (8, 45, 115-117). However, there are 

examples in literature which use the terms interchangeably, with some using 

AGEs as biomarkers of oxidative stress (92, 118, 119). Further investigation of 

the AGE oxidative stress relationship may help to clarify if it is acceptable to 

interchange between these terms.  
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1.8 Endothelial function  

The vascular endothelium is a monolayer of cells which lines the inner surface of 

all blood vessel surfaces, acting as the barrier to blood and vessel interactions 

(120-122) see Figure 1.4. It is a multifaceted tissue that maintains vascular 

homeostasis in response to mechanical, chemical and biological stimuli (121, 

123), through regulation of vascular tone, adhesion of cells, prevention of vessel 

wall inflammation, resistance of thrombus formation and resistance to smooth 

muscle cell proliferation (124). One of the fundamental roles of the microvascular 

endothelium is to regulate blood flow to ensure blood supply meets the demand 

of tissues, this is known as autoregulation. The endothelium controls this through 

the balanced secretion of endothelial derived vasoactive factors, the most potent 

of which are endothelin-1 (ET-1) and nitric oxide (NO) (125). ET-1 is a 

vasoconstriction agent and NO a vasodilation agent (126), they act on the 

underlying vascular smooth muscle to regulate blood vessel diameter, hence 

enabling regulation of the amount of blood that reaches a region to ensure supply 

meets demand.  
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Figure 1.4: Diagram representation of a blood vessel. 1: Tunica intima, 2: Tunica media, 3: Tunica 

externa.  

 

Endothelial dysfunction refers to a failure in the ability of the endothelium to 

regulate blood vessel diameter and hence blood flow when the metabolic 

demand of the tissues is high. This is usually due to either decreased NO or 

increased ET-1 production (127). Unable to maintain vascular homeostasis, a 

pro-inflammatory and pro-thrombotic state is more likely, as well as the formation 

of atherosclerotic plaques (123, 128).  A failure to increase blood supply to meet 

metabolic demand can leave the tissues ischaemic and repeated ischaemic 

episodes can cause damage through recurrent ischaemic reperfusion injury. 

Recurrent ischaemic reperfusion injury will be discussed in relation to GON in 

Section 1.13.2.2.  

 

Endothelial function is essential to vascular biology. Endothelial dysfunction has 

been associated with: ageing, smoking, obesity, diabetes, coronary heart 

disease, chronic renal failure, hypercholesterolemia, hypertension, peripheral 

vascular disease, stroke and severe infectious diseases (129-131). Oxidative 

stress, as well as other factors, has also been linked to the cellular imbalance 

which causes endothelial dysfunction (127). 

 

1.9 Relationship between AGEs and endothelial function 

AGEs have an influence on endothelial function. The AGE-RAGE interaction 

produces NFκB which is the transcription factor that causes an increase in ET-1 

levels (132). In addition, AGEs reduce availability and activity of NO (133). Hence 
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AGE-RAGE interaction has the overall effect of vasoconstriction, because ET-1 

levels are increased and NO levels, as a ‘relaxing factor’, are reduced, resulting 

in a dysfunctional endothelium.  

 

In addition to disturbing vascular endothelial function via the AGE-RAGE 

interaction, AGEs directly alter the functional properties of vessels due to their 

accumulation in vessel tissue (80, 134). Vessel walls are primarily made of 

collagen and elastin (135), as mentioned previously these long-lived proteins are 

susceptible to AGE cross-linking. This cross-linking results in a reduction in blood 

vessel elasticity and increased vascular stiffness (74, 80, 136). Animal studies 

have shown AGE cross-linking to be present on type I collagen, and found that 

increased vasculature stiffness occurs due to cross-links increasing the area of 

extra-cellular matrix (13, 137). In human studies aortic pulse wave velocity has 

been used as a method of measuring vessel stiffness. Semba et al. (2009) found 

a positive correlation between serum levels of CML and vessel stiffness (138), 

and Ueno et al. (2008) found a positive correlation between SAF and vessel 

stiffness (139). Reduced elasticity and increased vascular stiffness can also 

interfere with the ability of the blood vessels to regulate blood supply to meet 

demand, as blood vessel diameter cannot be so easily altered (74). 

 

The apparent associations of AGEs with endothelial dysfunction, oxidative stress 

and vascular stiffness, and the known associations of endothelial dysfunction with 

age-related ocular and systemic disease, raises the question as to whether 

increased AGE levels could be an underlying causative factor for such disease 

states. Exploring this association will be a focus of this PhD research.   
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Indeed, the effect of AGEs on blood vessel function occurs throughout the body, 

including in the ocular vasculature. Reduced function of the ocular blood vessels 

is important as it affects the regulation of blood flow to and within the eye. Altered 

blood flow is a known risk factor for ocular pathology (140) and can also be a 

marker for systemic vascular disease. Hence, increasing our understanding of 

the role that AGEs play in microvascular dysfunction at the ocular level may 

increase our understanding of ocular pathology.  

 

Measurement of microvascular function at the retinal level and examination of 

retinal vascular structure is possible with the Dynamic Retinal Vessel Analyser 

(DVA; IMEDOS GmbH, Jena). As will be explained in Section 3.3.2.2 in a normal 

healthy person heightened metabolic demand triggers the retinal endothelium to 

release additional NO, resulting in vasodilation and consequently increased blood 

flow. The DVA can analyse vessel structure and measure altered retinal vessel 

response to flicker light which is thought to indicate any impaired endothelial 

function (141). Using the non-invasive AGE Reader alongside this will allow the 

comparison of AGE level and retinal endothelial function. This is something which 

has not previously been investigated and may provide insight as to AGEs effect 

on retinal vascular function in healthy ageing and ocular disease. 

  

1.10 Advancing age as a risk factor for ocular disease 

A significant risk factor for both ocular and systemic disease is increased age (4, 

5). The ageing process is multifaceted, usually defined as deterioration of 

structure and function of cells and tissues throughout the body (142). The 
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cumulation of this deterioration causes increased risk of pathology, disease and 

death (143). The ocular cells and tissues are equally as affected by ageing as 

other cells and tissues in the body. Advancing age is a significant risk factor for a 

number of ocular diseases such as cataract (144), AMD (145) and GON (146). Of 

interest to this body of research is the role that ageing plays in the pathogenesis 

of the neurodegenerative disease glaucomatous optic neuropathy. Ageing is a 

risk factor for all neurodegenerative diseases and it is thought to exert its effects 

through mechanisms such as ; increased oxidative stress, mitochondrial 

dysfunction, impaired ability to self-repair; reduced DNA repair and decreased 

tissue regeneration (147). AGEs are associated with oxidative stress and their 

accumulation increases with age; hence AGEs may also be part of a 

neurodegenerative disease mechanism (148, 149). 

 

1.11 The effect of advancing age and AGEs on ocular structures  

The negative effect that physiological ageing has on structures of the eye will be 

discussed individually in this section, although it is important to remember that 

ageing of ocular components is not something that occurs in isolation, changes in 

certain structures has impact on others as a whole system. The structures in 

which AGEs accumulate within the eye will also be discussed.  

 

1.11.1 Sclera 

In spite of it having reduced collagen content, there is increased rigidity and 

stiffness of the sclera with age; it is thought that this rigidity is due to the 

accumulation of non-enzymatic cross-links. Girard et al. (2009) found that 

monkeys of increased age had a significantly stiffer posterior sclera. It is 
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postulated that this increased stiffness may cause overall globe stiffness and 

contribute to optic nerve head damage, contributing to glaucomatous changes 

(150). AGEs accumulate in the sclera (151) and could contribute to the increased 

collagen crosslinking that occurs with age.  

 

 

1.11.2 Cornea 

With physiological ageing the cornea becomes flatter, there is an increase in 

thickness of Descemet’s membrane, decrease in stromal density and a decrease 

in the density of endothelial cells (152-154). In the stroma there is an increase in 

collagen fibrils and collagen cross-linking (155) but no change in the thickness of 

Bowman’s layer with age, however calcific deposits at the periphery of the layer 

become more likely (7). Consequently there is a change in corneal curvature and 

a variation in thickness of structures which results in the cornea becoming stiffer 

(156). Stiffening as a result of collagen cross-linking has been shown to be 

beneficial in the treatment of keratoconus and is thought to be beneficial in 

treating other corneal conditions (157).  

 

It has also been shown that there is an increase in AGEs in the stroma with 

increased age (158). It is thought that collagen modified by AGEs may contribute 

to the reduced corneal flexibility seen with ageing due to encouraging an increase 

in collagen fibrils (159, 160). Hence AGEs may be a contributing factor to the 

reduced corneal viscoelasticity seen with age. There is currently no research 

directly comparing tissue bound AGE levels to corneal viscoelastic properties. 

Corneal viscoelastic properties in relation to GON will be discussed in more detail 
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in Section 1.12 as it is relevant in understanding the mechanisms of 

glaucomatous damage. 

 

 

 

 

1.11.3 Trabecular meshwork 

The shape of the trabecular meshwork changes with physiological ageing; 

becoming shorter with the scleral spur more prominent, the uveal meshwork 

compacted, narrowing of the canal of Schlemm and increased thickening of 

trabeculae (161). There is a decrease in cellularity and absolute cell number with 

age (162). One of the postulated contributors to increased intraocular pressure 

(IOP) with age is that aqueous outflow is reduced and outflow resistance is 

increased (163). This is thought to be due to the changes in structure as well as 

reduction in giant vacuoles and intracellular pores in the canal of Schlemm 

through which aqueous humour passes (164, 165) and an accumulation of 

extracellular materials and changes to the collagen (163, 166, 167). In Section 

1.13.2.2.3 endothelial dysfunction is discussed in relation to GON as an 

imbalance in NO and ET-1 can affect outflow of aqueous humour in the 

trabecular meshwork, any dysfunction located here would ultimately affect IOP. It 

is suggested that AGEs accumulate in the trabecular meshwork (116) and that 

AGEs may induce the oxidative stress thought to contribute to dysfunction. 

 

1.11.4 Ciliary body 
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With increased age the ciliary stroma has an increase in collagen with some 

tissues replaced by collagen and the ciliary processes become shorter and less 

vascular. Similar to the trabecular meshwork, with age the ciliary body loses 

cellularity (7). The ciliary muscle appears to change with a displacement of 

muscle mass (168). As the ciliary body produces aqueous humour which 

ultimately affects IOP its ageing process is important.  

 

1.11.5 Intraocular Lens 

Lens shape and weight alters with physiological age; in adults the lens is more 

oval and heavier than at birth (169). Age related colour changes, yellowing, of the 

lens is a characteristic of cataract. It occurs with age due to lens proteins 

becoming oxidised (7). AGEs accumulate in lens (85) and are linked with the 

formation of cataract (81, 84, 170). The long-lived lens proteins crystallins are a 

site of glycation and cross-linking (170, 171), the modification to crystallin results 

in reduced transparency, and is thought to affect chaperoning and anti-apoptosis, 

resulting in cataract formation (170, 172, 173). The specific AGEs; CML and 

pentosidine have been found at increased levels in lenses with cataract 

compared to those without, with the intensity of brown cataract colour increasing 

with increased AGE level (86). In addition the AGE MG-H1 has been identified as 

a major AGE in human lens proteins (174). The lens capsule has more recently 

been identified as a glycation location, with different AGEs found at higher levels 

in capsules lenses with cataract than those without (171).  

 

1.11.6 Vitreous 
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Ageing causes structural changes in the vitreous gel, including liquefaction and 

posterior vitreous detachment (175). The vitreous gel is comprised of a 

transparent extracellular matrix. Through studying diabetic patients vitreous it has 

been suggested that AGEs have a pathologic role in the degeneration of the 

vitreous (176). 

 

 

 

1.11.7 Retina 

Ageing occurs throughout the layers of the retina, Figure 1.5 shows a cross 

Section of the retinal cells. The RPE will be discussed in the next Section with 

Bruch’s membrane.  As the retina ages the internal limiting membrane thickens 

and gliosis occurs in the peripheral retina (7). The nuclei in the outer nuclear 

layer become displaced, move towards the photoreceptor layer, where their cell 

structure changes, eventually ending in cell death (177). Reduction of rods 

occurs before cones at the macula with age (178). The retina has physiological 

age related peripheral degenerations; typical and reticular peripheral cystoid 

degeneration (179), peripheral chorioretinal atrophy (paving stone degeneration) 

(180), and lattice degeneration (181). Additionally, small masses of degenerate 

cells named Corpora amylacea have been found to be present in autopsied eyes 

in the; retinal nerve fibre layer and optic nerve, optic nerve head, inner plexiform 

layer and inner nuclear layer with increased age (182-184). Corpora amylacea in 

the central nervous system are associated with ageing and neurodegeneration 

(185). AGEs are present in the retina (81), the presence of AGEs in retinal blood 

vessels as will be discussed in Section 1.11.11. 
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Figure 1.5 – Cross section of retinal cells 
 

 

1.11.8 RPE & Bruch’s membrane  

With increased age the retinal pigment epithelium (RPE) begins to change shape, 

this occurs in two distinct regions of the RPE (186). The macula RPE alters by 

narrowing with an increased height, while the peripheral RPE becomes shorter 

and wider (187). With age, the RPE macula cells have increased pigment density 

and irregular pigmentation and in the ageing peripheral RPE vacuoles form (187, 

188). There is also an increase in lipofuscin accumulation in the cytoplasm of 

RPE cells with age (189). It is thought that lipofuscin accumulation in the RPE cell 

may contribute to the mechanism of macular degeneration (190). Drusen are 

found on the inner side of Bruch’s membrane, their accumulation come in 

different forms; hard, soft and confluent. With increased age there is an increase 

in presence of drusen. Soft, confluent and large drusen are seen in greater 

amounts in age-related macular degeneration (191). Bruch's membrane thickens 

with age (192) and also has an accumulation of lipids (such as cholesterol) and 

can also become calcified (193, 194). It is these accumulates that form a barrier 

that is linked with age-related macular degeneration, photoreceptor dysfunction 

and pigment epithelial detachment (193).  

 

AGEs accumulate in increased amounts in the RPE and basement membrane 

with age (81, 195-199), specifically the AGEs CML and pentosidine have been 

found in both the basement membrane and choroid with age (196). AGEs are 

thought to accumulate in the extracellular matrix of Bruch’s altering its physical 
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properties (200). This accumulation of AGEs induces VEGF, inflammation, and 

encourages neovascular AMD (22, 201). 

 

1.11.9 Choroid 

With age the thickness of the choroid does not change (192) but there is a 

decrease in choriocapillary density  (192). With advancements in OCT the 

volume of choriocapillaries can now be measured non-invasively. OCT data has 

also confirmed that choriocapillary density decreases with advancing age (202).   

 

 

1.11.10 ONH 

With physiological ageing there is an increase in the amount of connective tissue 

present in the fibrovascular pial septae of the ONH. This increased thickness 

could impair transmission of essential nutrients and metabolic substances 

between nerve fibres and capillaries (7). Another consequence of physiological 

ageing on the optic nerve head is that cellular and extracellular material can 

collect in optic nerve fibre bundles and meninges (7).   

 

It is the cribriform plates within the lamina cribrosa where AGEs accumulate 

within the ONH (203). It is thought that accumulation in this location may 

contribute to the mechanism of optic neuropathy (204). With age increased 

amounts of collagen cause the structure of the lamina cribrosa to alter, becoming 

stiffer and less resilient (203); when pressure is applied to the lamina cribrosa the 

ability to return to its original shape decreases (205). These age-related collagen 

changes are thought to be linked with age related glaucomatous optic 
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neuropathy. Along with an increase in the amount of collagen present in the 

lamina cribrosa, with age the AGE pentosidine has been found in increased 

amounts (203). The AGE pyrraline has also been located in the; sclera, pia 

matter, cribriform plates, optic nerve connective tissues and around the vessels in 

the optic nerve in donor eyes (204). The potential relationship between AGEs and 

GON is discussed in Section 1.11.4.1.  

 

1.11.11. The retinal vasculature and the influence of AGEs on vascular function  

With physiological ageing the body’s peripheral capillaries have a reduction in 

cellularity (206), hence the retinal microvasculature, as part of this peripheral 

network, also has a decrease in cellularity. Atherosclerotic and hypertensive 

vessel wall changes such as increased vessel wall thickness, are more likely to 

occur with ageing and as such ageing is a risk factor for both hypertension and 

atherosclerosis (7).   

 

Research into the effect of AGE accumulation within blood vessels and tissues in 

cardiovascular disease is increasing as it appears that AGEs are part of the 

disease mechanism (13, 138, 142, 207) and play an important role in 

atherosclerosis (208). With ageing the vessels within the body experience; 

endothelial dysfunction, reduced elasticity, accumulation of collagen and increase 

in intimal medial thickness (thickening of the innermost two layers of artery wall) 

(209, 210). Elasticity of the blood vessels is dependent on the level of collagen 

fibres and collagen cross-links (211). An increase in covalent crosslinks, as a 

result of AGE accumulation causes a reduction in blood vessel elasticity (136), as 

was discussed in Section 1.8. Reddy (2004) using diabetic rats, demonstrated 



49 
 

this mechanism (212) and other studies have shown that increased vascular 

stiffness correlates with increased AGE accumulation (13, 138). Furthermore, 

SAF measured by the AGE Reader has been shown to be an independent 

predictor of cardiovascular disease in diabetic, dialysis and coronary heart 

disease participants (139, 213-216).  SAF has also been shown to be a predictor 

for vessel AGE modifications in patients with coronary heart disease (216). 

Specific mechanisms linking AGEs and vascular endothelial function as well as 

vascular stiffness were discussed in Section 1.8.  

 

1.12 Current knowledge of AGEs and Ocular disease  

As explained throughout Section 1.11 AGEs accumulate throughout the 

structures of the eye and it is thought that they may be linked with both 

physiological and pathological age-related changes. There are certain specific 

conditions and structures that have been researched in more detail such as 

diabetic retinopathy, macular degeneration and diabetic keratopathy. The link 

between AGEs and GON is explained in detail in Section 1.13.4. A table 

summary of the AGEs and ocular disease literature can be found in Appendix 

Section 8. 

 

1.12.1 AGEs and Diabetic Retinopathy 

It has been estimated that there are approximately 93 million people worldwide 

with diabetic retinopathy, 17 million with proliferative diabetic retinopathy (217). 

Diabetic retinopathy is characterised by the development of blood vessels which 

are abnormally permeable, have impaired blood flow, basement membrane 

thickening, and ischaemia (218). Diabetic retinopathy is a complicated disease 
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with multiple pathological mechanisms, AGEs and AGE-RAGE interactions are 

thought to be one of these mechanisms (219). The link between hyperglycaemia, 

AGEs and diabetic retinopathy is becoming better understood, it has been shown 

that increased AGE level is correlated with increased diabetic retinopathy injury 

(220), with higher AGE levels found in those with proliferative retinopathy (221-

223). There is also a relationship between increased levels of the AGE CML and 

increased expression of vascular endothelial growth factor (VEGF) (134). In post-

mortem examination of retinas with background diabetic retinopathy and 

proliferative retinopathy both the AGE CML and VEGF were distributed around 

retinal blood vessels (134). The accumulation of AGEs on the endothelial 

membrane causes damage to the structure and function of the retinal vessel wall 

by increasing the permeability leading to vascular leakage (15). In addition, the 

thickening of vessel walls causes ischaemia and occlusion while increase in 

VEGF causes angiogenesis (224, 225).   

 

It has been shown that AGE levels within the skin, particularly CML, are a good 

predictor for diabetic retinopathy (226). It is thought that skin levels of AGEs are 

superior predictors of diabetic retinopathy than HbA1c as they reflect 

hyperglycaemia over a longer time course (83, 227). The advancements in skin 

auto fluorescent technology is important as this may be a future method for 

predicting diabetic retinopathy.   

 

1.12.2 AGEs and Age-related macular degeneration (AMD) 

AMD is a complicated disease thought to occur via multiple pathology 

mechanisms and not only due to ‘normal’ physiologic ageing. The exact aetiology 
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of AMD remains largely unknown, however the degeneration of the macula is 

caused by changes in the retina and choroid due to atrophy, detachment and 

neovascularisation (145).  

 

As mentioned in Section 1.11.8, AGEs accumulate in the RPE and basement 

membrane with age (195-199). AGEs are also found to accumulate within drusen 

(228). The alterations AGEs make to the basement membrane causes changes 

to the RPE proteome; with many proteins losing their physiological structure 

(229). The specific AGEs CML and pentosidine located in the basement 

membrane and choroid are thought to contribute to RPE-basement membrane-

choroid dysfunction (196), as mentioned, we know that Bruch’s membrane 

thickens with age becoming less permeable (192). It is thought that AGE cross-

link accumulation may be the cause of this thickening and decrease in 

permeability (201). As well as AGE contributing to AMD, RAGE accumulates in 

the RPE and photoreceptors of eyes with early AMD and geographic atrophy 

(199). It is thought that the AGE-RAGE interaction is related to photoreceptor 

loss, with NFκB, apoptosis and upregulation of RAGE having been observed in 

RPE cell cultures (199). Lipofuscin seen within drusen reduces the effectiveness 

of lysosomal antioxidant systems (230). The dysfunction of lysosomes has also 

been linked with reactive oxygen species and AGEs (173, 230, 231). Hence 

AGEs are not only located within drusen, but also encourage lysosome 

dysfunction, hence promoting drusen formation.  As AGEs accumulate they 

induce inflammation via VEGF, promoting neovascular AMD (201). Mulder et al. 

(2010) found that there was an increased SAF measured using the AGE Reader 

in Caucasian subjects with neovascular AMD (22). It is thought that AGEs are 
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both formed and deposited with increased AMD (22). It appears that AGEs affect 

the progression of both dry and wet AMD. 

  

1.12.3 AGEs and diabetic keratopathy 

Collagen is the principal structural component in the cornea and as mentioned 

previously in Section 1.4, AGEs are found to accumulate during normal ageing in 

long-lived proteins such as collagen (19). This accumulation of AGEs occurs at 

an accelerated rate in those with diabetes (73, 232). Diabetic corneas have been 

well researched in this area due to this. Sady et al. (1995) showed that the 

specific AGE pentosidine and increased collagen are found in higher amounts in 

diabetic corneas, compared to age-matched healthy controls (232). It has also 

been shown that there is an increase in AGEs in the stroma with increased age 

(158). It is thought that collagen modified by AGEs may contribute to the reduced 

corneal flexibility seen with ageing due to encouraging an increase in collagen 

fibrils (159). Measurement of the AGE CML in diabetic compared to non-diabetic 

corneas, has shown that CML accumulates in the epithelial basement membrane 

of diabetic cornea’s (233). A large accumulation of CML was present in the 

laminin, in the basal lamina (233). As the function of the laminin is to aid 

adhesion and migration it is thought CML reduces adhesion and dispersion of 

corneal epithelial cells and may be relevant in the mechanism of diabetic corneal 

epithliopathy. Kaji et al. (2003) found that accumulation of AGEs and reactive 

oxygen species, products from AGE formation, cause endothelial cell death 

(234). It has also been shown that patients with proliferative diabetes have an 

increased corneal AGE level compared to healthy age-matched controls (82). It is 
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hypothesised that increased corneal AGE level may contribute to the mechanism 

for diabetic keratopathy. 

 

1.13 Glaucoma and the influence of AGEs  
 

1.13.1 Glaucoma background 

Glaucoma is a degenerative optic neuropathy which is characterised by structural 

damage to the ONH and progressive visual field loss (235). Damage to the ONH 

causes retinal ganglion cell (RGC) death which can result in vision loss and 

visual field loss (236). Globally POAG affects over 60 million people, by 2020 it is 

expected that this will have increased to 80 million (237). It is estimated that the 

number of people living with glaucoma in the UK will rise in the coming years. 

Table 1.4 shows UK glaucoma epidemiology. 

   
 

Estimated number of people living with glaucoma  

 

 
2015 

(Population estimate  
65.1 million) 

2020 2025 2030 

Percentage 
change from 

2015 to 
2030 

UNITED 
KINGDOM 

598,560 626,300 655,080 668,400 12% 

Table 1.4: RNIB; key information and statistics (238). 

 

 

GON is commonly classified by: age of onset (acquired/congenital) then further 

classified by aetiology (239, 240). In the early 20th century an advancement in 

methods to view the anterior drainage angle (gonioscopy) enabled a 

differentiation in aetiology; open angle and closed angle glaucoma, each with 

different cause of damage (235, 240). Figure 1.6 shows the classification of 

glaucoma. This study is interested in acquired POAG. 
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Figure 1.6: Classification of glaucoma 

Further clinical separation of POAG patients into ‘high’ IOP and normal tension 

sub-categories has been common practice for many years; however NICE 

guidelines no longer subdivide open angle glaucoma based on IOP. The 

diagnosis ‘chronic open angle glaucoma’ (COAG) is used to describe primary 

open angle glaucoma with both normal and high IOP (241) as shown in Figure 

1.7. This links with recent research which has indicated that glaucoma may be a 

disease continuum, whereby the balance of mechanical factors (IOP) and 

vascular factors vary on an individual basis and therefore suggest that the sub 

divisions; POAG, normal tension glaucoma (NTG) and ocular hypertension 

(OHT), based on the Bedford glaucoma survey in the 1970’s are now outdated to 

describe GON and should be abolished (242-244).  

 

As shown in Figure1.7, OHT is the diagnosis given when there is a repeatable 

high IOP measured with applanation tonometry, with no presence of visual field 

defect or glaucomatous ONH signs (241). The subdivision OHT enables 
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practitioners to distinguish between patients with simply increased IOP from 

those with both increased IOP and glaucomatous changes (245). Although NICE 

guidelines no longer subdivide COAG based on IOP it is important for this body 

of research to distinguish between participants to allow comparison with OHT 

participants. When recruitment for this study opened the NICE guidelines defined 

high IOP as 21mmHg or above, the NICE guidelines changed increasing the IOP 

threshold in November 2017. Current NICE guidelines recommend IOP treatment 

to occur if a patient has an “IOP of 24 mmHg or more” (246). Section 3.1.3 

describes the sub-divisions used throughout this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: NICE guideline pathway for OHT and COAG (241). 

 

 

IOP is the most important risk factor for GON however it is not always associated 

with the disease. Knowing that glaucomatous changes can occur in those with 
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normal IOP indicates that more than one mechanism of damage can take place. 

Research into differences between NTG and POAG began in the 1980’s with 

some finding no significant difference between NTG and POAG (247, 248), and 

others finding that although total field loss between POAG and NTG were the 

same, NTG visual field defects were deeper, steeper, more localised and closer 

to fixation than in POAG (249-251). Hence there is still a disagreement in the 

literature as to if visual function differs between NTG and POAG.  

 

1.13.2 Glaucoma pathogenesis  

The exact pathogenesis of POAG is poorly understood, with two main theories, 

namely the mechanical theory and the vascular theory, having been proposed 

and a possible link to accelerated ageing having been made (20). High and 

fluctuating IOP linked with the mechanical theory are known factors affecting 

pathogenesis, it’s thought that changes in vascular function also play a significant 

role (120, 244).  

 

1.13.2.1 Mechanical theory 

Increased IOP has been identified as a cause of retinal ganglion cell death (236, 

252) and the role that elevated IOP may play in the development of GON is the 

central focus of the ‘mechanical theory’; which suggests that high IOP causes 

mechanical strain/pressure on the ONH (253). This strain on the ONH causes 

deformation of the cribriform plates of the lamina cribrosa, activation of glial cells, 

possible compromise of the vasculature and compression of optic nerve fibre 

bundles which ultimately leads to nerve fibre damage (253-255). IOP is a 

clinically modifiable factor and its reduction slows the progression of glaucoma 



57 
 

(253, 256). Due to our incomplete understanding of the mechanism of glaucoma, 

current treatment is focused on the reduction of IOP by medical and surgical 

treatment (246, 257, 258). Increased understanding of the other mechanisms in 

glaucoma would potentially enable expansion and improvement of glaucoma 

treatment.  

 

 

 

1.13.2.2 Vascular theory 

The vascular theory proposes that a compromised supply of blood to the optic 

nerve head causes retinal ganglion cell death (255, 259). Blood flow in POAG 

has been widely researched (260-263) and has been linked to increased severity 

of the disease (260, 261, 264). In the retina, reduced retinal arteriolar diameter 

has been found in glaucomatous eyes, compared to healthy controls and OHT 

patients (265). In addition, constriction of retinal arteries located near to the optic 

disc has been shown in POAG and NTG, which also correlated with extent of 

optic nerve head damage (266).  The reduced blood flow observed in 

glaucomatous eyes was previously thought to be a consequence of GON, as 

ganglion cell loss causes a reduction in number of blood vessels (120). However, 

research has shown that reduced blood flow occurs before optic nerve damage 

develops (267-269). In addition, reduced blood flow is linked with disease 

progression (270), leading to the conclusion that reduced blood flow could be a 

mechanism of damage in GON. Over recent years it has emerged that unstable 

blood flow, in the form of altered regulation of blood supply to meet demand, is 

more relevant to GON pathogenesis than a steady, constant reduced blood flow 
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(271, 272). An example which illustrates this well is multiple sclerosis (MS). MS 

causes a constant reduced blood flow which can cause atrophy, however 

glaucomatous optic nerve head signs such as excavation are not seen (273). 

Unstable blood flow in glaucoma has been hypothesised to result from the 

presence of disturbed autoregulation in these patients, as a result of endothelial 

dysfunction (274) and/or structural vessel wall changes (275). 

 

 

1.13.2.2.1 Autoregulation 

Ocular perfusion pressure (OPP) refers to the force of the blood flow through the 

intraocular vessels (120, 276), calculation shown in Chapter 3, equation 3.2. 

Under normal circumstances, if OPP falls autoregulation commences to make 

sure that adequate ocular perfusion is maintained (276, 277). This regulation 

occurs through automatic modification of vascular resistance i.e. vessel diameter, 

to ensure blood supply meets metabolic demand (276). Autoregulation occurs in 

the retina and ONH and is a neurovascular coupling response. This means that 

when the neural activity of the retina increases, it triggers the retinal vasculature 

to dilate to ensure that blood supply is increased, via the blood-retinal barrier, to 

meet the increased metabolic demand of the neurons. The endothelium plays an 

important role in the autoregulation of blood vessel diameter (120). Dysfunctional 

regulation is linked with endothelial dysfunction which has been shown to be 

associated with systemic factors such as systemic hypertension (278), 

cardiovascular disease (279), plus ocular vascular factors such as reduced OPP 

(279) and vasospasm (280).  

 



59 
 

Autoregulation of the retinal and ONH blood flow is only able to maintain blood 

flow within a certain range of OPPs. If OPP reduces to a level outside the 

capability of autoregulation, blood supply may not be able to be increased to 

meet demand, resulting in damage through ischaemia (276). Alternatively, if OPP 

is reduced to a level within the normal range for autoregulation but the 

mechanism is not functioning correctly, there is also the risk that ischaemic 

damage may occur (276). If blood flow regulation is dysfunctional the ONH is 

vulnerable to periods of ischaemia when demand is high, followed by periods of 

adequate perfusion when demand is low. This instability in blood flow can result 

in ischaemia-reperfusion injury and potentially GON as a consequence. 

Dysfunctional autoregulation is referred to in the literature as vascular 

dysregulation (275) and has been evidenced in glaucoma patients, both systemic 

(281) and ocular (282-285) with increased disturbance in those with NTG (286) 

and progressive GON (287).  

 

1.13.2.2.2 Primary Vascular dysregulation 

Primary vascular dysregulation describes an inherent inappropriate constriction 

(vasospasm) or inadequate dilation response of the microcirculation when 

stimulated which is present in some individuals (273). Within the eye the 

presence of primary vascular dysregulation could affect autoregulation, causing 

unstable blood flow and under/over perfusion to the retina and ONH hence 

increasing the likelihood of damage (273). It has been shown that vasospasm 

decreases OPP through increasing  vascular resistance in the central retinal 

artery of primary vascular dysregulation patients compared to healthy controls 

(288). Primary vascular dysregulation syndrome has been linked with the 
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development of GON (289), with vasospasm shown to alter ocular blood 

circulation in NTG and POAG patients (290, 291). This provides support for the 

role that altered vascular regulation appears to play in the pathogenesis of GON. 

 

1.13.2.2.3 Endothelial dysfunction 

Endothelial dysfunction is introduced and explained in Section 1.8 along with the 

molecules ET-1 and NO. The endothelium is important in the regulation of 

systemic and ocular blood supply. A decrease in the availability of NO and 

increase in ET-1 results in excessive vasoconstriction and as a result, blood flow 

dysregulation (292, 293). As explained above, the endothelium plays an 

important role in the autoregulation of blood supply to meet demand, through the 

release of the vasoactive agents NO and ET-1 that act to increase and decrease 

the diameter of the blood vessels according to metabolic demand.  A dysfunction 

of the endothelium and hence a failure in this autoregulation process can cause 

unstable blood flow to the ONH during periods of high neural activity, increasing 

the likelihood of glaucomatous damage through ischaemia-reperfusion injury 

(273). In NTG and POAG patients, levels of NO in the plasma have been found to 

be at a reduced level compared to healthy controls (294-296). ET-1 in the plasma 

has also been shown to be at higher levels in NTG (297, 298) and POAG patients 

(299, 300). In addition to ET-1 constricting vessels it has also been shown to 

facilitate an increase retinal venous pressure (RVP) (301). High RVP reduces 

perfusion pressure and hence reduces blood flow to ONH; which causes 

glaucomatous damage (301). In addition to indicating dysfunction by measuring 

plasma levels the clinical sign of ONH haemorrhages can be observed by viewing 
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the retina, ONH haemorrhages are associated with autoregulation and instability 

of ONH blood flow (302).  

 

Endothelial dysfunction has been observed in the systemic macro-circulation of 

patients with NTG (256). Although this is important as it supports the vascular 

theory, endothelial dysfunction of the microcirculation is thought to be affected 

prior to macro-circulation (303). As mentioned in Section 1.9, the DVA can 

analyse microvasculature structure and measure altered retinal vessel response 

to flicker light which is thought to indicate any impaired endothelial function (302, 

304). Garhofer et al. (2004) identified that POAG patients have a reduced venous 

dilation response compared to healthy controls (305). Further studies have 

shown that NTG patients have a reduced baseline-corrected flicker response 

(304) and found evidence of vascular dysfunction  in both early-stage POAG and 

NTG compared to healthy controls (243). These associations infer that patients 

with GON have impaired autoregulation due to endothelial dysfunction.   

 

As well as affecting the vasculature, endothelial dysfunction can affect the 

channels in the trabecular meshwork and canal of Schlemm. Endothelial cells line 

the trabecular meshwork channels, as outflow of aqueous humour occurs in the 

trabecular meshwork, any dysfunction located here would ultimately affect IOP 

(255, 293). Interestingly, levels of NO in the aqueous humour have been found to 

be significantly decreased in POAG patients (296) and in a separate study 

endothelin levels were found to be significantly higher than healthy control 

participants (299).  
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1.13.3 Oxidative stress and glaucoma 

As described throughout this glaucoma section, glaucoma is a multifactorial 

disease. Oxidative stress is one factor that has been linked with glaucomatous 

RGC death (236, 306-311). Oxidative stress contributes to neurodegenerative 

damage via the mechanism of free radicals attacking the neural cells (96). The 

harmful effect the reactive species has on cells leads to tissue damage, oxidative 

injury and ultimately apoptosis (96, 104). It is thought that RGCs are susceptible 

to oxidative stress due to their high oxygen consumption (312) and light exposure 

(313).  

 

In addition to affecting RGCs, oxidative stress is also thought to affect IOP. It has 

been shown that glaucoma patients have reduced antioxidant activity in the 

aqueous humour, suggesting increased oxidative stress is present (307, 314, 

315). Increased levels of oxidative stress leads to inflammation, cellular loss and  

impairment and damage to trabecular endothelial cells (306, 316), affecting 

aqueous outflow and ultimately increasing IOP (317-319). As discussed in 

Section 1.13.2.1, increased IOP has been identified as a cause of retinal ganglion 

cell death.  

 

Oxidative stress is also related to the vascular mechanisms of damage linked 

with glaucoma. As explained in 1.13.2.2 recurrent reperfusion injury refers to the 

damage caused to tissue when blood supply returns after a period of ischemia. 

During ischaemia, the absence of oxygen impairs electron transport, resulting in 

unused electrons. When the tissue returns to normal the additional electrons 

react with oxygen which leads to the formation of ROS (320). Astrocytes in the 
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ONH are susceptible to ROS. When activated, the astrocytes produce abnormal 

molecules such as ET-1 and NO which alter the cell environment (321). The 

activation of astrocytes is thought to be one of the mechanisms initiating 

inappropriate apoptosis of RGC’s in glaucoma. In addition, ROS also impact the 

vascular endothelium by promoting endothelial dysfunction through reduction in 

the bioavailability of the vasodilator NO (322). 

 

The antioxidant glutathione (GSH) and total glutathione (t-GSH) in the plasma 

have been shown in glaucoma participants in be lower compared to healthy 

controls, suggesting a depleted antioxidant status, indicative of increased 

oxidative stress (323). A number of other oxidative stress biomarkers have also 

shown depleted antioxidant levels and increased pro-oxidants (107). Levels of 

the biomarker MDA has been found to be significantly correlated with glaucoma 

severity (109, 315). Recent studies have investigated reduction of oxidative 

stress as a possible treatment for glaucoma. The antioxidants alpha-lopoic acid 

delivered through the diet was found to decrease oxidative stress and increase 

protection of RGCs in mice (324). Similarly the antioxidant tempol was found to 

be beneficial in mice, the antioxidant caused a decrease in pro-inflammatory 

cytokines and decrease in decrease in NF-κB activation (325). The results of 

these animal studies suggest that antioxidant treatment may be a strategy for 

glaucoma prevention, although further research is required.   
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1.13.4 AGEs and glaucoma 

The possibility that GON may develop as a manifestation of accelerated ageing 

has been suggested by previous studies (20, 326), and due to the known 

associations between accelerated ageing and AGE accumulation (142, 327), it is 

logical to hypothesise that increased AGE levels may contribute to the 

pathogenesis of glaucoma. To date, there have been few clinical studies that 

have been able to directly explore the relationship between AGEs and the 

development and progression of GON due to methodology restrictions, however 

as previously discussed, a number of the known associates of elevated AGE 

levels, namely increased oxidative stress, vascular dysfunction and altered ocular 

biomechanics, have been previously linked to the pathogenesis of GON. These 

associations and their potential relationship with AGE levels in glaucoma will be 

discussed further in these sections with relevance to the mechanical and vascular 

theories of glaucoma to show how AGEs could be hypothesised to be related 

throughout the glaucoma disease continuum.  

 

1.13.4.1 AGEs in relation to the mechanical theory of GON 

 

1.13.4.1.1 Accumulation of AGEs in the ONH 

As discussed in Section 1.11.10 with age increased amounts of collagen cause 

the structure of the lamina cribrosa to alter, becoming stiffer and less resilient 

(203). These age-related collagen changes are thought to be linked with age 

related GON. As well as increased collagen present in the lamina cribrosa with 

age the AGE pentosidine has been found in increased amounts (203). 

Additionally Amano et al. (2001) investigated optic nerve specimens from diabetic 
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participants and the AGE pyrraline was located in the; sclera, pia matter, 

cribriform plates, optic nerve connective tissues and around the vessels in the 

optic nerve (204). Tezel et al. (2007) measured the accumulation of AGEs (CML) 

in glaucomatous and age-matched control donor eyes and found that there was 

increased AGE and RAGE presence in those with more advanced age and those 

with glaucoma (20). The AGEs were primarily detected in the cribriform plates of 

optic nerve head, while RAGE was seen on the glial cells, mainly the Müller cells 

(20).  It is thought that accumulation of AGEs in this region may have a role in the 

reduced ability of the cribriform plates to withstand strain and the increased 

rigidity of lamina cribrosa (20), leading to susceptibility to mechanical IOP 

induced damage (328).  

 

1.13.4.1.2 Accumulation of AGEs in the trabecular meshwork 

As previously explained in Section 1.5, AGEs accumulate in the extracellular 

matrix of tissues. In the trabecular meshwork the age related changes of the 

extracellular matrix is thought to contribute to increased outflow resistance (329), 

which in turn may contribute to elevated IOP in POAG (328). The decreased 

cellularity and structure changes of the trabecular meshwork may be attributed to 

AGE accumulation(116).  

 

The increased presence of AGEs in glaucomatous tissues and the fact that AGEs 

accumulate with age supports the accelerated ageing theory that GON and the 

ageing process is related (20). 
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1.13.4.1.3 Corneal biomechanics and the relevance of AGEs to glaucoma 

Corneal biomechanics is important as it is thought to be one of the hypotheses 

for why variations in IOP have a damaging effect on some optic nerve heads and 

not others (156). Central corneal thickness (CCT) and the curvature of the cornea 

are measurements known to influence measured IOP; eyes with increased CCT 

or steep corneas have an overestimated IOP, with the opposite true for 

decreased CCT or flat corneas (330). In addition, reduced CCT has been 

identified as an independent risk factor for GON (331, 332). The mechanism that 

causes this increased risk is not understood, although it is thought that improving 

the understanding of corneal biomechanics in eyes with reduced CCT may reveal 

a structural characteristic which makes the ONH more susceptible to damage 

(333).  

 

CCT and corneal curvature are important biomechanical properties however they 

do not entirely explain IOP variations. It’s thought that corneal hysteresis is a 

biomechanical contributor to this variance (156). Corneal hysteresis is an 

assessment of the cornea’s ability to absorb and disperse energy, defined as; the 

difference between inward force to flatten the cornea and outward recovery (334). 

The resistance calculated is in theory related to viscoelastic corneal properties 

(334). The cornea’s viscoelastic behaviour is primarily derived from the stroma, 

and the stiffness that is known to increase with age is due to changes in the 

cornea’s extracellular matrix (328, 335, 336). 

 

Corneal hysteresis in particular is of interest as lower hysteresis has been found 

in patients diagnosed with glaucoma (337), in addition corneal hysteresis has 



67 
 

been linked with progressive visual field worsening (337). Prata et al. (2012) 

similarly found that low corneal hysteresis is linked with glaucomatous nerve 

head signs; larger cup to disc ratio and increased cup depth (338), and in those 

with bilateral glaucoma, 75% of participants with lower corneal hysteresis had a 

larger cup to disc ratio (338). As explained in Section 1.11.2, AGEs accumulate in 

the collagen of the stroma with increased age (158) and encourage an increase 

in collagen fibrils (159). Hence it could be hypothesised that AGEs may be a 

contributing factor to the reduced corneal viscoelasticity seen with age and it 

could be further hypothesised that in individuals with elevated AGE levels, this 

age-related reduction in viscoelasticity could occur at an accelerated rate. There 

are no previous studies that have directly assessed the relationship between 

corneal hysteresis or viscoelasticity and tissue-bound AGE levels in healthy 

participants, or those with GON. It is possible that an increased rigidity of the 

extracellular matrix, not only in the cornea, but also throughout the structures of 

the eye, could contribute to overall ocular mechanical rigidity, including lamina 

cribrosa rigidity (338, 339).  

 

The inclusion of OHT participants enabled the relationship of the structural 

properties between POAG, NTG and OHT to be examined. OHT patients have 

been shown to have a higher corneal hysteresis compared to patients with POAG 

and NTG (340). It is hypothesised that this relates to overall rigidity. Corneal 

biomechanic properties measured between groups as well as SAF will allow 

examination between altered rigidity and AGE level.  
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1.13.4.2 AGEs in relation to the vascular theory of GON 

 

1.13.4.2.1 AGEs and endothelial dysfunction 

The relationship between AGEs and endothelial dysfunction is explained 

previously in Section 1.8 with regard to specifically how AGEs create an 

imbalance in ET-1 and NO. In glaucoma research it has been reported there is an 

imbalance of ET-1 and NO (294, 296, 300). The associations between 

endothelial dysfunction and glaucoma were explained in more detail in Section 

1.13.2.2.3. The exact relationship between AGE levels and microvascular 

endothelial function in healthy ageing and GON has however not previously been 

explored. It is possible that AGEs could potentially represent an underlying 

causative factor for retinal vascular dysfunction and hence could be suggested to 

contribute to the development of GON. The measurements taken by the DVA will 

help to indicate any impaired vascular endothelial function. 

 

1.13.4.2.2 AGEs and structural alterations in the vasculature  

As explained in Section 1.11.11 as part of the normal ageing process the vessels 

within the body experience; endothelial dysfunction, reduced elasticity, 

accumulation of collagen and increase in intimal medial thickness (209, 210). 

Elasticity of the blood vessels is dependent on the level of collagen fibres and 

collagen cross-links (211). AGE accumulation causes an increase in collagen 

covalent crosslinks (341), as a result there is an increase in stiffness of arteries 

(342).  AGE accumulation also causes an increase in cross-links within elastin 

which also causes a reduction in blood vessel elasticity (136, 342). As discussed 

in Section 1.8 Reddy (2004) using diabetic rats, demonstrated this mechanism 
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(212) and other studies have shown that increased vascular stiffness correlates 

with increased AGE accumulation (13, 138). Stiffness of arteries is a recognised 

risk factor for cardiovascular diseases (343). Increased systemic arterial stiffness 

has been shown in diabetic patients with glaucoma (344) and Mroczkowska et al. 

(2013) found evidence of vascular dysfunction in both POAG and NTG (243). 

However the relationship between increased vascular stiffness and glaucoma 

remains controversial as other studies have found relationships but none of which 

are statistically significant (345, 346). Altered dynamic retinal vessel function has 

been hypothesised to be linked to increased arterial stiffness and altered retinal 

vessel calibres infer an alteration in stiffness (304). Structural alterations in the 

retinal vessels will be analysed using the StaticVesselMap2 software (see 

Section 3.2.2.2.2).  

 

1.13.5 AGEs measured with SAF in glaucoma 

Only a few studies have used the AGE Reader (DiagnOptics B.V., Groningen, 

The Netherlands) and SAF in relation to glaucoma. The Schweitzer et al. (2018) 

study recruited 424 healthy controls and 31 POAG participants and found that 

high SAF was independently associated with an greater risk of glaucoma (115), 

they used SAF as a measurement of AGE level. A research group in Japan is 

also using SAF in glaucoma research (118, 119), however they use SAF as a 

biomarker of oxidative stress and not AGEs.  
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1.13.6 Summary of the potential mechanisms by which AGEs may link to 

glaucoma pathogenesis 

The relationship of AGEs with the tissues associated with glaucoma and 

evidence from oxidative stress suggest the association between AGEs and 

glaucoma require further investigation. The accumulation of AGEs and RAGE 

detected in glaucomatous retina and ONH’s as well as AGEs accumulation in the 

collagen of the cornea presents the theory that AGE accumulation in these 

structures may be linked with the mechanical theory of GON. AGE accumulation 

in blood vessels as well as their negative effect on vascular function links AGE 

accumulation with the vascular theory of GON. No one has yet directly explored 

retinal vascular structure and function relationship with AGEs. The DVA and 

StaticVesselMap2 will help to build a picture of how AGEs may be linked with the 

vascular theory of GON. As the degree of mechanical and vascular involvement 

is thought to differ between POAG, NTG and OHT patients, evaluation of AGE 

levels between groups may improve understanding of the role AGEs play in 

GON. Any role AGEs do have could potentially be altered by advice about 

reduction of dietary AGEs if these are also found to be associated.  

 

1.14 Strategies to reduce AGE level 
 

It has been evidenced that AGEs have a strong pathological significance.  As 

such research has been conducted with the aim of modifying/reducing AGE level, 

both exogenous and endogenous. 
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1.14.1 Restriction of dietary AGEs 

As shown in Table 1.2 there are databases which have measured levels of AGEs 

within foods. Using these databases multiple studies have investigated the effect 

of AGEs on diet, predominantly using ‘high’ and ‘low’ AGE diets then measuring 

the resultant circulating AGE level, oxidative stress biomarkers and inflammation 

biomarkers. These studies are discussed in Section 1.4 and also listed in a Table 

summary in Appendix 9. It is generally considered that a reduction in dietary AGE 

level is beneficial to circulatory levels, however how this translates to tissue 

bound levels is not known.  

 

1.14.2 Exercise and AGEs 

Initial exercise AGE studies used animals, predominantly exercise trained rats, 

and with increased exercise there was decreased advanced glycation (347, 348). 

There are a few exercise AGE studies in humans. A study by Goon et al. (2009) 

found that participants performing tai chi twice a week had reduced plasma AGE 

levels and reduced levels of plasma MDA compared to the matched sedentary 

participants (349). In a different study the AGE CML was measured in relation to 

activity measured by a pedometer. It was found that serum levels of CML 

decreased with increased number of steps, this correlation was significant (350). 

The results of a study by Habacuc Macías-Cervantes et al. (2014) however found 

that exercise alone did not reduce serum AGE level, restriction of dAGE did 

reduce serum levels of AGE and when this was combined with exercise there 

was an improvement lipid profile (351). 
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1.14.3 Pharmacological Interventions and AGEs 

Pharmacological interventions to reduce AGEs have been studied, they include 

agents that target AGE formation and reduce crosslinks as well as agents that 

block AGE-RAGE reactions (8). A few specific drugs have been studied in 

relation to AGEs. The drug metformin reduced serum levels of AGE in women 

diagnosed with polycystic ovary disease (352) and that the lipase inhibitor Orlistat 

also reduced serum AGE levels in women with polycystic ovary disease (353). In 

a group of diabetic patients with kidney disease it was found that the drug 

candersatan reduced CML levels measured from patient’s urine (354).   

 

As explained in Section 1.5.3, soluble RAGE (sRAGE) is different to the cell-

surface RAGE and is considered beneficial. Pharmacological agents have been 

studied in relation to regulating sRAGE. In a study using rats inhibiting the 

angiotensin-converting enzyme (ACE) resulted in increased expression of 

sRAGE (355). A relationship has been found between plasma levels of sRAGE 

and coronary artery calcium, with increased sRAGE inversely associated with 

coronary atherosclerosis (356). An atherosclerosis study found that the insulin 

sensitising thiazolidinedione medications increased levels of sRAGE (357). It is 

thought therefore that thiazolidinedione medications may be promising for 

regulating sRAGE (355). The pharmacological agents being researched are in 

the early stages of being trialled (358, 359), therefore effective safe treatments 

are not yet available to prescribe to patients.   
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2.  Research rationale  

 

AGEs are complex compounds with a potentially large impact both on the healthy 

ageing population and those diagnosed with pathology. Enhancing our 

understanding of the role that AGEs may play in accelerating the development of 

GON has the potential to offer additional insight into GON pathogenesis. 

 

Total tissue-bound AGE level in the body includes AGEs produced 

endogenously, via normal glycation reactions occurring within the body, and the 

AGEs that are taken in exogenously, mainly through diet or smoking (as 

discussed in Sections 1.2 and 1.4). Measurement of tissue-bound AGE levels via 

skin auto-fluorescence does not allow the relative contribution of exogenous 

(dietary) and endogenous sources of AGE to be determined, which can make 

targeted treatment difficult. Dietary AGE intake represents a potentially modifiable 

target (360), however there is currently no UK specific AGE FFQ to measure 

dietary AGE intake (14, 56). Through the design of a specific and targeted FFQ, 

this research will investigate the contribution of dietary AGE to tissue-bound AGE 

levels with the aim of evaluating the viability of dietary treatment as an option to 

reduce the overall levels of AGE in the body and potentially reduce the 

development of age-related disease such as glaucoma. 

 

When considering the influence that AGEs may have on the development of age-

related disease, it is important to also take into consideration oxidative stress. 

Evidence suggests that oxidative stress is also part of the normal ageing process 

(114), in addition to this there is a complex relationship between AGE levels and 
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oxidative stress levels in the body. Indeed, an increase in AGE levels is both a 

cause and an effect of elevated oxidative stress (9), with oxidative stress 

accelerating AGE formation and the production of free radicals, as well as being 

produced as a by-product of AGE formation and AGE-RAGE binding interaction 

(see Section 1.7) (112, 113). AGEs are considered to be pro-oxidant substances, 

due to their formation increasing the cellular level of oxidative stress (361, 362).  

 

To date, few studies have explored the possibility that AGEs may be an 

underlying causative factor for GON (20, 115, 204). It could be hypothesised that 

increased accumulation of AGEs could be the underlying causative factor for a 

number of the known pathological associations of GON and ultimately contribute 

towards its development in some individuals through acceleration of the ageing 

process. Establishing an association between AGE levels and these parameters 

in POAG, NTG and OHT patients therefore could increase our understanding of 

the pathogenesis of GON and potentially allow a new biomarker for accelerated 

ocular ageing, in the form of tissue-bound AGE levels to be realised. This 

evaluation is interesting as POAG, NTG and OHT are thought to have differing 

levels of vascular and mechanical involvement.  
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2.1 Research aims 

 

 To develop and validate an AGE specific semi-quantitative FFQ. 

 

 To determine whether dietary AGE intake and circulating oxidative stress 

levels are associated with tissue-bound AGE levels (SAF) in a healthy 

ageing population as well as to explore the influence of BMI, smoking 

history, alcohol consumption, body fat percentage and blood pressure on 

oxidative stress, SAF and dAGE, in the same population. 

 

 To determine whether tissue bound and dietary AGE levels are elevated in 

POAG and NTG in comparison to age-matched OHT patients and healthy 

controls. Oxidative stress levels will be compared as a possible influencing 

factor. 

 

 To determine how tissue-bound AGE levels are associated with static and 

dynamic retinal vessel parameters and corneal viscoelasticity in a healthy 

ageing population.   

 

 To evaluate whether level of tissue bound AGEs (SAF) relates to static 

and dynamic retinal vessel structure and function and corneal 

viscoelasticity in POAG, NTG and OHT patients. 

 

 To explore whether dynamic retinal vascular parameters are related to 

corneal viscoelastic parameters in HC, OHT, NTG and POAG patients.  
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3. Participants and Methods 

 

3.1 Recruitment  
 

All participants for the studies that make up this programme of work were 

recruited using convenience sampling. The study’s inclusion and exclusion 

criteria indicated which potential participants to approach. Written informed 

consent was received from all participants prior to study enrolment, and all study 

procedures were designed and conducted in accordance with the tenets of the 

Declaration of Helsinki. Four different participant groups were recruited for this 

study; healthy control, early POAG, early NTG and OHT.  

 

The study design ensured that the recruiter did not apply undue pressure. In 

particular, it was ensured participants were fully aware that there was no personal 

benefit in terms of specialist care. As a registered health professional, the ability 

to judge capacity to provide valid consent is a familiar challenge, as the ethical 

principles of giving informed consent are core to professional optometric practice. 

  

3.1.1 Participant recruitment  

3.1.1.1 Recruitment of participants with early stage Primary Open Angle 

Glaucoma, early stage Normal Tension Glaucoma and Ocular Hypertension 

POAG, NTG and OHT participants were identified through their attendance at 

their routine outpatient’s appointment at Derriford Royal Eye Infirmary (REI). 

Participants that fit the study inclusion/exclusion criteria were identified by Mr 

Adam Booth FRCOphth PhD (Consultant Ophthalmic and Glaucoma Surgeon at 

the REI, Derriford Hospital, Plymouth) or a member of his team, and provided 
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with information about the study. If willing, suitable participants were either 

referred directly for further information and given a copy of the patient information 

sheet (Appendix 2.3 and 2.5), or asked whether they were happy for their contact 

details to be passed on and to be contacted at a later date. 

  

3.1.1.2 Recruitment of healthy control participants 

Some healthy control participants self-presented for involvement in the study 

following advertisement and promotion of the study within and around Plymouth 

University and through our Centre for Eyecare Excellence (CEE). In addition 

some suitable friends and relatives of the glaucoma or OHT participants also self-

presented for involvement. After confirmation that the participant met the 

inclusion/exclusion criteria they were provided with the information sheet 

(Appendix 2.1).  

 

Active recruitment of healthy control participants was also carried out through 

CEE at Plymouth University. Any patient who appeared to fit the 

inclusion/exclusion criteria for the study was given the opportunity to participate. 

They were provided with verbal information about the study and given the 

participant information sheet to review after their routine eye examinations. In 

addition, CEE patients who had consented to being contacted for research 

purposes were contacted if they fit the study criteria. These participants were 

informed about the study and if interested, provided with an information sheet by 

post inviting them to participate. The participants were given time to consider 

their involvement in the study.  
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3.1.2 Consent 

Fully informed written consent was obtained at the outset of the study, in 

accordance with the principles of the Declaration of Helsinki (363) and Good 

Clinical Practice (GCP) (364). Persons who were deemed vulnerable or unable to 

give fully informed consent were not invited to take part. Participants were 

informed of their right to withdraw at any time, and no coercion or undue 

influence was used to encourage participation. A copy of the consent form can be 

found in Appendix 2. 

 

3.1.3 Inclusion criteria for all study groups  

• All participants had to be 50 years or older and have completed a 

comprehensive eye exam in the last two years.    

• Informed and written content was required for participation in the study and all 

participants had to have the capacity to give informed consent themselves.  

• All participants had to have adequate understanding of English language to be 

able to comprehend the oral and written instructions.  

• All participants had to be able to complete a 12-hour overnight fast, which 

includes no alcohol or caffeine.   

 

3.1.3.1 Definition of Ocular Hypertension (OHT)  

For the purposes of this study OHT was defined as intraocular pressure (IOP) 

above 21 mmHg with no significant visual field defect and no signs of optic nerve 

head damage. Central corneal thickness was required to be less than or equal to 

600 μm. Only reliable visual field results, with <20% fixation losses and <33% 

false positive and false negative responses were considered. The diagnosis of 
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OHT according to these criteria was made by Mr Adam Booth or one of his 

ophthalmology team.   

 

3.1.3.2 Definition of early stage Normal Tension Glaucoma (NTG): 

NTG patients were required to be in the early stage of their disease process and 

were only included if they met the definition outlined; for the purposes of this 

study early stage NTG was defined as patients with IOP equal to or below 21 

mmHg, with a mild glaucomatous visual field defect and/or optic nerve heads 

changes indicative of glaucoma. A mild glaucomatous visual field defect was 

defined as a Mean Deviation (MD) between 0 and - 6.00 dB along with either a 

Glaucoma Hemifield Test “outside normal limits” and/or a pattern standard 

deviation with p-value <0.05. Only reliable visual field plots, with <20% fixation 

losses and <33% false positive and false negative responses were considered. 

The diagnosis of NTG according to these criteria was made by Mr Adam Booth or 

one of his ophthalmology team.  

 

3.1.3.3 Definition of early stage Primary Open Angle Glaucoma (POAG)  

POAG patients were required to be in the early stage of their disease process 

and were only be included if they met the definition outlined; for the purposes of 

this study early stage POAG was defined as intraocular pressure above 21 

mmHg with a mild glaucomatous visual field defect and/or optic nerve head 

changes indicative of glaucoma. A mild glaucomatous visual field defect was 

defined as detailed for NTG participants as above. The diagnosis of POAG 

according to these criteria was made by Mr Adam Booth or one of his 

ophthalmology team.   
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3.1.4 Exclusion criteria 

Participants younger than 50 years were excluded, and there was no upper limit 

for age. This criterion was set since glaucoma is an age-related condition and 

has an older patient population (365).  

Participants were excluded if they were smokers or had a positive diagnosis of 

severe cardio- or cerebro-vascular disease such as coronary artery disease, 

heart failure, arrhythmia, angina, stroke, transient ischaemic attacks, peripheral 

vascular disease, severe dyslipidaemia, diabetes, as well as other metabolic 

disorders. Any individuals suffering from chronic systemic diseases known to 

influence oxidative stress or taking cardiovascular preventative medication, 

hormone replacement therapy or antioxidant supplements were also not included. 

The previous lists of exclusions from the study are due to the possible effects on 

AGE level, oxidative stress and vascular function. 

 

Participants with symptomatic cataract and/or cataract of grade 3.0 or above 

according to the Lens Opacities Classification System III (LOCS III) were 

excluded from the study because of the potential influences that cataract may 

have on the accurate conduction of DVA analysis. Due to the flicker light used in 

DVA testing any patients with photosensitive epilepsy were excluded from the 

examination.  

 

All of the healthy control participants were screened for glaucoma and other 

ocular disease and were excluded if any signs consistent with glaucomatous 

optic neuropathy, ocular hypertension or retinal disease found. The glaucoma 

patient group were also be screened for ocular disease other than glaucoma and 
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excluded if any other ocular disease was revealed. The glaucoma patients were 

required to be in the early stage of their disease process as the DVA analyses 

the microvasculature and in vascular disease microcirculation is believed to be 

affected earlier than macro-circulation (303, 304). In addition it is known that 

ocular blood flow decreases in glaucoma with increased damage (120), hence 

investigation of the blood vessels prior to any damage is necessary to investigate 

any underlying causative factor. Recruitment of patients in the early stage of their 

disease process also enabled progression follow up to be possible.   

 

A finger prick test was used prior to blood sampling to ensure the participant did 

not have high glucose levels. Normal blood sugar glucose levels after fasting 

were considered to be: 3.5–5.5 mmol/l, prediabetics/impaired glucose tolerance: 

5.6-7.0 mmol/l and diagnosis of diabetes: more than 7.0 mmol/l. If the participant 

had a fasting glucose level of 7.0 mmol/l or above they were be excluded from 

the study due to the already established link between diabetes and AGE levels. 

In addition their GP was informed of their high fasting glucose level.  

 

Potential participants incapable of giving informed consent due to reduced 

capacity, problems with communication or language that prevents that patient 

from fully understanding the procedure and nature of the study were excluded. 
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3.2 Ethical approval 
 

Ethical approval was received from the Health Research Authority (HRA), 

Plymouth Hospitals R & D department and Plymouth University Ethics Committee 

(Appendix 1). Written informed consent was received from all participants before 

participating in the study and all procedures were designed and conducted in 

accordance with the tenets of the Declaration of Helsinki.  

 

3.3 Methods 
 

All techniques described in this chapter were performed by the author, including 

phlebotomy and blood sample analyses. Prior to commencing recruitment full 

training was received for all techniques to ensure reliability of data collection. 

Phlebotomy training took place at Derriford hospital and lab analysis training 

provided by Dr Desley White. 

 

This programme of research will address six aims (Chapters four to nine). The 

methodology that will be implemented in this research is summarised in this 

section to provide an overview of techniques. All of the investigative techniques 

that form part of this research are detailed in Table 3.1.  
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Purpose 
 

Technique 

Ocular  

Assessment of ocular vascular 
function and structure 

Dynamic Retinal Vessel Analyser 
(DVA) 

Assessment of corneal biomechanics Corvis ST 

Systemic 

Measure height Stadiometer 

Measure weight and body fat 
percentage 

Tanita body composition analyser 

Measure blood pressure  Scian LD578 

Measure blood glucose  Freestyle Optium Neo glucose monitor 

Measurement of tissue-bound AGE AGE Reader 

Measure dietary AGE level Food Frequency Questionnaire (FFQ) 

Plasma analysis – Fasted venous blood sample 

Biomarker for oxidative stress Plasma levels of malondialdehyde 
(MDA) 

Indicators of antioxidant status Plasma levels of vitamin E 

Indicators of antioxidant status Plasma levels of ascorbate 
Table 3.1: Summary of the investigative techniques conducted in this research. 
 
 
 

3.3.1 Visit routine/procedures 

The procedures and visit routine are detailed in each participant information 

sheet (Appendix 2). The different techniques used to address each aim are 

stated in each individual chapter. The recruitment and clinical tests for all groups 

were recruited and measured simultaneously with no one group set of data 

collected first. 
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3.3.2 Specific methods 

3.3.2.1 General investigations 

A demographic questionnaire was used for all participants to collect information 

such as; date of birth, gender, ethnicity, education, smoking history, alcohol 

consumption, general and ocular health history as well as current medication. As 

well as providing this data, the demographic questionnaire also served as a 

‘check’ to ensure each participant met the inclusion/exclusion criteria. Data such 

as height, weight, body mass index (BMI) were collected and used to build a 

picture of overall health as well as aiding the match between healthy control 

participants and OHT, NTG and POAG participants.   

 

Height was measured in meters using a stadiometer. Participants removed their 

shoes and socks and were asked to stand with their feet flat on the floor and to 

stand tall. Weight was measured in kg, patients were asked to remove heavy 

items. Weight, basal metabolic rate (BMR), and body fat percentage were 

measured using the Tanita body composition analyser (TBF-300 MA). BMI was 

calculated by; Dividing the participant’s weight in kilograms by their height in 

metres, and then dividing the answer by the participant height again.  

Blood pressure was measured using a digital blood pressure monitor, Scian 

LD578 (GF Health Products., Atlanta, USA). The cuff size chosen for the 

measurement met the arm diameter requirements. A finger prick blood sugar test 

was performed prior to obtaining the blood sample to ensure normal fasting blood 

glucose levels. As mentioned previously (section 3.1.4), high glucose levels (7.0 

mmol/l or more) resulted in exclusion. A fasting venous blood sample was 
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obtained to enable the measurement of oxidative stress biomarkers, venesection 

and sample handling is described in Section 3.3.2.6.1.  

All healthy control participants and OHT, NTG and POAG participants had the 

health of their eyes examined and vision measured by the principal investigator 

(LS). Proxymetacaine 0.5% (Bausch & Lomb minims) drops were inserted and 

Goldmann tonometry performed. Tropicamide 0.5% (Bausch & Lomb minims) 

drops were inserted for pupil dilation which was required for dynamic and static 

vessel analysis with the DVA.  

 
Results from these general and ocular health investigations were used for 

vascular calculations. Mean arterial blood pressure (MABP) was calculated using 

the blood pressure results, shown in equation 3.1. Ocular perfusion pressure 

(OPP) was calculated using MABP and IOP result, shown in equation 3.2.  

 

 

MABP = 
𝟐

𝟑
 DBP +  

𝟏

𝟑
 SBP 

Equation 3.1: MABP: mean arterial blood pressure, DBP: diastolic blood pressure, SBP: systolic 

blood pressure 

 

OPP = 
𝟐

𝟑
  MABP - IOP 

Equation 3.2: OPP: Ocular perfusion pressure, MABP: mean arterial blood pressure, IOP: 

intraocular pressure 
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3.3.2.2 Dynamic retinal vascular function (DVA) 

The Dynamic Retinal Vessel Analyser (DVA; IMEDOS GmbH, Jena, Germany) 

was used to assess both dynamic and static retinal vessel function. The DVA is a 

non-invasive device that evaluates the dynamic behaviour of retinal vessels 

through the continuous measurement of vessel diameter changes in response to 

flicker light provocation (366, 367). Dynamic retinal vessel parameters 

determined were baseline diameter fluctuation (BDF), baseline corrected flicker 

response (BFR), maximum vessel diameter, minimum vessel diameter, reaction 

time, percentage dilation and percentage constriction response. The DVA has 

been widely used as a measure of retinal microvascular function in both healthy 

ageing and ocular and systemic disease research (243, 368-370). Static retinal 

vessel parameters were measured using the VesselMap2 software on the DVA 

device. Measured parameters included central retinal artery equivalent (CRAE), 

central retinal vein equivalent (CRVE) diameters and arterio-venous ratio (AV 

ratio) (371).   

 

The DVA device comprises a fundus camera (FF450, Zeiss Jena, Germany), a 

digital high-resolution charged coupling device (CCD) camera, CCD video 

camera, a computer with analysis software and a printer (Figure 3.1) (366, 372). 

An additional green (red-free) filter is inserted for dynamic retinal vessel analysis 

as this provides contrast for vessel visualisation (366). This filter is removed for 

static vessel analysis.  
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Figure 3.1 - The Dynamic Retinal Vessel Analyser (DVA; IMEDOS GmbH, Jena) 

 

 

3.3.2.2.1 Technical specifications  

The DVA and static VesselMap2 technical specifications are summarised in 

Table 3.2. As well as being non-invasive the DVA has high reproducibility (373), 

low variability (374), while allowing different vessel segments of artery and vein to 

be measured simultaneously. However, the DVA has shortcomings; it relies on 

the participant being able to hold stable fixation for 350 seconds, clear media to 

ensure sufficient image quality. Dynamic vessel analysis requires full pupil 

dilation, and the calculations performed by the software assume that the eye is 

emmetropic. The VesselMap2 software is non-invasive and requires the 

participant to fixate for a short period of time (approximately 1 minute).  The 

vessel diameter for Vessel Map2 is measured in units (MU) (372), in Gullstrand’s 

‘normal eye’ 1 MU is also defined as 1 μm (375).  
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Table 3.2: Technical specifications of the DVA and Static VesselMap2 (372). 

 

3.3.2.2.2 Measurement of dynamic retinal vessel function 

The DVA uses flicker light to instigate a vessel response and assess dynamic 

retinal vessel function (376). Flicker light increases the neural activity of the 

retina, which in turn increases the metabolic demand of the retina (377, 378). In a 

healthy person this heightened metabolic demand triggers the retinal endothelium 

to release more nitric oxide (NO) which causes vasodilation and consequently 

increases blood flow to meet the increased demand (379), as Figure 3.2 

illustrates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 

 

DVA value Static VesselMap2 

value 

Spatial resolution 10 μm 10 μm 

Scaling factor 12.3 µm/Pixel * 7 >= ~ 85 

µm 

5.35 µm/Pixel * 7 >= ~ 

40 µm 

Image field angle 30 degrees 50 degrees 

Measuring time 350 seconds (although 

can be up to 10 min) 

2 min 
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Increased metabolic demand of 
the photoreceptors 

(Triggering neurovascular coupling response) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Pathway response to flicker light 

 

This process is referred to as neurovascular coupling, see section 1.13.2.2.1. 

Flicker light as a stimulus is useful as it has the ability to stimulate the retina 

without involving any other vascular/microvascular bed. When normally 

functioning, both arteries and veins respond to flicker light with dilation. The 

arterial response is typically more marked than veins. Furthermore, whilst the 

arteries react almost instantly, the venous response is delayed several seconds 

(380, 381).  

 

Flicker light 
12.5Hz 

Increased neural 
activity  

Retinal endothelium 
triggers increase in NO 

Vasodilation 

Increased blood flow 
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The DVA uses a flicker frequency of 12.5 Hz; this is within the maximum 

sensitivity (10-20 Hz) for the human visual system (380) and has been shown to 

be a suitable frequency for stimulation of retinal vessels (371, 376, 380, 381).  

The duration of exposure to flicker is 20 seconds as the maximum vessel reaction 

has been shown to occur during this time (380). After the 20 second flicker ends 

vasodilation ceases and vasoconstriction begins. During the baseline that follows 

the end of the flicker there has been shown to be an overshoot period that lasts 

6-10 seconds. Between 10-40 seconds after flicker has ceased the vessels will 

be at their minimum diameter, after which the vessel diameter returns to baseline 

(376, 380).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Dynamic profile of an individual’s artery and vein response.  

 

 

The camera is positioned to provide the optimal illumination and the participant is 

directed to fixate on a fixation needle. This needle can be moved to enable a 

centre view of the area of interest. The real time video monitor allows vessel 

selection where the practitioner deems most appropriate, see Figure 3.4. From 

this area a section of retinal artery and vein approximately 1 to 1.5 disc diameters 

 

 

 

 

 

 

 

 

 

 

Baseline 
BDF 

Time (seconds) 
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Fixation needle  

Section of 
retinal artery  

Section of retinal 
vein 

away from the ONH and approximately half a disc diameter in length was 

selected, tortuous vessels, vessels with crossings and vessels very close to one 

another were avoided as per the recommendation outlined by Imedos (372, 382, 

383).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Vessel selection for DVA measurement.  

 

 

The diameter of the vessel is calculated by an algorithm within the system which 

detects differences in reflectance. The selected portions of artery and vein 

automatically begin to be measured once the vessel selection is completed. Each 

selected vessel’s diameter is continuously monitored during the procedure (total 

of 350 seconds). The first 50 seconds of baseline measurement are conducted in 

apparent constant illumination (25 Hz).  This is followed by three flicker cycles 

(12.5 Hz) with 80 seconds of recovery (25 Hz) between each cycle, as shown in 
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Figure 3.5. This length of test and inclusion of three flicker cycles was designed 

to enable the calculation of an average vessel response within an acceptable 

testing time length (376).   

 

Figure 3.5: Visual display of measurement cycles during DVA testing 

 

 

 

The procedure outlined above is in accordance with established protocols for 

carrying out assessments with the DVA (382, 384). Before testing began 

systemic blood pressure and pulse rate was measured. All participants were 

instructed to avoid alcohol, tobacco, nicotine, extreme exercise, unnecessary 

sleep deprivation, caffeine containing products or any dietary 

supplements/vitamins 12 hours prior to the study session due to their possible 

effect on retinal blood vessel function (382). However, they were asked to 

maintain normal eating habits as fasting can cause abnormal vascular activity 

(385). As mentioned previously in the exclusion criteria 3.1.4, participants taking 

vasoactive systemic drugs were excluded.  

 

3.3.2.2.3 DVA dynamic output and parameters  

The DVA algorithm calculates a baseline measurement, the results are based on 

this and expressed as percentage to baseline (141). The DVA software can 

analyse the dynamic response profile, and this output has been used by multiple 
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studies (386-389). However the DVA software averages all three cycles in 

combination such that responses from individual cycles cannot be distinguished. 

It also makes its calculation of maximum vessel diameter using an average of the 

vessel diameter in the last three seconds of flicker and first three seconds post 

flicker (17-23 seconds) Therefore using this method alone individuals who reach 

maximum dilation outside of this specified time window would have their dilatory 

response underestimated (390).  In addition, the DVA software does not consider 

the baseline fluctuation of vessels diameter (BDF) that occurs in a normal resting 

state. This fluctuation is physiological and occurs due to arterial pulsation and 

vascular tone (384). Baseline corrected flicker response (BFR) is a calculation 

that accounts for BDF, it uses dilation amplitude (DA) and subtracts BFR to give 

BDF. This equation was established by Nagel et al. (2004) and has been used in 

other research using the DVA (243, 384, 390). For this reason, this thesis has not 

used the DVA software calculations.  

 

Sequential and diameter response analysis (SDRA) was developed by Heitmar et 

al. (2010), it uses raw data from the DVA, which allows BDF, DA and BFR to be 

calculated in addition to percentage dilation and constriction (141, 390, 391). In a 

similar manner to SDRA, this thesis uses the raw data from the DVA to calculate 

the relevant parameters, see Table 3.3 
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Parameter 

 

Description 

Baseline diameter 

fluctuation (BDF) 

The maximum range in vessel diameter 

during first 30 seconds of baseline readings 

(difference between max diameter and min 

diameter at baseline) 

Dilation amplitude (DA) Amplitude of the dilation response;  

difference between the maximum and minimum 

diameter (DA = MD – MC). 

Baseline corrected flicker 

response (BFR) 

Change in vessel diameter after  

considering the baseline diameter fluctuation 

(BFR = DA – BDF).  

Maximum percentage 

dilation (MD%) 

The percentage change in vessel diameter from 

baseline to maximum following flicker onset  

Reaction time (RT) Time taken to reach maximum diameter after 

flicker onset. 

Minimum percentage 

constriction (MC%) 

The smallest vessel diameter below baseline 

following cessation of flicker  

Constriction time (CT) Time taken to reach the point of maximum 

constriction following flicker cessation. 

Table 3.3: Parameters calculated from raw data used for analysis of DVA response used in this 

thesis 

 

 

The window of measurement for maximum percentage dilation was chosen to 

begin at 30 seconds, as the flicker commenced, and ended 10 seconds after 

flicker cessation to allow delayed dilation responses to be measured. Figure 3.3 

is an example of a participant’s dynamic profile, the maximum dilation for the vein 

response is during flicker, however the artery maximum dilation response is 

delayed. Minimum percentage constriction was measured from flicker cessation 

at 50 seconds, until 90 seconds. Again, setting a wider window allowed any 

delayed response to be recorded. 
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Figure 3.6: Dynamic retinal vessel analysis profile with parameters used labelled.  

 

 

 

 

 

 

 

 

 

Flicker Baseline Recovery  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MC 

0 20 40 

100 

60 

102 

80 100 

104 

120 

106 

96 

BDF 

RT CT 

MD% 

98 

108 

MC% 

MD 

DA 

Time (seconds) 

R
e
la

ti
v
e
 v

e
s
s

e
l 

d
ia

m
e
te

r 
p

e
rc

e
n

ta
g

e
 t

o
 b

a
s
e
li

n
e
 (

%
) 



96 
 

The three measurement cycles outputted from the DVA raw data were assessed 

for quality, the cycles were reviewed individually and graded for 

inclusion/exclusion. Firstly, the raw data was checked and any cycle with a large 

number of missing values was excluded, this was checked both by looking at the 

list of data and visually at the cycles produced. Figure 3.7 is an example of three 

reviewed cycles; cycle 1 and 3 would be included, however cycle 2 has missing 

data at 30, 45 and 65 seconds. Due to the number of missing values the second 

cycle would therefore be excluded.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Shows the three stimulation cycles for the selected artery and vein. In this example 

based on missing readings cycle 2 would be excluded and cycle 1 and 3 included.  

 

 

 

 

Cycle 2 artery Cycle 2 vein 

Cycle 1 artery Cycle 1 vein 

Cycle 3 artery Cycle 3 vein 
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Image noise artefact Measurement ‘jump’ to neighbouring vessel 

During the dynamic retinal vessel analysis trace artefacts can occur due to 

effects such as image noise, blinking, poor image quality, head or eye movement, 

change in illumination, and the measurement ‘jumping’ to a neighbouring vessel 

(392). Examples of common artefacts are shown in Figures 3.8 and 3.9. Cycles 

with a large number of artefacts were excluded.  

 

 

 

 

 

 

 

 

Figure 3.8: Illustration of common artefacts seen in the dynamic ‘real time’ trace 

 

 

 

Figure 3.9: The dynamic vessel trace of a participant in the first 14 seconds of measurement and 

the artefacts present.  

 

In addition to checking for missing values and artefacts in the ‘real time’ trace the 

data was smoothed over the whole 350 seconds to check once more for any 

artefacts or errors. Figure 3.10 and 3.11 show examples of a trace that would and 

would not be included.  

Image noise 
artefact 

Gaps in data due to blinking 
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Figure 3.10: Example of a real time trace with data that would be included 

 

 

 

 

 

 

 

Figure 3.11: Example of a real time trace with data that would be excluded 

 

 

3.3.2.2.4 Measurement of static retinal vessel parameters 

The VesselMap2 software (ImedosSystems, Jena, Germany) enables the retinal 

vasculature structure to be examined and evaluated (393). Static vessel analysis 

requires a disc centred red free fundus image. Insufficient image quality can 

result in errors when analysing, hence the device was set up to ensure optimal 

illumination and focused to produce the best possible images. Once the 

participant and equipment were in position 3-5 monochromatic disc centred 

fundus images were taken, the three best images were chosen to be analysed 

using the VesselMap2 software. Three images were taken as eye movements 

can cause vessel diameter variation as can pulse waves, the images taken were 

analysed and the average used to allow for this (375, 384).  
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Figure 3.12: Vessel Map 2 analysis of vessels 

 

 
 

Once the image was selected the ONH was manually marked with a 

superimposed ring. From this ring two additional superimposed rings were 

automatically generated by the software, with the first concentric ring 0.5 disc 

diameters (DD) away from the edge of the ONH, and the second 1DD away 

(394). The grader was then required to manually select all arteries and veins 

segments within the outer ring section, see Figure 3.12. The software 

automatically prevents selecting vessels 45 μm and smaller as vessels this size 

can be neglected (395), this is due to vessels this size having insufficient vessel 

edge resolution to be measured accurately (396). In accordance with the 

guidelines set out by the software manufacturers, the grader, who was the 

primary investigator, manually checked the vessel selections, ensuring that all 

branched vessels had the ‘branches’ selected and not the ‘trunk’ as well as 

ensuring each vessel has only been selected once. Once the vessels had been 
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selected the programme automatically included each vessel’s diameter to its 

Parr-Hubbard calculation and output CRAE, CRVE and AVR (393, 394), 

discussed further in section 3.3.2.2.5. As mentioned, the vessel selection was 

completed on each of the 3 images and the 3 sets of data output were averaged.  

 

Subjective assessment of AVR has traditionally been used by practitioners to 

assess static retinal vessel parameters, however  semi-automated analysis of 

AVR has been shown to be more reproducible, sensitive, specific and less 

observer-dependent (397). The parameters CRAE and CRVE are being 

increasingly used in research. Narrowing of CRAE is anticipated as part of the 

normal ageing process, as narrowing of arteries with age occurs throughout the 

body. However reduced CRAE has also been found to be associated with 

systemic hypertension (396, 398, 399) as well as kidney disease and heart 

disease (400, 401). Furthermore, an increase in CRVE has been found to be 

associated with obesity, dyslipidaemia, markers of vascular endothelial 

dysfunction (398, 402) and also associated with vascular dementia (403), 

diabetes (398, 404), cardiovascular disease and stroke (401, 405). 

 

CRAE and CRVE have also been linked with ocular diseases. An increase in 

CRVE has been linked with incidence of proliferative retinopathy, and an increase 

of both CRAE and CRVE linked with progression of retinopathy in type one 

diabetics (406). Age-related macular degeneration is associated with increased 

CRVE (407) and narrowing of CRAE is associated with POAG, however it is not 

known if this narrowing is a cause or result of neurone loss (265). As such, 

participants recruited for this research were required to be in the early stage of 
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their disease process. Although AVR is more familiar in optometric practice, it is 

ambiguous in that an alteration in the diameter of the artery and or an alteration 

in the diameter of the vein can each cause an altered AVR. CRAE and CRVE 

provide much more information on the state of the retinal vasculature and have 

therefore been shown to be more profound biomarkers for systemic and ocular 

disease.  

 

3.3.2.2.5 DVA static output and parameters  

Semi-automated measurement of retinal artery and vein diameters is being 

increasingly used in vascular research. The static VesselMap2 software 

calculates AVR, CRAE and CRVE using the disc centred red-free fundus 

photograph and manually selected vessels, described above, with the Parr-

Hubbard formula (396).  

 

The Parr-Hubbard formula combines the vessel diameter measurements taken 

from the concentric ring to create an estimate of the larger trunk diameters. 

These trunks are then combined to give a single estimation for artery and vein; 

CRAE and CRVE (393, 396, 397). The Knudtson formula is the alternative 

method used by some semi-automated software (408). Unlike the Parr-Hubbard 

formula the Knudtson formula is based upon selection of the 6 largest arteries 

and veins within the concentric measurement ring. Both of these formulas are 

effective hence choice between the two is not imperative so long as the same 

formula is applied throughout (394). The VesselMap2 software uses the Parr-

Hubbard formula hence this formula was used throughout this thesis.  

 



102 
 

The static output from the Vesselmap2 software is shown in Figure 3.13. It shows 

in the bottom left table the AVR, CRAE and CRVE for each image analysed. The 

three images for CRAE and CRVE are plotted on a graph, red cross for CRAE 

and blue cross for CRVE. In this example the three measurements are close to 

one another and this is reflected in the graph.  

 

 

Figure 3.13: Static vessel analysis results sheet from Vesselmap2 software 

 

Within this research CRAE and CRVE was used to assess vascular diameter 

changes in healthy ageing population as well as examining the narrowing or 

widening that takes place in the NTG, POAG and OHT groups. 
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3.3.2.3 Measurement of corneal parameters 

The viscoelastic properties of the cornea was assessed using the Corvis ST 

(Oculus; Optikgeräte GmbH, Wetzlar, Germany) (Figure 3.14). The Corvis ST is a 

noncontact tonometry system integrated with an ultra-high speed Scheimpflug 

camera which allows dynamic real-time inspection of the corneal deformation 

process; speed of deformation and corneal deformation amplitude as well as 

measuring IOP and central corneal thickness (CCT) (409, 410). Full list of 

parameters measured by the Corvis ST is listed in Appendix 7.  The parameters 

measured by the Corvis ST are linked with corneal biomechanics, an area of 

interest in relation to both AGEs and glaucomatous optic neuropathy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Corvis ST (Oculus; Optikgerate GmbH, Wetzlar) 

 

The ultra-high speed Scheimpflug camera has a resolution of 640 x 480 pixels 

and frame rate of 4,330 images per second. The corneal deformation recorded 

with this camera is over 8.5mm horizontal coverage of the central cornea. The 

pachymeter used for measuring CCT has a measurement range of 200-1,200 μm 
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and uses corneal section images taken (without ‘air-pulse’ effect) (410, 411). The 

non-contact tonometer has a measurement range 6-60 mmHg (411). The 

tonometer air puff is applied to the corneal apex while the camera records the air-

pulse reaction of the cornea i.e. the cornea moving inwards and recovery 

outwards (409, 411). The Corvis-ST’s accuracy has been shown to be 

comparable with the gold standard equivalent techniques for IOP and CCT 

measurement (410).  

 

The Ocular response analyser (ORA) is also a non-contact tonometer and it 

measures two corneal biomechanical parameters. The parameter corneal 

hysteresis is used to represent corneal viscoelasticity and the parameter corneal 

resistance factor to indicate the degree of elastic resistance (334). Unlike the 

ORA the Corvis ST measures the deflection behaviour of the cornea as it 

deforms rather than describe a specific biomechanical characteristic (412). A 

previous study by Matsuura et al. (2016) found statistically significant correlations 

between Corvis ST parameters and ORA measurements, however these 

correlations were not strong (413). It is thought that this may be due to the Corvis 

ST measuring further parameters which may reflect features of corneal 

biomechanics not measured by the two ORA biomechanical measurements 

(413).    

 

 

 

 

 



105 
 

3.3.2.3.1 Corvis ST output and parameters  

The Corvis ST uses the captured sequence of images of the corneal deformation 

to calculate a range of parameters, the parameters used in this thesis are listed in  

Table 3.4 and Figure 3.15 shows the corneal deformation during the Corvis ST 

measurement.  

 

Table 3.4: Corvis ST parameters with descriptions. A1: first applanation 1, A2: second 

applanation. 

 

 

 

 

 

 

 

 

 

 

Parameter 
 

Description 

Time A1 (ms) Measures the time from the initiation of the air puff to the 

first inward corneal movement 

Time A2 (ms) Measures the time to second applanation / outward 

corneal movement 

Velocity A1 (m/s) Velocity of corneal surface movement at the first 

applanation 

Velocity A2 (m/s) Velocity of corneal surface movement at the second 

applanation 

Deformation 

amplitude A1 (mm) 

The magnitude of the movement of the corneal surface 

at the first applanation 

Deformation  

amplitude A2 (mm) 

The magnitude of the movement of the corneal apex at 

the second applanation 

Highest deformation 

amplitude (mm) 

The magnitude of the movement of the corneal surface 

at the highest concavity 

Highest concavity 

time (ms) 

Time from the initiation of the air puff to the highest 

concavity of the deformation of cornea 
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Figure 3.15: shows the corneal deformation during the Corvis ST measurement. (A) shows an 

image prior to air puff applanation, (B) shows an image in the first applanation, (C) shows an 

image at the highest concavity, and (D) shows an image in the second applanation (414).  
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3.3.2.4 Measurement of AGE levels 
 

As explained in Section 1.2 due to AGEs accumulation in the skin, tissue-bound 

AGE levels can be detected by skin biopsy. Although skin biopsy has been 

shown to be an accurate means of determining AGE levels, it is an invasive 

technique. The AGE Reader (DiagnOptics B.V., Groningen, The Netherlands) is 

a device which utilises the fluorescent properties of tissue-bound AGEs in the 

skin to provide a measurement of skin autofluorescence (SAF), which has been 

proposed as a marker for tissue-bound AGE levels (23). The AGE Reader is a 

non-invasive device, which has been suggested to provide a low cost, fast, and 

reproducible means of determining tissue-bound AGE levels in the body (21-23). 

In addition the AGE Reader has been validated and is comparable to skin 

biopsies (21).  

 

The protocol used for the AGE Reader is based upon the manufacturer’s 

instructions and previous research using the AGE Reader (21, 23). Each 

participant had the inside of their forearm measured for the assessment of SAF. 

The reader was set to take three measurements with the forearm repositioned for 

each repeated measurement. The average of the three SAF readings was 

recorded as well as average skin reflectance value. Self-tanning agents, sun 

cream and body lotion/moisturising cream were not permitted as they affect the 

SAF reading (415). As part of the appointment reminder participants were told to 

avoid all creams and lotions on their forearms. Noordzij et al. (2011) found that 

sun cream and self-tanning agents gave an SAF increase of >100% and body 

lotion increased SAF by 18% (415). They established that the hydration state of 

the skin did not influence SAF (415).  
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Figure 3.16: AGE Reader (DiagnOptics B.V., Groningen, The Netherlands)  

 

 

 

The AGE Reader as seen in Figure 3.16 is 280 mm wide, 150 mm deep with a 

height of 115mm. At the top of the machine there is a 4 cm2 window in the 

silicone mat through which the UV-A light is transmitted to enable direct 

illumination of the participant’s skin once the participants arm is resting on the 

silicone mat. The AGE reader contains an excitation light source which emits UV-

A light with a peak wavelength of 375 nm which excites the fluorescent AGEs in 

the skin, these AGEs have a fluorescence range of 300–420 nm. The 

autofluorescent light from the skin is then measured by the integrated 

spectrometer which has a detection range of 300–600 nm (416). The AGE 

Reader acquires 50 scans, each scan approximately 200 ms, dependent on skin 

reflectance, is used to create each measurement.  Each SAF measure takes 
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approximately 30 seconds, as mentioned this process is repeated three times as 

part of the software’s triple measurement programme, with the participant’s arm 

being repositioned, hence measuring a different section of skin after each 

measurement. The results are automatically displayed once the measurement is 

completed (see Figure 3.17 for patient measurement set up and Figure 3.18 for 

an example output). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.17 – Participant having SAF measured with AGE Reader  
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Figure 3.18: AGE Reader measurement report (417) 

 

 

The automatic calculation for SAF by the software corrects for light absorption, 

the result is a ratio between emitted light intensity (per nm) and excitation light 

intensity (per nm) multiplied by 100, with the result in arbitrary units (22, 23). 

 

Meerwaldt et al. (2004) validated the AGE reader by comparing SAF to skin 

biopsy assays in non-pigmented skin, SAF was found to be related to skin AGE 

accumulation (21, 418). Skin with darker pigmentation gives a lower SAF result. 

This has in the past resulted in studies excluding participants with dark skin 



111 
 

pigmentation from SAF studies (22, 419). Koetsier et al. (2010) validated a new 

algorithm which enabled SAF to be assessed in pigmented skin (Fitzpatrick skin 

colour classes 1-4) (419). Skin reflectance <6% (Fitzpatrick skin colour classes 5 

and 6) do not give the required reflectance, lower reflectance leads to a warning 

that the signals are too small to permit a valid analysis (416, 417, 419).  

 

Repeated SAF readings on the same day showed the AGE reader to have an 

error of approximately 5% (21). McIntyre et al. (2011) when repeating 10 SAF 

measures using the AGE reader that there was a variation of 7%. This result was 

obtained on a single patient by a single operator (420). Ideally there should be no 

variation of the equipment used on the same day with the same method of use; 

however a small degree of error such as this has been deemed acceptable.  

 

3.3.2.5 Measurement of dietary AGEs 

In this thesis, an assessment of dietary AGE intake over the previous 12 months 

was made using a FFQ that was designed specifically to assess dietary AGE 

levels in a UK population for the purposes of this research. This questionnaire 

was administered to all participants with the aim of providing an estimate of AGE 

consumption through diet (see Figure 3.19, full FFQ in Appendix 4.1).  

 

These is no single method to collect a participants nutritional status accurately as 

all measurements of food intake have an element of error (421). All methods are 

equally limited in that participants tend to under-report actual consumption and 

some also report what they consider as ‘healthier food’ rather than their true food 

consumption (34). FFQ was the method chosen for evaluating dietary AGE intake 
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in this research as it is suitable for large sample sizes, straightforward for 

participants to complete and is inexpensive (34, 54, 422). Additionally, FFQ’s are 

beneficial when aiming to measure a specific nutritional intake (423, 424), hence 

making FFQ a good choice for measuring dietary AGE.  

 

 

 

Table 3.5 Advantages and disadvantages of different dietary assessment methods  

 

Dietary 

assessment 

method 

Advantages Disadvantages 

Retrospective methods 

24 hour recall Long-term memory not 

required, small respondent 

burden, actual intake over 

the last 24 hours, relatively 

detailed intake data. 

Requires accurate memory of 

last 24 hours, if only 24 hours 

would not be representative – 

often multiple days required, 

time-consuming, moderate 

respondent burden. 

Food frequency 

questionnaire 

(FFQ) 

Useful for large sample 

sizes, cost effective, simple 

to complete/ small 

respondent burden, portion 

size can estimated to make 

the FFQ semi quantitative. 

Long-term memory required, 

requires accurate 

interpretation - ideally with 

computer software, requires 

accurate long-term recall, and 

is reliant on the participant 

having literacy and numeric 

ability. 

Non retrospective methods 

Weighed food 

records 

Actual intake recorded, 

detailed dietary intake data, 

no recall bias/no long-term 

memory required. 

Not suitable for large-scale 

studies, large respondent 

burden, time-consuming, 

multiple days required to 

assess usual intake 

Food record 

with estimated 

weights 

Actual intake recorded, 

relatively detailed dietary 

intake data, no recall 

bias/no long-term memory 

required. 

Not suitable for large-scale 

studies, relatively large 

respondent burden, time-

consuming,  multiple days 

required to assess usual 

intake 



113 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 – Image of pages 1-4 of FFQ  

 

The only existing validated AGE specific FFQ is that produced by Luevano-

Contreras et al. (2013), the FFQ however was designed for use on diabetic 

patients in the USA. Luevano-Contreras describes in her validation paper that 

before being used in another population the FFQ requires further validation, due 

to the subjects having diabetes and there being a mean age of 56.6 years. 

Unfortunately further validation has not taken place (54). In its current format this 

FFQ does not therefore transfer well to UK based, non-diabetic populations, 

consequently the Luevano-Contreras FFQ was not appropriate to the population 

in this study and a new, targeted FFQ was developed.  

Validation of a newly designed FFQ is important to ensure that the nutrient, 

dietary AGEs, is measured correctly (425) as incorrect information could result in 

false associations (426).  The design and validation of this FFQ is discussed in 

full in Chapter 4.  
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3.3.2.6 Measurement of oxidative stress 

Plasma levels of malondialdehyde (MDA), alpha tocopherol (vitamin E) and 

ascorbate (vitamin C) were measured as biomarkers of oxidative stress. As 

explained in Section 1.6. these are recognised biomarkers of oxidative stress in 

ageing and POAG (107-109) and have been shown to be sensitive to variations 

in AGE levels (110). The relationship between AGE levels and oxidative stress is 

complex, with an increase in AGE levels having been shown to be both a cause 

and an effect of elevated oxidative stress (15).  

 

3.3.2.6.1 Venesection and sample handling 

The laboratory used for blood sampling and analysis is a Containment Level 2 

biosafety level environment, which follows University of Plymouth Codes of 

Practice for Control of Hazardous Substances, in line with the Control of 

Substances Hazardous to Health (COSHH) Regulations 2002. Blood and plasma 

processing and sample preparation were carried out in a level 2 biosafety cabinet 

which is serviced annually. COSHH regulations were followed for the disposal of 

potentially infectious waste. Blood cells were not used or stored, they were 

destroyed in line with COSHH regulations. Plasma samples were stored in a -80 

freezer until analysis took place. The plasma samples remaining after the end of 

processing were destroyed in line with COSHH regulations. All relevant material 

was disposed of with respect for the donor of the sample. 

 

Three 3 mL lithium heparin vacutainers, green top tubes as shown in Figure 3.20, 

were used to collect the blood samples. These were spun in a centrifuge at 20G 

for 20 minutes at 4°C. The separated plasma was then pipetted into serum tubes, 
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see Figure 3.21, ready for freezing. Two batches were created, with each batch 

stored in a different freezer at -80°C. Storing the samples in parallel follows the 

Human Tissues Act licence. Once samples from all participant groups were 

collected the analysis began. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.20 - 3 mL blood collection   Figure 3.21 - Serum tubes  

lithium heparin tubes        

 
 

3.3.2.6.2 Biochemical analyses 

Biochemical analysis of oxidative stress biomarkers was carried out by the 

primary investigator (LS). Samples from each group of participants were 

analysed once all data collection had ended.  

 

Ascorbic acid (vitamin C) is an essential nutrient. It is able to protect plasma lipids 

against oxidative damage from free radicals (427). The water soluble antioxidant 

ascorbate was measured by validated high performance liquid chromatography 

(HPLC) methods routinely used in the laboratory. Ascorbate was measured by 

the HPLC electrochemical method of Mitton and Trevithick (1994) (428), see 

Appendix 5.1 for method detail. The method allows the measurement of both 
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reduced and total ascorbate, from which the amount of oxidised ascorbate was 

calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 HPLC machine used to measure ascorbate (vitamin C). 

 

MDA was measured as an index of free radical activity and free radical damage. 

The rationale and methodology for this is that free radicals may oxidatively 

damage protein, phospholipid and DNA forming MDA. Hence MDA is a sensitive 

and robust marker of lipid peroxidation (429). For more than 30 years MDA has 

been used as a biomarker for lipid oxidation (430). MDA has been used as an 

oxidative stress biomarker in previous studies investigating glaucoma (109, 315) 

and it has also been shown to be sensitive to variations in AGE levels (110). 

MDA is routinely measured by reacting it with thiobarbituric acid which, under 

appropriate conditions, converts MDA to products which can be measured by 

HPLC. MDA was measured in the laboratory by the validated HPLC with 
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fluorescence detection method of Agarwal and Chase (2002) (431), see 

Appendix 5.2 for method detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. HPLC machine used to measure MDA 

 

The phospholipid bilayer molecules that make up the cell membrane are 

vulnerable to free radicals as they have an unpaired electron. The free radical will 

attempt to take an electron from the cell membrane molecule in the process of 

oxidation.  Vitamin E is a lipid soluble antioxidant, its role is to scavenge free 

radicals and donate an electron. This process protects the cell from any damage 

the free radical would have caused (432). Vitamin E occurs in eight forms, alpha 

tocopherol is the main lipid soluble antioxidant found in the plasma (433). For 

plasma vitamin E (α-tocopherol), the method is based on Julianto et al (1999) 

(434), using UV/vis HPLC detection, see Appendix 5.3 for method detail. Vitamin 

E plasma levels indicate the levels in cell membranes, where it protects against 

oxidative damage (433). 
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Figure 3.24. HPLC machine used to measure alpha-tocopherol (vitamin E) 

 

 

The methods described throughout this chapter have each been chosen to meet 

the five aims (Chapters four to nine). Each method used will be listed in the 

Chapters which follow. 
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4. Validation of a specifically designed semi-quantitative 

food frequency questionnaire (FFQ) 

 

 

4.1 Abstract 

Purpose: To design and validate a UK-specific food frequency questionnaire 

(FFQ) for use in advanced glycation end product (AGE) research and assess its 

validity and reliability. In addition this study aims to compare the different 

databases available to calculate dietary AGE. 

 

Methods: The newly designed FFQ was completed by 70 healthy participants and 

compared to plasma carboxymethyl-lysine (CML) levels and the outcome from a 

4-day weighed food record (4-day FR). Reliability of the FFQ was assessed in a 

sub-sample of the participants through the completion of a second FFQ one 

month after the first.   

 

Results: A relationship was found between dietary AGE (dAGE) values measured 

with the FFQ and that of the 4-day FR (n = 10, r = 0.894, p = <0.001, 95% 

bootstrap confidence interval 0.669 to 0.996). No significant relationship was 

found between dietary CML levels calculated from the FFQ and the plasma CML 

levels for 2 of the 3 dAGE databases used, a weak negative correlation was 

found between plasma CML level and dietary CML calculated with the Uribarri et 

al. (2010) database (n = 70, r = -0.256, p = 0.038, 95% bootstrap confidence 

interval -0.014 to -0.477). There was no significant difference in the dAGE values 

calculated across the two repeated FFQs (n = 20, p = 0.544).  
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Conclusion: The UK-specific semi-quantitative FFQ developed to measure dAGE 

was found to produce valid results when compared to a 4-day FR and to be 

reliable across completions. We were unable to validate the FFQ against the 

objective plasma CML-AGE measurement, however this could be due to the 

methodology used. The comparisons between databases suggests that they are 

more in line with each another than previously thought. 
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4.2 Introduction  

AGEs are a group of reactive compounds with chemical, pro-inflammatory and 

pro-oxidant actions. They accumulate with age in cells and tissues throughout the 

body where they contribute to an acceleration of the ageing process by adversely 

affecting structure and function.  AGEs exert their effects through binding to 

specific cell surface receptors, forming covalent cross links on proteins such as 

collagen and generating reactive oxygen species (ROS) and oxidative stress (15-

18). 

 

Strong associations have been demonstrated between elevated AGE levels and 

diabetes. Formation of AGEs is accelerated in hyperglycaemic conditions, and 

increased accumulation of AGEs has been associated with the occurrence and 

severity of diabetic complications (15, 23, 435), including diabetic retinopathy (82, 

83).  Independent of diabetes, it is also thought that sustained exposure to a high 

levels of circulating AGEs could be a major factor in the development of age-

related degenerative disorders such as Alzheimer’s disease (76), renal disease 

(77), osteoarthritis (78), atherosclerosis (79), as well as a number of ocular age-

related disorders such as age-related macular degeneration (22, 81), cataract 

(81, 84-86) and primary open angle glaucoma (20). 

 

Foods are an exogenous source of AGE, (40) and it has been shown that dietary 

AGEs (dAGEs) can influence the body’s total AGE level and contribute to 

pathology in a similar manner to endogenous AGEs (42-47, 64). A high dAGE 

intake has been shown to increase oxidative stress, inflammation and endothelial 

dysfunction (64, 436, 437). It has been well evidenced in diabetes that dAGEs 
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have a pathogenic significance. Cardiovascular risk factors have been shown to 

be increased in the presence of high intake of dAGE in patients with diabetes (43, 

438), and dAGEs are thought to contribute to insulin resistance (49). In addition it 

has been shown that patients with type 2 diabetes who have restricted dAGE 

consumption have lower levels of oxidative stress and inflammation, suggesting 

dAGE intake could act as a modifiable target (439). The evidence in this regard 

has been questioned due to a lack of high quality randomised trials (64). 

However, a meta-analysis of randomised controlled trials investigating a diet low 

in dAGE on cardiometabolic parameters had similar results to previous dAGE 

research, in that a lower dAGE intake was found to be beneficial (437).  

 

There is no gold standard method to determine a participants dAGE status, as all 

measures of dietary intake are known to carry an element of error (421, 440). 

Previous studies measuring dAGE have primarily used food frequency 

questionnaires (FFQs) and food records (FRs) (14, 54, 56). FRs have the 

advantage of not being retrospective and allowing portion size to be measured 

precisely (441, 442). In contrast, FFQs are suitable for large samples, 

straightforward to complete, and inexpensive (34, 54, 422, 442, 443). For 

measurement of a specific nutrient intake, such as dAGE, FFQs are considered 

to be most beneficial (423, 424, 441). To ensure that FFQ estimates of dAGE are 

representative of the population being investigated, the FFQ needs to be targeted 

to the food culture and preparation methods of the specific country or region (56). 

There is currently no UK specific FFQ to measure dAGE intake. 
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The AGE carboxymethyl-lysine (CML) has previously been used as a marker of 

dAGE (14, 40). The choice of CML as a dAGE biomarker is likely to be due to it 

being one of the wider studied AGEs as well as it being fairly stable and inert 

(14). However, it is known that other types of AGEs are present in foods (53, 

444). Additionally the published associations between elevated AGE levels and 

pathology incorporate multiple types of AGEs and not one individual type (23, 76, 

78, 435). In order to determine dAGE intake from the responses to a FFQ or FR, 

one needs to have knowledge of the relative AGE content of the listed foods.  

There are three different databases available that have calculated and listed the 

level of CML in foods (Uribarri et al. (2010) (14), Hull et al. (2012) (52) and 

Scheijen et al. (2016) (53)), with one of these databases (Scheijen) also listing 

the levels of  two additional methylglyoxal AGE derivatives (carboxyethyl-lysine 

(CEL) and 5-hydro-5-methyl-4-imidazolon-2-yl-ornithine (MG-H1)). Interestingly, 

the CML results of similar foods from each database differs from one another, 

this is thought to be due to a difference in the analytical methods used (53). The 

Uribarri et al. (2010) database uses an enzyme-linked immunosorbent assay 

(ELISA) method using a monoclonal anti-CML antibody, and Hull et al. (2012) 

and Scheijen et al. (2016) use ultra-performance liquid chromatography tandem 

mass-spectrometry (UPLC–MS/MS). This inconsistency makes the decision of 

which database to use for determining dAGE intake problematic, as outlined in 

detail in Section 1.4. 
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4.2.1 Aim 

The aim of this study was to design and validate a UK-specific FFQ for use in 

AGE research. In addition, this study aims to assess the reliability of the newly 

developed FFQ and to compare the dAGE outputs calculated using the three 

different databases. 

 

4.2.2 Hypothesis 

The newly designed FFQ will be related to plasma-CML level and 4-day food 

records and will be reliable. Dietary CML levels will be comparable between the 

Hull and Scheijen databases which use the same analytic method, but will not be 

comparable to the Uribarri database which uses a different analytical method.  

 

4.2.3 Validity, repeatability and reliability 

In this study, validity will be the term used to describe the probability that the 

method (the semi-quantitative FFQ) accurately measures dAGE (445). 

Repeatability is an evaluation of the variation in repeated measurements taken 

under the same conditions (446). Reliability is how consistent a result is when 

measured under the same conditions. Repeatability and reliability are often 

interchanged in the literature due to their similar definition (54, 447, 448). The test 

re-test of the FFQ in this study will be referred to as reliability, referring to the 

consistency of the FFQ to produce repeatable estimates of dAGE intake. 
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4.3 Methods 

4.3.1 Participants 

Convenience sampling was used to recruit participants who were eligible 

according to the inclusion and exclusion criteria for healthy ageing participants as 

detailed in Section 3.1.3. and Section 3.1.4. Due to the established link between 

diabetes and AGEs (449, 450), participants diagnosed with diabetes or 

participants found to have a high fasting glucose level were excluded from the 

study, as were current smokers, and previous smokers who quit less than 15 

years ago due to the link between AGEs and tobacco (10). Participants who 

reported a major change to their diet over the last 12 months were excluded.  

 

4.3.2 Development of the semi-quantitative FFQ 

A total of 178 foods and drink choices were included in the semi-quantitative FFQ 

that was designed for use in this research (Appendix 4.1). Although this may 

seem lengthy compared to an average FFQ (79 foods) (443), an increased 

number of food choices was also used by Luevano-Contreras et al. (2013) for an 

AGE specific FFQ (130 foods used) (54). The foods were listed individually, 

rather than in groups, as AGE values can differ greatly with different 

temperatures and cooking methods, this therefore was reflected in the number of 

food choices within the FFQ. For example rather than ‘beef’ listed once there was 

a recorded section for: roast beef, pan fried steak, grilled steak, stewed beef, stir 

fried steak strips, meatballs, fried burger, fast food burger, beef mince browned 

and other beef to reflect the relative difference in AGE levels. Using the Uribarri 

database for example, a pan fried steak would have a value of 22,630 CML 

kU/portion and stewed beef only 2391 CML kU/portion. This method of listing 
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foods rather than grouping is known to possibly cause participants to 

overestimate intake due to some people unintentionally ‘double counting’ certain 

foods (451).  

 

Careful consideration was given to the order in which the food and drink 

categories where inserted into the FFQ, as it is well known that errors are often 

made at the beginning of a FFQ and the format can initially be confusing to 

participants new to FFQs (443). The first section of the newly designed FFQ 

therefore focused on drinks, as drinks are known to have low AGE values (14, 

52, 53) and any errors would have a low impact on the dAGE result calculated 

from the FFQ. Dairy and meat sections followed this, as they are thought to have 

high AGE content and are therefore of most interest (14, 52, 53). According to 

Cade et al (2001), placing food groups of high interest in the middle to early 

sections of the FFQ allows the important information to be collected at a point 

where the participant understands the FFQ format, but before any fatigue or 

boredom sets in (443).  

 

Participants were required to indicate the frequencies at which they consume the 

various listed foods. The frequency options were based on the frequencies used 

in the European Prospective Investigation into Cancer (EPIC) FFQ (452). An 

example of the frequencies is shown in Figure 4.1. The full FFQ can be found in 

Appendix Section 4. 
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Figure 4.1: An example of a food listed and its frequencies displayed in the FFQ.  

 

The FFQ required participants to also consider portion size, to allow the most 

accurate AGE calculation, making this a semi-quantitative FFQ (453). The 

average portion size stated next to each food was based on the food standards 

agency portion sizes (454). Portion pictures were included at the beginning of the 

questionnaire, and the plate and cup used for these photographs was shown to 

the participants to ensure the most accurate recalled portion reporting possible 

(455-457). It has been suggested that photographs improve reliability of portion 

estimates (458). The pictures of the portion sizes concentrated on foods with a 

high protein and lipid content, as these are the foods which are thought to have 

the highest AGE value and therefore required the most accurate responses (14).  

 

All of the available databases that list the AGE content of foods were developed 

in different countries, the lists of foods measured and cooking methods reflect 

these cultural variations (14, 52, 53). It was therefore not possible to directly 

insert these listed foods and cooking methods into this new FFQ as they would 

not easily be translated by a UK population. In the development of this new FFQ 

therefore, all foods and cooking methods were ‘translated’ to traditional cooking 

method descriptions for the UK. Certain foods not eaten in the UK were omitted, 

Frequency 
you have 

eaten 

Portion  N
e
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e
r 

Less 
than 
once 

1 to 
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time 
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time 

2 
times 

3 to 
4 

times 
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6 

times 

1 
time 

2 
times 

3 or 
more 
times 

Per month Per week Per day 

Feta cheese  
(30g - match 
box size) 

1   X        
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for example pop tarts. In addition, some foods commonly eaten in the UK were 

added, for example battered cod.  All adjustments to the list of foods excluded 

and included in the FFQ were approved by a registered dietitian. In addition to 

adjusting foods, space in the FFQ was added to allow participants to list any 

foods they eat which had not already been named. The addition of space to 

record other foods allowed a complete report of all foods eaten by participants.  

 

4.3.2.1 Procedure for completion of the FFQ 

Prior to data collection, the FFQ was piloted with 12 people to ensure it was easy 

to fill out and follow. The pilot study raised the issue that the columns showing 

foods eaten per month, week and day were difficult to separate from each other. 

Colour was added to help address this difficulty. There was also a query about 

the portion size of cheese, e.g. “how big is 30 g of cheese?”. An additional portion 

page was added at the end of the questionnaire to illustrate visually some other 

general portion sizes, such as 250 ml displayed in a mug and cup, 30 g 

cornflakes, 30 g of cheddar cheese as well as some other foods (see Appendix 

Section 4). These photos were taken on the same plate as previous portion 

photos. No queries about the names of foods or cooking methods were raised 

from these pilot questionnaires. All adjustments to the FFQ design were 

approved by a registered dietitian. 

 

Every study participant completed the FFQ, it was interview-administered with 

questions and prompts made by the primary-investigator throughout the 

questionnaire. This was appropriate as there were some open questions 

throughout the questionnaire; it also allowed the participant to raise any queries 
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about nutrient details and for these to be addressed, as well as helping to ensure 

accurate portion size was recorded where possible to add to the reliability of the 

resulting data (425, 459). A flow chart of food prompts used is detailed in 

Appendix 4.2. 

 

4.3.2.2 Calculation of dAGE from the FFQ   

It is standard practice when investigating diet to use a FFQ in conjunction with 

analysis software which can calculate nutrient content (460, 461). For example, a 

study that was part of EPIC-Norfolk study used a 130 item semi quantitative FFQ 

and the dietary assessment software FETA (FFQ EPIC Tool for Analysis) (462). 

There is currently no software which can calculate or analyse dAGE values. The 

FFQ responses were recorded and calculated using Microsoft Excel (Seattle, 

WA, USA).  

 

The dAGE consumption value was calculated by totalling the dAGE value for 

each food and portion selected in the FFQ and scaled up to its relative frequency 

eaten over the year. For example (using the Uribarri database) a 30 g portion of 

cheddar cheese has a dAGE value of 1657 CML kU; if a participant reported 

eating cheese twice a week then 1657 x 104 = 172328 CML kU is the dAGE 

value for cheese eaten in a year. The dAGE value was assigned using the three 

databases which have measured AGE content in foods (and drinks). These 

databases were introduced in Section 1.4 and the three that were used in this 

study to calculate dAGE were the Uribarri database, which measures CML in 549 

foods (14), Hull database, which measures CML in 257 foods  (52), and the 
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Scheijen database which measures the AGEs; CML, CEL and MG-H1 in 190 

foods (53), (see Table 2 in Section 1.4) 

 

As mentioned in Section 1.4 Dresden University of Technology are developing a 

large dAGE database which different authors can contribute to (444). It includes a 

wide variety of AGEs including; CML, CEL, methylglyoxal, amadori-product, 

pentosidine, pyrraline, furosine, however this database is not complete and has 

limited AGEs measured for certain food groups compared to others, for example 

the ‘milk and milk products’ section has values for seven types of AGEs, whereas 

‘meats’ only have one type of AGE measured (444). For this reason this 

database was not included in this study.  

 

Of the three databases, the Uribarri database lists the most foods and is the 

database most commonly used in the literature (49, 54, 56-58). Hence, to ensure 

findings were comparable to previous literature, the Uribarri database was the 

principal database used in this study to calculate dAGE. Despite the large 

number of FFQ studies using the Uribarri database however, its calculations are 

not without criticism. As shown in Table 2 in Section 1.4, ELISA is the method 

used by Uribarri to measure AGE in foods. Hull and Scheijen use the validated 

method UPLC MS/MS, which has increased sensitivity (463). The immunoassay 

ELISA method used by Uribarri has not been validated and as such, it has been 

suggested that its analysis may be misleading (51, 53, 463, 464). As previously 

described by Poulsen et al. (2013) the Uribarri database uses different units to 

the UPLC MS/MS databases, making comparison between databases particularly 

difficult (51). Scheijen compared its newly developed database to Uribarri by 
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comparing which food groups were generally considered to have ‘high’ AGE 

levels (53), however they were unable to make any calculations or analysis from 

this. In this study, participants’ FFQ responses were used with each database 

individually, allowing dAGE calculated from each database to be directly 

compared, despite unit differences.  

 

The dAGE value of the foods listed in the newly designed FFQ was assigned 

using the AGE values calculated from each database (14, 52, 53). All foods 

without a value listed had their dAGE value assigned by using the next most 

similar food, for example, apple crumble was assigned with the dAGE value of 

apple pie. The databases considered agree with one another in that fruits, 

vegetables and drinks have low or negligible values. However, the CML results of 

similar foods from each database differ; cheese, oil, butter and meats have a high 

dAGE value with Uribarri and low with Hull and Scheijen. Biscuits, chocolate and 

cereals had a high dAGE value with Hull and Scheijen, and low with Uribarri. As 

stated previously, these discrepancies are thought to be due to the different 

measurement methods used (53). There is currently no guidance as to which of 

the available databases should be used for calculation of dAGE.  

 

4.3.3 Validation 

The newly designed semi-quantitative FFQ was validated against plasma CML 

levels and results from a 4-day food record (FR). Using FRs is an accepted 

method for validating a FFQ (443, 465) and ELISA is a method widely used to 

measure AGEs from serum and plasma samples (43, 466-469).  
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4.3.3.1 Enzyme-linked immunosorbent assay (ELISA) 

A 3 mL lithium heparin vacutainer was used to collect a blood sample; this was 

then spun in a centrifuge at 20 G for 10 minutes at 4°C. The separated plasma 

was pipetted into serum tubes and stored in a freezer at -80°C. Analysis of the 

samples began once all samples were obtained. ELISA analysis was carried out 

by Dr Desley White.  

 

The plasma samples were measured by a direct double antibody (monoclonal 

CML antibody and polyclonal biotin-labelled secondary antibody) sandwich 

ELISA kit which analysed the presence of the CML-AGE (469). The human CML-

AGE ELISA commercial kit was from MyBioSource (MBS263691, San Diego, CA, 

USA) and was used according to the manufacturer’s instructions. 

  

4.3.3.2. 4-day food records (FR) 

Using weighed food records in a sub-sample of the main study participants is an 

accepted method for validation of a FFQ (54, 465). The length of days used for a 

FR can range from 24 hours to 16 days, the number of days chosen should be 

sufficient to represent average nutrient intake (470). It is considered that 3 days is 

the minimum number of days to be representative (191). Multiple consecutive 

days, more than four, can result in poor compliance (471) and it has been shown 

that in 7-day weighed FRs the later days are less likely to comply, instead 

recording foods retrospectively (472). For this reason it was decided that a 4-day 

food record would be used and that the days did not have to be consecutive. 
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Prior to completing the 4-day FR, training was given to each participant in the 

form of written and verbal instructions. The food diary was given to the 

participants approximately 1 month after the FFQ was administered (Appendix 5).  

The 4-day records consisted of three weekdays and one weekend day to obtain 

an accurate reflection of participants diet over the week (473, 474). Participants 

were instructed that food/drink items and portions should be recorded in a real 

time and that they should not modify their dietary habits and the food choices just 

because they are being recorded. Participants were asked to avoid recording at 

times of any unusual fasting or feasting, for example birthdays, as any highly 

atypical intake would affect the mean total of the 4-day FR (475). 

 

Digital kitchen scales (Colour match digital scale, Milton Keynes, UK) were 

loaned to participants to allow all food and drink to be measured accurately. The 

dAGE intake was calculated using the same database values used to calculate 

dAGE for the FFQ. The dAGE results from the 4-day FR were averaged to give 

the average daily dAGE value.  

 

4.3.4 Reliability 

To assess the reliability of the FFQ (FFQ1) a second FFQ (FFQ2) was 

administered approximately 1 month after the first. The one month interval made 

it unlikely that initial responses could be remembered, but also made it unlikely 

that substantive changes in diet had taken place (443, 476).  
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4.3.5 Database Comparison 

Annual dAGE intake was calculated from the FFQ responses using the 

corresponding food values from each of the three databases (Uribarri CML, Hull 

CML, Scheijen CML, Scheijen CEL and Scheijen MG-H1) in order to determine if 

the relative calculations were comparable.  

 

4.3.6 Statistical analysis 

Statistical analysis was performed using SPSS version 24 (IBM). The normality of 

data was assessed by the Shapiro–Wilk test and through inspection of quantile-

quantile (QQ) plots. The Mann-Whitney U test was used to test for differences in 

the demographic data.  

 

P values of less than 0.05 were considered statistically significant.  

There was a mix of parametric and non-parametric distributions in the different 

groups of participants. For non-parametric data median and interquartile range 

should be reported (477), however, for consistency in the tables in this Chapter 

and throughout this thesis mean and standard deviation have been reported. 

Tables reporting the median and interquartile range for all non-parametric data 

can be found in Appendix 10.1. 

 

4.3.6.1 Validity 

Due to nonparametric distribution Spearman’s rank correlation was used to 

analyse the association between FFQ1 and plasma CML levels in order to 

evaluate its validity. This analysis was carried out separately for each dAGE 

database under consideration, namely: Uribari, Hull and Scheijen. 
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Pearson’s correlation was used to analyse the association between FFQ1 and 

the 4-day FR, in order to evaluate its validity. This analysis was carried out using 

the principal database (Uribarri). The use of one database was chosen as the 

FFQ validation was centred upon participants’ dietary responses, and hence the 

relative associations would be the same with whichever database values were 

used. In order to visualise the differences between dAGE calculated using the 

FFQ and that calculated from the 4-day FR, a Bland-Altman plot with 95% limits 

of agreement was also constructed (478).  

 

4.3.6.2 Reliability 

Reliability of the FFQ using the principal database (Uribarri) was analysed using 

Pearson’s correlation and intraclass correlation coefficient (ICC). An ICC of 0.60 

or below would be considered low, and  0.8 or above would be considered to 

have good reliability (446). To visualise the difference between FFQ1 and FFQ2, 

a Bland-Altman plot with 95% limits of agreement was constructed.  

 

4.3.6.3 Database Comparison 

Spearman’s rank correlation was used to analyse the association between each 

dAGE value calculated by the databases under consideration, namely: Uribari, 

Hull and Scheijen. 

 

4.3.6.4 Power Calculation 

Sample size for FFQ validation using CML-plasma levels was determined using 

G*Power 3 programme (Heinrich-Heine, Universität Düsseldorf). In order to 

achieve 80% power at the 5% alpha level with a medium effect size of 0.3, 64 
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participants would be required. To account for unusable data an allowance was 

made and a sample size of 71 participants was chosen.  

 

Sample size for FFQ reliability and validation using the weighed FR was 

determined using G*Power 3 programme (Heinrich-Heine, Unversität Düsseldorf) 

using data from previous research which also assessed FFQ reliability and 

validated a FFQ using FR to measure AGE in the diet (54). In order to achieve 

80% power at the 5% alpha level a sample size of 14 was required. To account 

for unusable data an allowance was made and a sample size of 20 participants 

was chosen.  

 

4.4 Results 

A total of 70 participants were recruited for this study. All 70 participants 

completed the newly designed FFQ and had their plasma CML levels measured. 

10 of the 70 participants additionally completed the 4-day weighed food diary. 20 

out of the 70 participants were asked to complete a second FFQ for evaluation of 

reliability. The characteristics of the participant group with mean and standard 

deviation are detailed in Table 4.1. 
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Table 4.1: Mean and standard deviation of participant group characteristics (n = 70) * P < 0.05, ** 

P < 0.001 difference between M: males and F: females.   

 

 

 

Variable Mean  ± SD 

Gender (n) 

Male 

Female 

 

23 

47 

Age (years) 60.84 ± 9.54 

Ethnicity (n) 

Caucasian 

White other 

Mixed white/Asian 

Mixed white/black Caribbean 

Indian 

 

64 

2 

1 

2 

1 

Body mass index (BMI) 26.11 ± 4.56 

Basal metabolic rate (BMR) (kcal) All: 1445 ± 230 

M: 1666 ± 212,   F: 1337 ± 149 ** 

Body fat percentage (%) 31.74 ± 8.77 

M: 23.32 ± 6.34,  F: 35.86 ± 6.56 ** 

Fat mass (Kg) 23.69 ± 9.84 

M: 19.74 ± 8.28,  F: 25.62 ± 10.04 * 

SBP 129.24 ± 17.25 

DBP 81.16 ± 10.20 

Alcohol units per week 6.21 ± 6.56 

Smoking history (n) 

Non-smoker 

Previous smoker, quit >20yrs ago 

Previous smoker, quit >15yrs ago 

 

44 

25 

1 
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4.4.1 Validity of the FFQ 

4.4.1.1 FFQ vs. Plasma CML levels 

No significant correlations existed between the dAGE values calculated from the 

FFQ and plasma CML for two out of the three databases (Hull and Scheijen). 

Spearman’s correlation did however show a weak negative relationship between 

the average CML kU/day calculated from the FFQ responses using the Uribarri 

database and plasma CML (n = 70, r = -0.256, p = 0.038, 95% bootstrap 

confidence interval -0.014 to -0.477) (Figure 4.2) (Table 4.2).  

 

Table 4.2: Mean, standard deviation and Spearman’s correlations between plasma CML and 

dAGEs calculated with each database. *p < 0.05  

 

 

 

 

 

 

 

 

 

 

 

Mean SD Spearman’s correlation coefficients (R values) 

 Uribarri 

(average CML 

kU/day) 

Hull CML 

(average mg 

CML/day) 

Scheijen 

CML 

(average 

mg 

CML/day) 

Scheijen 

CEL 

(average mg 

CEL/day) 

Scheijen 

MG-H1 

(average mg 

MG-H1/day) 

Plasma 

CML  

(ng/ml) 

101.91 ± 28.81 -0.256 

p = 0.038* 

0.079 

p = 0.526 

0.080 

p = 0.523 

-0.029 

p = 0.817 

0.068 

p = 0.590 
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Figure 4.2: Negative relationship between the average CML kU/day calculated from the FFQ 

responses and plasma CML ng/ml (n = 70, r = -0.256, p = 0.038, 95% CI -0.014 to -0.477). The 

dashed grey line represents the line of best fit.  

 

 

4.4.1.2 FFQ vs. 4-day food record 

Pearson’s correlation showed a strong relationship (n = 10, r = 0.894, p = < 

0.001, 95% bootstrap confidence interval 0.669 to 0.996) between the average 

CML kU/day calculated from the FFQ using the Uribarri database and that 

calculated from the 4-day food record (Figure 4.3). 

 

 



140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Relationship between FFQ1 and 4-day FR using the Uribarri database to calculate 

dAGE (n = 10, r = 0.894, p = < 0.001, 95% CI 0.669 to 0.996). The dashed grey line represents 

the line of equality (1:1).  

 

 

The Bland–Altman plot in Figure 4.4 shows the level of agreement between the 

dietary CML level calculated with the FFQ and that calculated with the 4-day FR, 

with the 95% limits of agreement calculated. There was good agreement between 

the two measures and no evidence of proportional bias, however this is based 

upon a small number of participants (n=10).    
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Figure 4.4: Agreement between FFQ1 and 4-day FR using the principal database. The red line 

shows the mean difference and green lines the 95% (1.96 ± SD) limits of agreement between and 

4-day FR for dAGE (n=10).  

 

 

4.4.2 Reliability of the FFQ 

Pearson’s correlation showed a strong association between dAGE value 

calculated with FFQ1 and FFQ2, (n = 20, r = 0.934, p = < 0.001, 95% bootstrap 

confidence interval 0.75 to 0.973), (Figure 4.5). There was no significant 

difference between the mean and standard deviations of the calculated dAGE 

values for FFQ1 and FFQ2 (Table 4.3, t-test; p = 0.544). In addition the FFQ had 
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an ICC (2 way mixed) of 0.965 with 95% a confidence interval of 0.913 to 0.986. 

The Bland–Altman plot in Figure 4.6 shows the mean difference between FFQ1 

and FFQ2 with the 95% limits of agreement calculated. There was good 

agreement and no evidence of proportional bias. 

 

Table 4.3: Means, standard deviation, Pearson’s correlation and ICC between FFQ1 and FFQ2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FFQ reliability 
 

 Mean 
(average  

CML kU/day) 

Standard 

deviation 

 

Pearson’s 

correlation 
(R values) 

ICC 

FFQ1 23011 ± 8115 0.934 0.965 

FFQ2 22758 ± 9881 
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Figure 4.5: Relationship between FFQ1 and FFQ2 using the Uribarri database to calculate dAGE 

(n = 20, r = 0.934, p = < 0.001, 95% CI 0.75 to 0.973). The dashed grey line represents the line of 

equality (1:1). 
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Figure 4.6: Agreement between FFQ1 and FFQ2 using the principal database. The red line shows 

the mean difference and green lines the 95% (1.96 ± SD) limits of agreement between FFQ1 and 

FFQ2 for dAGE (n = 20). . 

 

In Figure 4.6 the Bland-Altman plot indicates heteroscedasticity. For this reason, 

the Bland–Altman plot was repeated using dAGE data which had been log 

transformed. This repeat log transformed plot is shown in Figure 4.7. There was 

no evidence of proportional bias.    
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Figure 4.7: Agreement between LogFFQ1 and LogFFQ2 using the principal database. The red 

line shows the mean difference and green lines the 95% (1.96 ± SD) limits of agreement between 

LogFFQ1 and LogFFQ2 for dAGE (n = 20).  

 

4.4.3 Database comparison 

Strong/moderate correlations were found between each of the FFQ calculated 

dAGEs from each database, with one exception. No correlation was found 

between the dAGE calculated from the FFQ using the Uribarri CML database and 

that calculated with the Scheijen MG-H1 database. The mean and standard 

deviations of the calculated dAGE values, as well as the correlations between the 

databases are shown in Table 4.4.  
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Table 4.4: Means, standard deviation and Spearman’s correlations between dAGEs for each 

database measured with FFQ1 (n = 70). *p < 0.05. **p < 0.01.  

 

4.5 Discussion 

The aim of this study was to design and validate a new UK-specific FFQ for use 

in research. It is thought that the FFQ designed in this study is the first UK 

specific FFQ to measure dAGE intake and the first to directly compare dAGE 

values calculated from a range of databases.  

 

Careful consideration was given to the design of this FFQ to ensure it targeted 

food products known to have high AGE values and to ensure maximum reliability 

of responses. It is important that any newly designed FFQ undergoes validation 

against other known measures of the dietary target and that its measures are 

reliable.  

 

4.5.1 Validity of the FFQ 

Strong agreement was found between the dietary CML levels calculated using 

the FFQ (Uribarri database) and those calculated from the 4-day FR. Using food 

records is an established method for validating FFQs (425) and has been used 

    Spearman’s correlation coefficients (R) 

 

 

Mean Standard 

deviation 

1 2 3 4 5 

1. Uribarri  
(average CML kU/day) 

20534.94 ± 8981. 31  0.274* 0.337** 0.525** 0.176 

2. Hull CML  
(average mg CML/day) 

5.99 ± 2.25   0.745** 0.705** 0.771** 

3. Scheijen-CML  
(average mg CML/day) 

3.98 ± 1.59    0.740** 0.731** 

4. Scheijen-CEL   
(average mg CEL/day) 

3.07 ± 1.04     0.764** 

5. Scheijen-MGH1   
(average mg MG-H1/day) 

30.20 ± 9.93      
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by multiple studies as a means of validating  newly designed FFQs (54, 425, 479, 

480). This finding suggests that the FFQ developed in this study is valid in its 

measurement of dAGE. Looking at the data, there was one extreme value where 

the 4-day FR result was much lower than the FFQ result, which goes against the 

trend. Interestingly this participant’s FFQ showed good agreement on repeat, 

suggesting perhaps the participant modified their eating habits for the 4-day FR, 

or that the four days they recorded were over a period of irregularly low dAGE 

consumption. This sort of variation is recognised in regard to weighed food 

records, since it is known that participants tend to underestimate food intake in 

this style of reporting (481, 482). Macdiarmid and Blundell (1998) found that 

underestimating food intake is most prevalent in overweight and obese 

participants, with women more likely to underestimate intake than men (482). 

Interestingly the individual with this extreme value was a woman and had a BMI 

of 41, classed as very obese.  

 

Consideration should be given to the fact that the comparison of the dietary CML 

levels calculated from the newly designed FFQ and the 4-day FR in this study 

was based on the data obtained from 10 participants. Weighed food records and 

diaries place a high level of burden on the individual and FRs are known to only 

be suitable for small sample studies (471).  Sample sizes of the order used in this 

study are considered acceptable for FFQ validation and these numbers are 

comparable to other validation FFQ studies (54, 443), the EPIC study for 

example, which had a cohort of 25,000 had 179 participants complete a 7-day 

food diary (483).  

 



148 
 

Interestingly, despite good agreement between the FFQ and 4-day FR output, no 

strong relationships were found between dietary CML calculated with the FFQ 

and CML-AGE plasma level.  In fact, a weak negative relationship was found to 

exist between CML-AGE plasma level (ng/ml) and CML calculated from the newly 

designed FFQ (Uribarri database). Two previous studies have found no 

association between dietary and circulating CML-AGE levels (50, 484). However, 

the majority of the literature suggests that there is an association between dAGE 

intake and circulating AGE levels (45, 437, 485-488). There are no previous 

studies which report a negative correlation between CML-AGE plasma level and 

dAGE. The ELISA kit used for this study had unfortunately not been validated, 

and the standards provided with the kit were not in the same range as the results. 

If pre-tests had been carried out this may have been able to be accounted for, as 

plasma samples could have been diluted to be in the same range as the 

standards. Due to the limited number of pre-set wells in the kit this was not 

possible.  It has to be considered that this could have impacted the results and 

may explain why the CML-AGE plasma level in this study is not consistent with 

the previous literature. This finding therefore needs to be considered with caution. 

 

 

4.5.2 Reliability 

Assessing the reliability of any newly designed FFQ is considered to be a 

standard requirement (443, 448, 476, 489). Strong agreement was demonstrated 

between the first completion of the newly designed FFQ (FFQ1) and the second 

completion, one month later (FFQ2), suggesting that the newly designed FFQ is 

reliable. Review of the Bland-Altman plots indicates there was no proportional 
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bias and no consistent trend that one FFQ measured dAGE levels that were 

higher than the other, with there being an equal number of points above and 

below the mean. There is an indication on the Bland-Altman plot, Figure 4.6, that 

the data is skewed, showing heteroscedasticity, in that higher values calculated 

by the FFQ have slightly increased variability. This would suggest that the FFQ is 

less reliable when measuring high dAGE values. It is common for nutritional data 

in Bland-Altman plots to be skewed (490) since intake will be above zero. In 

addition it is common that those with higher intakes will appear relatively more 

variable. The non-uniform variability in Figure 4.6 can be overcome by using 

logarithms of the data for each method (447, 491). Figure 4.7 shows the Bland-

Altman plot using the log-transformed data, the heteroscedasticity is no longer 

present. FFQ1 and FFQ2 agree with each other and as shown in Figure 4.7 and 

are approximately +/- 0.3 log units, which corresponds to be within a factor of 2, 

approximately.  

 

4.5.3 Database Comparison 

There is currently no guidance or gold standard on which of the available 

databases should be used as a reference for calculation of dAGE levels, 

furthermore the databases are known to have dAGE measurement differences.   

As described in Section 4.3.4 the calculation of dAGE from the FFQ responses, 

using the values provided within each individual database in this study has 

allowed the first direct comparison of the database outputs, despite there being 

unit differences between them.  Perhaps, unexpectedly, poor agreement was 

found between the CML levels calculated from the FFQ using all three of the 

available dAGE databases (Uribarri, Hull and Scheijen). These correlations are 
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likely to exist in part due to the fact they are measuring the same type of AGE, 

despite the measuring techniques having been different. This suggests that the 

databases may be more in line with each another when measuring the same 

AGE than previously thought by Poulsen et al. (2013) and Scheijen et al. (2016) 

(51, 53).  

 

The Scheijen database, alongside CML, also provides values for the AGEs CEL 

and MG-H1. Interestingly, the CEL levels calculated from the FFQ with the 

Scheijen database, showed good agreement with the CML levels for each of the 

other databases. It is known that CML and CEL are similar to one another (492), 

this can be evidenced when comparing the chemical structures of CML and CEL, 

since they only differ by a methyl group (see Figure 4.8). The strong correlations 

between CEL and CML values from each database suggests that these AGEs 

are found in close association in foods. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Chemical structure of AGEs: N-carboxymethyllysine: CML, N-carboxyethyllysine: CEL.  
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Figure 4.9: Chemical structure of AGEs: 5-hydro-5-methyl-4-imidazolon-2-yl-ornithine: MG-H1 

 

MG-H1 has a different chemical structure to CEL and CML, as shown in Figure 

4.9. MG-H1 levels calculated from the FFQ using the Scheijen database, were 

found to have good agreement with the CEL and CML levels calculated from the 

same Scheijen database and that calculated from the Hull database, however no 

relationship was found between MG-H1 and CML calculated using the Uribarri 

database. It may be that this reflects the difference in measurement techniques 

since MG-H1 levels correlated with all AGEs measured by UPLC MS/MS but not 

ELISA.  

 

The three types of AGEs measured by Scheijen: CML, CEL and MG-H1 all had 

different values for foods within the database, for example, Kellogs rice crispies, 

CML = 0.59, CEL = 0.47, MG-H1 = 14.70. Despite the within database 

differences in food values, strong correlations existed between each of the 

different annual AGE calculated intakes. This emphasises the importance of 

considering the diet as a whole.  
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4.6 Conclusion: 

The UK-specific semi-quantitative FFQ developed to measure dAGE was found 

to produce valid results when compared to a 4-day FR and to be reliable on two 

completions; this indicates that it is a useful tool for estimating dAGE in a UK 

population. We were however unable to validate the FFQ against the objective 

plasma CML-AGE measurement and the reasons behind this require further 

research, but could relate to the measurement technique used. The comparisons 

between databases suggests that they are more in line with each another than 

previously thought. The choice of database should therefore be based upon 

which is most relevant to the population, and has enough foods measured to 

ensure minimal instances of assigning ‘assumed values’ to foods with no 

assigned measured value. The strong correlations found between the three 

different types of AGEs measured by Schejien (CML, CEL and MG-H1) suggests 

that when considering diet as a whole, an individual dAGE may be sufficient to 

give a representation as to if a person has a high or low AGE diet. 

 

The UK-specific semi-quantitative FFQ developed to measure dAGE was found 

to produce valid results when compared to a 4-day FR and to be reliable across 

completions. The comparisons between databases suggests that they are more 

in line with each another than previously thought. 
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4.7 Limitations: 

FFQs and FRs are limited in that one cannot be certain that participants have not 

misreported their diet. It is possible that both methods of collecting a participant’s 

dietary status could be equally flawed. 

 

The Plasma AGE-CML ELISA kit used was not validated and produced results 

which did not agree with the previous research. The standards given with this kit 

were not in the same range as the measurements found, this will have impacted 

the results. In future research plasma AGE-CML will be carried out using the 

UPLC–MS/MS method. 

 

Although this study identifies relationships between variables it cannot identify 

causative factors.  

 

4.8 Future work: 

Further validation of the FFQ by using UPLC-MS/MS to measure CML in the 

plasma.  

 

This is the first UK-specific semi-quantitative FFQ for the measurement of 

dAGEs, with increased use further validation and review should take place. 
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5. The relationship between dietary AGE intake, skin 

autofluorescence and circulating oxidative stress levels in a 

healthy ageing population. 

 

5.1 Abstract 

 

Purpose: To determine how dAGE intake influences tissue-bound AGE level 

(SAF) in a healthy ageing population, as well as to determine how circulating 

oxidative stress levels relate to SAF and dAGE. The relative influence that a 

variety of demographic parameters may have on these measures were also 

assessed. 

 

Methods: Skin autofluorescence (SAF) as a measure of tissue-bound AGE level 

was measured in 68 healthy participants and compared to dAGE measured by 

FFQ. Fasting venous blood samples were obtained to enable the measurement 

of oxidative stress biomarkers. 

 

Results: A positive relationship between SAF and dAGE (MG-H1) was calculated 

from the Scheijen database (n = 68, r = 0.319, p = 0.008, 95% CI 0.099 to 0.511). 

Spearman’s correlation showed a positive relationship between SAF and the 

oxidative stress biomarker alpha tocopherol (n = 68, r = 0.252, p = 0.044, 95% CI 

0.007 to 0.463). When MG-H1 and alpha-tocopherol were included in a multiple 

linear regression along with relevant demographic variables they were not found 

to be significant predictors of SAF; age was the single best predictor (p = 

<0.001), followed by BMI (p = 0.008). 
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Conclusion: The contribution of dietary AGE to tissue-bound AGE levels 

appeared to be minimal. This unexpected finding requires further investigation, 

which will be aided by the development of new AGE databases. No statistically 

significant associations between oxidative stress biomarkers and dAGE were 

found. AGEs measured by SAF and the circulating oxidative stress biomarkers 

measured in this study were not closely related. This suggests that the two 

measures should be considered alongside each other, rather than 

interchangeably and that the output from the AGE Reader, SAF, should not 

simply be considered as a marker of oxidative stress. 
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5.2 Background 

Foods are a known exogenous source of AGEs (40), and dAGEs have been 

shown to influence the body’s total AGE level (see Section 4.2). It is understood 

that approximately a third of dietary AGEs consumed are absorbed through the 

digestive tract, then circulate in the body (493). It is not currently known if dAGEs 

accumulate in tissues or if they cause biological consequence (51). It has 

however been suggested that after urinary excretion a proportion of dAGEs 

remain in the body (494) and rodent studies have evidenced that CML-rich diets 

result in accumulation in tissues (495-497). Dietary AGE intake represents a 

potentially modifiable target (360), hence this is an area of interest.  

 

AGEs are known to accumulate in cells and tissues throughout the body, 

however the amount of AGEs that are contributed exogenously from the diet 

versus those that produced endogenously is unclear. Measuring tissue-bound 

AGE levels is thought to give an indication of the total AGE levels in the body. 

The contribution of dAGE to tissue-bound AGE levels has not been widely 

researched due to difficulties in assessing human tissue (493). As explained in 

Section 3.3.2.4., the AGE reader provides a measurement of skin 

autofluorescence (SAF) which has been proposed as a marker for tissue-bound 

AGE levels (21, 23).  

 

Using the AGE-reader, Klenovics et al. (2014) found that infants had a higher 

SAF if they were formula fed compared to breast fed infants (498), Nongnuch et 

al. (2015) measured SAF levels in haemodialysis patients and found those with a 

vegetarian diet had a lower SAF level (499), Botros et al. (2017) found that SAF 
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and coffee intake positively correlated with one another (500), and Kellow et al. 

(2017) measured SAF in a group of healthy adults and found those with a higher 

intake of meat products had a higher SAF level. None of these studies used an 

AGE specific FFQ or AGE database to calculate dAGE consumption. A recent 

study by Hörner et al. (2018) used a FFQ to measure dAGE in a group of 

hemodialysis patients and found that SAF did not correlate with dAGE intake 

(501). 

 

SAF, by its nature, can only measure the level of fluorescent AGEs in the skin; 

examples of fluorescent AGEs include pentosidine and crossline, the previously 

discussed AGEs CML, CEL and MG-H1 do not fluoresce. The lack of 

fluorescence of all types of AGEs is therefore considered a limitation of SAF and 

consequently of the AGE-reader (37, 502). However, Meerwaldt et al. (2004) did 

show that levels of fluorescent and non-fluorescent AGEs do correlate with one 

another, suggesting that SAF could in fact be a marker of total AGE in the skin 

(21). Another consideration with SAF readings is that other molecules in the skin 

fluoresce as well as AGEs, examples include porphyrins (organic compounds) 

and redox regulated fluorophores such as nicotinamide adenine dinucleotide and 

flavin adenine dinucleotide (502, 503). While this is important to consider, Smit et 

al. (2010) found that approximately 75% of the SAF variance was due to 

variability of the AGE pentosidine, confirmed by skin biopsies (33). 

 

In a similar manner to AGEs, oxidative stress develops as part of the body’s 

normal metabolism and is linked with ageing (114). This supports the notion that 

ageing is multifactorial (114, 504). When considering the influence that AGEs 
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may have on the development of age-related disease, it is important to take into 

consideration the complex relationship between AGE levels and oxidative stress 

levels in the body. Indeed, endogenous AGE formation is accelerated by 

increased levels of oxidative stress and blood glucose (9). Increase in AGE levels 

is both a cause and an effect of elevated oxidative stress (11), with oxidative 

stress accelerating AGE formation and the production of free radicals, as well as 

being produced as a by-product of AGE formation and AGE-RAGE binding 

interaction (see Section 1.7) (112, 113). AGEs are considered to be pro-oxidant 

substances, because their formation increases the cellular level of oxidative 

stress (361, 362). It has been found that serum CML levels correlate with the 

ELISA measured oxidative stress biomarker 8-isoprostane (45). It has been 

suggested that dAGEs are directly associated with oxidative stress as a low-AGE 

diet resulted in a significant reduction in 8-isoprostanes and vascular cell 

adhesion molecule one (VCAM-1) (505). In addition it has been found that dAGE 

intake weakly positively correlates with the inflammation marker high sensitivity 

C-Reactive Protein (hsCRP) (45). Although statistically significant results have 

been reported the proposed risk of dAGEs to health has been questioned, since 

the results of these studies have been described as low grade evidence (493). 

 

As described in Section 1.7, the vast majority of the literature differentiates 

between AGEs and oxidative stress, measuring each individually while 

discussing the known complex relationship (8, 45, 115-117). However, there are 

examples in the literature which use the terms interchangeably, with some using 

AGEs as biomarkers of oxidative stress (92, 118, 119), suggesting that the two 

are perhaps measurements of the same thing. Understanding the relationship 
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between circulating oxidative stress markers and AGE levels could help increase 

understanding of which may be the primary influence and whether they are 

measures of the same thing, or should be considered, and potentially targeted, 

individually.  

 

Increased body mass index (BMI) is known to result in increased oxidative stress 

(506) as well as smoking (507) and alcohol (508). Kellow et al. (2017) found that 

increased age, smoking and BMI correlated with increased SAF (494). These 

demographic, general health parameters are known associates of the AGEs and 

oxidative stress and therefore need to be considered. Understanding which 

parameters influence AGE and oxidative stress levels in healthy participants 

could help increase understanding as to the demographic factors that accelerate 

the physiological ageing process. It is also important to identify possible 

confounders in this healthy population before examining participants with 

pathology.   

 

5.2.1 Aims 

To determine whether dietary AGE intake is associated with tissue-bound AGE 

levels (SAF) in a healthy ageing population, to determine whether circulating 

oxidative stress levels relate to tissue-bound AGE levels (SAF) and dAGE in a 

healthy ageing population and to explore the influence of BMI, smoking history, 

alcohol consumption, body fat percentage and blood pressure on oxidative 

stress, SAF and dAGE, in the same population.   
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5.2.2 Hypothesis 

Dietary AGE intake will be associated with SAF in healthy controls, and both 

dAGE and SAF will relate to the measured oxidative stress biomarkers. 

 

5.3 Methods 

The methodology that will be used in this study is summarised here; more 

detailed information on the specifics of each technique can be found in Chapter 

3. 

 

5.3.1 Participants  

Convenience sampling was used to recruit participants who were eligible 

according to the inclusion and exclusion criteria for healthy ageing participants as 

detailed in Section 3.1.3. and Section 3.1.4. Due to the established link between 

diabetes and AGEs (449, 450), participants diagnosed with diabetes, or 

participants found to have a high fasting glucose level were excluded from the 

study, as were current smokers, and previous smokers who quit less than 15 

years ago due to the link between AGEs and tobacco (10).  

 

5.3.2 General health investigations 

As described in 3.3.2.1, height was measured in meters using a stadiometer, 

weight was measured in kg and from these measurements BMI was calculated. 

Weight, basal metabolic rate (BMR), and body fat percentage were measured 

using the Tanita body composition analyser (TBF-300 MA). Blood pressure was 

measured and a fasting venous blood sample was obtained to enable the 

measurement of oxidative stress biomarkers in plasma. Three oxidative stress 
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biomarkers were used, the non-enzymatic antioxidants ascorbate (vitamin C) and 

alpha tocopherol (a form of vitamin E) and the product of lipid peroxidation 

malondialdehyde (MDA). Each biomarker is described in Section 3.3.2.6. A 

normal range for ascorbate levels would be 30 to 150 µM (509) and MDA 

range 0.36 and 1.24 µM, and (429). There is currently no established normal 

range for plasma alpha tocopherol concentration, however the mean plasma 

alpha tocopherol concentration is 32.5 µM for adults aged 19-64, in the UK (454) 

 

5.3.3 Skin autofluorescence (SAF) 

The measurement of tissue-bound AGE levels was obtained using the AGE 

Reader (DiagnOptics B.V., Groningen, The Netherlands). The AGE Reader is a 

non-invasive device, which provides a low cost, fast, and reproducible means of 

determining AGE levels in the body through utilisation and measurement of the 

fluorescent properties of tissue-bound AGEs in the skin (21-23). Specific detail on 

the AGE reader and its protocol can be found in Chapter 3, Section 3.3.2.4.  

 

5.3.4 Dietary AGE, semi-quantitative FFQ 

An assessment of dietary AGE intake over the last year was made using a semi-

quantitative FFQ that was designed specifically to assess dietary AGE levels in a 

UK population for the purposes of this research (Chapter 4, Appendix 4.1). The 

FFQ was administered to all participants. The results from the FFQ were 

calculated with each of the databases described in Chapter 4.  

As explained previously in Section 4.3.1, use of all of the different AGE 

databases available in this study enabled the measurement of dietary intake of 

CEL and MG-H1 in addition to CML from the FFQ responses. It is important to 
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note that CML, CEL and MG-H1 do not fluoresce (510), hence the FFQ 

measures different types of AGEs to the AGE-reader. Furthermore, it is thought 

that the fluorescent AGE pentosidine may have only a minor role in the Maillard 

reaction within foods (511). 

 

5.3.5 Statistical analysis 

Statistical analysis was performed using SPSS version 24 (IBM). The normality of 

data was assessed by the Shapiro–Wilk test and visual inspection of the QQ 

plots. P values of less than 0.05 were considered significant.  

 

5.3.5.1 SAF and dAGE 

Spearman’s rank correlation was used to analyse the association between SAF 

and dAGE. This analysis was carried out separately for each dAGE database 

under consideration, namely: Uribari et al. (2010), Hull et al. (2012) and Scheijen 

et al. (2016). 

 

5.3.5.2 Relationship between oxidative stress, SAF and dAGE 

Spearman’s rank correlation was used to analyse the association between 

oxidative stress and SAF. This analysis was carried out separately for each 

oxidative stress biomarker, namely: ascorbate (vitamin C), malondialdehyde 

(MDA) and alpha tocopherol (form of vitamin E). 

Spearman’s rank correlation was used to analyse the association between 

oxidative stress and dAGE. This analysis was carried out for each oxidative 

stress biomarker and each dAGE database. 
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5.3.5.3 Relationship between demographic variables, SAF, dAGE and oxidative 

stress 

Mann-Whitney U test and Kruskal-Wallis test were used to analyse the 

demographic data.  

Spearman’s rank correlation was used to assess the relationship between SAF 

and each clinical measure namely: blood pressure, BMI, BMR, body fat 

percentage, fat mass as well as dietary AGE, and oxidative stress biomarkers.  

The same statistical analyses were repeated for dAGE database and each 

oxidative stress parameter. 

Any significant correlations were entered into a stepwise forward and backward 

multiple linear regression to further assess the influence of different variables on 

SAF.  

 

5.3.5.4 Power calculation 

Sample size was determined using G*Power 3 programme (Heinrich-Heine, 

Universität Düsseldorf). In order to achieve 80% power at the 5% alpha level with 

a medium effect size of 0.3, 64 participants would be required. To account for 

unusable data an allowance was made and a sample size of 71 participants was 

chosen.  

 

5.4 Results  

A total of 70 participants were recruited, 68 of which were eligible for the study. 

The 68 eligible participants were free of acute or chronic diseases, including 

diabetes, with the exception of controlled hypertension. Participants who reported 

a major change to their diet over the last 12 months were excluded. The 
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characteristics of the participant group with mean and standard deviation are 

detailed in Table 5.1.   

 

 Table 5.1: Mean and standard deviation of participant group characteristics. AU: arbitrary units. 

* P < 0.05, ** P < 0.001 difference between M: males and F: females.   

 

Variable Mean ± SD 

Gender (n) 

Male 

Female 

 

22 

46 

Age (years) 60.84 ± 9.67 

Ethnicity (n) 

Caucasian 

White other 

Mixed white/Asian 

Mixed white/black Caribbean 

Indian 

 

62 

2 

1 

2 

1 

Body mass index (BMI) 26.12 ± 4.62 

Basal metabolic rate (BMR) (kcal) All: 1444 ± 232 

M: 1667 ± 217,   F: 1338 ± 150 ** 

Body fat percentage (%) All: 31.75 ± 8.73 

M: 23.41 ± 6.51,  F: 35.74 ± 6.59 ** 

Fat mass (kg) All: 23.73 ± 9.94 

M: 19.88 ± 8.44,  F: 25.57 ± 10.15 * 

Systolic blood pressure (SBP) (mmHg) 129.54 ± 17.36 

Diastolic blood pressure (DBP) 

(mmHg) 

81.18 ± 10.29 

Alcohol units per week 6.07 ± 6.59 

Smoking history (n) 

Non-smoker 

Previous smoker, quit >20yrs ago 

Previous smoker, quit >15yrs ago 

 

43 

24 

1 

Skin autofluorescence (SAF) (AU) 2.24 ± 0.39 



165 
 

The characteristic BMR (kcal) was significantly higher in males, both body fat 

percentage and fat mass measurements were significantly higher in females. All 

other characteristics were not statistically different between genders. Figure 3.17, 

Chapter 3 shows the AGE Reader measurement report displayed after an AGE 

reading and visually displays what a ‘normal’ SAF reading would be depending 

on age of the participant. The reference values used in the graph are from mean 

SAF data for age from Koetsier et al. (2010) (512). The average SAF value for 

the average age of 61 would be 2.25 AU. 

 

5.4.1 SAF and dAGE 

Spearman’s correlation showed a positive relationship between SAF and dAGE 

(MG-H1) calculated from the Scheijen database (n = 68, r = 0.319, p = 0.008, 

95% bootstrap confidence interval 0.099 to 0.511) (Figure 5.1). No significant 

correlations existed between the other dAGE values calculated from the FFQ 

responses (Uribarri CML, Hull CML, Scheijen CML and CEL) and SAF (Table 

5.2). 
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Figure 5.1: Positive relationship between SAF and dAGE MG-H1 calculated from the FFQ 

responses using the Scheijen et al. (2016) database (n = 68, r = 0.319, p = 0.008, 95% CI 0.099 

to 0.511). 

 

 
 

Table 5.2: Mean, standard deviation and Spearman’s correlations between SAF (AU) and dAGEs 

calculated with each database. *p<0.05  

 

 

 

Mean SD Spearman’s correlation coefficients (R values) 

 Uribarri 

(average CML 
kU/day) 

Hull CML 

(average mg 

CML/day) 

Scheijen 
CML 

(average mg 
CML/day) 

Scheijen 
CEL 

(average mg 
CEL/day) 

Scheijen    
MG-H1 

(average mg MG-
H1/day) 

SAF  2.24 ± 0.39 0.075  

p = 0.545 

0.210 

p = 0.085 

0.190 

p = 0.120 

0.175 

p = 0.153 

0.319 

p = 0.008* 
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5.4.2. Oxidative stress, SAF and dAGE 

5.4.2.1 Relationship between oxidative stress and SAF 

Spearman’s correlation showed a positive relationship between SAF and the 

oxidative stress biomarker alpha tocopherol (n = 68, r = 0.252, p = 0.044, 95% 

bootstrap confidence interval 0.007 to 0.463) (Figure 5.2). No significant 

correlations existed between MDA and SAF or ascorbate and SAF (Table 5.3). 

 

 

Table 5.3: Mean, standard deviation and Spearman’s correlations between SAF (AU) and each 

oxidative stress biomarker: ascorbate (vitamin C), malondialdehyde (MDA) and alpha tocopherol 

(form of vitamin E). *p<0.05  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Standard 
deviation 

Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

Ascorbate (µM) 50.41 ± 18.52 -0.207,  p = 0.093 

MDA (µM) 0.61 ± 0.19 0.072,  p = 0.570 

Alpha tocopherol 
(µM) 

43.68 ± 16.01 0.252,  p = 0.044*  
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Figure 5.2: Weak positive relationship between alpha tocopherol (µM) and SAF (AU) (n = 68, r = 

0.252, p = 0.044, 95% CI 0.007 to 0.463).  

 

 

5.4.2.2 Relationship between oxidative stress and dAGE 

No statistically significant correlations existed between the oxidative stress 

biomarkers (ascorbate, MDA and alpha tocopherol) and dAGEs derived from any 

of the databases.  
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5.4.3. Relationship between demographic variables, SAF, dAGE and oxidative 

stress 

5.4.3.1 Relationship between demographic variables and SAF 

Spearman’s correlation showed a strong positive relationship between increased 

age and SAF (n = 68, r = 0.420, p = <0.001, 95% bootstrap confidence interval 

0.182 to 0.613) (Figure 5.3). No statistically significant correlations existed 

between any other demographic variables and SAF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Positive relationship between age (years) and SAF (AU) (n = 68, r = 0.420, p = 

<0.001, 95% CI 0.182 to 0.613).  
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The demographic history of previous smokers who had quit more than 15 years 

ago, and participants who had ‘never’ smoked, were analysed to detect if there 

was a difference related to SAF. There was no significant difference (p = 0.788). 

In a similar manner alcohol units consumed per week were assessed. Nine 

participants did not drink alcohol, 53 drank a low to moderate amount of units (1-

14 units per week) and 6 participants drank 15 or more units, classified as high 

consumption due to it being above the UK recommended units consumed per 

week (513). There was no significant difference in SAF level between the 

different alcohol consumption groups (Kruskal-Wallis; p = 0.616). 

 

An incidental finding regarding reflectance, a measurement obtained from the 

AGE-reader when measuring SAF, was discovered during data analysis. 

Reflectance was found to correlate with BMI (R = 0.244, p = 0.044, 95% 

bootstrap confidence interval -0.001 to 0.473), body fat percentage (R = 0.311, p 

= 0.01, 95% bootstrap confidence interval 0.057 to 0.530), and fat mass (R = 

0.268, p = 0.027, 95% bootstrap confidence interval 0.020 to 0.502). 

     

5.4.3.2 Relationship between demographic variables and dAGE 

No statistically significant correlations existed between the demographic variables 

and different measured dAGEs. 

 

5.4.3.3 Relationship between demographic variables and oxidative stress 

Spearman’s correlation showed a negative relationship between ascorbate and 

BMI (n = 68, r = -0.345, p = 0.004, 95% bootstrap confidence interval -0.115 to -

0.535) (Figure 5.4) and negative relationship between ascorbate and BMR (n = 
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68, r = -0.328, p = 0.007, 95% bootstrap confidence interval -0.108 to -0.517) 

(Figure 5.5). No statistically significant correlations were found between any other 

demographic variables and oxidative stress biomarkers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Negative relationship between ascorbate (µM) and BMI (n = 68, r = -0.345, p = 0.004, 

95% bootstrap confidence interval -0.115 to -0.535).  
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Figure 5.5: Negative relationship between ascorbate (µM) and BMR (kcal) (n = 68, r = -0.328, p = 

0.007, 95% bootstrap confidence interval -0.108 to -0.517).   

 

 

5.4.4. Multiple linear regression 

Considering all findings together, within the variables considered (dAGE, 

oxidative stress markers and demographic parameters), there were three 

variables which correlated with SAF, the demographic parameter age as well as 

the dAGE MG-H1 and oxidative stress biomarker alpha tocopherol. Table 5.4 

summarises all of the variables which correlated with SAF.  
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Table 5.4: Mean, standard deviation and Spearman’s correlations between all parameters which 

correlated with SAF. 

 

Forwards stepwise and backwards multiple linear regression analysis was 

performed to determine the factors that had the most influence on SAF. The 

independent variables included were those which had previously correlated with 

SAF: age, dAGE MG-H1 and alpha tocopherol. BMI did not correlate with SAF (n 

= 68, r = 0.173, p = 0.159, 95% bootstrap confidence interval -0.065 to 0.381), 

however BMI was included since the literature suggests that it is a confounding 

variable (494).   

 

Age was the single best predictor (p = <0.001), followed by BMI (p = 0.008). 

These findings were also found to be true in the backwards model. 

 

 

 

 

 

Variable 

 

 

 

Mean 

 

 

Standard 

deviation 

 

Spearman’s correlation coefficients 

R values P values 95% bootstrap 

confidence 

interval 

Age (years) 60.84 ± 9.67 0.435 p<0.001 0.205 to 0.620 

Dietary AGE 

MG-H1  

(average mg MG-

H1/day) 

30.26 ± 9.66 0.333 0.007 0.105 to 0.550 

Alpha 

tocopherol  

(µM) 

43.68 ± 16.01 0.252 0.044 0.034 to 0.461 
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5.5 Discussion 

The aim of this study was to determine how dAGE intake relates to SAF in a 

healthy ageing population, as well as to determine whether circulating oxidative 

stress biomarker levels relate to SAF and dAGE and the relative influence that a 

variety of demographic parameters may have on these measures. We believe 

that this is the first study to examine the influence of dAGE on tissue-bound AGE 

(SAF) levels using a specifically designed FFQ for measuring dAGE with different 

databases.   

 

5.5.1 SAF and dAGE 

A positive relationship was found in this study between the dAGE MG-H1 and 

SAF, however no relationship was found between SAF and dietary intake of CML 

and CEL. As explained in Section 5.2 only a few studies have previously 

assessed the relationship between dAGE and SAF. Only one of these studies 

used an AGE specific FFQ to calculate dAGE consumption, Hörner et al. (2018) 

in a group of haemodialysis patients found that SAF did not correlate with dAGE 

intake. The FFQ used by Hörner et al. (2018) only used the Uribarri database, 

hence could only measure the dAGE CML (501). Lack of correlation between the 

dAGE CML and the results of this study agree with one another. No previous 

studies have examined the relationship between CEL and MG-H1 and SAF.  

 

MG-H1 is known to be a major type of AGE (514), although CML is currently the 

favoured dAGE marker, the result from this study supports the notion that 

databases should expand and examine multiple types AGEs in the diet. The 

weak correlation between MG-H1 and SAF suggests that MG-H1 absorbed from 
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the diet may be accumulating in the tissues. The lack of relationship between 

dietary CML and CEL and SAF suggests that these dAGEs may not contribute, or 

contribute only to a low extent, to tissue-bound AGE levels. The difference 

between the types of dAGEs may be due to reactivity or structural differences 

(see Figure 4.8 and Figure 4.9). CML and CEL can bind to RAGE when in an 

embedded peptidic structure (515), however when considering free CML and 

CEL it has been suggested that they do not readily bind to RAGE, whereas free 

MG-H1 does (492, 516). These differences in reactivity with RAGE suggests that 

circulating levels of MG-H1 may be more likely to react and therefore be less 

likely to be excreted from the body and potentially more likely to accumulate in 

the tissues. This difference in reactivity between types of dAGEs could indicate 

possible differing pathological effects which would be important to consider.  

 

Important to note is that whilst the correlation between MG-H1 and SAF was 

moderate, when MG-H1 was included in the multiple linear regression it was not 

a significant predictor of SAF. This supports the theory that AGEs formed 

endogenously create the largest burden on the tissues of the body, and that diet 

makes only a minor contribution to overall tissue-bound levels. Further research 

is required to assess if dAGE restriction is a viable treatment option to reduce 

tissue-bound AGE levels.  

 

5.5.2 Relationship between oxidative stress, SAF and dAGE  

As explained in Section 5.2, when considering AGEs, it is important to take into 

consideration the complex relationship between AGE and oxidative stress levels 
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in the body. Increased understanding is needed to establish if they are measures 

of the same thing, or should be considered, and potentially targeted, individually.  

 

In an environment of increased oxidative stress it would be expected that the 

oxidant MDA would be increased and the antioxidants ascorbate and alpha 

tocopherol decreased (103). There are only a few studies directly comparing 

oxidative stress biomarkers and SAF. Hartog et al. (2006) measured vitamin C 

(ascorbate) and vitamin E plasma levels in renal transplant recipients and found 

that increased SAF was related to decreased plasma vitamin C levels and no 

association was found between SAF and vitamin E (517). Himori et al. (2016) 

found that the oxidative stress biomarker 8-hydroxy-2’- deoxyguanosine did not 

correlate with SAF (119). The oxidative stress biomarker alpha tocopherol in this 

study was found to weakly positively correlate with SAF and borderline significant 

(p = 0.044). Both ascorbate and MDA were found not to correlate with SAF. The 

lack of correlation of MDA and ascorbate with SAF may be attributed to the 

participants being healthy and not being in a state of oxidative stress. Indeed, 

MDA and ascorbate levels were within a healthy normal range, and the 

antioxidant alpha tocopherol levels were above normal (429, 454, 509). In 

addition oxidative stress biomarkers are short-term measures, providing only a 

measurement for that moment in time whereas the tissue-bound SAF measure is 

thought to indicate longer-term tissue damage (418).  

 

. 

Both ascorbate and alpha tocopherol are thought to be appropriate oxidative 

stress biomarkers (518). Frei (1989) proposed that ascorbate is the most 

effective antioxidant present in the plasma and is vital in the protection against 
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oxidative stress (427). Low levels of ascorbate have been linked with AGEs and 

AGE inhibitors such as aminoguanidine (519) as well as being linked to 

endothelial dysfunction (520, 521). Alpha tocopherol has also been shown to 

regulate inflammation related to neurodegeneration in Alzheimer's disease (522, 

523). 

 

.As explained in 3.3.2.6.2, alpha tocopherol is one of the eight forms of vitamin E 

and is the main lipid soluble antioxidant found in the plasma (433). The mean UK 

plasma alpha tocopherol concentration is 32.5 µmol/L for adults aged 19-64 

(454), as shown in Table 5.1 the adults in this study (mean age 61) had mean 

alpha tocopherol of 43.68 ± 16.01 µmol/L. This higher mean may be in part due 

to a ‘healthy volunteer effect’, in that the inclusion/exclusion criteria and protocol 

of this study is likely to have attracted a healthier volunteer sample (524, 525). 

Nevertheless, the finding of a positive correlation between alpha tocopherol and 

SAF in this study was not expected. Indeed, as alpha tocopherol is a lipid soluble 

antioxidant, higher levels are considered to be beneficial, as alpha tocopherol has 

been shown to inhibit low density lipoprotein oxidation and inhibit glycation (526-

528). Culbertson et al. (2003) used a novel AGE inhibitor, 6-

dimethylaminopyridoxamine (dmaPM) which was pharmacologically designed to 

scavenge free radicals in a similar manner to non-enzymatic antioxidants, such 

as alpha tocoperol. Interestingly, they similarly found an unexpected result, as 

dmaPM (antioxidant) increased the levels of pentosidine (fluorescent AGE) (529). 

The similarities in unexpected results could however be coincidence, as the 

theory of an antioxidant encouraging AGE formation opposes the previous 

literature.  Indeed, it should also be considered that the positive correlation 
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between alpha tocopherol and SAF found in this study was only weak (R = 0.252, 

p = 0.044) and when put through multiple regression analysis alpha tocopherol 

was not found to be a predictor of SAF.  

 

Previous research has used the AGE reader’s SAF measure as a biomarker for 

oxidative stress (118, 119). The AGE reader has not been validated or developed 

to measure oxidative stress. Oxidative stress is particularly challenging to 

measure as reactive species are unstable, oxidative stress biomarkers are used 

to give an indication of the level within the body. As mentioned above the 

recognised oxidative stress markers ascorbate and MDA did not correlate with 

SAF and alpha tocopherol had a weak positive correlation. These results suggest 

that SAF may not be a suitable biomarker of oxidative stress and helps to clarify 

that it is not acceptable to interchange between oxidative stress and AGE (SAF) 

level, since although related, they appear to measure different things. 

 

With regard to dAGE, none of the oxidative stress biomarkers tested in the study 

related to dAGE however previous studies have suggested that increased intake 

of dAGEs is directly linked to oxidative stress in mice and humans (45, 57, 505, 

530). The markers of oxidative stress used in these studies however were: CML, 

MG derivatives, hsCRP, VCAM-1, plasma 8-isoprostane and fibrinogen. Although 

relevant, CML is a type of AGE, MG a precursor to AGE formation, hsCRP and 

VCAM-1 are considered inflammation markers, and fibrinogen is a coagulation 

factor. The only specific oxidative stress biomarker measured in previous studies 

was plasma level of 8‐isoprostane, which is a product of lipid peroxidation (531). 

MDA was chosen as a biomarker in this thesis as it has been linked with AGEs 
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(110) as well as glaucoma, with increased levels of MDA having been associated 

with glaucoma (108) and glaucoma severity (107, 109, 315). Since both MDA and 

8‐isoprostane are products of lipid peroxidation it was expected that MDA would 

also correlate with dAGE, however this was not the case. This difference in 

findings may in part be related to the way in which dAGE was measured between 

the studies however, rather than oxidative stress biomarker differences. 

Methodology differences can make study findings more difficult to compare.  

 

5.5.3 Demographic variables with SAF, dAGE and oxidative stress 

No meaningful relationships were found in this study between dAGEs and any of 

the different demographic variables measured. Hörner et al. (2018) presented 

similar results suggesting the lack of a meaningful association between 

measurements such as BMI and dAGE (501).  

 

Both age and BMI were found to be statistically significant predictors of SAF in 

this study. The strong correlation between age and SAF was an expected finding 

as it is known that AGEs accumulate with age (494, 500, 532).There are 

conflicting conclusions in previous research regarding the correlation between 

SAF and BMI. Some studies have found that in healthy adults BMI and SAF do 

not correlate (498, 500, 533), and others have found statistically significant 

correlations (494, 532, 534). However Corstjens et al. (2008) found that BMI was 

only significantly related to SAF in healthy adults under the age of 40 (532). 

Indeed, this may explain the lack of a correlation found in this study as all 

recruited participants were aged 50 or older. Higher BMI and BMR in this study 

were also related to lower ascorbate levels and in an environment of increased 
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oxidative stress it would be expected that ascorbate, as an antioxidant would be 

at a decreased level (103). These results support the already established 

relationship between oxidative stress and increased BMI and obesity (506, 535, 

536), with Kimmons et al. (2006) similarly finding that ascorbate levels were lower 

obese participants (537).  

 

No relationship was found between SAF, smoking history and alcohol intake in 

this study, or between circulating oxidative stress markers and these parameters. 

Tobacco smoke can increase oxidative stress and is a known exogenous source 

of AGEs (10, 507, 538). It has previously been shown that smoking and smoking 

history are positively correlated with increased SAF (512, 533, 534). However, 

the finding that SAF was not at a higher level in the previous smoker participants 

compared to ‘never’ smoked participants in this study is consistent with previous 

research by van Waateringe et al. (2017) who found that smoking cessation had 

a reversible effect on SAF level. After approximately 15 years of smoking 

cessation SAF levels are thought to be comparable to ‘never’ smokers (539). All 

of the participants who were ‘previous smokers’ in this study had been non-

smokers for a minimum of 15 years, with the majority having not smoked for 20 or 

more years (see Table 5.1). In a similar manner the finding that there was no 

significant correlation between circulating oxidative stress biomarkers and 

smoking history is consistent, since it had been such a long period of smoking 

cessation (540). The lack of relationship between alcohol consumption and SAF 

is also in accordance with the previous literature; Jochemsen et al. (2009) found 

alcohol consumption not to be correlated with SAF (541). In addition the different 
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AGE databases agree with one another, estimating alcohol intake to be of either 

little or no value (14, 53).  

 

As previously stated in Section 3.3.2.4 the AGE reader is able to measure 

pigmented skin ranging from 1 to 4 in the Fitzpatrick skin colour classification. It is 

unable to read darker skin pigment classifications 5 and 6.  As shown in Table 

5.1 the majority of participants in this study were Caucasian or ‘white other’. This 

reflects the population in the South West of England where 95% of the population 

describe themselves as ‘White British’ or ‘White other’ (542). All participants who 

volunteered for this study had their AGE reading successfully measured, this 

included participants who described their ethnicity as ‘Indian’ and ‘Mixed 

white/black Caribbean’ whose characteristics would usually be linked to 

Fitzpatrick class 5 (416, 543). This suggests reflectance thought to be associated 

with certain ethnicities and the capabilities of the AGE reader should be 

reviewed. Due to the low number of participants with darker skin pigmentation in 

this study the relationship between ethnicity, skin reflectance and SAF could not 

be determined.  

 

An incidental finding regarding reflectance, an additional output from the AGE-

reader when measuring SAF, was revealed during data analysis. Reflectance 

positively correlated with body fat percentage, fat mass and BMI. Fat cells 

(adipocytes) aggregate to form adipose tissue. Bashkatov et al. (2005) measured 

human subcutaneous adipose tissue and found it to have a spectral range from 

400 to 1500 nm (544). As explained in Section 3.3.2.4 the AGE reader emits UV-

A light with a peak wavelength of 375 nm to excite the fluorescent AGEs in the 
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skin. Since these wavelengths do not overlap the adipocytes should not be 

excited. However results from this study show a correlation between the 

demographic variables body fat percentage, fat mass and BMI with skin 

reflectance. Reflectance is not a parameter usually reported by studies using the 

AGE reader, hence this correlation has not previously been reported. This 

relationship requires further investigation since reflectance is part of the SAF 

calculation. A possible relationship could therefore impact and influence SAF 

readings.  

 

5.6 Conclusion 

This study suggests that the contribution of dietary AGE to tissue-bound AGE 

levels may be minimal. This however requires further investigation, this will be 

aided by the development of new AGE databases, expanding with more types of 

AGEs measured than in the past (444).  

 

The relationship between oxidative stress and AGEs was investigated. No 

associations between oxidative stress biomarkers and dAGE were found. The 

oxidative stress biomarker alpha tocopherol weakly correlated with SAF, this was 

however in the opposite way than was hypothesised and therefore requires 

further investigation before the relevance and insight that could be gained from 

this finding can be determined. The results suggest that tissue-bound AGEs 

measured by SAF and the circulating oxidative stress biomarkers measured in 

this study are not closely related. For this reason the AGE reader, SAF, should 

not simply be used as a marker for oxidative stress and instead the two 
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measures should be used alongside each other, rather than interchangeably in 

place of each other. 

 

5.7 Limitations 

Plasma CML (ng/ml) was not included in this chapter. Statistical analyses were 

performed to investigate the relationships between plasma CML and SAF, 

demographic parameters, dAGE and oxidative stress biomarkers. No 

relationships were found between plasma CML and any of these listed 

parameters. We believe that this may be due to the standards given with the 

ELISA kit not being in the same range as the measurements found which 

impacted the results. 

 

As mentioned in Section 5.2 the AGE reader is only able to measure fluorescent 

AGEs. None of the dAGEs calculated from the databases available have 

fluorescent properties. It has however been shown that fluorescent AGEs 

positively correlate with other non-fluorescent AGEs (21), as part of validation of 

the AGE reader. In addition, other molecules in the skin are known to fluoresce 

and influence SAF measurement. 

 

FFQs are heavily reliant on accurate responses from the participant. This is a 

limitation of all FFQ based studies.  

 

This study did not measure the levels of AGEs excreted by the body in the urine. 

This data would have enabled a calculation of the amount of dAGEs absorbed in 
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the body. It would be interesting to know if amount of dAGE absorbed relates to 

SAF.  

 

5.8 Future work 

To measure dAGE intake, dAGE excretion, and SAF to assess if absorption is 

associated with tissue-bound AGE levels. Since the AGE reader was able to 

successfully measure SAF readings in participants whose characteristics would 

be linked to Fitzpatrick class 5 further research is required to better understand 

the capabilities of the AGE reader and establish which ethnicity groups can be 

measured accurately. Further investigation into how body fat percentage and fat 

mass impact SAF measurements is also required.  
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6.0 AGE levels in early stage POAG, NTG and OHT patients 

 

6.1 Abstract 

Purpose: To determine whether tissue bound and dietary AGE levels are 

elevated in POAG and NTG in comparison to age-matched OHT patients and 

healthy controls. Oxidative stress levels were considered as a possible 

influencing factor.   

 

Methods: Skin autofluorescence (SAF) as a measurement of tissue-bound AGE 

level was measured in 33 healthy control participants, 16 OHT, 12 NTG and 32 

POAG patients. A fasting venous blood sample was obtained to enable the 

measurement of oxidative stress biomarkers. 

 

Results: SAF was significantly higher in NTG and POAG compared to healthy 

controls (p = 0.005). Furthermore, POAG patients had a lower ascorbate (p = 

<0.001) and alpha tocopherol (p = <0.001) level than healthy controls. There was 

no statistically significant difference in dAGE value between the groups nor 

between contributing factors such as BMI and blood pressure.  

 

Conclusion: AGE (SAF) level was significantly higher in NTG and POAG 

compared to healthy controls. This finding adds to the evidence that SAF, as an 

accessible measure, may be a suitable long-term biomarker of glaucoma. 

Patients with POAG exhibited lower levels of the antioxidants ascorbate and 

alpha tocopherol compared to OHT and healthy controls, suggesting oxidation 

inhibition. Dietary AGE intake was similar between healthy controls, OHT, NTG 

and POAG patients. 
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6.2 Background 

 
AGEs are known to accumulate in and around the ONH with the specific AGE 

pentosidine having been found in increased amounts in cribriform plates of the 

lamina cribrosa (203) and the specific AGE pyrraline being found in the sclera, 

pia matter, cribriform plates, optic nerve connective tissues and around the 

vessels in the optic nerve (204). It is hypothesised that AGE accumulation in and 

around the ONH may contribute to the mechanism of GON (204). Indeed, Tezel 

et al. (2007) measured the accumulation of the specific AGE CML in 

glaucomatous and age-matched control donor eyes, and found an increase in 

AGE and RAGE in those with glaucoma (20). The AGEs were primarily detected 

in the cribriform plates of the optic nerve head, while RAGE was seen on glial 

cells, mainly the Müller cells (20). It is thought that AGEs may be responsible for 

the reduced ability of the cribriform plates to withstand strain, increased rigidity of 

lamina cribrosa (20) and may also impair the ONH vasculature. The increased 

presence of AGEs in glaucomatous tissues and AGEs accumulation with age 

supports the accelerated ageing theory of glaucomatous optic neuropathy 

development (20).  

 

As well as accumulating in the ONH AGEs affect vascular function in the eye by 

creating crosslinks in the vessel wall collagen causing stiffening (136, 341, 342) 

and by creating an imbalance in ET-1 and NO (132, 133) promoting endothelial 

dysfunction. The cumulative effect is that accumulation of AGEs in blood vessels 

negatively affects vessel structure and function. This is relevant as compromised 

or variable supply of blood to the optic nerve head causes retinal ganglion cell 

death (255, 259). Blood flow regulation in GON has been widely researched 
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(260-263) and has been linked to increased severity of the disease (260, 261, 

264).  

 

To date, only a few studies have been able to explore the possibility that AGEs 

may be an underlying causative factor for GON. In addition to the study by Tezel 

et al. (2007), which used healthy control and glaucoma donor eyes (20), Moschos 

et al. (2017) measured two RAGE gene polymorphisms in POAG patients and 

healthy controls. The results showed that the gene and allele frequencies were 

not significantly different between the groups, suggesting that RAGE 

polymorphisms are not associated with POAG susceptibility (545). A study by 

Hondur et al. (2017) examined AGE levels in the serum of glaucoma patients and 

found AGE levels were higher than in control patients, however this study did not 

state the type of AGE measured by ELISA, hence this result should be viewed 

with caution (546). The other three studies examining AGE in glaucoma have 

used the AGE-reader (DiagnOptics B.V., Groningen, The Netherlands) to 

measure AGE level (SAF). A recent study by Schweitzer et al. (2018) measured 

SAF in 31 open angle glaucoma patients, and found that SAF level was higher in 

glaucoma patients than healthy controls (115). The other two studies were 

conducted by the same research group; the first examined patients with NTG and 

found that there was no significant difference in SAF levels between NTG and 

healthy controls, but did report that SAF was correlated with circumpapillary 

retinal nerve fibre layer thickness and visual field mean deviation (119). The 

second study similarly found no significant difference in SAF level between OAG 

patients and healthy controls (118). 
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It is known that a proportion of OHT participants are likely to develop POAG. The 

Ocular Hypertension Treatment Study (OHTS) recruited 1,636 participants and 

over a 5 year follow up found that 4.4% of the treated group and 9.5% of the 

observation group went on to develop POAG (547). Age is an independent risk 

factor for OHT participants developing glaucoma (548, 549). It is this link with 

ageing as well as the known links with glaucoma that makes AGE levels in OHT 

patients an area of interest. Indeed, in addition to this, OHT patients are 

interesting as a large proportion of them do not develop POAG. Understanding if 

AGEs are at similar levels or not to POAG may aid understanding as to why 

many OHT do not develop POAG.  

 

6.2.1 Aims 

To determine whether tissue bound and dietary AGE levels are elevated in early 

stage POAG and NTG in comparison to age-matched OHT patients and healthy 

controls. Oxidative stress levels will be compared as a possible influencing factor.   

 

6.2.2 Hypothesis 

Tissue bound AGE (SAF) level and dAGE intake will be higher in the glaucoma 

groups than OHT and control groups. Oxidative stress marker MDA will be 

higher, and antioxidants ascorbate and alpha tocopherol lower in glaucoma 

groups compared to OHT and control groups.  
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6.3 Methods 

The methodology used in this study is summarised here; more detailed 

information on the specifics of each technique can be found in Chapter 3. 

 

6.3.1 Participants  

Convenience sampling was used to recruit participants who were eligible 

according to the study’s inclusion and exclusion criteria, the inclusion criteria for 

participants are detailed in section 3.1.3, exclusion detailed in section 3.1.4. Due 

to the established link between diabetes and AGEs (449, 450) participants 

diagnosed with diabetes, and participants found to have a high fasting glucose 

level, were excluded from the study, as were current smokers, and previous 

smokers who quit less than 15 years ago due to the link between AGEs and 

tobacco (10). POAG, NTG and OHT participants were identified through their 

attendance at routine outpatient appointments at Derriford REI.  

6.3.2 General investigations  

As described in 3.3.2.1, height was measured in meters using a stadiometer, 

weight was measured in kg and from these measurements BMI was calculated. 

Weight, basal metabolic rate (BMR), and body fat percentage were measured 

using the Tanita body composition analyser (TBF-300 MA). Blood pressure was 

measured and a fasting venous blood sample was obtained to enable the 

measurement of oxidative stress biomarkers. Three oxidative stress biomarkers 

were used, the non-enzymatic antioxidants ascorbate (vitamin C) and alpha 

tocopherol (form of vitamin E) and the product of lipid peroxidation 

malondialdehyde (MDA). Each biomarker is described in Section 3.3.2.6. 
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Oxidative stress is linked with glaucoma and is thought to be a contributing factor 

to glaucomatous RGC death (306-309). RGCs are understood to be susceptible 

to oxidative stress due to their high oxygen consumption (312) and light exposure 

(313). MDA has been identified as one of the best circulating oxidative stress 

biomarkers and is commonly used in glaucoma research (550). Oxidative stress 

and AGEs accompany one another, AGE levels can be influenced by oxidative 

stress levels and vice versa. Previous chapters have assessed the AGE oxidative 

stress relationship in healthy controls, the results suggest that AGEs measured 

by SAF and the circulating oxidative stress biomarkers MDA, ascorbate and 

alpha tocopherol are not closely related. Although oxidative stress is not thought 

to be the primary influence on AGEs its contribution still needs to be considered. 

Each biomarker is described in Section 3.3.2.6 and method for analysis 

described in Appendix 6. 

 

6.3.3 Skin autofluorescence (SAF) 

The measurement of tissue-bound AGE levels was obtained using the AGE 

Reader (DiagnOptics B.V., Groningen, The Netherlands). The AGE Reader is a 

non-invasive device, which provides a low cost, fast, and reproducible means of 

determining AGE levels in the body through utilisation and measurement of the 

fluorescent properties of tissue-bound AGEs in the skin (21-23). Specific detail on 

the AGE reader and its protocol can be found in Chapter 3, section 3.3.2.4.  

 

6.3.4 Dietary AGE, semi-quantitative FFQ 

An assessment of dietary AGE intake over the last year was made using a semi-

quantitative FFQ that was designed specifically to assess dietary AGE levels in a 
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UK population for the purposes of this research. The FFQ design and delivery is 

discussed in Chapter 4. The FFQ was administered to all participants. The results 

from the FFQ were calculated with each of the databases described in Chapter 4.  

As explained previously in Section 4.3.1, use of all of the different AGE 

databases available in this study enabled the measurement of dietary intake of 

CEL and MG-H1 in addition to CML from the FFQ responses. It is important to 

note that CML, CEL and MG-H1 do not fluoresce (510), hence the FFQ 

measures different types of AGEs to the AGE-reader. 

 

6.3.5 Statistical analysis 

Statistical analysis was performed using SPSS version 24 (IBM). The normality of 

data was assessed by the Shapiro–Wilk test and visual inspection of the QQ 

plots.  P values of less than 0.05 were considered significant.  

 

6.3.5.1 General characteristics between groups 

Mann-Whitney U test was used to analyse the demographic data. An ANOVA 

was used to compare the results of general investigations, namely: gender, age, 

BMI, SBP, DBP, IOP, MABP and OPP between the four groups (POAG, NTG, 

OHT and HC).  

 

6.3.5.2 SAF, dAGE and oxidative stress between groups 

An ANOVA was used to compare the SAF level between groups, followed by the 

post-hoc analysis Scheffe. An ANOVA was then used to compare dAGE between 

groups and oxidative stress between groups.  
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Parameters identified as different between groups were entered into a correlation 

with SAF, to examine any possible relationship between SAF and oxidative 

stress. 

 

6.3.5.3 Power calculation 

The sample size was determined using data from previous research which also 

measured tissue-bound AGE level using AGE Reader between healthy and 

disease groups (83). In order to achieve 80% power at the 5% alpha level a 

sample size of 37 per group was required (NTG, POAG, OHT and controls). To 

account for unusable data an allowance was made and a sample size of 40 

participants was chosen per group. 

 

6.4 Results  
 

A total of 32 POAG, 12 NTG, 16 OHT and 33 healthy control participants were 

recruited and eligible for the study. These recruitment numbers are below 

intended target; this was due to recruitment difficulties of finding participants that 

met the strict inclusion criteria. Post-hoc power calculation using G*Power 3 

programme (Heinrich-Heine, Universität Düsseldorf) revealed a 66% power at a 

5% alpha level. The number of participants recruited were sufficient to obtain 

significant results.  
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6.4.1 Group characteristics 

There were no significant differences in age, BMI, systemic blood pressure, IOP, 

MABP and OPP between the four groups (p > 0.05). The characteristics of the 

participant group with mean and standard deviation are detailed in Table 6.1. It 

was expected that there would not be a significant difference in IOP between the 

groups since the OHT, POAG and NTG patients were all taking their prescribed 

IOP lowering treatment as normal. There was no significant difference between 

the NTG and POAG group’s visual field mean deviation. 

 

Table 6.1: Summary of mean and standard deviation of participant characteristics for the study 

groups. P<0.05 is considered a significant difference. BMI: body mass index, SBP: systolic blood 

pressure, DBP: diastolic blood pressure, IOP: intraocular pressure, MABP: mean arterial blood 

pressure, OPP: ocular perfusion pressure, was subsequently calculated using MABP and IOP 

values, MD: mean deviation from visual field data collected from REI appointment, OHT MD 

added for reference in brackets.  

 

 

 

Variable HC OHT NTG POAG ANOVA 

p value 

N 33 16 12 32  

Gender  F:22 M:11 F:7 M:9 F:5 M:7 F:14 M:18  

Age (years) 65.97 ±9.43 65.94 ±8.10 72.17 ±7.16 67.72 ±7.398 0.146 

BMI 25.62 ±3.36 26.48 ±4.58 26.60 ±4.39 26.26 ±4.32 0.844 

SBP (mmHg) 134.82 ±16.93 139.56 ±16.84 140.17 ±17.35 140.00 ±19.16 0.625 

DBP (mmHg) 80.67 ±10.17 85.38 ±9.28 81.33 ±9.56 84.91 ±9.56 0.252 

IOP (mmHg) 16.39 ±2.72 18.00 ±3.16 14.83 ±3.16 16.71 ±3.93 0.099 

MABP (mmHg) 98.72 ±11.11 103.44 ±10.68 100.94 ±10.79 103.27 ±11.38 0.340 

OPP 49.63 ±7.91 50.96 ±9.16 52.46 ±7.07 52.17 ±9.36 0.623 

MD (dB)  (-0.19 ±0.95) -3.62 ±1.32 -3.95 ±1.72  
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6.4.2 SAF  

A significant difference was found between groups with regard to SAF (p = 0.005, 

Table 6.2). Post-hoc testing found SAF to be significantly higher in the POAG and 

NTG patients than in healthy controls (POAG p = 0.018, NTG p = 0.05).  SAF 

level in the OHT patients was not significantly different to healthy controls or to 

the glaucoma groups (p>0.05).   

 

Table 6.2: Difference in mean SAF between groups. SAF: Skin autofluorescence, AU: arbitrary 

units. P<0.05 is considered significant.  

 

 

6.4.3 Dietary AGE  

No significant differences were found between groups with regard to any of the 

dAGE values calculated using FFQ responses (p > 0.05, Table 6.3). In addition, 

no significant relationships were present between the dAGE calculated for each 

database with SAF for each group (p = >0.05) 

 

 

 

 

 

 

 

 HC (1) OHT (2) NTG (3) POAG 
(4) 

ANOVA  
p value 

Post-hoc 

SAF 
(AU) 

2.19 ±0.39 2.44 ±0.42 2.6 ±0.39 2.54 ±0.45 0.005 3, 4 > 1 
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Table 6.3: Difference in mean dAGE between groups (± standard deviation). dAGE: dietary 

advanced glycation end-products. P<0.05 is considered a significant difference. Uribarri CML 

(average CML kU/day), Hull CML (average mg CML/day), Scheijen CML (average mg CML/day), 

Scheijen CEL (average mg CEL/day)m Scheijen MG-H1 (average mg MG-H1/day).  

 

 
6.4.4 Oxidative stress biomarkers  

A significant difference was found between groups with each of the oxidative 

stress biomarkers measured (see Table 6.4). Post-hoc testing found the 

antioxidant ascorbate to be significantly lower in POAG compared to all other 

groups. In addition, post-hoc testing found that alpha tocopherol was lower in the 

POAG group compared to HC and OHT groups, and not significantly different to 

NTG. The ANOVA showed a significant difference in MDA between the groups, 

however the post-hoc tests did not confirm this, with the tests between groups not 

significant (p > 0.05). 

 HC OHT NTG POAG ANOVA 

p value 

Uribarri 

CML  

18560 ±6672 19485 ±5963 19899 ±6849 22837 ±15733 0.430 

Hull CML  5.66 ±1.61 6.72 ±2.05 6.13 ±1.83 6.45 ±1.99 0.213 

Scheijen 

CML  

4.03 ±1.53 4.07 ±2.05 3.23 ±0.65 3.69 ±1.17 0.330 

Scheijen 

CEL  

3.03 ±0.89 2.99 ±1.04 2.98 ±0.83 3.12 ±0.91 0.954 

Scheijen 

MG-H1  

30.52 ±9.45 30.86 ±12.91 27.72 ±6.40 32.83 ±10.24 0.497 
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Table 6.4: Difference in mean oxidative stress biomarker levels between groups (± standard 

deviation). P<0.05 is considered a significant difference. Ascorbate (uM), MDA (uM), Alpha 

tocopherol (umol/L). 

 

Pearson’s correlation between SAF and ascorbate in the POAG group (r = -

0.130, p = 0.226, 95% bootstrap confidence interval -0.336 to 0.087), and 

between SAF and alpha tocopherol in the POAG and NTG groups (r = 0.149, p = 

0.163, 95% bootstrap confidence interval -0.064 to 0.351) were not statistically 

significant. Hence, there was no significant relationship between reduced levels 

of antioxidants and SAF.  

 

6.5 Discussion  

The aim of this study was to determine if both tissue-bound AGE levels (SAF) 

and dAGE were different in POAG, NTG, OHT and healthy control participants. 

Oxidative stress was also assessed due to the known links with AGEs and 

glaucoma. It is thought that this is the first study to examine dAGE and tissue-

bound AGE (SAF) levels in OHT, NTG, POAG patients in conjunction with each 

other.  

 

 

 HC (1) OHT (2) NTG (3) POAG (4) ANOVA 

p value 

Post-

hoc 

Ascorbate  54.14 

±18.44 

62.69 

±11.37 

52.81 

±11.85 

30.83 

±10.85 

<0.001 4 < 1,2,3 

MDA  6.43  

±1.85 

7.88 

±2.75 

5.36 

±1.16 

6.09 

±2.73 

  0.034  

Alpha 

tocopherol  

42.31 

±15.98 

41.66 

±6.46 

37.85 

±5.36 

29.44 

±8.91 

<0.001 4 < 1,2 
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6.5.1 SAF  

POAG and NTG patients were found to have a significantly higher SAF level 

compared to healthy controls. These results are in agreement with the previously 

published study by Schweitzer et al. (2018) which found SAF was higher in OAG 

patients that controls (115), and also agrees with the Tezel et al. (2007) which 

found accumulation of the AGE CML and RAGE in glaucomatous compared to 

control donor eyes (20). The result of the study does differ to the two studies by 

Himori et al., in which SAF was not significantly different between OAG patients 

and healthy controls (118, 119). The results of the Himori et al. studies may have 

been impacted by the inclusion of participants with diabetes in the healthy control 

group.  

 

This study recruited OHT patients in addition to glaucoma patients. Interestingly 

the mean SAF level for OHT patients was above healthy control levels and below 

both glaucoma groups. This result does to some extent match what is known 

about OHT patients in that they do not have a signs of pathology, yet are at 

increased risk of ONH damage compared to healthy individuals. A long-term 

follow-up study would aid understanding as to if SAF is linked with OHT patients 

progression to glaucoma.  

 

Although there are many similarities between NTG and POAG it is thought that 

there are differing levels of vascular and mechanical involvement (551). Although 

vascular dysregulation has been identified in individuals with POAG, it is not 

traditionally considered a primary cause, as opposed to in NTG, where it is 

thought to be a more significant part of glaucomatous development and 
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progression (552, 553). On the other hand, IOP, is not considered a primary 

causative factor in NTG (554), but is strongly linked with the mechanical theory of 

POAG development, with higher IOP associated with POAG development and 

progression (552, 555, 556). In more recent years, rather than segregating POAG 

and NTG, it has been proposed that open angle glaucoma should be thought of 

as a disease continuum (242, 244), with the relative influences of mechanical and 

vascular factors varying on an individual basis. Indeed, it has previously been 

shown that both early stage POAG and early stage NTG patients can have 

similar ocular and systemic circulation altercations (243). The results of this study 

found that both NTG and POAG patients had a significantly higher SAF 

compared to healthy controls. In addition the SAF result between NTG and 

POAG was not statistically different to one another.  

 

In a similar manner to OAG disease continuum theory it may be that the extent to 

which AGEs affect the different structures related to mechanical involvement and 

vascular function differs in different patients. It may also be that AGEs equally 

affect mechanical and vascular function and are hence a factor in both POAG 

and NTG pathogenesis. Since SAF is raised in both POAG and NTG a reduction 

in AGE level would likely be beneficial for both forms of OAG.  

 

6.5.2 Dietary AGE  

There was no difference in dAGE intake between the groups. This was the case 

for each of the dAGEs calculated using FFQ responses with each of the different 

AGE databases available. This result indicates that the patients diagnosed with 

glaucoma recruited for this study had a similar dAGE intake to healthy controls, 
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suggesting that dAGE intake is not a causative factor in glaucoma onset. It 

should however be noted that this estimation of dAGE is a short-term indicator as 

the FFQ estimates intake over the previous 12 months. Current dAGE research is 

focused on only short-term effects (54) as this is what is feasible to measure with 

dietary recall methods (425). It could however be that a sustained high diet of 

dAGE over many years could have an influence, or could contribute in part to 

elevated tissue bound AGE levels. Further research is required to understand if 

long-term restriction of dAGE is in anyway beneficial.  

 

6.5.3 Oxidative stress 

The antioxidant alpha tocopherol was found to be at reduced levels in POAG 

patients compared to HC and OHT in this study. Furthermore, levels of the 

antioxidant ascorbate were found to be reduced in POAG compared to all other 

groups. This reduced antioxidant level agrees with the findings of Gherghel et al. 

(2005) who found that the antioxidant glutathione was reduced in POAG 

compared to healthy controls (323). The reduced levels of circulating ascorbate 

and alpha tocopherol may be due to a higher rate of oxidative reactions, however 

if this was the case it would be expected that levels of the oxidant MDA would be 

increased. MDA has been used in multiple glaucoma studies to measure 

oxidative stress (550). It was expected that MDA levels would be significantly 

higher in the glaucoma groups compared to OHT and healthy controls based on 

previous literature, however this was not the case. The lack of result with MDA 

could be related to a difference in glaucoma severity between this study and 

previous POAG MDA studies, as this study only included patients with early 

stage glaucoma. This notion could not be verified as the previous studies 
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measuring circulating levels of MDA in POAG have not specified how 

advanced/the progression of POAG in their participants. Each did however state 

that having glaucomatous visual field loss was part of the inclusion criteria (108, 

557-559).  

 

The lack of correlation between reduced antioxidant levels and SAF supports the 

conclusion of Chapter 5 that AGEs measured by SAF are not closely related to 

circulating oxidative stress biomarkers. This suggests that a higher SAF in 

glaucoma patients may be independent of oxidative stress levels.  

 

6.6 Conclusion  

SAF was significantly higher in patients with NTG and POAG compared to 

healthy controls. This finding adds to the evidence that SAF, as an accessible 

measure, may be a suitable long-term biomarker of glaucoma. Understanding if 

AGEs influence vascular parameters more than structural parameters of tissues 

is not yet established. Dietary AGE intake was similar between healthy controls, 

OHT, NTG and POAG patients. Patients with POAG exhibited lower levels of the 

antioxidants ascorbate and alpha tocopherol compared to OHT and healthy 

controls, suggesting oxidation inhibition. There was however no increased level 

of MDA. 

 

 6.7 Limitations  

The sample size recruited was lower than the target sample size, this potentially 

limits the conclusions drawn from this study. The challenge with recruitment of 

early stage glaucoma participants and OHT participants was due to the strict 
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inclusion/exclusion criteria. These criteria however were necessary to avoid any 

other influences on AGE level, e.g. if smokers were included this may have 

masked any other relationships. In addition the recruitment between glaucoma 

groups was not even, with fewer NTG patients recruited. The number recruited 

participants however was able to provide statistically significant results.  

 

6.8 Future work 

To assess if baseline AGE (SAF) levels are associated with an increased rate of 

progression in NTG and POAG patients. In addition, to determine whether SAF 

levels are associated with OHT progression to develop POAG.  

To assess if long-term restriction of dAGE is beneficial in terms of glaucoma 

progression. 
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7. The relationship between tissue-bound AGE levels (SAF), 

retinal vessel structure and function and corneal 

viscoelastic properties in a healthy ageing population 

 

7.1 Abstract 

Purpose: To determine how SAF is associated with static and dynamic retinal 

vessel parameters as well as corneal viscoelasticity, in a healthy ageing 

population.  

 

Methods: Skin autofluorescence (SAF) as a measurement of tissue-bound AGE 

level was measured in 60 healthy participants and compared to dynamic and 

static vessel parameters measured by the Dynamic Retinal Vessel Analyser 

(DVA; IMEDOS GmbH, Jena, Germany) and corneal viscoelasticity measured by 

the Corvis ST (Oculus; Optikgeräte GmbH, Wetzlar, Germany). A fasting venous 

blood sample was obtained to enable the measurement of oxidative stress 

biomarkers. 

 

Results: Central retinal artery equivalent diameter (CRAE) was found to be 

negatively associated with SAF (r = -0.313, p = 0.015, 95% CI -0.077 to -0.512) 

and positively associated with circulating levels of the antioxidant ascorbate (r = 

0.258, p = 0.048, 95% CI 0.004 to 0.473). This association was further assessed 

with forwards and backwards multiple regression analysis, the independent 

variables included were CRAE, age, ascorbate, BMI, BMR and MG-H1. The 

model revealed that age (p = <0.001), BMI (p = 0.010) and CRAE (p = 0.015) 

were significantly associated with SAF. These findings were also found to be true 
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in the backwards model. No statistically significant relationships existed between 

SAF and dynamic retinal parameters or corneal viscoelastic parameters. 

 

Conclusion: Higher levels of tissue-bound AGE (SAF) are associated with 

narrower retinal arteries in a healthy population. This finding adds to the evidence 

that AGEs are an accessible marker of vascular health. Increased levels of 

ascorbate were associated with wider retinal arteries, this supports the notion that 

diet derived antioxidants may have a protective effect. In this healthy population 

SAF was not found to be associated with dynamic vessel parameters or corneal 

viscoelastic parameters.  
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7.2 Background 

 

In the eye the earliest signs of age-related change are often alterations in 

structure and function of the transparent structures, such as the lens and cornea 

(158, 560-562) and the microvascular blood supply to the retina and optic nerve 

(563-566). These age-related changes have been linked to a number of disease 

states (562, 565, 566). Determining whether AGE levels are influencing the 

structure and function of these components of the eye will be a focus of this 

study. The relationship between ageing, AGEs and cataract formation in the lens 

is well established (see Section 1.11.5), and will not be discussed in this Chapter 

(7, 81, 84, 170, 171). In the cornea it is known that there is an increase AGEs in 

the stroma with increased age (158), and it is thought that the modification to 

collagen contributes to the reduced flexibility seen with age (159, 160). 

Accumulation of AGEs has been shown to disturb the structure of blood vessels 

by altering the extra-cellular matrix and blood vessel function via the AGE-RAGE 

reaction (13, 138, 142, 207, 342). Altered retinal vessel structure and function 

has previously been linked to a number of ocular and systemic disease states, 

including cardiovascular disease, Alzheimer’s disease, diabetes, obesity, 

hypertension, hyperlipidaemia, AMD and glaucoma  (243, 368-370). 

 

There are no previous studies that have explored whether tissue-bound AGE 

levels are directly associated with retinal vessel structure and function. 

Establishing this relationship across a healthy ageing population is the first step 

to increasing our understanding of the impact that AGE accumulation in tissues 

may be having on the microvasculature and hence the potential contribution it 
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could make to the pathogenesis of diseases with a vascular origin. The potential 

association between AGEs and vascular function is important as altered retinal 

vascular function has been linked with ocular pathology (140, 281).   

 

The Dynamic Retinal Vessel Analyser (DVA; IMEDOS GmbH, Jena, Germany) 

has been used as a measure of retinal microvascular function in both healthy 

ageing and ocular and systemic disease research (243, 368-370). The DVA uses 

luminance flicker light to instigate vessel response and assess dynamic retinal 

vessel function (376). In a normal healthy person this heightened metabolic 

demand causes the retinal endothelium to release additional NO, resulting in 

vasodilation and consequently increased blood flow (379) (see Section 3.3.2.2). 

A failure to observe this vasodilation response has been linked to the presence of 

vascular endothelial dysfunction (304) or perhaps to an increase in vascular 

stiffness (342).  

 

Although the association between AGE level and retinal vessel structure and 

function has not previously been explored there are a number of studies that 

have linked AGEs to alterations in blood vessel structure and function at the 

systemic level. AGEs and the AGE-RAGE interaction for example has been 

shown to cause an increase in ET-1 levels (132) and reduced bioavailability and 

activity of NO (133), with the overall effect of vasoconstriction and a disturbance 

in the regulatory function of the endothelium. Furthermore, the AGE-RAGE 

interaction has been linked to endothelial cell hyperpermeability which can 

eventually lead to impairment of the blood-retinal barrier (567). In addition, as 

explained in Section 1.5, AGEs have also been shown to cause direct damage to 
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the systemic vasculature by forming covalent cross-links in the long-lived proteins 

of extracellular matrix, such as collagen and elastin in blood vessels (74, 568). 

These AGE induced cross-links alter the mechanical properties of the protein, 

resulting in increased vessel stiffness, increased vessel wall thickness, increased 

rigidity and reduced elasticity (38, 71, 72, 75, 136). Finally, a study by Yoshioka 

(2018) examined the maximum intima–media thickness (IMT) of the carotid artery 

in diabetic participants and found that increased SAF was associated with 

increased IMT (569). All of these findings indicate that AGE accumulation has the 

potential to influence blood vessel structure and the ability of blood vessels to 

regulate blood flow to ensure supply meets demand, with the potential effect of 

putting tissues at risk of ischaemic-hypoxic damage (570, 571).  

 

As previously mentioned it has been shown that there is an increase in AGEs in 

the corneal stroma with increased age (2). There are however no previous 

studies that have explored whether AGE levels are directly associated with 

corneal viscoelasticity. A recent study by Bekmez and Kocaturk (2018) used the 

ORA to measure corneal biomechanics in diabetic patients and healthy controls 

and found that mean corneal hysteresis was lower in diabetic patients than 

healthy controls. They go on to explain that “We do not know ‘how and why’ 

diabetes affects corneal biomechanical measurements. It may be related to 

glucose level or something else possibly affecting the elasticity or viscosity of the 

cornea.” (572). Since AGE levels are known to be increased in diabetic patients 

(69, 573) it may be that increased an AGE level is altering corneal mechanical 

properties.  
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We hypothesise that AGEs may be a contributing factor to the reduced corneal 

viscoelasticity seen with age and that in individuals with elevated AGE levels, this 

age-related reduction in viscoelasticity could occur at an accelerated rate. 

Establishing this relationship across a healthy ageing population is the first step 

to increasing our understanding of the impact that AGE accumulation may be 

having and the potential contribution to the pathogenesis of diseases. The 

viscoelastic biomechanics of the cornea has been linked with glaucoma (337, 

574). In addition, it has previously been suggested by Kotecha et al. (2007) that 

the biomechanical properties of the cornea may indicate overall globe mechanics, 

indicating stiffness of structures that cannot easily be measured (156).  

 

7.2.1 Aims 

To determine how tissue-bound AGE levels are associated with static and 

dynamic retinal vessel parameters and corneal viscoelasticity in a healthy ageing 

population.   

 

7.2.2 Hypothesis 

Retinal microvasculature structure and function will be associated with tissue-

bound AGE levels (SAF), with increased SAF having a negative impact on the 

microvasculature. Corneal viscoelasticity will be related to AGEs, with an 

increased AGE level resulting in reduced elasticity.  
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7.3 Methods 

The methodology that will be used in this study is summarised here; more 

detailed information on the specifics of each technique can be found in Chapter 

3. 

 

7.3.1 Participants  

Convenience sampling was used to recruit participants who were eligible 

according to the inclusion and exclusion criteria for healthy ageing participants as 

detailed in section 3.1.3. and section 3.1.4. Due to the established link between 

diabetes and AGEs (449, 450) participants diagnosed with diabetes or 

participants found to have a high fasting glucose level were excluded from the 

study, as were current smokers, and previous smokers who quit less than 15 

years ago due to the link between AGEs and tobacco (10).  

 

A total of 71 participants were recruited, 60 of which were eligible for the study. 

One participant was excluded due to a diagnosis of arrhythmia between 

recruitment and study appointment. A second was excluded due to them 

revealing that although they quit smoking tobacco 15 years ago they continue to 

smoke non-tobacco products. A third participant was excluded due to use of fake 

tanning agent. As explained in section 3.3.2.2.3, the DVA raw data was assessed 

for quality. A further eight participants were excluded due to DVA cycles not 

meeting the quality criteria.  
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7.3.2 General investigations  

Participant’s eyes were examined with visual acuity recorded as well as a slit 

lamp exam: anterior eye health examined, angles graded with Van Herick 

technique and posterior pole assessed.  Proxymetacaine 0.5% drops were 

inserted, Goldmann tonometry performed and tropicamide 0.5% drops inserted 

for pupil dilation. 

 

As described in 3.3.2.1, height was measured in meters using a stadiometer, 

weight was measured in kg and from these measurements BMI was calculated. 

Weight, basal metabolic rate (BMR), and body fat percentage were measured 

using the Tanita body composition analyser (TBF-300 MA). Blood pressure was 

measured and a fasting venous blood sample was obtained to enable the 

measurement of oxidative stress biomarkers.  

 

In Chapter 5 the relationship between tissue-bound AGEs and oxidative stress 

was examined. The results suggested that tissue-bound AGEs and the circulating 

oxidative stress biomarkers used in this study cannot be used interchangeably, 

although there is clear evidence from the literature that AGEs and oxidative 

stress have a complex relationship and therefore it was decided that for this study 

oxidative stress markers would also be considered. Three oxidative stress 

biomarkers were used: ascorbate, MDA and alpha tocopherol. Each biomarker is 

described in section 3.3.2.6. Oxidative stress markers were measured due to 

their known associations with AGEs. 
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7.3.3 Dynamic Retinal Vessel Analyser (DVA) 

The Dynamic Retinal Vessel Analyser (DVA; IMEDOS GmbH, Jena, Germany) 

was used to assess both dynamic and static retinal vessel function. It is a non-

invasive device, with high reproducibility (373) and low variability (374). Specific 

detail on the DVA and its protocol for both dynamic and static measurements can 

be found in Section 3.3.2.2.  

 

The dynamic parameters calculated from the raw data included: baseline 

diameter fluctuation (BDF), dilation amplitude (DA), baseline corrected flicker 

response (BFR), maximum percentage dilation (MD%), reaction time (RT), 

minimum percentage constriction (MC%), constriction time (CT) for artery and 

vein. For full list of descriptions of these parameters see Table 3.4 in Section 

3.3.2.2. Particpants were asked to maintain normal eating habits before DVA 

measurement as fasting can cause abnormal vascular activity (385).  

 

The VesselMap2 software (ImedosSystems, Jena, Germany) was used to enable 

the retinal vasculature structure to be examined and evaluated (393). The static 

VesselMap2 software calculates central retinal artery equivalent (CRAE) and 

central retinal vein equivalent (CRVE) using the disc centred red-free fundus 

photograph and manually selected vessels, described in Section 3.3.2.2.  

 

7.3.4 Corvis ST 

The viscoelastic properties of the cornea were assessed using the Corvis ST 

(Oculus; Optikgeräte GmbH, Wetzlar, Germany). The Corvis ST is a noncontact 

tonometry system, for specific detail see Section 3.3.2.3. The parameters used: 
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first applanation time, second applanation time, velocity of corneal surface 

movement at the first applanation, velocity of corneal surface movement at 

second applanation, deformation amplitude at first applanation, deformation 

amplitude at second applanation, highest deformation amplitude, corneal highest 

concavity and highest concavity time. Corvis measurements were taken for each 

eye of each participant.  

 

7.3.5 Skin autofluorescence (SAF) 

The measurement of tissue-bound AGE levels was obtained using the AGE 

Reader (DiagnOptics B.V., Groningen, The Netherlands). The AGE Reader is a 

non-invasive device, which provides a low cost, fast, and reproducible means of 

determining AGE levels in the body through utilisation and measurement of the 

fluorescent properties of tissue-bound AGEs in the skin (21-23). Specific detail on 

the AGE reader and its protocol can be found in Section 3.3.2.4. 

 

7.3.6 Dietary AGE, semi-quantitative FFQ 

An assessment of dietary AGE intake over the last year was made using a semi-

quantitative FFQ that was designed specifically to assess dietary AGE levels in a 

UK population for the purposes of this research. The FFQ design and delivery is 

discussed in Chapter 4. The FFQ was administered to all participants. The results 

from the FFQ were calculated with each of the databases described in Chapter 4.  

The results of Chapter 5 suggested that the contribution of dietary AGE to tissue-

bound AGE levels is minimal, and that further investigation is required to 

understand which, if any, types of AGEs are impacting tissue-bound levels. MG-
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H1 appears to be the dAGE most likely to impact tissue-bound AGE levels, for 

this reason MG-H1 was the dAGE included in this study. 

 

7.3.7 Statistical analysis 

Statistical analysis was performed using SPSS version 24 (IBM). The normality of 

data was assessed by the Shapiro–Wilk test and visual inspection of the QQ 

plots. P values of less than 0.05 were considered significant. 

Mann-Whitney U test was used to check for differences in categorical data.   

 

7.3.7.1 Relationship between retinal vessel structure and function parameters 

and SAF  

Spearman’s rank correlation was used to analyse the association between each 

dynamic retinal vessel parameter, namely: BDF, DA, BFR, MD%, RT, MC% and 

CT for artery and vein with SAF.   

Spearman’s rank correlation was used to analyse the association between each 

structural static retinal vessel parameter, namely: CRAE and CRVE with SAF. 

 

Parameters found to correlate with SAF were entered into a stepwise forward and 

backward multiple linear regression was used to further assess the influence of 

different variables on SAF. Age and BMI were included in the multiple regression 

since in Chapter 5 it was found they influence SAF, the dAGE MG-H1 as a 

possible relevant form of dAGE. Due to oxidative stress having previously been 

shown to be both a cause and an effect of increased AGE formation (see Section 

1.7) oxidative stress biomarkers were also included in the multiple linear 

regression.  
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7.3.7.2 Relationship between corneal viscoelasticity and SAF 

Spearman’s rank correlation was used to analyse the association between each 

corneal parameter, namely: first and second applanation time, velocity of corneal 

surface movement at the first and second applanation, deformation amplitude at 

first and second applanation, highest deformation amplitude and time of highest 

concavity with SAF.  

 

7.3.7.3 Power Calculation 

Sample size was determined using G*Power 3 programme (Heinrich-Heine, 

Universität Düsseldorf). In order to achieve 80% power at the 5% alpha level with 

a medium effect size of 0.3, 64 participants would be required. To account for 

unusable data an allowance was made and a sample size of 71 participants was 

chosen. 
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7.4 Results  

All 60 eligible participants were free of acute or chronic diseases, including 

diabetes, with the exception of controlled hypertension. The characteristics of the 

participant group with mean and standard deviation are detailed in Table 7.1.  

Collectively the participants blood pressure fell within normal limits, as described 

by the World Health Organisation & International Society of Hypertension 

guidelines (SBP: 120-129, DBP: 80-84) (575). The group were overweight, with a 

mean BMI of 26 ± 4 kg/m2.   

 

 

Table 7.1: Mean and standard deviation of participant group characteristics. AU: arbitrary units.  

 

 

 

 

 

Variable Mean  ± SD 

Gender (n)  Male 

                    Female 

17 

43 

Age (years) 60.02 ± 8.86 

Body mass index (BMI) 26.29 ± 4.84 

Systolic blood pressure (SBP) (mmHg) 129.12 ± 17.23 

Diastolic blood pressure (DBP) (mmHg) 80.57 ± 10.28 

Mean arterial blood pressure (MABP) 96.75 ± 11.27 

Intraocular pressure (IOP) (mmHg) 15.70 ± 3.21 

Ocular perfusion pressure (OPP) 48.79 ± 7.79 

Skin autofluorescence (SAF) (AU) 2.22 ± 0.36 

Ascorbate (μM) 51.41 ± 18.31 

Malondialdehyde (MDA) (μM) 6.23 ± 1.91 

Alpha tocopherol (µM) 43.12 ± 16.10 
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7.4.1 Dynamic retinal vessel analysis 

No statistically significant correlations were found between any of the dynamic 

retinal vessel parameters (artery and vein) and SAF as shown in Table’s 7.2 and 

7.3. 

 

 

 

Table 7.2: Artery dynamic parameters, mean, standard deviation and spearman’s correlation with 

SAF. AU: arbitrary units, BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: 

baseline corrected flicker response, MD%: maximum percentage dilation, RT: reaction time, 

MC%: minimum percentage constriction, CT: constriction time.  

 

 

 

 

 

 

 

 

 

Artery  

 

Mean Standard 

deviation 

Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

BDF 2.32 ± 1.21  0.007,  p = 0.956 

DA 4.51 ± 3.20 0.144,  p = 0.272 

BFR 2.24 ± 2.50 0.165,  p = 0.207  

MD % 2.89 ± 2.27 0.131,  p = 0.319 

RT (secs) 15.31 ± 5.41 -0.033,  p = 0.803 

MC % 1.61 ± 1.63 0.123,  p = 0.349 

CT (secs) 22.85 ± 7.82 0.215,  p = 0.098 
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Table 7.3: Vein dynamic parameters, mean, standard deviation and spearman’s correlation with 

SAF. AU: arbitrary units, BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: 

baseline corrected flicker response, MD%: maximum percentage dilation, RT: reaction time, 

MC%: minimum percentage constriction, CT: constriction time.  

 

 

7.4.2 Static retinal vessel analysis 

Table 7.4 shows the mean, standard deviation of the static retinal parameters. 

Spearman’s rank correlation showed a negative relationship between SAF and 

CRAE (r = -0.313, p = 0.015, 95% bootstrap confidence interval -0.077 to -0.512), 

Figure 7.1. There was no statistically significant association between CRVE and 

SAF (r = 0.061, p = 0.641, 95% bootstrap confidence interval -0.204 to 0.302). 

 

 

 

 

 

Vein 

 

Mean Standard 

deviation 

Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

BDF 2.34 ± 1.51 -0.140,  p = 0.287 

DA 5.55 ± 2.81 -0.075,  p = 0.570 

BFR 3.21 ± 1.87 0.008,  p = 0.950  

MD % 4.57 ± 2.11 -0.098,  p = 0.458 

RT (secs) 18.47 ± 3.07 -0.004,  p = 0.978 

MC % 0.991 ± 1.26 0.015,  p = 0.912 

CT (secs) 31.07 ± 7.31 -0.147,  p = 0.262 
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Table 7.4: Static vessel parameters, mean, standard deviation and Spearman’s correlation with 

SAF. AU: arbitrary units, CRAE: central retinal artery equivalent, CRVE: central retinal vein 

equivalent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Relationship between Skin autofluorescence (SAF) (AU) and central retinal artery 

equivalent (CRAE) (MU) (n = 60, r = -0.313, p = 0.015, 95% CI -0.077 to -0.512). 

Static 

 

Mean Standard 

deviation 

Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

CRAE 180.95 ± 18.36 -0.313,  p = 0.015 

CRVE 210.80 ± 17.57 0.061,  p = 0.641 
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Spearman’s rank correlation also showed a positive relationship between CRAE 

and ascorbate (r = 0.258, p = 0.048, 95% bootstrap confidence interval 0.004 to 

0.473), Figure 7.2, there was no statistically significant association between 

ascorbate and CRVE (r = 0.123, p = 0.354, 95% bootstrap confidence interval -

0.145 to 0.364). There and no association between static vascular parameters 

and MDA or alpha tocopherol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Relationship between Ascorbate (µM) and central retinal artery equivalent (CRAE) 

(MU)   (n = 60, r = 0.123, p = 0.354, 95% CI -0.145 to 0.364). 
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The association between SAF and CRAE was further assessed with forwards 

and backwards multiple regression analysis, the independent variables included 

were CRAE, age, ascorbate, BMI, BMR and MG-H1. The model revealed that 

age (p = <0.001), BMI (p = 0.010) and CRAE (p = 0.015) were significantly 

associated to SAF. These findings were also found to be true in the backwards 

model.   

 

7.4.3 Corvis ST analysis 

Spearman’s Rank revealed no statistically significant correlations between any of 

the corneal parameters and SAF, as shown in Table 7.5. 
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Table 7.5: Corneal viscoelastic parameters, mean, standard deviation and spearman’s correlation 

with SAF. AU: arbitrary units, Time A1: first applanation time, Time A2: second applanation time, 

Velocity A1: velocity of corneal surface movement at the first applanation, Velocity A2: velocity of 

corneal surface movement at second applanation, Deformation amp. A1: deformation amplitude 

at first applanation, Deformation amp. A2: deformation amplitude at second applanation, Highest 

deformation amp: highest deformation amplitude.  

 

 

 

 

 

 

 

Corneal 
parameters 

 

Mean Standard 

deviation 

Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

Time A1 (ms) 7.33 ± 0.31 0.140,  p = 0.394 

Time A2 (ms) 21.83 ± 0.45 -0.105,  p = 0.526 

Velocity A1 (m/s) 0.15 ± 0.02 -0.227,  p = 0.165  

Velocity A2 (m/s) -0.27 ± 0.03 0.290,  p = 0.074 

Deformation amp. 
A1 (mm) 

0.13 ± 0.13 0.033,  p = 0.840 

Deformation amp. 
A2 (mm) 

0.44 ± 0.44 0.113,  p = 0.492 

Highest 
deformation amp. 
(mm) 

1.09 ± 0.10 -0.265,  p = 0.103 

Highest 
concavity time 
(ms) 

16.47 ± 0.50 0.012,  p = 0.942 
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7.5 Discussion  

The aim of this study was to determine if SAF is associated with static and 

dynamic retinal vessel parameters and corneal viscoelasticity in a healthy ageing 

population. It is thought that this is the first study to compare SAF levels with 

these retinal vessel and corneal parameters in a healthy ageing population.   

 

7.5.1 Relationship between retinal vessel structure and function and SAF  

Higher SAF levels were found to be associated with narrower retinal arteries in 

this healthy ageing population. Narrowing of microvascular arteries is part of the 

normal ageing process (576), but the influence of tissue-bound AGE (SAF) levels 

on this finding has not been previously explored. At the macrovascular level 

however, increased SAF has been associated with increased maximum IMT of 

the carotid artery in diabetic patients (569). It is thought that the microvasculature 

is affected earlier than the macrovasculature (304, 577), hence SAF may be 

associated with IMT of retinal vessels. AGEs are known to increase cross-links in 

the proteins of the extra-cellular matrix of blood vessels (74, 136, 568). This 

accumulation may contribute to thickening of the inner layers of the artery wall 

and could be a possible explanation for why a narrower CRAE was associated 

with SAF. It is worth noting that changes to retinal vessels are likely to be 

multifactorial, and although this study has identified a relationship between SAF 

and CRAE it cannot ascertain if AGEs are indeed a causative factor in retinal 

artery narrowing.  

 

An increase in CRVE has been associated with obesity, dyslipidaemia and 

markers of vascular endothelial dysfunction (398, 402). As the AGE-RAGE 
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interaction disrupts endothelial function (132, 133), it was hypothesised that 

increased SAF level may be related to increased CRVE. However in contrast to 

CRAE, no statistically significant relationship was found between CRVE and SAF. 

This could be related to structural component differences between arteries and 

veins, whereby arteries have a thicker tunica media and increased collagen and 

elastin in comparison to veins, since they have more extracellular matrix (578). 

As explained previously AGEs form covalent cross-links in the collagen and 

elastin of the extracellular matrix (74, 568). The structure of the arteries may 

therefore be more susceptible to AGE crosslinking than the vein (216).  

 

A positive correlation was found in this study between the antioxidant ascorbate 

and CRAE, suggesting that lower antioxidant levels are associated with narrower 

retinal artery diameters. An increased ascorbate level suggests that ascorbate 

has not had to scavenge free radicals, hence there is not an environment of 

oxidative stress (103). Therefore the lack of relationship with MDA is consistent, 

as MDA is a lipid peroxidation product present in environments of increased 

oxidative stress. It has previously been proposed that ascorbate is the most 

effective non-enzymatic antioxidant present in the plasma (427), this may explain 

why only ascorbate and not alpha tocopherol correlated with CRAE. Ascorbate, 

as a diet derived antioxidant is considered to have a protective effect (579), this 

appears to be evidenced here with increased ascorbate correlating with a wider 

CRAE.  

 

No statistically significant correlations existed between any of the dynamic 

vascular function parameters and SAF or oxidative stress. This suggests that the 
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AGE and oxidative stress levels are not affecting retinal microvascular function in 

the healthy population examined in this study. This however may be related to 

the fact this healthy ageing group do not have a high AGE level, hence the AGE 

related associated effects not present. Previously Seshadri et al. (2015) found 

that the non-enzymatic antioxidant GSH did correlate with retinal microvascular 

dynamic responses and suggested that this was due to increased levels of 

oxidative stress impairing endothelium‐dependent dilation (370). Since ascorbate 

and alpha tocopherol are both non-enzymatic antioxidants (92), it was 

hypothesised that the GSH correlation would be replicated, however this was not 

the case. One possible explanation for the difference is that ascorbate and alpha 

tocopherol levels in the healthy participants in this study were above or within 

normal range (454, 509), indicating that oxidative stress was not present, hence 

may explain why oxidative stress associated effects were not present. In addition, 

it is worth noting that GSH has a large range in what is considered normal values 

in the literature (150-1500 µM). Rossi et al. (2002) described difficulties in the 

measurement of GSH and concluded that most published data may be affected 

by multiple artefacts (580), this may have impacted the Seshadri et al. (2015) 

results and may also add to why there is a difference between Seshadri et al. 

(2015) results and those from this study.  

 

7.5.2 Relationship between corneal viscoelasticity and SAF  

There were no statistically significant correlations between the corneal 

viscoelastic parameters measured and SAF. This suggests that the AGE levels 

may not be related to corneal viscoelasticity in the healthy population examined 

in this study. It may also be related to the fact this healthy ageing group do not 
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have a high AGE level, hence the AGE related associated changes may not be 

present. The recruited participants in this study were aged 50 to 90 years, it was 

noted that the older participants free from any general health conditions had a 

lower AGE level than expected for their age, for example a participant aged 90 

had a SAF of 2.80 AU, which would be approximately normal for an 80 year old. 

It was anticipated that recruiting participants in the age range of 50 to 90 would 

give differing results, however this was not the case. Future studies examining 

SAF and corneal viscoelasticity would benefit from recruiting a larger age range, 

to enable a larger range of SAF and viscoelasticity results.    

 

 7.5.3 Possible healthy volunteer effect 

The mean SAF of this healthy group of participants was 2.22 ± 0.36. This result is 

lower than expected, since a study with a healthy participant group of similar 

mean age had a mean SAF of 2.46 ± 0.57 (420). Indeed the mean SAF of a 

study by Kellow et al. (2017) was closer at 2.10 ± 0.60, however the average age 

of the group was considerably younger (47 years) (494). This suggests that the 

group recruited in this study has possibly been subject to a healthy volunteer 

effect. This may help to explain why there are no adverse associations with 

vascular or corneal parameters that would be expected to be affected by 

increased AGE level. In addition the standard deviation of SAF measures was 

low, this low variability of the data means that there are no particularly high or low 

AGE values in this data. Low variance is possibly problematic here as the lack of 

association may be due more to the fact participants have a normal AGE level 

and little AGE effect rather than there truly being no association between AGEs 

and the retinal vasculature and cornea.  
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7.6 Conclusion 

Higher levels of tissue-bound AGE (SAF) are associated with narrower retinal 

arteries in a healthy population. This finding adds to the evidence that AGEs are 

an accessible marker of vascular health. Increased levels of ascorbate were 

associated with wider retinal arteries, this supports previous literature that diet 

derived antioxidants may have a protective effect (579). In this healthy population 

SAF was not found to be associated with dynamic vessel parameters or corneal 

viscoelastic parameters. This suggests that AGE levels may not be related to 

dynamic vessel parameters or corneal viscoelasticity, although it should be 

considered that this recruited healthy group had a lower mean SAF than 

expected.  

 

7.7 Limitations 

By excluding all disease linked to AGEs the resultant group of participants were 

particularly healthy and as a result had a lower SAF level than was expected for 

mean age.  

 

7.8 Future work 

Having a wider age range would enable a better comparison of corneal elasticity. 

The relationship between corneal viscoelasticity and SAF should be further 

assessed with participants with a wider age range. In addition the use the ORA in 

conjunction with the Corvis ST and AGE-reader to enable examination of corneal 

hysteresis and corneal resistance factors relationship with SAF. 
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8.0 The relationship between tissue bound AGE levels, static 

and dynamic retinal vessel structure and function, and 

corneal viscoelasticity in POAG, NTG and OHT patients 
 

 

8.1 Abstract 

 

Purpose: To evaluate how tissue bound AGE level (SAF) relates to static and 

dynamic retinal vessel structure and function and corneal viscoelasticity in 

POAG, NTG and OHT patients. 

 

Methods: 33 healthy control (HC) participants, 16 OHT, 12 NTG and 32 POAG 

patients had skin autofluoresence (SAF) measured using the AGE Reader 

(DiagnOptics B.V., Groningen, The Netherlands), static and dynamic retinal 

vessel structure and function evaluated using the Dynamic Retinal Vessel 

Analyser (DVA; IMEDOS GmbH, Jena, Germany) and corneal viscoelasticity 

measured using the Corvis ST (Oculus; Optikgeräte GmbH, Wetzlar, Germany). 

 

Results: Increased SAF was found to correlate with a decrease in corneal 

viscoelasticity velocity A1 (m/s) (r = -0.748, p = 0.033, 95% CI -0.838 to 0.102) 

and reduced deformation amplitude at A1 (r = -0.714, p = 0.047, 95% CI -0.115 to 

-0.997) in NTG patients. There were no significant differences with OHT or POAG 

patients. No significant relationships were found between dynamic and static 

retinal vascular parameters and SAF for any group, however NTG patients were 

found to have a significantly smaller static CRAE diameter (p=0.048) than healthy 

controls.  
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Conclusion: Ageing is a multifactorial process and similarly glaucoma is thought 

to be influenced by multiple factors. In the NTG group a less viscoelastic, stiffer 

cornea was related to increased SAF level. There was no significant relationship 

in the OHT or POAG groups. There were no statistically significant relationships 

between SAF and dynamic and static vascular parameters in any groups, 

however CRAE was found to be narrowest in the NTG group.  
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8.2 Background 

In Chapter 6 SAF was shown to be significantly higher in NTG and POAG 

patients compared to healthy controls. This finding adds to the evidence that 

SAF, as an accessible measure, may be a suitable long-term biomarker of 

glaucoma. To establish how AGEs may contribute to glaucoma pathogenesis it is 

important to establish the structures they may be affecting. This evaluation is 

particularly interesting as POAG, NTG and OHT are thought to have differing 

levels of vascular and mechanical involvement.  

 

Studies investigating the vascular effects of AGEs have linked increased AGE 

levels to vascular stiffness and endothelial dysfunction, both of which have also 

been linked to glaucoma pathogenesis (243, 304, 328, 344, 345). AGEs are 

thought to cause increased vessel stiffness due to increased cross-linking (136), 

and to contribute to endothelial dysfunction by increasing ET-1 levels (132) and 

reducing availability and activity of NO (133). A decrease in the availability of NO 

and an increase in ET-1 can result in excessive vasoconstriction and subsequent 

blood flow dysregulation (292, 293). Interestingly, in NTG and POAG patients, 

levels of NO in the plasma have been found to be at a reduced level compared to 

healthy controls (294-296), and levels of ET-1 have been shown to be at higher 

levels in NTG (297, 298) and POAG patients (299, 300). It is therefore of interest 

to explore whether a relationship between vascular parameters and SAF is 

evident within these patient groups due to the known underlying AGE 

mechanism.  
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Hysteresis is a viscoelastic property of the cornea; it describes the difference 

between behaviour in ‘loading’ and ‘unloading’ conditions (574). A lower corneal 

hysteresis (less viscoelastic cornea) has been found in patients diagnosed with 

glaucoma; in addition, a lower corneal hysteresis has been linked with 

progressive visual field worsening (337, 581, 582). Prata et al. (2012) found that 

low corneal hysteresis is linked with glaucomatous nerve head signs such as 

larger cup to disc ratio and increased cup depth, and in those with bilateral 

glaucoma, 75% of participants with lower corneal hysteresis had a larger cup to 

disc ratio (338). Murphy et al. (2017) examined corneal hysteresis in patients with 

glaucoma, OHT and glaucoma-like optic discs and found corneal hysteresis to be 

higher (more viscoelastic) in OHT and glaucoma-like discs compared to 

glaucoma, suggesting that increased viscoelasticity of the cornea may have a 

beneficial, protective role against glaucoma (340).   

 

As previously mentioned it has been shown that there is an increase in AGEs in 

the corneal stroma with increased age (2). Chapter 7 explored whether AGE 

levels were directly associated with corneal viscoelasticity in healthy control 

participants, and the results showed no significant relationship. This result 

however may have been influenced by a healthy volunteer effect. No previous 

studies have directly linked AGE (SAF) level and corneal viscoelasticity in OHT, 

NTG and POAG patients.  
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8.2.1 Aims 

To evaluate whether level of tissue bound AGEs (SAF) relates to static and 

dynamic retinal vessel structure and function and corneal viscoelasticity in 

POAG, NTG and OHT patients. 

 

8.2.2 Hypothesis 

Tissue bound AGE (SAF) level will be associated with static and dynamic vessel 

parameters and corneal viscoelasticity parameters in NTG, POAG, OHT groups.  

 

8.3 Methods 

The methodology used in this study is summarised here; more detailed 

information on the specifics of each technique can be found in Chapter 3. 

 

8.3.1 Participants  

Convenience sampling was used to recruit participants who were eligible 

according to the study’s inclusion and exclusion criteria. The inclusion criteria for 

participants are detailed in section 3.1.3, exclusion detailed in section 3.1.4. Due 

to the established link between diabetes and AGEs (449, 450) participants 

diagnosed with diabetes or participants found to have a high fasting glucose level 

were excluded from the study, as were current smokers, and previous smokers 

who quit less than 15 years ago due to the link between AGEs and tobacco (10). 

POAG, NTG and OHT participants were identified through their attendance at 

routine outpatient appointments at Derriford REI.  
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IOP lowering medication was not an exclusion factor for this study as diagnosed 

early stage glaucoma or OHT patients were required. With this in mind, it should 

be noted that some participants were prescribed a beta-blocker or combination 

drop which contained a beta-blocker, this applied to 18 of the recruited 

participants (OHT: n = 2, NTG: n = 3, POAG: n = 13). It is possible that 

vasoactive eye-drops influence retinal blood vessel parameters (583-585), 

however AGE level would likely be unaffected. In addition participants were 

asked to refrain from using their drops on the morning of the study.  

 

8.3.2 General investigations  

As described in 3.3.2.1, height was measured in meters using a stadiometer, 

weight was measured in kg and from these measurements BMI was calculated. 

Weight, basal metabolic rate (BMR), and body fat percentage were measured 

using the Tanita body composition analyser (TBF-300 MA). Blood pressure was 

measured and a fasting venous blood sample was obtained to enable the 

measurement of oxidative stress biomarkers. Three oxidative stress biomarkers 

were used, the non-enzymatic antioxidants ascorbate (vitamin C) and alpha 

tocopherol (form of vitamin E) and the product of lipid peroxidation 

malondialdehyde (MDA). Each biomarker is described in Section 3.3.2.6. 

 

8.3.3 Dynamic Retinal Vessel Analyser (DVA) 

The Dynamic Retinal Vessel Analyser (DVA; IMEDOS GmbH, Jena, Germany) 

was used to assess both dynamic and static retinal vessel function. It is a non-

invasive device, with high reproducibility (373) and low variability (374). Specific 
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detail on the DVA and its protocol for both dynamic and static measurments can 

be found in Section 3.3.2.2.  

 

The dynamic parameters calculated from the raw data included: baseline 

diameter fluctuation (BDF), dilation amplitude (DA), baseline corrected flicker 

response (BFR), maximum percentage dilation (MD%), reaction time (RT), 

minimum percentage constriction (MC%), constriction time (CT) for artery and 

vein. For full list of descriptions of these parameters see Table 3.3 in Section 

3.3.2.2. Pariticpants were asked to maintain normal eating habits before DVA 

measurement as fasting can cause abnormal vascular activity (385).  

 

The VesselMap2 software (ImedosSystems, Jena, Germany) was used to enable 

the retinal vasculature structure to be examined and evaluated (393). The static 

VesselMap2 software calculates central retinal artery equivalent (CRAE) and 

central retinal vein equivalent (CRVE) using the disc centred red-free fundus 

photograph and manually selected vessels, described in Section 3.3.2.2.  

 

8.3.4 Corvis ST 

The viscoelastic properties of the cornea were assessed using the Corvis ST 

(Oculus; Optikgeräte GmbH, Wetzlar, Germany). The Corvis ST is a noncontact 

tonometer system, for specific detail see Section 3.3.2.3. The parameters used: 

first applanation time (time A1), second applanation time (time A2), velocity of 

corneal surface movement at the first applanation (velocity A1), velocity of 

corneal surface movement at second applanation (velocity A2), deformation 

amplitude at first applanation (deformation amplitude A1), deformation amplitude 
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at second applanation (deformation amplitude A2), highest deformation 

amplitude, and highest concavity time. Corvis measurements were taken for each 

eye of each participant.  

 

8.3.5 Skin autofluorescence (SAF) 

The measurement of tissue-bound AGE levels was obtained using the AGE 

Reader (DiagnOptics B.V., Groningen, The Netherlands). The AGE Reader is a 

non-invasive device, which provides a low cost, fast, and reproducible means of 

determining AGE levels in the body through utilisation and measurement of the 

fluorescent properties of tissue-bound AGEs in the skin (21-23). Specific detail on 

the AGE reader and its protocol can be found in Section 3.3.2.4. 

 

8.3.6 Statistical analysis 

Statistical analysis was performed using SPSS version 24 (IBM). The normality of 

data was assessed by the Shapiro–Wilk test and visual inspection of the QQ 

plots. P values of less than 0.05 were considered significant.  

 

8.3.6.1 General characteristics between groups 

Mann-Whitney U test was used to analyse the demographic data. A one-way 

ANOVA was used to compare the results of general investigations between the 

groups.  
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8.3.6.2 SAF associated with vascular parameters 

Vascular parameters, both from retinal artery and vein, were entered into a 

Pearson’s correlation with SAF, to examine any possible relationships.  

 

8.3.6.3 Static vessel parameters between groups 

A one-way ANOVA was used to compare the static retinal vessel parameters, 

namely: CRAE and CRVE followed by the post-hoc analysis Scheffe.  

 

8.3.6.4 SAF associated with corneal parameters 

Corneal parameters were entered into a Pearson’s correlation with SAF, to 

examine any possible relationships.  

 

8.3.6.5 Relationship between corneal parameters in the groups  

An ANOVA was used to compare the corneal parameters measured by the 

Corvis ST between the groups, followed by the post-hoc analysis Scheffe. 

 

8.3.6.6 Power calculation 

The sample size was determined using data from previous research which also 

measured tissue-bound AGE level using AGE Reader between healthy and 

disease groups (83). In order to achieve 80% power at the 5% alpha level a 

sample size of 37 per group was required (NTG, POAG, OHT and controls). To 

account for unusable data an allowance was made and a sample size of 40 

participants was chosen per group. 
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8.4 Results  

A total of 32 POAG, 12 NTG, 16 OHT and 33 healthy control participants were 

recruited and eligible for the study.   

 

8.4.1 Group characteristics 

There were no significant differences in age, BMI, systemic blood pressure, IOP, 

MABP and OPP between the four groups (p > 0.05). The characteristics of the 

participant group with mean and standard deviation are detailed in Table 8.1. It 

was expected that there would not be a significant difference in IOP between the 

groups since the OHT, POAG and NTG patients were all taking their prescribed 

IOP lowering treatment as normal.  

 

Table 8.1: Summary of mean and standard deviation of participant characteristics for the study 

groups. P<0.05 is considered a significant difference. BMI: body mass index, SBP: systolic blood 

pressure, DBP: diastolic blood pressure, IOP: intraocular pressure, CDR: cup to disc ratio, CCT: 

central corneal thickness, MABP: mean arterial blood pressure, OPP: ocular perfusion pressure, 

was subsequently calculated using MABP and IOP values. MD: mean deviation from visual field 

data collected from REI appointment, OHT MD added for reference in brackets.  

Variable HC (1) OHT (2) NTG (3) POAG (4) ANOVA 

p value 

N 33 16 12 32  

Gender F:22 M:11 F:7 M:9 F:5 M:7 F:14 M:18  

Age (years) 65.97 ±9.43 65.94 ±8.10 72.17 ±7.16 67.72 ±7.398 0.146 

BMI 25.62 ±3.36 26.48 ±4.58 26.60 ±4.39 26.26 ±4.32 0.844 

SBP (mmHg) 134.82 ±16.93 139.56 ±16.84 140.17 ±17.35 140.00 ±19.16 0.625 

DBP (mmHg) 80.67 ±10.17 85.38 ±9.28 81.33 ±9.56 84.91 ±9.56 0.252 

IOP (mmHg) 16.39 ±2.72 18.00 ±3.16 14.83 ±3.16 16.71 ±3.93 0.099 

MABP (mmHg) 98.72 ±11.11 103.44 ±10.68 100.94 ±10.79 103.27 ±11.38 0.340 

OPP 49.63 ±7.91 50.96 ±9.16 52.46 ±7.07 52.17 ±9.36 0.623 

MD (dB)  (-0.19 ±0.95) -3.62 ±1.32 -3.95 ±1.72  
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As shown in Chapter 6 a significant difference was found between groups with 

regard to SAF (p = 0.005, Table 6.2). Post-hoc testing found SAF to be 

significantly higher in the POAG and NTG patients than in healthy controls 

(POAG p = 0.018, NTG p = 0.05).  SAF level in the OHT patients was not 

significantly different to healthy controls or to the glaucoma groups (p>0.05).   

 

Copy of Table 6.2 from Chapter 6: Difference in mean SAF between groups (± standard 

deviation). SAF: skin autofluorescence, AU: arbitrary units. P<0.05 is considered significant.  

 

 

 
8.4.2 Dynamic retinal vessel analysis 

8.4.2.1 Relationship between SAF and dynamic retinal artery parameters 

In Chapter 7 Table 7.2 and 7.3 show that there were no statistically significant 

correlations between SAF and any of the dynamic retinal vessel parameters 

(artery and vein) in healthy control participants. Table 8.2 shows the mean and 

standard deviation for the retinal artery dynamic parameters of each group. Table 

8.3 shows the correlations between SAF and each dynamic retinal artery 

parameter, no statistically significant relationships were detected (all p > 0.05).  

 

 

 

 HC (1) OHT (2) NTG (3) POAG (4) ANOVA  
p value 

Post-
hoc 

SAF 
(AU) 

2.19 ±0.39 2.44 ±0.42 2.6 ±0.39 2.54 ±0.45 0.005 3, 4 > 1 
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Table 8.2: Mean and SD of artery dynamic parameters, BDF: baseline diameter fluctuation, DA: 

dilation amplitude, BFR: baseline corrected flicker response, MD%: maximum percentage dilation, 

RT: reaction time, MC%: minimum percentage constriction, CT: constriction time.  

 

 

 

Table 8.3: Artery dynamic parameters Pearson’s correlation with SAF. AU: arbitrary units, BDF: 

baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline corrected flicker response, 

MD%: maximum percentage dilation, RT: reaction time, MC%: minimum percentage constriction, 

CT: constriction time.  

 

Artery OHT NTG POAG 

BDF 2.42 ± 1.31 4.77 ± 4.04 3.11 ± 2.21 

DA 5.53 ± 3.08 5.59 ± 3.59 4.96 ± 7.96 

BFR 3.12 ± 2.55 1.46 ± 2.05 2.02 ± 2.05 

MD% 3.27 ± 3.03 3.58 ± 4.30 2.87 ± 2.48 

RT (secs) 15.22 ± 4.59 19.55 ± 5.67 14.69 ± 9.56 

MC% 2.27 ± 2.02 2.16 ± 1.67 2.31 ± 2.90 

CT (secs) 26.26 ± 8.55 21.09 ± 9.82 24.57 ± 7.49 

Artery  

 

 Pearson’s correlation coefficients (R values) 

 SAF (AU) 

OHT NTG POAG 

BDF 0.386, p = 0.155 -0.444, p = 0.171 0.032, p = 0.867 

DA -0.023, p = 0.935 -0.441, p = 0.174 -0.080, p = 0.676 

BFR -0.226, p = 0.418 -0.096, p = 0.778 -0.110, p = 0.563 

MD % -0.428, p = 0.112 -0.448, p = 0.167 -0.107, p = 0.575 

RT (secs) 0.211, p = 0.450 -0.107, p = 0.754 -0.129, p = 0.497 

MC % 0.306, p = 0.107 0.089, p = 0.795 -0.031, p = 0.870 

CT (secs) 0.048, p = 0.865 -0.413, p = 0.207 -0.107, p = 0.572 
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8.4.2.2 Relationship between SAF and dynamic retinal vein parameters 

Table 8.4 shows the mean and standard deviation for the retinal vein dynamic 

parameters of each group. Table 8.5 shows the correlations between SAF and 

each dynamic vein artery parameter, no significant relationships existed (all p > 

0.05).  

 

 
Table 8.4: Mean and SD of vein dynamic parameters, BFR: baseline diameter fluctuation, DA: 

dilation amplitude, BRF: baseline corrected flicker response, MD%: maximum percentage dilation, 

RT: reaction time, MC%: minimum percentage constriction, CT: constriction time.  

 

Vein OHT  NTG  POAG  

BDF 2.66 ±1.92 3.83 ±2.29 3.11 ±2.21 

DA 5.76 ±3.60 5.89 ±3.79 4.92 ±2.28 

BFR 3.35 ±2.79 2.54 ±2.63 2.54 ±1.86 

MD% 4.54 ±2.86 5.55 ±3.79 4.36 ±2.13 

RT (secs) 16.80 ±3.91 19.73 ±2.80 19.53 ±3.21 

MC% 1.22 ±1.42 0.65 ±1.43 0.97 ±1.47 

CT (secs) 26.11 ±8.55 30.00 ±10.43 32.56 ±6.32 
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Table 8.5: Vein dynamic parameters Pearson’s correlation with SAF. AU: arbitrary units, BDF: 

baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline corrected flicker response, 

MD%: maximum percentage dilation, RT: reaction time, MC%: minimum percentage constriction, 

CT: constriction time.  

 

8.4.3 Static retinal vessel analysis 

Chapter 7 showed a negative relationship between SAF and CRAE (r = -0.313, p 

= 0.015, 95% bootstrap confidence interval -0.077 to -0.512), with no statistically 

significant association between CRVE and SAF (r = 0.061, p = 0.641, 95% 

bootstrap confidence interval -0.204 to 0.302) in healthy control participants. 

Table 8.7 shows the lack of significant correlation between SAF and static 

parameters in OHT, NTG and POAG patients. Figure 8.1 demonstrates the trend 

in association between CRAE and the groups when considered together.  

 

 

 

Vein 

 

Pearson’s correlation coefficients (R values) 

 SAF (AU) 

OHT NTG POAG 

BDF 0.151, p = 0.592 -0.376, p = 0.254 0.068, p = 0.723 

DA -0.156, p = 0.578 -0.262, p = 0.437 -0.043, p = 0.820 

BFR -0.390, p = 0.151 -0.140, p = 0.682 -0.137, p = 0.470 

MD % -0.320, p = 0.245 -0.220, p = 0.516 -0.035, p = 0.854 

RT (secs) -0.366, p = 0.181 0.156, p = 0.647 0.060, p = 0.753 

MC % 0.247, p = 0.374 -0.137, p = 0.687 -0.049, p = 0.798 

CT (secs) -0.293, p = 0.290 0.032, p = 0.926 -0.010, p = 0.957 
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Table 8.6: Central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) 

mean and standard deviation. 

 

 

 

Table 8.7: Central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) 

correlations with SAF. P<0.05 is considered a significant difference. 

 
 

When comparing CRAE and CRVE across the study groups the artery static 

parameter CRAE was significantly different between groups (ANOVA p = 0.024), 

post hoc testing revealed that NTG patients have a lower CRAE than HC (p = 

0.048). No significant difference was found between CRVE in the study groups 

(ANOVA p>0.05). 

 

 

 

 

 

Static HC  OHT  NTG  POAG  

CRAE 180.18 

±20.81 

175.64 

±17.94 

164.61 

±11.51 

171.56 

±17.97 

CRVE 210.67 

±19.27 

204.22 

±20.84 

206.83 

±18.86 

214.59  

±2.28 

Static 

 

Pearson’s correlation coefficients (R values) 

 SAF (AU) 

OHT NTG POAG 

CRAE -0.161, p = 0.567 0.349, p = 0.267 0.112, p = 0.548 

CRVE 0.018, p = 0.949 0.012, p = 0.971 -0.028, p = 0.883 
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Figure 8.1: Relationship between skin autofluorescence (SAF) (AU) and central retinal artery 

equivalent (CRAE) (MU) in each group.  

 
 

8.4.4 Corvis ST analysis 

The corneal viscoelasticity velocity A1 (m/s) significantly correlated with SAF (r = 

-0.748, p = 0.033, 95% bootstrap confidence interval -0.838 to 0.102) in the NTG 

group. As SAF increased, the velocity at A1 was slower, however as shown by 

the confidence interval, due to the low participant number we cannot be confident 

in this result. Deformation amplitude at A1 was also found to correlate with SAF 

in the NTG group (r = -0.714, p = 0.047, 95% bootstrap confidence interval -0.115 
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to -0.997). With increased SAF there was a decreased deformation amplitude, 

with the cornea becoming less deformed on A1.  

 

An ANOVA comparison of means revealed that there was no significant 

difference between the groups for velocity A1 and deformation amplitude A1 (P > 

0.05). The parameter CCT was however found to be different between the groups 

(ANOVA p = 0.011), post hoc testing revealed that NTG (p = 0.046) and POAG (p 

= 0.022) patients have a lower CCT than HC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



243 
 

 
Table 8.8: Mean and SD of corneal viscoelastic parameters. Time A1: first applanation time, Time 

A2: second applanation time, Velocity A1: velocity of corneal surface movement at the first 

applanation, Velocity A2: velocity of corneal surface movement at second applanation, 

Deformation amp. A1: deformation amplitude at first applanation, Deformation amp. A2: 

deformation amplitude at second applanation, Highest deformation amp: highest deformation 

amplitude, CCT: central corneal thickness. 

 
 
 
 
 
 
 
 
 
 
 
 

Corneal 

viscoelasticity 

HC  OHT  NTG  POAG  

N 33 13 8 28 

Time A1 (ms) 7.33 ±0.37 7.45 ±0.30 7.18 ±0.18 7.34 ±0.25 

Time A2 (ms) 21.95 ±0.44 21.66 ±0.48 22.03 ±0.28 21.67 ±0.44 

Velocity A1 

(m/s) 

0.15 ±0.02 0.13 ±0.03 0.16 ±0.01 0.15 ±0.02 

Velocity A2 

(m/s) 

-0.26 ±0.03 -0.26 ±0.02 -0.28 ±0.02 -0.27 ±2.48 

Deformation 

amp. A1 (mm) 

0.13 ±0.01 0.13 ±0.01 0.13 ±0.01 0.13 ±0.01 

Deformation 

amp. A2 (mm) 

0.44 ±0.07 0.44 ±0.08 0.45 ±0.08 0.42 ±0.05 

Highest 

deformation 

amp. (mm) 

1.09 ±0.11 1.07 ±0.12 1.10 ±0.06 1.09 ±0.09 

Highest 

concavity time 

(ms) 

16.52 ±0.51 16.42 ±0.54 16.45 ±0.39 16.41 ±0.59 

CCT (μm) 555 ±34.34 550 ±21.22 527 ±45.39 526 ±36.62 
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Table 8.9: Corneal viscoelastic parameters correlation with SAF. AU: arbitrary units, Time A1: first 

applanation time, Time A2: second applanation time, Velocity A1: velocity of corneal surface 

movement at the first applanation, Velocity A2: velocity of corneal surface movement at second 

applanation, Deformation amp. A1: deformation amplitude at first applanation, Deformation amp. 

A2: deformation amplitude at second applanation, Highest deformation amp: highest deformation 

amplitude, CCT: central corneal thickness. 

 

 

 

 

 

Corneal 

parameters 

 

Pearson’s correlation coefficients (R values) 

 SAF (AU) 

OHT NTG POAG 

Time A1 (ms) 0.550, p = 0.053 0.000, p = 0.999 -0.181, p = 0.367 

Time A2 (ms) -0.484, p = 0.093 0.003, p = 0.993 0.314, p = 0.110 

Velocity A1 (m/s) -0.414, p = 0.159 -0.748, p = 0.033* 0.234, p = 0.240 

Velocity A2 (m/s) 0.424, p = 0.148 0.334,  p = 0.419 0.303, p = 0.882 

Deformation amp. 

A1 (mm) 

0.115, p = 0.708 -0.714, p = 0.047* -0.032, p = 0.872 

Deformation amp. 

A2 (mm) 

0.129, p = 0.675 -0.609, p = 0.109 0.105, p = 0.601 

Highest 

deformation amp. 

(mm) 

-0.167, p = 0.587 -0.652,  p = 0.080 0.201, p = 0.316 

Highest 

concavity time 

(ms) 

0.090, p = 0.770 -0.183, p = 0.664 -0.078, p = 0.698 

 CCT (μm) -0.086, p = 0.779 0.488, p = 0.220 0.011, p = 0.958 
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Figure 8.2 demonstrates the lack of relationship between CCT and the groups 

when considered together. Pearson’s correlation, including all groups showed no 

significant relationship between SAF and CCT (r = -0.005, p = 0.968, 95% 

bootstrap confidence interval -0.252 to 0.239), Figure 8.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2: Relationship between Skin autofluorescence (SAF) (AU) and central corneal thickness 

(CCT) with all groups shown (r = -0.005, p = 0.968, 95% CI -0.252 to 0.239).  

 

 



246 
 

8.5 Discussion 

The aim of this study was to determine how tissue-bound AGE levels (SAF) are 

related to retinal vascular parameters and corneal viscoelasticity parameters in 

POAG, NTG, OHT and healthy control participants. It is thought that this is the 

first study to examine SAF levels with retinal parameters and corneal parameters 

in these groups.  

 

8.5.1 Retinal vessel structure and function 

Early stage NTG patients were found to have significantly narrower CRAE in 

comparison to healthy controls. Early stage POAG participants also had a 

narrower CRAE than HC, however this difference was not statistically significant. 

The previous literature agrees that retinal arteriolar narrowing is associated with 

glaucoma (265, 586) and Kawasaki et al. (2013), in addition to concluding that a 

narrower CRAE was associated with higher risk of glaucoma incidence, also 

found that CRVE was not associated with glaucoma risk (587), which is 

consistent with the findings of this study.  

 

The exact mechanism for CRAE narrowing in glaucoma is unknown. One 

hypothesis is that the narrowing may occur as a secondary event to retinal 

ganglion cell loss, as fewer retinal ganglion cells results in reduction in oxygen 

demand (587). An alternative hypothesis is that tissue-bound AGEs are causing 

changes to the retinal vasculature. SAF has been related to the macro-

vasculature, with increased SAF associated with increased maximum IMT of the 

carotid artery in diabetic patients (569). It is thought that the microvasculature is 

affected earlier than the macro-vasculature (304, 577); hence, the finding of a 
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narrower CRAE may be linked to thickening of the inner layers of the retinal 

microvascular wall. 

 

NTG patients, alongside having a narrower CRAE, also had the highest mean 

value of SAF in this study. A significant correlation between CRAE and SAF, 

however was only evident in the healthy control participants and not in the NTG 

group. This makes it difficult to draw conclusions around whether tissue-bound 

AGEs are part of the mechanism causing retinal arteries to narrow in glaucoma 

patients from this study. It is possible that the lack of a significant relationship 

between SAF and CRAE found here may be a consequence of there being only a 

small number of NTG patients. Exploring CRAE and SAF levels with a larger 

group of NTG patients as well as assessing differing stages of glaucoma 

progression may help to aid understanding of whether this narrowing is indeed 

related to AGE levels within the tissues and whether this carries any pathogenic 

significance. 

 

As well as increased vessel wall thickness it is thought that AGE induced cross-

links alter the mechanical properties of the vessels resulting in increased vessel 

stiffness, and reduced elasticity (38, 71, 72, 75, 136). No relationship however 

was found between the dynamic artery or vein parameters and SAF in the POAG, 

NTG and OHT participants in this study. This result agrees and follows on from 

the dynamic vascular results in Chapter 7 where there was also no significant 

relationship between SAF and retinal dynamic vascular parameters in healthy 

control participants. AGEs are thought to affect systemic vascular function (216), 

and in type 2 diabetic patients SAF readings have been found to be an 
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independent predictor for the development of microvascular complications (588), 

these diabetic patients had a higher mean SAF level (2.74). It may be that since 

the patients in this study were systemically healthy and had a lower SAF level 

that AGE level had not yet influenced microvascular function. It must also be 

considered that since patients continued the use of their IOP lowering medication 

as normal this may have affected retinal vessel function.  However the vascular 

effects of IOP lowering drops on retinal vascular calibre is not fully understood 

(265), a review by Newman et al. (2018) found there was no consistent effect on 

retinal vessel width with the use of IOP lowering drops (585). 

 

8.5.2 Corneal viscoelasticity 

A less viscoelastic cornea has been linked with glaucoma (337, 581, 582), and it 

has been suggested that an increased viscoelasticity of the cornea may have a 

beneficial, protective role against glaucoma (340). As shown in Table 8.8 CCT 

was significantly different between the groups, with NTG and POAG having a 

thinner CCT than HC. It has been previously been shown that a thinner cornea 

experiences increased corneal deformation (589), however there was no 

significant difference in deformation between the groups despite CCT difference. 

This suggests that in this group of patients CCT was not influencing corneal 

deformation. This may be due to there being only a 29 μm difference between 

thinnest and thickest CCT. 

 

In a similar manner to the HC participants, the OHT and POAG patients had no 

significant correlations between SAF and the different corneal viscoelastic 

parameters. In NTG however, velocity and deformation amplitude at the first 
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applanation was found to be reduced with increased SAF. This suggests that in 

NTG patients, SAF is related to corneal viscoelasticity, with increased SAF linked 

to a less viscoelastic cornea. Ocular rigidity although thought to be relevant to 

pathology is not often considered clinically due to the difficulties in acquiring 

accurate measurements (590). The lamina cribrosa is an example of this, as 

rigidity cannot be easily measured. Although differing structures, the stiffening of 

the cornea may be an indicator of overall ocular mechanical rigidity, including 

lamina cribrosa rigidity (338, 339). This is relevant as a lamina cribrosa that is 

more rigid/less viscoelastic is thought to be less able react to changes in IOP 

levels as it is less able to elastically absorb IOP (591). Hence it has been 

hypothesised that a stiffer/less viscoelastic lamina cribrosa is more susceptible to 

damage by increased IOP as well as normal IOP levels (328, 591, 592). This 

links to the results of this study since the relationship with SAF and decreased 

viscoelasticity existed only in the NTG group. These corneal results within the 

NTG group should however be reviewed with caution due to the low participant 

numbers in this group. This relationship should be reviewed and replicated in a 

study with increased numbers of systemically healthy NTG patients.  

 

8.6 Conclusion 

Ageing is a multifactorial process and similarly glaucoma is thought to be 

influenced by multiple factors. The results from Chapter 6 suggest that AGEs 

may be one possible factor influencing glaucoma. The aim of this study was to 

evaluate whether tissue bound AGE level (SAF) related to static and dynamic 

retinal vessel structure and function and corneal viscoelasticity in POAG, NTG 

and OHT patients. The NTG group, who are known to have a higher SAF level in 



250 
 

comparison to healthy controls from Chapter 6, were shown in this study to also 

have a significantly narrower CRAE. A direct relationship between SAF and 

CRAE was however not found within this group and it is thought this could relate 

to the small overall number of NTG participants recruited for this study. Indeed, 

the negative relationship shown in the larger HC group could indicate that 

narrower CRAE is related to increased SAF levels in principle. Increased SAF 

levels were found to associate with a less viscoelastic, stiffer cornea in the NTG 

group only. It is possible that increased SAF levels contribute to increased rigidity 

of the ocular structures which leave them more susceptible to damage from more 

‘normal’ IOP levels, or small reductions in arterial blood supply, however larger 

scale studies would be needed before any conclusions could be drawn from 

these findings. There was no significant relationship in the OHT or POAG groups. 

There were no statistically significant relationships between SAF and dynamic 

vascular parameters in any groups, suggesting at the early stages of the disease 

process tissue-bound AGE levels do not significantly influence the vasoactive 

response of the retinal microvasculature to increased metabolic demand from 

flicker light stimulation.  

 

8.7 Limitations 

Participants that were prescribed anti-glaucomatous drops were not excluded. It 

is known that drops can affect the ocular surface, which in turn may have affected 

the Corvis ST measurement (410, 593). In addition some anti-glaucomatous 

drops are known to be vasoactive, this may affect the retinal vasculature and 

hence affect the dynamic and static retinal vascular measurements. 
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The sample size recruited was lower than the target sample size, this potentially 

limits the conclusions drawn from this study. The challenge with recruitment of 

early stage glaucoma participants and OHT participants was due to the strict 

inclusion/exclusion criteria. These criteria however were necessary to avoid any 

other influences on AGE level, e.g. if smokers had been included then this may 

have masked any other relationships. In addition the recruitment between 

glaucoma groups was not even, with fewer NTG patients recruited. The number 

of recruited participants was able to provide statistically significant results, 

however analysis may have been aided by increased participant numbers.  

 

8.8 Future work 

To repeat this study with a larger group of participants and include sub groups of 

varying levels of glaucomatous damage.  
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9.0 The relationship between retinal vessel function and 

corneal viscoelasticity in open angle glaucoma (OAG), OHT 

and healthy patients 

 

9.1 Abstract 

Purpose: To explore whether dynamic retinal vascular parameters are related to 

corneal viscoelastic parameters in HC, OHT and OAG patients.  

 

Methods: 33 healthy control participants, 13 OHT and 36 OAG patients had static 

and dynamic retinal vessel structure and function evaluated using the Dynamic 

Retinal Vessel Analyser (DVA; IMEDOS GmbH, Jena, Germany) and corneal 

viscoelasticity measured using the Corvis ST (Oculus; Optikgeräte GmbH, 

Wetzlar, Germany). 

 

Results: On consideration of retinal artery response, in OAG patients a less 

viscoelastic cornea was related to increased arterial dilation response to flicker 

light (A1 velocity and artery BFR; r = -0.521, p = 0.001, 95% CI -0.236 to -0.757). 

No significant relationships were found between dynamic retinal artery 

parameters and corneal viscoelasticity parameters in HC and OHT groups  

On consideration of retinal venous response, in OAG participants, a less 

viscoelastic cornea was related to a faster venous response and reaction time 

(A2 velocity and vein RT r = 0.484, p = 0.003, 95% CI -0.055 to 0.809; A2 velocity 

and vein CT r = 0.434, p = 0.009, 95% CI -0.070 to 0.736). Similarly, in HC 

participants, a less viscoelastic cornea was found to relate to increased venous 

dilation response (A1 time with venous BFR r = 0.533, p = 0.002, 95% CI 0.112 

to 0.821 and A1 time with vMD; r = 0.497, p = 0.005, 95% CI 0.006 to 0.755). In 
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OHT participants however, a less viscoelastic cornea was found to relate to a 

decreased venous dilation response (A1 time with vein BFR; r = -0.772, p = 

0.002, 95% CI -0.529 to -0.929 and highest corneal deformation amplitude with 

vein BFR r = 0.693, p = 0.009, 95% CI 0.164 to 0.927). 

 

Conclusion: Retinal artery and vein parameters of dynamic retinal function were 

found to be related to viscoelastic corneal properties. However, the results are 

not consistent between parameters, which causes some uncertainty to the 

relationship.  
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9.2 Background 

AGE accumulation can induce direct structural change to cells and tissues, 

through the creation of cross-links with proteins such as extracellular proteins 

collagen and elastin (69, 70). The AGE induced cross-link alters the mechanical 

properties of the protein. In collagen, these cross-links result in increased 

stiffness of tissues and reduction in elasticity (38, 71, 72). Normal collagen and 

elastin function is important for organs, tissues and vascular function throughout 

the body (19, 73), hence modifications are thought to have an adverse effect on 

physiology.  

 

A main site of RGC axonal injury in glaucoma is thought to be the lamina cribrosa 

(591, 594, 595). The lamina cribrosa is known to stiffen with age (592) and on 

becoming less elastic it also becomes less able to respond at high IOP levels and 

therefore more vulnerable to the effects of increased IOP. AGEs have been 

detected in the cribriform plates of optic nerve head (20). Age related stiffening of 

the lamina cribrosa is linked with AGEs and as such AGEs could be encouraging 

the RGC axonal injury seen in glaucoma. It is difficult to measure deformation of 

the lamina cribrosa in living patients (556).  

 

The mechanical properties of the cornea can be indicated by viscoelasticity 

measurement and mechanical properties of retinal blood vessels by dynamic 

vascular measurements. Although differing structures, both are thought to be 

stiffened by AGE collagen cross-linking. This stiffening throughout the structures 

of the eye, could contribute to overall ocular mechanical rigidity, including lamina 

cribrosa rigidity (338, 339). It could be hypothesised therefore that rigidity and 
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dynamic response of the cornea and retinal vasculature may be able to infer if 

there is rigidity of the lamina cribrosa.  

 

Deformation amplitude is considered to be one of the main corneal viscoelastic 

parameters. Deformation amplitude has been linked with glaucoma with Wang et 

al. (2015), Tian et al. (2015) and Jung et al. (2017) each finding that deformation 

amplitude is lower in POAG than HC (596-598), indicating a less viscoelastic, 

stiffer, cornea in these patients. Recent literature has also investigated the 

viscoelastic properties of myopic corneas, Chansangpetch et al. (2017) found 

that myopic participants both with and without glaucoma had an increased 

maximum deformation amplitude compared to emmetropes with and without 

glaucoma (599), similarly He et al. (2017) found that eyes with high myopia (- 

6.00D) had increased deformation amplitude compared to emmetropes (600). 

This suggests that myopic eyes have a more viscoelastic cornea. There is only 

one study which relates Corvis ST measures of deformation amplitude to the 

posterior pole. The results of this were inconsistent compared to other studies 

assessing deformation in glaucoma patients since the results showed that 

increased deformation amplitude significantly correlated with increased 

parapapillary atrophy area and optic disc tilt (601). These results however were 

not found to be significant after multiple regression analysis and should be 

reviewed with caution due to myopia possibly influencing the results (601). 

Exploring if retinal vessels are linked with deformation amplitude and other 

corneal viscoelastic parameters is interesting since both structures largely consist 

of extracellular matrix and both are linked with glaucoma. 
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There is evidence to suggest that AGEs induce structural changes to the 

extracellular matrix of the cornea, lamina cribrosa and the systemic blood vessel 

walls by increasing the stiffness. Exploring if there is any relationship between 

retinal and corneal parameters may reveal if there are links and a general trend 

towards stiffness in the eye at a similar rate, or if the structures are affected 

independently. The elements investigated in this chapter are explorative, based 

on AGE theory. No previous studies have examined the relationship between 

corneal viscoelasticity and vascular dynamic properties. 

 

9.2.1 Aims 

To explore whether dynamic retinal vascular parameters are related to corneal 

viscoelastic parameters in HC, OHT, NTG and POAG patients.  

 

9.2.2 Hypothesis 

A relationship will exist between retinal vascular and corneal parameters.  

 

9.3 Methods 

The methodology used in this study is summarised here; more detailed 

information on the specifics of each technique can be found in Chapter 3. 

 

9.3.1 Participants  

Convenience sampling was used to recruit participants who are eligible according 

to the study’s inclusion and exclusion criteria, the inclusion criteria for participants 

are detailed in section 3.1.3, exclusion detailed in section 3.1.4. Due to the 

established link between diabetes and AGEs (449, 450) participants diagnosed 
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with diabetes or participants found to have a high fasting glucose level were 

excluded from the study, as were current smokers, and previous smokers who 

quit less than 15 years ago due to the link between AGEs and tobacco (10). 

POAG, NTG and OHT participants were identified through their attendance at 

routine outpatient appointments at Derriford REI.  

 

9.3.2 General investigations  

As described in 3.3.2.1, height was measured in meters using a stadiometer, 

weight was measured in kg, and from these measurements BMI was calculated. 

Weight, basal metabolic rate (BMR), and body fat percentage were measured 

using the Tanita body composition analyser (TBF-300 MA). Blood pressure was 

measured, and a fasting venous blood sample was obtained to enable the 

measurement of oxidative stress biomarkers. Three oxidative stress biomarkers 

were used, the non-enzymatic antioxidants ascorbate (vitamin C) and alpha 

tocopherol (a form of vitamin E) and the product of lipid peroxidation 

malondialdehyde (MDA). Each biomarker is described in Section 3.3.2.6. 

As mentioned in Section 9.2 myopia has been linked with deformation amplitude. 

All participants met the inclusion criteria of having a refractive error below +/-

6.00D. 

 

9.3.3 Dynamic Retinal Vessel Analyser (DVA) 

The Dynamic Retinal Vessel Analyser (DVA; IMEDOS GmbH, Jena, Germany) 

was used to assess dynamic retinal vessel function. It is a non-invasive device, 

with high reproducibility (373) and low variability (374). Specific detail on the DVA 

and its protocol for dynamic measurments can be found in Section 3.3.2.2.  
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The dynamic parameters calculated from the raw data included: baseline 

diameter fluctuation (BDF), dilation amplitude (DA), baseline corrected flicker 

response (BFR), maximum percentage dilation (MD%), reaction time (RT), 

minimum percentage constriction (MC%), constriction time (CT) for artery and 

vein. For full list of descriptions of these parameters see Table 3.3 in Section 

3.3.2.2. Pariticpants were asked to maintain normal eating habits before DVA 

measurement as fasting can cause abnormal vascular activity (385).  

 

9.3.4 Corvis ST 

The viscoelastic properties of the cornea were assessed using the Corvis ST 

(Oculus; Optikgeräte GmbH, Wetzlar, Germany). The Corvis ST is a noncontact 

tonometry system, for specific detail see Section 3.3.2.3. The parameters used 

were: first applanation time (time A1), second applanation time (time A2), velocity 

of corneal surface movement at the first applanation (velocity A1), velocity of 

corneal surface movement at second applanation (velocity A2), deformation 

amplitude at first applanation (deformation amplitude A1), deformation amplitude 

at second applanation (deformation amplitude A2), highest deformation 

amplitude, and highest concavity time. Corvis measurements were taken for each 

eye of each participant.  

 

Reduced CCT has been identified as an independent risk factor for GON (331, 

332). Previous studies examining the link between CCT and corneal hysteresis 

have differing results as to if a relationship does or does not exist. Touboul et al. 

(2008) found no significant correlation between CCT and corneal hysteresis 

(602), however Shah et al. (2006) found a moderate positive correlation between 
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increasing CCT and increased corneal hysteresis, and a recent study by Murphy 

et al. (2017) found a strong positive correlation between CCT and corneal 

hysteresis (340). For this reason CCT was measured in addition to viscoelastic 

properties.  

 

9.3.5 Selection of parameters  

Static parameters were not included in the study since it is the responsiveness of 

the structures that is being compared. In addition BDF was not included since it 

describes the vessel in baseline conditions and is also incorporated into the BFR 

result. All other vascular parameters, listed above in Section 9.3.1.3 were 

included and all of Corvis ST viscoelastic properties listed in 9.3.1.4 were also 

included.   

 

9.3.6 Statistical analysis 

Statistical analysis was performed using SPSS version 24 (IBM). The normality of 

data was assessed by the Shapiro–Wilk test and visual inspection of the QQ 

plots.  

P values of less than 0.01 were considered significant for correltions. This stricter 

p-value was adopted for this explorative Chapter in order to correct for multiple 

comparisons taking place, and to minimise any bias towards type II errors. 

 

9.3.6.1 General characteristics between groups 

An ANOVA was used to compare the results of general investigations between 

the groups followed by the post-hoc analysis Scheffe. P values of less than 0.05 

in an ANOVA was considered significant.  
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9.3.6.2 Relationship between arterial retinal vessel and corneal parameters  

Pearson’s correlation was used to analyse the association between the arterial 

parameters: DA, BFR, MD%, RT, MC%, CT with the corneal parameters: time 

A1, time A2, velocity A1, velocity A2, deformation A1, deformation A2, highest 

deformation and highest concavity time. Any significant correlations were entered 

into a stepwise forward and backward multiple linear regression to further assess 

the influence of different variables on one another.  

 

9.3.6.3 Relationship between venous retinal vessel and corneal parameters  

Pearson’s correlation was used to analyse the association between the venous 

parameters: DA, BFR, MD%, RT, MC%, CT with the corneal parameters: time 

A1, time A2, velocity A1, velocity A2, deformation A1, deformation A2, highest 

deformation and highest concavity time. Any significant correlations were entered 

into a stepwise forward and backward multiple linear regression to further assess 

the influence of different variables on one another.  

 

9.3.6.4 Power calculation 

The sample size was determined for Chapters 7 and 8, using data from previous 

research which also measured tissue-bound AGE level using AGE Reader 

between healthy and disease groups (83). In order to achieve 80% power at the 

5% alpha level, a sample size of 37 per group was required (NTG, POAG, OHT 

and controls). To account for unusable data an allowance was made and a 

sample size of 40 participants was chosen per group.  
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9.4 Results  

A total of 28 POAG, 8 NTG, 13 OHT and 33 healthy control participants 

participated in the study. Due to the NTG group having only eight participants the 

NTG and POAG groups were combined into an open angle glaucoma group. 

 

9.4.1 Group characteristics 

There were no significant differences in age, BMI, systemic blood pressure, IOP, 

MABP and OPP between the four groups (p > 0.05). The characteristics of the 

participant group with mean and standard deviation are detailed in Table 9.1.  It 

was expected that there would not be a significant difference in IOP between the 

groups since the OHT, POAG and NTG patients were all taking their prescribed 

IOP lowering treatment as normal.  
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Table 9.1: Summary of mean and standard deviation of participant characteristics for the study 

groups. P<0.05 is considered a significant difference. BMI: body mass index, SBP: systolic blood 

pressure, DBP: diastolic blood pressure, IOP: intraocular pressure, MABP: mean arterial blood 

pressure, OPP: ocular perfusion pressure, was subsequently calculated using MABP and IOP 

values.  

 

 

Corneal viscoelasticity parameters between groups 

The corneal viscoelasticity parameter velocity A1 (m/s) was significantly different 

between groups (p = 0.042) on ANOVA comparison of the means, however on 

post hoc testing this significant difference between the groups was not held. In 

addition no significant difference was found between any of the other corneal 

viscoelasticity parameters between the study groups (p>0.05, Table 9.2). CCT 

however was found to be different between the glaucoma groups and HC, with 

HC having increased CCT.  

Variable HC (1) OHT (2) OAG (3) ANOVA 

p value 

Post 

hoc 

N 33 13 36   

Gender  F:22 M:11 F:5 M:8 F:17 M:19   

Age (years) 65.97 ±9.43 67.23 ±8.10 68.92 ±7.06 0.056  

BMI 25.62 ±3.36 25.77 ±4.56 26.53 ±4.28 0.247  

SBP (mmHg) 134.82 ±16.93 141.15 ±17.60 138.25 ±19.18 0.146  

DBP (mmHg) 80.67 ±10.17 84.85 ±9.50 84.06 ±9.77 0.426  

IOP (mmHg) 16.39 ±2.72 18.25 ±3.13 16.22 ±3.56 0.140  

MABP (mmHg) 98.72 ±11.11 103.62 ±11.13 102.12 ±11.22 0.189  

OPP 49.63 ±7.91 51.08 ±9.87 52.08 ±8.36 0.414  

SAF 2.19 ±0.39 2.39 ±0.44 2.52 ±0.40 0.001 1 < 3 
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Table 9.2: Corneal viscoelastic parameters between groups, mean and standard deviation 

presented. P<0.05 is considered a significant difference. AU: arbitrary units, Time A1: first 

applanation time, Time A2: second applanation time, Velocity A1: velocity of corneal surface 

movement at the first applanation, Velocity A2: velocity of corneal surface movement at second 

applanation, Deformation amp. A1: deformation amplitude at first applanation, Deformation amp. 

A2: deformation amplitude at second applanation, Highest deformation amp: highest deformation 

amplitude, CCT: central corneal thickness. 

 

 

 

 

 

 

 

Corneal 

viscoelasticity 

HC (1) OHT (2) OAG (3) ANOVA 

p value 

Post 

hoc 

N 33 13 36   

Time A1 (ms) 7.33 ±0.37 7.45 ±0.30 7.30 ±0.24 0.225  

Time A2 (ms) 21.95 ±0.44 21.66 ±0.48 21.75 ±0.43 0.063  

Velocity A1 (m/s) 0.15 ±0.02 0.13 ±0.03 0.15 ±0.02 0.042 p>0.05 

Velocity A2 (m/s) -0.26 ±0.03 -0.26 ±0.02 -0.27 ±0.03 0.156  

Deformation amp. 

A1 (mm) 

0.13 ±0.01 0.13 ±0.01 0.13 ±0.01 0.862  

Deformation amp. 

A2 (mm) 

0.44 ±0.07 0.44 ±0.08 0.43 ±0.05 0.699  

Highest 

deformation amp. 

(mm) 

1.09 ±0.11 1.07 ±0.12 1.09 ±0.09 0.530  

Highest concavity 

time (ms) 

16.48 ±0.44 16.42 ±0.54 16.43 ±0.54 0.874  

CCT (μm) 555 ±34.34 550 ±21.22 526.94 ±38.08 0.004 1 > 3 
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9.4.2 Relationship between arterial retinal vessel and corneal parameters 

A more viscoelastic, deformable cornea is thought to have a shorter A1 time, 

faster velocity at A1, increased deformation amplitude at A1, increased maximum 

deformation amplitude and have a longer time A2, and slower velocity at A2 

(410). Vasodilation in response to flicker stimulation relies on the dilation of blood 

vessel walls, which is driven by endothelial function (141, 379). Decreased DA, 

BFR and maximum percentage dilation, slower reaction time and constriction 

time are thought to infer vascular dysfunction.  

 

As shown in Table 9.1 and Table 9.2 SAF and CCT were significantly different 

between the groups. Previous research has suggested that a thinner cornea 

experiences increased corneal deformation (589). For this reason, all correlations 

were run within each group rather than with all participants grouped together. In 

addition, any significant correlations between corneal and vascular parameters 

were entered into a stepwise forward and backward multiple linear regression 

with the variables CCT and SAF included.  

 

9.4.2.1 Healthy controls  

Table 9.3 shows the correlations between the six different retinal artery dynamic 

parameters and the eight different corneal viscoelasticity parameters in healthy 

control participants. No significant correlations existed.   
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 Healthy controls 
 
Artery 
 

Pearson’s correlation coefficients (R values) 

DA BFR MD% RT (secs) MC% CT (secs) 

 Mean   
± SD 

5.078 
± 3.830 

2.934 
± 3.014 

3.356 
± 2.679 

15.629 
± 5.790 

1.722 
± 1.970 

24.237 
± 8.786 

Time A1 

(ms) 
7.281 
± 0.366 

0.352 
p = 0.057 

 

0.376  
p = 0.041 

0.247 
p = 0.187 

-0.124 
p = 0.514 

0.344 
p = 0.063 

0.227 
p = 0.228  

Time A2 
(ms) 

22.019 
± 0.429 

-0.187 
p = 0.321 

 

-0.208 
p = 0.269 

-0.160 
p = 0.399 

-0.102 
p = 0.594 

-0.145 
p = 0.443 

-0.133 
p = 0.484 

Velocity A1 
(m/s) 

0.152 
± 0.018 

-0.312 
p = 0.093 

 

-0.299 
p = 0.108 

-0.205 
p = 0.277 

-0.066 
p = 0.730 

-0.325 
p = 0.080 

-0.217 
p = 0.249 

Velocity A2 
(m/s) 

-0.263 
± 0.033 

0.422 
p = 0.020 

0.413  
p = 0.023 

 

0.341 
p = 0.066 

0.141 
p = 0.457 

0.354 
p = 0.055 

0.313 
p = 0.092 

Deformation 
amp. A1 

(mm) 

0.135 
± 0.011 

0.286 
p = 0.125 

0.301 
p = 0.106 

0.239 
p = 0.203 

-0.408  
p = 0.025 

0.229 
p = 0.224 

0.136 
p = 0.473 

Deformation 
amp. A2 

(mm) 

0.443 
± 0.076 

0.058 
p = 0.761 

0.039 
p = 0.837 

0.013 
p = 0.947 

0.005 
p = 0.980 

0.094 
p = 0.619 

-0.130 
p = 0.494 

Highest 
deformation 
amp. (mm) 

1.092 
± 0.113 

-0.199 
p = 0.292 

-0.214 
p = 0.257 

-0.202 
p = 0.283 

-0.035 
p = 0.855 

-0.110 
p = 0.562 

-0.302 
p = 0.105 

Highest 
concavity 
time (ms) 

16.480 
± 0.449 

-0.168 
p = 0.376 

-0.108 
p = 0.570 

-0.085 
p = 0.654 

0.120 
p = 0.529 

-0.208 
p = 0.270 

0.068 
p = 0.723 

Table 9.3: Mean, SD and Pearson’s correlations between the six artery parameters and eight 

corneal viscoelasticity parameters. P<0.01* only correlations of P<0.01 were considered 

significant. BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline corrected 

flicker response, MD%: maximum percentage dilation, RT: reaction time, MC%: minimum 

percentage constriction, CT: constriction time, Time A1: first applanation time, Time A2: second 

applanation time, Velocity A1: velocity of corneal surface movement at the first applanation, 

Velocity A2: velocity of corneal surface movement at second applanation, Deformation amp. A1: 

deformation amplitude at first applanation, Deformation amp. A2: deformation amplitude at 

second applanation, Highest deformation amp: highest deformation amplitude. 

 
 

Table 9.4 shows the correlations between the six different retinal vein dynamic 

parameters and the eight different corneal viscoelasticity parameters in healthy 

control participants. A significant correlation was found between A1 time and 
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venous BFR (r = 0.533, p = 0.002, 95% bootstrap confidence interval 0.112 to 

0.821) as well as between A1 time and venous MD% (r = 0.497, p = 0.005, 95% 

bootstrap confidence interval 0.006 to 0.755). These correlations suggest that a 

less viscoelastic cornea is related to a greater venous dilation response.  

 

Healthy controls 
 
Vein 
 

Pearson’s correlation coefficients (R values) 

DA BFR MD% RT (secs) MC% CT (secs) 

 Mean   
± SD 

5.624 
± 2.756 

3.277 
± 1.949 

4.523 
± 2.053 

18.081 
± 2.572 

1.101 
± 1.294 

32.424 
±6.584 

Time A1 
(ms) 

7.281 
± 0.366 

0.402  
p = 0.027 

0.533 * 
p = 0.002 

0.497 * 
p = 0.005 

-0.353 
p = 0.055 

0.072 
p = 0.704 

0.157 
p = 0.409 

Time A2 

(ms) 
22.019 
± 0.429 

-0.291 
p = 0.118 

-0.404  
p = 0.027 

-0.397  
p = 0.030 

0.344 
p = 0.063 

0.006 
p = 0.975 

-0.006 
p = 0.973 

Velocity A1 

(m/s) 
0.152 
± 0.018 

-0.267 
p = 0.154 

-0.434  
p = 0.017 

-0.356 
p = 0.053 

0.349 
p = 0.059 

-0.007 
p = 0.971 

-0.025 
p = 0.897 

Velocity A2 
(m/s) 

-0.263 
± 0.033 

0.366  
p = 0.047 

0.370  
p = 0.044 

0.362  
p = 0.049 

-0.404  
p = 0.027 

0.208 
p = 0.271 

0.053 
p = 0.782 

Deformation 
amp. A1 

(mm) 

0.135 
± 0.011 

0.270 
p = 0.149 

0.449  
p = 0.013 

0.453  
p = 0.012 

-0.166 
p = 0.380 

-0.139 
p = 0.465 

0.175 
p = 0.356 

Deformation 
amp. A2 

(mm) 

0.443 
± 0.076 

-0.061 
p = 0.750 

-0.064 
p = 0.738 

-0.096 
p = 0.614 

0.343 
p = 0.063 

0.022 
p = 0.907 

0.115 
p = 0.544 

Highest 
deformation 
amp. (mm) 

1.092 
± 0.113 

-0.259 
p = 0.166 

-0.347 
p = 0.061 

-0.358 
p = 0.052 

0.460  
p = 0.010 

0.012 
p = 0.951 

-0.024 
p = 0.899 

Highest 
concavity 
time (ms) 

16.480 
± 0.449 

-0.041 
p = 0.830 

-0.025 
p = 0.895 

-0.127 
p = 0.504 

0.206 
p = 0.275 

0.113 
p = 0.552 

0.173 
p = 0.361 

Table 9.4: Mean, SD and Pearson’s correlations between the six vein parameters and eight 

corneal viscoelasticity parameters. P<0.01*, only correlations of P<0.01 were considered 

significant. BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline corrected 

flicker response, MD%: maximum percentage dilation, RT: reaction time, MC%: minimum 

percentage constriction, CT: constriction time, Time A1: first applanation time, Time A2: second 

applanation time, Velocity A1: velocity of corneal surface movement at the first applanation, 

Velocity A2: velocity of corneal surface movement at second applanation, Deformation amp. A1: 

deformation amplitude at first applanation, Deformation amp. A2: deformation amplitude at 

second applanation, Highest deformation amp: highest deformation amplitude. 
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Forwards stepwise and backwards multiple linear regression analysis was 

performed to determine the factors that had the most influence corneal time A1. 

The independent variables included were those which had previously correlated, 

vein BFR and vein MD%. In addition CCT, SAF and age were included due to the 

literature suggesting they influence corneal viscoelasticity. 

The variable CCT was the single best predictor (p = 0.005), followed by vein 

MD% (p = 0.020). These findings were also found to be true in the backwards 

model. 

 

9.4.2.2 Ocular hypertension 

Table 9.5 shows the correlations between the six different retinal artery dynamic 

parameters and the eight different corneal viscoelasticity parameters in OHT 

patients. In a similar manner to the healthy control patients no significant 

correlations existed.   
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OHT 
 
Artery 
 

Pearson’s correlation coefficients (R values) 

DA BFR MD% RT (secs) MC% CT (secs) 

 Mean   
± SD 

5.258 
± 2.928 

2.841 
± 2.104 

2.966 
± 2.529 

15.462 
± 4.860 

2.293 
± 2.121 

26.320 
±7.956 

Time A1 

(ms) 
7.45 
± 0.302 

0.279 
p = 0.357 

0.109 
p = 0.722 

-0.132 
p = 0.668 

-0.052 
p = 0.866 

0.541 
p = 0.056 

0.145 
p = 0.636 

Time A2 
(ms) 

21.656 
± 0.477 

-0.333 
p = 0.266 

-0.111 
p = 0.718 

0.166 
p = 0.589 

0.097 
p =0.752 

-0.657  
p = 0.015 

0.118 
p = 0.701 

Velocity A1 

(m/s) 
0.134 
± 0.027 

-0.289 
p = 0.339 

-0.164 
p = 0.592 

0.057 
p =0.853 

0.189 
p = 0.537 

-0.466 
p = 0.108 

-0.125 
p = 0.684 

Velocity A2 

(m/s) 
-0.257 
± 0.024 

0.149 
p = 0.627 

-0.075 
p = 0.808 

-0.218 
p =0.474 

0.009 
p =0.978 

0.466 
p = 0.109 

-0.048 
p = 0.877 

Deformation 
amp. A1 

(mm) 

0.133 
± 0.009 

-0.329 
p =0.272 

-0.144 
p = 0.639 

-0.177 
p = 0.564 

-0.128 
p = 0.676 

-0.244 
p =0.422 

0.533 
p =0.061 

Deformation 
amp. A2 

(mm) 

0.442 
± 0.077 

-0.123 
p =0.688 

0.074 
p =0.810 

0.209 
p =0.493 

0.405 
p =0.170 

-0.420 
p =0.153 

0.382 
p =0.198 

Highest 
deformation 
amp. (mm) 

1.067 
± 0.118 

-0.290 
p =0.337 

-0.167 
p =0.585 

0.064 
p =0.835 

0.123 
p =0.688 

-0.476 
p =0.100 

0.146 
0.633 

Highest 
concavity 
time (ms) 

16.419 
± 0.537 

-0.173 
p =0.571 

-0.065 
p =0.833 

0.190 
p =0.534 

0.095 
p =0.758 

-0.466 
p =0.109 

0.040 
p =0.897 

Table 9.5: Mean, SD and Pearson’s correlations between the six artery parameters and eight 

corneal viscoelasticity parameters. P<0.01** only correlations of P<0.01 were considered 

significant. BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline corrected 

flicker response, MD%: maximum percentage dilation, RT: reaction time, MC%: minimum 

percentage constriction, CT: constriction time, Time A1: first applanation time, Time A2: second 

applanation time, Velocity A1: velocity of corneal surface movement at the first applanation, 

Velocity A2: velocity of corneal surface movement at second applanation, Deformation amp. A1: 

deformation amplitude at first applanation, Deformation amp. A2: deformation amplitude at 

second applanation, Highest deformation amp: highest deformation amplitude. 
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Table 9.6 shows the correlations between the six different retinal vein dynamic 

parameters and the eight different corneal viscoelasticity parameters in OHT 

patients. A negative correlation between corneal A1 time and vein BFR existed (r 

= -0.772, p = 0.002, 95% bootstrap confidence interval -0.529 to -0.929), with a 

shorter A1 time related to increased vein BFR. A positive correlation between 

highest deformation amplitude and vein BFR existed (r = 0.693, p = 0.009, 95% 

bootstrap confidence interval 0.164 to 0.927), as there was increased maximum 

deformation there was increased vein BFR. The results of both of these 

correlations suggest that a less deformable viscoelastic cornea is related to 

reduced venous dilation response.  
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OHT 
 
Vein 
 

Pearson’s correlation coefficients (R values) 

DA BFR MD% RT (secs) MC% CT (secs) 

 Mean   
± SD 

4.613 
± 2.066 

2.315 
± 2.516 

3.761 
± 2.135 

17.077 
± 4.141 

0.853 
± 0.919 

25.385 
±9.301 

Time A1 

(ms) 
7.45 
± 0.302 

-0.502 
p = 0.080 

-0.772 * 
p = 0.002 

-0.582  
p = 0.037 

-0.640  
p = 0.019 

0.224 
p = 0.462 

-0.524 
p = 0.066 

Time A2 
(ms) 

21.656 
± 0.477 

0.345 
p = 0.248 

0.599  
p = 0.030 

0.474 
p = 0.101 

0.526 
p = 0.065 

-0.326 
p = 0.277 

0.583  
p = 0.036 

Velocity A1 
(m/s) 

0.134 
± 0.027 

0.356 
p = 0.233 

0.621  
p = 0.023 

0.430 
p = 0.142 

0.548 
p = 0.052 

-0.199 
p = 0.513 

0.628  
p = 0.021 

Velocity A2 

(m/s) 
-0.257 
± 0.024 

-0.448 
p = 0.125 

-0.564  
0.044 

-0.440 
p = 0.132 

-0.553  
p = 0.050 

0.017 
p = 0.956 

-0.611  
p = 0.026 

Deformation 
amp. A1 
(mm) 

0.133 
± 0.009 

-0.111 
p = 0.718 

-0.040 
p = 0.897 

-0.085 
p = 0.782 

0.009 
p = 0.977 

-0.052 
p = 0.866 

-0.023 
p = 0.939 

Deformation 
amp. A2 
(mm) 

0.442 
± 0.077 

0.369 
p = 0.215 

0.601  
p = 0.030 

0.419 
p = 0.155 

0.033 
p = 0.914 

-0.143 
p = 0.640 

0.355 
p = 0.235 

Highest 
deformation 
amp. (mm) 

1.067 
± 0.118 

0.399 
p = 0.177 

0.693 * 
p = 0.009 

0.485 
p = 0.093 

0.264 
p = 0.383 

-0.229 
p = 0.452 

0.480 
p = 0.097 

Highest 
concavity 
time (ms) 

16.419 
± 0.537 

0.473 
p = 0.103 

0.595  
p = 0.032 

0.436 
p = 0.137 

0.045 
p = 0.883 

0.050 
p = 0.870 

0.598  
p = 0.031 

Table 9.6: Mean, SD and Pearson’s correlations between the six vein parameters and eight 

corneal viscoelasticity parameters. P<0.01**, only correlations of P<0.01 were considered 

significant.. BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline corrected 

flicker response, MD%: maximum percentage dilation, RT: reaction time, MC%: minimum 

percentage constriction, CT: constriction time, Time A1: first applanation time, Time A2: second 

applanation time, Velocity A1: velocity of corneal surface movement at the first applanation, 

Velocity A2: velocity of corneal surface movement at second applanation, Deformation amp. A1: 

deformation amplitude at first applanation, Deformation amp. A2: deformation amplitude at 

second applanation, Highest deformation amp: highest deformation amplitude. 
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Forwards stepwise and backwards multiple linear regression analysis was 

performed to determine the factors that had the most influence corneal time A1. 

The variable vein BFR was included due to the correlation. In addition, CCT, SAF 

and age were included due to the literature suggesting they influence corneal 

viscoelasticity. 

The variable vein BFR was the single best predictor (p = 0.001), followed by SAF 

(p = 0.009). These findings were also found to be true in the backwards model. 

 

Forwards stepwise and backwards multiple linear regression analysis was also 

performed to determine the factors that had the most influence on the corneal 

viscoelastic parameter ‘highest deformation amplitude’. The variable vein BFR 

was included due to the correlation. In addition, CCT, SAF and age were included 

due to the literature suggesting they influence corneal viscoelasticity. 

The variable vein BFR was the single best predictor (p = 0.009), with no other 

significant variables. These findings were also found to be true in the backwards 

model. 

 

9.4.2.3 Open angle glaucoma (NTG and POAG patients) 

Table 9.7 shows the correlations between the six different retinal artery dynamic 

parameters and the eight different corneal viscoelasticity parameters in the open 

angle glaucoma patients. One significant correlation existed between the 

parameters, a faster velocity at A1 related to reduced artery BFR (r = -0.521, p = 

0.001, 95% bootstrap confidence interval -0.236 to -0.757). This relationship 

suggests that in this group of open angle glaucoma patients a more viscoelastic 

cornea is related to a reduced arterial dilation response to flicker light.  



272 
 

 
Glaucoma 
 
Artery 
 

Pearson’s correlation coefficients (R values) 

DA BFR MD% RT (secs) MC% CT (secs) 

 Mean   
± SD 

5.029 
± 3.379 

1.822 
± 2.184 

3.078 
± 3.148 

14.191 
± 6.279 

2.189 
± 2.804 

22.255 
± 9.244 

Time A1 
(ms) 

7.299 
± 0.240 

0.324 
p = 0.057 

0.324  
p = 0.045 

0.282 
p = 0.101 

-0.011 
p = 0.948 

0.134 
p = 0.444 

0.045 
p = 0.799 

Time A2 

(ms) 
21.749 
± 0.431 

-0.144 
p = 0.410 

-0.322 
p = 0.059 

-0.150 
p = 0.389 

0.096 
p = 0.582 

-0.021 
p = 0.905 

-0.003 
p = 0.989 

Velocity A1 
(m/s) 

0.151 
± 0.020 

-0.264 
p = 0.126 

-0.521 * 
p = 0.001 

-0.268 
p = 0.120 

0.064 
p = 0.715 

-0.039 
p = 0.823 

-0.105 
p = 0.548 

Velocity A2 

(m/s) 
-0.276 
± 0.037 

0.397  
p = 0.018 

0.388  
p = 0.021 

0.334  
p = 0.050 

0.229 
p = 0.187 

0.157 
p = 0.368 

0.281 
p = 0.102 

Deformation 
amp. A1 
(mm) 

0.134 
± 0.009 

0.089 
p = 0.613 

-0.167 
p = 0.337 

0.074 
p = 0.674 

0.151 
p = 0.385 

0.055 
p = 0.753 

0.172 
p = 0.322 

Deformation 
amp. A2 
(mm) 

0.429 
± 0.057 

0.027 
p = 0.877 

-0.131 
p = 0.454 

0.193 
p = 0.266 

0.206 
p = 0.236 

-0.260 
p = 0.132 

-0.016 
p = 0.928 

Highest 
deformation 
amp. (mm) 

1.106 
± 0.096 

-0.317 
p = 0.063 

-0.410  
p = 0.014 

-0.200 
p = 0.248 

0.035 
p = 0.842 

-0.220 
p = 0.204 

-0.049 
p = 0.779 

Highest 
concavity 
time (ms) 

16.421 
± 0.547 

-0.068 
p = 0.698 

-0.172 
p = 0.324 

-0.020 
p = 0.910 

-0.100 
p = 0.567 

-0.063 
p = 0.719 

-0.259 
p = 0.133 

Table 9.7: Mean, SD and Pearson’s correlations between the six artery parameters and eight 

corneal viscoelasticity parameters. P<0.01*. BDF: baseline diameter fluctuation, DA: dilation 

amplitude, BFR: baseline corrected flicker response, MD%: maximum percentage dilation, RT: 

reaction time, MC%: minimum percentage constriction, CT: constriction time, Time A1: first 

applanation time, Time A2: second applanation time, Velocity A1: velocity of corneal surface 

movement at the first applanation, Velocity A2: velocity of corneal surface movement at second 

applanation, Deformation amp. A1: deformation amplitude at first applanation, Deformation amp. 

A2: deformation amplitude at second applanation, Highest deformation amp: highest deformation 

amplitude. 
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Forwards stepwise and backwards multiple linear regression analysis was 

performed to determine the factors that had the most influence on the corneal 

viscoelastic parameter velocity A1. The variable artery BFR was included due to 

the correlation. In addition, CCT, SAF and age were included due to the literature 

suggesting they influence corneal viscoelasticity. Artery BFR was the single best 

predictor (p = 0.006), followed by CCT (p = 0.026). These findings were also 

found to be true in the backwards model. 

 

Table 9.8 shows the correlations between the six different retinal vein dynamic 

parameters and the eight different corneal viscoelasticity parameters in the open 

angle glaucoma patients. As previously mentioned a slower A2 velocity indicates 

a more viscoelastic cornea. A2 velocity was found to correlate with vein reaction 

time (r = 0.484, p = 0.003, 95% bootstrap confidence interval -0.055 to 0.809), 

with a faster A2 velocity related to faster vein reaction time. In a similar manner 

A2 velocity correlated with vein constriction time (r = 0.434, p = 0.009, 95% 

bootstrap confidence interval -0.070 to 0.736), with a faster A2 velocity related to 

a faster vein constriction time. Both of these results indicate that a less 

viscoelastic cornea is related to a faster venous response and recovery time.  
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Glaucoma 
 
Vein 
 

Pearson’s correlation coefficients (R values) 

DA BFR MD% RT (secs) MC% CT (secs) 

 Mean   
± SD 

5.299 
± 2.997 

2.422 
± 2.604 

4.754 
± 2.950 

18.278 
± 5.368 

0.618 
± 1.352 

30.028 
± 9.924 

Time A1 

(ms) 
7.299 
± 0.240 

0.017 
p = 0.922 

0.001 
p = 0.994 

0.003 
p = 0.988 

-0.003 
p = 0.985 

0.082 
p = 0.641 

-0.077 
p = 0.660 

Time A2 
(ms) 

21.749 
± 0.431 

0.110 
p = 0.530 

-0.019 
p = 0.914 

0.114 
p = 0.514 

0.111 
p = 0.525 

-0.018 
p = 0.917 

0.218 
p = 0.209 

Velocity A1 

(m/s) 
0.151 
± 0.020 

0.024 
p = 0.889 

-0.047 
p = 0.788 

0.031 
p = 0.858 

-0.046 
p = 0.795 

-0.049 
p = 0.779 

0.013 
p = 0.942 

Velocity A2 

(m/s) 
-0.276 
± 0.037 

0.319 
p = 0.062 

0.180 
p = 0.300 

0.284 
p = 0.099 

0.484 * 
p = 0.003 

0.141 
p = 0.420 

0.434 * 
p = 0.009 

Deformation 
amp. A1 

(mm) 

0.134 
± 0.009 

0.159 
p = 0.361 

0.019 
p = 0.913 

0.168 
p = 0.334 

0.127 
p = 0.469 

0.013 
p = 0.940 

0.025 
p = 0.887 

Deformation 
amp. A2 

(mm) 

0.429 
± 0.057 

0.380  
p = 0.024 

0.073 
p = 0.678 

0.385 
p = 0.022 

0.193 
p = 0.267 

-0.053 
p = 0.761 

0.145 
p = 0.406 

Highest 
deformation 
amp. (mm) 

1.106 
± 0.096 

0.026 
p = 0.881 

-0.016 
p = 0.929 

0.064 
p = 0.715 

-0.061 
p = 0.726 

-0.136 
p = 0.437 

0.067 
p = 0.702 

Highest 
concavity 
time (ms) 

16.421 
± 0.547 

-0.018 
p = 0.920 

-0.159 
p = 0.361 

-0.058 
p = 0.740 

-0.281 
p = 0.102 

0.081 
p = 0.644 

-0.285 
p = 0.097 

Table 9.8: Pearson’s correlations between the six vein parameters and eight corneal 

viscoelasticity parameters. P<0.01**. BDF: baseline diameter fluctuation, DA: dilation amplitude, 

BFR: baseline corrected flicker response, MD%: maximum percentage dilation, RT: reaction time, 

MC%: minimum percentage constriction, CT: constriction time, Time A1: first applanation time, 

Time A2: second applanation time, Velocity A1: velocity of corneal surface movement at the first 

applanation, Velocity A2: velocity of corneal surface movement at second applanation, 

Deformation amp. A1: deformation amplitude at first applanation, Deformation amp. A2: 

deformation amplitude at second applanation, Highest deformation amp: highest deformation 

amplitude. 
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Forwards stepwise and backwards multiple linear regression analysis was 

performed to determine the factors that had the most influence corneal velocity 

A2. The independent variables included were those which had previously 

correlated, vein RT and vein CT. In addition CCT, SAF and age were included 

due to the literature suggesting they influence corneal viscoelasticity. 

The variable vein RT was the single best predictor (p = 0.003), followed by CCT 

(p = 0.041). These findings were also found to be true in the backwards model. 

 

 

9.5 Discussion 

The aim of this study was to explore if any relationship existed between the 

viscoelastic properties of the cornea and dynamic retinal vessel response to 

flicker stimulation. It is thought that this is the first study to compare these 

parameters. In the population examined, which included healthy, OHT, NTG and 

POAG participants, correlations were found between corneal viscoelasticity and 

retinal vessel responsiveness. There are no previous studies which relate corneal 

viscoelastic properties to the retina or retinal vascular properties. Hence, there is 

no research to directly compare the results of this study to. 

 

A less viscoelastic cornea has been linked with glaucoma (337, 581, 582), and it 

has been suggested that an increased viscoelasticity of the cornea may have a 

protective role against glaucoma (340). In this study, no significant differences in 

corneal viscoelasticity were found between the different groups. The only 

parameter that was significantly different was CCT, with healthy participants 

having a thicker CCT than glaucoma patients. The other measurement different 
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between groups was SAF, with the OAG group having a higher SAF level than 

healthy controls. As potential confounding variables, CCT and SAF were included 

in multiple linear regressions along with the relevant corneal and vascular 

parameters at each stage of the analysis. CCT and SAF were not found to be 

consistent predictors in the different regression analysis. This suggests that the 

relationships found between corneal and vascular parameters were not 

dependent on SAF or CCT levels. 

 

In this study, a less viscoelastic cornea was found to relate to an increased 

arterial dilation response to flicker light in OAG patients only. Based on the 

findings of previous studies that have separately evaluated corneal viscoelasticity 

and retinal artery dilation response in glaucoma patients, this finding is perhaps 

contradictory, as a less viscoelastic cornea and a reduced, rather than increased, 

arterial dilation response has typically been linked to the disease. Previous 

studies using the DVA have however found differing results in relation to arterial 

dilation response to flicker. Garhöfer et al. (2004) found no significant difference 

in arterial flicker response between glaucoma and healthy control groups (305) 

where-as Gugleta et al. (2013) found that response to flicker light was decreased 

in POAG patients compared to controls (603). It is interesting that this 

relationship between arterial dilation response and corneal viscoelasticity was 

only present in the OAG patients and not the HC or OHT patients considering 

there were no significant differences in either corneal viscoelasticity or vascular 

parameters between groups. The result may have been influenced by there being 

a wider variation of results in the OAG group. Due to the small sample sizes, in 

this study, NTG and POAG patients have been grouped together. In Chapter 8 
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altered CRAE was found in our NTG patients, with this group having a 

significantly narrower artery equivalent compared to healthy controls. It may be 

that the relationship found in this study is being driven by a mechanism occurring 

in NTG patients, however more data is needed to better understand this.  

 

With regard to retinal venous response to flicker light and corneal viscoelasticity, 

in this study, a less viscoelastic cornea was found to relate to a faster venous 

response and recovery time in OAG patients and to an increased venous dilation 

response in healthy participants. Somewhat contradictorily to this however, in the 

OHT group a less viscoelastic cornea was found to relate to a reduced venous 

dilation response to flicker light. Retinal venous dilation response following flicker 

light stimulation has been found to be reduced in NTG patients (304) and OAG 

patients (305, 603) compared to healthy controls. A reduced vascular response of 

the tissue is thought to indicate altered endothelial function in these patients. 

There are fewer studies that have assessed retinal venous responses to flicker in 

OHT patients, with studies focusing on response of vessels after IOP rise (282). 

In a recent study the viscoelastic property, corneal hysteresis, was found to be 

higher, i.e. more viscoelastic, in OHT patients compared to glaucoma patients 

however, suggesting that increased viscoelasticity of the cornea may have a 

beneficial, having a protective role against glaucoma (340). This is of interest 

when considered in relation to the OHT results of this study, as a less viscoelastic 

cornea was related to reduced vein dilation response to flicker light. If reduced 

venous reactivity does indeed indicate endothelial function, this could suggest 

that endothelial dysfunction is related to a stiffer, less viscoelastic cornea in OHT 

patients and potentially an increased risk of glaucomatous damage. If this were 
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the case however, it would have been expected that the OAG patients would 

have demonstrated a similar relationship, however no such relationship was 

found. The OAG patients in this study were at the early stages of their disease 

process. There were no significant differences in the vascular parameters 

between OAG and OHT patients in this study, so although it appears 

viscoelasticity and dynamic vascular response of the vein are indeed related, in 

which way is not clear and larger scale studies would be needed to confirm this 

relationship. 

 

It is not known whether the extracellular matrix of the cornea is affected by AGEs 

in a different way to the extracellular matrix in the vessels due to differing ratios of 

elastin and collagen within the structures, and differing types of collagen (604, 

605). It is known that AGE crosslinks form in different types of collagen, however 

collagen type I is thought to be particularly prone to cross-linking (74, 137, 606). 

There is currently no evidence that vessels are more or less prone to AGE cross-

linking than the cornea. This is relevant as differences may help to explain why 

the structures respond differently to one another.  

 

An additional hypothesis important to consider is that the results of this study may 

be unusual and different to what was expected due to the difference in how the 

measurements are achieved. The Corvis ST uses a stimulus that forces the 

cornea to respond in a manner that is not ‘normal’ and would not occur under 

normal conditions. The DVA however relies upon the normal autoregulation 

mechanism to measure response to a stimulus. The response is one which would 

occur under normal conditions. One possible reason for the difference could 
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therefore be how the tissues respond differently when reacting in a recreation of 

‘normal circumstances’, as opposed to those when a forced response is 

prompted. In addition the vascular parameters described here were the result of 

multiple reactions and responses including, myogenic factors, metabolic factors 

and endothelial agents such as NO (607). Whereas the reaction of the cornea is 

a structural response, the corneal deformation and recovery. Hence the vascular 

parameters has more possible factors that could affect the dilation response 

measurements. In addition, one possible factor that could have affected the 

results is that all glaucoma patients continued to use their glaucoma IOP-lowering 

drops as normal. It is known that drops can affect the ocular surface, which in 

turn may have affected the Corvis ST measurement (410, 593).  

 

9.6 Conclusion  

Retinal artery and vein parameters of dynamic retinal function were found to be 

related to viscoelastic corneal properties. In open angle glaucoma patients, a less 

viscoelastic cornea was found to be related to increased arterial dilation response 

to flicker light and a faster venous response and recovery time. The results 

however are not consistent between the groups, which causes some uncertainty 

to the relationships. It is not clear from these results if AGEs cause increased 

stiffness to one structure more than another.  

 

9.7 Limitations  

Participants that were prescribed anti-glaucomatous drops were not excluded. 

This may have impacted the results as these drops can affect the ocular surface, 

which could affect the Corvis ST measurement (410, 593). In addition some anti-
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glaucomatous drops are known to be vasoactive, this may affect the retinal 

vasculature and hence affect the dynamic retinal vascular measurements. 

However the vascular effects of IOP lowering drops on retinal vascular calibre is 

not fully understood (265). 

 

There was an upper limit exclusion criteria for CCT, however due to the lower 

participant numbers in the NTG and OHT groups CCT matching was not possible 

between the groups, in future studies increased numbers of participants would 

allow better matching of patients.  

 

Some results in this study were close to significance. Any larger scale studies 

may help to confirm/deny the findings which are close to significance.  
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10. Summary & conclusions 
 

 
10.1 Summary 

AGEs have the potential to impact both the healthy ageing population and those 

diagnosed with pathology. Enhancing understanding of the role that AGEs may 

play in accelerating the development of age-related conditions, such as open 

angle glaucoma has the potential to offer additional insight into pathogenesis and 

act as a biomarker. Dietary AGE intake represents a potentially modifiable target, 

design of a UK specific AGE FFQ was an aim of this thesis to enable the 

measurement of dietary AGE intake in the UK population. Evaluating the impact 

of AGEs and dietary AGEs on a healthy ageing population as well as patients 

with OHT, NTG and POAG has been a focus of this thesis, as well investigating 

the relationships between AGEs, the retinal vasculature and corneal 

viscoelasticity.  

 

In summary the findings of this work were: 

 

10.1.1 (4.0) Validation of a specifically designed semi-quantitative food frequency 

questionnaire  

The known links between dAGE and pathology and the concept that they are a 

potentially modifiable factor makes assessment of dAGE intake an area of great 

interest. The aim of this study was to design and validate a UK-specific FFQ for 

use in AGE research. In addition, this study aimed to assess the reliability of the 

newly developed FFQ and to compare the dAGE outputs calculated using the 

three different databases. 
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The comparisons between databases suggested that they are more in line with 

each other than previously thought. The choice of database should therefore be 

based upon which is most relevant to the population, and has enough foods 

measured to ensure minimal instances of assigning ‘assumed values’ to foods 

with no assigned measured value. The strong correlations found between the 

three different types of AGEs measured by Schejien (CML, CEL and MG-H1) 

suggests that when considering diet as a whole, an individual dAGE may be 

sufficient to give a representation as to if a person has a high or low AGE diet. 

 

The UK-specific semi-quantitative FFQ developed to measure dAGE was found 

to produce valid results when compared to a 4-day FR and to be reliable across 

two completions; this indicates that it is a useful tool for estimating dAGE in a UK 

population. We were however unable to validate the FFQ against the objective 

plasma CML-AGE measurement and the reasons behind this require further 

research, but could relate to the measurement technique used.  

 

10.1.2 (5.0) The relationship between skin autofluorescence, dietary AGE intake 

and circulating oxidative stress levels in a healthy ageing population 

Questions remain as to if dAGEs accumulate in tissues or if they cause biological 

consequence. As such, the aim of this study was to determine whether dAGE 

intake is associated tissue-bound AGE levels (SAF) in a healthy ageing 

population.  If addition, due to oxidative stress having strong links with AGEs the 

study aimed to determine whether circulating oxidative stress levels relate to 

tissue-bound AGE levels (SAF) and dAGE in this same population.  
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The results of this study suggest that the contribution of dAGE to tissue-bound 

AGE levels may be minimal. This however requires further investigation. New 

AGE databases, and different AGEs are being measured which will aid further 

research. The relationship between oxidative stress and AGEs was investigated, 

no significant associations between oxidative stress biomarkers and dAGE were 

found. The oxidative stress biomarker alpha tocopherol correlated with SAF, this 

was however in the opposite way to that hypothesised and therefore requires 

further investigation before the relevance and insight that could be gained from 

this finding can be determined. The results also suggest that tissue-bound AGEs 

measured by SAF and the circulating oxidative stress biomarkers measured in 

this study are not closely related. For this reason the AGE reader, SAF, should 

not simply be used as a marker for oxidative stress and instead the two 

measures should be used alongside each other, rather than interchangeably in 

place of each other. 

 

10.1.3 (6.0) AGE levels in early stage POAG, NTG and OHT patients 

The results of Chapter 5 indicated that the contribution of dAGE to tissue-bound 

AGE levels is minimal, and requires further investigation to understand which, if 

any, types of AGEs are impacting tissue-bound levels in a healthy ageing 

population. Previous research however has shown that diets higher in dAGE are 

linked with pathology, for this reason it was decided that dAGE would be included 

in this study to allow the assessment of dAGE intake between HC and pathology 

groups.   
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It has been hypothesised that increased accumulation of AGEs could be the 

underlying causative factor for a number of the known pathological associations 

of GON and ultimately contribute towards its development in some individuals 

through acceleration of the ageing process. The aim of this study was to 

determine whether tissue bound and dAGE levels are elevated in POAG and 

NTG in comparison to age-matched OHT patients and healthy controls. Oxidative 

stress levels were compared as a possible influencing factor. No previous studies 

had examined SAF in these three groups in conjunction with each other. 

 

Tissue-bound AGE, SAF level, was significantly higher in NTG and POAG 

compared to healthy controls. This finding adds to the evidence that SAF, as an 

accessible measure, may be a suitable long-term biomarker of glaucoma. 

Understanding if AGEs influence vascular parameters more than structure of 

tissues is not yet established. Dietary AGE intake was found to be similar 

between healthy controls, OHT, NTG and POAG patients. Patients with POAG 

exhibited lower levels of the antioxidants ascorbate and alpha tocopherol 

compared to OHT and healthy controls, suggesting oxidation inhibition. There 

was however no increased level of MDA. 

 

10.1.4 (7.0) The relationship between tissue-bound AGE levels (SAF), retinal 

vessel structure and function and corneal viscoelastic properties in a healthy 

ageing population 

Age-related changes in the eye have been linked with pathology. There are no 

previous studies that have explored whether tissue-bound AGE levels are directly 

associated with retinal vessel structure and function, or corneal viscoelasticity, 
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hence the aim of this study was to determine how tissue-bound AGE levels are 

associated with static and dynamic retinal vessel parameters and corneal 

viscoelasticity in a healthy ageing population.   

 

Higher levels of tissue-bound AGE (SAF), were associated with narrower retinal 

arteries in a healthy population. This finding adds to the evidence that AGEs are 

an accessible marker of vascular health. Increased levels of ascorbate were 

associated with wider retinal arteries, this supports previous literature that diet 

derived antioxidants may have a protective effect. In this healthy population SAF 

was not found to be associated with dynamic vessel parameters or corneal 

viscoelastic parameters, however this may be due to the healthy group recruited 

as mean SAF was lower than expected.  

 

10.1.5 (8.0) The relationship between tissue bound AGE levels, static and 

dynamic retinal vessel structure and function, and corneal viscoelasticity in 

POAG, NTG and OHT patients 

In Chapter 6 SAF was significantly higher in NTG and POAG compared to 

healthy controls. This finding adds to the evidence that SAF, as an accessible 

measure, may be a suitable long-term biomarker of glaucoma. Understanding if 

AGEs influence vascular parameters in glaucoma is not yet established. 

Therefore, the aim of this study was to evaluate whether level of tissue bound 

AGEs (SAF) relates to static and dynamic retinal vessel structure and function 

and corneal viscoelasticity in POAG, NTG and OHT patients. It was shown in 

Chapter 6 that dAGE level is not significantly different between HC, OHT, NTG 

and POAG groups. For this reason, dAGEs were not assessed in this study. 
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The NTG group, who were shown to have a higher SAF level in comparison to 

healthy controls in Chapter 6, were found to have a significantly narrower CRAE. 

A direct relationship between SAF and CRAE was however not found within this 

group and it is thought this could relate to the small overall number of NTG 

participants recruited for this study. Indeed, the negative relationship shown in 

the larger HC group in Chapter 7 could indicate that narrower CRAE is related to 

increased SAF levels in principle.  

 

Increased SAF levels were found to associate with a less viscoelastic, stiffer 

cornea in the NTG group only. It is possible that increased SAF levels contribute 

to increased rigidity of the ocular structures which leave them more susceptible to 

damage from more ‘normal’ IOP levels, or small reductions in arterial blood 

supply, however larger scale studies would be needed before any conclusions 

could be drawn from these findings. There was no significant relationship in the 

OHT or POAG groups. The lack of statistically significant relationships between 

SAF and dynamic vascular parameters in any groups suggests that at the early 

stages of the disease process tissue-bound AGE levels do not significantly 

influence the vasoactive response of the retinal microvasculature to increased 

metabolic demand from flicker light stimulation.  

 

10.1.6 (9.0) The relationship between retinal vessel function and corneal 

viscoelasticity in OAG, NTG, OHT and healthy patients 

Although differing structures, both retinal vessels and the cornea are thought to 

be stiffened by AGE collagen cross-linking. This stiffening throughout the 

structures of the eye could contribute to overall ocular mechanical rigidity. The 
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aim of this study was to explore whether dynamic retinal vascular parameters are 

related to corneal viscoelastic parameters in HC, OHT, OAG patients.  

 

Retinal artery and vein parameters of dynamic retinal function were found to be 

related to viscoelastic corneal properties. In open angle glaucoma patients, a less 

viscoelastic cornea was found to be related to increased arterial dilation response 

to flicker light and a faster venous response and recovery time. The results 

however are not consistent between the groups, which causes some uncertainty 

to the relationships. It is not clear from these results if mechanical rigidity occurs 

at an equal rate throughout the eye, or if structure is affected more than another. 

Larger scale studies may help to identify which way relationships exist in different 

patient groups.  

 

10.2 Overall limitations 

The studies outlined in this thesis are subject to potential limitations.  

The sample size recruited for OHT and NTG was lower than the target sample 

size, this potentially limits the conclusions drawn from this study. The challenge 

with recruitment of early stage glaucoma participants and OHT participants was 

due to the strict inclusion/exclusion criteria. These criteria however were 

necessary to avoid any other influences on AGE level, e.g. if smokers were 

included then this may have masked any other relationships. As a result of this 

strict criteria and exclusion of other disease linked to AGEs the resultant group of 

participants were particularly healthy and as a result had a lower SAF level than 

was expected for mean age.  
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The AGE-reader (DiagnOptics B.V., Groningen, The Netherlands) as explained in 

previous Chapters, is a device which utilises the fluorescent properties of tissue-

bound AGEs in the skin to provide a measurement of skin autofluorescence 

(SAF). A limitation of the device is that it can only assess Fitzpatrick skin colour 

classes 1-4 (419). Fitzpatrick skin colour classes 5 and 6 (Skin reflectance <6%) 

do not give the required reflectance for a reliable measurement (416, 417, 419). 

As described in Chapter 6, SAF has been found to be significantly higher in NTG 

and POAG compared to healthy controls. A problem arises here in that ethnicity 

is a risk factor for glaucoma, with people of African descent more at risk of 

developing glaucoma (608-611). It is this same ethnicity group that has the 

darkest skin and would not be able to have a reliable SAF measurement taken.  

 

The Plasma AGE-CML ELISA kit used was not validated and produced results 

which did not agree with the previous research. The standards given with this kit 

were not in the same range as the measurements found, this will have impacted 

the results. In future research plasma AGE-CML will be carried out using the 

UPLC–MS/MS method. 

 

Participants that were prescribed anti-glaucomatous drops were not excluded. 

This may have impacted the results as these drops can affect the ocular surface, 

which could affect the Corvis ST measurement (410, 593). In addition some anti-

glaucomatous drops are known to be vasoactive, this may affect the retinal 

vasculature and hence affect the dynamic retinal vascular measurements. 

However the vascular effects of IOP lowering drops on retinal vascular calibre is 

not fully understood (265). 
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10.3 Clinical implications 

 

10.3.1 Implications in regard to dAGE 

The UK-specific semi-quantitative FFQ developed for this thesis offers a method 

of dAGE intake measurement that could be used in both future research and a 

clinical setting.  

 

10.3.2 Implications in regard to open angle glaucoma patients 

The results of this study found that SAF, as a measure of tissue-bound AGE 

level, may be a suitable long-term biomarker of glaucoma. SAF is an easily 

accessible fast measurement. The introduction of AGE readers to measure SAF 

could be something seen in a clinical setting either in a hospital or ‘high street’ 

setting and may be a useful tool as part of glaucoma screening.   

 

 

10.4 Future directions 

 

10.4.1 Further FFQ validation 

Despite the results of this thesis suggesting that the newly developed UK specific 

AGE FFQ is repeatable and a useful tool for estimating dAGE in a UK population, 

further validation and review should take place. This validation should use UPLC-

MS/MS to measure CML in the plasma. 
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10.4.2 Assessment of AGE-reader capabilities 

Since the AGE reader was able to successfully measure SAF readings in 

participants whose characteristics would be linked to Fitzpatrick class 5 further 

research is required to better understand the capabilities of the AGE reader and 

establish which ethnicity groups can be measured accurately. In addition further 

investigation into how body fat percentage and fat mass impact SAF 

measurements is of interest.  

  

10.4.3 Larger scale studies  

Despite statistically significant results being demonstrated in this thesis any larger 

scale studies may help to confirm/deny the findings which are close to 

significance. In addition to this, including sub-groups with varying levels of 

glaucomatous damage would be of interest as to AGEs influence on glaucoma 

progression.  

 

10.4.4 AGE levels influence on the rate of glaucoma progression 

Assessing if baseline AGE (SAF) levels are associated with an increased rate of 

progression in NTG and POAG patients as well as determine whether SAF levels 

are associated with OHT progression to develop POAG. This would be a long-

term follow up study assessing early stage glaucoma patients and following the 

changes in visual field mean deviation and OCT retinal nerve fibre layer. These 

parameters are measured routinely in the glaucoma follow-up clinics and would 

therefore be easily accessible. The literature suggests that a follow-up period of 

between 3-5 years is preferential for determining the potential role of influencing 

factors on rate of progression in glaucoma. 
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Appendix 1 – REC & HRA approval  
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15/12/16 
 
Dear Leanne,   
 
Further to the below, I am pleased to confirm that HRA Approval has been issued for the 
referenced amendment, following assessment against the HRA criteria and standards.  
 
The sponsor should now work collaboratively with participating NHS organisations in England to 
implement the amendment as per the below categorisation information.  This email may be 
provided by the sponsor to participating organisations in England to evidence that the 
amendment has HRA Approval. 
 
Please contact hra.amendments@nhs.net  for any queries relating to the assessment of this 
amendment. 
 
Yours sincerely, 
 
 
Kind Regards 
Steph Macpherson 
HRA Senior Assessor 
  

 

Health Research Authority 
HRA, Ground Floor, Skipton House, 80 London Road, London, SE1 6LH 
E: hra.approval@nhs.net  
www.hra.nhs.uk 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:hra.amendments@nhs.net
mailto:hra.approval@nhs.net
http://www.hra.nhs.uk/
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nt information sheet  

 

 

 

Participant information sheet   

Project title: Advanced glycation end products as a biomarker for accelerated 

ageing  

We would like to invite you to participate in a research study being conducted by Miss 

Leanne Smewing, Optometrist and PhD researcher, in conjunction with Dr Stephanie 

Mroczkowska, Dr Desley White and Professor Paul Artes from Plymouth University.  

Before deciding if you would like to participate it is important for you to understand why 

the research is being undertaken and what it will involve. This information sheet explains 

the background and aims of the study. Please take time to read it carefully and discuss it 

with others if you wish. If anything is unclear, or if you would like more information, 

please ask us. Your participation in this study is entirely voluntary.  

 

Information related to your participation 

1. What is this study about? 

Glaucoma is a disease of the eye which affects over 60 million people worldwide. The 

exact cause of glaucoma is still relatively poorly understood, however one of the most 

significant risk factors for its development is thought to be advancing age.  This study 

aims to explore whether ageing products that accumulate naturally within the body over 

time (called advanced glycation end-products (AGEs)) influence the function of the blood 

vessels at the back of the eye in healthy individuals. It also aims to explore whether the 

accumulation of these ageing products occurs to a higher level in those with glaucoma 

and/or in those with high pressure in the eye. 

2. Why have I been invited to participate? 

To allow measurement of ‘normal ageing’ and to allow the comparison of ‘normal’ results 

to those of our participants diagnosed with glaucoma or high eye pressure, this study 

requires the participation of healthy volunteers, like yourself, who do not suffer from 

either eye condition.  

3. What does the study involve? 

Data collection for the study will be carried out across 2 sessions. Session 1 will be 

carried out at Peninsula Allied Health Centre (PAHC), Derriford, PL6 8BH or the 

Wellbeing Centre, Endsleigh Place, Plymouth University, Drake Circus, PL4 8AA. 

 
 

 

Appendix 2.1 – Healthy control information sheet  
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Session 2 will be carried out at Human Metabolism laboratory, Food and Nutrition Unit, 

Link Building, Drake Campus, Plymouth University. 

Session 1 procedures: 

- Completion of a short questionnaire 

- Measurement of vision 

- Examination of the health of your eyes and insertion of drops 

- Measurement of eye pressure 

- Have a scan taken of the front of your eye (cornea) 

- Have a scan taken of the back of your eye (retinal vessel function) 

Total visit time approximately 2.5 hours  

Session 2 procedures: 
- Height and weight measured 

- Measurement of blood pressure 

- Measure AGE level with skin reader 

- Finger prick blood sugar test 

- Obtain a blood sample 

- Complete a food questionnaire  

Total visit time approximately 2 hours  

 

4. What is expected of me at these sessions? 

Session 1: Carried out at Peninsula Allied Health Centre (PAHC), Derriford, PL6 8BH or 

Wellbeing Centre, Endsleigh Place, Plymouth University, Drake Circus, PL4 8AA 

Before session 1: 

 Leanne Smewing (chief investigator) will call you and remind you of your 

appointment time and remind you that as drops will be inserted into one of your eyes 

at this visit you will not be able to drive for 4 hours after the appointment 

(alternative travel arrangements will need to be made). 

 Due to their possible effect on your blood vessel measurement, you will be asked to 

avoid the following in the 12 hours before your appointment: 

- alcohol  

- tobacco/nicotine  

- extreme exercise  

- unnecessary sleep deprivation  
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- caffeine containing products (tea/coffee) 

- taking any dietary supplements or vitamins (especially vitamin C)  

 

However, you will be asked to maintain your normal eating habits on this day i.e. you are 

NOT required to fast. 

On the day of session 1: 

 If you decide to participate in this study you will be asked to sign a consent form. A 

copy of this consent form can be found at the end of this information pack 

 

 You will be asked to complete a quick questionnaire to allow us to collect information 

about your age, ethnicity and any medication you are taking etc. This will aid us with 

the analysis of our results and also ensure that there are no unforeseen medical 

factors that would prevent you being included in our study. 

  

 You will have your vision measured and a short health exam to ensure your eyes 

won’t have any allergic reaction to the drops used.  

 

 A machine will be used to take measurements of your cornea at the front of your eye. 

This procedure requires you to sit down with your head on a comfortable support. 

You will be required to look straight ahead at a target.  

 

 A drop and some fluorescein eye dye will be put into each of your eyes so that your 

eye pressure can be measured. This drop is an anaesthetic drop called 

proxymetacaine. The drops take about 60 seconds to work and the anaesthetic effect 

can last for up to 20 minutes. You will be advised not to rub your eyes and avoid 

getting dust or grit in your eye during this 20 minute period.  

 

 So that good images of the back of your eye can be obtained with the retinal camera 

another drop will be put into one of your eyes only. This drop, called tropicamide, 

increases the size of your pupil so that we can get a full view of the back of your eye. 

Having big pupils can reduce your quality of vision temporarily and you may 

experience some dazzling in bright sunlight or artificial light for a few hours after 

you’ve had the drops in. You may therefore benefit from bringing some sunglasses 

with you and will be advised not to drive a motor vehicle, ride a bicycle or operate 

moving machinery for 4 hours after the appointment.  

 

 The pupil dilating drops take approximately 20 minutes to work, while the drops are 

working we will decide a suitable date for part 2 and you will be provided with a 

campus map. You will also have the opportunity to ask any further questions. 

 

 Once the drops have dilated your pupil the retinal camera will be used to take 

measurements of the blood vessels at the back of your eye. This procedure requires 

you to sit down with your head on a comfortable support. You will be required to look 
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straight ahead and you will see a flickering light for short periods of time. This will not 

harm your eyes but may leave you with an afterimage for a few seconds. 

 

Due to the flickering light it is important that you tell us if you have a known history 

of epilepsy. Although the camera poses very little harm, there is a small risk of 

triggering an episode of epilepsy in those not diagnosed. 

 

At the end of session 1: 

 You will be advised not to drive a motor vehicle, ride a bicycle or operate moving 

machinery for at least 4 hours after the appointment due to the insertion of the eye 

drop. 

 Your appointment for session 2 will be confirmed 

 
Session 2:  

Before session 2: 

 You will be required to fast (i.e. not eat anything) for 12 hours before this 

appointment. This is because eating food can affect the outcome of your blood test 

During the 12 hours before your appointment you will also be asked to avoid: 

- alcohol  

- tobacco/nicotine  

- extreme exercise  

- unnecessary sleep deprivation  

- caffeine containing products  

- taking any dietary supplements or vitamins (especially vitamin C)  

This is because these factors can also affect the outcome of the results.   

 We recommend that you wear comfortable, loose fitting clothing on the day of this 

appointment. This is to allow us to easily access your upper arm for both blood 

pressure measurement and blood sample.  

 Self-tanning agents must not have been used for at least 2 days before this 

appointment as they can affect the AGE reading taken from your skin. 

 
On the morning of session 2: 

At Plymouth University main campus Link building Leanne Smewing will meet you at the 

main entrance.  

 Basic measurements will be taken first. These will include your; height, weight and 

blood pressure. Your BMI will be calculated from these measurements. 
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 If you have any sun blockers or skin creams on your forearm this will be removed as 

it can influence the AGE measurement. 

 Next, your tissue bound AGE level will be measured using a non-invasive device 

called the AGE Reader. You will place your forearm on the machine a light from the 

machine will be used to take the AGE measurement. The measurement will take 

approximately 20-30 seconds and will be repeated 3 times.  

 A finger prick blood sugar test will be taken prior to your blood sample.   

 A blood sample will be taken by a researcher trained in phlebotomy in a specialist 

blood laboratory. This will be carried out with you sitting up and will involve taking 

blood in a similar way to that which you may have experienced at your GP’s surgery 

or at the hospital. This is a routinely performed procedure and the risks associated 

with this procedure are minimal. 

 You will be asked to complete a questionnaire relating to your diet. The researcher 

will go through the questions with you. This allows us to collect information about the 

foods you eat and your methods of cooking.  

 
After session 2: 

 It is recommended that you avoid alcohol for 4 hours after the study and also 

avoid any unnecessary hazardous/strenuous/physical activity. 

 As we require you to fast for 12 hours prior to the appointment a light snack will be 

provided after the study is completed. Alternatively you may wish to bring some 

refreshments with you  

 

5. What are the risks of taking part in this study? 

All the devices used in this study are commercially available and CE marked to ensure 

they comply with European Health and Safety requirements. We have worked hard to 

limit the risks associated with this study and all participants will be selected carefully. 

Despite this it is still important that you are aware of the possibility of adverse effects.   

Leanne Smewing is a qualified optometrist and is fully trained in the techniques being 

performed. In addition first aiders will be present on both sites. 

Use of Proxymetacaine 0.5% and fluorescein  

This is a drop that is used when measuring eye pressure. It is a drop routinely used by 

Optometrists and Eye Hospitals so it possible you may have had it before. You may 

experience mild stinging when the drop is first put into your eyes, but this will subside 

very quickly.  The drops are a type of local anaesthetic and take about 60 seconds to 

work and the effect may last for up to 20 minutes. You must not rub your eyes and try to 

avoid getting dust or grit in your eye as the anaesthetic would prevent you feeling any 

effect of this until after the drops wear off. 

In the unlikely event that you experience any unusual symptoms such as pain and 

soreness in or around your eyes or your vision seems blurred after the appointment, 

contact a member of the research team, your optometrist or seek medical advice as you 

might be experiencing an adverse reaction to the drops. 
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Use of Tropicamide 0.5% 

This is the drop that is used with the retinal camera to make your pupils larger. It takes 

approximately 15 to 30 minutes to work and up to 6 hours to wear off. Again, it is a drop 

routinely used by Optometrists and Eye Hospitals so it possible you may have had it 

before.  

As mentioned previously, the enlargement of the pupil may cause a reduced quality of 

vision temporarily and you may experience some glare in bright sunlight or artificial light 

for a few hours afterwards. You are therefore advised not to drive a motor vehicle, ride a 

bicycle or operate moving machinery for at least 6 hours after the appointment. You may 

also wish to use sunglasses during this time to alleviate any increased light sensitivity. 

You may experience mild stinging when the drop is first put into your eyes, but this will 

subside very quickly.   

There is a very small chance that using this drop can trigger unusual symptoms such as 

pain and redness around the eyes or ‘misty’ vision, usually immediately after drop 

insertion. This is very unlikely but if any of these symptoms do occur you are advised to 

speak to the research team and seek medical advice immediately as you may be 

experiencing an adverse reaction to the drops. 

Use of the retinal camera 

The retinal camera is a non-invasive device that poses very little harm. As it uses a 

flickering light it is important to be aware that there is a small risk of it triggering an 

episode of epilepsy in those not diagnosed. 

Taking a blood sample 

There can be a mild short irritation when taking a blood sample. Only a small amount of 

blood is taken during this study so you shouldn't feel any significant after-effects. 

However some people may feel dizzy and faint during and after the test. If this has 

happened to you in the past, or happens during the test please tell the person carrying 

out the test so they’re aware and can help you feel more comfortable. After the test, you 

may have a small bruise where the needle went in. Bruises can be painful, but are 

usually harmless and fade over the next few days. 

A small blood sample of 9mL will be taken. This blood sample will provide us with 

information about oxidative stress. The sample we store will not contain any of your DNA 

and will be stored and destroyed following the human tissue act procedures. The sample 

will be kept in the -80 degree C freezer in the locked laboratory in the Human 

Metabolism Laboratory at the Food and Nutrition Unit, Link Building, Plymouth 

University. They will be stored until all analysis is completed, stored for maximum of 2 

years. Only the research team and technical staff will have access to the samples.  

Any abnormal findings found from this study would be sent in a letter to your GP and a 

copy would also be sent to you.   

6. Are there any benefits of participating in this study? 

This study is not likely to benefit you directly, but it will help researchers at Plymouth 

University evaluate whether AGE levels influence the function of the blood vessels in 
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your eye or contribute to the development of the eye disease glaucoma. In the future it 

may open up the possibility of new diagnostic and treatment options in the form of 

dietary, lifestyle or targeted therapeutic interventions.  

7. Who has reviewed the study? 

All research is looked at by an independent group of people, called a Research Ethics 

Committee, to protect your interests. This study has been reviewed and approved by the 

Health Research Authority and Plymouth University’s Faculty Research Ethics 

Committee by the ‘Central Office of the Research Ethics Committee (REC) for the NHS 

and the Plymouth University Research Ethics Committee.  

8. Do I have to take part? 

No. You are free to decide whether or not to participate in this study. You should take 

time to consider your participation in this research and ask questions if there are aspects 

which you do not understand or if you need further information. If you decide to take part 

you will be asked to sign two copies of a consent form in the presence of an appropriate 

member of the research team. You will be given a signed copy of the consent form and 

an information sheet for your own records. You may decide not to participate or withdraw 

at any time without giving a reason or without it affecting your relationship with Plymouth 

University, or your current or future treatment in any way. If you decide to withdraw from 

the study all identifiable data and samples collected from you would be withdrawn. The 

samples would be destroyed as per human tissue authority guidelines. The lead 

investigator may also remove you from the study if they believe it to be in your best 

interest.  

9. Is there remuneration for participation?  

Unfortunately, you will not get paid to participate in this project. 

10. Is taking part confidential? 

If you decide to participate in the study we will inform your GP you are doing so. 

All of the information you provide as a participant and any data collected as a result of 

your participation in this study will remain confidential. Your records may be looked at by 

the research team involved in this study and the monitoring or audit team approved by 

the university.  All information will be stored electronically on a computer which is 

password protected, in a document file that is also password protected. All information 

will be handled in compliance with the Data Protection Act (1998).  

Your name and address (which we need in order to contact you) will be stored 

separately from the other information you supply during the study so that you cannot be 

identified from your study records. After 10 years, all of your records will confidentially be 

disposed of in accordance with the guidelines laid out by Plymouth University. 

Any data collected in this investigation may be submitted for publication or used in 

presentations. Neither your name nor information disclosing your identity will be released 

or published without your explicit consent to the disclosure.  

11. What will happen to the results of the research study?  

The results will be available through University of Plymouth, if you require a copy of the 

final report please write to the address given below. 
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12. What if I have any further questions or require further information? 

If you have any questions about our project, either now or in the future, please feel free 

to contact:  

Leanne Smewing; 

Email: leanne.smewing@plymouth.ac.uk   

Phone: (0)1752 587541      

 

13. What if I have a complaint?  

Should you have reason to complain about the way you have been treated at any stage 

during the study you can contact; 

 

Dr Stephanie Mroczkowska;  

Email: stephanie.mroczkowska@plymouth.ac.uk 

Telephone: 01752 587549 

 

Alternatively, you can make your complaint directly to Leanne Smewing, (contact details 

as above).  

 

In the unlikely situation that you experience any unusual side effects to any of the 

procedures carried out you are advised to seek immediate medical advice. You will be 

issued with a list of any drugs administered to you and this should be shown to any 

medic that you consult. 

If you have any concerns about the way in which the study has been conducted, please 

contact the Secretary of the Health & Human Sciences University Research Ethics 

Committee Sarah C Jones by email, or telephone (details below) as well as contacting 

the Patient Advice and Liaison Service (PALS) on 0800 328 3205. 

Sarah C Jones;  

Email: hhsethics@plymouth.ac.uk  

Telephone: 01752 585339 

If there is negligent harm during the clinical trial, Plymouth University owes a duty of care 

to the person harmed. 

If you decide to participate in this study you will be asked to sign a consent form. A copy 

of this consent form can be found at the end of this information pack.  

 

Thank you for taking the time to read this information sheet 
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Appendix 2.2 – Healthy control consent form  
 

 

 

 

Declaration of informed consent 

 

Title of Project:  Advanced glycation end products as a biomarker for accelerated 

ageing in glaucomatous optic neuropathy 

Name of researcher: Leanne Smewing 
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Appendix 2.3 – POAG and NTG information sheet  

 
 
 
 
 
 
 

Participant information sheet  

Project title: Advanced glycation end products as a biomarker for accelerated 

ageing in glaucomatous optic neuropathy 

We would like to invite you to participate in a research study being conducted by Miss 

Leanne Smewing, Optometrist and PhD researcher, in conjunction with Dr Stephanie 

Mroczkowska, Dr Desley White and Professor Paul Artes from Plymouth University.  

Before deciding if you would like to participate it is important for you to understand why 

the research is being undertaken and what it will involve. This information sheet explains 

the background and aims of the study. Please take time to read it carefully and discuss it 

with others if you wish. If anything is unclear, or if you would like more information, 

please ask us. Your participation in this study is entirely voluntary. 

 

Information related to your participation 

1. What is this study about? 

Glaucoma is a disease of the eye which affects over 60 million people worldwide. The 

exact cause of glaucoma is still relatively poorly understood, however one of the most 

significant risk factors for its development is known to be advancing age.  With this in 

mind, this study aims to explore whether certain ageing products, (called advanced 

glycation end-products, (AGEs), that accumulate naturally within the body over time, are 

present in higher amounts in those with glaucoma and/or in those with high pressure in 

the eye compared to those without glaucoma. This study will also aim to explore whether 

the level of these ageing products in your body at the start relates to how much your 

glaucoma progresses over a 5 year period 

2. Why have I been invited to participate? 

The study requires the participation of individuals who have been diagnosed with or are 

suspected of having early glaucoma and are otherwise healthy, like yourself.  

3. What does the study involve? 

Data collection for the study will be carried out across 2 sessions. Session 1 will be 

carried out at The Royal Eye Infirmary, level 3 Derriford Hospital, Derriford Road, 

Plymouth, PL6 8DH. Session 2 will be carried out at Human Metabolism laboratory, Food 

and Nutrition Unit, Link Building, Drake Campus, Plymouth University. There is an 

optional 3rd visit which will be carried out at Peninsula Allied Health Centre (PAHC), 
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Derriford, PL6 8BH or Wellbeing Centre, Endsleigh Place, Plymouth University, Drake 

Circus, PL4 8AA 

 

Session 1 procedures: 
- Normal NHS appointment procedures 

- Given this information sheet and a short questionnaire 

 
Session 2 procedures: 

- Height and weight measured 

- Measurement of blood pressure 

- Measure AGE level with skin reader 

- Finger prick blood sugar test 

- Obtain a blood sample 

- Complete a food frequency questionnaire  

Total visit time approximately 2 hours  

Optional session 3: 
- Examination of the health of your eyes and insertion of drops 

- Measurement of eye pressure 

- Have a scan taken of the back of your eye (retinal vessel function) 

After completion of session 1 and 2 and with your consent, your NHS eye records will be 

reviewed yearly for 5 years by a member of the research team. The results of your visual 

field test and optic nerve scan will be noted from your eye records and used as a way of 

monitoring the progression of your glaucoma.  You will not need to be present for this 

section of data collection. 

4. What is expected of me at these sessions? 

Session 1:  

If you decide to participate in this study you will be asked to sign a consent form. A copy 

of this consent form can be found at the end of this information pack.  

Once you have given your consent you will be asked to complete a quick questionnaire 

which will allow us to collect information about your age, ethnicity and any medication 

you are taking. This will aid us with the analysis of the results and also ensure that there 

are no unforeseen medical factors that would prevent you being included in our study. 

Following this we will arrange a date that is suitable for you to visit Plymouth University 

main campus for your second data collection session. You will be provided with a 

campus map and given full instructions on how to locate the required building in 

preparation for this second session.  

Session 2:  
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Before session 2: 

 You will be required to fast (i.e. not eat anything) for 12 hours before this 

appointment. This is because eating food can affect the outcome of your blood 

test 

During the 12 hours before your appointment you will also be asked to avoid: 

- alcohol  

- tobacco/nicotine  

- extreme exercise  

- unnecessary sleep deprivation  

- caffeine containing products  

- taking any dietary supplements or vitamins (especially vitamin C)  

This is because these factors can also affect the outcome of the results.   

 We recommend that you wear comfortable, loose fitting clothing on the day of this 

appointment. This is to allow us to easily access your upper arm for both blood 

pressure measurement and blood sample.  

 Self-tanning agents must not have been used for at least 2 days before this 

appointment as they can affect the AGE reading taken from your skin.  

 

On the morning of session 2: 

At Plymouth University main campus Link building Leanne Smewing will meet you at the 

main entrance.  

 Basic measurements will be taken first. These will include your; height, weight and 

blood pressure. Your BMI will be calculated from these measurements. 

 If you have any sun blockers or skin creams on your forearm this will be removed as 

it can influence the AGE measurement. 

 Next, your tissue bound AGE level will be measured using a non-invasive device 

called the AGE Reader. You will place your forearm on the machine and a light from 

the machine will be used to take the AGE measurement. The measurement will take 

approximately 20-30 seconds and will be repeated 3 times.  

 A finger prick blood sugar test will be taken prior to your blood sample.   

 A blood sample will be taken by a researcher trained in phlebotomy in a specialist 

blood laboratory. This will be carried out with you sitting up and will involve taking 

blood in a similar way to that which you may have experienced at your GP’s surgery 

or at the hospital. This is a routinely performed procedure and the risks associated 

with this procedure are minimal. 

 You will be asked to complete a questionnaire relating to your diet. The researcher 

will go through the questions with you. This allows us to collect information about the 

foods you eat and your methods of cooking.  



308 
 

After session 2: 

 It is recommended that you avoid alcohol for 4 hours after the study and also 

avoid any unnecessary hazardous/strenuous/physical activity. 

 As we require you to fast for 12 hours prior to the appointment a light snack will 

be provided after the study is completed. Alternatively you may wish to bring 

some refreshments with you  

 Should you be interested, we can arrange an optional 3rd session where we can 

take measurements of the blood vessels at the back of your eye. The drops used 

at this 3rd session are the same as the drops used for your hospital visits.  

 
Optional Session 3: Carried out at Peninsula Allied Health Centre (PAHC), Derriford, 

PL6 8BH or Wellbeing Centre, Endsleigh Place, Plymouth University, Drake Circus, PL4 

8AA 

Before session 3: 

 Leanne Smewing (chief investigator) will call you and remind you of your 

appointment time and remind you that as drops will be inserted into one of your eyes 

at this visit you will not be able to drive for 4 hours after the appointment (alternative 

travel arrangements will need to be made). 

 Due to their possible effect on your blood vessel measurement, you will be asked to 

avoid the following in the 12 hours before your appointment: 

- alcohol  

- tobacco/nicotine  

- extreme exercise  

- unnecessary sleep deprivation  

- caffeine containing products (tea/coffee) 

- taking any dietary supplements or vitamins (especially vitamin C)  

However, you will be asked to maintain your normal eating habits on this day i.e. you are 

NOT required to fast. 

On the day of session 3: 

 You will have your vision measured and a short health exam to ensure your eyes 

won’t have any allergic reaction to the drops used.  

 

 A drop and some fluorescein eye dye will be put into each of your eyes so that your 

eye pressure can be measured. This drop is an anaesthetic drop called 

proxymetacaine. The drops take about 60 seconds to work and the anaesthetic effect 

can last for up to 20 minutes. You will be advised not to rub your eyes and avoid 

getting dust or grit in your eye during this 20 minute period.  
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 So that good images of the back of your eye can be obtained with the retinal camera 

another drop will be put into one of your eyes only. This drop, called tropicamide, 

increases the size of your pupil so that we can get a full view of the back of your eye. 

Having big pupils can reduce your quality of vision temporarily and you may 

experience some dazzling in bright sunlight or artificial light for a few hours after 

you’ve had the drops in. You may therefore benefit from bringing some sunglasses 

with you and will be advised not to drive a motor vehicle, ride a bicycle or operate 

moving machinery for 4 hours after the appointment.  

 

 The pupil dilating drops take approximately 20 minutes to work. 

 

 Once the drops have dilated your pupil the retinal camera will be used to take 

measurements of the blood vessels at the back of your eye. This procedure requires 

you to sit down with your head on a comfortable support. You will be required to look 

straight ahead and you will see a flickering light for short periods of time. This will not 

harm your eyes but may leave you with an afterimage for a few seconds. 

 

Due to the flickering light it is important that you tell us if you have a known history of 

epilepsy. Although the camera poses very little harm, there is a small risk of 

triggering an episode of epilepsy in those not diagnosed. 

 

At the end of session 3: 

 You will be advised not to drive a motor vehicle, ride a bicycle or operate moving 

machinery for at least 4 hours after the appointment due to the insertion of the 

eye drop. 

 

5. Are any risks associated with this project? 

All the devices used in this study are commercially available and CE marked to ensure 

they comply with European Health and Safety requirements. We have worked hard to 

limit the risks associated with this study and all participants will be selected carefully. 

Despite this it is still important that you are aware of the possibility of adverse effects.   

Leanne Smewing is a qualified optometrist and is fully trained in the techniques being 

performed. In addition first aiders will be present on both sites. 

Use of Proxymetacaine 0.5% and fluorescein  

This is a drop that is used when measuring eye pressure. It is a drop routinely used by 

Optometrists and Eye Hospitals so it possible you may have had it before. You may 

experience mild stinging when the drop is first put into your eyes, but this will subside 

very quickly.  The drops are a type of local anaesthetic and take about 60 seconds to 

work and the effect may last for up to 20 minutes. You must not rub your eyes and try to 

avoid getting dust or grit in your eye as the anaesthetic would prevent you feeling any 

effect of this until after the drops wear off. 

In the unlikely event that you experience any unusual symptoms such as pain and 

soreness in or around your eyes or your vision seems blurred after the appointment, 
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contact a member of the research team, your optometrist or seek medical advice as you 

might be experiencing an adverse reaction to the drops. 

Use of Tropicamide 0.5% 

This is the drop that is used with the retinal camera to make your pupils larger. It takes 

approximately 15 to 30 minutes to work and up to 6 hours to wear off. Again, it is a drop 

routinely used by Optometrists and Eye Hospitals so it possible you may have had it 

before.  

As mentioned previously, the enlargement of the pupil may cause a reduced quality of 

vision temporarily and you may experience some glare in bright sunlight or artificial light 

for a few hours afterwards. You are therefore advised not to drive a motor vehicle, ride a 

bicycle or operate moving machinery for at least 6 hours after the appointment. You may 

also wish to use sunglasses during this time to alleviate any increased light sensitivity. 

You may experience mild stinging when the drop is first put into your eyes, but this will 

subside very quickly.   

There is a very small chance that using this drop can trigger unusual symptoms such as 

pain and redness around the eyes or ‘misty’ vision, usually immediately after drop 

insertion. This is very unlikely but if any of these symptoms do occur you are advised to 

speak to the research team and seek medical advice immediately as you may be 

experiencing an adverse reaction to the drops. 

Use of the retinal camera 

The retinal camera is a non-invasive device that poses very little harm. As it uses a 

flickering light it is important to be aware that there is a small risk of it triggering an 

episode of epilepsy in those not diagnosed. 

Taking a blood sample 

There can be a mild short irritation when taking a blood sample. Only a small amount of 

blood is taken during this study so you shouldn't feel any significant after-effects. 

However some people may feel dizzy and faint during and after the test. If this has 

happened to you in the past, or happens during the test please tell the person carrying 

out the test so they’re aware and can help you feel more comfortable. After the test, you 

may have a small bruise where the needle went in. Bruises can be painful, but are 

usually harmless and fade over the next few days. 

A small blood sample of 9mL will be taken. This blood sample will provide us with 

information about oxidative stress. The sample we store will not contain any of your DNA 

and will be stored and destroyed following the human tissue act procedures. The sample 

will be kept in the -80 degree C freezer in the locked laboratory in the Human 

Metabolism Laboratory at the Food and Nutrition Unit, Link Building, Plymouth 

University. They will be stored until all analysis is completed, stored for maximum of 2 

years. Only the research team and technical staff will have access to the samples.  

Any abnormal findings found from this study would be sent in a letter to your GP and a 

copy would also be sent to you.   
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6. What are the benefits of participation? 

This study is not likely to benefit you directly, but it will help researchers at Plymouth 

University evaluate whether AGE levels influence the function of the blood vessels in 

your eye or contribute to the development of the eye disease glaucoma. In the future it 

may open up the possibility of new diagnostic and treatment options in the form of 

dietary, lifestyle or targeted therapeutic interventions.  

7. Who has reviewed the study? 

All research is looked at by an independent group of people, called a Research Ethics 

Committee, to protect your interests. This study has been reviewed and approved by the 

Health Research Authority and Plymouth University’s Faculty Research Ethics 

Committee. 

8. Do I have to take part? 

No. You are free to decide whether or not to participate in this study. You should take 

time to consider your participation in this research and ask questions if there are aspects 

which you do not understand or if you need further information. If you decide to take part 

you will be asked to sign three copies of a consent form in the presence of an 

appropriate member of the research team. You will be given a signed copy of the 

consent form and an information sheet for your own records. You may decide not to 

participate or withdraw at any time without giving a reason or without it affecting your 

relationship with Plymouth University, or your current or future treatment in any way. If 

you decide to withdraw from the study all identifiable data and samples collected from 

you would be withdrawn. The samples would be destroyed as per human tissue authority 

guidelines. The lead investigator may also remove you from the study if they believe it to 

be in your best interest.  

9. Is there remuneration for participation?  

Unfortunately, you will not get paid to participate in this project. 

10. Is taking part confidential? 

If you decide to participate in the study we will inform your GP you are doing so. 

All of the information you provide as a participant and any data collected as a result of 

your participation in this study will remain confidential. Your records may be looked at by 

the research team involved in this study and the monitoring or audit team approved by 

the university.  All information will be stored electronically on a computer which is 

password protected, in a document file that is also password protected. All information 

will be handled in compliance with the Data Protection Act (1998).  

Your name and address (which we need in order to contact you) will be stored 

separately from the other information you supply during the study so that you cannot be 

identified from your study records. After 10 years, all of your records will confidentially be 

disposed of in accordance with the guidelines laid out by Plymouth University. 

Any data collected in this investigation may be submitted for publication or used in 

presentations. Neither your name nor information disclosing your identity will be released 

or published without your explicit consent to the disclosure.  
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11. What will happen to the results of the research study?  

The results will be available through University of Plymouth, if you require a copy of the 

final report please write to the address given below. 

12. What if I have any further questions or require further information? 

If you have any questions about our project, either now or in the future, please feel free 

to contact:  

Leanne Smewing; 

Email: leanne.smewing@plymouth.ac.uk   

Phone: (0)1752 587541      

 

 

13. What if I have a complaint?  

Should you have reason to complain about the way you have been treated at any stage 

during the study you can contact; 

Dr Stephanie Mroczkowska;  

Email: stephanie.mroczkowska@plymouth.ac.uk 

Telephone: 01752 587549 

Alternatively, you can make your complaint directly to Leanne Smewing, (contact details 

as above).  

 

In the unlikely situation that you experience any unusual side effects to any of the 

procedures carried out you are advised to seek immediate medical advice. You will be 

issued with a list of any drugs administered to you and this should be shown to any 

medic that you consult. 

If you have any concerns about the way in which the study has been conducted, please 

contact the Secretary of the Health & Human Sciences University Research Ethics 

Committee Sarah C Jones by email, or telephone (details below) as well as contacting 

the Patient Advice and Liaison Service (PALS) on 0800 328 3205. 

Sarah C Jones;  

Email: hhsethics@plymouth.ac.uk 

Telephone: 01752 585339 

If there is negligent harm during the clinical trial, Plymouth University owes a duty of care 

to the person harmed. 

If you decide to participate in this study you will be asked to sign a consent form. A copy 

of this consent form can be found at the end of this information pack. 

 

Thank you for taking the time to read this information sheet 
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Appendix 2.4 – POAG and NTG consent form  
 

 

 

 

Declaration of informed consent 

 

Title of Project:  Advanced glycation end products as a biomarker for accelerated 

ageing in glaucomatous optic neuropathy 
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Appendix 2.5 – OHT information sheet  

 
 
 
 
 
 

Participant information sheet  

Project title: Advanced glycation end products as a biomarker for accelerated 

ageing in glaucomatous optic neuropathy 

We would like to invite you to participate in a research study being conducted by Miss 

Leanne Smewing, Optometrist and PhD researcher, in conjunction with Dr Stephanie 

Mroczkowska, Dr Desley White and Professor Paul Artes from Plymouth University.  

Before deciding if you would like to participate it is important for you to understand why 

the research is being undertaken and what it will involve. This information sheet explains 

the background and aims of the study. Please take time to read it carefully and discuss it 

with others if you wish. If anything is unclear, or if you would like more information, 

please ask us. Your participation in this study is entirely voluntary. 

 

Information related to your participation 

1. What is this study about? 

Glaucoma is a disease of the eye which affects over 60 million people worldwide. The 

exact cause of glaucoma is still relatively poorly understood, however one of the most 

significant risk factors for its development is known to be advancing age.  With this in 

mind, this study aims to explore whether certain ageing products (called advanced 

glycation end-products, AGEs), that accumulate naturally within the body over time, are 

present in higher amounts in those with glaucoma and/or in those with high pressure in 

the eye compared to those without glaucoma or high pressure. This study also aims to 

explore whether the level of these ageing products in your body at the start relates to the 

progression of your eye condition over a 5 year period 

2. Why have I been invited to participate? 

The study requires the participation of those who have been diagnosed with or are 

suspected of having ocular hypertension and are otherwise healthy, like yourself.  

3. What does the study involve? 

Data collection for the study will be carried out across 2 sessions. Session 1 will be 

carried out at The Royal Eye Infirmary, level 3 Derriford Hospital, Derriford Road, 

Plymouth, PL6 8DH. Session 2 will be carried out at Human Metabolism laboratory, Food 

and Nutrition Unit, Link Building, Drake Campus, Plymouth University. There is an 

optional 3rd visit which will be carried out at Peninsula Allied Health Centre (PAHC), 

Derriford, PL6 8BH or Wellbeing Centre, Endsleigh Place, Plymouth University, Drake 

Circus, PL4 8AA 
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Session 1 procedures: 
- Normal NHS appointment procedures 

- Given this information sheet and a short questionnaire 

 
Session 2 procedures: 

- Height and weight measured 

- Measurement of blood pressure 

- Measure AGE level with skin reader 

- Finger prick blood sugar test 

- Obtain a blood sample 

- Complete a food frequency questionnaire  

Total visit time approximately 2 hours  

Optional session 3: 
- Examination of the health of your eyes and insertion of drops 

- Measurement of eye pressure 

- Have a scan taken of the back of your eye (retinal vessel function) 

After completion of session 1 and 2 and with your consent, your NHS eye records will be 

reviewed yearly for 5 years by a member of the research team. The results of your visual 

field test and optic nerve scan will be noted from your eye records and used as a way of 

monitoring the progression of your glaucoma.  You will not need to be present for this 

section of data collection. 

4. What is expected of me at these sessions? 
 

Session 1:  

If you decide to participate in this study you will be asked to sign a consent form. A copy 

of this consent form can be found at the end of this information pack.  

Once you have given your consent you will be asked to complete a quick questionnaire 

which will allow us to collect information about your age, ethnicity and any medication 

you are taking. This will aid us with the analysis of the results and also ensure that there 

are no unforeseen medical factors that would prevent you being included in our study. 

Following this we will arrange a date that is suitable for you to visit Plymouth University 

main campus for your second data collection session. You will be provided with a 

campus map and given full instructions on how to locate the required building in 

preparation for this second session.  

Session 2:  

Before session 2: 
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 You will be required to fast (i.e. not eat anything) for 12 hours before this 

appointment. This is because eating food can affect the outcome of your blood 

test 

During the 12 hours before your appointment you will also be asked to avoid: 

- alcohol  

- tobacco/nicotine  

- extreme exercise  

- unnecessary sleep deprivation  

- caffeine containing products  

- taking any dietary supplements or vitamins (especially vitamin C)  

This is because these factors can also affect the outcome of the results.   

 We recommend that you wear comfortable, loose fitting clothing on the day of this 

appointment. This is to allow us to easily access your upper arm for both blood 

pressure measurement and blood sample.  

 Self-tanning agents must not have been used for at least 2 days before this 

appointment as they can affect the AGE reading taken from your skin.  

 

On the morning of session 2: 

At Plymouth University main campus Link building Leanne Smewing will meet you at the 

main entrance.  

 Basic measurements will be taken first. These will include your; height, weight and 

blood pressure. Your BMI will be calculated from these measurements. 

 If you have any sun blockers or skin creams on your forearm this will be removed as 

it can influence the AGE measurement. 

 Next, your tissue bound AGE level will be measured using a non-invasive device 

called the AGE Reader. You will place your forearm on the machine and a light from 

the machine will be used to take the AGE measurement. The measurement will take 

approximately 20-30 seconds and will be repeated 3 times.  

 A finger prick blood sugar test will be taken prior to your blood sample.   

 A blood sample will be taken by a researcher trained in phlebotomy in a specialist 

blood laboratory. This will be carried out with you sitting up and will involve taking 

blood in a similar way to that which you may have experienced at your GP’s surgery 

or at the hospital. This is a routinely performed procedure and the risks associated 

with this procedure are minimal. 

 You will be asked to complete a questionnaire relating to your diet. The researcher 

will go through the questions with you. This allows us to collect information about the 

foods you eat and your methods of cooking.  

 
After session 2: 
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 It is recommended that you avoid alcohol for 4 hours after the study and also 

avoid any unnecessary hazardous/strenuous/physical activity. 

 As we require you to fast for 12 hours prior to the appointment a light snack will 

be provided after the study is completed. Alternatively you may wish to bring 

some refreshments with you  

 Should you be interested, we can arrange an optional 3rd session where we can 

take measurements of the blood vessels at the back of your eye. The drops used 

at this 3rd session are the same as the drops used for your hospital visits.  

 
Optional Session 3: Carried out at Peninsula Allied Health Centre (PAHC), Derriford, 

PL6 8BH or Wellbeing Centre, Endsleigh Place, Plymouth University, Drake Circus, PL4 

8AA 

 

Before session 3: 

 Leanne Smewing (chief investigator) will call you and remind you of your 

appointment time and remind you that as drops will be inserted into one of your eyes 

at this visit you will not be able to drive for 4 hours after the appointment (alternative 

travel arrangements will need to be made). 

 Due to their possible effect on your blood vessel measurement, you will be asked to 

avoid the following in the 12 hours before your appointment: 

- alcohol  

- tobacco/nicotine  

- extreme exercise  

- unnecessary sleep deprivation  

- caffeine containing products (tea/coffee) 

- taking any dietary supplements or vitamins (especially vitamin C)  

However, you will be asked to maintain your normal eating habits on this day i.e. you are 
NOT required to fast. 

On the day of session 3: 

 You will have your vision measured and a short health exam to ensure your eyes 

won’t have any allergic reaction to the drops used.  

 

 A drop and some fluorescein eye dye will be put into each of your eyes so that your 

eye pressure can be measured. This drop is an anaesthetic drop called 

proxymetacaine. The drops take about 60 seconds to work and the anaesthetic effect 

can last for up to 20 minutes. You will be advised not to rub your eyes and avoid 

getting dust or grit in your eye during this 20 minute period.  
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 So that good images of the back of your eye can be obtained with the retinal camera 

another drop will be put into one of your eyes only. This drop, called tropicamide, 

increases the size of your pupil so that we can get a full view of the back of your eye. 

Having big pupils can reduce your quality of vision temporarily and you may 

experience some dazzling in bright sunlight or artificial light for a few hours after 

you’ve had the drops in. You may therefore benefit from bringing some sunglasses 

with you and will be advised not to drive a motor vehicle, ride a bicycle or operate 

moving machinery for 4 hours after the appointment.  

 

 The pupil dilating drops take approximately 20 minutes to work. 

 

 Once the drops have dilated your pupil the retinal camera will be used to take 

measurements of the blood vessels at the back of your eye. This procedure requires 

you to sit down with your head on a comfortable support. You will be required to look 

straight ahead and you will see a flickering light for short periods of time. This will not 

harm your eyes but may leave you with an afterimage for a few seconds. 

 

Due to the flickering light it is important that you tell us if you have a known history of 

epilepsy. Although the camera poses very little harm, there is a small risk of 

triggering an episode of epilepsy in those not diagnosed. 

 

At the end of session 3: 

 You will be advised not to drive a motor vehicle, ride a bicycle or operate moving 

machinery for at least 4 hours after the appointment due to the insertion of the 

eye drop. 

 

5. Are any risks associated with this project? 

All the devices used in this study are commercially available and CE marked to ensure 

they comply with European Health and Safety requirements. We have worked hard to 

limit the risks associated with this study and all participants will be selected carefully. 

Despite this it is still important that you are aware of the possibility of adverse effects.   

Leanne Smewing is a qualified optometrist and is fully trained in the techniques being 

performed. In addition first aiders will be present on both sites. 

Use of Proxymetacaine 0.5% and fluorescein  

This is a drop that is used when measuring eye pressure. It is a drop routinely used by 

Optometrists and Eye Hospitals so it possible you may have had it before. You may 

experience mild stinging when the drop is first put into your eyes, but this will subside 

very quickly.  The drops are a type of local anaesthetic and take about 60 seconds to 

work and the effect may last for up to 20 minutes. You must not rub your eyes and try to 

avoid getting dust or grit in your eye as the anaesthetic would prevent you feeling any 

effect of this until after the drops wear off. 

In the unlikely event that you experience any unusual symptoms such as pain and 

soreness in or around your eyes or your vision seems blurred after the appointment, 
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contact a member of the research team, your optometrist or seek medical advice as you 

might be experiencing an adverse reaction to the drops. 

Use of Tropicamide 0.5% 

This is the drop that is used with the retinal camera to make your pupils larger. It takes 

approximately 15 to 30 minutes to work and up to 6 hours to wear off. Again, it is a drop 

routinely used by Optometrists and Eye Hospitals so it possible you may have had it 

before.  

As mentioned previously, the enlargement of the pupil may cause a reduced quality of 

vision temporarily and you may experience some glare in bright sunlight or artificial light 

for a few hours afterwards. You are therefore advised not to drive a motor vehicle, ride a 

bicycle or operate moving machinery for at least 6 hours after the appointment. You may 

also wish to use sunglasses during this time to alleviate any increased light sensitivity. 

You may experience mild stinging when the drop is first put into your eyes, but this will 

subside very quickly.   

There is a very small chance that using this drop can trigger unusual symptoms such as 

pain and redness around the eyes or ‘misty’ vision, usually immediately after drop 

insertion. This is very unlikely but if any of these symptoms do occur you are advised to 

speak to the research team and seek medical advice immediately as you may be 

experiencing an adverse reaction to the drops. 

Use of the retinal camera 

The retinal camera is a non-invasive device that poses very little harm. As it uses a 

flickering light it is important to be aware that there is a small risk of it triggering an 

episode of epilepsy in those not diagnosed. 

Taking a blood sample 

There can be a mild short irritation when taking a blood sample. Only a small amount of 

blood is taken during this study so you shouldn't feel any significant after-effects. 

However some people may feel dizzy and faint during and after the test. If this has 

happened to you in the past, or happens during the test please tell the person carrying 

out the test so they’re aware and can help you feel more comfortable. After the test, you 

may have a small bruise where the needle went in. Bruises can be painful, but are 

usually harmless and fade over the next few days. 

A small blood sample of 9mL will be taken. This blood sample will provide us with 

information about oxidative stress. The sample we store will not contain any of your DNA 

and will be stored and destroyed following the human tissue act procedures. The sample 

will be kept in the -80 degree C freezer in the locked laboratory in the Human 

Metabolism Laboratory at the Food and Nutrition Unit, Link Building, Plymouth 

University. They will be stored until all analysis is completed, stored for maximum of 2 

years. Only the research team and technical staff will have access to the samples.  

Any abnormal findings found from this study would be sent in a letter to your GP and a 

copy would also be sent to you.   
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6. What are the benefits of participation? 

This study is not likely to benefit you directly, but it will help researchers at Plymouth 

University evaluate whether AGE levels influence the function of the blood vessels in 

your eye or contribute to the development of the eye disease glaucoma. In the future it 

may open up the possibility of new diagnostic and treatment options in the form of 

dietary, lifestyle or targeted therapeutic interventions.  

7. Who has reviewed the study? 

All research is looked at by an independent group of people, called a Research Ethics 

Committee, to protect your interests. This study has been reviewed and approved by the 

Health Research Authority and Plymouth University’s Faculty Research Ethics 

Committee. 

8. Do I have to take part? 

No. You are free to decide whether or not to participate in this study. You should take 

time to consider your participation in this research and ask questions if there are aspects 

which you do not understand or if you need further information. If you decide to take part 

you will be asked to sign three copies of a consent form in the presence of an 

appropriate member of the research team. You will be given a signed copy of the 

consent form and an information sheet for your own records. You may decide not to 

participate or withdraw at any time without giving a reason or without it affecting your 

relationship with Plymouth University, or your current or future treatment in any way. If 

you decide to withdraw from the study all identifiable data and samples collected from 

you would be withdrawn. The samples would be destroyed as per human tissue authority 

guidelines. The lead investigator may also remove you from the study if they believe it to 

be in your best interest.  

9. Is there remuneration for participation?  

Unfortunately, you will not get paid to participate in this project. 

10. Is taking part confidential? 

If you decide to participate in the study we will inform your GP you are doing so. 

All of the information you provide as a participant and any data collected as a result of 

your participation in this study will remain confidential. Your records may be looked at by 

the research team involved in this study and the monitoring or audit team approved by 

the university.  All information will be stored electronically on a computer which is 

password protected, in a document file that is also password protected. All information 

will be handled in compliance with the Data Protection Act (1998).  

Your name and address (which we need in order to contact you) will be stored 

separately from the other information you supply during the study so that you cannot be 

identified from your study records. After 10 years, all of your records will confidentially be 

disposed of in accordance with the guidelines laid out by Plymouth University. 

Any data collected in this investigation may be submitted for publication or used in 

presentations. Neither your name nor information disclosing your identity will be released 

or published without your explicit consent to the disclosure.  
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11. What will happen to the results of the research study?  

The results will be available through University of Plymouth, if you require a copy of the 

final report please write to the address given below. 

12. What if I have any further questions or require further information? 

If you have any questions about our project, either now or in the future, please feel free 

to contact:  

Leanne Smewing; 

Email: leanne.smewing@plymouth.ac.uk   

Phone: (0)1752 587541      

 

13. What if I have a complaint?  

Should you have reason to complain about the way you have been treated at any stage 

during the study you can contact; 

 

Dr Stephanie Mroczkowska;  

Email: stephanie.mroczkowska@plymouth.ac.uk 

Telephone: 01752 587549 

Alternatively, you can make your complaint directly to Leanne Smewing, (contact details 

as above).  

 

In the unlikely situation that you experience any unusual side effects to any of the 

procedures carried out you are advised to seek immediate medical advice. You will be 

issued with a list of any drugs administered to you and this should be shown to any 

medic that you consult. 

If you have any concerns about the way in which the study has been conducted, please 

contact the Secretary of the Health & Human Sciences University Research Ethics 

Committee Sarah C Jones by email, or telephone (details below) as well as contacting 

the Patient Advice and Liaison Service (PALS) on 0800 328 3205. 

Sarah C Jones;  

Email: hhsethics@plymouth.ac.uk  

Telephone: 01752 585339 

If there is negligent harm during the clinical trial, Plymouth University owes a duty of care 

to the person harmed. 

If you decide to participate in this study you will be asked to sign a consent form. A copy 

of this consent form can be found at the end of this information pack. 

 

 

Thank you for taking the time to read this information sheet 
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Appendix 2.6 – OHT consent form  
 

 

 

 

Declaration of informed consent 

 

Title of Project:  Advanced glycation end products as a biomarker for accelerated 

ageing in glaucomatous optic neuropathy 
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Appendix 3 – Demographic questionnaire 

 
 
 
 
 

 

PERSONAL INFORMATION QUESTIONNAIRE 

All information contained within this questionnaire is strictly confidential. Please complete all of the questions on both 

sides of this questionnaire as accurately as possible. Please tick (✓) all of the boxes that apply to you  
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Appendix 4.1 – Specifically designed FFQ  

 
 

Dietary questionnaire 

 

Questions about what you eat, how you cook and what you drink 

Throughout this questionnaire the cooking method will also be described such as; frying, 

grilling, boiling and roasting. If you are unsure of the exact meaning of these terms 

please let the person going through this questionnaire with you aware and they can 

explain further.  

 

When frying/roasting foods what type of oil/cooking fat would you use? 

……………………………………………………………………………………………………………………………… 

For the first section you will be shown images of different portion sizes of food. Please 

put a (X) in the box which best describes (on average) how much you would usually 

have eaten at a main meal in the last 12 months.  

The images will be of a food pictured on its own, although this may not be the way you 

usually eat this food please try to answer as best you can. 

For example: 

Breaded fish 

Which option best describes what you ate? 

 

 

 

 

 

 

 

 

Less than A A Between A 
& B 

B Between B 
& C 

C More than C 

    x   

A 
-  

B C 

60g 110g 170g 
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If you have eaten any of these foods which option best describes what you ate?  

1. Breaded fish 

 

 

 

 

 

 

 

2. Thin crust pizza 

 

 

 

 

 

 

 

3. Sausages 

 

 

 

 

 

 

 

Less than A A Between A & 

B 

B Between B & 

C 

C More than C 

       

Less than A A Between A & 

B 

B Between B & 

C 

C More than C 

       

Less than A A Between A & 

B 

B Between B & 

C 

C More than C 

       

A B C 

A B C 

A B C 

60g 110g 170g 

50g 200g 400g 

45g 90g 135g 
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Continued, which option best describes what you ate? 

4. Fried skinless chicken 

 

 

 

 

 

 

 

5. Breaded oven chicken 

 

 

 

 

 

 

 

6. Roast beef 

 
 

 

 

 

 

 

 

Less than A A Between A & 
B 

B Between B & 
C 

C More than C 

       

Less than A A Between A & 
B 

B Between B & 
C 

C More than C 

       

Less than A A Between A & 
B 

B Between B & 
C 

C More than C 

       

A B C 

A B C 

A B C 

75g 135g 210g 

75g 150g 225g 

60g 120g 180g 
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This questionnaire will ask you about your usual eating habits over the last 12 

months. Examples of food portion sizes can be found on the final page. 
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Appendix 4.2 – FFQ prompt flow chart 

 

FFQ prompt flow chart for clinician 
 

Explain the principle of the FFQ and remind the participant to be as honest as possible 

 

Ask if there has been a significant change to their diet in the last 12 months 

 

Ask the participant to read the instructions  

 

Prompt the first question, ‘What sort of cooking fat would you use?’ 

 

Talk the participant through the worked example for the portion questions and show the 

plate used to take the photographs. If they would never eat a food photographed put a 

line through the foods name.  

 

Show the FFQ itself and remind the participant that it covers foods eaten over the last 12 

months. Explain that this is to encompass foods eaten in different seasons e.g. more 

salads in the summer.  

 

Talk the participant though the worked example (feta cheese) 

 

Explain that if a portion size isn’t written next to the food it should be at the top of its 

‘group’ e.g. all cheese 30g unless otherwise stated, such as cream cheese 1tbsp.  

 

There are rows within the questionnaire which say ‘other’, explain that this is intended to 

allow the recording of foods they eat often that haven’t been listed in the questionnaire 

 

Note all drinks are 250ml and show the reference page at the end of the FFQ. Show the 

cups which amount to 250ml. 
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Begin the FFQ, allow the participant to fill in the questionnaire themselves and offer 

assistance if required.  

 

When beginning cheese section show the 30g portion of cheddar on the reference page. 

If their portion is larger than this adjust the portion to account for this.  

 

When reaching ‘other cheese’ provide prompt ‘e.g. stilton?’ 

 

Explain timing’s on soft/hard boiled eggs is from when they go into cold water 

(Americanism) 

 

‘Other egg’ provide prompt ‘e.g. scrambled? Omelette?’ 

 

Bacon portion ‘one rasher or more?’ 

 

Sausages portion, 2 sausages = 1 portion, therefore if they eat 3 sausages record as 1.5 

 

‘Other pork’ prompt ‘e.g. roast pork?’ 

 

‘Other lamb’ prompt ‘e.g. roast lamb?’ 

 

If they are uncertain between ‘chicken breast cubed and pan fried’ and ‘chicken breast 

cubed, pan fried and boiled’ explain that the second would be where the chicken once 

cooked is added to a sauce and boiled e.g. sweet & sour chicken. 

 

If they put never to battered cod prompt ‘do you think you have had fish and chips at all 

in the last 12 months?’ it may be they have a different type of battered fish.  

 

‘Other fish’ provide prompt ‘e.g. mackerel (tinned or fresh) 
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When beginning the ‘Carb’s’ section remind the participant each slice of bread = 1 

portion.  

 

When beginning ‘cereals’ remind the participant to look at the reference page for what 

30g ‘looks like’ 

 

When reaching fruits and vegetables address the fact that not many fruits and 

vegetables are listed in the FFQ. Reiterate that they should fill the ‘other’ sections with 

fruits/veg they eat often.  

 

‘Raw veg’ prompt ‘for example this would include salad – what raw vegetables would go 

into your salad?’ 

 

‘Other condiments’ prompt ‘e.g. jam, marmalade?’  

 

  

 

Finally, make sure to add the date the FFQ was completed and the participant’s code to 

the FFQ. 
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Appendix 5 – 4 day weighed food diary 

 
 

 
 

 

4 - Day Weighed Food Diary 

 

Use this diary to record everything you eat and drink for 4 days – 3 weekdays 

and 1 weekend day. The purpose of filling out these food records is to help better 

understand the foods you eat, when you eat and your portion size.  

 Please record your food items and portions in a real time, do not wait until 

the end of the day, as you may forget some items and the analysis will be 

unreliable. 

 Do not try to modify your dietary habits and the food choices just because 

you are recording, as it will not represent your usual diet. Similarly, please 

avoid recording during feasts such as Birthdays for the same reason.  

 If you eating out, please try to estimate portion and best list the meals 

ingredients. Record the place of eating (name of the restaurant) and the 

foods eaten. 
 

You will be loaned a set of digital kitchen scales to allow you to weigh your foods. 

Drinks can be measured either by pouring into a measuring jug, or by ‘zeroing’ 

your mug/cup on the digital scales and weighing the fluid, in international units (1 

gram (g) = 1 millilitre (ml)). 

 

Example 

Lunch 
 

Place eaten 
 

Time 
 

Item, portion, description 
 

 Weight (g/ml) 

 

Home 

 

 

 

 

OR 
example if 
out 

 

 

Out 

shopping 

 

2pm 

 

 

 

 

 

 

 

 

2pm 

 

Ham sandwich : 

2 slices of hovis granary 

bread, 1 tsp of butter, 3 wafer 

thin slices of ham 

 

 

OR example if out 
 
 

Boots shapers ham sandwich 

 

Total weight: 

110g 

Bread = 35g 

per slice 

Ham = 35g 

 

 

 

 

110g 
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Before beginning the food diary please can you fill out the table below 

 
What do you regularly eat for…. 
 
 

 

Breakfast 
 
 
 
 
 
 
 

 

 

Lunch 

 
 
 
 
 
 
 

 

 
Evening meal 
 
 
 
 
 
 
 

 

 

Snacks 
 
 
 
 
 
 
 

 

 

Kitchenware sizes  

Dinner plate across (cm)  

Side plate across (cm)  

Bowl across (cm)   
Bowl down (cm)   

Bowl (ml) full capacity   

Mug/cup (ml)  full capacity  

Glass (ml) full capacity  
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Appendix 6 – Lab analysis methods 

 
 
6.1  ASCORBATE MEASUREMENT  
 
HPLC electrochemical detection of ascorbate 
 
 
SOLUTIONS 
 
Standard Ascorbate – make fresh on the day 
 

Ascorbate: 0.018 g ascorbic acid/100 ml [0.009 g/50 ml] in H2O gives a 1.0 mM stock 
solution. 

Dilute in PBS to standards 10M, 30M and 50M. 

 
10% Metaphosphoric acid [MPA] containing 2mM EDTA 
 

Make up a solution of 2 mM EDTA in H2O.  e.g 0.186 g EDTA disodium salt made up in 
250 ml H2O.  Use this to make up the MPA solution. 
16 g of MPA (33.5 – 36.5%) diluted with 50 ml of HPLC H2O containing 2 mM EDTA. 

 
5% MPA containing 1 mM EDTA 
 

A 1:2 dilution of the above in H2O 

 
Tris (2-carboxyethyl)phosphine hydrochloride [TCEP] 350 mM in 5% MPA 
containing 1 mM EDTA (Reducing agent). 
 

0.100 g made up in 1.0 ml of 5% MPA in 1 mM EDTA.  Make up e.g. 0.025g plus 250l 
5% MPA in 1mM EDTA.  
* Make this first as needs to dissolve * 

 
 
 
MOBILE PHASE 
 
50 mM Phospate buffer containing 540 μM EDTA and 2% Methanol. 
 
Weigh out 3.9 g of sodium dihydrogen orthophosphate HPLC grade [MW 156.01] and 
place in a 500 ml flask. 
 
Weigh out 0.1 g EDTA disodium salt [MW 372.2] and add to the flask. 
 
Make up to about 300 ml with HPLC grade H2O. 
 
Add 10 ml of methanol. 
 
Make up to 500 ml with HPLC grade H2O. 
 
Take to pH 2.8 with 6.0 M HCl. 
 
Filter and degas (Millipore glassware) 
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ASCORBATE MEASUREMENT PROCEDURE 
 
 

1. Take 200 l of plasma and add to 200 l of 10% MPA containing 2.0 mM 

EDTA. Mix well and centrifuge at 20,000 x g at 4oC for 10 minutes. 

 

2. Take 2 x 90 l aliquots of supernatant.  

 

3. To one add 10 l of 5% MPA containing 1 mM EDTA.  Add a further 200 l 

of 5% MPA containing 1 mM EDTA.  Mix well. This is for measurement of 

reduced ascorbate.  From this sample remove 50 l and add to a tube 

containing 450 l 5% MPA containing 1 mM EDTA.  Mix well.  This is for 

measurement of urate. 

 

4. To the other sample add 10l 350 mM TCEP in 5% MPA containing 1 mM 

EDTA.  Incubate for 20 minutes at room temperature.  This is to reduce 

the oxidised dehydroascorbate back to ascorbate.  Add a further 200 l of 

5% MPA containing 1 mM EDTA.  Mix well. This sample is for 

measurement of total ascorbate  

 
Suggested procedure: Inject the reduced sample, and the sample for 
urate while the total ascorbate sample is incubating. Then inject the total 
sample. 
 
 
Standards:   Prepare standards as follows:  

 Take 200 l of standard and add to 200 l of 10% MPA containing 2 

mM EDTA & ‘Buzz’ 

 Take a 90 l aliquot and add 10 l of 350 mM TCEP in 5% MPA 

containing 1 mM EDTA. 

 Incubate for 20 minutes at room temperature. 

 Add a further 200 l of 5% MPA.  Mix well. 

 Inject into HPLC system 

 Use HPLC H2O to wash between each standard and samples 
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6.2  MEASUREMENT OF MALONDIALDEHYDE 

 

Remember! – Don’t put the weighed out crystals back in the tub!! 

 

SOLUTIONS 

 

1) Butylated hydroxytoluene [BHT] (found in top cupboard) 0.05% in 95% 

ethanol (kept in yellow cupboard). To be made up on the day. 

Weigh out 0.05 g in 100 ml HPLC water, for this study used 0.0025 g (with small 

amounts measure with test tube on the scales) in 5 ml of 95% ethanol. i.e 4.750ml 

in 250 µl water. 

 

2) Phosphoric acid (0.44 M) 

Take 1.0 ml of concentrated orthophpsphoric acid and make up to 100 ml with 

distilled water  

 

3) TBA (42 mM) 

Weigh out 0.303 g of TBA and make up to 50 ml with water. Heat at 50-55 C to 

ensure that it dissolves. 

 

4) Stock solution of MDA (1mM) 

Weigh out 0.00313 g of MDA and make up to 10 ml with distilled  

water store at (-80c).  Dilute down in pbs to a range of standards from 500 nM to 

10 M 

 

5) Phosphate buffered saline [PBS] PH 7.4  

[137 mM Nacl; 2.7 mM Kcl; 8 mM Na2HPO4; 1.46 mM KH2PO4] 

Using a 250 ml volumetric flask weight out the following:  

2.0 g of Nacl (MW 58.44), 0.05 g of Kcl (74.56),0.716 g of Na2HPO4 (MW 358.14), 

0.05 g of KH2PO4 (MW 136.09) dissolved in about 200 ml distilled water, adjust PH 

to 7.4 make up to 250 ml storage in Keep this solution at 4℃. 

 

6) Mobile phase – the solution that carried the sample through the machine  

Potassium dihydrogen orthophosphate [KH2PO4] (50 mM)/MeOH 80/20 v/v 

Weigh out 3.403 g KH2PO4 and dissolve in 500 ml HPLC grade water.  Add 125 ml 

MeOH. Adjust to pH 6.8 using 5 M sodium hydroxide.  Filter and degass. 

HPLC wavelengths: Excitation 515 nm, Emission 553 nm 
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MEASUREMENT OF MALONDIALDEHYDE PROCEDURE 

In 2.0 ml centrifuge tube with screw caps, put 50 µl of Plasma or standard or 

blank add 50µl of BHT solution then add 400 µl of phosphoric acid and 100 µl of 

TBA solution. 

1) Cap the tubes, mix well on a vortex mixer. Heat for 1 hour at 100o C in a 

dry block. 

2) Remove tubes and place on ice to cool. 

3) Add 300 µl of n-1- butanol. Mix well using the vortex mixer. 

4) Centrifuge the mixture for 5 minute at 13,000 × g. to separate the aqueous 

and butanol phases. 

5) Carefully remove 200 µl of the butanol extract and place in tubes inject 

the butanol extract direct into HPLC system 
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6.3  MEASUREMENT OF ALPHA-TOCOPHEROL (VITAMIN E) IN PLASMA  

 

SOLUTIONS 

Mobile phase: 6% tetrahydrofuran (THF) in methanol 

15 ml THF made up to 250 ml with MeOH. Don’t pH or filter. 

Vit E standards, make up in methanol: 5, 10, 20, 50 ug/ml, in MeOH. 

Weigh out a tiny blob and add MeOH to mix, e.g:  

0.0215 g vitamin E + 215 ul MeOH = 100 mg/ml 

 

Sample preparation 

To 100 ul plasma, standards and blank (use MeOH for blank) add 200 ul 

acetronitrile-THF [3 parts acetronitrile : 2 parts THF]. 

Vortex each sample for 2 minutes to get the full extraction. 

Centrifuge 12,800 g for 20 mins, 4 degrees C using refridgerated centrifuge. 

Remove supernatant for injection. 

 

HPLC set up 

THf destroys some plastics (though seems OK with our Eppendorf tubes), and so 

the rheodyne and tubing need to be changed prior to measuring vitamin E. The 

column and guard column are also changed. 

Absorbance is read at 292 nm  

1 ml/min pump setting. Comes off at ~ 5 min, do a 7 min run. 

Use MeOH for between injection washes. 

Use a programmed wash after standards and after each batch of samples. 
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Appendix 7 – Full list of parameters measured by the Corvis ST 

 

 

 

 

 

 

 

 

Parameter 
 

Description 

IOP (mmHg) Intraocular pressure (based on A1) 

CCT (µM) Central corneal thickness by optical pachymetry 

Time A1 (ms) Measures the time from the initiation of the air puff to the 

first inward corneal movement 

Time A2 (ms) Measures the time to second applanation / outward 

corneal movement 

Length A1 (mm) Length of the applanated flat cornea surface at 

first applanation 

Length A2 (mm) Length of the applanated flat cornea surface at  

second applanation 

Velocity A1 (m/s) Velocity of corneal surface movement at the first 

applanation 

Velocity A2 (m/s) Velocity of corneal surface movement at the second 

applanation 

Deformation 

amplitude A1 (mm) 

The magnitude of the movement of the corneal surface 

at the first applanation 

Deformation  

amplitude A2 (mm) 

The magnitude of the movement of the corneal apex at 

the second applanation 

Highest deformation 

amplitude (mm) 

The magnitude of the movement of the corneal surface 

at the highest concavity 

Highest concavity 

time (ms) 

Time from the initiation of the air puff to the highest 

concavity of the deformation of cornea 

HC radius (mm) The radius of curvature at highest concavity of the 

deformation of the cornea. 
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Appendix 8 – Table summary of AGEs and ocular disease literature 

 

Summary of AGE and Ocular disease studies 
 

Diabetic retinopathy (DR) 
 

Study Participants  Findings 

Ghanem et 
al. (2011) 

30 HC 
Type 2 DM: 
35 mild NPDR 
30 severe NPDR 
25 PDR 

Serum levels of pentosidine and CML are 
related to severity of DR. In addition, aqueous 
humor level of CML increased with progression 
of DR. 

Choudhuri 
et al. (2013) 
 

95 HC 
Type 2 DM: 
70 NPDR 
105 PDR 
102 DNR 

Serum and vitreous CML levels were 
significantly elevated in PDR and NPDR 
subjects compared to DNR. ROS production 
was higher in NPDR and PDR compared to the 
DNR group. 

Al-
Mesallamy 
et al. (2011) 

20 HC 
Type 2 DM: 
14 DNR 
14 NPDR 
9 PDR 

Soluble RAGE levels were significantly lower in 
patients NPDR and PDR compared to HC and 
DNR patients.   

Anitha et al. 
(2008) 

188 HC 
Type 2 DM: 
188 DNR 
153 NPDR 
41 PDR 

Advanced glycation index, an assay to detect 
serum AGEs was significantly associated with 
severity of DR. 
 

Boehm et 
al. (2004) 

HC 792 
Type 2 DM:  
81 DNR 
56 DR 

Higher serum CML levels were associated with 
advanced stages of DR. 

Beisswenge
r et al. 
(1995) 

29 HC  
48 type 1 DM  
 

Levels of collagen-linked AGEs, measured by 
ELISA, were correlated with preclinical stages 
of DR (not indicated by other methods).  

Miura et al. 
(2003) 

Type 1 DM: 
35 DNR 
22 NPDR 
28 PDR 

Elevation of serum CML and non-specified 
AGE were associated with the severity of 
diabetic retinopathy in patients with Type 1 
diabetes. 

Murata et 
al. (1997) 

(Immunohistoche
mi-stry) 
9 HC 
27 DR 

Increased CML was associated with increased 
vascular endothelial growth factor. CML also 
found to be located in the thickened vascular 
wall. 

Yao et al. 
(2009) 
 

Cultured human 
aortic endothelial 
cells 

Evaluated RAGE and its ligands in human 
aortic endothelial cells. Proposed that ROS as 
well as being formed at the end of RAGE 
activation, ROS also create a positive 
feedback of RAGE facilitated pro-inflammatory 
signalling. 
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Zong et al. 
(2011) 

Animal study: rats 
(n = 10) 

Hyperglycaemia in vivo and in vitro induces 
upregulation of RAGE and its ligands, leading 
to RAGE signalling. This links to pro-
inflammatory responses by retinal Müller glia.  

Laiet et al. 
(2017) 

Animal study: 
diabetic rodents.  

Inhibiting the CML-induced tumor progression 
locus 2 axis prevented DR. 

Hirano et al. 
(2014) 

111 HC 
Type 2 DM: 
36 DNR 
71 NPDR 
31 PDR 

SAF was increased in patients with DM to HC.  
SAF correlated with severity of DR, whereas 
single measured HbA1c did not.  

Age-related macular degeneration (AMD) 
 

Study Participants  Findings 

Ni et al. 
(2009) 

32 HC 
58 AMD 

Higher levels of CML and pentosidine in AMD 
plasma protein. 

Ishibashi et 
al. (1998) 

Human donor 
eyes 
8 AMD 
12 aged HC  
2 young HC 

Soft, macular drusen and/or basal laminar and 
basal linear deposits showed CML 
accumulation. In choroidal neovascular 
membranes RPE cells showed CML 
accumulation in their cytoplasm.  

Schutt et al. 
(2003) 

Human donor 
eyes 
10 pairs of donor 
eyes 

Lipofuscin associated proteins were damaged 
by covalent modifications of MDA and AGEs in 
human RPE 

Howes et al. 
(2004) 

Donor macula 
retinas: 
2 Early AMD 
3 GA 
1 with drusen 
7 normal  

Presence of AGE and RAGE in RPE and 
photoreceptors corresponded with macular 
disease in aged, early AMD, and GA retinas. 

Glenn et al. 
(2011) 

RPE 
recovered from 7 
aged donor eyes 

AGE-induced modifications to the basement 
membrane alters the RPE proteome. 

Hollyfield et 
al. (2003) 

Human donor 
eyes 
18 HC 
5 AMD 

Protein cross-links and AGEs were observed in 
drusen and Bruch's membrane. 

Mulder et al. 
(2009) 

31 HC 
73 neovascular 
AMD 

SAF was increased in patients with 
neovascular AMD 

AGEs and diabetic keratopathy 
 

Study Participants  Findings 

Sato et al. 
(2001) 

13 HC 
Type 2 DM: 
8 DNR 
6 NPDR 
12 PDR 

The corneal AGE fluorescence values were 
significantly higher in the PDR group compared 
with HC 
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Mori et al. 
(2009) 

8 HC 
17 PDR 

Corneal and lens autofluorescence significantly 
increased in PDR, compared with HC. 
Hyperglycemia associated with increasing 
corneal autofluorescence in PDR. 

Sady et al. 
(1995) 

Human donor 
eyes 
11 HC 
8 DM 

Fluorescence and pentosidine were present at 
higher levels in DM corneas compared to age-
matched HCcorneas. 

Kaji et al. 
(2000) 

Human donor 
eyes 
8 HC 
8 DM 

CML present in epithelial basement membrane 
of all DM corneas, only in one of 8 HC 
corneas. 

Kim et al. 
(2010) 

Animal study: rats 
8 control rats 
8 DM rats 

Corneal thickness was increased in DM rats 
compared to controls. Increased AGE in 
corneal tissues of DM rats 

AGEs and Glaucoma 
 

Study Participants  Findings 

Tezel at al. 
(2007) 

Human donor 
eyes 
30 HC 
38 Glaucoma 

Higher levels of AGEs and RAGE were 
detectable in the glaucomatous retina and 
ONH. In glaucomatous eyes AGE was 
predominantly extracellular in laminar 
cribriform plates in the ONH, RAGE was was 
predominant on glial cells. 

Amano et 
al. (2001) 

Human donor 
eyes 
(all elderly 
6 HC 
7 DM 

Pyrraline detected in sclera, pia mater, 
cribriform plates, connective tissues in the optic 
nerve. Also found around vessels in the optic 
nerve and pia mater. 

Albon et al. 
(1995) 

Human donor 
eyes 
Age range 3 to 92 

Age-related changes included an increase in 
total collagen and a decrease in the proportion 
of type III collagen in the lamina cribrosa. Age-
related increase of pentosidine. 

Spoerl et al. 
(2005) 

80 porcine eyes 
24 pairs of human 
donor eyes 

Glyceraldehyde and methylglyoxal increase 
the stiffness of the lamina cribrosa and the 
peripapillary sclera in human and in porcine 
eyes. 

Park et al. 
(2012) 

Cultured human 
trabecular 
meshwork cells 

AGE enhances cellular deterioration with age 
in human trabecular meshwork cells, 
accompanied with increased oxidative stress.  

Tezel et al. 
(1997) 

HC 24 
POAG 31 

Small increase in aqueous humor endothelin 
levels in patients with POAG versus controls 

Doganay et 
al. (2002) 

14 HC 
16 POAG 

Decreased aqueous humor NO levels in 
patients with POAG compared to HC 

Galassi et 
al. (2004) 

46 HC 
38 POAG 

NO plasma levels and aqueous humor levels 
were decreased in POAG compared to HC 

Himori et al. 
(2016) 

36 HC 
71 POAG 
176 NTG 

SAF negatively correlated with MD in the 
youngest subjects, not in the older subjects. 
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Himori et al. 
(2015) 

20 HC 
73 NTG 

SAF higher in NTG patients than HC (but not 
significantly different). SAF and 8-OHdG were 
negatively correlated with tissue-area mean 
blur rate in NTG patients 

Schweitzer 
et al. (2018) 

424 HC 
31 POAG 

Higher SAF and smoking were independently 
associated with increased risk of glaucoma 
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Appendix 9 – Table summary of dietary AGE literature 

 

Summary of dietary AGE studies 
 

Study Participants  Findings 

Hofmann et 
al. (2002) 

16 HC mice 
20 DM mice 

Mice fed a low dAGE diet had lower CML and 
MG levels compared with high dAGE fed mice.  

Vlassara et 
al. (2002) 
 

24 type 2 DM: 
11 in 2wk 
13 in 6wk 

Participants on reduced dAGE diet had a 
reduction in circulating AGE level and 
reduction in both TNF-and VCAM1. 

Uribarri et 
al. (2003) 

18 non-DM renal 
failure patients: 
9 high dAGE 
9 low dAGE 

dAGE contributes to the elevated AGE levels 
in renal failure patients. Correlation between 
circulating AGE and dietary intake. 

Uribarri et 
al. (2007) 

10 HC 
44 DM 
 

Dietary oral AGE-rich liquid beverage (free 
from lipids) results in a rise in AGE serum 
levels. The AGE-rich beverage caused 
impairment of endothelial function. 

Vlassara et 
al. (2009) 
 

325 HC  
66 chronic kidney 
disease patients 

Reduction of dAGE lowers oxidative stress and 
inflammation in both healthy and chronic 
kidney disease patients.  

Birlouez-
Aragon et 
al. (2010) 

62 healthy 
volunteers 

A diet based on high-heat-treated foods 
increases markers associated with an 
enhanced risk of type 2 diabetes and 
cardiovascular diseases in healthy people. 

Uribarri et 
al. (2011) 

18 HC  
18 type 2 DM  
 

Restriction of dAGE may preserve natural 
defences and insulin sensitivity by maintaining 
lower basal oxidative stress. 

Piroddi et 
al. (2011) 

10 HC 
10 chronic kidney 
disease patients 
10 hemodialysis 
patients 

Dietary intake of CML did not affect circulating 
levels in these groups of patients.  

Luevano-
Contreras et 
al. (2013) 

34 type 2 DM 
 

Restriction of dAGEs significantly decreased 
TNFα and malondialdehyde levels. 

Semba et 
al. (2014) 
 

24 healthy 
volunteers 
12 high dAGE 
12 low dAGE 

No significant changes in serum and urinary 
CML concentrations from baseline to follow-up 
in the high-AGE diet group. A high- or low- 
dietary AGE had no significant impact on 
inflammatory mediators or peripheral arterial 
tonometry after 6wk intervention. 

Mark et al. 
(2014) 

74 overweight 
women 
37 high dAGE 
37 low dAGE 

The low-AGE diet decreased urinary AGEs, 
fasting insulin concentrations, and 
Homeostasis model assessment of insulin 
resistance, compared with the high-AGE diet. 
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Macias-
Cervantes 
et al. (2015) 

43 overweight 
15 low dAGE and 
exercise 
14 low dAGE  
14 exercise (with 
habitual food 
intake) 

AGE-restricted diet reduces serum. The 
addition of exercise to the restricted diet has 
the same effects but also improves lipid profile. 
 

Barbora de 
Courten et 
al. (2016) 

20 healthy 
volunteers 

A diet that is low in AGEs may reduce the risk 
of type 2 diabetes by increasing insulin 
sensitivity. 

Scheijen et 
al. (2018) 

450 volunteers Higher intake of dAGEs is associated with 
higher levels of AGEs in plasma and urine. 
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Appendix 10 - Statistical tests 
 
 
Appendix 10.1 – Median and IQR for non-parametric data in Chapter 4 
 

Table 10.4.2: Median, IQR and Spearman’s correlations between plasma CML and dAGEs 

calculated with each database. Interquartile range: IQR. *p < 0.05  

 

 

Table 10.4.4: Medians, IQR and Spearman’s correlations between dAGEs for each database 

measured with FFQ1 (n = 70). Interquartile range: IQR. *p < 0.05. **p < 0.01.  

 

 

 

 

 

Median IQR Spearman’s correlation coefficients (R values) 

 Uribarri 

(average 

CML 

kU/day) 

Hull CML 

(average 

mg 

CML/day

) 

ScheijenCM

L 

(average mg 

CML/day) 

ScheijenCE

L 

(average 

mg 

CEL/day) 

ScheijenMG-

H1 

(average mg 

MG-H1/day) 

Plasma 

CML  

(ng/ml) 

91.40 77.42, 

124.05 

-0.256 

p = 

0.038* 

0.079 

p = 0.526 

0.080 

p = 0.523 

-0.029 

p = 0.817 

0.068 

p = 0.590 

    Spearman’s correlation coefficients (R) 

 

 

Median IQR 1 2 3 4 5 

1. Uribarri  

(average CML kU/day) 

18841.08 13820.49, 

25068.05 

 0.274* 0.337** 0.525** 0.176 

2. Hull CML  

(average mg CML/day) 

5.34 4.45, 5.34   0.745** 0.705** 0.771** 

3. Scheijen-CML  

(average mg CML/day) 

3.60 2.91, 4.93    0.740** 0.731** 

4. Scheijen-CEL   

(average mg CEL/day) 

2.99 2.19, 3.67     0.764** 

5. Scheijen-MGH1   

(average mg MG-

H1/day) 

29.43 22.28, 

36.73 
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Appendix 10.2 – Median and IQR for non-parametric data in Chapter 5 

 

Table 10.5.1: Median, IQR and Spearman’s correlations between SAF (AU) and dAGEs 

calculated with each database. *p<0.05  

 

 

 

Table 10.5.2: Median, IQR and Spearman’s correlations between SAF (AU) and each oxidative 

stress biomarker: ascorbate (vitamin C), malondialdehyde (MDA) and alpha tocopherol (form of 

vitamin E). *p<0.05  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Median IQR Spearman’s correlation coefficients (R values) 

 Uribarri 

(averag
e CML 
kU/day) 

Hull 
CML 

(averag
e mg 

CML/da
y) 

Scheijen 

CML 

(average 
mg 

CML/day) 

Scheijen 

CEL 

(average 
mg 

CEL/day) 

Scheijen 

MG-H1 

(average mg 
MG-H1/day) 

SAF  2.10 2.00, 
2.47 

0.075  

p = 
0.545 

0.210 

p = 
0.085 

0.190 

p = 0.120 

0.175 

p = 0.153 

0.319 

p = 0.008* 

 

 

Median IQR Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

Ascorbate (µM) 44.89 36.83, 62.65 -0.207,  p = 0.093 

MDA (µM) 0.59 0.48, 0.72 0.072,  p = 0.570 

Alpha tocopherol 
(µM) 

40.41 31.81, 50.37 0.252,  p = 0.044*  
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Table 10.5.3: Median, IQR and Spearman’s correlations between all parameters which correlated 

with SAF. 
 

 

 

 

 

 

Appendix 10.3 – Median and IQR for non-parametric data in Chapter 7 

Table 10.7.1: Artery dynamic parameters, median, IQR and spearman’s correlation with SAF. AU: 

arbitrary units, BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline 

corrected flicker response, MD%: maximum percentage dilation, RT: reaction time, MC%: 

minimum percentage constriction, CT: constriction time.  

 

 

Variable 

 

 

Median 

 

IQR 

 

Spearman’s correlation coefficients 

R values P values 95% bootstrap 

confidence 

interval 

Age (years) 57.00 53.00, 

67.50 

0.435 p<0.001 0.205 to 0.620 

Dietary AGE MG-H1  

(average mg MG-

H1/day) 

29.43 22.28, 

36.55 

0.333 0.007 0.105 to 0.550 

Alpha tocopherol  

(µM) 

40.41 31.81, 

50.37 

0.252 0.044 0.034 to 0.461 

Artery  

 

Median IQR Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

BDF 2.11 1.49, 3.02  0.007,  p = 0.956 

DA 3.51 2.21, 5.71 0.144,  p = 0.272 

BFR 1.30 0.49, 3.20 0.165,  p = 0.207  

MD % 2.23 1.26, 3.76 0.131,  p = 0.319 

RT (secs) 15.00 12.42, 19.00 -0.033,  p = 0.803 

MC % 1.31 0.63, 2.01 0.123,  p = 0.349 

CT (secs) 22.00 17.25, 28.50 0.215,  p = 0.098 
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Table 10.7.2: Vein dynamic parameters, median, IQR and spearman’s correlation with SAF. AU: 

arbitrary units, BDF: baseline diameter fluctuation, DA: dilation amplitude, BFR: baseline 

corrected flicker response, MD%: maximum percentage dilation, RT: reaction time, MC%: 

minimum percentage constriction, CT: constriction time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vein 

 

Median IQR Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

BDF 1.82 1.51, 3.04 -0.140,  p = 0.287 

DA 4.82 3.44, 7.36 -0.075,  p = 0.570 

BFR 2.82 1.94, 4.17 0.008,  p = 0.950  

MD % 3.98 2.95, 6.16 -0.098,  p = 0.458 

RT (secs) 18.00 16.75, 25.83 -0.004,  p = 0.978 

MC % 0.71 0.31, 1.45 0.015,  p = 0.912 

CT (secs) 33.25 25.83, 37.25 -0.147,  p = 0.262 
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Table 10.7.3: Corneal viscoelastic parameters, median, IQR and spearman’s correlation with 

SAF. AU: arbitrary units, Time A1: first applanation time, Time A2: second applanation time, 

Velocity A1: velocity of corneal surface movement at the first applanation, Velocity A2: velocity of 

corneal surface movement at second applanation, Deformation amp. A1: deformation amplitude 

at first applanation, Deformation amp. A2: deformation amplitude at second applanation, Highest 

deformation amp: highest deformation amplitude.  

 

 

 

 

 

 

 

 

Corneal 
parameters 

 

Mean Standard 

deviation 

Spearman’s correlation 
coefficients (R values) 

 SAF (AU) 

Time A1 (ms) 7.27 7.09, 7.59 0.140,  p = 0.394 

Time A2 (ms) 21.99 21.66, 22.26 -0.105,  p = 0.526 

Velocity A1 (m/s) 0.15 0.14, 0.17 -0.227,  p = 0.165  

Velocity A2 (m/s) -0.27 -0.29, -0.24 0.290,  p = 0.074 

Deformation amp. 
A1 (mm) 

0.13 0.13, 0.14 0.033,  p = 0.840 

Deformation amp. 
A2 (mm) 

0.44 0.41, 0.49 0.113,  p = 0.492 

Highest 
deformation amp. 
(mm) 

1.09 0.99, 1.15 -0.265,  p = 0.103 

Highest 
concavity time 
(ms) 

16.40 16.17, 16.86 0.012,  p = 0.942 
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 Year 1 Year 2 Year 3 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Introduction to 
study and 
training (DVA, 
SAF, Bloods) 

                  

Literature  
Review 

                  

Protocol/Ethics 
development 

                  

Recruitment 
 

                  

Data collection 
 

                  

Blood analysis     
 

              

Data analysis            
 

       

Thesis writing 
 

                  

 

 

 

- Introduction to end note seminar 

- Introduction to ethical approval seminar 

- Library services seminar 

- ITL – Introduction to learning  

- Good clinical practice (GCP) training 

- Research writing session 

- Human tissue training session 

- Phlebotomy training (Derriford hospital) 

- Basic laboratory training  

- Pipette training 

- Preparing for the transfer seminar 

- Lab analysis training 

- Postgraduate statistics course – multiple seminar sessions 

- Post-graduate writing workshop 

- Preparing for the viva seminar 

 

 

Appendix 11 – Gantt chart 

Appendix 12 – Research training activities 
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