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Abstract

Multimedia services consumption has increased tremendously since the deploy-
ment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile
TV) on smart devices are expected to continue to grow with the emergence and
evolution of future networks such as 5G. The end user’s demand for services with
better quality from service providers has triggered a trend towards Quality of
Experience (QoE) - centric network management through efficient utilization of
network resources. However, existing network technologies are either unable to
adapt to diverse changing network conditions, or limited in available resources.
This has posed challenges to service providers for provisioning of QoE-centric
multimedia services.

New networking solutions such as Software Defined Networking (SDN) and
Network Function Virtualization (NFV) can provide better solutions in terms of
QoE control and management of multimedia services in emerging and future
networks. The features of SDN, such as adaptability, programmability and cost
effectiveness make it suitable for bandwidth intensive multimedia applications
such as live video streaming, 3D/HD video and video gaming. However, the
delivery of multimedia services over SDN/NFV networks to achieve optimized
QoE, and the overall QoE-centric network resource management remain an open
question especially in the advent development of future softwarized networks.

The work in this thesis intends to investigate, design and develop novel ap-
proaches for QoE-centric control and management of multimedia services (with a
focus on video streaming services) over software defined and virtualized networks.
First, a video quality management scheme based on the traffic intensity under
Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed.
The proposed scheme can mitigate virtual port queue congestion which may cause
buffering or stalling events during video streaming, thus, reducing the video
quality.

A QoE-driven resource allocation mechanism is designed and developed for
improving the end user’s QoE for video streaming services. The aim of this
approach is to find the best combination of network node functions that can
provide an optimized QoE level to end-users through network node cooperation.
Furthermore, a novel QoE-centric management scheme is proposed and developed,
which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance
QoE for video streaming services over SDN/NFV-based networks. The goal of this
strategy is to enable service providers to route network traffic through multiple
disjointed bandwidth-satisfying paths and meet specific service QoE guarantees
to the end-users. Extensive experiments demonstrated that the proposed schemes
in this work improve the video quality significantly compared with the state-of-
the-art approaches. The thesis further proposes the path protections and link-
failure free MPTCP/SR-based architecture that increases Survivability , resilience,
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availability and robustness of future networks. The proposed path protection and
dynamic link recovery scheme achieves a minimum time to recover from a failed
link and avoids link congestion in softwarized networks.
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Chapter 1

Introduction

Multimedia services consumption has increased tremendously over the past years and is

expected to continue to grow even more over the next years. According to the latest Cisco

Visual Networking Index (VNI) Forecast [7], over three-fourths of the world’s data traffic

is going to be video by 2021. Mobile-connected devices are estimated to be 11.6 billion

including Device to Device (D2D) and Machine to Machine (M2M) communications

and therefore exceeding the world’s projected population of 7.8 billion by 2021. The

exponential growth of video streaming services (e.g., YouTube and Mobile TV) on smart

devices has triggered and introduced new revenue potential for telecom operators and

service providers.

This fact, coupled with the increasing numbers of data consuming devices which run

enhanced applications such as live video streaming, social networking, 3D/HD video,

video gaming and Virtual Reality pose a challenge to mobile and service providers in

terms of management of multimedia networks as end-users become accustomed to more

resource demanding services with better quality. Fixed and mobile networks today are

converging towards the future telecommunication domain (e.g., 5G networks) through the

integration of existing and new wireless technologies. Such integration is set to provide

access to any service with better quality to the end-users through a reliable and cost

effective communication, over any medium and across multi-operator domains using

different networking technologies [8]. Therefore, future networks should enable end-

users to access multimedia services with high Quality of Experience (QoE) from service

providers at anytime, anywhere without limitations on technology and medium. In order

to meet these requirements, new architectures and intelligent schemes for QoE control
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and management of future multimedia services have to be designed and developed.

1.1 Research Challenges and Motivations

The end-users’ demand for services with better quality from service providers has trig-

gered the trend of traditional and future networks towards using QoE in network manage-

ment through an efficient utilization of network resources. In order to meet end-users’ QoE

requirements and their expectations, several QoE issues (e.g., QoE monitoring, QoE control

and management) pose challenges to service providers [9]. Such issues are contributed

by existing technologies which are either unable to adapt to diverse changing network

conditions, or limited in the available resources. In addition, existing QoE adaptation

approaches limit the network ability to provide intelligent and efficient solutions such that

they only react when a problem occurs and therefore resulting in sub-optimal network

performance. These challenges necessitate harmonizing the integration of advanced intel-

ligence architectures in future networks with the development of intelligent QoE-aware

adaptation mechanisms. Therefore QoE enabled functions, such as QoE-centric routing,

admission QoE control, resource allocation and server selection mechanisms in future

networks should be adaptive to changing network conditions to improve end-users’ QoE.

Today, end-users are accustomed to more resource demanding services with better quality

from Service Providers (SP) [10]. However, achieving good Quality of Experience (QoE) is

a challenging task because of different clients devices/requests patterns, changing media

contents and varying transmission/network conditions. Great efforts from both academia

and industry have been made to optimize the video content delivery chain and enhance

end users’ QoE. Some of the common mechanisms used for improving end-users’ QoE

are either based on network optimization (e.g. QoE-driven network resource allocation

and QoE-driven routing) or based on client-server request/response (e.g. client-driven

adaptive video streaming) and QoE-based routing [11, 12, 9].

Despite these efforts, QoE management remains a challenging task due to many is-

sues [9, 13]. Firstly, the variability of network resources, and unstable nature of wireless

channels and the characteristics of fixed/mobile networks in heterogeneous environments,

for example, crowded areas such as train, stadium and shopping malls. This kind of envi-

ronments requires continuous adaptation of network resources allocation. Secondly, the

emergence of new services (e.g., video gaming and virtual/augmented reality (VR/AR)),
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Figure 1.1: QoE management challenges in future networks.

the diversity of contexts of use, the users’ expectations combined with the operational

cost optimization by mobile and service providers lead QoE management into challenging

zones of the research field. Thirdly, considering a variety of networks (e.g., fixed and

mobile), different measurement and assessment methods are required to be employed

for QoE management considering resources constraints. Fourth, the popularity and fast

growth of the multimedia services over the Internet, the heterogeneity of end-user devices

with different capabilities (e.g., screen size, computational power/resources, and storage

capabilities) pose even more challenges regarding resource allocation among users with

different QoE preferences. Fig. 1.1 summarizes the QoE management challenges in current

and future IP-based networks.

Increased user demand and expectations of services with excellent quality have triggered

telecom operators to upgrade their systems and invest in new cutting-edge network soft-

warization paradigms such as Software Defined Networking (SDN) [14], Network Func-

tion Virtualization (NFV) [15], Multi-access Edge Computing (MEC) [16] and Cloud/Fog
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Computing (C/FoC). This transformation and the upgrade of their systems are also driven

by the mounting pressure of new emerging use cases, ranging from full ultra-high defini-

tion video resolutions (4K/8K), network-controlled D2D communications, Machine Type

Communication (MTC) and Massive Internet of Things (MIoT).

In such an agile and flexible environment, it is important to consider new solutions, such as

the separation of user and control planes, and possibly, re-define the boundaries between

the network domains (for example, radio access network and the core network). Therefore,

there is a need for autonomic network management platforms that can guarantee the end

users’ QoE, especially in heterogeneous environments. Towards this end, new paradigms

such as SDN and NFV have been identified as critical technologies for enabling future

network control to be programmable, centrally manageable, adaptable and cost-effective.

SDN and NFV are considered to be suitable for applications such as video streaming [17,

18, 19, 20, 21, 22, 23, 24]. Indeed, SDN and NFV may enable network management to be

automated and ensure that the end-user’s QoS/QoE requirements as well as Experience

Level Agreements (ELAs)1 are fulfilled in the heterogeneous environments [25].

More importantly, SDN and NFV can provide an end-to-end resource, infrastructure

and service orchestration across a multi-programmable domain that belongs to different

operators or service providers. To this end, investigations are ongoing as to what extent

future networks and different supporting technologies can be software-configurable and

to what extent software platforms can be hardware-agnostic. Aligned with the on-going

SDN and NFV research activities by some standardization bodies, there is an urgent need

to study and explore the adoption of SDN and NFV on how they introduce the significant

changes on the operation, management, and delivery of QoE-aware services in the context

of emerging and future networks.

1.2 Research Aims and Objectives

The main aim of this thesis is to investigate and develop Quality of Experience (QoE)

- centric control and management schemes for streaming video services over software

defined and virtualized networks. Specific objectives of the research work are to:

1Experience Level Agreements (ELAs): Indicates a QoE-enabled counter piece to traditional QoS-based
that conveys the performance of the service in terms of QoE. ELAs establish a common understanding of an
end-user experience on the quality levels whiling using the service
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• Investigate comprehensively the QoE-centric control and management for HTTP

adaptive video streaming using SDN/NFV. The aim is to overcome future challenges

and achive an optimized QoE to the end users with different client devices/request

patterns at varying transmission/network conditions.

• Investigate a QoE-based multimedia flow routing mechanism using traffic intensity

over SDN/NFV. The proposed scheme can mitigate virtual port queue congestion

and reduce buffering or stalling events during video streaming.

• Design, formulate and implement the QoE-Centric multipath routing approach for

multimedia services using SDN. The aim is to utilize multiple disjointed paths to

improve network resources utilization and end-users’ QoE for multimedia services

delivery in future softwarized networks.

• Design a novel QoE-driven SDN based resource allocation mechanism for future

SDN/NFV-based networks. A combination of network node functions are used

to provide an optimized QoE level to end-users through node cooperation in soft-

warized networks.

• Investigate and design a QoE-centric management of multimedia services using

MPTCP and Segment Routing (SR) in softwarized networks. A QoE-based multipath

routing and video quality optimization algorithm is proposed to provide an efficient

orchestration, QoE control and management of future multimedia (video) services.

• Investigate, design and implement a multipath protections and link- failure free

MPTCP/SR-based architecture that increases survavibility, resilience, availability

and robustness of 5G networks.

• Perform extensive experiments and quality evaluations from real-time multimedia

transmissions over the developed softwarized network platform.

1.3 Summary of Thesis Contributions

This thesis investigates broadly the QoE-centric control and management of video stream-

ing services in software defined and virtualized networks. It is important to mention that,

apart from addressing the QoE-centric control and management, another contribution

of this thesis include the development of an SDN/NFV-based experimental platform for
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conducting video streaming experiments. Specifically, the SDN controller was extended

by adding QoE management module, Multipath TCP (MPTCP) flow routing module and

SR module as presented in Chapters 5 and 6. Figure 1.2 illustrates the approach that was

followed in this thesis by providing a relationship between chapters, publications and its

contributions in the field. Specifically, the main contributions of this thesis are outlined

and summarized in the following five (5) areas.

1.3.1 QoE-based Multimedia Flow Routing Mechanisms using SDN/NFV

A video quality management scheme over an SDN architecture based on traffic intensity is

proposed to minimize virtual port queue congestion which may cause buffering or stalling

events during video streaming, thus, reduce the video quality. The QoE-based multimedia

flow routing approach in SDN/NFV is designed to (a) investigate the performance of the

control plane particularly the OpenFlow protocol, and (b) avoid the queuing overflow that

can negatively affect the video quality of the transmitted video from server to an end-user.

The work has been contributed to the research community following the publication

achieved in [26]. The contributions in this work are described in Chapter 3. As part of

my contributions in this work, I conducted video streaming experiments over SDN and

analyzed the results.

1.3.2 A QoE-Driven SDN based Resource Allocation Algorithm in Future Net-

works

With the continuous growth of multimedia applications in future networks such as 5G,

enabling the dynamic configuration and resource allocation in SDN-based networks

can be significant and an outstanding approach of improving the end-users’ QoE. In

this regards, this work applied network softwarization and virtualization technologies

specifically SDN and NFV to propose a novel QoE-driven resource allocation mechanism

that assigns tasks dynamically to virtual network nodes in order to achieve an optimized

end-to-end quality. The aim of the proposed approach is to find the combination of

network node functions that can provide an optimized QoE level to end-users through

node cooperation. The author considered multimedia service as a collection of tasks

where neighbor nodes negotiate the assignment of these tasks by considering the end-

users’ perceived video quality. The work has been contributed to the research community
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following the publication achieved in [27]. The contributions in this work are described in

Chapter 4. My contributions in this work is on experimental part, evaluation of the results

and algorithm implementation in SDN.

1.3.3 A Novel QoE-Centric Multipath Routing Algorithm for Video Stream-

ing using SDN

A multiflow approach is employed in this contributions where multiple disjointed paths

are used in SDN-based networks to improve network resources utilization and end-

users’ QoE for delivering video streaming services. Specifically, the work provides the first

implementation mechanisms of MPTCP and SR for traffic management in software defined

and virtualized networks. DASH is employed to test the performance and effectiveness

of the proposed algorithm. It is important to mention that, this strategy is compared

with the traditional TCP approach. The Stream Control Transmission Protocol (SCTP)

which operates at the transport layer is not compared because it serves a role similar

to TCP and UDP [28]. The contribution under this work proposes a novel QoE-aware

SDN-based MPTCP/SR framework to enhance the QoE for video streaming services

delivery in future networks. In the proposed framework, the POX controller was extended

by introducing three modules namely, (a) MPTCP-Flow Manager, (b) QoE management,

and (c) Segment Routing (SR) Module. The work has been contributed to the research

community following the publication achieved in [29]. The contributions in this work are

described in Chapter 5.

1.3.4 QoE Control and Management of Video Streaming Services in Softwarized

Networks

This contribution provides the first original practical Traffic Engineering (TE) mechanisms

where MPTCP and SR are further employed in softwarized networks to facilitate efficient

transfer of large amount of multimedia applications between end-points. The chapter

extends the contribution four (4) described above, where MPTCP and SR were utilized

to improve video quality and the system performance for video streaming services. In

order to improve the video quality, the Multi-flow commodity and Constrained Shortest

Path Model (MCSPM) is applied to choose important intermediate nodes and perform

source routing using SR paradigm. As a key contribution of the thesis, a novel QoE-aware
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MPTCP/SR-enabled architecture in softwarized networks is proposed to provide an

efficient orchestration, QoE control and management of future multimedia services. The

work has been contributed to the research community following the publication achieved

in [30]. The contributions in this work are described in Chapter 6.

1.3.5 Multipath Protections and Dynamic Link Recovery in Softwarized 5G

Networks using Segment Routing

In this work, a multipath protection and link-failure free MPTCP/SR-based SDN/NFV

architecture that increases survivability, resilience, availability of services in 5G networks

is proposed. The system model and a multiPath protection and dynamic link- failure

free algorithm called "PathReLief" is proposed to minimize the failure recovery time and

avoids link congestion in MPTCP/SR softwarized 5G networks. To demonstrate the

effectiveness of the proposed approach, the performance of the proposed algorithm is

compared with the conventional topology discovery mechanisms for link/node failures

in POX and OpenDaylight controllers. The work has been contributed to the research

community following the publication achieved in [31]. The contributions in this work are

described in Chapter 6.

1.4 Overview of Publications and Author Contributions

It is important to mention that, the thesis and the work described herein is covered in the

following peer-reviewed publications and submitted papers. The papers cover technical

and novel research-based position contributions in the QoE management as well as future

networks domain.

TC1 : A.A.Barakabitze, L.Sun, IH Mkwawa and E.Ifeachor. "A Novel QoE-Aware SDN-

enabled, NFV-based Management Architecture for Future Multimedia Applications

on 5G Systems", in Eighth International Conference on Quality of Multimedia Expe-

rience (QoMEX), June, 2016, Lisbon, Portugal

TC2 :IH Mkwawa, A.A.Barakabitze, L.Sun. Video Quality Management over the Soft-

ware Defined Networking, in IEEE International Symposium on Multimedia (ISM),

December, 2016, San Jose, CA, USA.
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TC3 :E. Grigoriou, A.A.Barakabitze, L.Atzori, L.Sun and V.Pilloni, "An SDN-approach

for QoE Management of Future Multimedia Services using Resource Allocations",

IEEE International Conference on Communications, May, 2017, Paris, France.

TC4 :A.A.Barakabitze, L.Sun, IH Mkwawa, E.Ifeachor, "A Novel QoE-Centric SDN-

Multipath Routing Approach for Future Multimedia Services in 5G Networks", 2018

IEEE International Conference on Communications, May 2018, Kansas City, MO,

USA.

TC5 :A.A.Barakabitze, IH Mkwawa, L.Sun, E.Ifeachor, "QualitySDN: Improving Video

Quality using MPTCP and Segment Routing in SDN/NFV", IEEE International

Conference on Network Softwarization (NetSoft), June 2018 - Montreal, Canada.

TC6 A.A, Barakabitze, L.Sun, IH Mkwawa and E.Ifeachor. "MultiPath Protections and

Dynamic Link Recovery in Softwarized 5G Networks using Segment Routing", IEEE

GLOBECOM Workshop on Future Internet Architecture, Technologies and Services

for 2030 and beyond, December 2019, Waikoloa, HI, USA.

1.4.1 Journal Papers

TC7 A.A, Barakabitze, IH, Mkwawa, L, Sun and E, Ifeachor, "QoEMultiSDN: QoE Man-

agement of Multimedia Services using MPTCP and SR in SDN/NFV-based Net-

works", ACM Transactions on multimedia computing communications and applica-

tions.

PC1 A.A Barakabitze, N. Barman, A. Ahmad, S. Zadtootaghaj, L. Sun, M. Martini, L.

Atzori and S. Moller, "QoE Management of Multimedia Services in Future Net-

works: A Tutorial and Survey", IEEE Communication Surveys and Tutorials, pp. 1-1,

November, 2019.

PC2 A. Barakabitze, A. Arslan, M. Rashid, and H. Andrew, "5G Network Slicing us-

ing SDN and NFV: A Survey of Taxonomy, Architectures and Future Challenges,"

Computer Networks, vol. 167, pp. 1-40, February 2020.
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Figure 1.2: Organization and structural contributions of this thesis

1.5 Thesis Outline

The Organization and structural contributions of this thesis are illustrated in Figure

1.2. The studies covered in this thesis are indicated by chapters which form sections

as visualized using boxes. The relationship between the sections are indicated using

top-down arrows. The green boxes indicate chapters that cover the introduction, literature

review and conclusion and future work while blue boxes indicate the major contributions

of this thesis in the research field. In the end of each chapter, a summary of the work

carried out and/or the lessons learned are provided. In the following, the organization

and the overall structure of this thesis is described. After the thesis introduction, Chapter

2 presents a comprehensive description of literature review focusing on four main areas,

listed as below. Section 2.2 provides highlights on the concept of QoE management for

multimedia streaming services followed by a description of HTTP Adaptive Streaming

(HAS) solutions including the Server and Network Assisted DASH (SAND) in Section 2.3.

Section 2.4 presents the background information regarding network softwarization and

virtualization technologies (e.g., SDN, NFV). Section 2.5 provides a detailed state-of-the-art

regarding QoE management for HTTP adaptive video streaming using SDN/NFV.

Chapter 3 investigates the video quality management based on queue mechanisms and

QoE/QoS Policy in SDN. In order to understand the traffic intensity approach, section 3.1
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describes the introduction of queue mechanisms and QoE/QoS policies in SDN. Section 3.2

presents related work followed by a description of the proposed video quality management

algorithm in section 3.3. A performance evaluation and results of the proposed scheme

for DASH is given in Section 3.4. Section 3.5 provides lessons learned and a summary of

this chapter.

Chapter 4 provides a novel QoE-driven resource allocation strategy that dynamically

assign tasks to virtual network nodes in order to achieve an optimized end-to-end quality.

Section 4.1 presents related work. Section 4.2 provides an illustration of a system overview

and task assignment model followed by the description of the network model and a utility

function in section 4.3. Section 4.4 presents the QoE-driven resource allocation and task

assignment algorithm. Section 4.5 presents the performance evaluation and analysis of

the results. Section 4.6 summarizes this chapter.

Chapter 5 explore the utilization of MPTCP and SR in SDN-based networks to improve

the end-user’s QoE for delivering video streaming services in future networks. Section

5.1 presents related work regarding multimedia transmission using MPTCP over SDN

followed by a description of basic operation and principles of MPTCP in section 5.2.

Section 5.3 provides the video adaptive streaming concept of MPTCP over SDN while

section 5.4 presents the traffic engineering with segment routing in SDN. Section 5.5

presents a QoE-aware MPTCP SDN-based SR adaptation framework. Section 5.6 presents

the proposed QoE-Centric Multipath Routing Algorithm (QoMRA) over SDN. Section 5.7

provides an experimental results and evaluation of the proposed QoE-aware MPTCP/SR-

based algorithm. Section 5.8 summarizes the contributions of this chapter.

Chapter 6 presents a novel QoE-based multipath and video quality optimization algo-

rithm called "QoEMuSoRo" that forwards traffic using SR paradigms over softwarized

networks. In addition, Path Protection and Recovery of Link Failure (PathReLieF) algo-

rithms are proposed to achieve dynamic route selection and link/node failure recovery

over softwarized networks. Section 6.1 provides related work while section 6.2 provides a

novel concept called "QoE-softwarization" in SDN and NFV. Section 6.3 presents the con-

siderations of MPTCP over softwarized networks. Section 6.4 describes path protection

and dynamic link recovery mechanisms with SR in softwarized networks. Section 6.5

provides the Service Function Chaining (SFC) strategies using SR in future softwarized

network while section 6.6 provides a novel QoE-aware MPTCP and SR-based approach
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over softwarized infrastructures leveraging the integration of SDN and NFV. Based on

the concept from graph theory, section 6.7 presents a formulation of a system model

and the proposed QoE-based multipath source routing algorithm. Section 6.8 presents

the performance and evaluation of the proposed SDN/NFV system. Finally, section 6.9

summarizes this chapter.
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Chapter 2

Literature Review

2.1 Introduction

The traditional best effort delivery paradigms have resulted into inadequate and uneco-

nomical ways of providing the required level of end-users’ QoE. Efficient application and

network management for future networks (e.g., 5G) has the potential to deliver services

enriched with high QoE to the end-users at a minimum cost. The context of QoE for future

5G networks takes into considerations the management perspectives on performance and

quality in terms of networked communications through QoE aware service delivery sys-

tems. The main goal of mobile operators in implementing QoE management mechanisms

is to maintain a maximized end-users’ QoE in the delivered services while minimizing

cost through an efficient allocation of available network resources [9]. With the increasing

multimedia applications that require increased resources (e.g., high bandwidth, higher

link quality) mobile operators have mostly been considering the QoE-driven resource

management and QoE-driven service adaptation solutions as an important optimization

approach for QoE management. Different QoE management mechanisms and frameworks

for QoE optimization in wireless/wired environment have been proposed in the literature.

Such mechanisms as we explain later use different approaches (e.g., differ in the chosen

location, network or user-oriented) and parameters to be controlled as well as utilizing

different network technologies and applications.
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2.2 QoE Management for Multimedia Streaming Services

2.2.1 Quality of Exeprience (QoE): Definition

The Quality of Service (QoS) measurements using network parameters (e.g., bandwidth,

packet loss, delay and jitter) have been considered for many years to define the level of

satisfaction/performance of a service. While QoS indicates the level of performance of

a service, it does not necessarily quantify the users’ experience and level of satisfaction.

Therefore, in recent years, QoE based measurement, in addition to QoS metrics have

been widely used in industry to assess the quality of multimedia services. QoE considers

the user’s subjectivity towards a specific service. QoE is defined as "the degree of delight

or annoyance of the user of an application or service. It results from the fulfillment of his or

her expectations with respect to the utility and/or enjoyment of the application or service in the

light of the user’s personality and current state" [32], [33]. The understanding of the users’

expectations and experiences from a service is then vital for the success of a service.

2.2.2 QoE Monitoring and Measurement

The process of managing and optimizing the end user’s QoE requires the knowledge

regarding the root cause of QoE degradation or unsatisfactory QoE levels. In that aspect,

relevant information and data related to terminal capabilities (e.g., screen size, display

performance), application/service specific information and its quantification, QoE-related

information inside the network have to be monitored, collected and measured [34]. The

data and information or quality parameters can be collected from client devices or network

elements using monitoring probes. With the advancement of virtualization and data

management capabilities, QoE-awareness along the service delivery chain can be collected

using virtualized probes [35]. The collected network-level Key Performance Indicators

(KPIs, e.g., throughput, packet loss, delay) or user-level service/application specific Key

Quality Indicators (KQI) (e.g., frame rate, video resolution, service usability, and reliability)

provide inputs for QoE estimation models [36], [37].
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2.2.3 QoE Optimization and Control of Multimedia Services

The QoE management of multimedia services involves continuous optimization and

dynamic delivery control mechanisms. One of the ultimate goals of QoE management is

the maximization of the end user’s QoE level through the efficient allocation of available

network resources. For example, a joint optimization approach of network resource

allocation and video quality adaptation that fairly maximize video clients’ QoE is given in

[38]. Minimizing energy consumption especially in the context of mobile services has been

another important objective considered when optimizing the end user’s QoE [39]. Tao et al.

[40] propose an energy-efficient video QoE optimization solution for DASH over wireless

networks. Bouten et al. in [41] and [42] present in-network quality optimization agents,

Figure 2.1: Multimedia streaming chain.

which monitor the available throughput using sampling-based measurement techniques.

That way, the quality of each client is optimized based on a HAS QoE metric. Triki et al.[43]

propose a dynamic closed-loop QoE optimization for video adaptation and delivery while

the characterization of buffer starvation analysis with the aim of optimizing the end user’s

QoE is proposed by Xu et al. in [44].

However, considering the multimedia delivery chain as illustrated in Fig. 2.1, QoE opti-

mization and control is a challenging task due to many issues including the heterogeneity

of multimedia-capable user’s devices. As stated in [9], the main challenges that arise

with regards to QoE optimization and control may be summarized in the answers to

the following four questions: (1) what key quality parameters to optimize and control?

(2) where to control? (3) when to perform QoE optimization and control (e.g., during

the service, that is, on-line control or in an off-line fashion)? [21] and (4) how often to

control and optimize QoE? Answering the second question, for example, would consider

optimizing QoE at various points during the video streaming process, for example at the
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client, server and the network side.

2.3 Multimedia Streaming Services over the Internet

With the growth of streaming video traffic, it has become imperative to exploit various

factors along the multimedia delivery chain to optimize the video service delivery by

considering the end user QoE. This section presents a comprehensive discussion on HTTP

adaptive streaming solutions over the Internet. Specifically, it highlights the server and

client side optimization of video streaming including Dynamic Adaptive Streaming over

HTTP (DASH) as well as SAND. Furthermore, key issues and challenges of HTTP adap-

tive video streaming are discussed. This is followed by a tutorial description of network

softwarization technologies including SDN, NFV, network hypervisors and virtual ma-

chines. Moreover,this work provides the state-of-the-art regarding QoE management for

HTTP adaptive video streaming using SDN/NFV. This thesis will build on the concepts

presented in this section to investigate, design and develop novel approaches for QoE

control and management of multimedia streaming services in future networks.

2.3.1 HTTP Adaptive Streaming (HAS) Solutions

The majority of Internet video traffic today is delivered via HTTP-based adaptive stream-

ing (HAS), an approach that aims to provide a smooth streaming session for the users by

keeping the highest possible video quality. The advantages of HAS include: (a) providing

a reliable transmission, (b) cache infrastructure reuse capability, and (c) it can run over

HTTP. Based on these benefits, HAS has been adopted commercially by almost all major

vendors including the three biggest Over-The-Top (OTT) companies as shown in Table 2.1.

HAS has been widely used in OTT video services such as Netflix and YouTube [45] as the

de-facto standard for adaptive streaming solutions. The underlying logic is common in all

these implementations with some differences in the manifest file, recommended segment

size (See Table 2.1). HAS solutions use reliable delivery mechanisms such as TCP and very

recently, Quick UDP Internet Connections (QUIC) [46]. However, due to the disparity of

these proprietary HAS solutions and the media formats, the 3GPP in close collaboration

with MPEG has developed a DASH standard [47]. As of today, DASH specifications

consist of seven parts namely: (1) Media presentation description and segment formats, (2)

Reference software and conformance bitstreams for DASH, (3) Implementation guidelines,
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(4) Format Independent Segment encryption and authentication, (5) Server and network

assisted DASH (SAND) [1], [48], (6) DASH with Server Push and WebSockets, and (7)

Delivery of Common Media Application Format (CMAF)1 content with DASH.

Table 2.1: A comparison of HTTP adaptive streaming solutions

HAS Category Company Video Codec Segment Length (sec) Data Description Format

Microsoft Smooth Streaming [49] Microsoft Corporation H.264, VC-1 2 Manifest (XML) fMP4
Apple HTTP Live Streaming (HLS) [50] Apple Inc. H.264 10 Playlist file (M3U8) M2TS, *.ts files
Adobe HTTP Dynamic Streaming (HDS) [51] Adobe Systems Inc. H.264, VP6 2 - 5 Manifest (F4M) fMP4
MPEG-DASH [47] Standard Any Not specified MPD files (XML) MP4 or M2TS
3GP-DASH [52] Standard H.264 Not specified MPD files (XML) 3GPP File Format

M2TS = MPEG-2 Transport Stream; fMP4 is a fragmented MP4; MPD = Media Presentation
Description

Fig. 2.2 illustrates the concept of DASH assuming a throughput-based rate adaptation

method. The DASH server contains video contents that are encoded for example with

H.264 codecs and segmented based on GPAC MP4Box [53]. The video contents on the

server are made up of the Media Presentation Description (MPD) and segments. The MPD

describes a manifest of the available video contents, their URL addresses, characteristics

(e.g., video periods, adaptation sets and various representations) and other metadata

that may be needed by the clients. The video segments contain the actual multimedia

bitstreams that the DASH client plays in single or multiple files in the form of chunks.

The delivery of video segments, the client behavior for fetching, adaptation heuristics,

and playing content are based on the QoE prediction and segment-aware algorithms that

consider the granularity of the video [54].

The DASH client runs the DASH.js [55] that can be embedded with QoE prediction, buffer

filling and bitrate guidance algorithms. These algorithms enable a DASH client to learn

about the media-content availability, their media types, video resolutions, minimum and

maximum bandwidths. It can be observed that the client, based on its network condition,

adapts the quality of the video to provide a smooth streaming experience to the end user

[54]. The video file is encoded at different representation levels (spatial/temporal/quality)

and then divided into chunks (also referred to as segments) of equal duration, which are

then stored on a server. When the client makes the first request for the video file, the server

sends the corresponding manifest file (e.g., .mpd, .m3u8) which consists of the details

about the video file such as duration, segment size, representation levels or codec type

[11].

1CMAF is a new media streaming format whose standardization is being led within MPEG by Microsoft
and Apple, with a view to making it both cheaper and easier to deliver OTT video streams to multiple devices.
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Figure 2.2: Dynamic adaptation according to network conditions

The client then measures/predicts the current bandwidth and buffer status and requests

the next part of the video segment with an appropriate bit rate. This way, stalling (i.e.,

the interruption of playback due to empty playout buffers) could be avoided and the

available bandwidth is best possibly utilized [56]. The success of HAS can be attributed

to these benefits compared to the traditional streaming technologies: 1) video service

providers can offer multiple quality levels by adapting bitrates and resolutions, and maybe

other encoding parameters, of video to the end-users’ demands; 2) different QoE-tailored

personalized service levels and/or pricing schemes can be offered to customers and; 3) the

demanded video quality based on the available bandwidth, can be adapted dynamically to

changing network and server/CDN conditions. It is worth noting that DASH enables both

live and on-demand delivery of media streams over HTTP. On-demand video streaming

applications can benefit from optimized encoding methods such as multipass and variable

bitrate encoding. As an example, Netflix has recently proposed a content-aware video

encoding optimization scheme called the per-title encoding [57]. With per-title encoding,

high-quality videos can be delivered even under low bandwidth conditions by streaming

at higher resolution with the same bitrate. The basic concept behind changing resolution

with bitrate is that below a given bitrate, it is better to encode a video at a lower resolution

and then up-scale it at the end user device rather than encoding it at the higher resolution.

Therefore, for the optimized encoding with the available codecs, using a per-title encoding

scheme, each video is encoded into multiple resolution bitrate pairs, to obtain the optimum

operating curve [57].

Despite success factors of a decentralized nature of HAS principle, there are still some

drawbacks especially in the presence of multiple DASH clients that compete for the shared

network resources. Some of HAS issues include (1) video instability due to constant bitrate
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switching [58], (2) network resource under-utilization, and (3) QoE unfairness [3]. These

problems remain a serious concern for video content providers and network operators,

and they are even more aggravated in the case of heterogeneous environments. It is

worth mentioning that using DASH, and it might therefore not be sufficient to optimize

users’ QoE from the available resources fully. Based on these reasons, we discuss next

the MPEG-SAND standard where the centralized nodes within the network have been

proposed recently to enhance the delivery of DASH content [2], [59].

2.3.2 Server and Network assisted DASH (SAND)

Server and Network assisted DASH (SAND) is an extension of the MPEG-DASH standard

that has been recently published [1], [48] to enhance the delivery of DASH content. The

SAND specification introduces messages between DASH client and network elements or

between various network elements. SAND messages improve the streaming session by

providing information about real-time operational characteristics of networks, servers,

proxies, caches, CDNs as well as DASH client’s performance [1]. SAND has been specifi-

cally designed to address: (1) content-awareness and QoE-service-awareness towards the

underlying protocol stack including server/network assistance, (2) analytics and monitor-

ing of DASH-based services, (3) unidirectional/bidirectional, point-to-point/multipoint

communication with and without session (management) between servers/CDNs and

DASH clients.

The SAND architecture shown in Fig. 2.3 consists of three categories of elements, namely,

the DASH clients, DASH-Aware Network Elements (DANE), and regular network ele-

ments, which are DASH unaware and are present on the path between the origin server

and DASH clients (e.g., transparent caches). DANE communicates with DASH clients

while having minimum intelligence about DASH. For example, DANEs may be aware

that the delivered objects are DASH-formatted objects such as the MPD or DASH seg-

ments. This way, they can prioritize, parse or even modify such objects. The MPEG-SAND

standard reference architecture shown in Fig. 2.3 also defines three categories of SAND

messages, namely: (1) the Parameters Enhancing Reception (PER) messages which are sent

from DANEs to DASH clients for enhancing and improving their video quality adaptation,

(2) Parameters Enhancing Delivery (PED) messages which are exchanged between DANEs,

and (3) Metrics and Status messages which are sent from DASH clients to DANEs. DANE
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Figure 2.3: MPEG-SAND architecture. DANEs can communicate among each other and
with the DASH clients to optimize the end-to-end video quality delivery [1]).

nodes become aware of the status of DASH clients using SAND status messages.

For example, QoE metrics reported by DASH clients to the network can be used for moni-

toring purposes and to simplify QoE-aware bandwidth optimization implementations.

Desired quality and bandwidth requirement information reported by the DASH clients

can facilitate resource sharing mechanisms among competing DASH clients. A DANE

node can use PER messages to inform the DASH clients about the available network

bandwidth. They can also inform clients about already cached segments by the DANE so

that the clients can request these segments based on their device capabilities. Moreover,

information about the streamed video to a particular network delivery element/node can

be communicated by the server using a PED message. Generally speaking, a third-party

server that receives messages concerning metrics from DASH clients and sends SAND

messages to the clients is considered a DANE element.

It is important to note that the MPEG-SAND messages are delivered over HTTP using

the Extensible Markup Language (XML) format and follow a specific syntax as defined

by the standard in [1]. Compared to the client or server-based solutions, the MPEG-

SAND standard represents an essential enabler for solutions that need collaboration

between service/application and network providers. However, this needs a modification

of network nodes/elements to provide a set of messages that can be exchanged by the
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network, servers, and DASH clients during video quality delivery optimization [48]. For

the practical and scalable implementation of the SAND approach, SDN can be used to

provide a centralized control element. Efficient QoE-driven application and QoE-aware

network management strategies using SDN and NFV appear to be vital solutions to

guarantee the end user’s QoE at a minimum cost.

2.3.3 Issues and Challenges of HTTP Adaptive Video Streaming

OTT multimedia streaming services are using HTTP adaptive video streaming these days

where most of the services use MPEG-DASH standard as discussed in section 2.3.1. While

the MPEG-DASH standard can provide excellent video quality to the end-users, there are

some issues when multiple clients are competing for the shared limited resources leading

to QoE unfairness, video instability and under-utilization of network resources [58], [3].

To overcome these challenges, the MPEG-SAND standard has been proposed recently

with the aim to enhance the delivery of DASH contents, thanks to its ability to provide

information of the network, servers, and streaming DASH clients in real-time. This way, it

becomes easy for DASH clients to report information regarding video bitrates that can be

downloaded from the server based on the available network bandwidth. Moreover, QoE

measurements that are reported by the DASH clients can be used for monitoring purposes

to perform QoE-aware bandwidth optimization efficiently. While SAND provides a set

of well-defined messages between DANE and DASH clients during video streaming,

the specifications leaves its implementations open in terms of physical network entities

that are SAND capable. Some of the open questions regarding SAND implementations

includes (a) What are the intelligent QoE-policies to divide network bandwidth among

DASH players and other traffic over future softwarized networks, (b) How can network

assisted DASH improve the streaming performance in terms of number of quality switches,

video bitrate, number of freezes, and QoE-fairness over SDN/NFV-enabled networks, and

(c) What is the effect of network bandwidth sharing/slicing policies on DASH Streaming

performance over future SDN/NFV- enabled networks?

21



2.4 Network Softwarization and Virtualization: The Promise of

SDN and NFV in Future Networks

Network softwarization [60] and virtualization using SDN and NFV are expected to

impact several aspects of network development and services such as CDN or video

accelerators [61], [62]. Before presenting the state-of-the-art solutions regarding QoE

management using SDN/NFV in Section 2.5, an overview of the recent advancements in

SDN and NFV as an important technology for management and orchestration of resources

in future networks is discussed in section 2.4. In that respect, section 2.4.1 and 2.4.3

provide background information of SDN and NFV respectively. This thesis uses network

softwarization and virtualization concepts presented in this section in QoE management

aspects implementations.

2.4.1 Software Defined Networking (SDN)

SDN Definition

SDN [14] is an approach that brings intelligence and flexible programmable networks

capable of orchestrating and controlling applications/services in more fine-grained and

network-wide manner [63]. The Open Network Foundation (ONF) [64] defines SDN

as “the physical separation of the network control plane from the forwarding plane, and where a

control plane controls several devices". Notable advantages of the SDN architecture include

enhanced network programmability, centralized control, and management, increased

network flexibility and reliability, data flow optimization [64].

SDN Architecture Design

SDN creates a virtualized control plane that can enforce intelligent management decisions

among network functions bridging the gap between service provisioning and QoE man-

agement. The main layers of SDN architecture and its design components are illustrated in

Fig. 2.5. The SDN architecture consists of three layers, namely: the infrastructure, control

and application layers.

• Control Layer:
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The control layer is the brain of SDN which consists of the component called the "con-

troller". The SDN controller is responsible to forward and process policies for the network

flows. The control layer of an SDN network can be implemented as a pure software that

runs on commodity hardware devices. The network service functions illustrated in Fig. 2.5

will be implemented in the Control Plane as demonstrated from Chapter 3 to 6 in this

thesis. With SDN, the network control becomes directly programmable using standardized

Southbound Interfaces (SBI) such as OpFlex [65], FoRCES [66], and OpenFlow [67]. The

forwarding plane of SDN can be implemented on a specific commodity server [68] such as

VMware’s NSX platform [69] which consists of a controller and a virtual switch (vSwitch).

Figure 2.4: Main layers of the SDN architecture.

The design and implementation choice of SDN controller significantly affect the overall

performance of SDN-based networks [14]. Key design and architectural choices for the

controller are: centralized and distributed. A centralized SDN controller is best suited to

manage small networks or a single domain. However, network management using the

centralized controller can be confronted with scalability and reliability problems due to
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the incremental loads on the controller [70]. The controller itself can be a single point of

failure which can negatively affect the performance of the network and the end-users’

QoE. SDN controllers such as Floodlight [71], Beacon [72], Ryu NOS [73] and POX [74]

have been designed to achieve system throughput in specific environments such as data

centers, carrier-grade networks, and cloud infrastructures. It is vividly important to

note that a centralized controller is not enough for large-scale network management. As

such, scalability and reliability in large-scale networks that span multiple control domains

can be achieved by distributed SDN control architectures such as Hyperflow [75], HP

VAN SDN [76], DISCO [77], and ONOS [78]. In essence, a distributed SDN controller

implementation can be either a set of elements distributed physically or a centralized

cluster of nodes [14]. It is worth mentioning that the distributed SDN controller reduces

the network partitioning2 problems and improves the scalability and resilience of the

control plane in SDN [79].

Figure 2.5: Illustration of information exchange between SDN controllers using Westbound
APIs

• Application Layer:

The application layer is where SDN-enabled applications are created and defined to run on

top of the SDN controller. The defined applications are responsible to manage the network

by making decisions based on changing network conditions (e.g., during link/node

failure). Some of the SDN applications scope include the following: load balancing,

2A network partitioning refers to network decomposition into relatively independent subnets for their
separate optimization as well as network split due to the failure of network devices
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network monitoring and management, QoS- enforcement policy, security and access

policies, traffic engineering etc. The Northbound API enables communication between the

SDN application and the control layer [14]. Although there are no standardized interface,

most of SDN controllers today have RESTful APIs used to communicate between the SDN

Controller and the services and applications running over the network [14]. It is important

to mention that, SDN applications can be divided into two groups namely, (a) SDN-based

internal applications (b) SDN-based external applications. The former is is implemented

to run inside the SDN controller while the latter is deployed and runs outside the SDN

controller or outside the container where the controller is hosted.

• Infrastructure Layer:

This layer represents the data-forwarding plane where both software/hardware devices

(e.g., OpenFlow Switches, routers, middleboxes, virtual switches, firewalls) are intercon-

nected via wired or a wireless radio channels. One or more data paths form a route for

forwarding network traffic in the network based on their flow tables. The SDN controller

defines the routing rules of flow tables. A set of packet field match values (source and

destination MAC addresses, source and destination IP, VLAN, port number etc) and a

set of actions (e.g., delete, modify, forward to port) are used to represent each entry in

the flow table. An OpenFlow protocol is used to control and manage communications

between the infrastructure and control layer. The data-forwarding plane can collects the

raw measurement data from the network using passive or virtual probes [35].

2.4.2 OpenFlow Standard

OpenFlow protocol [67]is an open standard that defines communication between data

forwarding plane and the SDN controller layer. This allows to decouple the data plane

and control plane while also enabling higher programmability in SDN. Today, OpenFlow

is supported by different networking and service provider’s company to implement SDN

applications related to QoS/QoE monitoring and management [80], [26]. An OpenFlow

switch stores forwarding rules that are sent from the SDN controller. The OpenFlow

switch takes this forwarding decision based on the port number where this packet is

coming from. It is important to mention that, the SDN controller takes control of the

forwarding rules and their computation in SDN: this enable switches to have minimum

requirements in terms of memory and CPU for processing data in SDN. Figure 2.6 shows
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Figure 2.6: An OpenFlow architecture

an OpenFlow architecture consisting of a Flow Table, Group Table and Meter Table.

These tables are mainly used for performing table lookups and forwarding decisions. An

OpenFlow switch consists of one or more OpenFlow channels which connect directly to an

external SDN controller. The controller is responsible to manage the switches through the

OpenFlow protocol. The flow table represents the packet forwarding table in OpenFlow

switch. A flow table consists of flow entries. Each flow table entry contains:match fields,

priority, counters, instructions and timeouts cookie. A group table consists of group entries

which allows an OpenFlow to offer an additional forwarding methods.

Figure 2.7 indicates the meter table defined in OpenFlow v1.3. The main components of a

meter entry in the meter table are (a) The meter table offers the QoS mechanisms in SDN.

It achieves this by measuring the flow rate of data packets. It also keep monitoring the rate

of data packets prior to output. The flow entry in the table is called a meter. Each meter is

attached directly to a flow entry in the table of an OpenFlow switch. The rate of network

traffic which are defined by a specific flow can be measured, controlled and monitored in

real-time by a meter. By using the goto-meter action, data packets in SDN can be directed

in flow tableâĂŹs entry to a meter. The meter can then perform different operations on

the data a packet such as to limit the flow rate or combine with QoS queues in order to

implement different QoS mechanisms for controlling and managing multimedia services.
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Figure 2.7: Meter Table defined in OpenFlow v1.3

2.4.3 Network Function Virtualization (NFV)

NFV [15] is the decoupling of physical network equipment from the network functions

such as Firewalls, Deep Packet Inspection (DPI) that run on them. NFV envisages the

instantiation of Virtual Network Functions (VNFs) on commodity hardware. This way,

it breaks the unified approach to functional software and hardware that exists in tradi-

tional vendor offerings. With NFV, Network Functions (NFs) can be quickly deployed

and dynamically allocated. Also, network resources can be efficiently allocated for these

VNFs through dynamic scaling to achieve Service Function Chaining (SFC)3. For ISPs,

NFV promises to provide the needed flexibility that would enable them to support new

network services faster and cheaper to realize better service agility and to reduce their

Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) through lower-cost

flexible network infrastructures. NFV also aims to decrease the deployment time of

new network services to market through innovation cycle of software-based services

deployment. To achieve the above benefits, NFV brings three differences in the network

services provisioning as compared to traditional practice [82, 15] by (a) decoupling soft-

ware from hardware platform, (b) providing greater flexibility for NFs deployment, and

(c) enabling dynamic network operation and service provisioning. It is important to note

that while the full-blown software-based implementation using SDN and NFV concepts

come with these benefits, the question is whether the design considerations can meet

some technical performance requirements needed by Telco Cloud or service providers. A

blueprint of NFV management and orchestration framework as proposed by the European

Telecommunication Standard Institute (ETSI) is discussed next.

The NFV concept in operator infrastructures [83] was first explored by the ETSI, mostly

3Service Function Chaining (SFC) is an ordered list of general service functions that should be applied to a
packet and flows selected as a result of classification [81].
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to address the challenges towards flexible and agile services and to create a platform for

future network monetization. Since then, the NFV reference architecture shown in Fig. 2.8

was proposed [84] followed by a proof of concept (PoC) [85]. The ETSI Management and

Orchestration (MANO) framework consists of functional blocks which can be grouped

into the following categories: the NFV Infrastructure (NFVI), NFV Management and

Orchestration, Network Management System (NMS) and VNFs and Services. These

entities or blocks are connected using reference points4.

vCompute vStorage vNetwork

Computing

Virtual Resources

Storage Network

Physical Resources 

NFV Infrastructure (NFVI)

Virtualization Layer 

Virtual Network Functions

VNF1 VNF2 VNF3
VNFn

EMS1 EMS2 EMS3 EMSn

Element Management System

Virtualized 

Infrastructure 

Manager (VIM)

VNF Managers 

(VNFM)

NFV Orchestrator 

(NFVO)

Data 

Repositories

VNF Catalog

VNF instance

NFVI Resources

Operation Support System (OSS) , Business Support 

System (BSS)

NFV Management and 

Orchestration (MANO)Network Management System

Figure 2.8: The ETSI NFV management and orchestration framework.

The NFVI forms an environment consisting of both physical and software/virtual re-

sources. Physical resources indicate the computing hardware (e.g., for processing), storage

and network resources. Virtual resources are the abstractions of the computing, storage

and network resources achieved through a virtualization layer, for example, based on

hypervisor which is a typical solution for VNFs deployment today. The Network Manage-

ment System (NMS) is a critical aspect of the overall operation of both VNFs and physical

resources. It potentially deals with functions related to network management such as

fault management, security, configuration and performance management. The fault man-

agement provides a key role for QoE assurance by making sure that network failures or

problems are recovered before users are disconnected from the network services.

4A reference point defines a point where two communicating functional entities or blocks are connected
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According to the ETSI [82], the NFV Management and Orchestration (MANO) is responsi-

ble for managing and orchestrating VNFs. It consists of the NFVO, VNFM and the VIM.

The NFVO performs orchestration and lifecycle management of physical and software

resources that support the virtualized infrastructure. The NFVO also performs global

resource management, network service instantiation, validation, and authorization of

NFVI resources requests. The VNFM is responsible for lifecycle management of VNF

instances, overall coordination and adaptation role for configuration and event reporting

between NFVI. A single or multiple VNF instances of the same or different types can be

managed by a VNFM. The VIM controls and manages NFVI physical and virtual resources

(vCompute, vStorage, and vNetwork resources) within one operator’s infrastructure do-

main. The NFV MANO consists of a database that keeps the VNF catalog, VNF instances,

NFVI resources, and network services catalog. The VNF instances keep information of all

VNF instances and network service instances while the NFVI resources repository holds

information of all allocated or available NFVI resources.

Table 2.2: The relationship and comparison between SDN and NFV

Category NFV (Telecom Networks) SDN (Data Center Networks)
Already
Adopted

Network Control Seamless control and dynamic provisioning of NFs Provide a centralized network control Yes
Architectural Design Service or NFs abstractions Networking Abstractions Yes
Main Advantage Offering flexibility needed by network Offering programmable network with open control interfaces Yes
Cost Efficiency Replace hardware with software Operational efficiency and energy consumption reduction Yes
Standard Protocol Supporting multiple control protocols OpenFlow is the de-factor standard protocol Yes
Leaders/Business Initiator Born in Telcom Service Providers Born for networking software and hardware vendors N/A
Formalization ETSI ONF N/A

2.4.4 Network Hypervisors, Containers and Virtual Machines

Network hypervisors [86] are the network elements that abstract the physical infrastruc-

ture (e.g., communication links, network elements, and control functions) into logically

isolated virtual network slices. In physical SDN network, a network hypervisor offers

high-level abstractions and APIs that greatly simplify the task of creating complex network

services. Moreover, the network hypervisor is capable of inter-networking various SDN

providers together under a single interface/abstraction so that applications can establish

E2E flows without the need to see or deal with the differences between SDN providers

[87]. Through hypervisors, it is possible even to implement higher layer services such as

load balancing servers and firewalls or link and network protocol services belonging to L2

and L3 [15].

Virtual Machine (VM) [88] enables the virtualization of a physical resource where an
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experimenter can run his/her own Operating System (OS). The basic principle of a VM is

that resources such as computing, storage, memory, and network are shared among VMs.

However, the entire operational functions of a VM is isolated completely from that of the

host and another guest VMs [89], [90]. It is also possible to run multiple VMs at the time

on one physical machine.

Containers are light-weight alternatives to hypervisor-based VMs [91] and are created

based on the idea of OS-level virtualization. A physical server in containers is virtualized

such that standalone applications and services can be instantiated on an isolated servers

[89]. Different from VM-based counterparts, containers do not need hardware indirection

and run more efficiently on host OS leading to higher application density. Examples of

container-based virtualization include: Docker [92], Linux-Vserver [93], OpenVZ [94], and

Oracle Solaris Container5. In this vein, VMs and containers are capable of running VNFs

chained together to deliver a 5G network service or application flexible and therefore

forming a base functionality for 5G network slicing. It is important to note that, while

containers can efficiently support 5G network slices with highly mobile users, VMs may

offer full logical isolation for operating VNFs in a network slice [89].

2.5 QoE Management for HTTP Adaptive Video Streaming us-

ing SDN/NFV: State-of-the-Art

Since the MPEG-DASH standard was defined, researches from both the academia and

industry have investigated how to improve the end-users’ QoE [95]. Many studies have

been focusing on new heuristic solutions to improve the QoE based on video quality adap-

tation on the client or server-side actions [11, 96]. In recent years, the attention has been

towards developing approaches that fully optimize the video quality [97, 2] and achieve

users’ QoE-fairness level [98]. As of today, many SDN/NFV - based adaptive solutions

have been proposed, implemented and tested to see the value and benefits offered by these

technologies, recent efforts include, a QoE-aware bandwidth broker [99] and a rate-guided

QoE-aware SDN-APP [100]. This section present different QoE-management strategies

using SDN/NFV. The work focus mainly on three research areas including server and

network-assisted optimization approaches in section 2.5.1 followed by QoE-Fairness and

Personalized QoE-centric control in section 2.5.2. Section 2.5.3 provides a detailed QoE-

5https://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
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centric routing while section 6.2 presents QoE-softwarization concept that was proposed

by the author in [63]. This thesis employs and builds on relevant works described in this

section to design and implement novel algorithms for managing multimedia streaming

services in future networks.

2.5.1 Server and Network-Assisted Optimization Approaches using SDN

Despite the success of client-based adaptation approach for HAS streaming presented

in subsection 2.3.1, it may not be sufficient to provide fair distributions of bandwidth

between users. Thanks to the recent development of SAND where the availability of a

controller that has a view of the network nodes status and can control all their functions

become an optimal match of its objective [95].

Following the development of SAND, bandwidth shaping and bitrate guidance strategies

have attracted much attention in the multimedia streaming community [12], [101], [2],

[99]. Most research works following this approach share a similar architecture as shown

in Fig 2.9. Key quality parameters from both the network and the client side can be

collected using a centralized node. The client-based information collected may include,

for example, the device type [12], the bitrate of the video [102], buffer level [101] and the

screen dimension. The network QoE-related parameter measurements include the number

of streaming DASH clients and the available bandwidth. That way, the centralized node

in an SDN-assisted environment has a comprehensive view of the streaming multimedia

service. It is hence possible to select the best bitrate for each client to optimize an objective

function that models the users’ QoE. For the practical and scalable implementation of this

approach, SDN can be used to provide a centralized control element.

Authors in [2] compare the performance of bitrate guidance and bandwidth shaping

techniques. The optimal bitrates for DASH clients are computed by the SDN controller

to achieve video quality fairness which is calculated based on the SSIM index. When

Bandwidth Reservation is used, the bandwidth slice is assigned to clients with similar

optimal bitrates. As shown in Fig 2.9 (a), two control loops, inner and outer control loops are

used. Based on the video client feedback and bandwidth estimates, the inner control loop

running at the client side selects the video bitrate. The outer control loop is executed in the

network and sets the bandwidth slice. In the bitrate guidance scenario shown in Fig 2.9

(b), the optimal bitrates are computed by a centralized algorithm running in a network
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element. The video bitrates are then communicated to the DASH client that download

the corresponding video segment. It is imperative to mention that the bitrate guidance

provides the best performance regarding switching frequency and video quality fairness

compared to the bandwidth shaping approach [95].

Figure 2.9: QoE-based network-assisted approaches for adaptive video streaming. (a) A
specific bandwidth for each client is enforced by the network when bandwidth shaping is
used, and (b) the network provides an explicit bitrate to the clients using bitrate guidance
[2].

Following the same approach, authors in [103] propose a network-level QoS mechanism

to enforce application QoE-aware fair resource sharing among competing clients. Using

the QoE model that depends on screen size and resolution, the network controller selects

the best video bitrate to maximize the QoE for each client. A Video Home Shaper (VHS) is

designed to monitor outbound HTTP requests and capturing those that identify Netflix

and YouTube sessions initiated by clients connected to the router. The QoE-fair bandwidth

for all active streaming sessions is computed and recorded by the session manager. The

bandwidth manager then allocates lower and upper bandwidth value to each video stream.

The lower value is the guaranteed minimum bandwidth allocated for that session while

the upper value indicates the maximum allowable bandwidth.

An SDN-assisted Adaptive Bitrate Streaming (SABR) is proposed in [59]. The available

bandwidth per link and network cache contents are the information used by SABR to guide

the QoE maximization of the clients. SABR provides the DASH client with monitoring

information (bandwidth estimates and cache occupancy) through a REST API. SABR use

dynamic SDN routing to provide clients with the ability to connect to the desired cache. It

is worthwhile emphasizing that SABR not only significantly improve the QoE (e.g., the

overall video quality bitrate) at the client side but also reduces the server load ratio and

provides higher network utilization.

A network-QoE-aware video segment selection and caching approach, "QoE-SDN APP"

in the context of HAS is proposed recently by [100]. Using QoE-SDN APP, video service

providers (VSPs) can program the end user’s QoE requirements. The core logic of the
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QoE-SDN APP is the QoE Assessment module which performs the following tasks (a)

determine and recommend the encoding rate and caching strategy for VSP while consider-

ing the future network load and user mobility, and (b) determine the QoE per application

using application-specific KPIs such as MOS scale. VSP-QoE Control Agent is another

module within the SDN controller that provides feedback to the VSP regarding the control

capabilities related to the data plane and allows VSPs to collaborate with the underlying

MNO’s infrastructure. That way, VSPs can quickly enhance their distribution procedures

and video segment encoding by using network feedback exposed by the MNOs.

[99] proposes a QoE-aware bandwidth management solution for HAS flows in an SDN-

enabled Hybrid Fiber Coax (HFC) access networks. To improve the end user’s QoE,

important parameters considered include video content resolution, encoding bitrate,

video type, device capabilities, and service plan types. Such parameters are used by the

bandwidth management application to enforce QoE control and management strategies

such as bandwidth allocation and provisioning, network resource management, represen-

tation decision, reservation and monitoring, and QoE-tailored service/flow prioritization

and differentiation [99].

2.5.2 QoE-Fairness and Personalized QoE-centric control in SDN

We provide in this subsection a detailed discussion on QoE-fairness and personalized

QoE-centric control approaches for adaptive video streaming. Most of the works presented

in this subsection utilize the SDN controller to manage and monitor all HAS players, their

statuses, device capabilities, requested content, subscription plan types, QoE and buffered

level. In this way, the controller can easily detect player-specific events, such as players

joining/leaving the network and starting/stopping the playback. Some of the approaches

for example in [12, 101] employ an optimization function that interacts with the controller

to dynamically optimize QoE fairness of multiple competing clients by setting the bitrate

for each streaming video in the network. Based on the principles of SDN and Participatory

Networking (PANE) [104], [105] proposes a client-Driven Video Delivery (cDVD), a proof-

of-concept that provides a client-level API into the network. cDVD relies on a client-driven

network-level QoE fairness approach that provides stable video quality by maintaining

low re-buffering ratios in an encrypted SDN-assisted environment. cDVD at a high

level is set to enable one or more DASH clients to interact with network components
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Figure 2.10: Per-cluster QoE policy structure and model abstraction (Adapted from [3]).

(e.g., SDN controller) to achieve session-level QoE-fairness. As presented in the cDVD

architecture [105], each session can comprise of multiple flows where the controller applies

bandwidth control to the routers using a suitable mechanism, such as OpenFlow or direct

queue configuration. The controller uses the bandwidth enforcer to limit the rate of each

flow and in turn allocates bandwidth to equalize QoE across sessions. This is achieved by

applying a QoE-based Utility module to determine the fairness of video streams [103].

An OpenFlow-Assisted QoE Fairness Framework (QFF) is introduced by [12] to provide

the required user level QoE in multimedia networks. QFF can allocate network resources

and ensure that the maximum number of users with the target QoE fairness level is

achieved in a heterogeneous environment. In QFF, OpenFlow protocol allows vendor-

agnostic functionality to be implemented for network management and active resource

allocation. As such, the status of the network and DASH video streaming sessions are

monitored by QFF using the Network Inspector and the MPD Parser module respectively.

The QFF in-turn dynamically allocates network resources to each client to equitably maxi-

mize users’ QoE in multimedia networks. The network intelligence of QFF is provided by

the Utility Function (UF) and the Optimization Function (OF). The UF provides a model

that maps the bitrate of a video to the QoE delivered on a particular client’s device. For

each video streaming session in the network, the OF is responsible for finds a set of video

bitrates that will provide a QoE-fairness level for all DASH clients [12].

SDNDASH, a dynamic network resource allocation and management architecture for HAS

systems is proposed by [101]. SDNDASH avoids quality instability, unfair bandwidth

sharing and network resource underutilization among competing DASH clients sharing

the same bottleneck network link. In this way, the per-client QoE is optimized while
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reaching the required maximum QoE-fairness level. As an extension to this work, Bentaleb

et.al [3] propose an SDN-based streaming solution called SDNHAS that can assist HAS

players in making better QoE adaptation decisions. SDNHAS can optimally implement

the target QoE policies for a group of users and allocate the network resources efficiently

in the presence of both short and long-term changes in the network. One of the central

SDNHAS entity is an optimizer component shown in Fig. 2.10 that forms a logical network

topology to group the HAS players into a set of virtual clusters. A specific data structure

for each cluster, called the per-cluster QoE policy, is constructed during each video segment

being downloaded. To make a fair allocation of bandwidth, each player has its own QoE

policy that also includes QoE values and its metrics. A set of players, whose QoE policies

belong to the same cluster are aggregated together into a common per-cluster QoE policy

using a simple aggregation [3].

To solve video representation selection problem, a Partially Observable Markov Decision

Process (POMDP) optimization model is used that takes different input variables such

as congestion level, device resolution, content type, buffer level, subscription plan type,

and the available bandwidth. POMDP applies to multi-agent decision problems and

considers observation and historical information capabilities (of state definitions), unlike

other mathematical models (e.g., Markov Decision Process model (MPDM), which only

supports single agents [3]. With POMDP, it is easy to get partial information on the system

state. It is, therefore, the best approach in the network environment with dynamics such

as HAS systems that exhibit high uncertainty like sudden bandwidth fluctuation. It is

important to note that SDNHAS, provides QoE-aware adaptive streaming delivery and

intelligent network management that enables a maximum level of user satisfaction among

heterogeneous HAS players.

Following the same approach of QoE-fairness and QoE-personalized control, an SDN-

based multi-client bandwidth management architecture for HTTP adaptive video stream-

ing that can support up to 75% users at the same QoE level is proposed in [106], while

a Q-learning-based dynamic bandwidth allocation strategy to achieve QoE fairness is

given in [107]. A user-level fairness model, UFair, which orchestrates network resource

allocation between HAS streams to mitigate QoE fluctuations and improve the overall

QoE fairness is given in [98]. UFair uses the video quality, switching impact and cost

efficiency metrics to measure the user’s QoE fairness. Following a specific adaptation and

fairness criteria of equal bandwidth for every active DASH client, high-quality videos are
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delivered over a DASH-aware SDN-based architecture in [102]. While heading towards

5G networks, what is interesting and remains to be seen is how QoE-fairness [108] metrics

can be integrated as the benchmark for QoE management and optimization in future

networks.

2.5.3 QoE-Centric Routing Mechanisms using SDN/NFV

Efficient delivery of video streams with improved QoE can be achieved in SDN using

shortest paths, multiple disjointed paths or IP multicast procedures. For example, using

the concept of Economic Traffic Management (ETM)6, a QoE-centric routing approach

that utilizes QoE estimation models to maximize the user QoE for multimedia services

is presented in [109]. The QoE measurement and collection of QoE Influence factors (IF)

values in an SDN network is achieved through the cooperation among various components

including the end user’s clients and media content servers and SDN controllers. The clients

and content server report the QoE values to the SDN applications which in-turn use the

reported QoE values and IFs to prepare the needed input for the SDN controller. Subject to

traffic demands and network constraints, the controller can select a path that can maximize

QoE for DASH clients.

A QoE-driven path optimization model (Q-POINT) that maximizes the end users’ QoE

through the best path calculations for each service flow is given in [110]. In order to nego-

tiate important parameters for video streaming sessions that are to be established, Q-point

utilizes the Session Initiation Protocol (SIP)[111] which is assisted by the SIP application

server with QoS-QoE mapping functions (for different media types) and Optimization

Function (QMOF). For each session, the QMOF calculates a set of configurations that

include information such as media codecs, video bit rates, and user preferences. In turn,

the SDN controller determines which multimedia flows are to be routed along a particular

path in order to maximize the aggregated QoE. The routing decision by the SDN controller

is made based on the calculated session and media flow parameters.

A QoE-driven multimedia service optimization and path assignment architecture are

proposed in [112], with the main idea of including various application-level network func-

tions involved in the negotiation and QoE-optimization decision making as highlighted

in [113]. A software-defined scalable multimedia multicast streaming (SDM2Cast) [114]

6ETM is an economic incentive that enables a Triple-Win solution for users, service providers and network
operators. It aims to reduce cost in the network while providing QoE-enriched services to the end-users
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is introduced to provide in-network adaptation by adjusting the number of layers, which

in turn improves the end-users’ QoE. Based on the current network state, SDM2Cast can

flexibly customize network layers multicast paths and thereby allowing SDN implementa-

tions to recognize, process and manage media streams through in-network adaptation. An

SDN-based video streaming multicast application that performs the calculation of routes

and multicast trees after mapping clients to servers with the highest QoE is presented

in [115].

Athanasopoulos et.al [116] propose a quality-aware path switching scheme, along with a

media-aware optimization algorithm that selectively shapes the video traffic according

to the access network conditions. Nam et.al [117] introduce a QoE-aware SDN based

video streaming framework that dynamically changes routing paths using Multi-Protocol

Label Switching (MPLS) Traffic Engineering (TE) to provide to clients a reliable video

watching experience. A Scalable QoE-aware Path Selection (SQAPE) scheme for large-

scale SDN-based mobile networks is demonstrated by [118]. Using a centralized control

strategy of SDN, SQAPE provides fine-grained control for per-user QoE-aware path

deployments across the network. As shown in Fig. 2.11, SQAPE consists of three main

components (Decision, QoS Measurement, and QoE Predictor) which are decoupled from the

SDN controller.

Figure 2.11: Scalable QoE-aware path selection in large-scale SDN-based networks.

Steps (1 - 4) involve QoS measurements to predict the QoE and the performance of video
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streaming. The periodic QoS monitoring frequency of 60 seconds is used to perform active

measurements based on packet loss, delay, and bandwidth of the link. Such metrics are

selected based on previous investigations of QoS to QoE mapping which found these

metrics as the most influential to video streaming QoE [119]. SQAPE in step (5 - 8) relies on

the QoS-to-QoE mapping function to compute per-path MOS estimation. The estimated

MOS along with a link utilization heuristic is then used to compose the distance metric

which in turn, determines optimized QoE-aware paths to be deployed in SDN-enabled

networks. An optimal path for each client is recomputed by [120] each time a new video

segment is requested.

The video bitrate requested by a client is sent by a server to the SDN controller. The

controller uses this information and the links status to reroute the traffic to maximize the

throughput of the overall link. QoE-aware routing can also be performed in the existence

of multiple servers where the client selects the best server to stream the video from in a

dynamic way [121] [122]. [123] proposes a learning-based approach that minimizes the

packet loss rate, quality changes, and controller cost while adapting the flow routes and

video quality. Gangwal et.al [124] propose an Efficient Layer Based Routing Algorithm

(ELBA) that exploits the dynamic re-routing capability of SDN, to different stream layers of

Scalable Video Codec (SVC) video over distinct paths. ELBA improves network resources

utilization and optimizes the video delivery, based on the routing decision of the SDN

controller that assigns distinct routes for each video layer. It is important to note that

traffic routing improves QoE by continuously monitoring the performance of the paths

that connect the server and clients. However, novel paradigms such as MPTCP and SR

can facilitate an efficient routing and speed up the transfer of large amounts of multimedia

applications through multiple disjointed shortest paths.

2.6 Summary

QoE concepts are more user-centric than QoS which made it a topic of high interest in the

multimedia communication research community for the QoE-based user-centric service

management of the streaming services. The QoE-aware management of the multimedia

streaming services consists of the three major components: (1) QoE Modeling and Assessment

that includes subjective assessments by the real users and creation of the predictive

mathematical models (QoE model) from the data related to KQIs that is acquired after
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subjective assessments; (2) QoE Monitoring and Measurement– that includes the monitoring

of the KQIs of the multimedia streaming service and measurement of the QoE from the

predictive QoE models; (3) QoE Optimization and Control– mainly to perform optimization

of the resources (network resources, content delivery network or client side adaptation)

through control actions based on the QoE measurements. DASH has been adopted as an

adaptive bitrate streaming technique to enable high quality streaming of media contents

over the Internet delivered from conventional HTTP web servers. However, some of the

drawbacks of DASH include QoE unfairness, video instability and under-utilization of

network resources [3], [58] when multiple clients are competing for the shared limited

resources. SAND offers standardized interfaces for service providers and operators to

enhance streaming experience by using message exchanges between DASH clients and

DANE. However some of the serious questions regarding SAND is how network assisted

DASH can improve the streaming performance in terms of number of quality switches,

video bitrate, number of freezes, and QoE-fairness. From the above literature review,

network softwarization and virtualization paradigms are foreseen to be an important

elements for QoE management of future multimedia services.
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Chapter 3

Video Quality Management based on Queue-

ing Mechanisms and QoE/QoS Policy in SDN

Queuing mechanisms can guarantee the QoS/QoE of traffic with higher priority flow

when there are multiple types of flows sharing the network path from source to destination.

Using the defined QoS/QoE policies and the configured queue mechanisms, traffic flows

can be specifically classified for only users who demand high QoE requirements from

service providers than other users. For example, the defined QoE flow polices for premium

users can be forwarded to the higher priority queue to acquire resources that demand

sufficient bandwidth while standard users’ traffic flows can be forwarded to the lower

priority queue. The SDN controller can differentiate the type of flows such as multimedia

flows based on QoS/QoE requirements and allocate required resources to these flows. In

the context of SDN virtualized networks, this can be done through mapping of traffic flow

to virtual networks, composed by queues of appropriate links which meet its performance

and QoE requirements (e.g., premium or standard users).

3.1 Introduction

SDN has the ability to provide secure and reliable end-to end communications that can

satisfy specific transmission requirements as demonstrated by Qin et.al [125]. This enables

SDN to achieve stringent requirements on network transmission latency for specific

networking services and bandwidth intensive applications such as video streaming and

online gaming.

All transmissions in the forwarding plane of SDN involve the controller where forwarding
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devices (e.g., switch or router) has to request and apply forwarding rules when the first

packet of each video flow arrives at the forwarding device. Frequent communications also

involve the controller whenever there is an update of forwarding rules or statistical data

requests by the controller to the forwarding device. In this context, the SDN controller

becomes the bottleneck in the SDN architecture and thus, can cause QoE degradation of

delivered multimedia services. It is therefore, crucial to understand the performance of the

SDN architecture under difference traffic patterns, especially the bursty nature of video

streaming. SDN can issue instructions and forwarding rules in order to modify network

flows when needed and take a different path if network congestion is detected in one of

the forwarding devices due to queuing delay. Modifying network flows by switching to

low congested paths can improve video quality. This is so because the SDN controller

has the global view and knowledge of the underlying forwarding devices (e.g., packet

loss and available bandwidth). The SDN architecture accelerates network innovation by

using the Southbound API called OpenFlow protocol [67] which is an interface between

the control plane and the forwarding plane. The Northbound interface such as RESTful

API [126] Web services connects the control plane and network applications.

The OpenFlow protocol is an open interface protocol used by the SDN controller to control

the forwarding devices. The SDN controller is commonly implemented remotely on a

PC securely connected to forwarding devices. The forwarding devices hold flow tables

which contain, packet headers for matching incoming packets, list of actions which must

be followed to handle matched packets and collection of statistics for each flow such as

number of packets and bytes received and transmitted [26]. Figure 3.1 depicts the packet

flow processing along with the mechanics of matching and action handling through an

OpenFlow.

OpenFlow ports represent network interfaces that logically connect OpenFlow switches

for processing packets. Packets that are transmitted through OpenFlow switches are

received on tan ingress port and processed by the OpenFlow pipeline that makes decision

to forward packets to the output port. The OpenFlow pipeline indicates the set of linked

flow tables that provide matching, forwarding, and packet modification in an OpenFlow

switch. When the packets enters the table, a set of actions associated with that packet can

be applied and executed. The action set may instructs the packet to exit the processing

pipeline. It is worth mentioning that, the OpenFlow pipeline of every switch in SDN

contains multiple flow tables consisting of multiple flow entries. As shown in Figure 3.1
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Figure 3.1: Packet flow through an Openflow switch [4]

(a), the OpenFlow pipeline processing defines how packets interact with those flow tables.

Figure 3.2 shows the functions that are performed by an OpenFlow Switch when a packet

is received in a flow table. The switch uses a packet match fields (e.g., Ethernet source

address or IPv4 destination address) to perform a table lookup in the first flow table. The

packet is matched against the flow table based on the fields defined in the flow entry

table for the lookup. When the packet match occurs, the packet with highest priority flow

entry is selected and the instruction set included in the packet is applied. Every flow

table in SDN OpenFlow switch supports a table-miss flow entry in order to process table

misses. The table miss flow entry must specify how to handle packets that are unmatched,

and the forwarding device may decide to send packets to the controller, drop them or

direct them to a subsequent table [26]. As presented in section 2.2, DASH is an adaptive

bitrate streaming approach that enables high quality streaming of media content over the
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Figure 3.2: Packet flow processing and action handling in OpenFlow [4]

Internet. However, the one drawback of DASH is the frequently bitrates and resolution

switching as shown in [127]. Huang et.al [128] also demonstrate that, DASH performs

poorly under the presence of bursty traffic. To mitigate the disadvantages of DASH, video

quality management scheme based on the traffic intensity could be used to complement

the DASH in a scenario whereby all the SDN network flows are congested. The aim of

this chapter is to propose a video quality management scheme over an SDN architecture

in order to reduce the number of stalls and their duration. The structure of this chapter is

organised as follows: section 3.2 presents related work followed by a description of the

proposed video quality management algorithm in section 3.3. Section 3.4 provides the

performance analysis and evaluation of the proposed scheme followed by a summary of

this chapter in section 3.5.

3.2 Related Work

SDN performance studies have been conducted in the past using both simulation experi-

ments and analytical modelling. Palma et.al [129] propose QueuePusher, an approach that

efficiently handle the management of Traffic Control Queues in OpenFlow switches. Klein-

rouweler et.al [102] uses SDN controller to provide signaling feedback on target bitrates
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to DASH players in order to maintain stable video quality under the SDN architecture

and reduce frequent bitrate and resolution switches. Jarschel et.al [130] propose a model

to estimate the packet loss probability based on the queuing theory to capture the packet

delay caused by the processing in the SDN controller. Although the analytical model

results were successfully validated by simulation based on OMNET++, the model did

not capture the delay and packet loss caused by the ability of the control plane to modify

network flows within a forwarding device or among the connected forwarding devices.

Liotou et.al [131] propose QoE SDN-based architecture to guarantee the QoE level for on

demand services of OTT applications by monitoring network parameters using an SDN

controller. Although authors also propose the mapping of QoS parameters to QoE but

the architecture proposed was neither simulated nor implemented in SDN emulators. A

network visualization and performance prediction (NVPP) tool for SDN based on queuing

theory analytical models is proposed in [132]. The proposed tool can predict network

performance arising from traffic variations and a real time view of a network using SDN.

However, the proposed model has not been validated by either simulation or real world

experiments. Hu et.al [133] investigate the scalability of the SDN control plane using

three SDN structures of the control plane (e.g., centralized, decentralized and hierarchical

structures).

3.3 The Proposed Video Quality Management Algorithm over

SDN

Traffic intensity or port utilization of an Openflow switch can be implemented to avoid the

queuing overflow that may cause packet loss and therefore affect the quality of transmitted

videos. Based on this approach, a video quality management scheme is proposed [26]

based on traffic intensity over an SDN architecture. The main idea is to investigate the

performance of the SDN control plane towards contributing to the delivery of a stable and

high quality stream by reducing the number of stalls and their duration. The network

flow switching scheme is triggered by the virtual port queue congestion which can occur

in any of the virtual ports connecting the virtual switches and hosts. The proposed video

quality management scheme is able to collect statistics from virtual ports of SDN network.

It uses the collected statistics to avoid congestion by modifying the traffic flows on the

overloaded links due to queuing delays in the network. When congestion occurs in the
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Table 3.1: Summary of Notations and Parameters used for Implementation

Symbol Descriptions
λij the average arrival rate of video packets at port i of SDN switch j
µij the average service rate of video packets at port i of SDN switch j
ρij the maximum queue size of port i of switch j
pij the video packet size that arrives at port i of switch j

virtual ports connecting the SDN switches and the hosts, the scheme is invoked to direct

traffic flows to less congested forwarding paths. Table 3.1 shows the parameters used in

the proposed scheme. The λij and the µij are calculated based on the JavaScript Object

Notation (JSON) values of packets and bytes received and transmitted on each port. The

average packet loss rate lij at port i of switch j is obtained through a periodic retrieval

of JSON values obtained due to packet transmission errors in the network. In order to

track the queue size, the traffic intensity Tij that indicates a port utilization of a switch is

defined using equation 3.1:

Tij =
λij

µij
(3.1)

In order to avoid the queue overflow, the arrival rate should be less than the service rate

such that λij < µij, otherwise the queue will overflow. It is important to note that, the

traffic intensity is computed at every port i ={1....n} of switch j = {1.....m}. The traffic

intensity is categorized into three levels: Low, Medium and High. As such, the proposed

scheme redirect the network flow which is in High level of traffic intensity to another

path with Low or Medium traffic intensity if its threshold (i.e., flow_traffic_intensity 6

Tij has been reached). In order to determine the traffic intensity threshold, measurements

were performed using the maximum queue size of 400 packets, the bandwidth of 100

Mbps for the selected video sequences [26]. The threshold of 0.75 was selected for High

level of traffic intensity because it performed better than other thresholds under the same

conditions for triggering the network flow switching. For Medium level of traffic intensity,

the threshold of (0.6 6 Tij < 0.75) was selected. All other thresholds out of this range

performed poor and were not selected. The video streaming is considered as the traffic

to be investigated where the rest of the traffic is considered as the background traffic. As

shown in Fig. 3.5, these levels are computed based on the generated TCP background

traffic by hosts H2 and H3 through SDN switches S2 and S3.

Traffic flows with High level of intensity are to be directed to another forwarding path with
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Low or Medium intensity. When the background traffic is high, the available bandwidth

for video streaming traffic will be lower. The aim is to avoid congestion in these paths

with High level of traffic intensity. The SDN controller which has a global view of the

network, is used to collect statistics from the virtual switch ports. It is worth mentioning

that, the SDN controller which has information of all the virtual switch port statistics

use the instructions from the POST method to update the traffic flow that is congested.

During video streaming, the algorithm starts with the periodic calculations of the average

arrival rate and average service rate of video packets at of port i of switch j. The algorithm

also calculates the maximum queue size of port i of switch j during real-time video

streaming. The algorithm tracks the queue size through the traffic intensity parameter

which is calculated as a ratio of arrival rate to the average service rate.When it happens

that, the threshold of a traffic flow is larger than 0.75 and the flow can not be directed

to less congested paths, then other adaptation techniques can be used to mitigate the

network congestion. Algorithm 1 provides a summary of the video quality management

mechanisms in SDN.

Algorithm 1: Video Quality Management Algorithm in SDN using Traffic Inten-
sity

input : Network topology information

1 Start video transmission from server to client
2 Calculate the average arrival rate, λij, average service rate, µij and maximum queue size,
ρij

3 Compute the traffic intensity Tij based on 3.1
4 if Tij > 0.75 then redirect the High level of intensity to low or medium

congested paths
5 if (0.6 6 Tij < 0.75) then redirect the Medium level of intensity to low congested

paths
6 if (Tij > 0.75 and the flow can not be directed to less congested paths then Use other

adaptation techniques to mitigate the network congestion
7 end if
8 end if
9 end if

10 Continue transmission while minimizing number of stalls, buffering events and
stall duration to improve the video quality

3.3.1 Video Clips/Sequences

In order to evaluate the performance and the impact of modifying network flows on the

quality of video streaming of different content types, H264 encoded video sequences

shown in Figure 3.3 were used. The video sequences were categorized into slow, medium
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Table 3.2: Video sequences and used parameters

Video Sequence Average Bit rate (Kbps) Frame rate (fps) Resolution
Basketball 3547 30 720p
BQTerrace 3114 30 720p
Park Scene 3023 30 720p
Johnny 870 30 720p
Vidyo 890 30 720p

and fast movements. As such, the BasketballDrive, BQTerrace and ParkScene video

sequences were categorized as fast movement videos because motorists, basketball players

and cyclists are moving in fast motion and the camera was also in motion. The Johnny

sequence was categorized as slow movement because the man is talking while seated

and his upper body parts move slowly when talking. Again, the Vidyo sequence was

categorized as medium movement because the men are talking while seated and their

upper body parts move gently while talking.

Figure 3.3: Snap shots of the video sequences

Table 3.2, shows the video bitrates and frame rates of video sequences that were 2 minutes

long each.

The DASH server for storing the video clips shown in Figure 3.3 was based on YouTube.

The YouTube player API was deployed into an Apache 2 Web server in an SDN virtual

host (H1). Another virtual host (H4) was used as a Web-based YouTube client. All encoded

videos were uploaded into YouTube and they were re-encoded into three quality levels

(720p, 480p, 360p). It is worth mentioning that, the YouTube API player was used to collect
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relevant information such as the buffering duration, the number of stalls, the length and

time of stalls. Figure 3.4 shows the network flow switching operation of the proposed

scheme. The details of these parameters will be discussed in section 3.4 where their

performance is used to evaluate the proposed video quality management scheme with the

conventional DASH.

Figure 3.4: A network flow switching of the proposed video quality management scheme

3.3.2 Experimental Testbed based on SDN

To provide a feasibility study and evaluate the performance of the proposed video quality

management scheme, this work employed an SDN-based platform using Mininet emulator

and SDN controller. A Python based application was developed to provide an interfaces

with the controller via the RESTful API Web services. The virtual switch port statistics

are collected by this application. It also issues instructions on how to modify network
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flows facing congestion due to queuing delay and direct them to a path with low network

congestion [26] The SDN testbed is shown in Figure 3.5 where the Mininet version 2.2.0

was used to create a network of virtual hosts, switches and links. Mininet was installed in

Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86 64) with 1GB of RAM and Intel(R)

Xeon(R) CPU E5-2609 v3 @ 1.90GHz. The OpenDaylight controller installed in Ubuntu

14.04.5 LTS (GNU/Linux 3.19.0-68-generic x86 64) with 2GB of RAM and Intel(R) Xeon(R)

CPU E5-2609 v3 @ 1.90GHz. was used as a SDN controller which uses RESTful API

Web services to interface with network applications. The OpenFlow version 1.3 protocol

was also used to provide an interface between virtual switches and the controller. In

that aspect, the Mininet and OpenDaylight controller were installed in separate virtual

machines by using VMware ESXi version 6 Hypervisor.

The bandwidth of network links connecting all virtual switches (S1, S2, S3 and S4) was

set to 10Gbps while the bandwidth connecting virtual hosts and virtual switches was

set to 1Gbps. As shown in the experimental testbed (see Figure 3.5), traffic flows can

take 5 paths to arrive at H4 as follows: p1=S1→S4 p2 =S1→S2→S4, p3 =S1→S3→S4,

p4 =S1→S3→S2→S4, p5 = S1→S2→S3→S4. H4 was used as a web-based YouTube client

while H1 was used as an SDN virtual host where the Apache2 Web server was installed.

In addition, YouTube was used during implementation as a DASH server. The remaining

hosts H2 and H3 are used to generate TCP background traffic through virtual switches S2

and S3, respectively.

3.4 Performance Analysis and Evaluation of the Video Quality

Management Scheme.

Extensive experiments were performed on different video sequences for three quality

levels (720p, 480p, 360p) under various maximum queue sizes. Figure 3.6 shows the

average arrival rates for each quality level. The average arrival rate for fast movement

video sequences (BasketballDrive, BQterrace and Parkscene) is higher for each quality

level than medium (Vidyo) and slow (Johnny) movements sequences. It is imperative to

note that, since the average Ethernet frame size for each sequence was almost the same at

1365 bytes, then the average service rate is approximately the same as shown in Figure

3.6. As shown in Figure 3.4, other QoE-video adaptation techniques can be used when the

traffic intensity (Tij) is not greater than that of the destination point. However, when the
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Figure 3.5: An experimental testbed used to implement the proposed video quality
management scheme

traffic intensity is greater than that of the destination point then the video quality scheme

is used to redirect the video flow to less congested port.

3.4.1 Implementation of DASH without the Proposed Quality Management

Scheme

In order to investigate the performance of DASH without the proposed video quality man-

agement scheme, the maximum queue size was set at 400 packets whereas the bandwidth

was set to 100 Mbps. Figure 3.7 depicts the number of stalls experienced by each video

sequence at each quality level for high level of traffic intensity where Tij > 0.75. As shown

in the Figure 3.7, fast movement video sequences at 720p quality level experiences more

number of stalls (i.e., BasketballDrive = 15, BQTerrace = 12 and Parkscene = 13) compared

to medium (Vidyo = 4) and slow (Johnny = 2) video sequences. This is so because fast
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Figure 3.6: The average arrival rates of video sequences

movement video sequences occupy more bandwidth than medium and slow movements

videos due to high bitrates. It is worth mentioning that similar behavior and performance

can be observed at 480p and 360p video resolutions.

Figure 3.7: Number of stalls for high level traffic intensity

51



Figure 3.8: Number of stalls for Medium level traffic intensity

Figure 3.8 indicates the number of stalls experienced by each video sequence for the

Medium level traffic intensity under the threshold of (0.6 6 Tij < 0.75). This is the threshold

for Medium level of intensity obtained in the measurements using the maximum queue

size of 400 packets and the bandwidth of 100 Mbps for the selected video sequences [26].

The additional of 0.6 threshold was selected to represent the limit of traffic intensity for

Medium Level of intensity during video streaming. The number of stalls for the Medium

level of traffic intensity were less than that of the High level of traffic intensity. This is

so because the available bandwidth is bigger than that of the High level traffic intensity.

Note from Figure 3.8 that, no number of stalls reported for medium and slow movement

video sequences.

Fig.3.9 illustrates the average stalling duration in seconds for High level of traffic intensity

(for all video sequences) at each quality level. Fast movement video sequences experienced

longer stalling time (BasketballDrive = 23 seconds, BQTerrace = 17 seconds and Parkscene

= 20 seconds) than medium (Vidyo = 9 seconds) and slow (Johnny = 5 seconds) video

sequences. This is so because, fast movement video sequences consume higher bandwidth

than medium and slow video sequences. Note that, similar performance behavior can be

observed for 480p and 360p quality levels.
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Figure 3.9: Average number of stalling duration for High level traffic intensity

3.4.2 Implementation of DASH with the Proposed Quality Management Scheme

To overcome such a high number of stalls for DASH video with high and Medium level

traffic intensity shown in Fig. 3.7 and Fig. 3.8 that affect the video quality, the proposed

video quality scheme [26] was deployed to redirect the network flow with High traffic

intensity to an OpenFlow switch port with Low level of traffic intensity. That way, the

network congestion is avoided while at the same time improving the end-user’s video

quality. In order to demonstrate the performance of the proposed video quality scheme

over SDN, the traffic intensity threshold of 0.75 was empirically selected for High level of

traffic intensity. This threshold value performed better than other thresholds under the

same maximum queue size of 400 packets, the bandwidth of 100 Mbps and the selected

video sequences. As shown in Figure 3.10, the number of stalls were only reported for

fast movement video sequences (BasketballDrive = 2, BQTerrace = 1 and Parkscene =

1), and only at 720p quality level. The results indicate that the number of stalls in the

proposed video quality management scheme is significantly smaller compared to DASH

without the proposed scheme as shown in Figs. 3.7 and 3.8. While that is the case, there

were no number of stalls reported once the DASH video streaming was in the new path

with the Low level of traffic intensity. For the purpose of demonstrations, High level

traffic intensity was only used to compare the performance of DASH with and without
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Figure 3.10: The number of stalls in the proposed video quality management scheme

the proposed video quality scheme.

To add-on, Table 3.3, shows that the number of stalls were significantly reduced by more

than 84% at High level of traffic intensity for all quality levels. That way, the end-user’s

video watching experience is significantly improved.

Table 3.3: Comparison of number of Stalls of DASH with and without the proposed
scheme

Without the scheme With the scheme Reduced (%)
720p 480p 360p 720p 480p 360p 720p 480p 360p

Basketball 15 7 5 1 0 0 93.33 100.00 100.00
BQTerrace 12 6 4 1 0 0 91.67 100.00 100.00
Parkscene 13 9 7 2 0 0 84.62 100.00 100.00
Vidyo 4 3 0 0 0 0 100.00 100.00 NA
Johnny 2 1 0 0 0 0 100.00 100.00 NA

Extensive results for the stall duration that plays a major role in the evaluation of video

quality over DASH were collected to investigate the performance of the proposed scheme.

Table 3.4, shows the comparison of average stall lengths in seconds for DASH with and

without the proposed scheme. It is imperative to note that, at High level of traffic intensity

for all quality levels, the proposed video quality scheme reduces significantly the average

stall duration by more than 94%.
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Table 3.4: Comparison of DASH with and without the proposed scheme

Without the scheme With the scheme Reduced (%)
720p 480p 360p 720p 480p 360p 720p 480p 360p

Basketball 23 12 9 1 0 0 95.65 100.00 100.00
BQTerrace 17 9 8 1 0 0 94.11 100.00 100.00
Parkscene 20 8 9 1 0 0 95.00 100.00 100.00
Vidyo 9 5 0 0 0 0 100.00 100.00 NA
Johnny 5 2 0 0 0 0 100.00 100.00 NA

3.5 Summary

To summarize, the proposed video quality scheme shows to be an effective strategy that

can overcome the shortcomings of DASH approach which is attributed to frequent bitrates

and resolution switches under bursty background traffic. There were no number of stalls

reported for 480p and 360p quality levels using the proposed video quality scheme which

indicates a significant performance compared to that of DASH technique. It is worth

noting that, the number of stalls and their duration were significantly reduced by more

than 84% and 94%, respectively for the High level of traffic intensity at 720p quality

level. While the above strategy only improve the video quality using a single path for

transmission, the next section presents a novel QoE-driven SDN based resource allocation

mechanism approach over SDN/NFV networks.
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Chapter 4

QoE-Driven SDN based Resource Allocation

Mechanism using Network Softwarization

Network softwarization [60] and virtualization using SDN and NFV is expected to impact

several aspects of network development and services such as CDN or video accelerators

[61], [62]. Network softwarization using SDN and NFV enables distributed virtual plat-

forms to execute any network functions and networked services as applications on VMs

which are allocated, managed and moved dynamically on general purpose hardware.

Network softwarization and virtualization as described in section 2.4 are considered as a

key enabling technologies and an appealing solution in future networks such as 5G for the

value added QoE-driven services provisioning such as high quality 3D/4K/8K video and

high bitrate contents distribution across the network coupled with personalized services

interactivity.

Chapter 3 presented the video quality management scheme based on traffic intensity over

SDN to reduce the number of stalls and their duration. However, enabling the dynamic

configuration and resource allocation using network softwarization can be significant and

an outstanding approach on how resources are used for the purpose of improving the

end-users’ QoE. Dynamic resource allocation in SDN involves an allocation of resources

to users’ applications in the data plane by abstracting the low-level components. It also

involves guaranteeing the fair allocation of such resources, transparency, and scalability to

the end users. The main objectives of dynamic resource allocation in the context of virtual-

ized based SDN networks are overall cost reduction, for instance, by improving resource

usage (link and switch), and reducing the management overhead for service and content

providers. Efficient techniques for resource allocation should address quality metrics such
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as QoE towards resource utilization, cost, memory and power consumption reduction.

Motivated by the incentives and opportunities provided by network softwarization, this

chapter presents, a novel QoE-driven resource allocation strategy that dynamically assign

tasks to virtual network nodes in order to achieve an optimized end-to-end quality. The

main idea is to find the best combination of network node functions that can provide

an optimized level of QoE to the end users through node cooperation. The task-level

scheduling mechanism is designed to assign tasks related to multimedia application to

different network elements. The rest of this chapter is organised as follows. Section 4.1

presents related work. Section 4.2 provides an illustration of a system overview and task

assignment model followed by the description of the network model and a utility function

in section 4.3. Section 4.4 presents the QoE-driven resource allocation and task assignment

algorithm. Section 4.5 presents the performance evaluation and analysis of the results.

Section 4.6 summarizes this chapter.

4.1 Related Work

The network resource allocation is a major problem in multimedia communications

because there are dynamic changes of the service requirements (e.g. delay, packet loss, etc.)

in real-time applications such as video streaming. Initially, the QoE-based optimization

solutions were proposed for elastic application such as file transfers to capture the user’s

satisfaction as a function of data rate using a concave utility function [134]. From network

operator’s perspective, the aim is to keep a good level of service quality and allow the

maximum number of users to join the system. With a focus on throughput maximization,

authors in [135] address the optimization of network resource allocation for wireless video

delivery. Abuteir et.al [136] propose an SDN-based framework for dynamic traffic shaping

on home network gateway. Authors uses the collected network statistics and monitoring

of video flow to achieve dynamic allocation of bandwidth for each video flow in real-time.

Diorio et.al [137] propose an SDN-based gateway that acts as a component of the OpenFlow

controller to enhance the multimedia content delivery. Using the information collected in

the network using an OpenFlow controller, traffic flows can be routed through different

paths in the network. Jin et.al [138] propose a two-step iterative approach that jointly

allocate resources and route video flows in order to optimize video distribution over

future internet. An NFV-based routing policy is introduced first to maximize the total
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cache hits by allocating storage and computing resources. In the second approach, a

SDN-based routing mechanism that can configure the routing matrix for a given resource

placement is proposed to minimize the networking cost. Authors formulate the joint

optimization problem as a convex optimization problem using a delay utility function

to represent the user’s QoE. In order to maximize the revenues of ISP, Bagci et.al [139]

propose a queue-allocation optimization solution for adaptive video streaming over SDN.

These approaches indicate to be very potential in improving the end-user’s QoE. However,

none of these solutions consider the cooperation among network elements in improving

the quality of the transmitted video flows from source to destination.

4.2 System Architecture Overview and Task Assignment Model

Media flows from the server to clients in the traditional systems follow the same network

path while it is the case that, such a path might not be the optimal one for all types of

media flows [112]. Figure 4.1 shows an example of an adaptive media streaming that

involves different tasks. To maximize the end users’ QoE, it is therefore important to

develop strategies that allow delivering each user media flow using the "best available"

path. Motivated by the Economic Traffic Management concepts presented in [140] this

chapter provides a novel QoE-centric traffic flow control and routing approach. The

chapter showS that SDN/NFV is a key factor for enhancing video quality, resource

allocation and QoE management in future networks as shown in Figure 4.2. The QoE-

based resource allocation and configuration is deployed in the SDN controller of the

control plane. Specifically, the presented QoE-centric traffic flow control and routing

mechanisms enable network elements to cooperate in measuring and collection of the

QoS/QoE influencing factors in the SDN network. Figure 4.3 illustrates components of

task assignment model that provides QoE-driven resource allocation in SDN/NFV. As

shown in the application system overview, the workflows wi contain video streams with

different independent jobs. The video streams consist of varying video resolutions. The

considered video streaming service can be decomposed into a set of tasks. As shown in

Figure 4.3, a set of tasks are described as a Directed Acyclic Graph (DAG) of tasks denoted

as: GT = (T ,ET ). T = {1, ...,λ, ...,Λ} represents the set of tasks and ET = (evw) is the set of

edges such that each edge evw represents a unidirectional data transfer from task v to

task w. The task model considers a video streaming service which includes four tasks:
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Figure 4.1: An example of a DAG for adaptive media streaming

caching (original video server), encoding, forwarding and playing back (client side). The

forwarding task refers to one forwarding action running in one network node. As shown

in Figure 4.3, the system consists of task dispatcher, task mapper to network elements,

resource manager and the task assignment algorithm described in section 4.4. The task

dispatcher is used for dispatching jobs and tasks from the media server based on the

client’s requests. The task mapper is responsible to map tasks to NEs while the resource

manager to manage network resources in network.

Figure 4.2: QoE-driven SDN based resource allocation system overview

A binary vectorXi= [xiλ] for λ∈ T , can be assigned to each node i in the network where xiλ

is a boolean value that indicates the current state of the node i corresponding to task λ. It

is worth mentioning that, when node i performs a task λ then xiλ = 1. Figure 4.1 illustrates
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the DAG of the media streaming service task chain. Thus, each task have to be executed in

order to deliver the video from the media server to the client. Depending on the network

and application parameters, the aim is to optimize the overall end-user’s QoE by making

the best possible task assignment to network nodes. Similar to the illustration of Figure

2.5, the data forwarding plane consists of hardware and virtual resources. The hardware

resources consist of compute, storage and network modules. Essentially, these are the

physical resources which are related to memory, network and CPU. The virtual resources

consist of the vCompute, vStorage and vNetwork modules. The VNFs are implemented

in the data plane and controlled by the SDN-Controller through a Southbound API using

the OpenFlow protocol. The QoE monitoring and management of media flows is done

by the Management Plane via a Northbound API. The hardware resources and VNFs are

abstracted using the virtualization layer (refer to Figure 2.8).

Figure 4.3: Illustration of task assignment model

4.3 Network Model and the Overall Utility Function

It is worth noting that, different services have different QoS/QoE requirements based on

various parameters. Depending on user’s QoE requirements, each service can be divided

into smaller tasks that can be assigned to different NEs, for example different VNFs). The

aim is to deliver the video to the end-user using an Openflow-based virtual switch from

a media server where the original video is stored. The network is modeled as a DAG

GZ = (Z,EZ). The vertices represent the nodes Z= {1, ..., i, ..,N} and the links are described

by the set of edges EZ = (eij). Each node of the DAG is a Network Element (NE) which

can be based on NFV where each NFV includes many VMs (e.g., for storage and network).
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A utility function is defined that can formalize the correlation between network per-

formance and user perceived quality. The concept of utility function is adopted from

economics. That way, it provides a means of reflecting to normalized and transparent way

of various services performance prerequisites, degree of users’ satisfaction, different types

of networks diverse resources. It also provides a dissimilar QoS provisioning mechanisms

and capabilities under common utility-based optimization problems as demonstrated

by [141]. Our algorithm decides which particular NE should execute a given task λ by

maximizing network utility function.

The overall utility function consists of both the benefit and the cost for a node i ∈ Z

executing a task λ ∈ T . The objective function is defined as:

unet =max
∑
i∈Z

∑
λ∈T

(α× biλ −β× ciλ)× xiλ (4.1)

where α,β are the weighting factors. xiλ is a boolean variable that can be 0,1 depending if

a node i executes a task λ. biλ is related to the benefit that exists, if a task λ is executed

in node i. ciλ refers to the cost for node i running task λ. It is defined as the cost for

resource consumption of both CPU and memory, i.e. cost= f(CPU,memory) and can be

calculated as follows [142]:

ciλ = γi ×CPUiλ + δi ×Memoryiλ,∀i ∈ Z,∀λ ∈ T (4.2)

where γ,δ are scale factors related to node iwhich allow us to weight the cost according to

the required CPU and memory for a particular task in node i e.g. a task such as “encoding”

needs more CPU and memory than a “forwarding” task. These weights depend on node

i. Furthermore, the benefit is related to QoS level regarding to delay, jitter, bandwidth

and packet loss. biλ is defined as the execution benefit for running task λ at node i. A

correlation model from [143] is used to map the QoS parameters to a QoE metric for video

streaming service. The model is derived by a normalized QoS value as follows:

biλ =Qr × (1 −QoS(C))
QoS(C)×A

R (4.3)

whereA is a constant relating to the video resolution class such as Standard Definition (SD)

(A = 120) or High Definition (HD) (A = 240). If the subscribed service class is high, the

constant A is assigned to a higher value. It means that the QoE level which the premium
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service subscriber‘s requests is higher than normal service subscribers‘s in the network

condition of the same QoS level. R is a constant which reflects the structure of the video

frames according to the GoP (Group of Picture) length and it is defined as R= 24. Qr is

a constant factor that determines the overall QoE of video streaming service. Based on

literature [143], the constant Qr is set to = 0.95.

The normalized QoS value (QoS(C)) refers to the network performance and is calculated

using Eq. 4.4. Equation 4.4 indicates the normalized QoS(C) which is calculated as the

sum of the QoS parameter values measured in the network layer multiplied with the

allocated weights. The QoS parameters considered include: Packet Loss (PL), Packet Jitter

(PJ), Packet Delay (PD) and Bandwidth (BW). Note that, the weights of QoS parameters

are assigned according to the quality standard bounds and their relative importance

degree are given from [143] as follows, PL 58.9%, PJ 15.1%, PD 14.9% and BW 11.1%. The

normalized QoS value reflects the network condition and is calculated as follows [143]:

QoS(C) = PL×WPL + PJ×WPJ + PD×WPD +B×WBW (4.4)

where C = {1..., i..,N} is a sub-set of Z, a set of nodes involving in video delivery from

the media server to the client. WPL,WPJ,WPD andWBW are the weights for packet loss,

packet jitter, packet delay and bandwidth, respectively. Note that, the weights of QoS

parameters are assigned according to the quality standard bounds and their relative

importance degree are given from [143] as follows, PL 58,9%, PJ 15.1%, PD 14,9% and

BW 11,1%. The weight of QoS parameters is assigned based on the quality standard

bounds recommended in the standardization organizations (e.g. ITU-T) and its relative

importance degree. The objective function is subjected to the following constraints.

Constraint 1: Every task λmust be executed in at least one node such that

∑
i∈Z

xiλ > 1∀λ ∈ T (4.5)

Constraint 2: Each node can execute only one task at a time

∑
λ∈T

xiλ = 1∀i ∈ Z (4.6)

Constraint 3: If node i is executing task λ then node j that is going to execute task (λ+ 1)
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(next task), must have a relation (link) with node i of eij = 1

eij =

 1 if xi,λ = 1 AND xj,(λ+1) = 1

0 otherwise
∀i, j ∈ Z (4.7)

Constraint 4: Each network element has specific available resources and every task

requires specific amount of resources. Thus, the available resources for each network

element cannot be less than the required amount of resources.

For node i ∈ Z, the author define a set of available resources as

Availablei = {CPUi,Memoryi, . . . } (4.8)

For a task λ ∈ T , a set of required resources is defined as

Requiredλ = {CPUλ,Memoryλ, . . . } (4.9)

Requiredλ 6Availablei,∀λ ∈ T ,∀i ∈ Z (4.10)

4.4 QoE-driven Resource Allocation Mechanisms in SDN

This subsection presents the QoE-driven resource allocation and task assignment algorithm

that improves the delivery of video services to the end-user with high QoE. While that

is the case, the optimization problem is first introduced to find the best possible path

of nodes in order to improve the overall QoE. Although, this is an NP-hard problem,

which could be time and energy consuming [144], a centralized optimization approach is

applied with the main idea of making the best task assignment in order to improve QoE. A

centralized optimization problem is defined, where a utility function, unet is assigned to

a network for a given strategy vector xi. The goal of the designed system is to maximize

its own utility and improve the delivery of video services with good quality to users. The

solution presented in this chapter chooses a task assignment strategy xi that maximizes

utility function shown in 4.1. Therefore, a strategy x∗i is preferred to a strategy xi, if and
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only if unet(x∗i )> unet(xi).

4.4.1 The proposed QoE-driven Resource Allocation and Task Assignment Al-

gorithm

Based on the system architecture shown in Fig. 4.3 and the network topology shown in Fig.

4.5, the algorithm finds the best path to deliver the video, while executing all the defined

tasks. Every NE has specific available resources and every task requires a specific amount

of resources regarding to the amount of CPU and memory. The QoE-driven resource

allocation algorithm finds all the paths that can be used to deliver the video from each

media server to each client and creates a list of them. Based on the proposed network

model and task model the algorithm creates a new list with all possible paths considering

all the constraints defined in section 4.3. Moreover, every path starts from the media

server node and ends with the client node and must include nodes that execute all the

tasks. The algorithm further considers different parameters such as the average delay and

average bandwidth of the path along the path in the network topology. To summarize,

the QoE-driven resource allocation and task assignment algorithm employs the following

steps as shown in Algorithm 2: the routing metric used to determine the shortest path is

the QoS(C) that is calculated using equation 4.4.

Algorithm 2: QoE-driven resource allocation and task assignment scheme
input : Network topology information

1 Find all shortest paths p ∈P in the network and creates a new list with all possible paths
considering all the constraints

2 Compute link delay, bandwidth, packet loss, jitter for all paths
3 For every path, calculates the QoS(C) value of the path based on Eq. 4.4.
4 For every path, calculates the “Benefit of the path” based on Eq. 4.3 by considering the
QoS(C) value of a path, Qr (a factor which determines the overall video quality of the
video streaming), the resolution class A and the structure of the video frames R.

5 For every path, calculates the “Cost of a path” based on Eq. 4.2 by considering the
required amount of CPU and memory of a task λ.

6 calculates the unet function, based on Eq.4.1 using the “Benefit of the path” and the
“Cost of a path”.

7 Select the path with the highest unet value to deliver the video to the Client.

4.4.2 Video Clips/Sequence used for Implementations

In order to evaluate our approach, the reference video file of an animated film called

“Big Buck Bunny” which is widely used by researchers in the area of adaptive content
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Table 4.1: Resolutions of video streams.

Video resolution Video bitrate (kbps)
1080p 100, 200, 600, 1000, 2000, 4000, 6000, 8000
720p 100, 200, 400, 600, 800, 1000, 1500, 2000
360p 100, 200, 400, 600, 800, 1000

distribution was selected. The uncompressed YUV video files in 360p, 720p and 1080p

resolution were then encoded using the H.264 codec. As shown in Table 5.1, the resolutions

Figure 4.4: Video clips/sequence

of video streams to be delivered to clients were selected randomly between 360p, 720p

and 1080p in the beginning of the experiments which was defined with the duration of 10

minutes and three clients selected randomly to receive a video from video server 1.

4.4.3 Experimental Testbed using SDN

An experimental testbed was setup based on a network emulator, Mininet [145] and an

SDN-Controller implemented by OpenDaylight [146]. The testbed consists of 2 video

streaming servers, 3 clients, 7 virtual switches and the SDN controller, as illustrated

in Fig. 4.5. The network access was provided by using a Cisco Linksys x1000 device

compatible with IEEE 802.11b/g/n operating at 2.4GHz bandwidth. Mininet was installed

in a Toshiba computer with Intel @ CoreTM, i7-3770 CPU@ 3.40 GHz, 16 GB of RAM

installed with Linux Ubuntu 14.04, 64 bit. The SDN-controller Ethernet port was fixed to

a static IP address to ensure service availability throughout the experimentation period.

It is worth mentioning that, during network path assignment to a particular multimedia

traffic/session flow, the proposed approach first specifies a particular network path

links and nodes by utilizing an automatic optimal path configuration of each video

traffic/session flows to be established through the assigned path loss probability and an

average delay of the link. During video service flow establishment between a client and a
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Figure 4.5: QoE-driven experimental setup based on SDN

video server, each of the following components performs the following functions:

1. End-user clients initiate a request to the video server. This request consists of client’s

QoE preferences and requirements based on quality parameters such as video and

screen resolution as well as the supported codecs of their devices.

2. The video server(s) then communicates these clients’ requests to the QoE manage-

ment App with the parameter matching function. The server also conveys client’s

information and requested parameters such as required video resolution, video bit

rates and codecs.

3. The QoE management App through the resource manager determines the required

parameters and assign resources to be delivered to the client when there is a match

received from the video server.

4. The associated video traffic parameters are then sent by the SDN application to the

SDN-Controller. Such parameters include the video codecs and video bit rates along

with the required QoE model.

5. Using the QoE-driven resource allocation and task assignment algorithms, the

SDN-Controller through the OpenFlow [67] performs the QoE-centric multimedia
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traffic flow control and routing mechanisms to determine the possible path that will

maximize the QoE of the end-users requests.

Note that, when scalability and interoperability become the core requirements, the system

is able to create a generic solution using the SDN controller and an Openflow that all

together work across different service provisioning scenarios ranging from a multitude of

vendors and ISPs.

4.5 Performance Evaluation and Results

The objective of this section is to present results and the evaluation based on the experi-

ments conducted using the proposed QoE-driven resources allocation and task assignment

algorithm. The results presented in this section consider the bandwidth fluctuations, end-

to-end delay variations and scalability and clients differentiation. The programmability

and the overall combination of features provided by SDN and NFV as well as the openness

of OpenFlow [67] enabled having a fully realization of the real world networks throughout

the experiments. The SDN-based experiments use the VLC media player [147] for video

streaming while, for video stream delivery from any of the video server nodes to clients

the UDP/RTP protocol is used. Note that, DASH was not used in this experiments. The

total available bandwidth to be accessible to video streams is set on different links to

fluctuate between 20kb/s to 20Mb/s. This bandwidth limit is motivated by the Wi-Fi

routers using the wireless-A and wireless-G standards which can limit connection speeds

with ISPs that offer 25Mb/s for fast connections.

Three different tests were carried out to evaluate the performance of our approach. The first

experimental test provides the evaluation of bandwidth fluctuations and delay variations

from a video server to receiving clients. In the second test, two different experiments

are carried out to evaluate the effects of packet loss on video quality at different delay

variations. In experiment 1, the delay was varied in the interval [20ms, 60ms] while in

experiment 2, the delay was varied in the interval [10ms, 30ms]. The aim of using different

delay variations in two different experiments is to investigate the effects of these delay

values on the video quality. This would allow coming out with a valid conclusion on the

acceptable delay limit for adaptive video streaming in SDN-based networks. The available

bandwidth in these two experiments was set to 1000kbps whereas the average packet loss
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probability was selected randomly in the interval [0%, 20%]. The last test evaluates the

transmitted video quality as measured by the normalized QoS using Equation. 4.4. The

network QoS parameters (packet loss rate, jitter, delay and bandwidth) which are related

also with video quality were configured using NetEm [148], the well-known routing and

traffic control feature for system monitoring, traffic classification and manipulation in

computer networks.

4.5.1 Bandwidth and End-to-End Delay Variations

Figure 4.6 shows the relationship between the number of video servers that can serve a

specified number of clients at different bandwidth and delay variation values. In practice,

a change in the shared bandwidth will lead to a network resource reallocation process

which is basically instructed by the QoE-driven resource allocation function. Every change

in video quality is accounted for in the end user’s QoE while the increasing number of

quality fluctuations is believed to be impacted by the number of delay variations and

packet loss rate on the network links.

Figure 4.6: Bandwidth and delay variations with different number of clients and video
servers

As shown in Fig. 4.6, as the number of video delivery nodes increases, the delay variations
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on the network links have less effect on the available bandwidth required for transmitting

videos to clients. For example, at 60ms delay variation, 2 or 4 video servers can provide

services to 1, 2 or 4 clients at the same bandwidth of 20Mbps. Such observation has also

an implication of delivering high videos quality to clients. For the video delivery node

1, the client is able to stream a video using the total available bandwidth which enable

receiving high video quality compared to video delivery nodes of 2 and 4 servers.

4.5.2 Effects of Packet Loss Variations on Video Quality

As multimedia applications over IP networks continue to grow towards 5G networks, re-

source allocations with respect to multi-tier topology, user data sharing and cross-domain

policies to be implemented using SDN/NFV strategies continue to face the challenge [149].

Considering the media streaming services in a dynamic and heterogeneous applications

in future networks such as 5G, our approach differs from the conventional designs in the

sense that, the utility and assignment of tasks are modelled to network nodes in order to

improve the overall QoE level. Such design enables several network elements to cooperate

during the process of QoE measurements and collection of the QoE influencing factors

in the SDN platform. In order to do that, two different experiments were conducted

to evaluate the effects of packet loss on video quality at different delay variations. In

experiment 1, the delay was varied in the interval [20ms, 60ms], while in experiment 2,

the delay was varied in the interval [10ms, 30ms]. The average packet loss probability

is selected randomly in the interval [0%, 20%]. The available bandwidth of 1000kbps

was selected based on the fact that, 1Mbps was fairly enough for our experimentation

taking into account that the aim was to investigate how delay and packet loss affect

the transmitted video quality using our approach. Fig. 4.7 shows the video quality of

transmitted videos as the function of packet loss rate.

As expected, it can be observed from Fig. 4.7 that, as packet loss decreases, The video

quality is calculated based on the mapping of QoS to QoE values using the execution

benefit, biλ for running task λ at node ibenefit. It is worth noting that, the video quality

increases as indicated by the QoE values from the correlation model described in [143].
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Figure 4.7: QoE values at different variations of packet loss and delay

4.5.3 Transmitted Video QoE with the Normalized QoS Values

Figure 5.6 shows the results of the transmitted video QoE without and with our proposed

QoE-driven resource allocation algorithm. In this experiment, the normalized QoS(C)

was calculated based on Equation 4.4 where the constants A and R in Equation 4.3 were

assigned to 240 and 24 respectively by considering the used codec, a set of network param-

eters and video resolution. The blue color bar demonstrates the test experiment without

using the proposed QoE-driven resource allocation and task assignment algorithm.

It is evident that, the video quality increases as the normalized QoS value decreases. The

video quality and the QoS(C) reflects the QoE metric for video streaming services and

the network parameters/conditions respectively which are set as described in the second

test done in the previous subsection B. Using the QoS-to-QoE correlation model in [143],

our proposed approach can significantly improve the video quality at the normalized QoS

values.
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Figure 4.8: Transmitted video QoE with the normalized QoS values.

4.6 Summary

SDN and NFV promise new opportunities for offering a unified QoE control and manage-

ment of multimedia services by leveraging these network softwarization technologies in

future 5G wireless/mobile networks. This section presents an SDN-based strategy for QoE

management by allowing cooperation and information exchange among network elements

which are involved in the service delivery chain (e.g., from the video delivery nodes to

clients). A novel QoE-driven dynamic resource allocation and task assignment scheme

for adaptive video streaming over SDN/NFV enabled networks is comprehensively. The

presented strategy enables more efficient resource utilization and simplifies network man-

agement using the elasticity of SDN/NFV technologies. This is achieved by finding and

providing the best combination of network nodes that can cooperate during the execution

of the defined task in order to improve the overall QoE level of the end users. It is worth

mentioning that, network softwarization infrastructures using SDN/NFV is a key factor

for enhancing video quality, resource allocation and QoE management especially in future

multimedia networks.
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Chapter 5

QoE-Centric Multipath Routing for Multime-

dia Services using SDN/NFV

Future networks (e.g., 5G) are expected to support and provide an end-to-end over-the-air

latency of less than 1ms, transmission reliability of 99.999% and approximately 100% ser-

vices availability [150]. With the increasing number of new applications beyond personal

communications, mobile devices will probably reach hundreds of billions when 5G is

deployed into the market. The 5G network systems around 2020 and beyond will need to

deliver as much as 1000 times capacity compared to the current commercial 4G cellular

systems [151], [152]. 5G is set to provide access to any service with better quality to end-

users at anytime, anywhere through reliable and cost effective communications, over any

medium and across multi-operator domains using different technologies SDN and NFV.

Reliable transmission protocols with high transmission efficiency in wireless environments

are required in order to support a multi-variety of services (e.g, live video streaming and

video gaming) in 5G networks. Requirements such as high throughput, resilience and reli-

ability, consistency and service availability, ultra low-latency have to be archived, for 5G

to support these applications [150]. Efficient transfer of large data, especially multimedia

traffic flows is crucial to the performance of 5G multi-rooted topology networks where

multiple paths exist between pair of hosts. In order to provide an optimal throughput

for large flows and cope with the explosive growth of multimedia traffic, new transfer

protocols such as MPTCP and advanced forwarding technologies such as SR [153] have

been designed. The aim has been to increase network throughput, reliability, availability

and make a timely response to end-users’ requests as well as improving end-user’s QoE.

This chapter explore the utilization of MPTCP and SR in SDN-based networks to improve
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network resources utilization and end-users’ QoE for delivering multimedia services

over 5G networks. The rest of the chapter is organised as follows. Section 5.1 presents

related work regarding multimedia transmission using MPTCP over SDN followed by a

description of basic operation and principles of MPTCP in section 5.2. Section 5.3 provides

the video adaptive streaming concept of MPTCP over SDN while section 5.4 presents the

traffic engineering with segment routing in SDN. Section 5.5 presents a QoE-aware MPTCP

SDN-based SR adaptation framework. Section 5.6 presents the proposed QoE-Centric

Multipath Routing Algorithm (QoMRA) over SDN. Section 5.7 provides an experimental

results and evaluation of the proposed QoE-aware MPTCP/SR-based algorithm. Section

5.8 summarizes the contributions of this chapter along with the lessons learned. ‘

5.1 Related Work

To pinpoint out our motivation, related work that implement MPTCP using SDN is dis-

cussed and then explore the applicability of SR for traffic engineering solutions in future

softwarized networks. In [154] a proposal that uses MPTCP in OpenFlow-enabled net-

works to guarantee subflows of the same MPTCP connection to be sent through disjointed

paths is given. A QAMO-SDN, QoS-aware MPTCP-based solution that can provide and

support service differentiation in SDN optical networks is presented in [155]. The concept

of SDN is invoked in [156] to establish a large-scale measurement framework on top of

GEANT and PlanetLab Europe where multiple paths can be configured dynamically, and

MPTCP experiments can be orchestrated in a flexible manner. A recent MPTCP-aware

SDN controller that uses packet inspection to provide deterministic subflow assignment

to paths and facilitates an alternative routing mechanism for the MPTCP subflows is

described in [157]. Faster download speed and improved QoE is reported in [158], where

SDN is used to add or remove MPTCP paths in order to reduce large number of out-of-

order packets which may cause poor performance and degrade the end-users’ QoE. A

responsive MPTCP approach that employs a centralized SDN controller for calculating

the forwarding paths of subflows is presented in [159].

An SDN MPTCP-based architecture that achieves higher data rates when transferring a

huge amount of data in L2 networks is proposed in [160]. Although these SDN MPTCP-

based approaches are intended to improve throughput, but they rely on installing a larger

number of flow rules at the SDN switches and thereby increasing the load at the SDN
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switches. Such limitation can be easily eliminated using the SR technology as shown later

in this chapter. Another drawback of the above approaches, is the lack of an efficient

routing and an adaption mechanism to control the number of subflows based on the

network changing conditions. In addition, some of proposals do not consider on how

MPTCP can improve QoE in the aspects of future IP networks for media-rich services

delivery.

While recent proposals, [161], [162] attempt to achieve the optimal quality of real-time

video streaming using MPTCP, authors do not consider the global control features that

SDN can offer in their implementations. Such solutions are likely to suffer from conges-

tions when large flows are transfered from source to destinations and therefore degrading

the end-user’s QoE. Indeed, SDN-based SR implementations can efficiently manage re-

sources and provide better TE solutions in multi-domain 5G networks [163]. For example,

an SDN-based solution for assigning TE paths with SR, based on Multi-Protocol Label

Switching (MPLS) forwarding is proposed in [164] while efficient routing mechanisms for

SDN with SR that meet bandwidth requirements of routing requests are described in [165].

Motivated by previous observations of SR to reduce the amount of forwarding rules in

OpenFlow switches, this chapter, takes advantages of MPTCP and SR to speed up network

transmission, increase network throughput, reduce overhead and further improve user’s

QoE for multimedia services in SDN-based networks.

5.2 Principles and Basic Operation of MPTCP

Multipath TCP (MPTCP) [161], [166] has emerged as the transport protocol capable of

forwarding data traffic using multiple paths. Multi-Path TCP (MPTCP) is a recent effort

of the Internet Engineering Task Force (IETF) towards standardizing a transport layer

protocol that improves network connectivity and provides end-users with higher data

rates. MPTCP was proposed as an extension of TCP with the main idea of splitting

a large flow into multiple subflows. The subflows originating from the same MPTCP

connection are then sent to their destinations through different disjointed paths in the

network [154]. The receiving side that supports MPTCP aggregates the transmitted sub-

flows and reassembles the packets that originate from different paths. As shown by

Barakabitze et.al [166], MPTCP implementations can be integrated by new cutting-edge

technologies such as SDN and NFV. MPTCP avoids network hot-spots by distributing
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traffic flows over multiple concurrent paths such that all the network links are optimally

loaded. MPTCP provides load balancing, security, reliable communication and better

network resources utilization that leads to higher network throughput and the end-user’s

QoE [161], [167]. MPTCP is a promising approach to improve performance and reliability

of video streaming services in future networks (e.g., 5G). The main design goals and

benefits of MPTCP over TCP protocol include the following:

• Reliability: MPTCP provides reliable communication because multiple paths exists

that can keep the connection alive between endpoints when one path fails during

data transmission. For multi-homing devices, MPTCP can also enhance reliability

through the use of multiple wireless links, for example, Wi-Fi and LTE [168], [169]

for data transmissions.

• Bandwidth aggregation: MPTCP can potentially improve the network throughput

by transmitting video flows using multiple number of available paths. That way,

MPTCP efïňĄciently achieve bandwidth aggregation such that a multi-homed device

can obtain a much better performance during video streaming of contents from a

service provider.

• Fairness and Resource Pooling: MPTCP can ensure that competing TCP flows share

the available bandwidth of the shared bottleneck link. MPTCP advocates the re-

source polling (RP) principle by making an improved use of multiple path resources.

MPTCP achieve a practical multipath-aware end-system making different paths in

the network to act as if they were a single large resource.

Figure 5.1: MPTCP link aggregation between Ethernet switches

Data centers and work stations can implement the concept of MPTCP in Local Area

Networks (LANs) using a technique of link aggregation or Link bonding which allows

75



combining multiple Ethernet links into a single logical link between two networked

devices as shown in Fig. 5.1, (Note that, SW = Switch). It is worth mentioning that, the aim

of multipath transmission using link bonding is to make sure that multiple independent

links coordinate and provide a larger bandwidth compared to the one can be offered using

a single link.

5.2.1 MPTCP Connection establishment between End-points

MPTCP is implemented in the transport layer and can support both IPV4 and IPv6.

The design of MPTCP follows two outstanding requirements, namely the application

compatibility and network compatibility. On the application compatibility means that any

application that runs over TCP should also run over MPTCP without any modifications.

The network compatibility ensures that MPTCP should operate over the Internet without

any need for change in networks, devices and apps. As shown in Fig. 5.2, a TCP flow

connection is defined by 4-tuple (source and destination IP addresses and TCP port pairs)

using a three-way handshake. A MPTCP connection is established using 7 steps as shown

in Fig 5.2. Step 1-3, is a three-way handshake where a DASH client sends the SYN (for

"synchronize") segment that contains the MP_CAPABLE option. This packet contains the

source port and initial sequence number and is sent to the port where the MPTCP server

is listening. The server replies to the SYN segment with an ACK message which includes

the MP_CAPABLE option. The server also provides its initial sequence number and other

supported TCP options.

Figure 5.2: MPTCP subflow connection establishment
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The DASH client then sends an ACK: MP_CAPABLE -KEY packet to acknowledge the

connection establishment. For attaching the second subflow, the MPTCP client and

MPTCP server then use the MP_JOIN option during the handshake (Step 4-6). Step 7

is the confirmation message containing the Hash-based message authentication codes

(HMAC) ACK messages received by the DASH MPTCP client from the MPTCP server.

The third subflow is attached using the MP_JOIN option exchanged during the attachment

of the second subflow. After the MPTCP connection between a client and server has been

established, the MPTCP default scheduler can then push data using the lowest Round Trip

Time (RTT) of the subflow. Note that, subflows use their TCP sequence numbers which

are in turn also used by MPTCP to make sure that, different subflows are delivered in

their respective order on the receiving side. The packets are retransmitted using the next

subflow when loss happens during data transmission. When data transfer is over, then

TCP connection can be closed.

Figure 5.3: The architecture and software components of MPTCP. Note that, for compati-
bility, the MPTCP architecture keeps the standard socket API to legacy applications .src,
dst: Source and Destination IP address, sp, dp: Source and Destination Port [5]

5.2.2 Path Management and Scheduling

Fig. 5.3 (a) shows the architecture of MPTCP where a standard TCP socket API is kept for

compatibility purposes so that legacy applications can run transparently over MPTCP. Fig.

5.3 (b) indicates the three software components in MPTCP namely, Scheduler, Path Manager,

and Congestion Controls. The MPTCP scheduler runs a scheduling algorithm that allocates

traffic by selecting a subflow with the smallest RTT from different MPTCP subflows

based on the available space for congestion window size. The pluggable scheduler model
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presented in [170] is used in the current MPTCP Linux Kernel implementation. Three

schedulers are defined, namely the (a) around robin, (b) default, and (c) redundant scheduler.

The default scheduler basically considers the RTT and the congestion window for each

transmitted MPTCP subflow. The scheduler selects subflow with the lowest RTT and

which have a space for the congestion window is first assigned to packets [171]. The

redundant scheduler is responsible to reduce latency for those applications consisting of

moderate bandwidth requirements [172].

Figure 5.4: Path Manager configurations in MPTCP Linux’s Kernel

A path manager entity in MPTCP is used to manage efficiently the transmission of data

packets through multiple paths. Four path managers as shown in Fig. 5.4 are currently

implemented by MPTCP in the Linux Kernel, namely, default, fullmesh, ndiffports and binder.

The default path manager accept the creation of new subflows. However, it cannot initiate

the creation of new subflows or even announce different IP-addresses to other subflows.

The full-mesh creates a full-mesh of subflows among the available subflows. The fullmesh

path manager is implemented in the Linux Kernel as the default MPTCP path manager

such that it is able to advertise the available IP-addresses on the client side to the server and

listen to those IP-addresses that are announced from the receiving side. When the interface

go up or down, the fullmesh path manager can add/remove an IP-address because it is

able to listen to events from other interfaces in the network. The ndiffports path manager

creates multiple subflows across the same pair of IP-addresses (e.g., same source and

destination IP addresses, the same destination port) but with different source addresses.

The benefits of this path manager is that, it can exploit the equal costs multiple paths

available in the datacentre. However, it is unreactive to network interface changes and

cannot learn the available IP addresses available on the client and server side automatically.

Moreover, the binder path manager utilizes a Loose Source Routing (LSR) mechanism [173]

for distributing subflow packets.
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Figure 5.5: Coupled congestion control algorithms in MPTCP Linux Kernel

5.2.3 Congestion Control and Avoidance in MPTCP

MPTCP Linux Kernel implements various congestion control algorithms to improve

system throughput, provide fair resource sharing and balance congestion in the net-

work. Currently, the MPTCP Kernel implements four coupled congestion controls and

avoidance algorithms, namely, Linked Increases Algorithm (LIA) [174], Opportunistic

Linked Increases Algorithm (OLIA) [175], Balanced Linked Adaptation (BALIA) [176], and

Weighted Vegas (wVegas) [177] on each subflow as shown in Fig. 5.5. When no packet loss

is detected during transmission, the congestion avoidance algorithm of TCP consists of

additive increase behavior while when packet loss is detected the multiplicative decrease

behaviour is encountered. Using these congestion control algorithms, MPTCP must utilize

the least congested mostly during the congestion avoidance phase. The main goal of LIA

is to improve throughput and balance network congestion by simply switching traffic

from congested network paths to least congested paths. OLIA’s implementation departs

from the responsiveness of LIA to provide an optimal congestion balancing and fairness

between subflows in the network. OLIA is based on the New Reno Congestion control

algorithm. It is the main coupled algorithm implemented in the MPTCP Linux Kernel

to mitigate unfairness problems of uncoupled congestion control mechanisms for clients

sharing the same bottleneck link.

As shown in Fig. 5.6, each path starts transmitting when the connection has been estab-

lished after the three-way handshake procedure. Before entering in congestion avoid-

ance stage (e.g., no errors occur) during transmission, it double the Congestion Window

(CWND) and measures its state variables such as RTT while making sure that all ACK

packets are received. The CWND of each subflow path is maintained until the end of

the transferring data to the receiving side. A subflow starts and terminates as a regular
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single-path TCP (SPTCP) connection. A MPTCP connection MPTCPR consists of a set

of one or more subflows sf. Each subflow provides an alternative path to reacha remote

end-system. The subflow’s congestion window wr increases by two terms when an ACK

is received on the subflow r. The first term indicates an optimal congestion balancing

defined in [174].

Figure 5.6: MPTCP slow-start and congestion avoidance stages [6]

5.3 A MPTCP over SDN-based Networks: Concepts and Descrip-

tions

Despite the above mentioned benefits of MPTCP, the key technical aspects that affect the

performance of this transport layer protocol is the lack of control and routing mechanisms

of the splitted subflows. This is because MPTCP has no intelligent component control

over the network or transmission routes used by each subflow from source to destination.

In that aspect, a centralized SDN controller looks to be a fundamental tenet for routing

the MPTCP subflows. Intuitively, the SDN controller that maintains the global view

can provide programmable environment to implement intelligent QoE-based routing

mechanisms for the MPTCP subflows [178]. However, similar to how Border Gateway

Protocol (BGP) tables have grown with the spread of the Internet, Traffic Engineering

(TE) implementations in the SDN data plane could results into the number of rules on

every switch to grow tremendously. It is worth mentioning that, SDN switches are

incapable to handle large volume of flow rules because the complex rule matching in SDN
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(e.g., wildcards) requires switches to store rules in Ternary Content-Addressable Memory

(TCAM), which is expensive, limited in size and needs high power consumption [179].

The limitation of SDN switches to store large number of rules can be greatly solved by

SR [164] where a logical path of MPTCP subflows can be expressed as a sequence of

segments between the ingress and egress network nodes (e.g., a switch/router/link). SR

has been recently proposed by the IETF to provide TE by simplifying control plane where

SDN switches no longer need to maintain per-demand routing information. Segment

routing [163] is a new approach that greatly reduces the number of forwarding rules by

encoding routing information into packet header as an ordered list of labels. SR improves

the scalability of SDN since there is no path state maintenance required in each switch or

router along the service delivery path.

MPTCP implementations can be integrated by new technologies such as SDN/NFV in

order to achieve better network throughput, QoE-fairness in shared systems and provide

flexible path allocation strategy and efficient orchestration of network resources. Consider

the video streaming scenario shown in Fig. 5.7, suppose that, an MPTCP connection which

consists of 3 subflows: sf1:1, sf1:2, sf1:3 where sf is the subflow and the indexes indicate

the number of a subflow of a particular MPTCP connection. In order to guarantee the

end-user’s QoE-fairness level and performance requirements of 5G networks, the SDN

controller checks the available capacity of all connected paths and selects the shortest

paths to transmit the subflows of the same MPTCP connection. As shown in Fig 5.7, sf1

will be transmitted via path, S1→S2→S3→S4, sf2 via path S1→S7→S8→S4 and sf3 will

take path S1→S5→S6→S4. The black boxes indicate video frames generated as data units

by the application while grey boxes are the TCP packets to be received at the client side.

One packet is lost and retransmitted.

Figure 5.7: A video streaming scenario using MPTCP in SDN-based 5G networks

These MPTCP subflow paths can be expressed by the segment routing strategy into

SR paths, using the segment label list. The next section 5.4 provides details of the SR
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operation and the mapping procedures of MPTCP subflow paths into SR paths in the next

subsections.

5.4 Traffic Engineering with Segment Routing in SDN

The primary solution used by service providers for steering the network traffic towards

their destination is based on an IP lookup at each network device (switch or router)

along the delivery path. While 5G networks are evolving towards QoE-based application

platforms, service providers and operators are now surging to a flexible and scalable

networks management through efficient routing mechanisms. Efficient transfer of large

data, especially multimedia traffic flows using MPTCP and SR is crucial to the performance

of 5G multi-rooted topology networks where multiple paths exist between pair of hosts.

SR [163] is a source routing approach that aims to provide an advanced packet forwarding

mechanism where intermediate nodes (routers/switches) are not required to install flow

rules or maintain all steered paths within the network. With SR, a host or an edge router is

able to steer a packet through the network using an ordered list of processing/forwarding

functions called segments. A segment can be a logical or a physical element such as a

network node (e.g., OpenFlow Switch or router), network link or a packet filter. The SR

path is formed by the chain of these elements which are identified by a list of segment

identifiers (SIDs). The SIDs can be defined globally with domain wide significance such

that it is recognized by all network nodes or it can be defined locally within a node

processing the packet [165].

SR meets well the requirements of scalability and flexibility of future 5G softwarized

networks by minimizing the state information that should be stored in every network node

along the delivery path because only the ingress/egress nodes are the ones responsible to

maintain per-flow state information. It is worth noting that, the amount of forwarding

rules in TCAM are reduced since packets are routed based on the list of segments and

no need to maintain the path state or install flow rules in each switch or router along the

delivery path. Thanks to the global view of the network provided by the SDN controller

where the intelligence of the network can be programmed and be used to build segments

and optimize them at any network topological change. For dynamic heterogeneous

environments envisaged for future 5G softwarized multi-domain services and cloud

applications, SR can provide a flexible network infrastructure that does not compromise
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to network resources [153].

Figure 5.8: Segment routing operation in SDN-based 5G networks

Fig 5.8 illustrates an example of a SR operation in SDN-based virtualized 5G networks.

In this work, a centralized control plane of SR approach is considered to implement the

proposed idea. When an MPTCP client requests a new traffic from the MPTCP server, SDN

controller calculates the transmission path Psf1={S1→S2→S3→S4} based on the required

constraints (e.g., delay and bandwidth of a link). This path is mapped as the segment

label list and returned to the ingress switch S1 which then stores it in the packet header.

The segment list consists of only the label that identifies the destination node in the SR

domain such that, SL={S4}. The forwarding table of the ingress OpenFlow switch S1 is

then configured by the SDN controller with this segment list labels. The switch will modify

the packet by encoding the segments as MPLS label stacks to the packet header [165].

The packets of a subflow are then forwarded from S1 to S4 through intermediate nodes

without any modification to the segment list. The top label is popped when the packets

arrive at the intermediate nodes. The packets are then forwarded to the destination

point using the segment node that represents the next label. SR can support and provide

dynamic traffic recovery in multi-domain 5G SDN-based networks during network node

or link failure [163]. For example, when link S2→S3 fails, then the SDN controller which

continuously monitors the network topology can redirect the traffic on the backup path

S1→S2→S7→S8→S4} with the associated SL={S2,S4}. At node S2, the top label is popped

and the packet is transmitted to S7 via its Adjacency SID 3. At S7, the packet follows a

path to its destination using its Adjacency SID at interface 2.
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5.4.1 Mapping of Subflows Paths to SR Paths

The growth of traffic from video services (e.g., UHD 4K/8K video) drives future 5G

networks to meet the requirements of supporting huge amount of traffic flows which are

exchanged during peak hours. Consider a multimedia flow that is to be requested by

the MPTCP client from the MPTCP server. Given the link capacity, lc and the video bit

rate br, the first task is to split a large flow into subflows and find multiple disjointed

paths for the subflows. The second task is to map these subflows paths into SR paths and

perform source routing based on QoS/QoE requirements. In order to achieve the first

task, a MPTCP-based flow manager as described in the next subsection is introduced as

a module running in the SDN controller. The mapping of subflow paths to SR paths is

performed by finding the shortest list of SIDs that allows the packet to follow a given

route, the detailed implementation will be covered in section 5.5.

5.5 QoE-aware MPTCP SDN-based SR Adaptation Framework

This section presents a QoE-aware MPTCP SDN-based SR adaptation frwamework for

managing multimedia services in future network. The adaptation framework consists

of the following modules: The MPTCP-flow manager, SR, QoE Management, Databases,

Network information collector and the Configuration module which are integrated within

the SDN controller.

5.5.1 SDN Controller

Fig 5.9 shows the function modules and interfaces of the proposed QoE-aware, MPTCP

SDN-based SR framework. When the SDN controller receives a new request from the

MPTCP client, it performs the path calculation through the MPTCP module and allo-

cates the subflows to transmission paths. It then maps these subflow paths to SR paths

as described in the previous subsection. The SR path of the new subflow is stored in

the database. The SDN controller allocates and configures the SR path to the ingress

switch node using the segment label list. The SDN controller communicates with switches

in the data plane through the SouthBound Interface (SBI), using the OpenFlow proto-

col [154]. The OpenFlow protocol describes message exchanges that take place between

the controller and an OpenFlow switch. video traffic tends to be bursty where the traffic
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transmission has variable-bit-rate(VBR). A large burst of packets creates additional con-

gestion and often leads to packet loss as well as reduced throughput. When a heavy flow

arrives at the switch, the Packet-In Message is sent to the SDN controller. These messages

are sent during state change or flow setup to reduce the CPU utilization and control traffic

in OpenFlow switches and SDN controllers [156]. The Packet-Out Message enables the

controller to manage the logical state of the switch, including its configuration and details

of flows.

Figure 5.9: A QoE-aware, MPTCP SDN-based SR architecture

The controller maintains the database where all SR subflow paths are stored with their

QoE requirements. When a new subflow of a MPTCP connection is uploaded to the SDN

controller, the module queries in the database if there exists a path corresponding to this

MPTCP connection. If the path exists, the subflow is allocated to a specific path of a

previously assigned subflow’s path of the same MPTCP connection, otherwise a new path

computation for this subflow is performed using the MPTCP-flow manager/module. The

new path is mapped to the SR paths and stored in the database so that it can be used

later by subflows of the same MPTCP connection. The SDN controller architecture can

provide network programmability capabilities which allows third parties (e.g., 5G virtual

network operators) and other players in the QoE provisioning chain to setup their specific

QoS/QoE control strategies.

5.5.2 MPTCP-Flow Manager

This module computes the shortest paths and then performs path allocations to the

subflows (see Fig 5.9). In order to minimize the influences of link congestion to data

transmission quality and the end-user’s QoE, the MPTCP module employs admission
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control for media delivery, such that, the flow is admissible only if on each link, the sum

of the rates of the allocated subflows does not exceed the link capacity (lc). In that case,

the MPTCP module dynamically controls the number of generated subflows at the ingress

source node. Based on the collected link information, the MPTCP module communicates

with the QoE management module so that resources can be assigned to the calculated

paths of subflows to meet their QoE requirements.

Instead of installing these subflow paths in SDN switches as forwarding rules, the pro-

posed approach rely on SR approach where the forwarding table of the ingress switch is

configured with an ordered list of segments [164]. The ingress switch then adds labels

with an ordered list of segments to a packet header and forwards it to its destination point.

This novel approach improves greatly the scalability, avoids link congestions and enables

the deployment of effective multi-domain TE solutions in SDN-based 5G networks at a

minimum cost.

5.5.3 Segment Routing Module

The computed subflow paths by the controller using the MPTCP-based flow manager have

to be mapped to SR paths. The segment routing module is introduced to enhance greatly

the SDN controller such that future 5G applications can exploit its features through the

NBI. The SR assignment algorithm presented in [164] is considered to finds the minimal-

length of SR paths that have to be mapped to the subflow paths. The SR path is the

shortest list of SIDs that allows the packet to follow a given route. The list of SIDs consists

of network nodes (e.g., node segments) or specific interface node (e.g., adjacency node).

The source codes of this algorithm can be found at [164]. For example, given a multimedia

flow f requested by an MPTCP client whose ingress node is OpenFlow switch S4 and the

engress node is switch S1, then the complete path for subflow sf1 with intermediate nodes

{S2,..SN−1} is: Psf1={S1→S2→S3→S4}. With reference to Fig 5.8, the algorithm takes this

path and the graph of the topology as inputs. It maps the specific path of the subflow and

returns the segment list as an output of the assigned SR paths. In this case, the ingress

switch node S1 of the subflow path and the egress switch S4 are first considered. One of

the assumption made is that, all links may have different cost. If there exists only one

shortest path and it equals to the subflow path from S1 to S4, then the engress node is

used as the SID node from S1 to S4 and the mapping of this subflow path to SR path ends
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as shown in Fig 5.8. When a link failure occurs or it happens that the shortest path to be

mapped is not equal to the subflow path or there exists more than one equal-cost shortest

path, then other node segments can be considered as explained later in Chapter 6.

5.5.4 QoE-Management Module

Based on the specific QoE requirements for a service as defined at the network level QoS

parameters, the QoE management module is to manage network resources dynamically

for a certain multimedia flow application. The proposed solution can handle various

sessions of multimedia applications through efficient QoE-centric control-based routing

algorithms that redistribute the available network resources among the competing flows

according to the end-users’ QoE requirements.

5.6 QoE-Centric Multipath Routing Algorithm (QoMRA) over

SDN

The QoE-Centric Multipath Routing Algorithm (QoMRA) is implemented on an SDN

source routing platform using Mininet and POX controller. Although the OpenDaylight

controller is more popular and has a very large codebase and many features to use, this

work adopted POX controller because it is a Python-based platform that provides fast

bridge learning and Mininet interactivity. The main objective of QoMRA is to enable

service providers to route network traffic through explicit multiple disjointed bandwidth-

satisfying paths that meet specific service QoE guarantees. Based on clients request,

QoMRA should maintain an efficient use of network resources, reduce the potential for

rejecting traffic-flow demands and network congestion. The traffic-flow demand in this

work is defined as the request from the source s ∈V to destination d ∈V with requested

TCP bandwidth Bw. In order to select k multiple shortest paths for the subflows from

source to destination, the algorithm considers important information for video streaming

such as the available link’s bandwidth, delay, packet loss rate, jitter and link criticality.

The link criticality parameter c(l) is used for predicting the future traffic load of subflows

on the link e. The c(l) [165] is used to improve the routing performance based on the

current load of each link e. The c(l) is computed and updated by the SDN controller after

every time interval t. The use of location of the network node is considered to define the
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criticality of a certain link, the details can be found in [165].

The intent of c(l) is to choose the links that can balance the loads across the network and

avoid bottleneck links between pairs of communication nodes. The link criticality c(l) can

be defined using equation 5.1.

c(l) =
∑

(s,d)∈TD

Psd(c)/k (5.1)

Pst(c)/k is the occurrence rate of link e in the first k shortest paths whereas TD is the traffic

demand that is recorded and stored in the database in every time t. A link is defined as a

bottleneck when it provides a data rate that is lower than the required bitrate of a subflow

to be transmitted through it. Table 5.1 shows the required TCP throughput for a specific

video resolution which is selected by QoMRA when an MPTCP server receives a request

from an MPTCP client. In case of buffering events due to congestion or link failure the

algorithm can choose another routing path for a specific subflow as described in section

5.4. To mitigate the link failure or congestion, a link congestion index k(i) is introduced,

a function that increases sharply when the amount of traffic flow passing through the

link e approaches its capacity. The idea behind k(i) is to make use of paths with less

link utilization during network congestion. When the link utilization grows beyond a

certain threshold, QoMRA is able to capture the congestion state based on the information

provided by the link utilization. However, QoMRA causes less overhead imposed by SR

and MPTCP-flow manager modules during QoS parameters measurement that are to be

used for shortest paths calculations. The overhead to the controller is reduced because only

few intermediate nodes are used for data transfer from source to destination. When all the

subflows paths are computed based on the link constraints and are assigned to SR paths,

then an MPTCP connection can be established. The video player on an MPTCP client can

then start to report the QoS/QoE metrics as the video streaming continues. The QoMRA

algorithm consider first the network topology and then calculate the link delay, available

bandwidth, packet loss and jitter for all paths in step 1. Based on these QoS metrics, the

shortest paths are selected for network traffic transmission. Step 3 indicates that, if a path

has been it is stored in the database so that when a another subflow with a bitrate less that

the link capacity, similar to the previous subflow, then that path is returned and is used

for transmission. The overall steps of QoE-centric multipath routing is summarized in

algorithm 3.
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Algorithm 3: A QoE-Centric Multipath Routing Algorithm (QoMRA)
input : flow f, number of subflows sfi:j, N_topology

1 Compute link delay, bandwidth, packet loss, jitter for all paths
2 Find all subflow shortest paths p ∈P in the network based on Step 1
3 foreach p ∈Psrc→dst do if p.used +sfi:j.br< lc then return p
4 else Go to step 3
5 Map all subflow shortest paths psf into SR paths output :List of Segment labels

SL
6 Save path p with its associated list of SL in DBp
7 Initiate the MPTCP transmission of flows based on their QoE requirements
8 if fnew is a new flow then Query DBp to find the paths for subflows of fnew
9 if pfnew is not in DBp then Go to step 2 and issue path adding request for fnew

10 end if
11 end if
12 end for
13 Continue transmission as long as the lc is greater or equal to the required TCP

bandwidth
14 Use the c(l) and k(i) to avoid congestion

5.6.1 Video Clips/Sequence used for Experiments

The dynamic adaptive video streaming over HTTP service was applied to test the perfor-

mance of the proposed algorithm and compared with the conventional TCP approach.

DASH server was based on Apache and DASH client was based on VLC-DASH plu-

gin [180]. For all experiments, the video sequence "Big Buck Bunny" shown in Fig. 5.10

with a resolution of 1920x1080 pixels of 9 minutes and 56 seconds. 5 representations of

the selected video sequence with a minimum of 325Kb/s to a maximum of 5Mb/s were

encoded using ffmpeg version 3.3.4 with the High Efficiency Video Coding (HEVC), and

segmented based on GPAC MP4Box [53]. The video clips were then stored in the Apache

Server. Such representations reflect the recommended and a typical video streaming rates

used by YouTube. The video was further segmented into segments of sizes 2, 4, 6, 8 and

10 seconds.

Figure 5.10: Video clips/sequences used for implementations
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Table 5.1: Required TCP throughput for QoE-centric algorithm

Video resolution required TCP throughput (Mbps)
1080p 5
720p 2.5
480p 1.0
360p 0.725
240p 0.325

5.6.2 Experiemental Testbed based on SDN

The QoE-centric multipath routing algorithm was implemented in an SDN testbed based

on Mininet and POX controller. In order to demonstrate the feasibility of our approach,

two VMs installed with Linux (Ubuntu V16.04 LTS) and MPTCP v0.92 were used. The

Mininet V2.2.2 was installed in one VM and used to model a scenario of a 5G datacenter

network. As shown in Fig 5.11, the implemented topology consists of three levels with

8, 4 and 2 OpenFlow switches at the edge, aggregation and core layers, respectively.

One MPTCP client is attached at each access switch. The network consists of redundant

links at each level in order to accommodate subflows splitted by the MPTCP module.

The POX controller running in the second VM is extended with an implementation of

MPTCP-flow manager and the SR module. The SR module was implemented following

a customization of source codes available at [164]. A video segment size of 6 seconds is

Figure 5.11: Experimental testbed

used in order to provide a good compromise between encoding efficiency and flexibility

for stream adaption to bandwidth changes. The bandwidth and delay limits of (1Mb/s,

15µs), (2Mb/s, 20µs) and (3Mb/s, 30µs) are set for links in the edge, aggregation and core
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layers respectively. A packet loss rate of (<3%) is configured at the core and aggregation

links while the edge links are set free from packet loss. When the MPTCP is enabled,

the default configurations of MPTCP V0.92 is retained and the MPTCP path manager

is configured to a full-mesh. The aim is to create multiple subflows for each pair of IP

addresses as described in section 5.2.1. This way, each MPTCP connection is limited to

have only 3 MPTCP subflows. The video transmission is repeated 40 times from MPTCP

client to MPTCP server. The proposed approach is compared with the regular TCP in

terms of throughput, link utilization and the end-users’ QoE.

5.7 Experimental Evaluation and Results

This section presents the results of the QoE-centric multipath routing algorithm described

in section 5.6. The parameters (network throughput, link utilization, the impact of video

segment length, quality switches, startup delays and success rate are considered to com-

pare the performance of the proposed approach and the conventional TCP.

5.7.1 System Throughput

Throughput is the total size of successfully transferred data in a temporal time interval.

It is calculated based on a Payload_bits/download_time; where a Payload_bits indicates

the number of extracted bits of the video content per single unit time. Fig 5.12 shows

the system throughput when an MPTCP client issues a video request from the server. It

can be observed that, between 0-50sec, the regular TCP and our QoE-aware approach

give almost similar performance. As the transmission of a video stream continues, the

background traffic was introduced in the network using the Iperf tool. It is obvious that,

the QoE-aware MPTCP SDN-based SR approach exploits multipath and segment routing

features to increase the system throughput. Conversely, the regular TCP that uses single

path for transmission performs poorly. It is also clear from Fig 5.12 that, the throughput of

a regular TCP drops from 100sec. At this point, the user experiences re-buffering events

due to throughput reduction problem while our approach maintains a good viewing

experience to the user.
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Figure 5.12: Comparison of throughput of QoE-aware MPTCP SDN-based SR and regular
TCP

5.7.2 Link Utilization

The link utilization is computed from the amount of used bandwidth by a video content

in a particular link over the total link capacity. Fig 5.13 compares the link utilization for

the two approaches. Our QoE-aware proposal can maintain the link utilization above 50%

for the whole duration of a video streaming due to multiple paths transmission using

MPTCP and SR. As the transmission continues, the link utilization of a regular TCP starts

to drop at 300sec. This is so because it uses a single path for data transmission such that

when the requests increases, the load of OpenFlow switches also increases making TCP

unable to react quickly to congestion in the link.

5.7.3 The Impact of Segment Length on Throughput

Segment length may have a decision on the performance of video streaming services and

can affect the overall quality of the video delivered to users. For example, short video

segment sizes can lead in poor performance of streaming services because of overhead that

are produced by client’s requests and the influence of network delay. In wireless networks,

longer segment sizes may cause video stalls because of high bandwidth changes. This

part evaluates the impact of segment size of adaptive streaming content and other factors

such as HTTP server configuration. Fig 5.14 shows the impact of segment length of 2, 4,

6, 8 and 10sec on media throughput. Due to the influence of the network delay and the
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Figure 5.13: Comparison of link utilization of QoE-aware MPTCP SDN-based SR and
regular TCP

overhead produced by the client requests, the regular TCP performs poorly compared to

our QoE-aware MPTCP SDN-based SR approach. The throughput of a segment duration

with 6 seconds shows an improved performance compared to that shown in Fig 5.12

because there is no background traffic imposed in this experiment. Shorter segments

perform better in terms of throughput. However, when longer segments are used, the

MPTCP client is unable to adjust quickly and flexibly resulting into poor performance.

Although the bitrate adaptation process is enhanced for shorter segments and the buffer

underflows is reduced but the server load is increased due to the fact that, segments

requests are issued more often by the MPTCP clients.

5.7.4 Video Quality Switches and Startup Delays in Video Streaming

Video-quality switching and startup delays have an impact on the end-user’s QoE in

DASH. In order to characterize the impact of these parameters on the user’s QoE, this

section provide results of the evaluation using real-time experiments. The startup delays,

number of quality switches and the success rate parameters are used to compare the two

approaches. The success rate is defined as the percentage of segments at maximum bitrate

over all segments used during a video streaming session. The quality switches define how

many times the video quality changes from one bitrate to another during transmission due

to change in bandwidth or delays in the networks. Three experiments were conducted
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Figure 5.14: The impact of segment length on throughput

to investigate the effect of bitrate switching on video quality for QoE-aware MPTCP/SR

and the regular TCP approaches. Figs. 5.15 shows the results of startup delays for three

experiments using both the QoE-aware MPTCP/SR and the regular TCP approaches. The

QoE-aware MPTCP/SR performs better with the average startup delays of 1.21sec, 1.97sec

and 1.60sec for experiment 1, 2 and 3 respectively while the startup delays for regular TCP

are 6.60sec, 6.30sec and 5.60sec for the same experiments. The QoE-aware MPTCP/SR

results into an improved QoE to clients because of small number of startup delays during

video streaming. This is not the case with regulat TCP with large number of startup delays

that can annoy the user’s watching experience during video streaming.

Fig. 5.16 shows the results of quality switching for three experiments. It can be clearly

observed that, the proposed QoE-aware MPTCP/SR approach using SDN performs better

in terms of quality switching compared to regular TCP. Fig. 5.16 indicate that, the switching

impact for QoE-aware MPTCP/SR strategy is 2 while for regular TCP is 8. Small number

of bitrate switching with minimum amplitude results into an improved QoE to the end-

user while large number of switching may harm the video quality delivered to the user.

However, even with large number of segment sizes, recent studies [181], [182] have

shown that reliable bandwidth prediction and bounded bitrate guidance could boost

the performance of the adaptation algorithms, especially when it is combined with rate
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stabilization functions at the client side. An Autoregressive Integrated Moving Average

(ARIMA) [183] using two time series models can forecast bandwidth and identify the

optimal set of required bitrate levels for each client [184].

Figure 5.15: Startup delay for three experiments

Figure 5.16: Quality switching for three experiments

Figure 5.17: Success rate for three experiments

Fig. 5.17 shows the success rate of three experiments during the video streaming sessions.

The proposed QoE-aware MPTCP/SR performs better compared to the regular TCP

approach. This is so because SR and MPTCP are used to speed up the transfer of video

flows from the client to the server when the request is made. This is not the case with

regular TCP which only uses single path for transmission. For each video request, the

QoE-aware MPTCP/SR fetches video segments at higher rate compared to regular TCP.

As shown in Fig. 5.17, the success rate for experiment 1 is 97% for QoE-aware MPTCP/SR

algorithm while the regular TCP archives the success rate of 85%.

Table 5.2 shows the summary of the average of startup delays, number of quality switches

and the success rate from three experiments shown in Fig. 5.15, 5.16 and 5.17. The selected

QoE results compares the performance of the regular TCP and the QoE-aware MPTCP/SR

approach after performing a video request from the MPTCP server three times using a
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6sec segment length. Low startup delays and few video quality switches provide a good

user’s watching experience with an improved video quality. It is clear from table 5.2 that,

our QoE-aware MPTCP SDN-based SR proposal performs better compared to the regular

TCP in all three experiments.

Table 5.2: Selected QoE comparison results for regular TCP and QoE-aware MPTCP
SDN-based SR

Regular TCP QoE-Aware MPTCP/SR

Experiment Quality Switches Startup Delays (sec) Success Rate (%) Quality Switches Startup Delays (sec) Success Rate (%)

1 8 6.60 85 2 2.21 96.64
2 7 6.30 87 3 1.97 97.80
3 5 5.60 84 1 1.60 97.01

5.8 Summary

It is evident that, efficient transfer of large flows, especially multimedia traffic is crucial

to the performance of 5G multi-rooted topology networks where multiple paths exist

between pair of hosts. In an attempt to address the challenges of transmitting and

delivering high-demanding multimedia applications such as UHD videos with high QoE

in 5G SDN-based networks, this chapter has presented a QoE-centric multipath routing

mechanism that dynamically forwards the number of subflows using SDN controller

and perform source routing to these subflows using SR paradigms. The presented QoE-

aware MPTCP/SR algorithm indicates that, a joint use of MPTCP and SR can improve

the performance of future 5G network softwarized. Compared to the conventional TCP

approach, the proposed QoE-aware MPTCP SDN-based SR shows better performance

in terms of increased network throughput, link utilization and the end-users QoE. An

integration of SDN and NFV for QoE control and management of multimedia services

will be presented in Chapter 6.
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Chapter 6

QoE Management of Video Streaming Services

using MPTCP and SR in Softwarized Networks

As multimedia services/applications continue to grow, ISPs have adopted SDN/NFV to

implement TE in order to improve the network efficiency, application performance and

the end-users QoE, notable examples include Google’s B4 SDN/TE [185] and Microsoft

SWAN [186]. Chapter 5 demonstrated that, MPTCP and SR implementations can be

integrated by cutting-edge technologies such as SDN in order to achieve load balancing,

reliable communication and better network resources utilization that leads to higher

network throughput and the end-user’s QoE [161], [167]. However, Chapter 5 did not

consider the integration of SDN and NFV to improve the end-users’ video quality.

This chapter provides original practical TE solutions based on MPTCP and SR leveraging

both SDN and NFV paradigms. The main objective is to facilitate routing and speed up the

transfer of large amount of multimedia applications between source and destination points.

To improve the video quality, the use of multiple shortest paths for MPTCP subflows

transmission is employed. The Multi-flow commodity and constrained Shortest Path

Model (MSPM) [187] is used to choose important intermediate nodes to perform source

routing using SR paradigm. This chapter extends Chapter 5 where it was demonstrated

that utilizing MPTCP/SR in SDN-based networks can improve system performance for

video streaming services. The aim is to meet future multimedia network bandwidth

aggregations and transfer large amount of data through multiple disjointed paths as

computed by the SDN controller. This novel concept is extended to further consider

the NFV implementation in the thesis. The contributions of this chapter are 3-fold: a

novel QoE- Softwarization concepts using the integration of SDN and NFV is given
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along with a QoE-aware MPTCP SDN/NFV SR-based architecture that provides an

efficient orchestration, QoE control and management of video streaming services. in

future softwarized infrastructures. The ETSI MANO (OSM) framework is employed for

the management and orchestration of resources. The chapter further presents a system

model and a QoE-based multipath source routing algorithm called "QoEMuSoRo" that

forward traffic using SR paradigms over softwarized systems. In addition, Path protection

and Recovery of Link Failure (PathReLieF) algorithms are proposed to achieve dynamic

route selection and link/node failure recovery over softwarized networks.

The rest of this chapter is organized as follows: Section 6.1 provides related work while

section 6.2 provides novel concept called "QoE-softwarization" in SDN and NFV. Sec-

tion 6.3 presents the considerations of MPTCP over softwarized networks. Section 6.4

provides the description of path protection and traffic recovery mechanisms with SR in

softwarized networks. Section 6.5 provides the Service Function Chaining (SFC) strategies

using SR in future softwarized network while section 6.6 provides a novel QoE-aware

MPTCP and SR-based approach over softwarized infrastructures leveraging the integra-

tion of SDN and NFV. Based on MCSPM and the concept from graph theory, section 6.7

presents a formulation of a system model and the proposed QoE-based multipath source

routing algorithm. Section 6.8 presents the performance and evaluation of the proposed

SDN/NFV system. Finally, section 6.9 summarizes this chapter.

6.1 Related Work

This section presents first related works that consider three categories of research fields

regarding video streaming. The first works use MPTCP without SDN while the second

category employs MPTCP over SDN. The third category are those works that either use SR

to perform service function chaining or traffic recovery and link/node failure mechanisms

in SDN. It is important to note that, the related works presented in section 5.1 neither

consider path protection nor link/node recovery mechanisms and they are therefore

related to chapter Five only.

In an attempt to improve the video quality using MPTCP, James et.al [188], perform video

streaming over DASH to investigate the benefits of MPTCP to user’s QoE under ample

and stable bandwidth. Wu et.al propose a quAlity-Driven MultIpath TCP (ADMIT) [161]

strategy that improves the video delivery quality over multiple paths by integrating the
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utility maximization based on Forward Error Correction (FEC) coding and rate allocation.

In order to schedule the delivery of video packets and increase the QoE of viewers,

the concept of MPTCP-based cross-layer scheduler is introduced in [162] that leverages

the information from both application and transport layers. However, these studies

neither use SDN nor NFV for improving the video quality and therefore lack the global

control feature offered by softwarized infrastructures which are considered to be potential

technologies in future 5G networks. They do not also consider how the network services

can be implemented by a set of VNFs in future SDN/NFV-based networks [167], [189].

Kukreja et.al [178] propose an Openflow-based SDN controller and implement a MPTCP

path manager where switches are configured to forward subflows over different paths.

The SubFlow Optimizer (SFO) is presented by Joshi et.al [190] to enable load balancing

by providing MPTCP hosts an optimum number of subflows and assign the best paths to

new established subflows in SDN environment. Using the Linux’s Kernel-based Virtual

Machine (KVM), the behavior and performance of a virtualized proxy as an instance of

NFV is analyzed in MPTCP connections over cellular network by Chung et.al in [191].

The multipath routing problem in NFV with regard to practical factors of both NFV

characteristics and multipath routing is formulated in [192]. A Multi-flow update problem

is formulated as a mixed integer programming in [167] to reduce the update time of

flows in Software Defined NFV (SDNFV) systems. Note that, none of these MPTCP-

based SDN/NFV solutions consider to improve the end-user’s QoE using real-time video

communication. In addition, as mentioned earlier in chapter Five, MPTCP implementation

in SDN/NFV would result into installing large number of flow rules in switches leading

to overhead at the controller and increased deployment cost.

As shown in section 5.4, SR is an appealing solution for reducing the number of forwarding

rules taking the fact that each SDN switch on the path needs to have an entry for a traffic-

demand to forward its packets to the next hop. SR provides capabilities to reduce the

number of forwarding rules by encoding TE paths into SR paths. SR in [179] is reported to

save up to 88% forwarding rules overhead and handled more than 92% flow updates in

real-time compared to traditional solutions. A recent SDN [193] SR-approach, indicates

an approximately 50% reduction in the number of control messages between source

and destination nodes. Practical TE through shortest paths in SDN WANs using SR

is employed by Trimponias et.al [194] where only few intermediate nodes are selected

to route all traffic in the network. A network model based on IPv6 Segment Routing
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(SRv6) [189] is used to steer traffic within a Linux-based NFV host that supports large

number of VNFs in the NFV architecture. Motivated by the capabilities of SR to reduce

flow rules, this chapter introduces a novel QoE-aware MPTCP-enabled SR-based strategy

to control and manage video streaming services in future softwarized networks leveraging

the integration of SDN and NFV. The aim is to provide an efficient orchestration, QoE

control and management of video services while ensuring path protection and traffic

recovery mechanisms when link/node failure occurs in the softwarized network. Section

6.2 provides a novel QoE-softwarization in future SDN and NFV networks.

6.2 QoE- Softwarization in Future Networks using SDN and NFV

As the first step in this research project into the design and development of QoE control

and management approaches for multimedia services, a novel QoE aware SDN-enabled,

NFV-based architecture along with the concept of QoE-Softwarization, (see [63]). The

QoE-Softwarized architecture is set to enable mobile operators and service providers to

deliver quality services through an autonomic software lifecycle management approach

in 5G. The proposed architecture is mainly designed to provide flexible networking and

configurable approach for QoE provisioning through the integration of SDN and NFV.

This approach takes the softwarization advantages by adopting the principles of SDN and

NFV in order to meet the Key Performance Indicators (KPI) of 5G. It also complies with

SDN-NFV requirements which translate to 5G KPRs such as consistent service availability,

network reliability and survivability, accessibility/retainability, throughput and minimal

latency [63].

Since NFV is also integrated in the proposed architecture, Virtual machines (VMs) which

are able to obtain different requirements for network resource allocation and utilization

can be deployed in any location within the QoE-Softwarized architecture. The VMs

may have the required quality measures/parameters of QoS and QoE of a particular

multimedia application specifically in terms of network bandwidth, scheduling latency,

jitter and stalling etc. Based on the decoupling of services from resources offered by NFV

and SDN paradigm by detaching lifecycle management from physical constraints, the

locations of Virtual Network Function (VNF) may change in the network. For example,

during malfunctioning of any VM, the affected VNFs can be migrated to another location

in order to avoid service delivery interruptions. A QoE-aware SDN controller shown in
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Figure 6.1 is proposed to provide connectivity and allocate paths dynamically among

VNFs to achieve QoE for VNF services. Such an SDN controller acts as an enabler of

chaining NFVs. In fact, it provides an ability to realize the multimedia network services

by dynamically chaining together VNFs and direct traffic flows into those VNFs chains.

Figure 6.1: SDN controller with QoE entities

In the proposed SDN controller, the QoE-sdnFlow Manager performs the overall customer

experience, QoE optimization and QoE-aware 5G network management as well as enhanc-

ing the quality of business through a well-defined QoE contracts between service providers,

operators and end users. The QoE-sdnFlow Manager is also set to acquire network topology

information and implement QoE based network policies and techniques by using different

control algorithms for QoE traffic predictions, admission control, radio resource allocation,

load balancing and user density prediction. It can also perform and activate network-wide

operations related to multimedia streaming, packet prioritization and caching node capa-

bilities for some multimedia contents or applications. The QoE-sdnFlow Monitor performs

the QoE estimation and QoE measurements per multimedia traffic flow, selection of the

time period for data acquisition and generation of QoE based inputs and reporting this to
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the QoE-sdnFlow Manager. Furthermore, this entity/module performs multimedia traffic

classification in order to know the type of traffic using statistical/parametric analysis.

6.2.1 Application Scenario and Use Cases

Figure 6.2 shows an application scenario based on the proposed architecture where a user

requests a multimedia application from a service provider. In this scenario, various VNFs

are able to provide a support to intensive applications (e.g., live video conferencing and

IPTV in home networks) that demand better quality and require high bandwidth.

Figure 6.2: QoE-driven video streaming over softwarized infrastructure

The service layer consists of a range of VNFs. Depending on the type of multimedia appli-

cation (e.g., IPTV, VoIP, live video conferencing) requested by the user, the network service

functions provide a set of functional operations to the user and fulfill his/her personalized

QoE application requirements. For the case of live conferencing, the QoE-Softwarized

is able to provide sufficient QoE through multi-point to multi-point connectivity among

conference attendees using a set of VNFs. For every VNF, a service graph is formulated

which establishes the VNFs Forwarding Graph stored in the VNFs database (DB) based on

the request from the end-users. The QoE-sdnFlow Manager or the SDN-NFV orchestrator

instantiates the DB as soon as the user requests a multimedia application with specific QoS

and QoE indices. It then responds based on feedback obtained from the QoE-sdnFlow

Monitor in order to maintain/optimise a user’s end-to-end QoE [63].
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6.3 MPTCP Implementations over Software Defined and Virtu-

alized Networks

SDN and NFV have emerged as a cost efficient solution to promote the delivery of an E2E

services and network infrastructure capacity scaling in supporting the huge demand of

emerging multimedia services. The integration of SDN and NFV looks to be an appealing

solution for efficient orchestration and management of video streaming services such as

2D/3D, 4/8K broadcast content in future softwarized networks. By properly chaining

VNFs, different services can be distributed over the NFVI forming a process refereed to as

Service Function Chaining (SFC) [81]. SFC is an instantiation of an ordered set of network

service functions and the subsequent steering of traffic through those functions. Similar to

overhead resulted through MPTCP implementations in SDN, the suboptimal placement of

VNFs in NFV service chain increases the flow rules in the switches and can also affect the

efficiency of bandwidth utilization [195]. However, by exploiting an implementation of

SFC as shown in section 6.5, the VNF chain can be represented in a SR packet Header (SRH)

containing a SR path as an ordered list of segments. As shown in Fig. 6.3, TCP connections

called subflows, each having its own sequence number, are established under the MPTCP

layer as described in the previous section 5.3. These subflows can be transmitted by

multiple paths simultaneously using a flow distribution function of MPTCP. Fig. 6.3

shows a set of VNFs={VNF_1....,VNF_n} that can be arranged together to form a SFCs, for

example regarding video optimization, network acceleration, HTTP header enhancement

and load balancing. SDN can be used for dynamic orchestration and communications

between SFCs, the network apps/services in the cloud and user’s mobile terminal. In such

a case, SDN controller can be used to allocate paths and provide connectivity dynamically

among VNFs and therefore acting as an enabler of NFVs. It is worth mentioning that,

SDN provides an ability to realize the video streaming and other network services by

dynamically chaining together VNFs and direct traffic flows into those VNFs chains.

Using network service chaining as shown in Fig. 6.3, the OTT service providers can apply

QoS/QoE and user prioritization policies to network service chain resource management

that involves users connected at different network points, in a distributed manner [196].
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Figure 6.3: MPTCP implementations in softwarized infrastructures

6.4 Path Protection and Traffic Recovery Mechanisms with Seg-

ment Routing in Softwarized Networks

This subsection presents path protection and traffic recovery mechanisms due to link/node

failures in softwarized networks using SR technology. Chapter Five provided the intro-

duction to segment routing in SDN where the SIDs can form a chain consisting of a set of

network elements where packets are routed within a softwarized infrastructure. The main

three categories of SIDs are:

• Node SIDs: A node segment with domain wide significance that forwards MPTCP

subflows on the shortest path towards the destination node (e.g., node segment

labels 100 and 102 in Fig 6.4 are the Node SIDs).

• Adjacency SIDs: A specific node interface with local significance that forwards

MPTCP subflows over the corresponding adjacency. With reference to Fig 6.4, label

10A and 10B indicate Adjacency SIDs for Link A and Link B towards S7 and S8

respectively.

• Service SIDs: A service segment assigned to each node having a local significance

to represent each service a node provides to the network. Effective service chaining

along TE paths in SDN/NFV networks can be easily enforced using Service SIDs as

shown later in this work.

As shown in Fig 6.4, when the request from MPTCP client arrives at the MPTCP server,

SDN controller computes the shortest paths for the subflows. For clarity, only two sub-

flows are considered as indicated in the figure. In this case, p1={S1→S2→S3→S4} and
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Figure 6.4: An example of SR Operation in softwarized networks

p2={S1→S7→S8→S4}. sf1:1 can reach at S4 via S2 by using Node SIDs with segment list,

SL={102,104} as encoded by the SDN controller at switch S1 in the SR header. On arriving

at S2, the packets will be forwarded to S3 based on the active top label segment of SID

102. The top label defines an active segment that instructs packet forwarding to the next

segment/label along the delivery path. At S3, the MPTCP subflow packets are then

forwarded to its endpoint, S4. Arguably, different from the steering packets using the

Resource reservation Protocol-TE (RSVP-TE), it is important to note the flexibility and the

benefits of SR for routing packets without storing routing information at S3.

Path protection and dynamic network recovery from failure is an important aspect of QoE

control and management in SDN/NFV networks. This is so because network failures (due

to a failed link or node) directly affect transmission quality and ability of service providers

to meet their Experience Level Agreements (ELAs)1. Typical failures in SDN/NFV network

include: Link, Node and Shared Risk Link Group (SRLG) failures where multiple links can

fail together. When network failures occur in the network, segments can be repaired such

that new backup paths are computed for each link in the primary path. The scope of this

chapter is mainly on link failures using SR.

With reference to Fig 6.4, when link S2→S3 fails, the topology is updated by the SDN

controller which has the global knowledge of the network. In such case, link S2→S3 is

pruned before new backup paths are computed. A failover table is created where backup

actions for each source-destination points are also indicated. The controller encodes the

required segment list on the ingress-node following the new computed backup paths.

As an example, Fig 6.5 shows the primary tables and the failover table for S2 when link

1Experience Level Agreements (ELAs): Indicates a QoE-enabled counterpiece to traditional QoS-based
Service Level Agreements (SLA) that conveys the performance of the service in terms of QoE. ELAs establish
a common understanding of an end-user’s experience on the quality levels whiling using the service.
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S2→S3 fails. It is important to note that, the FT1 corresponds to failure of link S1→S2 at

interface 1 of S2, FT2 for S2→S3 at interface 2 of S2 and FT3 for S2→S7 at interface 3 of S2.

For simplicity only Failover tables for S2 in Fig 6.5 are illustrated.

Figure 6.5: Path protection using backup actions configured in failover tables (FT).

Consider the subflow sf1:1 traversing through p1={S1→S2→S3→S4} encoded with segment

list, SL={102,104}. When link S2→S3 fails, then label 104 is popped and S2 is redirected

to Failover Table 2 with the backup path Bp1={S2→S7→S8→S4}. This path is encoded

with SL={104} where normal forwarding is performed towards S4. An important aspect to

improve the end-user’s QoE is to ensure that all MPTCP subflows are protected against

link or node failures in the SDN/NFV network. This work proposes to prune the links

which are directly connected to a failed interface during the initialization of a failover

table. For example, when S2 detects a failure at interface 2, the SDN controller updates

the topology without link S2→S3. In case of a node failure, then all bidirectional links to

that node are pruned. As an example, link S1→S2, S2→S3 and S2→S7 will be removed

from the network topology when S2 fails. In such a scenario, then the number of shortest

paths for MPTCP subflows are reduced which may affect the performance of SR approach.

However, node failures rarely happen in IP networks. In that respect, an attention is given

to path protection mechanisms based on link/node failures as shown in Fig. 6.4.

6.5 Service Chaining for OTT Service Providers using SR in Soft-

warized Networks

As stated in [189], SFC is an ordered list of abstract service functions that should be

applied to a packet. Typical examples of these service functions or VNFs include: Deep
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Packet Inspection (DPI), Server load balancers, HTTP Header Enrichment (HHE), NAT44,

NAT64, TCP optimizers and Firewalls. The set of switches/nodes where the VNFs can

be instantiated is called the NFV Infrastructure. As shown in Fig 6.4, the NFV nodes are

SR-enabled switches which can also run VNFs. While NFV promises to provide better

flexibility solutions in future networks (e.g., 5G), SFC eliminates greatly the constraint

associated with today’s operators who are suffering from large management overhead

on implementing their network functions. With the current use of IPv4 and IPv6 in the

SDN/NFV data-plane, each VNF IP address can correspond to a particular SID. The

VNF chain can therefore be represented in the SRH which contains the SR path as an

ordered list of service segments. Fig 6.6 shows NFs that are served for different enterprise

users. According to service requirements, one NFs can be selected by one or more users

from different enterprises. With three service chains, each chain consists of a series of

ordered functions which can be represented in SR by their Service IDentifiers. The operator

Figure 6.6: A scenario of service function chaining for enterprises using SR

managing the network could assign the SIDs as follows: 200, 201, 202, 203, 204 for DPI,

Firewall, NAT, Cache and VPN respectively. Enterprise 1 that pays attention to intranet

service, needs a DPI, Cache, NAT and VPN functions and the operator would push the

SR header with segment list SLSFC1={200, 202, 203, 204}. Enterprise 2 that pays attention

to intranet service, needs a Firewall, NAT, Cache and VPN functions. The operator

would push the SR header with SLSFC2={201, 202, 203, 204} and forward the packet. For

Enterprise 3 who needs all services, the operator would push the SR header list with

segment list, SLSFC3={200, 201, 202, 203, 204} and forward the packet.
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6.6 The QoE-Control and Management Architecture of Video Stream-

ing Services in Softwarized Networks

In order to meet the aspects of QoE control and management of multimedia services in

future softwarized networks, this section presents a novel QoE-aware MPTCP/SR that

integrates SDN and NFV architecture as shown in Fig 6.7. The proposed architecture can

achieve an optimized E2E QoE level for the end-users in future softwarized networks.

Video flows are transfered through multiple disjointed shortest paths for MPTCP subflows

and the controller introduced in section 5.5 can perform source routing using SR paradigm.

More importantly, it can learn and adapt to changing network conditions or media contents

as well as overcoming link/node failures. The proposed SDN/NFV system consists of the

Data plane and the QoE-control and management plane.

Figure 6.7: The proposed QoE-aware, MPTCP/SR-based in softwarized networks.
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6.6.1 Data Plane

The data plane consists of SDN switches that support SR technology. It forms the data

acquisition layer which consists of a set of different Virtual Network Functions (VNFs)

arranged together depending on a set of network traffic flows. It also represents the

forwarding layer of the network where many software/hardware devices (e.g.,virtual

routers and virtual switches) are interconnected using virtual or wired connections or

common wireless radio channels.

6.6.2 QoE Control and Management Plane (QoCoMa)

The POX controller was extended with three functional modules, namely, the MPTCP-

based flow manager module, the TE-Segment Routing module and the QoE management

module. POX was used in this implementation because it provides a Python-based

platform that offers a fast bridge learning and Mininet interactivity easily. The QoCoMa

plane consists of other entities such as: Network Information collector and the Database

module.

6.6.3 Network Information Collector (NIC)

This module performs collection of network information and QoE requirements of end-

users, system events and any network topological changes (e.g., during link or node

failure).

6.6.4 MPTCP Module

This module computes the shortest paths and then performs path allocations to MPTCP

subflows as described in section 5.5.2. Based on the collected link information, the MPTCP

module communicates with the QoE management module so that resources can be as-

signed to the calculated paths of subflows to meet their QoE requirements. Instead of

installing these subflow paths in SDN switches as forwarding rules, SR approach is used

where the forwarding table of the ingress switch is configured with an ordered list of

segments [164]. The ingress switch then adds labels with an ordered list of segments to a

packet header and forwards it to its destination point.
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6.6.5 TE-Segment Routing Module

As implemented in section 5.5.3, the TE-SR module maps the computed subflow paths

to SR paths. With reference to Fig. 6.7, the proposed algorithm running over softwarized

networks takes this path and the graph of the topology as inputs. It maps the specific path

of the subflow and returns the segment list as an output of the assigned SR paths. More

details of SR implementations are available in section 5.5.3.

Fig. 6.4) shows the path protection and link recovery using Backup Actions configured

in Failover Tables when a link/node failure occurs in the network, then path protection

mechanisms discussed in the previous subsection are considered (see Fig 6.5).

6.6.6 QoE-Management Module for Softwarized Networks

The QoE management entity presented in section 5.5.4 is extended to perform various

network management and ensure that the overall KPIs of the softwarized networks

are fulfilled. It also ensures that proper resource allocations, QoE-centric control and

QoE estimation related to video streaming services are achieved. It further provides

softwarized infrastructure domain monitoring and multimedia service availability in order

to enhance the QoE of the end users. In order to ensure the overall system performance of

a multimedia service, the QoE management module takes measurements of KPIs related

to QoE metrics such as stalling, video quality and network metrics such as packet latency,

jitter, network throughput and packet loss. It also performs autonomic fault detection and

recovery mechanisms for ensuring that any point of failure in the softwarized systems

can be configured and recovered without affecting the end-user’s QoE service delivery

chain. The MANO is responsible for managing and orchestrating VNFs. Through the

NIC module, any changes of users (e.g., joining or living the connection) and the running

status of the SDN/NFV system can be reported immediately to the SDN controller.

6.6.7 NFV Management and Orchestration (NFV MANO)

According to the ETSI [82], network functions virtualization management and orchestra-

tion (MANO) is responsible for managing and orchestrating virtualized network functions

(VNFs). It consists of the NFV Orchestrator (NFVO), and the Virtual Infractructure Man-

ager (VIM). The NFVO performs orchestration and lifecycle management of physical and
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software resources that support the infrastructure virtualization. The NFVO also performs

global resource management, network services (vCompute, vStorage and vNetwork re-

sources) within one network operator’s infrastructure domain. The proposed QoE-aware

MPTCP SDN/NFV SR-based system can provide an efficient orchestration, QoE control

and management of future multimedia services, service instantiation, validation and

authorization of NFVI resources requests. The VNFM is responsible for lifecycle manage-

ment of VNF instances, overall coordination and adaptation role for configuration and

event reporting between NFVI. A single or multiple VNF instances of the same or different

types can be managed by a VNFM. The VIM controls and manages NFVI physical and

virtual resources. For the purpose of implementation, this work adopts the Open Source

MANO (OSM) [197] to instantiate the VNFs in softwarized networks.

6.6.8 Configuration Module

This module provides interfaces for virtual and physical network resources setup. It

also provides interfaces for end-users service QoE configurations (e.g., QoS/QoE-based

flow transmission rule for multimedia applications such as throughput, packet loss). The

configurations of these resources (for virtual and physical) and their associated QoS/QoE

policies are stored in the configuration and resource databases as shown in Fig. 6.7.

6.6.9 Database Storage Module

The configuration parameters, monitoring status reports and different fine-grained re-

sources are stored in the database module. It also maintains all SR subflow paths with

their QoE requirements. When a new subflow of a MPTCP connection is uploaded to

the SDN controller, the module queries in the database to look for an existing path that

corresponds to this MPTCP connection. If the path exists, the subflow is allocated to a

specific path of a previously assigned subflow’s path of the same MPTCP connection,

otherwise a new path computation for this subflow is performed using the MPTCP-flow

manager/module. The new path is mapped to the SR path and stored in the database so

that it can be used later by subflows of the same MPTCP connection.
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6.6.10 The SDN Controller

The SDN controller is implemented as an extension to POX controller. Computation

of shortest paths of subflows is performed using the MPTCP module when the request

is uploaded to the controller as described in section 6.6.4. The controller allocates the

subflows to transmission paths using the MPTCP module and then maps these subflow

paths to SR paths using the TE-SR module (see in Fig 6.7).

6.7 System Model and QoE-based Multipath Source Routing Al-

gorithm in Softwarized Networks

A softwarized network is considered which is represented as a directed graph G = (V ,E)

where V is the set of nodes (switches or VNFs) and E is the set of edges. Each e ∈E is

associated with a non-negative integer link weight denoted byW(e). In real world network

scenarios, the link weights indicate a non-fixed parameters such as link bandwidth, packet

loss, delay or link utilization. Such information is used to compute the optimal multiple

set of h shortest paths from source to destination. Available link bandwidth denoted

bw is set to connect a pair of softwarized nodes in the network and Bksf is used as the

required bandwidth of a subflow sf of an MPTCP connection k. The shortest path of a

traffic-flow demand f from the source s ∈V to destination t ∈V is denoted by p(s, t). A

Multi-flow commodity and Constrained Shortest Path Model (MCSPM) presented in [198]

is considered to find the optimal shortest routes for the multimedia flows from source

to destination based on the defined specific constraints for a given service. The aim of

MCSPM is to find a set of nodes with minimum link weight subject to multimedia flow

constraints and perform better utilization of the network resources. As shown in [198],

we also define the weight, Weij of link (i, j) in this work as the sum of delay (dlij) and

packet loss (plij) values of a link multiplied with their scale factors α,β > 0 respectively

such that:

Weij = α× dlij +β× plij,∀(i, j) ∈ E (6.1)
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Table 6.1: Notation and Symbols Description.

Symbol Descriptions
N Total Number of DASH players
bij Available bandwidth on link (i, j)
Weij Weight of link (i, j) calculated using equation 6.1
dlij Delay on link (i, j)
plij Packet loss on link (i, j)
lc The link criticality
Pkmax Max. acceptable packet loss of a subflow of an MPTCP connection k
Dkmax Max. acceptable delay of a subflow of an MPTCP connection k
Bksf The required bandwidth of a subflow sf of an MPTCP connection k
sfk Amount of subflow of an MPTCP connection k from s ∈V to t ∈V
sk The source of a subflow of an MPTCP connection k
tk The destination of a subflow of an MPTCP connection k
α> 0 Scale factor for delay
β > 0 Scale factor for packet loss
Pst A set of the first h computed shortest paths from source to destination

While considering the MPTCP subflows of video service that have to be routed from

MPTCP server to an MPTCP client, an optimization objective function is formulated to

route all subflows in the network through shortest paths with minimized cost/weight as

defined in equation 6.1. The objective function is defined as shown in equation 6.2:

Of =min
∑

(i,j)∈E

∑
k∈K

(Weij · sfkij) (6.2)

sfkij indicates the subflow of a MPTCP connection k routed on link (i,j). Table 6.1 shows

the parameters used to formulate the objective function constraints as used in this work.

The following constraints are formulated for the objective function shown in equation 6.2.

Constraint 1: To guarantee the subflow balancing in a softwarized network and ensure

that, the total flow incoming into each vertex, V is equal to the total flow outgoing from

the same vertex, with the exception of the MPTCP client and MPTCP Server, this work

adopts the well-known flow conservation law as shown in equation 6.3.

∑
(i,j)∈E

sfkij −
∑

(j,i)∈E

sfkji =


sfk if i=sk

−sfk if i=tk

0 if i 6= sk, tk

∀i ∈ E,∀k ∈ K (6.3)
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Constraint 2: The maximum acceptable packet loss Dkmax imposes the limit for each

subflow of an MPTCP connection k.

∑
(i,j)∈E

(plijsf
k
ij)6 P

k
max,∀k ∈ K (6.4)

Constraint 3: The maximum acceptable delay Dkmax imposes the limit for each subflow

of an MPTCP connection k.

∑
(i,j)∈E

(dlijsf
k
ij)6D

k
max,∀k ∈ K (6.5)

Constraint 4: The available bandwidth for each link is bounded by an arc capacity con-

straint as defined in equation 6.6.

∑
(i,j)∈E

Bksfsf
k
ij 6 bij,∀k ∈ K (6.6)

A multimedia flow f is considered which consists of subflows {sf1, sf2,...., sfN}. In order to

route these subflows of an MPTCP connection, the shortest paths between end-points in

the network are calculated based on the link weight and bandwidth of the link as well as

the QoE-demand of an MPTCP request. In real-world network operation scenario, a link

may become a bottleneck when it can not provide the required resources or is likely to be

the most used path for any pair of communicating nodes within an SDN/NFV network.

The link criticality lc parameter introduced earlier in section 5.6 is used to improve the

routing performance based on the current load of each link e. The main objective of c(l)

as defined in equation 5.1 is to choose the links that can balance the loads across the

network and avoid bottleneck links between pairs of communication nodes in softwarized

networks. Using Fig 6.4 as an example, the link criticality for each link can be measured

as follows. The first computed shortest path h=2 whereas the TD consists of three pairs

of SDN/NFV switches (S1,S4), (S7,S4) and (S1, S8). The set of shortest paths PS1S4, PS7S4,

PS1S8 are {S1→S7→S3→S4, S1→S7→S8→S4}, {S7→S3→S4, S7→S8 }, and {S4→S7→S8,

S1→S7→S3→S8 } respectively. Since PS1S4 and PS1S8 pass twice through the link S1→S7,

the link criticality of this link is 4/2=2. For link S7→S3, the link criticality is 3/2 because

PS1S4, PS7S4, PS1S8 pass once through that link.
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6.7.1 QoE-Driven Multipath Routing and Quality Optimization in Softwarized

Networks

In order to formulate a QoE-driven quality optimization algorithm, an assumption is

made that, during video streaming, a total of N segments each lasting for ts seconds are

available in one video sequence for download. Based on the available bandwidth, the

MPTCP DASH client requests video segments that satisfy their quality levels. The set of

quality levels requested are, QL = {Q_1, Q_2, . . . , Q_N}. The chain of bandwidths to

download each video segment are, BC = {b_1, b_, . . . , bN}. The MPTCP client can request

an average video quality Vavg(i, j) defined by equation 6.7.

VVavg(i, j) =
1
N

N∑
i=1

qi,j (6.7)

When the MPTCP client starts to download a segment i at tis and the last bits of the

segment is received at tie, then the throughput during the downloading period of segment

i is given by equation 6.8.

B(i) =
Si,j

tie − t
i
s

(6.8)

where Si,j is the total bits in the segmentCi,j with index i and bit-rate level j. The estimated

available bandwidth that can be used to determine the bitrate level for the next chunk i to

be downloaded is denoted by B̂(i). The estimated bandwidth can be calculated using an

Exponentially Weighted Average (EWA) [199].

B̂(i) = α̂B(i− 1) + (1 −α)B(i− 1) (6.9)

According to [200], the value of α is fixed to 0.8. While buffer size Bfsize is very crucial for

video rate adaptation in video streaming services, two buffer thresholds (Bfmin, Bfmax)

are defined based in [199]. (a) if the MPTCP client is in buffering state, then Bfsize <

Bfmin, (b) and Bfmin< Bfsize < Bfmax-Sd when the client is in playout state where Sd

is the duration (2, 4, 6, 8 etc) of video segments in seconds. For the purpose of QoE

evaluation using the proposed QoE-based multipath routing and quality optimization
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algorithm, the initial delay, buffering events, stall duration and the bitrate level variation

are considered. Before the initial delay Idelay of the video segment i is requested, then the

initial delay of Idelay(i− 1) is accumulated during video streaming. Then if the bitrate

level j is selected for i, the initial delay will increase by Si,j,
B̂(i)

. From this formulation, the

impact of the initial delay as defined in [199] can be given by equation 6.10.

Idelay(i, j) = (3.2)Idelay(i− 1) +
Si,j

B̂(i)
, Bfsize < Bfmin (6.10)

To determine the impairments factors on video quality due to stalls, the combination of

number of stalls and stall duration are considered. Note that, when the MPTCP client

is in rebuffering state, the requested video segment iwill introduces a stall duration by
Si,j,
B̂(i)

whereas the buffer size is Bfsize + Sd - Si,j,
B̂(i)

when the segment i is downloaded. A

threshold TST for stall indicators that avoid buffer length can be defined as:

TST = Bf
′
size +

Si,j

B̂(i)
− Sd (6.11)

Bf
′
size is the warning threshold defined by γ Bfmin + (1-γ) Bfmax that shows the possible

occurrence of buffering events. The number of stalls Nstall(i, j) and stall durations

Sdrtn(i, j) for the next video segment i with bitrate level j are defined by the following

equations.

Nstall(i, j) =

 Nstall(i− 1) + 1 if Bfmin< Bfsize<TST

Nstall(i− 1) Otherwise
(6.12)

Sdrtn(i, j) =


Sdrtn(i− 1) + Si,j

B̂(i)
if Bfsize < Bfmin

Nstall(i− 1)+
∑i+Bfmin
i+1

Si,0
B̂(i)

0 if i 6= sk, tk

(6.13)

The impairments indicators for stalls Istall(i, j) as defined in [201] can be calculated using

a combination of Idelay(i− 1) and Sdrtn(i, j) as shown in equation 6.14.

116



Istall(i, j) = (3.8)Sdrtn(i, j) + 4.2Nstall(i, j) − 2.6
√
Nstall(i, j)Sdrtn(i, j) (6.14)

The bitrate level variation BLV(i, j) is another parameter which affect the end-user’s QoE

because of main two factors, namely, the video quality and the switching impact defined

as VQuality(i, j) and Simpact(i, j). The VQuality(i, j) is defined by equation 6.15. 3.8 and

4.2 are constants as defined in [201].

VQuality(i, j) =
N∑
i=1

VQMl(i)e
0.02SdrtnSd

N (6.15)

TheVQuality(i, j) is the weighted mean of theVQMl(i) of theN chunks where e(0.02SdrtnSd)

is the weight of each video segments.

The Simpact(i, j) is defined using the following equation.

Simpact(i, j) =
1
N

N∑
i=1

[VQMi − VQMi+1)
2)sign(VQMi+1 − VQMi) (6.16)

where

sign(x) =

 1 if x > 0

0 otherwise
(6.17)

The bitrate level variationBLV(i, j) is calculated as the sum ofVQuality(i, j) and Simpact(i, j)

such that

BLV(i, j) = B1 × VQuality(i, j) +B2 × Simpact(i, j) (6.18)

where B1 and B2 are the coefficients with values of 75.6 and 48.2 respectively [201]. The

QoE metric RQoE(i, j) is calculated based on these three formulated factors, BLV(i, j),

Idelay(i, j) and Istall(i, j) using equation 6.19.
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RQoE(i, j) = 100 − Idelay(i, j) − Istall(i, j) −BLV(i, j) + 0.17Idelay(i, j)
√
Istall(i, j) +BLV(i, j) + 0.13

√
Istall(i, j)BLV(i, j)

(6.19)

To achieve a fair QoE allocation and an efficient resource utilization among MPTCP

DASH clients, a QoE-driven multipath and quality optimization algorithm running over

softwarized network is proposed that provides each MPTCP client with the video bit-rate

level having the highest value of RQoE(i, j).

Algorithm 4: QoE-based Multipath and Quality Optimization Algorithm
input : flow f, N_topology G = (V ,E)

1 Compute link weight based on equation 6.1, bandwidth
2 Find all subflow shortest paths p ∈P in the network
3 foreach p ∈Psrc→dst do ;
4 if p.used +sfk.Bksf< bij then return p
5 else Go to step 3
6 Perform mapping of subflow paths psf into SR paths

output : List of Segment labels SL
7 Save path p with its associated list of SL in DBp
8 Start MPTCP subflow transmission based on client’s QoE requirements
9 Calculate buffer size Bfsize and B̂(i)

10 Calculate BLV(i, j), VQuality(i, j) and Simpact(i, j) using 6.18, 6.15 and 6.16
11 if i< Bfmin/ Sd then
12 Find Idelay(i, j) using 6.10
13 else Idelay(i, j)← Idelay(i− 1, j)
14 if Bfmax< Bfmin then
15 Find Nstall(i, j), Sdrtn(i, j) using 6.12, 6.13
16 else Go to step 9
17 end if
18 end if
19 end for
20 if fnew is a new flow then Query DBp to find the paths for subflows of fnew
21 if pfnew is not in DBp then Go to step 2
22 Issue path adding request for fnew end if
23 end if
24 Continue transmission as long as Bksf< bij
25 Use the lc and congestion index to avoid congestion

6.7.2 MPTCP Congestion Window Adaptation in Softwarized Networks

As described in section 5.2.3, the MPTCP client maintains a congestion window during

video transmission to control the maximum number of packets to be sent at the destination

point. As such, each TCP can trigger a decrease of its congestion window when it receives
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duplicate ACKs because it interprets this as an indicator of a packet loss. The MPTCP

client can reduce the traffic load of the transmitting path by halving its congestion window.

However, coupled algorithms [174] such as LIA, OLIA and BALIA at the MPTCP flow level

are used to control the TCP congestion window of all video subflows when it increases

during video transmission. As shown in [202], the congestion window of each path may

greatly differ from each other. This can lead to a large path delay difference which can

affect greatly the throughput performance of MPTCP. It is important to mention that,

when the difference of the delay between two paths increases, the time needed for MPTCP

to receive all packets within the in-order unit also increases resulting into a decrease of the

achievable network throughput. To improve the upper bound of goodput, then the E2E

delay difference between transmission paths have to be minimized. In order to improve

the system throughput of MPTCP, this work employs the congestion window adaptation

algorithm presented in [202] that monitors the E2E delay of multiple paths.

To minimize the path delay difference, a delay ratio with lower and upper bounds is

introduced. When the delay ratio increases, it triggers an MPTCP subflow to decrease

its congestion window even if no packet loss is detected. This is not the case with the

regular TCP which halves its congestion window when packet loss is detected in the

network during transmission. Note that, the original MPTCP congestion window increase

is considered to all video subflow. The delay ratio is defined as the ratio of the maximum

path delay over the minimum path delay. The congetion window adaptation runs on the

selected MPTCP shortest paths selected by the MPTCP module as shown in algorithm

4. Consider that a block of MPTCP N packets with Data Sequence Number (DSN) are

sent from MPTCP client to the server. Suppose that, the destination point receives N− 1

packets using path 1 and only 1 packet is received through path 2. This block of data is

said to be transfered in an in-order unit. Suppose that Pt is the packet sending interval at

the MPTCP client for transmission paths Tpaths = {1, 2......N}.

Fig 6.8 indicates an illustration of the MPTCP sequence Workflow when the DASH client

that supports MPTCP requests a video file from the MPTCP server. Before video segments

transmission starts from the server to the client, MPTCP connection is established using

7 steps as shown in Fig 6.8. For the purpose of demonstration, only two subflows are

used. It is worth mentioning that, all subflows use the MPTCP congestion window adap-

tation algorithm presented in 4 which also runs on the proposed QoE-aware MPTCP/SR

architecture in softwarized networks. The QoE management, SDN controller, MPTCP
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Algorithm 5: MPTCP Congestion Window Adaptation Algorithm

1 if φmin φ φmax
2 Select path of subflow i for CWND adaptation
3 i = argmaxp e2e of path p)
4 Adaptation counter does not exceed maximum limit
5 if Counti<m then
6 Decrease congestion window of subflow i on path p
7 CWNDi← CWNDi/φ
8 if Ssthreshi>CWNDi then
9 Ssthreshi = CWNDi

10 end if
11 Counti← Counti + 1
12 else Reset adaptation counter
13 Counti = 0
14 then
15 Return an improved network throughput

module and SR module perform their respective functions as described in section 6.6.

The difference with the approach presented in chapter 6 compared to that of chapter 5 is

that, the congestion window of MPTCP subflows is modified to achieve more network

throughput. However, the coupled OLIA congestion window is applied for all subflows

as presented in chapter 5.

Figure 6.8: MPTCP sequence workflow diagram

For path protection and recovery mechanisms, an assumption is made that when link

(i, j) ∈E fails during a normal network operation, then the controller has to recompute

new shortest paths after pruning the failed link (i,j) (see Fig 6.5). This procedure is done

after performing a pair of robustly disjoint SR-paths, using a depth first search. The path

protection and recovery algorithm requires information on the SR-path latencies in order

to prune the search. The SR-path latency is represented as a L: n × n matrix such that
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L (x,y) indicates the minimum latency path from x to y in G. This matrix is recomputed

every time the link failure occurs to find the SR-path with minimum packet loss, E2E

latency and delay on a link. Suppose pf(s, t) indicate the shortest path consisting of the

failed link. This work denotes hNew as the set of new shortest paths. The controller is

required to perform normal procedures for mapping these new paths to SR paths for

transportation of MPTCP subflows from source to destination. Algorithm 6 is used to

compute new shortest paths during link failure.

Algorithm 6: Path Protection and Recovery of Link Failure (PathReLieF)

1 Remove failed link(i,j)
input : New_topology G

′
= (V

′
,E
′
)

2 Find all subflow shortest paths p
′ ∈ P ′ in the network

3 foreach p
′ ∈ P ′ do if p

′
.used +sfk.Bksf< bij then return p

′

4 else Go to step 3
5 end if
6 Map all subflow shortest paths p

′
sf into SR

′
paths output :List of Segment labels

SL
′

7 Go to step 6 in algorithm 3
8 end for

6.7.3 Experimental Testbed & Setup

In order to evaluate the performance of the proposed architeture and the developed

algorithms, an experimental testbed shown in Fig. 6.9 is used. The tesbed consists of the

edge, aggregation and core layer which consists of 8, 4 and 2 SDN switches respectively.

Two VMs both running Linux (Ubuntu V16.04 LTS) were installed with the MPTCP v0.92.

The mininet that used to model the network redundant links at each level as shown in

Fig 6.9 was installed in another VM. Redundant links are used in datacenter networks

to enable the implementations of multipath routing in SDN/NFV systems. The main

objective of using a topology with redundant links as shown in the figure is to increase

network availability, reliability and avoid network failures that can negatively affect the

performance of the network and the end-user’s QoE. As such, when one link/node fails in

a softwarized network, then another links/node could establish a connection and transfer

the video flows from MPTCP client to the server and vice versa. The POX controller was

installed in the second VM. The SR module was implemented following a customization

of source codes available at [203].
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Table 6.2: A list of used parameters

N.Layer Bandwidth (Mbps) Delay (ms) Packet Loss (%)
Edge 3 15 1
Aggregation 2 20 3
Core 3 30 3

6.7.4 Video Clips/Sequences Used for Experiments

The "Big Buck Bunny" video clip shown in Fig. 5.10 was encoded using ffmpeg version 3.3.4

with the libx265 at 3 different resolutions (720p, 480p and 360p) with video encoding rate

of 2.496Mbps, 1.536Mbps and 1.0888Mbps respectively. The link parameters configured in

Fig. 6.9 are shown in Table 6.2. When the MPTCP is enabled, the default configurations of

MPTCP V0.92 is used and the MPTCP path manager is configured to a full-mesh to limit

each MPTCP connection to have only 3 MPTCP subflows. The VLC-DASH plugin [180] is

used as the DASH client for collecting and reporting the performance of video quality and

throughput measurements during video streaming. The system throughput is computed

from Payload_bits/download_time where a Payload_bits is the number of extracted bits

of the video content per single unit time. Apache Server was installed on two machines

that supports MPTCP. These machines were then attached on mininet network as shown

in Fig 6.9. The video transmission is repeated 40 times from MPTCP server to MPTCP

client. The proposed QoE-aware MPTCP/SR-based architecture for softwarized networks

is compared with the MPTCP and regular TCP in terms of throughput and the end-users-

QoE.

Figure 6.9: QoE-aware MPTCP/SR experimental testbed and prototype used
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6.8 Experimental Results and Discussion

6.8.1 System Throughput

Fig 6.10 shows the comparison of system throughput of the QoE-aware MPTCP SDN/NFV

SR-based proposal, MPTCP and the regular TCP for video resolution of 360p. Note that,

chapter presented the comparison results of QoE-aware MPTCP/SR SDN/NFV based

approach with TCP. This work includes the investigation of MPTCP performance with

both TCP and the proposed approach under the same experimental settings. Note that,

this is a shortcoming of chapter 5 which only compared the performance of TCP and

QoE-aware MPTCP SDN/NFV SR-based strategy. For each video transmission, the

throughput of the proposed approach is higher compared to MPTCP and the regular TCP.

The performance of the proposed QoE-aware MPTCP/SR approach is better it exploits

multipath transmission and employ SR which does not require any path signaling. This is

not the case with MPTCP and the regular TCP which does not use SR mechanisms during

transmission of video flows from the MPTCP client to the server. For example, at the

3min, the throughput achieved for the QoE-aware MPTCP/SR, MPTCP and the regular

TCP is 1.82Mbps, 1.71Mbps and 1.62Mbps. Apart from using multiple paths during

transmission in the proposed approach, the subflows also use the congestion window

adaptation algorithm provided in 15.

Figure 6.10: Comparison of system throughput for a video resolution of 360p
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Figure 6.11: Comparison of system throughput for a video resolution of 480p

Figure 6.12: Comparison of system throughput for a video resolution of 720p

The QoE-aware MPTCP/SR and MPTCP performance becomes similar at some points

during video streaming because of using multiple paths during transmission. As shown

in Fig. 6.10, this happens at the 7min and 8min where the achieved system throughput

is 1.80Mbps for both QoE-aware MPTCP/SR and MPTCP approaches. However, at the

9min, the MPTCP and regular TCP performance is similar because of Table 6.3 shows the

average throughput achieved by QoE-aware SDN/NFV SR-based, MPTCP and TCP for

360p, 480p and 720p after 40 runs of video streaming.
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Table 6.3: Average throughput in Mbps

Video Resolution QoE-aware MPTCP/SR MPTCP TCP
360p 1.87 1.73 1.55
480p 1.76 1.61 1.36
720p 2.66 1.56 1.37

6.8.2 Video Reception Quality Measurements

For video quality, the reception quality (ρ) [204] metric defined as the ratio between

download throughput and video encoding rate is used for evaluating the performance of

the proposed algorithm. If (ρ) >1 then the video has good reception quality otherwise, the

video has poor quality. Fig 6.13, 6.14 and 6.15 shows the comparison of a video streaming

reception quality using resolution of 360p, 480p and 720p respectively. It is clear that, the

QoE-aware MPTCP/SR SDN/NFV-based approach performs better compared to MPTCP

and regular TCP for all three used video resolutions.

Figure 6.13: Comparison of video streaming reception quality for 360p

6.8.3 Measurements of Failure Recovery and Localization Time

In order to implement the path protection and link recovery algorithm proposed in

Algorithm 6, one link from the Mininet topology shown in Fig. 6.9 was removed using

the pseudocodes shown in Algorithm 7. The link connecting S1 and S4 was purposely
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Figure 6.14: Comparison of video streaming reception quality for 480p

Figure 6.15: Comparison of video streaming reception quality for 720p

disabled so that new multiple shortest paths can be computed by Algorithm 6. In SDN,

the controller is solely responsible to detect network failure and through Operations

Administration, and Maintenance (OAM) tools. Link or node failure detection in SDN

becomes more efficient because of the global view of the SDN controller which enables

OpenFlow switches not to flood the network with messages for topology synchronization.

The OAM tools provide performance indications that can help to identify the problem area

in the network and isolate the root cause of a problem. The existing OAM tools in SDN
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Algorithm 7: Pseudocode to Remove a Link from the Network Topology

1 def removeLink(self,node1, node2, port1=None, port2=None, **opts):
2 if not opts and self.lopts: then
3 self.addPort(node1, node2, port1, port2)
4 key = tuple(self.sorted([node1, node2]))
5 self.link_info[key] = opts
6 self.g.remove_edge(*key)
7 return key

can provide tests for continuity check, connectivity verification, link trace, delay and loss

ratio. The tools exist in layer 2 and layer 3 and SDN can use the OAM tools like Link Layer

Discovery Protocol (LLDP). Currently, the SDN controller can compute disjoint paths

using path calculation engines. For example, Opendaylight’s topology processing includes

Suurballe algorithm [205] implementation to calculate disjoint paths in the network. The

main idea of Suurballe algorithm is to use Dijkstra’s algorithm to find one path, modify

the weights of the graph edges, and then to run Dijkstra’s algorithm a second time. In POX

controller, the failure detection is conducted using the POX Topology Discovery module

[206]. When a link associated with the Openflow switches is detected as having been

removed or failed, a LinkEvent message is raised by the Topology Discovery module. The

openflow.discovery component in POX controller sends LLDP messages out of OpenFlow

switches so that it can discover the network topology. However, the controller considers

that the link is timed out or failed when the switch does not send the LLDP packet

associated with the port connected to its neighbor. In this circumstance the controller

raises the LinkEvent for link removal.

Fig. 6.16 indicates an example of path protection and link recovery mechanisms in

softwarized networks based on the proposed algorithm 6. On failure detection in SDN,

crankback routing [207] is normally applied where the traffic is recursively returned back

to the source node from which the traffic can be forwarded to the destination node again.

However, the crankback routing increases network recovery time because the failure

detection windows also increase due to the longer path lengths. The proposed mechanism

using algorithm 6 does not need crankback routing and the failure detection window,

thus the recovery time is minimized. As shown in Fig. 6.16, upon link or node failure,

the data packets of video flows transmitted are sent back to the original path. The node

where the link failure is detected reroutes the data packet until the convenient route is

found where the packets can be forwarded to their destination point. The novelty of this
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Figure 6.16: An example of path protection and link recovery mechanisms in softwarized
networks

approach is that, the same data packets of video flows are tagged first (e.g. with a SR label

which contains information on the failed link) and then sent back through the primary

path. After receiving the tagged packet, a reroute node (e.g., S2) can then respond to

the link/node failure and forward the tagged packets to their destination node. When

the reroute node processes the first tagged packet, a state transition is performed in the

OpenFlow switch. A failover table is created as shown in Fig. 6.5 and all subsequent

packets coming from the source node are forwarded on the reroute node. The proposed

path protection and link recovery algorithm is designed to reduce path costs, network

recovery time and backup path length.

In order to evaluate the performance of the proposed algorithm, the links between each

pair of switches were failed by using the pseudocode shown in algorithm 6. The failed

link between each pair of switches were repeated 20 times per pair. The failure recovery

time, backup path length and failure localization time were collected to investigate the

performance of the proposed algorithm when the failure is detected. Failure localization

is the process of identifying the exact point where failure has happened. The Failure

Localization Time (FLT) is the time taken by the SDN controller to get the link failure

information from the POX and OpenDaylight Topology Discovery module to the time it finds

the exact failure location in the network. The Failure Recovery Time (FRT) is the time taken
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by the SDN controller to receive the information regarding the exact point of link failure

and install the new flow failover tables in Openflow switches. The proposed algorithm

6 for path protection and link recovery was implemented in POX and OpenDaylight

controllers. The main idea was to investigate on how the two SDN controllers react to

link/node failures in the network in terms of failure recovery and failure localization time.

Figure 6.17: Performance comparison in terms of failure recovery time

Failure Recovery Time (FRT)

Figs. 6.17 and 6.18 show the performance comparison with and without PathReLief

algorithm using the POX and OpenDaylight controllers. The performance of PathReLief

is better than that of native algorithms implemented in POX and OpenDaylight. This

is so because, not only PathReLief uses MPTCP for transmission but it also applies SR

technology on every OpenFlow switch which makes the transfer of data from the failure

node to the SDN controller fast. It is important to mention that, the SR is disabled while

making while investigation the failure recovery and localization time using POX and

OpenDaylight controllers. It can be observed from Fig. 6.17, when {S1→S4} fails, the

PathReLief takes to only 0.24ms to perform a failure recovery in the network and install

failover tables. Note from the network topology shown in Fig. 6.9, link {S1→S4} connects

switches belonging to the core layer and aggregation layer which are closely connected to

the SDN controller. This also contributes to the minimization of time required to perform
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link recovery in the network. The failure recovery time when {S5→S11} fails is the largest

(0.5ms, 0.58ms, 0.65ms) for PathReLief, POX and OpenDaylight respectively. This is

because link {S5→S11} connects switches belonging to the aggregation layer and the edge

layer. This makes the backup path length from the controller to failed node to be large

making the recovery time to increase. Fig. 6.17 also indicates that, the POX controller

performs better compared to OpenDaylight controller in terms of recovery times for all

failed links in the network. This happens because the POX controller have shown to have

a minimum response time and a reduced installation time of flow rules as demonstrated

by [208]. It is worth mentioning that, the proposed algorithm performs better than the

native implementations of POX and OPneDaylight controller.

Figure 6.18: Performance comparison in terms of failure recovery time using OpenDaylight
controller

Failure Localization Time (FLT)

Fig. 6.20 indicates the performance of the failure localization time for PathReLief, POX and

OpenDaylight controller using the same failed links from the network topology shown

in Fig. 6.9. It can be observed that, the PathReLief performs better than the POX and

OpenDaylight controller. For example, when {S1→S4} fails, the failure localization time of

PathReLief, native discovery module in POX and OpenDaylight are 48µs, 81µs and 94µs

respectively. The time taken for the controller to detect the exact point of a failed link is

shorter for PathReLief because {S1→S4} connects the core and the aggregation layer in the

fat-tree topology shown in Fig. 6.9. For failed link {S5→S11}, the failure localization is 78µs,

85µs and 96µs. The localization is large because link {S5→S11} connects the aggregation
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layer and the edge layer and therefore making the backup path length to increase.

Figure 6.19: Performance comparison in terms of failure localization time

Link Capacity Occupation (LCO)

The LCO is calculated as the percentage of the total link capacity allocated to the backup

paths considered for forwarding the tagged packets. When a failure of a link or a node

occurs in the network, some of the available bandwidth are allocated to the backup path

depending on the network traffic that are to be sent from the failed node/link to the

destination node. The PathReLief shows a minimum link capacity occupation allocated

Figure 6.20: Performance comparison in terms of link capacity occupation
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to the backup paths compared to POX and OpenDaylight controller. This is so because

MPTCP and SR would enable load balancing between multiple disjointed paths and

therefore making the transmission of the tagged packets with minimum bandwidth fast

on every link used in the network. The PathReLief would also allow the MPTCP clients to

share the bandwidth in the network and remove self behaviour encountered in tradition

networks.

Table 6.4 summarizes the performance of PathReLief, POX and OpenDaylight in terms

of failure recovery time, failure localization time, the primary path ratio and the Link

Capacity Occupation (LCO). The LCO is calculated as the percentage of the total link

capacity allocated to the backup paths that was considered for forwarding the tagged

packet. The Primary Path Ratio (PPR) is used to measure the capacity of network recovery

to reset the connection between pairs of disconnected nodes. When failure occurs in the

network, some of the available bandwidth are allocated to the backup path depending

on the video flows that are to be sent from the failed node/link to its destination node.

The PathReLief shows a minimum number of the capacity allocated to the backup paths

compared to POX and OpenDaylight controller. This is so because MPTCP and SR

would enable load balancing between multiple disjointed paths and teherefore making

the transmission of the tagged packets with the minimum bandwidth fast on every link

used in the network.

6.9 Summary

In this chapter, a QoE-aware MPTCP/SR-enabled architecture that can achieve an op-

timized E2E QoE-level for the end-users is presented. To improve the video quality,

the author propose to use multiple shortest paths for MPTCP subflows transmission

and choose important intermediate nodes to perform source routing using SR paradigm.

The aim is to meet future networks bandwidth aggregation and provide an efficient

orchestration, QoE control and management of future multimedia services in future net-

works (e.g., 5G). Preliminary results shows that, the proposed approach outperforms

the MPTCP and regular TCP in terms of system throughput and the end-user’s QoE.

Moreover, this chapter propose a path protection and dynamic link-recovery approach

using MPTCP and SR to increase survivability, resilience, availability of services in future

5G networks. To demonstrate the effectiveness of the proposal, the performance of the
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Table 6.4: A Summary of Performance Comparison for Path Protection and Link Recovery
Mechanisms in Softwarized Networks

Method Link FRT (ms) FLT (µs) Link Capacity Occupation (%) PPR
S1→S4 0.24 48 66 1.00
S2→S4 0.35 56 68 1.00
S1→S5 0.37 60 54 1.00

PathReLief S1→S3 42 62 62 1.00
S1→S6 0.45 72 58 1.00
S2→S3 0.44 70 52 1.00
S5→S11 0.5 78 56 1.00
S2→S6 0.34 52 58 1.00
S1→S4 0.31 81 68 1.00
S2→S4 0.42 72 72 1.00
S1→S5 0.48 86 80 1.00

POX S1→S3 0.51 78 78 1.00
S1→S6 0.56 76 88 1.00
S2→S3 0.62 91 92 1.00
S5→S11 0.58 85 84 1.00
S2→S6 0.61 89 58 1.00
S1→S4 0.31 81 82 1.00
S2→S4 0.42 72 88 1.00
S1→S5 0.48 86 86 1.00

ODL S1→S3 0.51 78 86 1.00
S1→S6 0.56 76 92 1.00
S2→S3 0.62 91 86 1.00
S5→S11 0.58 85 82 1.00
S2→S6 0.61 89 84 1.00
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proposed PathReLief algorithm and the conventional topology discovery mechanisms

are compared. Preliminary results show that, PathReLief outperforms others used in the

commonly used controllers (i.e., POX and OpenDaylight), in terms of reduced failure

recovery time and localization time.
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Chapter 7

Discussions, Future Work and Conclusions

7.1 Introduction

Future networks such as 5G are expected to provide and support a wide range of mobile

applications and multi-variety of services with QoE guarantees. While video -based

services are among the most critical services supported in current 4G LTE and future

networks, a lot of efforts need to be done so as to improve and optimize the video quality

using mechanisms such as network resource allocation, routing, server selection and video

compression optimization. As such, the end-user’ demand for services with better quality

from service providers has triggered the trend of traditional and future networks towards

using QoE in network management through an efficient utilization of network resources.

In order to meet end-users’ QoE requirements and their expectations, several QoE issues

(e.g., QoE monitoring, QoE control and management) pose challenges to service providers.

Such issues are contributed by existing technologies which are either unable to adapt to

diverse changing network conditions, or limited in the available resources. In addition,

existing QoE adaptation approaches limit the network ability to provide intelligent and

efficient solutions such that they only react when a problem occurs and therefore resulting

in sub-optimal network performance. These challenges necessitate harmonizing the

integration of advanced intelligence architectures (e.g., using SDN and NFV) with the

development of intelligent QoE-aware adaptation mechanisms that will optimize and

improve the end-users’ QoE. The main objectives of this work are to (2) develop a video

quality management approaches based on the traffic intensity under DASH using SDN,

(3) investigate and develop a QoE-driven SDN based resource allocation mechanisms for
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improving the end-users’ video quality, (4) propose and develop a novel QoE-aware, SDN-

based approach for managing video streaming services using MPTCP and SR paradigms,

and (5) develop new algorithms and architectures for QoE control and management of

video streaming services in softwarized networks that are enabled by MPTCP and SR. It is

worth mentioning that, MPTCP and SR are utilized as promising application protocols

and data transfer technologies to achieve an optimized E2E QoE level for the end-users

in future softwarized 5G network. The extensive simulations performed in this work,

quality evaluations based on data collected from from real-time multimedia transmissions

over the developed SDN/NFV platform demonstrates that the proposed algorithms can

reduce the number of stalls and their duration by more than 84% and 94% compared to

the baseline native DASH.js. This Chapter provides an extensive discussions of the main

contributions of this work and highlights the novelty, future research directions in the

field of QoE control and management in softwarized networks and the conclusions.

7.2 Contribution to Knowledge

The main contributions presented in this thesis are discussed in the following subsections.

7.2.1 QoE-based Multimedia Flow Routing Mechanisms using SDN/NFV

This chapter makes two contributions regarding the QoE management using flow routing

mechanisms in SDN/NFV-based networks, this thesis makes two contributions. First,

a video quality management scheme over an SDN architecture is proposed based on

traffic intensity. The proposed algorithm can mitigate virtual port queue congestion

which may cause buffering events and reduce the video quality. The main goal of the

proposed scheme is redirecting traffic flows to less congested ports in the network. Three

video clips categorized as fast movement, medium and slow movement were used for

experiments. The YouTube API player is used for collecting relevant information such as

buffering duration, the number of stalls and duration of stalls during video streaming.

The number of stalls and stall duration for DASH with the proposed scheme are measured

and compared with the performance of the native DASH.js. The experimental results

indicate that, the proposed video quality management scheme demonstrates effectiveness

of mitigating the drawbacks of DASH by significantly reducing the number of stalls and

their duration by more than 84% and 94%. Note that, our work is based on transmitting
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video flows using one path from source to destination. The work has been contributed to

the research community following the publication achieved in [26]. The contributions in

this work is described in Chapter 3.

7.2.2 QoE-driven SDN based Resource Allocation Algorithm in Future Net-

works

Enabling the dynamic configuration and resource allocation in SDN-based networks can

be significant and an outstanding approach on how resources are used for the purpose

of improving the end-users’ QoE. This would also enable coping with the continuous

growth of multimedia applications in future networks such as 5G. In this aspect, a novel

QoE-driven resource allocation mechanism that assigns tasks dynamically to virtual

network nodes in order to achieve an optimized end-to-end quality is proposed in this

chapter. Network softwarization and virtualization technologies (e.g., SDN and NFV)

were applied to provide an efficient control and management of resources. The main goal

of the proposed strategy is to find the best combination of network node functions that

can provide an optimized QoE level to end-users through node cooperation. The video

streaming service is taken into account as a collection of tasks where a good combination

of switches (S1, S2...) is determined and negotiate the assignment of these tasks by

considering the end-users’ perceived final video quality.

This work employs the task-level scheduling with the intention of assigning tasks related to

multimedia services to network elements. To achieve this objective, a QoE-driven dynamic

task allocation algorithm for adaptive video streaming was designed and implemented

over SDN/NFV enabled networks. The proposed approach indicates that, the capabilities

provided by SDN and NFV are significant for enhancing the video quality, allocate and

manage network resources efficiently in future softwarized networks. Based on the

proposed QoE-driven resource allocation, service providers can meet future changing

business goals while succeeding high level of end users’ QoE. Experimental results indicate

that, the proposed strategy can improve the video quality when the normalized QoS values

decreases (low packet loss and delay). The work has been contributed to the research

community following the publication achieved in [27]. The contributions in this work is

described in Chapter 4.
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7.2.3 A Novel QoE-Centric Multipath Routing Algorithm for Video Stream-

ing using SDN

This work extensively explores the use of multiflow strategy where multiple disjointed

paths are used in SDN-based networks to improve network resources utilization and

end-user’s QoE for delivering video streaming services. This chapter provides the first

implementation mechanisms of MPTCP and SR for traffic management in software defined

and virtualized networks. The contribution under this work propose a novel QoE-aware

SDN-based MPTCP/SR framework to enhance the QoE for video streaming services

delivery in future networks. In the proposed framework, the POX controller was extended

by introducing three modules namely, (a) MPTCP-flow manager, (b) QoE management,

and (c) segment routing (SR) module. A QoE-centric multipath routing algorithm that

forwards multimedia flows through multiple disjointed paths using SDN controller is

also proposed. The idea behind the proposed algorithm is to perform source routing to

video subflows using SR paradigms. DASH is employed to test the performance and

effectiveness of the proposed algorithm. This scheme is compared with the traditional

TCP approach. The QoE-aware multiflow approach based on SDN significantly improve

network throughput and link utilization by 50%. It also reduces significantly the number

of video quality and startup delays. The work has been contributed to the research

community following the publication achieved in [63], [29]. The contributions in this work

is described in Chapter 5.

7.2.4 QoE Control and Management of Video Streaming Services in Softwarized

Networks

A centralized SDN controller is a fundamental element for routing the MPTCP subflows

from one point to another through multiple paths. This work provides the first realization

of TE management strategies where MPTCP and SR are further employed in softwarized

networks to facilitate efficient transfer of large amount of multimedia applications be-

tween end-points. It extend the contribution four (4) described above, where MPTCP

and SR were utilized to improve video quality and the system performance for video

streaming services. In order to improve the video quality, the Multi-flow commodity

and constrained Shortest Path Model (MSPM) was used. The aim of MSPM is to select

intermediate nodes and perform source routing using SR paradigm. A novel QoE-aware
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MPTCP/SR-enabled architecture in softwarized networks is proposed to provide an effi-

cient orchestration, QoE control and management of multimedia services delivery over

future networks. Moreover, a system model and a QoE-based multipath and video quality

optimization algorithm called "QoEMuSoRo" are proposed to forward traffic using SR

paradigms over the proposed SDN-enabled NFV-based system. Note that, the proposed

architecture not only provide multiple disjointed shortest paths for MPTCP subflows and

perform source routing using SR paradigm but it can also adapt to changing network

conditions or media contents. This is an important aspect for service providers and mobile

operators for improving the end-users’ QoE through efficient control and management of

future multimedia services. The preliminary results show that, the proposed approach out-

performs the MPTCP and regular TCP in terms of network throughput and the end-user’s

QoE. The work has been contributed to the research community following the publication

achieved in [30]. The contributions in this work are described in Chapter 6.

7.2.5 Multipath Protections and Dynamic Link Recovery in Softwarized 5G

Networks using Segment Routing

The performance of future softwarized 5G infrastructures can be affected by link or node

failures which are inevitable occurrences in the networks. In SDN/NFV-based network,

not only the centralized controller itself can be a single point of failure but also the data

plane. If the SDN controller or link/node fails, then the routing and forwarding capabilities

of the 5G network become down and can lead to undelivered data packets, unreliable

network and even drop new flow requests from end-users. To overcome this, future 5G

softwarized networks should be robust enough to ensure high reliability and availability

of services by making sure that any failed parts in the network are detected, restored

and recovered within a permissible period of time and at the lowest achievable cost.

Future softwarized 5G networks have to be robust enough so as to ensure high network

reliability and services availability. 5G network architecture have to ensure that any failed

parts in the network are detected, restored and recovered within a permissible period of

time and at the lowest achievable cost. The contributions of this part are two fold: (a) a

multipath protections and Link- Failure free MPTCP/SR-based architecture that increases

survavibility, resilience, availability and robustness of 5G networks is proposed, and (b) a

system model and a multipath protections and dynamic link- failure free algorithm called

"PathReLief" is introduced to reduce failure recovery time and avoids link congestion in
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MPTCP/SR SDN/NFV 5G networks. Extensive experiments are conducted to evaluate

the performance of the proposed PathReLief algorithm over the developed softwarized

network platform. The results indicate that PathReLief outperforms the conventional

topology discovery mechanisms used in the POX and OpenDaylight controllers in terms

of reduced failure recovery time and localization time.

7.3 Limitations of this Work and discussions

This work has a number of limitations which can be investigated in future work as

described below.

7.3.1 The use of Open Source Tools for Simulations

The main advantage of open source tools is that, they are customizable, free to use and

save costs. However, one of the drawbacks of using open source tools is compatibility

because their versions keep changing because of supporting customization. For example,

the algorithm developed using Mininet V.2.2.O and OpenDaylight (Oxygen-SR4) needs to

be customized so that it can run on previous versions of Mininet and OpenDaylight. The

performance of the proposed algorithms such as video quality management presented

in Chapter 3, QoE-driven resource allocation and multipath routing using MPTCP and

SR presented in Chapters 3, 4, 5 and 6 respectively are assessed using open source tools

such as Mininet and Opendaylight SDN controller. Although this approach provides a

lots of benefits such as easy configurations, repeatable and fast but some of the config-

ured parameters such as jitter, packet loss and the network bandwidth were made to be

controllable throughout the experimentation period. However, moving to physical imple-

mentations for example in data center networks where these parameters are unpredictable,

the proposed algorithms could provide the same performance but with some complexity

because of the variability of these network parameters in real world scenarios.

7.3.2 Limitations of End-to-End QoE Management considerations

In this thesis, the algorithms implemented consider to capture the QoE-values based on

the measurements collected from the networks (packet loss, delay and jitter) which are

mapped to QoE metric. The performance of the proposed algorithms is based on the QoE
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values collected at the application level (initial delay, stalling events, stall duration and

number of bitrate switching. It is important to mention that, QoE control and management

should be considered in an end-to-end manner by investigating and collecting parameters

at the server, network and application or user’s terminals side using SAND technology.

Thanks to SAND development where key video quality parameters from both the network

and the client side can be collected using a centralized node. The proposed algorithms

are limited either to the network side or application side and not both. This makes these

algorithms unable to allow DASH clients to send information to the network in real-time

and therefore making clients to only depends on the conditions available from the network

side. It is worth noting that, DASH is a client-driven adaptation strategy that does not

consider end-to-end management aspects for multimedia services delivery.

7.3.3 Limited considerations of Different Video Content Types

The underwhelming growth of UHD has opened up the opportunity for OTT services

to promote 4K/8K video streaming services as premium, adding a differentiating edge

to consumers. For example, Netflix provides OTT services with UHD contents such as

Amazon Prime Video, iTunes, Vimeo, Vudu and YouTube [209]. In this work, only three

types of video contents categorized into fast, slow and medium movements are used for

experiments as described in Chapters 4 to 6. For example, the BasketballDrive, BQTerrace

and ParkScene, Vidyo and the Big Buck Bunny video sequences are used with limited

video resolutions ranging from 360p, 480p, 720p and 1080p. However, emerging video

streaming services with higher video resolutions such as 4K/8K/12K were not considered

in this work. There is a need for the proposed algorithms to be tested using these emerging

video services with higher resolutions.

7.3.4 Limited considerations of Different Video Streaming Patterns

This work is mostly limited to a centralized controller where in real-world scenario, more

than one controller can be implemented to provide control to more than one network

elements in form of clusters. Such design could avoid a single point of failure such that

when one controller fails, then the network control can be moved to another OpenDaylight

controller. The proposed algorithms can be extended to run in a distributed environments

where video streaming sessions are controller by more than on controller in the SDN
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network.

7.4 Promising Directions of Future work in QoE Management

The implemented algorithms and architectures can be extended and overcome some of

QoE challenges in different research areas of video streaming and the general management

and orchestration of resources in future softwarized 5G networks. However, as we move

towards future 5G networks, there are significant research areas where this work can

be incorporated. In that aspect, this section, presents future research directions and

recommendations to replicate this work in the area of QoE-oriented network sharing

and slicing, emerging multimedia services and applications in 5G networks and QoE

management and orchestration of resources in future 5G softwarized systems that leverage

the integration of SDN and NFV.

7.4.1 QoE-oriented Network Sharing and Slicing in Future Softwarized Net-

works

Moving from hardware-based to software-based platforms could potentially simplify

the multi-tenancy support where multiple services/applications from different vertical-

specific use cases can be accommodated over a common SDN/NFV-based infrastructure.

Besides, evolving the network sharing paradigm to the concept of network slicing that

enables multiple VNFs to be configured on the same NFV platform results in many

network slice management problems. Although the dynamic resource sharing among slice

tenants would make network resource utilization more efficient, the contribution of work

can be extended towards implementing an intelligent scheduling algorithms that may

allocate resources among these slices in 5G softwarized networks. Besides, the problems

concerning NFs placement within a slice, intra/inter-slice QoE management still needs

significant efforts to achieve and realize the effectiveness of the network slicing concept in

future networks. The QoE-aware MPTCP/SR architecture presented in section 6.6 can be

extended towards this direction.

Also, another research direction that needs extensive exploration is related to the isolation

between slices, mobility management, dynamic slice creation, and security. Concerning

isolation, a set of consistent policies and appropriate mechanisms have to be clearly
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defined at each virtualization layer. On the other hand, regarding performance, specific

service performance and QoE requirements have to be met on each slice, regardless of

network congestion and performance levels of other slices. With security and privacy,

efficient mechanisms have to be developed to ensure that any attacks or faults occurring

in one slice must not have an impact on another slice. That way, the network sharing and

slicing in future softwarized networks using SDN and NFV can be realized in a practical

implementation [210].

7.4.2 Emerging Multimedia Services and Applications in 5G Networks

The recent developments in the field of video streaming such as the introduction of

higher resolution videos (4K/8K) and newer video formats such as High Dynamic Range

(HDR)/Wide Color Gamut (WCG), Light Field, etc. along with the growing number of

video-capable devices are the key driving factors for developing intelligent QoE-based

management strategies for future video services over softwarized infrastructures. As

described in Section 2.5.2, to improve the overall QoE of the users, multimedia communi-

cation resources have to be controlled intelligently to ensure as high QoE as possible as

done in [29], [30], [12], [101]. Despite these efforts, the current QoE models and algorithms

for delivery of adaptive video streams have three limitations: (1) they are developed to

capture the behavior of the "average" user, and hence some of them are not personalized,

(2) they do not consider the context in which the streaming session takes place, and (3)

only the QoE model of the users is inserted into the control loop, but not the user itself.

It is worth mentioning that using the network, application and user-level parameters

this work could potentially be extended to allow creating QoE personalized models of

emerging video streaming services such as 4K/8K or 12K in the future 5G networks. The

QoE-fair maximization of multiple competing clients in a shared softwarized environment

is another area where this work can be replicated to provide significant improvements of

end-user’s QoE.

Future 5G networks will support the integration of large IoT devices and applications

such as healthcare, smart grids, smart cities, and smart offices as well as transport and

smart cars. AR/VR services are a rapidly growing market driven by advances in the

device capabilities, consumer excitement about new user experiences, and a range of

practical applications (healthcare, automation, etc.). New typical QoE-based models
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tailored for these applications have to be developed before their deployment in future

networks. For example, given the limited computational performance of small mobile

devices and the presence of considerable delays in network communication, many systems

(e.g., driver-assistance systems, medicine) are currently restricted to the display of a small

amount of mostly static information. As a consequence, these systems are at this stage

only of value to a limited set of applications. The QoE management architectures and

algorithms developed in this work can be extended to support other services such AR/VR

and multimedia IoTs.

7.4.3 QoE Management and Orchestration of Resources in Future 5G Soft-

warized Networks

Moving legacy NFs from a hardware-centric to software-centric approach using SDN

and NFV in future networks not only demands changes on how networks are deployed,

operated and managed but also on the orchestration of resources while making sure that

the network functions are instantiated in a systematic and on-demand basis. Towards this

direction, the ETSI MANO framework has already shown a direction, with anticipated ca-

pabilities of life-cycle management and configuration of VNFs. Following that trend, other

proposals have appeared that provide solutions for a management platform for VNFs such

as Cloud4NFV [211], or NetFATE [212] (which considers the desired QoE of traffic flows

during the orchestration of virtualized functions). Relying on the ETSI NFV framework,

the AT&T’s ECOMP project [213], the Open Source MANO (OSM) project [197], and the

ONAP project [214] implement the Service Orchestrator (SO) on top of NFVO. ONAP

provides a vendor-agnostic, policy-driven service design, implementation, analytics and

life-cycle management for large-scale workloads and services, such as residential vCPE.

With ONAP, operators can orchestrate both physical and virtual NFs synchronously. The

OPNFV [215] creates a reference NFV platform to accelerate the transformation of enter-

prise and service provider networks. Still, the OSM [197] from ETSI NFV working group is

working on a reference framework that implements MANO functionalities by integrating

three other open source platforms (OpenMANO [216], RIFT.ware [217], and JUJU [218])

into a single platform. Other related MANO frameworks and architectures that consider

the management and orchestration of both virtualized and non-virtualized functions

have been proposed in [22]. Despite these efforts, current proposals are only focused on

NFV management and orchestration. There are no efforts given on the management and
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orchestration of both SDN and NFV resources in future 5G softwarized networks. While

existing projects are focusing on novel architectures that provide the needed flexibility and

programmable networks using SDN/NFV or ICN [219], [220] QoE-aware/driven man-

agement schemes for multimedia delivery services over future softwarized infrastructures

using ML/AI are not covered yet. The QoE-aware MPTCP/SR -enabled architecture for

softwarized networks presented in chapter 6 can be extended towards this direction. With

the integration of SDN and NFV as shown in Fig. 6.7, the proposed architecture can be

extended to support E2E multi-domain management and orchestration of resources across

multiple administrative domains in 5G sliced networks. The future implementation of

multi-domain in 5G networks would enable the interaction of multiple administrative do-

mains at different levels with different service and infrastructure providers. It would also

ensure that video service requests from different domains are mapped into multi-operator

and multi-technology domains while matching each service ELA requirements.

7.5 Conclusions

The increasing numbers of data consuming devices which run enhanced applications such

as live video streaming, social networking, 3D/HD video, video gaming pose a challenge

to mobile and service providers in terms of management of multimedia networks as end-

users become accustomed to more resource demanding services with better quality. Fixed

and mobile networks today are converging towards the future softwarized networks

that will leverage existing and new cutting edge technologies such as SDN and NFV.

This integration is set to provide access to any service with better quality to the end-

users through a reliable and cost effective communication, over any medium and across

multi-operator domains using different networking technologies. In order to meet these

requirements, new architectures and intelligent schemes for QoE control and management

of future multimedia services have to be designed and developed. As an efforts to respond

towards this need, the work in this thesis investigates and develops QoE-centric control

and management schemes of video streaming services in software defined and virtualized

networks.

The work first presents the background of HAS solutions as the dominant techniques for

streaming videos over the best-effort Internet. The work presents next network softwariza-

tion and virtualization using SDN and NFV as an important elements for QoE control and
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management of multimedia services. This is followed by a description of the proposed

QoE-sotwarization aspects of multimedia services using SDN and NFV. The work further

provides state-of-the-art solutions and challenges regarding QoE management for HTTP

adaptive video streaming using SDN/NFV.

As an important approach to this work, a video quality management scheme based on

the traffic intensity under Dynamic Adaptive Video Steaming over HTTP (DASH) using

SDN is presented followed by QoE-driven SDN based resource allocation mechanisms

for improving the end-users’ video quality. In order to meet the aspects of QoE control

and management in future networks, this work presents a novel QoE-aware, SDN-based

approach for managing multimedia services quality using MPTCP and SR paradigms.

MPTCP and SR are utilized to reduce the deployment cost, increase flexibility, reliability,

scalability and achieve an optimized E2E QoE level for the end-users in softwarized

network. The extensive simulations performed in this work, quality evaluations based

on data collected from from real-time multimedia transmissions over the developed QoE-

aware SDN/NFV prototype demonstrates the credibility and innovativeness of the new

developed QoE control and management schemes for future multimedia services.

146



147



Acronyms

BALIA Balanced Linked Adaptation. 79

CAPEX Capital Expenditure. 27

D2D Device to Device. 1

DANE DASH-Aware Network Elements. 19

DASH Dynamic Adaptive Streaming over HTTP. 16

DPI Deep Packet Inspection. 27

ELAs Experience Level Agreements. 4

ETSI European Telecommunication Standard Institute. 27

HAS HTTP Adaptive Streaming. 10

KPI Key Performance Indicators. 100

KQI Key Quality Indicators. 14

LIA Linked Increases Algorithm. 79

M2M Machine to Machine. 1

MANO NFV Management and Orchestration. 29

MCSPM Multi-flow commodity and Constrained Shortest Path Model. 7

MEC Multi-access Edge Computing. 3

MPD Media Presentation Description. 17
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NFV Network Function Virtualization. 3

OLIA Opportunistic Linked Increases Algorithm. 79

OPEX Operational Expenditure. 27

OTT Over-The-Top. 16, 44

PED Parameters Enhancing Delivery. 19

PER Parameters Enhancing Reception. 19

QoE Quality of Experience. 1

QoS Quality of Service. 14

QUIC Quick UDP Internet Connections. 16

SAND Server and Network Assisted DASH. 10

SDN Software Defined Networking. 3

SFC Service Function Chaining. 11

SP Service Providers. 2

TCAM Ternary Content-Addressable Memory. 81

TE Traffic Engineering. 7

VNF Virtual Network Function. 100
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