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Abstract

We study the role of the so-called ’shadow banking’ sector in innovating

aggregate money supply and providing safe assets to meet demand from as-

setholders with a need for low-risk, high-liquidity monetary services. We

consider the measurement and literature around shadow banking to date,

econometrics of modelling money demand, and latent factor approaches. In

doing so we contribute to a literature around shadow banking founded on

the papers of Pozsar, Adrian, Shin, Gorton, Metrick, and their various co-

authors. We set the shadow banking sector within the financial frictions

paradigm espoused by Bernanke and co-authors, and our empirical approach

builds on the work of Johansen & Juselius (1990), as extended by Stock &

Watson (2002). The focus on demand for money in the UK follows the

work of Drake & Chrystal (1994). The quarterly-frequency dataset collected

follows the work of Errico et al (2014), and covers 38 variables from Q1

1984 to Q2 2016 (130 quarters). The empirical methodology extends the

Factor-Augmented VECM approach of Banerjee & Marcellino (2009), and

introduces a novel technique of time-cluster analysis in Principal Component

space. A novel identification strategy is also applied, extending the work of

Johansen & Juselius (1990). Assessing hypotheses due to Pozsar (2013)

and to Krishnamurthy & Vissing-Jorgensen (2012), we find evidence that

shadow-bank-created ’money’ is treated as a safe-asset substitute both for

government debt and for deposits in the regulated banking sector.
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Chapter 1

Introduction

“Money markets are frequently a backwater, except when they are not, in

which case they are cascading rapids. . . [in August 2008] global money mar-

kets became not just cascading rapids, but roaring waterfalls. The financial

world will never be the same after the US Treasury and Federal Reserve’s

fateful decision on the weekend of September 13-14 to stand aside, as Lehman

Brothers plummeted to death on the rocks below”

Paul McCulley, 2009

1.1 Outline of Thesis

National economies have endured financial crises before. The South Sea

Bubble of 1720 prompted the Bank of England to become one of the world’s

first Central Banks. The free banking era in the United States (1837-1862)

led to the failure of around 50% of the state-chartered banks active during

this period, and engendered the creation of the Federal Reserve System –

arguably the most prominent Central Bank in the world today. However,

the ‘Great Recession’ of 2008, preceded (and perhaps in no small part caused

by) a bank lending pullback known at the time as the ‘Credit Crunch’, was

notable for its global reach and profound and long-lasting consequences in

the form of low growth, wage stagnation, historically low interest rates and

damaging fiscal austerity in the United Kingdom.
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The credit crunch was in turn preceded and likely precipitated by a valu-

ation crisis in the US ‘subprime’ mortgage market – high-risk, high-yielding

loans to low-income borrowers with poor credit ratings. These loans were

frequently ‘securitized’ – the firm advancing the money to the ultimate bor-

rower was in turn advanced that money by a firm with cash on hand that

could not or would not merely be left in a conventional bank deposit account.

In exchange, the finance firm in contact with the client sold the right to the

borrower’s stream of repayments to the upstream firm, appropriately dis-

counted and promising an interest rate indicative of the risk associated with

the transaction – yet often, for reasons that will be explored in due course,

with a rating-agency assessment that the product was far less risky than

its ultimate borrower’s credit characteristics might suggest. This essential

process was iterated into the many acronyms familiar to a news-watcher of

September 2008 – CDOs, CMOs, CDOs-squared, Synthetic CMOs. These

financial securities, and many others, along with the chains of financial mar-

ket participants that they connect, constitute what Paul McCulley termed

the ‘Shadow Banking System’(SBS) – a capital-markets based analogue of

the deposit-taking and loan-making activity of the traditional bank as pop-

ularly envisaged.

10 years have passed since the subprime crisis, and the shadow banking

system is an active area of economic research – though substantial research

questions of interest exist, particularly with respect to the shadow bank-

ing system outside the US. There remain differing estimates of the scale of

shadow banking activity – including anywhere from 50% to 150% the size

of the regulated banking sector [Pozsar et al., 2010]. The simple question

of economic good or bad remains to be further studied. Does the shadow

banking system extend credit to those ‘underbanked’ whom the regulated

sector is unwilling or unable to serve? [Purnanandam, 2010]. Access to

credit is generally held to be conducive to economic growth. Does the SBS

compete with the TBS (Traditional Banking Sector) in loan markets, aid-

ing credit price discovery and market efficiency? On the other side of the

balance sheet, does the shadow banking sector have a beneficial role in pro-

ducing safe assets to meet otherwise unmet demand? What is the role of

the SBS in responding to central bank monetary policy? What is its role in

2



money creation- should its deposits be considered money or near-money, or

are they better modelled as equity-like liabilities? The latter suggests a role

for an analysis of the SBS in assessing the narrow-banking proposals of, for

example, [Cochrane, 2014] and the ‘Chicago Plan Revisited’ of [Beneš and

Kumhof, 2012] - all-equity funded lending having some similarities with the

process of securitisation. Does the mark-to-market nature of credit extended

by the SBS help investors accurately gauge credit risk, or does the securi-

tisation process obscure information to broaden the extension of credit by

mitigating information asymmetries that could lead to market failure [Dang

et al., 2017] - and is to do so welfare optimal?

Various authors have considered shadow banking from the perspective

of safe asset demand or as a response to financial frictions. Pozsar and

co-authors have produced a series of highly detailed descriptive papers con-

cerning the ‘plumbing’ of the US shadow bankings system [Pozsar et al.,

2010, Pozsar, 2013, Pozsar, 2014]. Gorton & Metrick concern themselves

with the functioning of repo markets in meeting demand for safe assets

[Gorton and Metrick, 2009, Gorton et al., 2012, Gorton and Metrick, 2012].

Krisnamurthy & Vissing-Jorgensen offer a quantitative approach to assess-

ing the substitutability between government debt and other safe financial

assets for both the US [Krishnamurthy and Vissing-Jorgensen, 2012] and

European case [Krishnamurthy et al., 2017]. Duca [Duca et al., 2014] con-

siders drivers of activity in US shadow banking more broadly. However, no

author of which we are aware has advanced the study of UK shadow bank-

ing beyond attempting to decribe and measure - the present study seeks to

assess the UK shadow banking sector in the context of the well-established

economic literature on money demand.

This literature divides demand for money into transactional, speculative,

and precautionary motives [Fisher, 1911, Keynes, 1930, Hicks, 1989]. Each

of these motives may be hypothesised as having a different demand func-

tion, and a different relationship with the opportunity cost of holding money.

Shadow-bank-issued safe assets are best considered as meeting (changes in)

the speculative demand for money - Keynes’s liquidity preference, though

the work of Gorton et al [Gorton et al., 2012] in highlighting the consis-

tency of the safe-asset share in the US economy suggests an important role
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for the transactional and precautionary motives also. The broader litera-

ture on money demand typically concerns demand for real money balances,

and emphasises the speculative motive which relates demand for real money

balances to their opportunity cost - that is the interest rate available by

exchanging that money for other financial assets. The precautionary and

transactional motives may be hypothesised as being less price-elastic in na-

ture, and so it is the speculative (i.e. the risk-vs-reward) motive which is

being studied when relating demand for money to non-money interest rates

available. Sriram however [Sriram, 1999] notes that the different theories

giving rise to demand for money nevertheless have variables in common,

and as such a consensus in the literature is that empirical work on money

demand is not atheoretic, but is rather motivated by a blend of theories. Var-

ious authors including Drake & Chrystal, Hendry & Ericsson, and Nielsen

[Drake and Chrystal, 1994, Hendry and Ericsson, 1991, Nielsen et al., 2004]

have considered the case of money demand in the United Kingdom – but to

the best of our knowledge, none have set the shadow banking sector within

this framework.

This study proposes to define and describe the shadow banking sector

within the UK, and set the sector’s activity in the context of speculative

demand for real money balances. To do so, a large dataset was constructed

from time-series financial and real-economy variables as reported by the

Bank of England, the Office for National Statistics, and the International

Monetary Fund. The dataset comprises (up to) 898 variables at the Monthly

or Quarterly frequency, back as far as 1969:Q1 in some cases, though this

is not typical. The dataset has a great many missing observations, but is

acceptably dense after 1987:Q1. In aggregate, we have access to 59,299 quar-

terly variable:timeperiod datapoint pairs, and 95,131 monthly datapoints.

The research questions of interest are:

• What is the extent of shadow banking sector activity in the UK?

• Does shadow banking sector activity in the UK play a role in the

provision of safe monetary assets?

• Are these pseudo-monetary assets treated as a substitute for govern-
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ment debt or deposits in regulated banks?

These are developed into specific hypotheses in chapter 3. To address

these broad questions, we subsequently follow the work of Errico et al [Errico

et al., 2014], who map and assess the extent of shadow banking activity in

the US using the Federal Reserve’s Flow of Funds dataset to reconstruct

the balance sheets of financial sector participants from central government

to households – we attempt to approximate their analysis using UK data

from the ONS United Kingdom Economic Accounts aggregate balance sheet

dataset, also in chapter 3. Thereafter, we retrieve time-series of the rele-

vant variables from this analysis, and combine them with other financial

sector and real-economy variables. Following the work of Stock & Wat-

son [Stock and Watson, 1999, Stock and Watson, 2002, Stock and Wat-

son, 2005], Jurado et al [Jurado et al., 2015] and Bernanke et al [Bernanke

et al., 2005] concerning Factor-Augmented Vector Autoregressions (FAVAR)

and the dimensionality-reduction strategy Principal Components Analysis

(PCA), we seek to aggregate the various and disparate measures of (and

proxies for) shadow banking activity into a single synthetic time-series vari-

able incorporating as much information as can feasibly be extracted from

the dataset. Combining this synthetic variable with other time-series from

the large dataset, we construct a suite of vector error-correction models to

assess the extent to which shadow banking activity affects, and is affected

by, macroeconomic conditions in the United Kingdom.

Though we find some support for our hypotheses and some functional

forms with desirable econometric properties, the evidence is far from con-

clusive. We extend the study further into exploratory factor space, and in-

troduce a time-clustering approach to analyzing time-varying relationships

– which is believed to be novel in this field.

Addressing these questions is as vital as ever, though now in 2019 the

scarcity of government-guaranteed paper that prompted initial innovation

in composition of the money supply has reversed. With government debt

plentiful but yields close to or below 0% across much of Europe and the de-

veloped world, central banks stand as the major buyers of sovereign paper,

while private-sector money managers ‘reach for yield’ and corporate cash
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pools build up (and continue to demand safety) as firms hold back from

investing in risky products despite abundant cheap capital. An understand-

ing of how this demand for safety interacts with policy interest rates and

the conduct of monetary policy will be vital for central bankers seeking to

fight the next downturn with limited room for cutting rates before having

to have recourse to extraordinary policy. Our work suggests that it is very

likely that private-sector demand for above-all safe warehousing for capital

is highly inelastic, and even extraordinary monetary policy has little ability

to ‘force’ investors to take risk and stimulate the real economy. Explicit

nominal GDP targeting and extraordinary fiscal policy such as ‘helicopter

drops’ of money directly to consumers have been suggested as initiatives to

counteract what is once more being called ‘secular stagnation’ [Summers,

2014]. If we indeed now inhabit a world where non-risk-taking capital can-

not earn a positive nominal return, distinguishing demand for safety from

demand for yield will be vital in assessing potential for future economic

growth.

The structure of the thesis is as follows. Chapter 1 introduces the key

theoretical literature in financial economics and economics of banking, Chap-

ter 2 assesses the state of shadow banking sector research. Chapter 3 draws

on the preceding chapters to develop hypotheses for statistical study, and

describes the Errico et al [Errico et al., 2014] balance sheet analytical proce-

dure, introducing our results from applying this process to UK data. Chap-

ter 4 replicates some established functional forms from the money demand

literature, and applies these to single-variable measures of shadow banking

activity. Chapter 5 introduces and enacts the method of principal compo-

nents for latent factor analysis, and continues this work into exploratory

factor and time-clustering approaches. Finally, Chapter 6 reflects on the

research outcomes, limitations, and avenues for future work.
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1.2 Perspectives on Money and Banking

1.2.1 Money

Economics in the popular imagination is the study of money, and in that

same psyche banks are inseparable from the money they notionally house. A

slightly more sophisticated view is memorably outlined by James Stewart’s

George Bailey in Frank Capra’s 1946 film It’s a Wonderful Life;

“You’re thinking of this place all wrong, as if I had the money back in

a safe – the money’s not here, your money’s in Joe’s house, right next to

yours! And in the Kennedy house, and Mrs Macklin’s house and a hundred

others.”

Though a passable description of financial intermediation, this explana-

tion too is incomplete, not least in so far as Bailey Brothers’ Building and

Loan was a Regulation Q thrift, a mutually-held financial intermediary (FI)

much closer to the shadow banking entities that are the subject of this work

than to a high-street commercial bank. Banks provide credit, and in doing

so create money (McLeay et al, 2014) – bank deposits represent the great

majority of money in a modern economy, 97% of broad money in circulation

as of November 2013. In so doing they both provide credit to positive-net-

present-value projects that may not otherwise have taken place, and supply

a product – bank deposits – that meets a demand. For much of the 20th

Century however, conventional theoretical microeconomics abstracted away

from the counting of coins and current account balances, focusing instead on

the allocation of real resources in the form of numeraire generic consumption

goods. That is not to say that money is entirely absent from a mainstream

economic view of the world – merely that the role of money is as a facili-

tator of exchange and of quantifying resource wealth, leading ultimately to

the same allocation as would have obtained with some other entity fulfilling

these roles.

Jevons [Jevons, 1885] highlighted these two functions of money – a
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medium of exchange and a unit of account – in addition to two others,

holding also that money functions as a standard of value, and as a store of

value. The role of money as a standard of value is similar to its function as

a measure, though relies more on universal acceptability for the settlement

of debts. Indeed, no 19th Century economist long discusses money before

mentioning debt, though standard practice at the time was to cast money

not as a means of settling debts, but as a means of enabling transactions

otherwise thought to have relied upon barter. In this paradigm money is

seen as a means to avoid the need for a ‘double coincidence of wants’ – the

happenstance that, having some surplus with which to barter, an economic

agent encounters a trading partner who has what she needs and needs what

she has. The notion of money as a successor to a barter economy occurs in

introductory textbooks such as Sloman & Wride [Sloman and Wride, 2009],

and has a precedent stretching to the foundational text of the field of polit-

ical economy, Smith’s On the Nature and Causes of the Wealth of Nations

[Smith, 1776].

However, Graeber [Graeber, 2012] notes that these are pure thought ex-

periments, and very seldom is any evidence for a barter period preceding a

monetary economy present in the historical, anthropological or archaeolog-

ical record. Rather, barter is most readily documented between economic

actors used to transacting with money but for some reason deprived of it

– perhaps during a financial crisis, or in the canonical example, the use of

cigarettes as currency in prisons or PoW camps. In this latter example it

will be readily seen that it is the fulfilment of the four functions of money

that adds value, rather than any characteristic of money itself- the functions

then precede the entity, and there is no reason why all four needs must be

met by a single entity. In fact the differing functions imply differing ideal

characteristics of the entities that perform those functions – a store of value

or medium of exchange might be light, portable and non-perishable, easy

to store and retrieve, while a unit of account need have no physical form

at all. Indeed in our modern economy bank deposits function as a store of

value and as a medium of exchange, employ the pound sterling or the dollar

as a unit of account, but take on physical form only when exchanged for

banknotes or coins.
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Prior to the establishment of banks or even the development of precious

metal specie, Graeber [Graeber, 2012] argues that it was credit and debt -

not barter - that gave rise to the need for the four functions of money to

be met. A sufficiently small community might solve the double coincidence

of wants problem by allowing the two transfers that constitute a barter

exchange to take place at different times – creating an IOU stored in a kind

of communal memory. Smith saw in human nature “a certain propensity

. . . to truck, barter, and exchange one thing for another” [Smith, 1776] but

even more fundamental might be the human affinity for reciprocity [Bendor,

1987] – to do for one another favours, and keep a mental ledger of favours

owing and owed. From this attribute, as societies grew larger and more

complex, arose the need to record these arrangements in a consistent unit

of account, with an agreed standard of value, to be settled in an acceptable

medium of exchange [Graeber, 2012], and thus the need for money.

Throughout history money has variously been created by private enter-

prises and by state governments, often based on precious metals. Since the

dissolution in 1971 of the Bretton Woods system, state-created fiat money

has been considered typical in developed economies. States require taxes

to be settled in their fiat currency, ensuring its use as a unit of account

and widespread acceptability as a medium of exchange. Further, fiat cur-

rency states are not constrained by a fixed supply of precious metal in the

amount of currency they can issue – freeing central banks to target other

economic outcomes of importance, such as price level control. In practice,

such economies rarely wish or attempt to control the quantity of money sup-

plied, preferring to adjust the price of money in the form of interest rates.

State money constitutes an asset of the holders without necessarily being a

liability of the state – though one might think of the asset side of the state’s

balance sheet as being future tax revenues, or just a kind of national net

wealth.

The question of whether such money constitutes net wealth or is offset

by future tax liabilities begins with Ricardo [Ricardo, 1820] and depends on

model assumptions about wealth transfer between generations [Weil, 1991]

as well as the specific tax structures in question. In the recent paradigms

of Modern Monetary Theory and Post-Keynesianism, as well as the work

9



of Keynes himself, government spending is the prior act – the state spends

money into existence. In doing so, the government issues debt, which in

Ricardian equivalence implies a future tax to repay – even if such tax is in-

definitely far in the future – and the corresponding need for economic actors

to save in order to pay this tax prevents any aggregate demand impact.

In Modern Monetary Theory (MMT), the state is not constrained by the

need to fund borrowing with future tax revenues – the central bank stands

ready as a willing purchaser of government debt and can create reserves to do

so. MMT focuses upon central bank reserves as the ultimate form of money,

and reserve control as the key aspect of central banking – in this paradigm

it would be undesirable for government to be debt-free, as government debt

issuance allows injection of reserves into the commercial banking system

[Caverzasi and Godin, 2014].

In the shadow banking system government bonds in fact perform many

of the functions of base money for nonbank financial intermediaries who can-

not access central bank reserves directly – they constitute a store of value

and a medium of exchange in sale-and-repurchase (repo) secured lending

transactions. The reuse by rehypothecation of the fixed quantity of govern-

ment debt allows the shadow banking system to meet some of the demand

for safe assets in the economy [Gorton and Metrick, 2012, Krishnamurthy

and Vissing-Jorgensen, 2012].

1.2.2 How banks create money

McLeay, Radia and Thomas [McLeay et al., 2014] artfully set out the mone-

tary role of commercial banks in the first publicly available Bank of England

research paper embraces the view that commercial banks create money when

they lend – and so depart from the view that commercial bank lending is

constrained by a central bank reserves multiplier. While a level of reserves

was legally required in the UK before 1981 and was voluntarily set until

2009 – and remains a requirement in the US – this constraint does not bind,

provided central bank reserves are readily available to commercial banks

demanding them. The constraint on bank lending is rather profitability of

lending projects, and so commercial banks may be expected to lend without
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limit to borrowers for whom the expected rate of return is believed to jus-

tify the risk. In making a decision to lend, the commercial bank unilaterally

expands its balance sheet, matching its new loan asset with a correspond-

ing deposit liability in the borrower’s account with the bank – a deposit

which of course is expected to be withdrawn or otherwise spent, deposited

in the bank of the seller of whatever is purchased with the loan, and settled

between the commercial banks by transfer of central bank reserves.

Correspondingly, commercial bank created money is destroyed when

loans are repaid, and the whole process is conditional on easy access to func-

tionally unlimited central bank reserves by the commercial banks – clearly

this violates the Modern Monetary Theory predicate that reserve control

determines the money supply. Instead the central bank seeks to influence

commercial bank lending decisions by setting the interest rate price of re-

serves – for a given universe of investable projects, the lower the interest

rate the larger the number of these projects have a positive expected rate

of return and so will be approved for loans, expanding the money supply.

1.2.3 Microeconomics of banking

Banks however are not mere benevolent providers of the transaction medium.

As with any profit-maximising firm in the economy, they produce products

that are demanded, and consumers pay for those products. One of these is

access to credit itself, and it is in this form that a financial sector enters the

otherwise money-free general equilibrium paradigm of microeconomics at-

tributed to Arrow, Debreu and McKenzie [Arrow and Debreu, 1954, McKen-

zie, 1959]. Specifically, access to credit allows agents to smooth consumption

– to have a time path of consumption that is not constrained by a potentially

uncertain time path of income. Given the risk aversion implied by prefer-

ence convexity / diminishing marginal utility, the typical economic agent

has that expected utility of a given wealth outcome is higher than utility

of the same wealth in expectation but over disparate outcomes: access to

financial contracts can help risk-averse consumers smooth consumption by

forgoing consumption in good states (by saving or buying insurance con-

tracts) in exchange for a guaranteed minimum level of consumption in bad
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Figure 1.1: Money creation by the aggreate banking sector making addi-

tional loans

[McLeay et al., 2014]. The following notes provide further explanation and definition of
the various terms used in this figure:
1. Balance sheets are highly stylised for ease of exposition: the quantities of each type of money shown do not

correspond to the quantities actually held on each sectors balance sheet.

2. Central bank balance sheet only shows base money liabilities and the corresponding assets. In practice the

central bank holds other non-money liabilities. Its non-monetary assets are mostly made up of government debt.

Although that government debt is actually held by Bank of England Asset Purchase Facility, so does not appear

directly on the balance sheet.

3. Commercial banks’ balance sheets only show money assets and liabilities before any loans are made.

4. Consumers represent the private sector of households and companies. Balance sheet only shows broad money

assets and corresponding liabilities – real assets such as the house being transacted are not shown. Consumers’

non-money liabilities include existing secured & unsecured loans.
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Figure 1.2: The Arrow-Debreu-McKenzie economy with redundant financial

intermediaries

[Freixas and Rochet, 2008]

states.

In Arrow-Debreu however there is no requirement that financial interme-

diation be enacted by banks specifically- the following demonstration (figure

1.2) of this finding is reproduced from Freixas & Rochet’s canonical 1997

treatise on the microeconomics of Financial Intermediaries (FIs) [Freixas

and Rochet, 2008]:

We explain the model in more detail in order to motivate the financial

frictions paradigm upon which much of the theoretical literature concerning

shadow banking is based. As will be seen, absent such frictions not only is

there no theoretical need for a shadow banking sector, there is little justifi-

cation for the existence of any financial intermediary – including regulated

banks. As figure 1.2 indicates, that this is a 3-sector, 2-period (t = 1, 2)

model which omits the government and public sector for simplicity. The

households (denoted subscript h) are endowed with 1 unit of the numeraire

good, some to be consumed at t = 1, some to be invested by the firms

(denoted subscript f ) at t = 1 to produce consumption at t = 2. The rest

of the model is presented in terms of a representative consumer, firm, and

bank (subscript b), with holdings of investment, bonds, loans, deposits and

savings denoted I, B, L, D and S respectively- thus for example Bh de-

notes the bonds held by households. Numerical subscripts denote time in

13



the 2-period framework, thus for example (C1, C2) represents the division

of consumption by households between period 1 and period 2.

The consumer

The consumer selects consumption profile (C1, C2) and the allocation of

savings S between bank deposits Dh and bonds Bh to maximise her utility

function given her budget constraints:

maxu(C1, C2) (1.1)

C1 +Dh +Bh = ω1 (1.2)

pC1 = Πf +Πb + (1 + r)Bh + (1 + rD)Dh (1.3)

where ω1 represents initial endowment, p denotes the price of C2 (second-

period consumption), Πf and Πr are profits of the firm and bank respec-

tively, and r and rD denote the interest rate paid on bonds and bank deposits

respectively. It will be noticed that in this model, bonds and bank deposits

are perfect substitutes for the consumer, and so an interior solution will be

found iff r = rD.

The firm

The firm faces similar tradeoffs to the consumer, and seeks to maximise

profit choosing an investment level I, and the funding mix between banks

and capital markets given that the firm has no initial endowment:

maxΠf (1.4)

Πf = pf(I)− (1 + r)Bf − (1 + rL)Lf (1.5)

I = Bf + Lf (1.6)
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where f denotes the production function of the firm, and rL the interest

rate paid by the firm on its bank loans. Lf represents the aggregate quantity

of loans extended to firms, and Bf the quantity of bond borrowing, and so

equation 1.6 shows that the firm can only produce to the extent that it can

borrow to invest, and sells its goods to the consumer at the price of second-

period consumption p. Once more a corner solution will be adopted with

either bank loans or capital market funding preferred unless r = rL.

The bank

The final step then is to complete the model with the bank’s loan supply

and deposit demand, chosen to maximise profit:

maxΠb (1.7)

Πb = rLLb − rBb − rDDb (1.8)

Lb = Db +Bb (1.9)

That is to say that the bank’s profit Πb is its revenue from loans rLLb

less interest paid out on bond borrowing (rBb) and interest paid on deposits

(rDDb). The bank can only extend an aggregate volume of loans Lb to the

extent that it can fund that credit with either deposits (Db) or by borrowing

in the capital markets (Bb). The equilibrium conditions are that each market

should clear:

I = S

(Goods market)

Dh = Db

(Deposit market)

Lf = Lb
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(Loan market)

Bh = Bf +Bb

(Capital market)

and that each agent behaves optimally, i.e. solving 1.1-1.9 above. Based

on the firm and household demand schedules above, we obtain that in equi-

librium, r = rD = rL, banks make zero profit from 1.8 above, and firms and

households are indifferent between bank instruments and capital markets

securities for borrowing or saving respectively.

1.2.4 Extending the model

Freixas and Rochet extend this model to the case of uncertainty, obtaining

that with perfect access to complete financial markets, and based on the

no-arbitrage assumption, there will exist a complete continuum of state-

dependent Arrow securities, each of which pays 1 numeraire in state s(s ∈ Ω)

and zero otherwise, with corresponding prices ps, and where Ω represents

the set of all future states. Suppose a bank issues a security j characterised

by the array xjs(s ∈ Ω) of its payoffs in all future states s. That is to say

that x has j rows, one for each security, and s columns, one for each possible

future state, and the typical element is the payoff of j in state x. For Arrow

securities, paying 1 in state s and 0 otherwise, this will be an identity matrix.

Be it a deposit or a loan, by absence of arbitrage its price must be

Zj =
∑︂
s∈Ω

psx
j
s (1.10)

which is to say that the price of j is its expected value. Given j may be

interpreted as a deposit with the bank or a loan to the bank, it is apparent

that banks will still make zero profit, and so the general equilibrium model

with complete markets is ill-equipped for the theoretical study of financial

intermediaries.

The Arrow-Debreu-McKenzie paradigm is however based on strident as-

sumptions, various relaxations of which can grant theoretical foundation for

a financial sector. These assumptions include complete markets, perfect
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competition, zero transaction costs and preference convexity. The post-

1970s emergence of the asymmetric information paradigm, wherein different

actors possess differing information about economic variables will attempt to

use this for their own profit, is highlighted by Freixas & Rochet [Freixas and

Rochet, 2008] as critical to the theoretical study of financial intermediation.

Borrowing from the field of industrial organisation, they note that in the

presence of transaction costs or other ‘frictions’ in the transmission technol-

ogy, intermediaries who buy from producers and sell to consumers can exist

profitably. Freixas and Rochet here define a financial intermediary as “an

economic agent who specialises in the buying and selling (at the same time)

financial claims” [Freixas and Rochet, 2008], while elsewhere they define a

bank as “an institution whose current operations consist in granting loans

and receiving deposits from the public” [Freixas and Rochet, 2008]. They

proceed to offer two main justifications for the existence of FIs conditional

on the relaxation of the ‘complete markets’ assumption of Arrow-Debreu-

McKenzie: first, that financial markets are not in practice complete; and

second, that banks offer diversified services to their customers, visible only

in the form of financial transactions. These relaxations yield a variety of

models, and their respective extensions. Such frictions are of interest to us

as they allow for the existence of a financial intermediation sector, and dif-

ferences in these frictions between regulated and shadow banking may have

a role in influencing the scale of shadow banking activity.

1.2.5 Incomplete information

Freixas and Rochet [Freixas and Rochet, 2008], theorised that information

asymmetries may be introduced in advance of the lending decision (yielding

adverse selection type problems), contemporaneously (involving problems

of moral hazard), or in determining payoffs (costly state verification). Inas-

much as these information asymmetries lead to financial frictions such as

monitoring costs, state-verification costs, or risk indivisibilities, and pro-

vided those transaction costs are not proportional to transaction size, in-

vestors will obtain economies of scale by organising into coalitions to share

these costs, or to spread risk more optimally. Bryant [Bryant, 1980] presents
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a model in which financial intermediaries (FIs) arise as an optimal response

to an exogenously-given liquidity shock of unknown size; consumers discover

in the second of three periods whether they will have to consume ‘early’ or

‘late’ and are unable to insure against this risk in advance even in the pres-

ence of financial markets, as no single agent can observe the total state of

the economy.

Traded securities are not contingent on the incidence of these shocks,

but only on the endogenous price of the bonds, which in turn depends on

the return to investing in the first period. Thus, too many agents still prefer

to invest and suboptimal allocations are reached when some are forced to

liquidate early, returning less than the initial investment. Formation by

consumers of a financial intermediary can attain the optimal allocation by

offering deposit contracts that provide, in exchange for a deposit of one

numeraire in the first period, a withdrawal of optimal consumption level in

either the second or third period when they discover their own type, and

the FI can meet its obligations by storing assets in equal proportion to the

early withdrawers and investing the rest (though no individual knows her

type ex ante, the distribution of early and late types in the population is

common knowledge) [Bryant, 1980].

However a Bryant-style FI cannot coexist with an asset market, and the

bank’s ability to fulfil its contracts depends on no late type idiosyncratically

withdrawing early- which there is no unilateral incentive to do, absent an

asset market. If however a late consumer does not trust the bank, does not

trust her fellow consumers or does not believe that they trust the bank, the

situation can degenerate quickly into the equilibrium bank run of Diamond

and Dybvig [Diamond and Dybvig, 1983]. In this widely-studied model, the

optimal FI contract promises early withdrawers a larger payoff than they

would receive in the free market equilibrium, prompting concerns from late

types (who nevertheless receive a larger allocation by leaving their deposit

with the bank, yielding a Nash equilibrium with no runs provided all late

types believe that all other late types will do likewise). If however they

believe that other late types will withdraw early, types being unobservable,

they will have an incentive to do likewise. This decision can be predicated

only on observing the line at the bank in the early withdrawal period, which

18



in turn faces a sequential service constraint, so cannot selectively suspend

convertibility of deposits. Sources of mistrust may be given exogenously, as

in the ‘sunspot’ bank runs of Anderlini [Anderlini, 1989], or based on certain

agents receiving a signal about the likelihood of a bank run, after Postlewaite

and Vives [Postlewaite and Vives, 1987]. Further, in a repeated interaction

setting, agents may have an incentive to withdraw early if superior returns

are available elsewhere, as in the continuous-time generalisation of Diamond-

Dybvig offered by von Thadden [von Thadden, 1998]. Jacklin, writing in

Prescott and Wallace [Prescott and Wallace, 1987] critiques the Diamond-

Dybvig model on the basis that households with direct access to the market

would prefer to meet short-term liquidity shocks by trading their contingent

claims with patient types, making both better off, and rendering the bank

redundant once more - and the defence of Wallace [Wallace, 1988] rests on

imperfect access to incomplete financial markets.

As is becoming clear, FIs that arise in response to frictions in finan-

cial markets do not typically result in complete markets, but may intro-

duce frictions of their own. Acharya and Naqvi [Acharya and Naqvi, 2012],

contributing to the burgeoning post-crisis literature on the role of banks in

destabilising (rather than optimising) the financial system, show how agency

problems in FIs can induce mispricing of risk. In an expanded variant of the

now-familiar Bryant-Diamond-Dybvig model, it is shown that in conditions

of macroeconomic uncertainty, consumers may prefer to reduce their infor-

mational disadvantage by storing assets in the form of bank deposits- the

abundant liquidity with which the bank is thereby afforded leads to relax-

ation of lending standards, “fuelling credit booms and asset price bubbles

and sowing seeds of the next crisis” [Acharya and Naqvi, 2012]. The model is

further enriched by giving agents of the bank itself perverse incentive struc-

tures - when they are compensated based on loan origination, but protected

from downside risk unless bank liquidity minima are breached, they have an

incentive to overextend credit, particularly when a flight-to-quality induced

by poor macroeconomic conditions grants the banks surplus liquidity and

appears to make breach of reserve covenants less likely. This is exactly the

moral hazard problem.

The adverse selection information-asymmetry problem introduced above
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as a motive for the formation of FIs may also not be completely solved by

their introduction- Broecker [Broecker, 1990] finds that FIs competing in a

Bertrand-competitive setting will always attempt to undercut one another

to improve the credit quality of their own clientele at the expense of others

- with the aggregate outcome that too much credit is extended to unworthy

firms. In this model a firm will accept the lowest interest rate immediately,

so the only consumers who appear at successive banks are those who have

been rejected from the first bank, assuming banks are visited in order of

increasing interest rate. Banks lack the ability to price-discriminate, and in-

terest rates are common knowledge. Thus the probability of a bank choosing

to remain inactive is increasing in the number of banks in the economy. It

should be noted however that Broecker assumes an imperfect bank credit-

worthiness test, rather than the fixed cost for perfect information formula-

tion that can be mitigated by coordination. Bertrand competition allows a

firm to supply whatever quantity of a good- in this case, credit- it desires at

a particular price, while Bertrand-Edgeworth competition introduces a sup-

ply constraint. An analogue for this condition in FIs may be conceptualised

as a minimum capital requirement, and indeed Thakor [Thakor, 1996] shows

that in equilibrium, “credit-risk-based capital requirements increase credit

rationing and lower aggregate lending”. In the Thakor model, banks share

costs for both pre-loan screening and post-loan monitoring, and an increase

in exogenously-given capital requirements (eg by a government or regulatory

body) increases the probability that any given agent will be denied credit

by the entire banking system, with those banks facing the highest cost of

capital responding most vigorously. Kisin and Manela [Kisin and Manela,

2016] offer empirical support for this proposition, finding that banks would

prefer to offer guarantees to Asset-Backed Commercial Paper (ABCP) con-

duits which receive a more favourable capital requirement treatment- they

ascertain that a ten percentage point increase in capital requirements would

cost banks on average $143 million each, and cause lending interest rates to

increase by 3 basis points, and volumes to decrease by 1.5 percent.

Just as not all potential loan customers of a theoretical bank are hon-

est about the profitability of their projects, neither are all depositors wise,

alert and efficiency-maximising investors. The status of bank deposits in the
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modern economy as a form of money requires the bank to provide something

more than the investment yield that depositors might seek from a mutual

fund or bond investment – secrecy. In the model of Dang, Gorton, Holm-

strom and Ordonez [Dang et al., 2017] the very efficiency with which banks

produce information on their borrowers imperils the use of their deposits

as money. The ideal money-substitute bank deposit would have a stable,

predictable value and any information that might cause this value to fluctu-

ate would optimally be suppressed – depositors care more about minimising

the volatility in the value of their money, than reassuring themselves of the

solidity of the bank assets backing it. The Dang et al [Dang et al., 2017]

world allows for banks to exist alongside a capital market, and postulates

an equilibrium whereby banks invest in assets that are low-risk or for which

information discovery is either prohibitively difficult, or unnecessary. Other

projects will attract capital market funding. Notably, Dang et al [Dang

et al., 2017] suggest that debt is an optimal asset for backing money-like

liabilities, as its face value is constant – unlike traded instruments such as

equity, whose price reveals information.

1.2.6 Macroeconomics of banking

The Thakor [Thakor, 1996] model also notes that the response of the banking

system to public sector monetary policy depends on the effect of monetary

policy on the term structure of interest rates, introducing a further motive

for a good theoretical understanding of the functioning of financial inter-

mediaries - the role of the financial sector in the macroeconomy, and in the

transmission of government economic policy. The first-recognised channel,

the so-called ‘traditional’ interest rate channel, is the key channel in the

operation of the Keynesian IS-LM model. Subsequent authors have added

other asset price channels [Modigliani and Miller, 1958], lending channels

[Bernanke and Gertler, 1995], and risk-taking channels [Rajan, 2006, Borio

and Zhu, 2012]. We will now proceed to examine each of these channels in

a little more detail – the discussion which follows is in the spirit of Mishkin

[Mishkin, 1996].
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The traditional interest rate channels

The traditional Keynesian IS-LM model is widely taught on undergradu-

ate macroeconomics courses, and operates as follows. An expansion in the

money supply lowers the price of money in the form of real interest rates.

This lowered cost of capital causes a rise in investment spending by firms

and households, leading to an increase in aggregate demand and output

[Mishkin, 1996]. Because of the role of real, rather than nominal, interest

rates, this is a monetary-veil channel. Furthermore, the decision-makers are

real-economy firms and households, and the role of the financial sector is

limited. Mishkin however adds that due to the operation of this channel on

real interest rates, monetary policy can still be effective with nominal policy

rates at a zero lower bound – provided the money supply can be expanded

enough to bring down real interest rates. In this sense, the model provides

an intellectual basis for quantitative easing. Bernanke & Gertler [Bernanke

and Gertler, 1995] however find limited empirical evidence for the opera-

tion of this channel in the data – what Bernanke & Gertler refer to as ‘the

neoclassical cost-of-capital’ variable does not appear to be a predominating

factor in corporate or household investment decisions at the margin. Taylor

[Taylor, 1995] however, writing in the same edition of the same journal as

Bernanke & Gertler, argues for substantial empirical effects of interest rates

upon consumer spending, and thus for the importance of the interest-rate

channel in transmitting monetary policy.

Asset price channels

As the interest rate channel is believed to operate upon the real economy

only to the extent that the cost of capital affects firm and household in-

vestment decisions, it may be thought of as affecting only the fixed-income

asset class – bonds. However the prices of other assets, and their attendant

wealth effects, may also be believed to influence consumption. Notable in

this category are exchange rates and corporate equity [Mishkin, 1996]. An

expansion of the money supply or cut in policy interest rates make deposits

in domestic currency less appealing relative to foreign currency – this deval-

uation of the domestic currency reduces the price of domestic goods relative

22



to foreign goods, increasing net exports (either by a fall in gross imports or

an increase in gross exports, or both). Taylor [Taylor, 1993] argues for the

importance of this channel.

Two subchannels comprise the equity price channel in Mishkin [Mishkin,

1996] – Tobin’s q [Tobin, 1969] and the wealth effects of Modigliani [Modigliani,

1971]. Tobin’s q is defined as the market value of a firm divided by the re-

placement cost of capital. When this q is high, firms can issue equity that

is high in value relative to the plant and equipment thus funded. The sig-

nificance of this channel then rests in how monetary policy might affect the

valuation of corporate equity, and therefore q. A monetarist story according

to Mishkin [Mishkin, 1996] holds that expansionary monetary policy leaves

equity buyers with too high a portfolio ‘weight’ towards money, more than

is desired for speculative and other motives – they may rebalance away from

money by buying equities, increasing equity prices and therefore q. An al-

ternative, Keynesian theory in Mishkin [Mishkin, 1996] is that expansionary

monetary policy makes equities more attractive relative to bonds, leading to

a similar portfolio rebalancing effect. It will be seen that both these effects

operate upon portfolio allocation decisions, respectively of potential borrow-

ers and of buyers of financial instruments. Such portfolio-rebalancing effects

will be encountered later, once more from the point of view of borrower firms,

and also from that of financial intermediaries.

Modigliani’s [Modigliani, 1971] wealth effects have much in common with

the Keynesian case outlined above, but without the link through Tobin’s q

to aggregate output. Given some holdings of equities, when equities increase

in value holders see an increase in their wealth, and may decide to consume

some of it depending upon their marginal propensity to consume. Equity

as used here can be broadly defined [Mishkin, 1996] – housing and land

wealth may be included, and as a major component of the wealth of most

households, changes in the valuation of this wealth can be consequential

for aggregate demand. Such valuation shufts may be linked to monetary

policy through the effect of monetary policy upon real interest rates, and

thus dividend-discount valuation models of the Gordon type [Gordon and

Gordon, 1997].

It should be noted that none of the channels above are entirely mutually
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exclusive – operating side-by-side, they may lead to accelerator or multiplier

effects. A particular case of accelerator effect was outlined by Bernanke &

Gertler [Bernanke and Gertler, 1995] , and we discuss that and the broader

class of credit channels hereafter.

Credit channels

The credit channels outlined in the literature following Bernanke & Gertler

[Bernanke and Gertler, 1995] emphasise the real-economy effects of the fi-

nancial frictions arising from theoretical models outlined above. They may

be subdivided into the bank lending channel and the balance sheet channels.

The bank lending channel is premised upon the notions that banks have

an advantage in situations of informational asymmetry in credit markets

[Fama, 1985] , and that different types and sizes of firms have differing

levels of reliance on bank funding [Kashyap et al., 1992]. Provided that (for

some borrowers at least) bank loans are not perfectly substitutable with

capital market borrowing, expansionary monetary policy will increase the

loan supply to borrowers with no alternative, expanding output. Clearly this

channel could be sterilized by more closely-substitutable funding sources for

such firms, or in a world where the availability of reserves is not the binding

constraint on bank lending to profitable projects. Mishkin [Mishkin, 1996]

notes that the bank lending channel may be becoming less relevant given

post-1980s regulatory shifts relaxing the reserve constraint, and broadening

diversity of funding sources. Jiménez et al, [Jiménez et al., 2014] assembling

a large dataset of twenty-three million bank loans, find that lower overnight

interest rates do indeed induce banks to lend more and with lighter covenants

to riskier firms. They further document a symmetry between smaller firms

reliant on bank borrowing, and more thinly-capitalised banks reliant on

commercial lending.

The balance sheet channel also depends upon informational asymmetries

in the market for credit. In this case the uncertainty surrounds the quality

of assets on the borrower firms’ balance sheets, which can be pledged as

collateral against bank or capital markets borrowing. The presence of such

uncertainty may lead banks to lend at above-optimal interest rates or below-
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optimal volumes, respectively overpricing or constraining credit, and in any

case lowering investment spending and output – this is the external finance

premium [Mishkin, 1996]. Monetary policy through this channel then oper-

ates via its effect on either the size or the uncertainty surrounding the size

of firms’ balance sheets. As seen above, expansionary monetary policy may

increase the valuation of firms’ equity – expanding their balance sheet and

easing collateral concerns. Expansionary monetary policy can also soothe

lenders’ concerns by bolstering cashflow, improving debt interest coverage

ratios [Bernanke and Gertler, 1995]. A third balance-sheet channel sug-

gested by Mishkin [Mishkin, 1996] concerns the effect of monetary policy on

the general price level. As debt has a fixed nominal face value, a general

increase in price level should increase the nominal value of a firm’s assets,

while the nominal value of debt remains constant. Thus the ratio of debt

liabilities to the firm’s total assets falls, strengthening the balance sheet and

making the firm more creditworthy.

Gertler & Kiyotaki [Gertler and Kiyotaki, 2010] and Gertler & Karadi

[Gertler and Karadi, 2011] consider the balance sheet channel as it ap-

plies to banks themselves, noting that an inability to attract funding lia-

bilities (either in retail deposit or interbank markets) may drive a spread

between deposit and loan interest rates or constrain the volume of loans

extended, communicating a financial-sector shock to the real economy. De

Groot [De Groot, 2014] studies financial sector balance sheets in a Dynamic

Stochastic General Equilibrium (DSGE) framework, finding that banks delever-

age when monetary policy shocks are prevelant – a reverse-multiplier to real

economic activity, and another case of the financial accelerator of Bernanke

& Gilchrist [Bernanke and Gertler, 1995]. In general, the financial accelera-

tor offers a mechanism by which endogenous shocks in credit markets may

propagate to the real economy and their effect size be enhanced by leverage,

whether by impact on borrower or lender firms’ balance sheets.

The balance sheets discussed above are those of firms, but each has

a household analogue. Like small firms, households most probably cannot

access capital markets funding, and depend upon banks to smooth consump-

tion or for investment in e.g. housing assets. The cashflow and nominal-

rigidity-of-debt channels also operate for households [Mishkin, 1996]. Rel-
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ative yields available on different financial assets may also affect household

portfolio allocation decisions as seen in the money-balances approach above,

and we turn now to examine the general class of these portfolio-choice chan-

nels – the risk-taking channels of monetary policy.

Risk-taking channels

Borio & Zhu [Borio and Zhu, 2012] apply the practical techniques used

in investment management to the monetary transmission mechanism. The

importance of interest rates and yields in portfolio allocation decisions by

asset managers, and the dependence of these upon monetary policy, gives

monetary policy a central role in influencing allocation decisions – with real-

economy consequences. Borio & Zhu highlight three ways in which monetary

policy can affect risk appetite and therefore allocation decisons; valuations,

hurdle rates, and central bank communication [Borio and Zhu, 2012].

The valuation channel is instinctively close to the balance sheet and

wealth effects outlined above. Lower interest rates boost the valuations of

cashflow-generating assets, as well as freeing up cashflow if debt interest

rates are floating. This effect also occurs on the balance sheets of financial

firms themselves – as interest rates fall, equity prices rise, volatility falls and

position-size and risk constraints on a trading desk ease, allowing for larger

bets to be placed. ‘Mechanical’ models of mathematical risk can hardwire

this effect [Borio and Zhu, 2012] , and Gambacorta [Gambacorta, 2009] finds

empirical evidence for its existence and significance, documenting that an

extended period of low interes rates is associated with an increase in risk

taking by banks (as measured by realised bank default frequency).

The second effect depends upon ‘sticky’ target returns or ‘hurdle rates’

– as interest rates fall, target rates of return may be maintained at higher

levels due to contractual investment mandates, long-term investors such

as pension funds, or just speed-of-adjustment to a new risk regime. Ini-

tially, falling interest rates make these sticky targets easier to hit, increasing

risk tolerance – however in a prolonged low-interest-environment, as assets

reprice these targets become harder to hit, and hurdle rates may be lowered

or, if not, investment managers may be incentivised to take on more risk to
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meet targets. This is the “search for yield” of Rajan [Rajan, 2006] and of

Gambacorta [Gambacorta, 2009].

The third set of effects outlined by Borio & Zhu [Borio and Zhu, 2012]

concerns the central bank directly. By committing ahead-of-time to par-

ticular targets – or in a more extreme case, to support certain markets –

the central bank can compress risk premia, attracting investment to (and

increasing prices in) that market. Borio & Zhu refer to this as the ‘insurance

effect’, market participants referred to the ‘Greenspan Put’ in the 1990s, and

in any case this is in effect moral hazard willingly entered-into by the central

bank, assuming part of the risk distribution from market participants with-

out explicitly charging for it. Such free risk warehousing naturally affects

the approach of investors to pricing the risk remnant.

Bianchi [Bianchi, 2014] assesses the risk-taking channels in a DSGE

framework. Three operational channels are highlighted: lowering the nom-

inal interest rate reduces the real rate due to nominal rigidities (as in the

traditional interest rate channels discussed above); lowering the real interest

rate increases the present value of cash flows from bank-held assets, allowing

for greater borrowing against them (as in the balance sheet channels above);

and knowledge on the part of market participants regarding the propensity

of the central bank to cut rates in cases of future financial distress encourages

greater risk taking in the present (as with the willing-moral-hazard discussed

immediately above). The risk-taking channels may thus be considered the

most general channels by which monetary policy operates through the fi-

nancial sector.

Chapter 2 will revisit these channels as they apply to shadow banking

specifically, but having discussed supply & demand for loans, we return to

the other side of the financial intermediary’s balance sheet, and a consider-

ation of demand for money.

1.2.7 Empirical studies of money demand

Relocated from Chapter 2

The review by [Sriram, 1999] of landmark findings in the demand for

money literature highlights three of the functions of money in the economy
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previously mentioned – as a means of exchange, as a store of value, and

as a unit of account- and adds a fourth, as a source of deferred payment.

Demand for money may therefore be conceived as demand for one or more

of the services money provides. The traditional value theoretical approach

due to Hicks [Hicks, 1989] casts money as simply another asset to be chosen

at optimal level from amongst a range of assets with differing yields and

associated risks, subject to a wealth constraint- in marked contrast to prior

and contemporaneous work focusing on money as simply a transactional

medium to be held in proportion to the desire to make transactions, such

as that of Fisher [Fisher, 1911]. Demand for transactional money was also

emphasised by Keynes in establishing the key hypothetical negative rela-

tionship between demand for money balances and interest rates – interest

rates represent the opportunity cost of holding (non-interest-bearing) money

balances, and the money demand function is thus negative in (non-money)

interest rates [Sriram, 1999].

Keynes further recognised that demand for money stems from precau-

tionary and speculative, as well as transactional motives. Whilst demand

for transactional money in the Keynesian conception is a relatively constant

proportion of wealth, the demand for money for speculative reasons – the

liquidity preference – emphasises the store-of-value function of money. It

is this function that relates speculative demand for money to the interest

rate, now considered as the alternative yield available by investing in bonds-

resulting once more in a negative relationship with respect to prevailing in-

terest rates, but also a relationship with anticipated future interest rates,

the source of the Keynesian ‘liquidity trap’. When the interest rate is very

low, it is expected to rise in the future and money is thus preferred now, to

be exchanged for bonds when yields rise and bond prices fall. Keynes’ work

was extended by Baumol [Baumol, 1952] and by Tobin [Tobin, 1956] in an

inventory-theoretic approach to demand for transactional money, whereby

money is held as an alternative to almost-as-liquid but higher-yielding fi-

nancial alternatives because the transaction costs of switching justify main-

taining money inventory. The store-of-value motive was extended by Tobin

[Tobin, 1958] who recognised that money may be preferred as an asset due

to the higher certainty of its lower yield – if risk and reward are conceptu-
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alised naively as moving in lockstep (perfectly positively correlated) then all

assets should have the same expected value, and only preference for risk can

discriminate between them.

It is this preference for safety that will later be hypothesised as driving

demand for shadow-bank money-like assets when supply of government or

other safe assets is otherwise constrained. Such constraints may result from

government debt issuance policy not taking the role of sovereign paper as a

safe asset and as high-quality collateral sufficiently into account – potentially

leading to suboptimal levels of government debt ‘supply’ at times of financial

distress, as perhaps has been the case with the recent austerity policy in the

UK. While arguably wrong and inadvisedly procyclical even from a real-

economy point-of-view – the government abdicating its role as demander-of-

last-resort – it may also emerge that a reduction in government debt issuance

at a time of flight-to-safety necessitates an expansion of the shadow banking

sector at a time when prudential policy would be seeking a reduction in

shadow banking activity. It seems highly likely that reduction in government

borrowing, and therefore safe-asset issuance, during the pre-GFC years led

to an expansion of the shadow banking sector – we will attempt to show

that the sector arose in part to meet an unmet demand for safe assets.

The supply of safe assets may also be constrained, from the point of

view of safe-asset buyers, by regulatory requirements such as deposit in-

surance upper limits. Pozsar [Pozsar, 2013] and co-authors [Pozsar et al.,

2010] attribute a key quantum of demand for safe asset to corporate ‘cash

pools’. Managers of these cash pools, held to meet the transactional as

well as speculative demands for money, prefer to avoid large, concentrated,

unsecured exposures to specific banks – even if those deposits are insured

[Pozsar, 2013]. Pozsar [Pozsar, 2013] views the next-best safe asset as short-

term government bills but documents that the supply of these is insufficient

to meet demand, measured as size of cash pools on US corporate balance

sheets. In the presence of unment demand and willingness to pay for safety

in the form of accepting lower yields, it is hypothesised that a key role of

the shadow banking sector is to meet this demand. Before turning to a

more detailed examination of the shadow banking system, we look now to

antecedent empirical studies in the area of money demand.
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A broad, deep and well-established literature in econometrics is con-

cerned with estimating the form and parameters of the money demand

function. Sriram [Sriram, 1999] notes that the different theories of demand

for money nevertheless imply a relationship between observed quantity of

money supplied and a set of observable variables linked to the real economy

– including a scale variable such as GDP growth, and an opportunity cost

of holding money such as the interest rate on alternative assets. Thus, all

empirical studies of money demand may be conceptualised as assessing the

blended demand for money, or the total demand for money arising from

all motives – though different authors may emphasise different theories, and

the different motives may be relevant in assessing short-term dynamics. The

empirical study of money demand has also advanced the entire field of econo-

metrics – indeed, perhaps two of the most important and influential papers

in the field of analysing cointegrated time series – Engle & Granger’s Co-

Integration and Error Correction: Representation, Estimation, and Testing

[Engle and Granger, 1987] and Johansen & Juselius’s Maximum Likelihood

Estimation and Inference on Cointegration with Applications to the Demand

for Money [Johansen and Juselius, 1990] – both concern themselves with es-

timating money demand to demonstrate their novel methodologies. Sriram

[Sriram, 1999], in a comprehensive review of the money-demand literature,

motivates his study by noting that demand for money and the behaviour

of monetary aggregates play an important role in guiding monetary pol-

icy actions – still perhaps true, albeit de-emphasised since most developed

economies began to abandon monetary aggregates as a specific policy tar-

get in the late 1980s, the UK abandoning monetary aggregates in 1986 and

switching to explicit inflation targeting in 1992. Nevertheless, monetary ag-

gregates have remained a focus of study – and are now perhaps freer of the

Lucas critique that policy targets make poor structural variables.

Systems of equations, estimated in vectorised forms, have characterised

studies of money demand since their rise to prominence in the 1980s – often

being demonstrated for the first time on models of money demand. Such

formalisations allow endogeneity to be modelled rather than having to be

controlled out. The vector error correction model, wherein a system of

nonstationary variables share one or more stationary linear combinations, is
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commonly applied to the problem of estimating money demand and is easily

extended to more complex, nonlinear, threshold, or parameter-switching

functional forms.

Notwithstanding the econometric complexity that may be brought to

bear on the problem, the essence of most money demand models is simple.

Though empirical work may be motivated by any or all of the different theo-

ries of money demand, and studies may variously emphasise or de-emphasise

demand for money resulting from transactional, speculative, precautionary

or utility motives, as mentioned by Sriram [Sriram, 1999] they typically share

a framework that connects the quantity of money demanded to a measure

or measures of activity in the real economy, and to the opportunity cost

of holding that money. Price homogeneity was established and empirically

supported early on in the literature [Johansen and Juselius, 1990], and as

such subsequent authors have typically modelled demand for real, rather

than nominal money balances. Real GDP is often chosen as the measure of

real economy activity, and the measures of activity and real money balances

typically enter models in logarithms [Sriram, 1999]. The opportunity cost of

holding money must be considered with respect both to that money’s own

rate of return and to rates of return available on competing assets, either

domestically or abroad for the case of an open economy. These rates of re-

turn, being in percentage form, may enter models in logarithms or in levels.

The parameters of a log-log model then estimate the elasticity of money

demand with respect to the explanatory variable directly, while log-linear

parameters may be interpreted as a semi-elasticity. Given the interest of

the present study in establishing the elasticity of demand for shadow-bank

money with respect to alternatives, logarithmic forms will typically be used.

Sriram’s [Sriram, 1999] meta-analysis shows that a value of around 1 is

typical for the coefficient of real money balances to real income – that is

to say that demand for money grows 1:1 with real economic activity. How-

ever, studies report coefficients of below and above 1, and studies including

multiple monetary aggregates typically find different scaling parameters for

narrower or broader definitions of money – though the directionality is am-

biguous. McNown & Wallace [McNown and Wallace, 1992], assessing the US

case, find that the scale elasticity is higher (1.13) for broader (M2) money
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and lower (0.99) for narrower (M1) money, while Drake & Chrystal [Drake

and Chrystal, 1994], considering corporate sectoral demand for money find

the opposite – that the elasticity is highest for Divisia M1 at 3.3, and lowest

for Divisia M3 at 2.6 [Sriram, 1999]. All authors in the Sriram metastudy

find the expected positive semi-elasticity to money’s own rate of return, al-

beit with magnitudes varying from +0.5 to +18.1 within a single study –

Adam’s [Adam, 1992] work on money demand in Kenya. Typical orders of

magnitude are around +2.0 to +6.0. Most authors also document a negative

semi-elasticity to alternative interest rates, depicting the expected opportu-

nity cost phenomenon –indicative semi-elasticities here vary from -0.008 to

-10.1 depending upon the alternative investment return offered.

Turning to the case of antecedent studies concerned with the United

Kingdom, Drake & Chrystal [Drake and Chrystal, 1994] examine specifi-

cally corporate demand, and measure money using the Divisia aggregates.

Reasoning that corporates and households have different motives to demand

money, they consider money an input into the utility function of industrial

and commercial companies, and estimate an elasticity to real GDP of +3.2

for Divisia M1 if inflation is not included in the long-run cointegrating vec-

tor, and +3.3 if it is. For Divisia M2, inflation is included and the elasticity

of M2 demand to real GDP is +3.4. Drake & Chrystal select a rate they

term the benchmark rate of interest as an opportunity cost, finding a long-

run cointegrating semi-elasticity of -0.9 for the M2 equation, while including

opportunity cost in a calculated variable in the M1 equations, yielding esti-

mates of -4.8 and -4.3 respectively with or without including inflation.

Ericsson, Hendry & Prestwich [Ericsson et al., 1998] update the model of

Hendry & Ericsson [Hendry and Ericsson, 1991] but continue to impose unit

elasticity of money demand with respect to real GDP, basing a substantive

part of their analysis on that assumption. Assessing demand for ‘broad

money’ defined as a splice of M2, M3 and M4 at various points in time, they

find the expected negative coefficient with respect to opportunity costs: -6.7

in this study, the 1991 study having estimated the semi-elasticity at -7.0.

Nielsen [Nielsen, 2007] considers a long time series beginning in 1873,

and derives a long-run elasticity to real income of 0.77 for the same spliced

measure of broad money employed in Ericsson et al [Ericsson et al., 1998]
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– though the coefficient is statistically indistinguishable from 1 given the

standard error of 0.145. Nielsen also reports an interest rate semi-elasticity

of -7.7, highly comparable in magnitude with the findings of Ericsson et al.

Jawadi and Sousa [Jawadi and Sousa, 2013] consider the UK alongside

the US and the Eurozone, and employ a quantile regression approach to

capture nonlinearities – they report coefficients ranging from +1.76 to +2.04

to real GDP. Jawadi & Sousa employ M4 as their measure of money for the

UK, and in common with Nielsen [Nielsen, 2007], they include inflation as a

regressor despite measuring the monetary aggregate, and GDP, in real terms.

This approach seeks to capture inflation as a separate opportunity cost to

holding money, which is fixed in nominal value, as distinct from the increase

in nominal value required to meet the transactional or utility motive in an

inflationary environment. Were monetary aggregates expressed in nominal

terms the expected sign to inflation might reasonably be expected to be

positive, but in real terms inflation is another opportunity cost to holding

money balances and should enter with negative sign – though in the work of

both Nielsen [Nielsen, 2007] and Jawadi & Sousa [Jawadi and Sousa, 2013]

it is more typically insignificant in long-run equilibria.

Other authors have included real effective exchange rates [Arize and

Shwiff, 1993], alternative interest rates [Baba et al., 1992], measures of term

and risk premia [Arize, 1994], and other explanatory variables in their func-

tional forms – though to the best of our knowledge, no author has estimated

a money demand function for shadow banking sector money using data from

the United Kingdom, or estimated the relationship between shadow banking

money and traditional monetary aggregates, as the present work proposes

to do.

1.2.8 Money supply

In equating changes in observed quantities of monetary aggregates with

changes in demand for money as all empirical studies outlined above do,

the question of the role of money supply must be dealt with. Some of

the above studies precede [Engle and Granger, 1987] , or incorporate data

which precedes [Nielsen et al., 2004, Nielsen, 2007] , the recent consensus
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for central banks to target a policy interest rate rather than a monetary

aggregate. In such studies it suffices to assume that the nominal supply of

money is fixed – perfectly inelastic at the central bank’s chosen quantity. It

therefore follows that fluctuations in this total are due to changes in demand

for money – though it should be noted that supply changes in response to

the central bank’s perception of demand for money, and the assumption that

this assessment is always and everywhere correct is a strong one.

Since the 1990s, central banks have more often targeted a policy rate,

normally along with a commitment to supply as many bank reserves as

are demanded at that interest rate. Though in this paradigm the supply

of central-bank-created money could be seen as being perfectly elastic at a

given price – the policy rate – in practice the implications are the same.

Fluctuations in the quantity of monetary aggregates observed result from

changes in demand by holders of money, not idiosyncratic shifts in supply.

In examining the role of the shadow banking sector in supplying safe-

asset substitutes for money, we will follow Pozsar [Pozsar, 2013] and view

the supply of alternative, non-shadow-bank-produced safe assets as inelastic,

and so attribute fluctuations in quantity of observed shadow banking sector

liabilities to changes in demand for those claims.

1.2.9 Chapter conclusion

This chapter has briefly reviewed the history and nature of money, estab-

lished the existence of financial intermediation as a response to imperfections

in credit markets, surveyed the channels by which monetary policy impacts

the real economy, and summarised the empirical literature concerning money

demand, as well as highlighting common assumptions in the literature re-

garding money supply. It will be seen that understanding the functioning

of credit markets is important for monetary policymakers and consequential

for the real economy, and we turn now to more closely examine the nature

of shadow banks and their role in these credit markets.
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Chapter 2

Literature Review

2.1 Introduction to Shadow Banking

The term ‘shadow banking’ is acknowledged to have been coined as recently

as 2007, by bond fund PIMCO’s Chief Economist Paul McCulley [McCulley,

2007]. McCulley characterises the system, not unjustifiably, as an “alphabet

soup of levered-up non-bank investment conduits, vehicles, and structures”,

and expresses concern about runs in the system, restricted access to liq-

uidity, and the dependence of institutions within the system on implicit or

explicit credit guarantees from parent institutions, often regulated banks.

(For exposition: it is commonplace amongst practitioners in this field, and

to an extent among academics studying it, to use the financial derivative

market terminology ‘put’ for a credit guarantee provided by a linked or sep-

arate institution. In options trading, a put conveys the right but not the

obligation to sell an underlying asset for a prearranged ‘strike’ price, and as

applied to liabilities of the SBS, may be understood to mean the expectation

that the guaranteeing institution will intervene to maintain a prearranged

value of the security in question or its issuer- an example would be a credit

line offered by a regulated bank to its own off-balance-sheet Special Purpose

Vehicle, of which more below).

This chapter will survey the shadow banking system, incorporating mo-

tives for the existence of shadow banks, estimates of the scale of shadow

banking activity globally, the structure and function of the financial instru-
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ments used by the shadow banking system, and a review of the empirical

literature.

2.1.1 Form & function

The function of shadow banks, as the name implies, is similar to that of reg-

ular banks – they conduct credit transformation, liquidity transformation,

and maturity transformation, albeit often by different means to regulated

banks. Credit transformation involves the enhancement of debt quality of

existing loans by application of a strict priority of claims – thus, senior

tranches (layers) of risky debt are safer than a part share of the whole pool

of loans, as some loans at least are always expected to perform, and the se-

nior tranches have first claim to any revenue resulting from servicing those

loans [Adrian and Ashcraft, 2016]. Credit can be enhanced to the point that

senior tranches are acceptable even to risk-averse investors such as pension

funds. Banks perform this role with deposit contracts, and by staking their

own balance sheet as collateral and relying on public trust in their reputa-

tion, whereas shadow banks often use securitisation – pooling and slicing of

loans- to make priority of claims explicit. As we have already seen, confu-

sion around priority of claims can lead to bank runs, as in [Diamond and

Dybvig, 1983]. It might seem then that shadow banks can use securitisation

methods to clarify priority of claims, but as will be seen, confusion over the

true allocation of risk may not be eliminated.

Maturity transformation in the shadow banking context is the use of

short-term liabilities to fund long-term assets. Entities are rewarded for

assuming maturity risk by the positive slope of the yield curve- long term

loans pay a higher interest rate throughout the life of the loan, allowing the

capture of a spread highlighted by the colloquial ‘3-6-3 rule’ of traditional

retail banking – borrow at 3%, lend at 6%, be on the golf course by 3pm.

Shadow bank access to securitisation techniques allows for maturity trans-

formation in either direction by credit intermediaries, and may lead to a

more optimal pattern of maturity risk sharing, while a regular bank must

assume the whole maturity risk of a loan it chooses not to securitise, sell or

otherwise fund.
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Liquidity transformation refers to the use of liquid liabilities to fund

illiquid assets, and is one of the frictions FIs can solve in the microeconomic

models discussed above- a surprise need for liquidity by consumers, who

otherwise would not invest in value-adding projects [Adrian and Ashcraft,

2016]. Regulated banks are able to access government backstops to allow

liquidity risk to remain on balance sheet, whereas shadow banks rely on

their ability to roll their liabilities to fund their illiquid assets, for example

in the repo markets [Acharya et al., 2011]. Entities are often rewarded for

assuming liquidity risk by a liquidity premium in the interest rates paid,

and though liquidity transformation and maturity transformation often go

hand-in-hand, they are distinct services- a 30-year government bond, for

example, has long maturity but is likely to be easier to sell and thus more

liquid than a short-dated over-the-counter derivative referencing a specific

named entity.

Shadow banks are thus able to perform the traditional banking roles

with the potential to achieve a superior and more easily calculable allocation

of risk through securitisation techniques- indeed much activity denoted as

shadow banking is in fact performed by regulated banks when such precision

is needed. Regular banks have advantages stemming from their government

backstops- enabling them to plausibly guarantee riskier propositions- their

large balance sheets, and their ability to share information and cross-sell

between business lines.

Shadow banking however is not universally, or even typically, seen as

benign. Portes [Portes, 2018] highlights the interconnectedness of shadow

banks with the regulated banking system with potential for contagion, and

many authors [Adrian and Shin, 2009a, Pozsar, 2014, Plantin, 2014, Huang,

2018] focus on the role of the sector in precipitating the recent Global Fi-

nancial Crisis. As will be seen, significant gaps remain in our understanding

of the scale of the shadow banking system (particularly outside the US), as

well as the economic behaviour of the sector. Addressing these gaps is of

importance for prudent financial policymakers in addition to being conse-

quential for the real economy through the influence of shadow banking on

the transmission channels of monetary policy.
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2.1.2 Motives for Shadow Banking

Adrian and Ashcraft [Adrian and Ashcraft, 2016] offer the following three

reasons why the shadow banking sector exists:

1. Innovation in the composition of aggregate money supply: Gorton

and Metrick [Gorton et al., 2010] view the development of shadow

credit intermediation as “financial innovation in the composition of

aggregate money supply” [Adrian and Ashcraft, 2016]. The fractional

reserve banking system, as depicted in the paradigm of Bryant [Bryant,

1980] above, does not maintain sufficient currency to make good all

depositors’ claim should they all be redeemed at once, and so bank

deposits function as a money in their own right, limiting the need

for specie. Initially backed only by general (typically illiquid) assets

of the bank, these monies were subsequently guaranteed in the US

financial infrastructure by the clearinghouses and later by the Federal

Reserve System to ensure they traded at par with physical currency.

Bank runs result when the convertibility of bank deposits into currency

is uncertain. Deposit insurance can help to prevent bank runs by

effectively stopping the run before it starts, often without the insurance

ever needing to pay out. Money Market Mutual Funds (MMMFs)

arose as a response to the limits on interest paid on checking accounts

as well as account balance limits to this deposit insurance, typically

investing in overnight repos collateralised by US Treasuries [Adrian

and Ashcraft, 2016]. Recent work by Serletis & Xu [Serletis and Xu,

2019] is premised on the role of the shadow banking sector in providing

banking services – taking deposits and making loans.

2. Capital, tax and accounting arbitrage: The access enjoyed by large

banks to official liquidity support and guarantees poses a moral haz-

ard problem. A promise of government bailout will engender exces-

sive risk taking unless accompanied by minimum capital and liquidity

standards – suggesting that the guarantees are mispriced, as equilib-

rium capital ratios would be below the regulated level. By moving

capital-burden-attracting items off balance sheet without any real risk

transfer, regulated banks can capture the full value of this positive
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externality, and the shadow banking sector provides the mechanism to

accomplish this [Adrian and Ashcraft, 2016]. Recent work by Adrian

& Jones [Adrian and Jones, 2018] also cites mispriced sponsor back-

stops, in addition to regulatory arbitrage, as a key motive for shadow

banking activity.

3. Agency problems in financial markets: Ashcraft and Schuerman [Ashcraft

et al., 2008] identify seven key frictions in securitised loan markets:

between mortgagor and originator, originator and arranger, arranger

and third-parties (warehousers, asset manager, credit ratings agen-

cies), servicer and mortgagor, servicer and third-parties, asset man-

ager and investor, and investor and credit ratings agencies. Of these,

the first two concern predatory borrowing or lending, the third con-

cerns adverse selection, the fourth and fifth concern moral hazard, the

sixth is a principal-agent problem and the seventh concerns model er-

ror. These seven frictions broadly correspond to Pozsar et al ’s seven

stages of shadow credit intermediation as will be seen below [Adrian

and Ashcraft, 2016].

2.1.3 Categories of Credit Enhancement

The seminal reference in offering a taxonomy of shadow banking entities and

their function is Pozsar et al [Pozsar et al., 2010]. Pozsar and co-authors

define financial intermediaries based on the nature and extent of their access

to credit backstops (synonymous with guarantees/puts as defined above),

their role in the securitisation chain, and their relation to regulated FIs and

to the government.

• Direct Official: balance sheet items that enjoy direct official enhance-

ment are typically liabilities of regulated banks. This is the highest

form of credit enhancement, but these instruments do not form part

of the shadow banking sector.

• Direct Implicit: the Government-Sponsored Enterprises (GSEs) in the

US, including for example Fannie Mae and Freddie Mac, benefit from

“an implicit credit put to the taxpayer”. The US government is the
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ultimate guarantor of the mortgages guaranteed by the GSEs, and

most authors do not consider these entities part of the shadow banking

system – though some, such as Pozsar et al [Pozsar et al., 2010] , do.

• Indirect Official: Off-balance-sheet liabilities of regulated banks are

deemed to enjoy this form of enhancement, as the regulated bank

has access to public sector support to make good on its obligations,

including any credit lines or guarantees extended to associated off-

balance-sheet entities, though these entities are not directly insured

by the government. It is this part of the shadow banking sector that

is frequently seen as arising from regulatory arbitrage.

• Indirect Implicit: includes bank-affiliated hedge funds and Money-

Market Mutual Funds (MMMFs) operated by regulated institutions.

These vehicles benefit from association with regulated banks but “may

not benefit from such enhancement ex post”. Such confusion about

true risk allocation may only be revealed during times of financial

market turmoil [Gennaioli et al., 2013].

• Unenhanced: Institutions in this category are not generally believed

to benefit from any enhancement over and above their own creditwor-

thiness.

2.1.4 The Seven Steps of Shadow Credit Intermediation

Source: [Adrian and Ashcraft, 2016, Pozsar et al., 2010]

• Loan Origination: performed by finance companies who issue Com-

mercial Paper (CP) or Medium Term Notes (MTNs).

• Loan Warehousing: conducted by single- or multi-seller ABCP con-

duits.

• Asset-Backed Securities (ABS) Structuring: Broker-dealers’ ABS desks

syndicate and pool ABCP into tranched ABS.

• ABS Warehousing: ABS tranches are held on trading books, financed

by Repo or Total Return Swaps (TRS).
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• CDO Structuring: Broker-dealers may structure ABS into Collater-

alised Debt Obligations (CDOs) with agency-issued credit ratings,

making them acceptable to e.g. pension funds, mutual funds.

• ABS Intermediation: Limited-Purpose Finance Companies (LPFCs),

Structured Investment Vehicles (SIVs), Special Purpose Vehicles (SPVs),

Securities Arbitrage Conduits, Credit Hedge Funds and other bank

and non-bank affiliated entities fund ABS asset purchases with cash

via repo, MTNs, bonds, equity or capital notes.

• Funding: All of the above steps are funded by wholesale funding

market providers such as MMMFs, Enhanced Cash Funds, securi-

ties lenders and direct money market investors including corporate

treasuries, fixed-income mutual funds, pension funds, and insurance

companies.

2.1.5 The Four Shadow Banking Subcategories

Source: [Adrian and Ashcraft, 2016, Pozsar et al., 2010]

• The Government-Sponsored Shadow Banking Subsector: analogous

to the classification of institutions enjoying direct but implicit credit

enhancement above, the government sponsored SBS subsector is the

securitisation chain whereby conforming mortgages are subsidised by

the US Government through the GSEs.

• The Internal Shadow Banking Subsector: composed of the off-balance-

sheet activities of regulated banks, the internal shadow banking sub-

sector thus enjoys indirect but official credit enhancement.

• The External Shadow Banking Subsector: though independent of regu-

lated banks and thus devoid of official credit enhancement, institutions

of the external SBS are often affiliated with large non-bank financial or

non-financial firms regulated in their own right, such as mutual funds,

insurance companies, standalone broker-dealers, and the car finance

subsidiaries of automobile manufacturers.
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• The Independent Shadow Banking Subsector: whereas institutions of

the external shadow banking subsector do not typically have shadow

banking as their main activity, the independent shadow banking sub-

sector comprises standalone MMMFs, standalone SIVs, and private

label mortgage security structurers. Its credit would be characterised

as unenhanced.

We summarize the four shadow banking sector subcategories and asso-

ciate each with a motive and with a level of credit enhancement in Table 2.1.

Reasons for existence are difficult to elucidate and frequently overlap, but

this framework serves to guide our subsequent investigation into the data.

In assessing the role of the shadow banking sector in producing money-like

claims which may substitute for bank or government safe assets, our focus

will be predominantly on the external and independent subsectors, with

which we associate the motive of innovating in aggregate money supply. To

the extent that financial aggregate data do not differentiate between ‘in-

ternal’ (bank-sponsored) and external money market mutual funds, there

may be some overlap with the internal shadow banking subsector in our

subsequent empirical work.

2.2 Developments in the shadow banking litera-

ture

The academic study of shadow banking began in earnest after the Global

Financial Crisis of 2008 – though some authors have argued that the pre-

central-bank era of Bagehot, when capital market financing was predom-

inant, has much in common with the recent practice of shadow banking

[Mehrling et al., 2013] . The early papers of Adrian & Shin [Adrian and Shin,

2009a, Adrian and Shin, 2009b] predominantly concern themselves with reg-

ulatory and policy issues, while the work of Pozsar and co-authors [Pozsar

et al., 2010, Pozsar, 2013, Mehrling et al., 2013, Pozsar, 2014] has focused

upon defining and giving a taxonomy of shadow banking system entities.

Gorton & Metrick [Gorton and Metrick, 2009, Gorton et al., 2010, Gorton

and Metrick, 2012] have written extensively about safe assets and in par-
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Table 2.1: The four shadow banking sector subcategories

SBS Subsector Key institutions Level of credit

enhancement

Proximal reason

for existence

Government-

sponsored

GSEs, ABS

broker-dealers,

MMMFs

Direct implicit Agency prob-

lems

Internal SIVs, SPVs,

internal credit

hedge funds, in-

ternal MMMFs

Indirect official Regulatory ar-

bitrage

External ABCP conduits,

insurance firm

floats, hedge

funds

Indirect im-

plicit, or unen-

hanced

Innovation in

composition

of aggregate

money supply

Independent LPFCs, ABS

warehousers,

repo lenders

Unenhanced Innovation in

composition

of aggregate

money supply
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ticular the repo markets at the heart of the shadow banking system. The

literature as it stands is somewhat US-centric – early efforts focused on es-

tablishing the need for better regulatory and policy-making datasets to be

collected [Pozsar, 2014] , with the result that the Financial Stability Board

began to publish an annual Global Shadow Banking Monitoring Report in

2011 [Board, 2012] . More recent work has begun to consider the shadow

banking system as an economic entity, assessing activity through theoreti-

cal [Gennaioli et al., 2013] , computable general-equilibrium [Verona et al.,

2013, Nelson et al., 2015] or data-driven empirical [Duca et al., 2014, Serletis

and Xu, 2019] approaches. Outside of the US, most authors have sought to

start by estimating the magnitude of shadow banking activity in the ge-

ographic area of interest – we now turn to review these studies in more

detail.

2.3 Sizing the shadow banking sector

The competing definitions and varying affiliations, regulatory regimes and

jurisdictions of the institutions involved in shadow banking activity render

a centralised database of shadow banking activity a virtual impossibility.

Attempts have been made recently to estimate the size of the shadow bank-

ing sector under various definitions and employing diverse methods, and a

selection are detailed below.

2.3.1 The U.S.A.

The comprehensive Federal Reserve Flow of Funds (FFoF) data in the US

allow most attempts to size the American SBS to proceed in a conventional,

balance sheet accounting manner. Thus [Adrian and Ashcraft, 2016] esti-

mate the sector to have issued 28% of the aggregate money supply in 2011,

having peaked at 45% in the early 2000s. They further estimate shadow

institutions to own 31% of total financial sector liabilities and 55% of to-

tal credit transformation in 2011, from respective peaks of 36% and 60%

in 2007/2008 [Adrian and Ashcraft, 2016]. [Pozsar et al., 2010] offer dol-

lar amounts of liabilities, and estimate the sector at $15tn in 2011:Q3, a
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Figure 2.1: U.S. Shadow Bank and Traditional Bank liabilities

[Pozsar et al., 2010]

decline from a 2007:Q2 peak of $22tn, and consistently larger than the regu-

lated banking sector, which peaks within the time series at $14tn in 2011:Q3

(Figure 2.1). The most recent Global Shadow Banking Monitoring Report

[Board, 2018] gives the scale of ‘narrow measure’ shadow banking as $51.6

trillion in 2017, of which 29% in the US and 4% ( $2tn) in the UK. The FSB’s

narrow measure includes those entities judged by the FSB as presenting a run

risk due to involvment in maturity transformation, credit transformation,

liquidity transformation or leverage. The measure excludes entities consoli-

dated into a banking group and thus enjoying implicit credit enhancement

in addition to being subject to regulation by transitivity. As such the FSB

narrow measure excludes many securitisation vehicles. As the present work

is concerned with the UK, we do not reproduce other estimates of the size

of the US shadow banking sector in extenso here, but the interested reader

is referred to Adrian & Ashcraft [Adrian and Ashcraft, 2016].
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2.3.2 The Euro area

ECB data being somewhat less centralised than the Fed Flow of Funds, esti-

mates of the size of the European shadow banking sector are somewhat more

sensitive to classification of items and institutions, and these “do not always

have enough granularity to identify different kinds of financial intermedia-

tion and risk exposures” [Bakk-Simon et al., 2011]. The quarterly Euro Area

Accounts (EAA) divide institutions into monetary financial institutions, in-

surance corporations and pension funds, and the residual category ‘other

financial intermediaries’. While this OFI category includes many institu-

tions typically conceived as being part of the SBS, it also includes regulated

investment funds- who are engaged in shadow banking but not uniquely-

and excludes MMMFs, which appear under MFIs. Insurance companies

and pension funds may also fund the SBS through repo transactions but it

is not their principal line of business. Relatively recently, the Euro area has

added monetary statistics covering positions and flows between the MFI and

OFI sectors, and balance sheets aggregates for institutions involved in secu-

ritisation. Bakk-Simon et al [Bakk-Simon et al., 2011] estimate the assets of

the TBS as MFI minus MMMFs, and the SBS as OFIs plus MMMFs, but

minus mutual fund shares issued by funds other than MMMFs, and return

a value of EUR 10.8tn by assets for the European SBS in 2011:Q2 against

EUR 28tn for the TBS. Figure 2.2 gives a time series, and Table 2.2 breaks

out some components of the SBS share.

Arquie & Artus [Arquié and Artus, 2012] also employ ECB data and note

that financial lending corporations, (step 1 of the shadow credit intermedia-

tion procedure outlined above), are also absent from the OFI classification-

so any estimates yielded must necessarily undersize the sector. Defined on

credit extended, they report the euro area SBS as EUR 6tn, approximately

20% of the total euro area credit extension of EUR 29.7tn in 2012:Q2. They

further report $2.3tn in outstanding securitisation, dollar valued for compa-

rability, as of 2012. By a total asset measure that differs from Bakk-Simon

et al [Bakk-Simon et al., 2011], inasmuch as it includes securitisation but

not ICPFs, they give a figure of EUR 9.8tn as a potential size of euro area

SBS balance sheets in 2012:Q2; or 23% of total financial institution assets.
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Figure 2.2: Euro Area SBS and TBS by assets, time series

[Bakk-Simon et al., 2011]

2.3.3 The U.K.

Tyson & Shabani [Tyson and Shabani, 2013] seem to adopt a particularly

broad definition of the SBS, including hedge funds and private equity in

addition to the normal McCullean ‘alphabet soup’ of securitising entities.

They do not provide an estimate of the size of the sector in the UK by

conventional means, but rather reason that all SBS entities to a greater or

lesser extent interact with the market through regulated investment banks-

from SPVs created as off-balance-sheet asset pools for the banks themselves,

to hedge funds who utilise the banks’ brokerage services and private equity

firms who rely on investment bank leverage to complete corporate buyouts.

Reasoning that the ratios of compensation to revenue and of revenue to

assets are both reasonably stable over space and time, Tyson and Shabani

[Tyson and Shabani, 2013] proceed to estimate from publicly disclosed earn-

ings and compensation statement the extent of off-balance-sheet revenues,

and therefore assets. Applying the global ratios of 40.8% compensation:

revenue and 3.7% revenue: assets for a stable long-term ratio of 2:5:135

compensation: revenue: assets, they derive £109bn estimated asset flow per
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Table 2.2: Euro-area shadow banking sector breakdown

2007 Q2:

EUR tns

2007 Q2:

% total

2011 Q2:

EUR tns

2011 Q2:

% total

Banks 25.6 54.0 28.0 51.5

Other intermediaries 8.5 17.9 10.8 19.9

of which Money market funds (MMFs) 1.2 2.5 1.1 2.0

of which Financial vehicle corporations - - 2.2 4.1

of which Other misc. intermediaries 7.3 15.4 7.6 13.9

Eurosystem 1.6 3.5 3.1 5.8

Investment funds other than MMFs 5.5 11.6 5.6 10.3

of which Hedge funds - - 0.1 0.2

Insurance corporations and pension funds 6.1 13.0 6.8 12.6

TOTAL ASSETS OF FINANCIAL INSTITUTIONS 47.3 100.0 54.4 100.0

Memo: Repo market outstanding value (lending and borrowing) in the EU 6.8 6.1



annum, and a £546bn asset stock based upon an assumed 5 year average

asset maturity. The assumption that these imputed ratios are stable over

time is a weakness of the method, as is the arbitrary assumption of 5 year

average maturity, but the result that off-balance-sheet assets are equivalent

in size to 26% of on balance sheet assets corresponds sufficiently closely with

the Eurozone estimates to appear plausible. The most recent FSB Global

Shadow Banking Monitoring Report [Board, 2018] gives the ‘narrow mea-

sure’ of shadow banking for the UK as $1.9tn for 2017 – with the broader

measure of assets held by nonbank financial corporates standing at $31.7tn

for 2017.

2.3.4 Alternative estimation methods

Fiaschi et al [Fiaschi et al., 2014] advance a further assumption-based esti-

mate of the size of SBS globally. Firm sizes across countries and over time

have been observed to obey a Paretian probability density function of the

form:

Pr{X ≥ x} ≃ cx−γ (2.1)

which is to say that the probability of observing a firm of size X larger

than x is appoximately equal to x multiplied by a constant c, raised to the

power of a scaling parameter −γ – in other words, the probability of such

an observation declines in constant proportion. The Paretian distribution

is locally self-similar under appropriate scaling parameters, and gives rise

to the ‘Pareto principle’, commonly known as the 80-20 rule- whereby 20%

of some population control 80% of the distributed factor, often income or

wealth. Such allocations can be characterised by a Pareto distribution for

some γ (in the 80-20 case, γ = log(5)
log(4)). This constant-proportion property

gives rise to a linear log-log plot, and Fiaschi et al note that the distribution

of firm sizes obeys an appropriately-specified Pareto distribution for mod-

erate values, and deviates at higher values, almost all of which represent

financial firms (Figure 2.3). The implication is that these financial firms

have unobserved assets whose inclusion would restore the observed distri-

bution to the expected, and that these assets exist off-balance-sheet in the
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Figure 2.3: Cumulative Distribution for of financial and all firms by assets

[Fiaschi et al., 2014] Cumulative distribution Pr(S ≥ x) for asset sizes S for financial

(left panek) and all (right panel) firms in 2004, 2007, and 2012. The straight line is a

linear fit in an intermediate range of logPr(S ≥ x) vs logx.

SBS.

Deriving an expected Pareto exponent of 0.905 for all firms in 2013 and

0.648 for financial firms only in 2013, Fiaschi et al [Fiaschi et al., 2014] obtain

an estimate of over $100tn for the size of SBS globally in 2012, compared

to Financial Stability Board (FSB) estimates of $65 - $70tn (Figure 2.4).

As common as such firm size distributions have been observed to be, there

is of course no deterministic reason why financial firm sizes would obey

this distribution, and examples of unexpectedly inconstant second or higher

derivatives abound in financial economics (for example the ’volatility smile’

of option theory).

2.4 Shadow banking in practice

Having considered broad metrics of shadow banking activity, this section

will consider in more detail the specific financial instruments used by the

shadow banking sector. From this consideration we will justify the selection

of variables measuring shadow banking activity, to be used in the empirical

work in Chapters 4 & 5.
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Figure 2.4: Comparison of the Fiaschi et al Shadow Banking Index with

FSB estimates

[Fiaschi et al., 2014] Confidence bands ±2 standard errors in Pareto exponent estimates.
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2.4.1 Sale and repurchase orders

A sale and repurchase order, or repo, is a transaction involving the exchange

of cash for collateral in the form of securities, with a promise to reverse the

sale at the maturity date – frequently the following day. The amount paid in

cash and the amount returned differ by the repo rate – a form of interest rate;

and frequently less cash is provided than the market value of the securities

pledged – this is known as the collateral haircut. For example if £80 cash

is exchanged for £100 worth of securities and the securities are returned at

maturity for £88, the repo rate is 10% 88−80
80 and the haircut is 20% 100−80

100 .

Repo transactions can be bilateral, transacted directly between the cash

provider and the collateral provider; or may involve a central clearing coun-

terparty, known as the tri-party repo market. Repo transactions can thus

arise both from a need for cash, mimicking a short-term secured loan, or

from a need for securities e.g. for short-selling.

Adrian et al [Adrian et al., 2013] find that the tri-party repo market is

mostly driven by the cash side, particularly as the cash provider does not

have to process the securities collateral in its own back office – meaning a

more diverse range of counterparties and wider use of non-specific General

Collateral. At the centre of the tri-party repo market in the US are the

clearing banks, JP Morgan and Bank of New York Mellon. The tri-party

market is a key source of funding for securities dealers, and cash is provided

by a wide array of firms with MMMFs accounting for 25-30% [Adrian et al.,

2013].

The bilateral market exists to serve parties who wish to transact specif-

ically with one another or in a specific security, and so is better config-

ured for collateral lending rather than cash lending transactions [Adrian

et al., 2013]. Collateral pledged in repo transactions can be rehypothecated-

used as collateral in a further lending transaction- meaning that the haircut

mathematically functions as a limit on leverage; for some constant haircut

θ, leverage by rehypothecation is limited to 1
θ [Copeland et al., 2014]. An

increase in haircuts- meaning the same collateral can secure less cash- re-

sults in a funding shortfall that can prompt fire sales of the assets, pushing

down collateral prices, increasing haircuts and exacerbating the situation, as
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Figure 2.5: The Haircut Index of Gorton & Metrick

[Gorton and Metrick, 2009] Formatting per original.

depicted in Figure 2.5 (drawn from Gorton & Metrick [Gorton and Metrick,

2009]).

The size of the repo market in the US is typically estimated at around

$3tn, of which $2tn is in the tri-party repo market and the balance in bilat-

eral repo [Martin et al., 2014, Adrian et al., 2013]. The role of repo in the

shadow banking sector is as the deposit analogue; repo offers a repository for

corporate, insurance and mutual fund cash piles that is secured rather than

insured, and offers some yield. Thus demand for repos arises for two distinct

reasons; firstly a search for a money-like instrument for value storage and to

meet liquidity needs, and secondly a search for low-risk yield. The former is

characteristic of corporates and insurers with cash balances larger than the

deposit insurance limit, while the latter is more typical of mutual funds and

hedge funds (HFs) [Pozsar, 2014].

Repo may be viewed then as part of the growing debate on private vs
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public money creation, the Bank of England having recently officially ac-

knowledged the view commonly held for some time, that the majority of

money creation is enacted privately in the form of bank deposits and com-

parable liabilities [McLeay et al., 2014]. Empowered to create money as

they see fit, commercial banks will nevertheless only do so when profitable

lending opportunities exist, raising the possibility that when cash seeking

deposit contracts outstrips the availability of profitable lending opportuni-

ties, repo may constitute an additional source of private money to meet this

demand [Pozsar, 2014]. Sunderam [Sunderam, 2014] advances a theoretical

model of the SBS as meeting demand for private money-like assets which

also offers empirical support for the proposition.

The value of money, privately or publicly created, always and everywhere

relies on confidence that it will be accepted and trade at or near par- for

sovereign currency-issuing entities, this amounts to a promise to control

inflation. For banks and shadow banks, this value promise rests on the pool

of assets backing the money liability – and if banks lend to all profitable

lending opportunities and back their deposit liabilities with this mixture of

whole loans, then we may conclude that one of the functions of the SBS

is to make unprofitable lending opportunities profitable, at least for some

participants in the capital structure. This attempt to guarantee the value of

privately-issued money drives the requirement for MMMFs, the depository

institutions of the SBS, to maintain the Net Asset Value of each of their

$1-face-value shares above $0.995- failure to do so is known as ‘breaking the

buck’, and, as with uncertainty around the ability of banks to make good

their deposit contracts, can lead to a run on the system.

Martin, Skeie and von Thadden [Martin et al., 2014] derive a Diamond-

Dybvig style model in which repo runs results from liquidity shocks as per

[Diamond and Dybvig, 1983], but also from collateral shocks. Copeland et

al [Copeland et al., 2014] complement this theoretical work with an empiri-

cal piece which also serves to highlight the differences between the bilateral

and tri-party repo markets during the financial crisis- the bilateral markets

suffered haircut spirals, whilst haircuts in the tri-party markets remained

largely stable but volumes dropped precipitously in a number of cases. The

tri-party response thus resembles a ‘classic’ bank run, while the bilateral
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response displays an attempt to adjust prices rather than quantities- albeit

in an extreme sense- rendering the transactions more security-like and less

money-like. Acharya, Gale & Yorulmazer [Acharya and Naqvi, 2012] ad-

vance a collateral-constraint based model, and show that in the presence of

rehypothecation and buyers who also need to finance their portfolio, small

doubts about the value of the collateralising security (corresponding to small

changes in the Markov chain state transition probabilities) can lead to large

drops in the debt burden that security can sustain.

2.4.2 Asset-backed commercial paper

Asset-backed Commercial Paper forms the intermediate security of SBS in-

termediation chains. Short-term commercial paper backed by a specific pool

of cash flow-generating assets, ABCP is typically issued by a special-purpose

vehicle established by, but independent of, the originator of loans. The origi-

nator transfers ownership of the assets into the SPV, meaning they and their

cash flows are isolated from the originator in case of the originator’s failure.

ABCP claims can therefore maintain their value as long as their specific as-

sets continue to perform, whereas the failure of a bank’s general asset pool

can impair all of its retail deposits. ABCP also plays a role in maturity trans-

formation, as its reference assets are typically ABS of 3 to 5 years’ maturity

while the tenor of the ABCP itself can be anything from one to 180 days,

but typically around 30 days [Adrian and Ashcraft, 2016, Acharya et al.,

2013]. Designed as a mechanism for more accurate and controllable alloca-

tion of cash flows and associated risks, ABCP is considered by Acharya et al

[Acharya et al., 2013] to exist almost solely for regulatory arbitrage – credit

guarantees provided by regulated banks to ABCP conduits require much less

capital to be held against them, enhancing banks’ return on equity. Acharya

et al [Acharya et al., 2013] show that more capital-constrained banks were

more likely to establish conduits; and in the event that these conduits were

strained, it is shown that losses accrued substantially to the banks guaran-

teeing them rather than the investors purchasing the ABCP issued. This

is consistent with little or no economic risk transfer taking place [Acharya

et al., 2013]. Kashyap et al [Kashyap et al., 1992] show that borrower firms
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also treat commercial paper as an imperfect substitute for bank loans, issu-

ing more when monetary conditions are tight, suggesting that a reduction in

bank loan extension is not the result of falling demand from borrower firms,

but lower willingness to extend credit on the part of banks. The regulatory

arbitrage associated with ABCP conduits may therefore allow for extension

of credit that would not otherwise have take place – though as this may

take place at a time of tight monetary policy, for the benefit of a firm of

questionable creditworthiness and by a bank of questionable strength, it is

doubtful how welfare-enhancing such credit provision is.

2.4.3 Asset-backed securities

Asset-backed securities are a general class of bond-like entities representing

claims on pools of loans, mortgages or receivables [Adrian and Ashcraft,

2016]. Whereas the pool of whole loans will have varying interest rates and

payment times, pooling and tranching can impose regularity on these cash

flows to produce a collateralized bond with regular fixed coupon payments,

collateralised by the underlying. The process of packaging loans into ABS is

known as securitisation, and results in tradeable, and therefore more liquid,

claims- potentially improving risk allocation. ABS issuance is however prin-

cipally a process of credit enhancement by diversification- using historical or

projected default rates, the ABS can be issued in slices known as tranches,

with ordinal seniority of claim and eligible for credit rating by ratings agen-

cies such as Standard & Poor’s or Moody’s. The first defaults are absorbed

by the equity tranche typically retained by the issuer, the mezzanine tranche

may attract a junk-bond level rating and its high coupon attracts hedge

funds, while the super-senior tranche has first claim on any cash flows and

can therefore often attract an investment grade rating- rendering it eligible

for purchase by pension funds etc. ABS’s credit enhancement facility being

based substantially on diversification, default probabilities are highly sensi-

tive to model risk in general and the correlation parameter in particular- the

chance that a loan will default given that other, similar loans are default-

ing. This correlation results from similar loan notional values with similar

interest rates likely being issued to borrowers with similar characteristics.
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David X., Li’s canonical copula formulation [Li, 2000] generalises the stan-

dard, discrete definition of correlation of two random variables to continuous

distributions common to actuarial science- the survival function, its comple-

ment the failure time function, and the instantaneous failure rate as time

tends to zero, known as the hazard rate function. Nevertheless this 2000

publication surveys properties of copula functions in general, with a few

specific examples, and notes that the selection of copula function depends

on assumptions about the marginal distributions of the underlying variables-

it seems a little harsh therefore to brand the Gaussian copula function ‘the

formula that killed Wall Street’ [Salmon, 2012] when the inadequacies of

the bell curve for accurately representing payoffs of financial assets are well

documented [Hudson and Mandelbrot, 2008].

It will be seen then that each financial entity in the SBS specialises to an

extent in one of the driving motives for SBS, and one for FI in general- repo

markets thus exist to serve a need for money and liquidity transformation,

ABCP offers regulatory arbitrage but also aids maturity transformation,

while ABS’s role in credit transformation also helps address information

problems in financial markets. Perversely, one of the ways it does this is

not through transparency, making the value of investment projects easier

to ascertain, but rather making this process harder in the quest for what

Dang et al [Dang et al., 2017] refer to as ‘optimal opacity’. Their Diamond-

Dybvig style model shows that banks can improve allocative efficiency by

obscuring information about the quality of their assets, so that the bank

money issued with these assets as backing does not fluctuate in value, adding

friction to trade. They show that under their conditions, banks will invest

in information-insensitive assets to reduce the incentive to produce private

information about the projects that could prove damaging to the value of the

bank’s money, while capital markets will directly finance projects that are

sufficiently risky or where the cost of producing information is sufficiently

low.

A wide literature concerns the decision facing firms to seek bank finance

as opposed to capital markets finance. Fama [Fama, 1985] famously asked

‘What’s Different About Banks?’, referring to their need to finance inter-

est forgone on capital held in reserve by increasing interest rates on loans,
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creating a paradox whereby loan clients should optimally select alternative

providers to receive financing at lower rates. Bolton & Freixas [Bolton et al.,

2012] show that under specified conditions a banking sector and capital mar-

kets can coexist, with bank loans preferred by risky borrowers and lower-risk

clients preferring capital markets- further implying lower interest rates in the

open market. Biswas & Koufopoulos [Biswas and Koufopoulos, 2014] show

that banks can offer underwriting services to capital markets issuers, backed

by reserves to reassure borrowers that their guarantees are trustworthy and

helping positive NPV projects to attract funding. Of the empiricists, Duca’s

vector error-correction model shows that activity in the shadow banking

sector is strongly driven by constraints on the TBS- reserve requirements,

deposit interest rate ceilings, prop trading restrictions and others cause the

financial system to seek alternatives outside the government-guaranteed sec-

tor [Duca et al., 2014].

2.5 The demand side

Most national statistical authorities publish multiple monetary aggregates

with different financial instruments included or excluded. In the UK these

are the narrow money measure M0, composed of notes & coins as well as

central bank reserves, and the broad money measure M4 including M0 in

addition to sterling bank deposits, certificates of deposit, commercial paper,

bonds, floating-rate notes, repo claims on UK regulated banks, sterling bank

bills, and other instruments of up to 5 years’ maturity issued by UK banks.

The consumer demand theory approach identified with the Chicago school

[Sriram, 1999] recognises that different elements of monetary aggregates

are not, in practice, treated as perfect substitutes- and that these elements

may be weighted by applying a factor wi ∈ {0, 1} known as the element’s

‘moneyness’ for all i = (1, 2, . . . , N) elements of those monetary aggregates.

Moneyness, as a proportion relative to cash=1, measures the extent to which

the asset performs the function of money- formally, they are entered “as in-

puts into the production function of money services” [Sriram, 1999]. This

measure therefore defines the extent to which assets are used, in practice,

as money substitutes though not perhaps the extent to which they resemble
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money in the abstract. One could imagine a moneyness measure defined over

the characteristics of money as a store of value- liquidity, safety in the form

of a realising full nominal value almost surely, ubiquity, acceptability etc. It

is this moneyness-as-value-store measure that non-specie money-like claims

of the TBS and SBS seek to maximise. Insured bank deposits attain a high

moneyness ‘score’ under both definitions, with bank account balances fre-

quently (in fact in overwhelming majority) transferred to settle transactions

in lieu of currency. SBS money-like claims, whilst infrequently used trans-

actionally, nevertheless attain a high theoretical-moneyness measure- repo

transactions, for example, are settled daily offering high liquidity, and are

overcollateralised (to the extent of the haircut) by mutually acceptable se-

curities that possess an automatic ‘stay’ in case of counterparty bankruptcy,

allowing the cash lender to retain the collateral in the event that the cash

balance is unable to be repaid with interest [Gorton et al., 2012]. Money-

market mutual fund shares are constrained to be redeemable at par at all

times, and investors must be informed if the net asset value of the fund

falls below $0.995 per $1 invested. Money-market deposit accounts, though

operated by the TBS, are active in repo and securitisation markets and can

be used identically to bank deposit or checking accounts.

It is these characteristics of SBS claims that the demand-side literature

highlights – liquidity, safety, and only secondarily enhanced yield. Gorton

et al [Gorton et al., 2012] document that the proportion of all US finan-

cial assets considered ‘safe’ has remained relatively constant at around 33%

since 1952, whilst the ratio of total assets to GDP has increased by a fac-

tor of 2.5- implying a role for safe assets in the production of total assets,

or a technology that allows only this proportion of total assets to be, or

be made, safe at any one time. Furthermore, the composition of this safe

asset share has changed over time, with government liabilities and tradi-

tional insured bank deposits falling in proportion relative to SBS claims and

investment-grade corporate bonds. Along with increasing GDP the result

is a substantial increase in notional value of financial assets outstanding,

a consistent proportion of which are nevertheless considered likely to be

redeemable at nominal par value.

Pozsar [Pozsar et al., 2010] attributes some of this demand to US cor-
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porate treasuries, pools of cash held for liquidity management reasons and

invested in a range of safe assets including bank deposits, government debt

and repo & securitised instruments. Being above the insurable margin with

an average cash pool magnitude in this paper of $15bn, corporates derive

risk limitation benefits from diversifying across financial firms and asset

types, limiting their exposure should a single counterparty fail to redeem its

liabilities. Corporates will also utilise derivative trades to manage specific

business risks, and likely maintain cash or liquid positions to meet fluctua-

tions in the margin accounts such derivative trades require. Pozsar [Pozsar

et al., 2010] assigns to these corporate cash pools $2.2tn of safe asset demand

at their 2007 peak, falling to $1.9tn by Q4 2010, of which $1.5tn was met by

the SBS with the balance in TBS accounts and government bond portfolios.

Sunderam [Sunderam, 2014], considering the safe asset demand attributable

to households and individual savers, notes that ABCP issuance outstanding

grew by 70% between 2004 and 2007, peaking at a notional outstanding value

of almost $1.2tn in 2007. Krishnamurthy and Vissing-Jorgensen [Krishna-

murthy and Vissing-Jorgensen, 2012], assessing the demand for Treasuries

(US government bonds) and the effect on yields of other financial assets,

show that Treasury yields were depressed on average by 72 basis points

(0.72%) over the period 1926-2008 by this demand. They further show that

supply of Treasuries negatively affects both the supply of bank-issued money,

and the yield spread between bank money and less ‘moneylike’ safe assets-

the fall of this spread suggests constrained Treasury supply induces lower

yields on these assets, allowing them to become more moneylike [Krishna-

murthy and Vissing-Jorgensen, 2012]. Finally, Bernanke et al [Bernanke

et al., 2011] document total issuance of safe assets of the order $4.5tn in

the period 2003-2007, of which 55% was sold to foreign investors including

European banks and governments, Asian corporates, ‘Global Savings Glut’

countries where households tend to be net savers rather than borrowers (esp.

China), and oil-rich Middle Eastern sovereigns. Supposing that the remain-

ing 45% was sold uniquely to US corporates rather than households, this

approximates the $2.2tn cited by Pozsar [Pozsar et al., 2010] to within an

order of magnitude.

Serletis & Xu [Serletis and Xu, 2019] construct a sophisticated model of
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the role of the shadow banking sector in meeting demand for banking services

in the US, and further hypothesis that the substitutability/complementarity

between regulated bank and shadow bank services is vital in the transmission

of monetary policy. They allow for Markov regime-switching, and document

that the emergence of the shadow banking sector has increased the stability

of money demand functions, concluding that measures of money supply may

be more useful indicators of the stance of monetary policy than the interest

rate.

2.6 Conclusion

Taken together this literature demonstrates a large and consistent demand

from households, corporates and governments both US and foreign for assets

considered safe. In the event that this demand cannot be entirely satisfied

by traditional banks or government bonds – due to deposit insurance lim-

its [Pozsar, 2013], fiscal prudence constraints [Sunderam, 2014], or because

excessive government debt may cause such claims to lose their information-

insensitive characteristic, thereby losing the very safety investors demand

[Krishnamurthy and Vissing-Jorgensen, 2012] – the demand may be to an

extent met by a shadow banking system that, by allocating or concealing

risk, allows production of money-like assets from loans of varying quality.

We have reviewed the literature around shadow banking in some detail.

Being US-centric, little work has been done focusing on the UK shadow

banking sector specifically. Though hypothetical, descriptive and theoret-

ical models of the role of shadow banking in meeting demand for safe as-

sets have been advanced, no empirical models exist setting the UK shadow

banking sector in the context of safe asset demand. We propose to gather

UK data, construct measures of shadow banking sector activity, and plalce

these measures empirically in a demand-for-safe-assets context. In consid-

ering shadow banking from the perspective of demand for safe assets, our

empirical framework is close in spirit to the theoretical framework of Gen-

naioli et al [Gennaioli et al., 2013]. In assessing shadow bank services as

substitutes for government debt, we take after Krishnamurthy & Vissing-

Jorgensen [Krishnamurthy and Vissing-Jorgensen, 2012] , and in considering
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the substitutability between shadow bank and traditional bank services, we

have much in common with Serletis & Xu [Serletis and Xu, 2019] and fit

into the theoretical framework of Pozsar [Pozsar, 2013] – however the focus

on the UK is novel.

Our results will be of interest to policymakers concerned with prudential

regulation, as well as the transmission of monetary policy to the real econ-

omy given the shadow banking sector’s role in the transmission mechanism

as set out above. We now turn to formulate our hypotheses in detail, and

introduce our dataset.
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Chapter 3

Data and Hypotheses

3.1 Developing Hypotheses

The focus of the present work is upon the role of the shadow banking sector

in meeting demand for money-like assets in the United Kingdom. Money-

like assets are defined as those assets providing one or more of the monetary

services outlined above, but in particular that of a store of value, and as such

the present work also addresses the topic of demand for safe assets [Gorton

et al., 2012], of which money-like assets are a subset. The framework for

this analysis will be provided by the well-established literature concerning

demand functions for existing published monetary aggregates, and a key

contribution of the present work is to extend this framework to constructed

aggregates of shadow banking sector monies. The remainder of this chapter

aims to develop specific, testable hypotheses from the existing literature on

the characteristics and dynamics of shadow banking.

H1: The demand function for shadow banking sector liabilities

can be estimated under the assumption that competing safe

assets have supply rigidities leading to inelasticity

To the extent that it is measurable, shadow banking activity can be pre-

sumed to share a relationship with broader economic activity. Shadow

banking liabilities are demanded by rational economic actors, and as such it

should be possible to empirically observe and econometrically estimate the
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relationship of the shadow banking sector to the broader economy. Golec

& Perotti [Golec and Perotti, 2017] document the emerging importance of

considering shadow banking sector instruments in the literature concerning

safe asset provision. The assumption that substitutes such as government

debt and bank deposits are inelastic in supply may be more valid in the

short run.

H2: This demand function has characteristics comparable to

well-established demand functions for exiting monetary ag-

gregates

If indeed shadow banks provide monetary services, and their products are

to an extent substitutable with money assets of the traditional banking sec-

tor, then it is to be expected that the demand function for shadow money

shares characteristics with well-established demand functions for traditional

money. That is to say, aggregate demand for SBS liabilities should be in-

creasing as real GDP increases, and also increasing as its own rate of return

increases. Demand is expected to be decreasing as the ‘cost’ of holding such

money increases - typically defined as opportunity cost, i.e. a higher out-

side interest rate. Pozsar [Pozsar, 2013] documents the importance of the

shadow banking sector in meeting demand for safe assets from corporate

cash pools, whose demand stems chiefly from the transactional motive for

holding money.

H3: Corporate cash pools are a key source of demand for

shadow banking sector monetary services

In the prolific literature on shadow banking as a provider of private-sector

monetary assets due to Pozsar and various co-authors [Pozsar et al., 2010,

Pozsar, 2013, Pozsar, 2014], there are two key institutional ‘bids’ for SBS-

created money - corporate treasurers searching for safety and fund managers

reaching for enhanced yield. As the present work is concerned with safe as-

set provision, we focus on corporate cash pools as a source of demand - and

hypothesize that demand for SBS liabilities should share a negative relation-

ship with corporate assets deposited in traditional banks, all other things
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being equal. That is to say that a corporate treasurer’s decision to place

the marginal pound sterling in a traditional bank deposit should ‘crowd

out’ the production of a shadow bank liability such as a money-market

mutual fund unit to receive that pound. This assessment of substitutabil-

ity/complementarity between traditional and shadow bank deposits builds

on the work of Serletis & Xu [Serletis and Xu, 2019].

H4: As a safe asset, SBS liabilities are treated as a government-

debt substitute

It is not only corporate cash pools who may treat SBS liabilities as a substi-

tute for an alternative safe asset. Any investor seeking safety would likely

also consider government-issued debt securities - though of course at suf-

ficient scale, a cash pool may wish to diversify away from even the most

creditworthy issuer in the economy, and not merely for reasons of enhanced

return. Nevertheless, and considering Gorton et al ’s [Gorton et al., 2012]

finding that the safe asset share in the (US) economy is approximately con-

stant, it might be expected that SBS safe assets and government-produced

safe assets share a negative relationship at the margin. Krishnamurthy and

Vissing-Jorgensen [Krishnamurthy and Vissing-Jorgensen, 2012] address this

hypothesis at length for the US case, and find this hypothesis borne out in

data covering the period 1914-2011. It should be noted however that their

definition of private sector safe assets is broader and covers both what we

would term ‘traditional’ and ‘shadow’ banking sector liabilities in a single

set of aggregates.

3.2 Contribution of hypotheses to the literature

Should our hypotheses be borne out, a principal contribution will be to the

shadow banking literature. We will have extended the work of Tyson &

Shabani [Tyson and Shabani, 2013] by retaining their UK focus, and offer

evidence for Pozsar’s [Pozsar, 2013] work showing corporate cash pools as

a key bid for shadow bank liabilities. The broader demand for safe assets

perspective follows the work of Gorton & Metrick [Gorton et al., 2012], and
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Table 3.1: Hypotheses

Hypothesis Variable entering SBS

money demand function

Expected sign and magni-

tude

H2 Log real GDP +, approximately 1

H2 Own interest rate +

H2 Opportunity cost / alterna-

tive interest rates

-

H3 Corporate deposits in tradi-

tional banking sector

-, around 1 in absolute mag-

nitude if ’crowding out’ is to-

tal

H4 Government debt outstand-

ing, government debt is-

suance in short-run models

-, around 1 in absolute mag-

nitude if ’crowding out’ is to-

tal

the focus on substitutability of shadow bank money with government debt

and bank deposits extends the work of Krishnamurthy & Vissing-Jorgensen

[Krishnamurthy and Vissing-Jorgensen, 2012] and Serletis & Xu [Serletis

and Xu, 2019].

The work also contributes to the broader literature on money demand

in the UK, extending the work of Hendry & Ericsson, Drake & Chrystal,

Ericsson et al, Nielsen, and Jawadi & Sousa [Hendry and Ericsson, 1991,

Drake and Chrystal, 1994, Ericsson et al., 1998, Nielsen, 2007, Jawadi and

Sousa, 2013].

Methodologically the work draws on the vector time-series paradigm of

Johansen [Johansen, 1988, Johansen and Juselius, 1990] and the factor-

based work of Stock & Watson and of Banerjee & Marcellino [Stock and

Watson, 1999, Stock and Watson, 2002, Stock and Watson, 2005, Banerjee

and Marcellino, 2009]. We also introduce a strategy for identifying long-run

cointegrating vectors in a factor-augmented vector error correction model

(FAVECM) which is believed to be novel. We now consider the data we will

use to test these hypotheses.
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3.3 Dataset description and UK Flow of Funds

3.3.1 Introduction

A notable contribution to the literature attempting to assess the scale and

activity of the shadow banking sector in the United States is that of Errico,

Haruyunyan, Loukoianova, Walton, Korniyenko, Amidzic, AbuShanab and

Hyun Song Shin [Errico et al., 2014]. Working at the International Monetary

Fund and making use of that institution’s access to standardized financial

reporting data provided by participant nation states, Errico et al create

a Global Flow of Funds, mapping financial activity between economic sec-

tors within and across borders. Their approach shares a thematic spirit

with the Stock-Flow Consistent school of analysis latterly championed by

the Post-Keynesian school of economics and Wynne Godley in particular,

but dating back at least to Copeland’s work of 1949, and arguably encom-

passing the MONIAC of Phillips. Phillip’s MONIAC (Monetary National

Income Analogue Computer) represented stocks and flows within the UK

economy as reservoirs and pipes filled with water, and in a similar spirit,

the Stock-Flow Consistent modelling tradition attempts to avoid ‘leakages’

– with every dollar or pound sterling leaving one sector, finding a destina-

tion in another. In the case of the United States as studied by Errico et al,

this approach consists of a sectoral input-output matrix that they term the

Balance Sheet Approach (BSA), and a matrix to capture the destination

(origin) nationality of funding leaving (arriving) across American borders.

Errico et al initially offer a broad definition of the shadow banking sector

resulting from this approach. Conjecturing that in normal times regulated

banks depend mostly if not solely on domestically-sourced retail and small

corporate deposits for funding, they argue that this stable but finite source

of liabilities would be insufficient to support rapid asset growth during a

lending boom. Therefore to allow balance sheets to expand more rapidly,

traditional banks seek what Errico et al term ‘noncore’ liabilities – a cate-

gory including foreign individual and corporate depositors in addition to the

repo dealers and wholesale capital market lenders with whom we have iden-

tified shadow banking thus far. The broadest possible definition of shadow

banking then, would be total liabilities of the regulated financial intermedi-
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Figure 3.1: Matching Assets and Liabilities - the US example

[Errico et al., 2014]

ation sector, minus household deposits in that regulated sector. Errico et al

further attribute elevated or rapidly growing noncore liabilities with predic-

tive power in anticipating financial crises – and more generally recommend

that policymakers study the composition of banking sector liabilities as an

indicator of financial conditions.

Notwithstanding their focus on shadow banking in the text, the method

of Errico et al is comprehensive, matching assets and liabilities across 13

different types of financial instrument for each of 9 different economic sectors,

for some 1,404 individual data points (or individual time series). That said,

given constraints on data availability, their matrix is sparse – the US example

provided in the original paper is reproduced herein as Figure 3.1.

Errico et al proceed to offer some description and analysis of the time-

series behaviour of core and noncore funding in the US, along with empirical

evidence in the form of panel regressions of various components of core and
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noncore funding on funding aggregates and macroeconomic variables for

a sample of 82 countries. Eschewing vectorized systems and instrumental

variables approaches in favour of simple OLS to estimate partial derivatives,

Errico et al conclude that both core and noncore liabilities have significant

positive correlation with within-country growth of loans to the private cor-

porate sector – but not to the public sector. In their directions for further

work, Errico et al note data availability as an important area for future

focus, and highlight the UK in particular as a data gap – the UK at this

time did not provide data to the IMF using standardized reporting forms.

The present work therefore set out to in some part replicate the method

of Errico et al, and not without success. With our focus still upon shadow

banking, we nevertheless considered the same 1,404 sector-instrument pairs

considered by Errico et al, and though we faced similar data availabil-

ity issues, were able to complete the matrix to a comparable standard.

However, in the words of Laurence Fishburne’s Morpheus from the promi-

nent 1999 film, “nobody can be told what The Matrix is; you have to see

it for yourself” – and to that end the full BSA approach matrix imple-

mented for the UK by the author is available in a more accessible format

in the online appendix at https://s3.eu-west-2.amazonaws.com/domsilman-

thesis-technicalappendix/BSAMatrix.xlsx. We note that, subsequent to the

present work being conducted, the UK statistical authority the ONS now

publishes flow-of-funds matrices in accordance with the practice established

by Errico et al – though at a much higher, more aggregate level. These data

series are mostly sourced from the ONS – the contribution of the present

work is not to originate the data or to pioneer the structure, merely to bring

the two together for the UK case in a way that was novel (and remains novel

at this level of granularity).

Resulting from that work, we were able to derive a measure of core and

noncore liabilities in the UK regulated banking sector comparable to that

of Errico et al. Their measure of noncore liabilities is defined from the bank

balance sheet side, and includes deposits at ODCs that are outside broad

money; debt securities issued by ODCs, MMFs, and OFCs; loans received

by ODCs and OFCs; and nonresidents’ deposits with ODCs and OFCs. For

the UK, given our focus on safe assets from the perspective of the holder,
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Figure 3.2: Time Path for Core and Non-core funding (UK regulated banks)

our measure is defined as total M4 (broad money) minus deposits with MFIs

held by the household sector – it therefore includes sterling certificates of

deposit; commercial paper, bonds, floating rate notes and other instruments

of up to five years’ maturity issued by UK MFIs; claims on UK MFIs arising

from repos; and sterling bank bills. We therefore select M4 as the broad

money measure from which we subtract household deposits to define our

measure of noncore liabilities. Hereafter we refer to household deposits

with UK-regulated banks as ‘core’, and the remainder of M4 as ‘non-core’.

This forms a very broad measure of shadow banking as any non-household

funding source used by the financial sector in aggregate, but this is exactly

the measure used in Errico et al. We depict in Figure 3.2 the time path of

core (household deposits in M4) and noncore (rest of M4) funding for UK

regulated banks.
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Comparable to Figure 18 in Errico et al, Figure 3.2 depicts a rapid

increase in noncore funding liabilities during the early 2000s boom, before

sharp falls in nominal terms following the financial crisis of 2007/8. Recently

noncore funding growth appears to have resumed – and as in Errico et al,

core funding from retail depositors has proceeded largely unhindered. The

variable noncore as defined here will be retained for further analysis.

From that broadest of definitions of shadow banking activity, we turn

now to consider a much narrower one. Very little good data exists in most

national aggregates to examine the potentially long chains of collateral re-

hypothecation entered into as part of the maturity, liquidity or credit en-

hancement functions of the shadow banking sector. Any effort to place the

activities of the sector in macroeconomic context must therefore focus on

one or other end of the chain. Previous authors, notably Bord & dos Santos

[Bord and Santos, 2012], Purnanandam [Purnanandam, 2010] and Berndt &

Gupta [Berndt and Gupta, 2009] have considered the role of shadow banking

and the securitization machine in driving aggregate credit growth before the

financial crisis, in doing so concealing risk and increasing fragility. Focusing

in the present work on the provision of safe assets and the role of shadow

banking in innovating in the money supply, we will consider the other end of

the chain – the money market instruments where safety-seeking borrowers

may warehouse cash against good collateral, further protected by net asset

value guarantees. In particular we consider the short-term money market

instruments issued by what the ONS defines as ‘other UK residents’ – to

wit, not regulated banks, and therefore shadow banks in the truest sense of

introducing into the financial system deposits seeking investment that may

not otherwise be there.

These money-market instruments are not large in aggregate – in con-

trast to Gorton et al ’s [Gorton et al., 2012] estimate of 33% of GDP being

composed of safe assets, money market instruments in the UK system of na-

tional accounts typically account for around 0.01% (1 basis point) of GDP,

peaking at 1.5 bps in Q1 2001. There is significant interest in the composi-

tion of this money supply by asset-holder over time however. Excluding for

the moment the rest of the world, Figure 3.3 depicts the time series of this

composition at quarterly frequency, 1987:Q1 – 2018:Q1.
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Figure 3.3: MMIs by Asset Holder, excluding RoW

We see the expected growth before the financial crisis followed by a

decline in this funding source – though it is interesting to note the buying

activity of private nonfinancial corporates during this time, perhaps rotating

cash out of riskier uncollateralized positions with stressed commercial banks.

Corporates began to sell down their positions in aggregate from 2011, though

total volume remains approximately constant with the bid being taken up

by OFIs, who constitute the majority of the domestic market as of mid-

2017. Including the Rest of the World in Figure 3.4, observe that foreign

asset holders are the majority of the market in aggregate, and recovered

more quickly from the credit crunch as a shareholder class – perhaps also

motivated by a flight-to-safety instinct or desire for greater liquidity.
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Figure 3.4: MMIs by Asset Holder, including RoW
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3.3.2 Conclusion

It is these money market instruments that will be a predominant focus in

the rest of the work as we consider the relationships between the safe assets

produced by the shadow banking sector, other safe assets, and the wider

macroeconomy. To do so we assemble a time series dataset from publicly-

available sources, at the quarterly frequency and stretching back to 1967

for some indicators – though 1987 is more typical and the dataset becomes

acceptably dense after this point. We include measures of money market vol-

ume in addition to traditional money aggregates, macroeconomic variables,

various interest rates, and alternative measures of financial conditions. The

variables are detailed below, along with some abbreviations and notation

used throughout the statistical results section of this work.

We will use various measures of shadow banking activity as dependent

variables in the following empirical work, including the Errico-inspired mea-

sure of non-core financial sector funding (‘noncore’), and also various com-

ponents of the UK’s balance sheet held in money market instruments (in-

cluding but not limited to ‘MMIs OFIs Liab’). We also construct a measure

of securitisation activity by subtracting M4 lending excluding intermedi-

ate securitisation (‘M4Lex’) from the broader measure M4 lending (‘M4L’),

leaving just sterling value of securitisation activity. In adopting securiti-

sation as a metric for shadow banking activity we follow authors such as

Adrian & Shin, Pozsar et al, and Portes – all of whom have emphasised the

role played by securitisation in shadow banking sector credit transformation

[Adrian and Shin, 2009b, Pozsar et al., 2010, Portes, 2018].

3.4 Variable names and statistical notation

Table 3.4 gives the names, sources, and derivation of variables used in the

empirical work hereafter. Some standard notation is also adopted, and sum-

marised for convenience below.

Table 3.2: Variable names
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Variable

source code

at data

provider

Data

provider

Variable name in

statistical output in-

text and Appendix

A

Description of variable

ONS (Of-

fice for

National

Statistics)

l gdpdef Natural logarithm of the GDP defla-

tor (author calc)

l rgdp log of real GDP (author calc)

BoE yrGilt1 /

ytm10yrGilt

10-year gilt yield

BoE yrGilt / ytm20yrGilt 20-year gilt yield

BoE l realM0 log of M0 notes and coins deflated by

GDP deflator (log of real M0 notes &

coins) (author calc)

BoE l realM4 log of M4 deflated by GDP deflator

(log of real M0 notes & coins) (author

calc)

l yrGilt1 /

l ytm20yrGilt

log of 10-year gilt yield (author calc)

L yrGilt /

l ytm20yrGilt

Log of 20-year gilt yield (author calc)

BoE BankRate Bank of England policy interest rate

ONS RPI Annual % change in retail prices index

TermSpread Yield spread between policy rate and

10-year UK government gilt (author

calc)

NYXK ONS MMI Liab total UK aggregate balance sheet, total

money market instruments issued as

liabilities of UK non-bank FIs
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NYXJ ONS MMIs total econ-

omy assets

UK aggregate balance sheet, total

money market instruments held as as-

sets of UK sectors and issued by UK

nonbank FIs

NKZM ONS PNFC MMI Liab Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK pri-

vate nonfinancial corporates

NKEM ONS MMIs public non-

financial corpora-

tions assets

Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK pub-

lic nonfinancial corporates

NKKU ONS MMIs private

NFCs assets

Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK pri-

vate nonfinancial corporates

NNTS ONS MMIs MFIs assets Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK reg-

ulated banks

NLQG ONS MMIs OFIs assets Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK

other financial institutions

NLTK ONS MMIs OFIs liabilities Money market instruments issued by

other UK residents (UK non-bank

FIs) that are issued as liabilities of UK

other financial institutions

NIYY ONS MMIs Insurers &

pension funds assets

Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK in-

surers & pension funds
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NSUO ONS MMIs Central

govt assets

Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK cen-

tral government

NJFG ONS MMIs Local

govt assets

Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK local

government

NNNK ONS MMIs Hholds &

NPISH assets

Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets of UK

households & nonprofits

NLDQ ONS MMIs RoW assets Money market instruments issued by

other UK residents (UK non-bank

FIs) that are held as assets by the rest

of the world

LPQBC69 BoE M4L Aggregate M4 lending

RPQB57Q BoE M4Lex Aggregate M4 lending excluding secu-

ritisation

M4 securitisation M4 lending minus M4 lending exclud-

ing securitisation (author calc)

l realM4 securit Log of M4 securitisation, deflated by

GDP deflator (author calc)

XUQABK67 BoE EER Quarterly average Effective exchange

rate index - Sterling (Jan 2005 = 100)

LPQZ5GS BoE MFI hding InterOFC Quarterly amounts outstanding of

monetary financial institutions’ ster-

ling holdings of securities issued by In-

termediate OFCs (in sterling millions)

not seasonally adjusted
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LPQBC56 BoE MFI lending OFC Quarterly amounts outstanding of

monetary financial institutions’ ster-

ling net lending to other financial cor-

porations (in sterling millions) season-

ally adjusted

NYWQ ONS STDebt CentGov Balance Sheet, Total Economy, Short-

term debt securities issued by UK cen-

tral government

NYWY ONS STDebt LocGov Balance Sheet, Total Economy, Short-

term debt securities issued by UK lo-

cal government

NYXQ ONS LTDebt CentGov Balance Sheet, Total Economy, Long-

term debt securities issued, by UK

central government

NYXW ONS LTDebt LocGov Balance Sheet, Total Economy, Long-

term debt securities issued, by UK lo-

cal government

NKKC ONS PNFC MFI deposits Private non-financial corporates’ de-

posits with regulated banks

NKFB ONS PNFC total assets Total financial assets of private non-

financial corporates

NNMS ONS Hhold MFI deposits Households’ deposits with regulated

banks

IUQAVNEA BoE LIBOR / LI-

BOR 1m

Quarterly average Sterling 1-month

mean interbank lending rate

IUQAL1ESE BoE Euro CPR 1m Quarterly average of 1-month Euro-

commercial paper rates:

IUQAVJND BoE Bill DCR 1m Quarterly average of eligible bills 1-

month discount rate

IUQAGR1M BoE ON gilt repo Quarterly average of overnight gilt

repo interest rate
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Yahoo! FTSE Vol Quarterly average FTSE100 volatility

index (Yahoo Finance)

3.4.1 Notation

Prefixes

• l - log of variable

• lr - log of variable deflated by log of GDP deflator

• d - first difference of variable

• d lr - first difference of log of variable deflated by log of GDP deflator

Suffixes

• 1 - 1-period lag

• 2 - 2-period lag

Coefficient significance

• *** = 0.01

• ** = 0.05

• * = 0.1
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Chapter 4

OLS and VECM Results

4.1 Replicating existing models of money demand

4.1.1 Introduction

Before investigating the hypotheses developed in Chapter 3, we first exam-

ine the behaviour of the traditional monetary aggregates in the quarterly

dataset for comparison with the work of previous authors, and to calibrate

methodology. We consider models of both narrow money – M0 notes & coins

– and of broad money, M4 in the present study. In keeping with the prac-

tice in the literature, we estimate vector error correction models for both of

these aggregates of interest – however we may derive some initial findings

from a simple OLS specification relating these aggregates to measures of real

economy activity, own and alternate interest rates, and inflation. Errico et

al [Errico et al., 2014] also employ simple, OLS estimates to establish par-

tial derivatives in their landmark work mapping the shadow banking system

through a flow of funds methodology for the United States, and we follow

their lead here. Though the nonstationarity present in some of these time

series and the high R2 values associated with the models typically indicate

spurious regression, and though the Gauss-Markov conditions are typically

not met in these models, Verbeek [Verbeek, 2008] demonstrates that in the

presence of cointegration between the timeseries – of the form we go on to

demonstrate here – the OLS estimator is ‘superconsistent’ for estimating

the parameters of the long-run equilibrium relationship, and as such some
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limited inferences may be drawn. Exact model outputs are available in Ap-

pendix A, and are referred to in the text by the code under which they may

be found in that appendix. Traditional monetary aggregate models belong

to model Group A, and have codes of the form A1a, etc.

4.1.2 Methodology: the general vector error correction model

Developing the error-correction methodology of Sargan [Sargan, 1964] and

the two-step, single-cointegrating-vector approach of Engle & Granger [En-

gle and Granger, 1987], the extension of error-correction time series models

into higher-dimensional cointegrating space is due to Johansen [Johansen,

1988] and Johansen & Juselius [Johansen and Juselius, 1990]. The follow-

ing section reproduces in large part the accessible discussion of the linear

algebra of cointegration in the Gretl User Guide [Cottrell and Lucchetti,

2012]. Consider a simple vector autoregressive process of order p where y is

a vector of length n, such as:

yt = ut +A1yt−1 +A2yt−2 + ...+Apyt−p + et (4.1)

As yt−i ≡ yt−1 − (∆yt−1 +∆yt−2 + ...+∆yt−i+1), which is to say that y

is the sum of its past changes, we can cast the above in first difference form

as:

∆yt = ut +Πyt−1 +

p−1∑︂
i=1

Γi∆yt−1 + et (4.2)

This is known as the vector error correction form. Interpretation depends

crucially on the rank r of the matrix Π, where if this matrix has rank greater

than zero but less than the column span of the dataset n, cointegration

exists. At the extremes:

• If r = 0, the processes are all integrated of order 1 and not cointe-

grated, and a VAR in first differences should be estimated.

• If r = n, the matrix Π is invertible, the processes are stationary, and

cointegration analysis is not necessary.
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• If 0 < r < n, cointegration exists and Π can be decomposed as αβ′,
where β holds the long-run cointegrating vectors and is n× r, while α

holds the parameters governing short-run response to disequilibrium

and is r × n.

The contribution of Johansen [Johansen, 1988] and Johansen & Juselius

[Johansen and Juselius, 1990] was to provide a method to estimate the rank

of the matrix Π by computing the eigenvalues of a closely-related matrix

constructed to be symmetric and positive semidefinite, and therefore having

positive real eigenvalues – the rank of this companion matrix is equal to the

number of nonzero eigenvalues. Johansen [Johansen, 1988] derives critical

values below which cutoffs the eigenvalues are not statistically distinguish-

able from zero. Because αβ′ = αRRβ′ for some arbitrary conformable

nonsingular matrix R, α and β are underidentified in the absence of identi-

fying restrictions. In general for rank r, r2 restrictions are needed to achieve

identification. Normalising one coefficient per column to 1 (or -1 to cast that

variable as the dependent) is an easy route to r such restrictions, and the

other r(r − 1) can be drawn from economic theory or, as we do later, from

statistical properties of the system variables. Overidentifying restrictions

can also be tested by likelihood ratio in the pursuit of particular hypotheses

motivated by theory. Otherwise, the long run relationships can be left un-

deridentified at the cost of not being able to define standard errors or draw

inferences regarding the long run equations – but without the loss of consis-

tent numerical estimation. In the short-run equations, the Granger repre-

sentation theorem holds that any set of nonstationary cointegrated variables

can be characterized as being generated by an error correction mechanism

– and indeed these variables are cointegrated only if this ECM exists. It

is desirable that at least one equation in the system should respond to dis-

equilibrium in each of the long-run relationships specified, and so should

have a negative coefficient of statistical significance to the residuals of these

relationships – moving the variable in the direction of ‘closing the gap’.

It is these attributes – interpretable long-run and valid error-correction

short-run equations – that we will look for in the empirical work directly

following. Given our assumption that safe-asset substitutes suffer from in-
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elastic supply in the short term, it is in the short-run equations that we will

look for evidence towards our hypotheses H3 and H4 regarding demand sub-

stitution. Classical money-demand models are concerned with the long-run

relationships of money quantities to GDP and inflation, so H1 and H2 will

typically be assessed in light of the long-run parameter estimates.

4.1.3 Model group A

Guide to models: model group A

In group A we fit models to standard, not shadow-banking focused mone-

tary aggregates with the aim of reproducing results similar to those found

in the literature concerning money demand for the UK [Hendry and Er-

icsson, 1991, Drake and Chrystal, 1994, Nielsen, 2007]. Full details of all

regressions are presented in Appendix A, and we summarise them here for

ease of use. Models of group A1 concern the measure M0 notes and coins

as dependent variable. Model A1a regresses log real M0 on log real gdp,

the log of the gdp deflator, and the 20-year gilt yield. We find the expected

positive significant coefficient to real GDP (0.23, p<0.06) and negative co-

efficient to the opportunity cost of holding money as measured by the yield

on gilts (-0.03, p<0.01). However the large positive significant coefficient to

the inflation measure violates the common assumption of price invariance

in the literature, in this functional form (1.22, p<0.01). Model A1b substi-

tutes the 10-year gilt yield for the 20-year, and the coefficient to real GDP

now exceeds 1 (1.80, p<0.01) – however the relationship with inflation is now

negative and significant (-0.88, p<0.01) and it may not be a coincidence that

these sum to approximately 1, suggesting a 1-for-1 relationship between de-

mand for narrow money and economic activity as expected in the literature.

The coefficient to opportunity cost remains negative and significant (-0.04,

p<0.01). Model A1c substitutes RPI for the GDP deflator as the measure of

inflation, and the interpretation of the coefficients to real GDP ans outside

interest rates are as A1a and A1b above – the coefficient to the inflation

measure remains significant but is now small in absolute magnitude (0.01,

p<0.01). These models are summarised in Table 4.1. Model A1d attempts

to fit a VECM to the system composed of log real M0, log real gdp, RPI
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and the 10-year gilt yield, but as mentioned above this functional form does

not elicit significant or satisfactory results. These results are nevertheless

published in Appendix A herein.

Models of group A2 concern the broad money measure M4, in log real

form deflated by the GDP deflator. Model A2a introduces log real gdp, the

log gdp deflator, and the 20-year gilt yield as explanatory variables. Though

the coefficient estimates are significant, the signs contradict our hypotheses

and the published literature. Model A2b substitutes the 10-year gilt yield for

the 20-year, but it does not enter the equation with a significant coefficient

and other parameter estimates remain unsatisfactory. Model A2c substitutes

RPI for log gdp deflator as the inflation metric, and returns more promising

estimates. There is a positive coefficient to real gdp (1.95, p<0.01) and a

negative relationship to gilt yields (-0.02, p<0.05), as expected. The RPI

measure is small in magnitude but shows as significant (0.02, p<0.01) – this

is typically expected to be zero. Subsequent models of group A2 introduce

variables to act as proxies for broad money’s own rate of return, and these

might be expected to enter with positive sign if better compensation leads

to larger real money balances being held. However negative relationships

may be due to confounding supply effects making identification difficult –

an asset of the holder is a liability of the seller, and higher interest rates

may induce sellers to supply less money. Model A2d introduces LIBOR as

a measure of return on money, and indeed we find the relationship to be

negative, albeit small in magnitude (-0.02, p<0.01). Model A2e substitutes

the Bank of England policy rate for LIBOR, still with M4 as the dependent,

with similar results (-0.02, p<0.01). This is unsurprising given the close

relationship between the policy rate and LIBOR. Model A2f dispenses with

the 10-year yield but adds the difference between the 10-year yield and the

Bank Rate as a measure we refer to as the Term Spread, and in this model

both the Bank Rate and the Term Spread enter with positive sign. These

results are summarised in Table 4.4.

System A2g estimates a VECM for the variables space composed of log

real M4, log real gdp, RPI, the 10-year gilt yield, and the Bank of England

policy rate, and is discussed below.

84



Table 4.1: Parameter estimates and significance for OLS models of group

A1.

Variable A1a A1b A1c

Log Real GDP 0.23* 1.80*** 0.67***

Log GDP Deflator 1.22*** -0.88*** -

RPI - - 0.02***

10-year gilt yield - -0.04*** -

20-year gilt yield -0.03*** - -0.05***

R2 0.97 0.92 0.88

A1: Models of M0 notes & coins

Group A1 concerns models of base or narrow money, defined here as the

Bank of England’s measure M0 notes & coins.

OLS Models The OLS forms summarised in Table 4.1 are not entirely

without merit – in particular, all display the negative coefficient to gilt yields

that would be expected, though it is small in magnitude. Other authors con-

sider a risky rate of return such as commercial paper rates as the ‘alternative’

rate of return opportunity cost to holding money – by using long-dated gilt

yields, our measure of opportunity cost embeds a term premium rather than

a risk premium, casting money as sacrificing yield in exchange for immedi-

acy – through the maturity transformation process of the banking sector.

Otherwise, model A1b displays the expected sign and significance with re-

spect to GDP and the level of prices – and it may be noteworthy that these

coefficients sum to around unity, though all variables are in real terms. We

stop short of implying a relationship between real money balances and nom-

inal GDP. Both A1a and A1c have coefficients to real GDP of less than 1,

and both also display a positive relationship to the incorporated measure of

prices.

It should be noted also that the length of the 10-year and 20-year gilt

yield series differs, with the 10-year yield providing more observations – as

such it is generally preferred hereafter.
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Table 4.2: Cointegrating vectors (unidentified) for system A2g

Equation 1 Equation 2 Equation 3 Equation 4

Log real M4 -1 1.94 -50.63 2.14

Log real GDP 0.91 -1 177.14 -11.2

RPI 0.11 0.05 -1 -0.05

10-year gilt yield -0.05 0.08 2.98 -1

Bank Rate -0.06 0.06 2.37 0.44

A1d: VECM on M0 Despite an extensive specification search, we were

unable to elicit a vector error correction form with desirable attributes for

M0 notes and coins. We report an illustrative example as model A1d in

the technical output appendix, but we do not discuss the results at length

here. The Johansen procedure indicates a relatively large cointegration space

of 3 cointegrating vectors for the 4-variable system, and so the long-run

forms are underidentified, though the long run coefficient of real GDP to M0

money supply, at 0.57, is appropriate. The short-run equations lack desirable

equilibrium-correcting properties, and following the work of [Jawadi and

Sousa, 2013], it seems likely that nonlinear or time-varying parameters are

at play here.

A2: Models of M4

Group A2 concerns models of broad money, defined here as the Bank of

England’s measure M4.

A2g: VECM of M4 Parameter estimates for system A2g are reported

in Tables 4.2 and 4.3. Table 4.2 contains the long-run equations, and Table

4.3 contains the short-run parameter estimates.

Discussion: model group A

The longer time series permitted by use of the 10-year gilt yield in preference

to the 10-year rate once again delivers estimates more in line with theory

when M4 is the dependent variable – and as such we refrain from discussing

model A2a at length. All other OLS models of M4 display positive and
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Table 4.3: Short-run adjustment parameters for system A2g

Variable Coefficient P-value

d lr M4 1 0.09 0.29

d lr gdp 1 -0.55 0.02**

d RPI 1 0.01 0.001***

d ytm10yrgilt 1 0 0.97

d bankrate 1 0 0.66

EC1 -0.01 0.17

EC2 -0.01 0.000***

EC3 0.0005 0.000***

EC4 0.0002 0.9

R2 0.3
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Table 4.4: Parameter estimates and significance for OLS models of group A2

Variable A2a A2b A2c A2d A2e A2f

Log Real GDP -0.92*** 1.44*** 1.95*** 1.67*** 1.67*** 1.67***

Log GDP Deflator 3.74*** 0.71*** - 0.62*** 0.61*** 0.61***

RPI - - 0.02*** - - -

10-year gilt yield - 0.003 -0.03* 0.03* 0.04*** -

20-year gilt yield 0.12*** - - - - -

LIBOR - - - -0.02*** - -

Bank Base Rate - - - - -0.02*** 0.02*

Term Spread - - - - - 0.04***

R2 0.96 0.92 0.88 0.97 0.97 0.97



significant wealth effects, with coefficients to GDP ranging from +1.44 to

+1.95. As with some of the M0 models, coefficients concerning levels or

changes in price tend to be positive. A2c, including RPI as an explanatory

variable, defines a hyperplane solution that is decreasing in increasing gilt

yields, as would be expected from an alternative, opportunity-cost interest

rate. Other models however estimate a positive coefficient to gilt rates. This

may be due to the composition of M4 – as this aggregate includes lending

activity by regulated banks, lending activity may be increasing in increasing

gilt rates as the net interest margin of the lending bank may be higher. As

such, including the 10-year gilt rate in this regression may be proxying term

premia, which we would expect to be positively correlated with at least

the lending component of M4. Models A2d and A2e include short-term

interest rates – LIBOR and the Bank of England Base Rate respectively –

and both these rates enter the equation with negative sign. This also may

be attributable to the effect of short rates on net interest margin – as banks

borrow short and lend long, all other things being equal, increasing long

rates (or equivalently term premia) increase the net interest margin and

incentivise lending, while increasing short rates lower the margin [Genay,

2014].

Applying the Johansen procedure to the system (log real M4, log real

GDP, RPI, 10-year gilt yield, Bank Rate) suggests that, while the small-

est eigenvalue is indistinguishable from zero and cointegration therefore ex-

ists, four vectors are required to span the cointegrating space of this five-

variable system, and identification of the long-run equations on purely the-

oretical grounds is extremely difficult. Some novel identification strategies

are presented later within the present work, but are outside the scope of this

replication-focused analysis of standard monetary aggregates. As such, we

define the cointegrating vectors up to a normalisation only, and otherwise

leave them unconstrained. The cointegrating vector normalised on log real

M4 has a positive coefficient to log real GDP of +0.91, though it is not

possible to say if this is significant. RPI also enters the long-run equation

for M4 with positive sign, while the partial derivatives with respect to both

policy rates and 10-year gilt rates are negative. In the short run, changes in

log real M4 money supply do not display a significant autoregressive compo-
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nent, but do respond negatively to positive changes in log real GDP. Money

supply also is not found to respond significantly to disequilibrium in the

long-run equation for which it is cast as the dependent – log real M4 instead

corrects disequilibrium in long-run equation 2, cast as the long-run equation

for GDP.

To briefly summarise and compare with existing money supply literature

focused on the UK – coefficients are estimated with the expected sign more

often than not, notwithstanding some superficially unusual but logically

explicable responses to term premia in the case of M4. We find that M0

responds to real GDP with a magnitude typically <1, and less than that

estimated for M4, which is typically 1.7. This approximates the results

of McNown & Wallace [McNown and Wallace, 1992], who find coefficients

typically <1 for narrow money and >1 for broad money. Magnitudes of

parameter estimates for own and alternate rates of return are somewhat

different to the magnitudes published in existing literature, being typically

much smaller – though this may be a result of differing variable encoding

between the present study and antecedent literature. We report parameter

estimates around 0.02 to 0.1, whereas 6 to 7 is estimated in, for example,

Ericsson et al [Ericsson et al., 1998]. Having replicated existing models

of money demand using standard dependent variables with some success,

we now turn our attention to the shadow banking sector to see if similar

specifications can be elicited for measures of activity in that sector.

4.2 The shadow banking sector and the provision

of safe, money-like assets

4.2.1 Introduction

We first considered multiple individual variables that address or proxy some

element of shadow banking activity in addressing the hypotheses outlined

in Table 3.1. In the regressions outlined below these range from a relatively

narrow measure, log real amounts outstanding of Money Market Instruments

issued by Other Financial Intermediaries, through the broader categories of

(log real) all MMI assets held by UK sectoral counterparties and a con-
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structed measure we term ‘M4 securitisation’, to the broadest measure of

all – a measure of ‘noncore’ banking sector liabilities defined after Errico et

al [Errico et al., 2014] and constructed as outlined in Chapter 3 above.

4.2.2 Guide to models: model group B

Models of group B concern measures of shadow banking sector activity, de-

fined as aggregate quantities of financial instruments outstanding, at varying

levels of specificity. Group B1 models take the narrowest measure, money

market instruments (MMIs) issued by other financial intermediaries (OFIs),

as the dependent variable - referred to as ‘logreal B1’. Model B1a regresses

this measure on log real gdp, RPI, and the 10-year gilt yield. The positive,

significant coefficient to real GDP (1.20, p<0.01) is in line with the hypoth-

esis that shadow banking narrow money provision scales with real economic

activity in a similar way to demand for central bank narrow money. Model

B1b includes a measure of M4 broad money which enters with negative sign

and significance (-0.76, p<0.01). Model B1c introduces M0, the measure of

official central bank narrow money, and this enters the system with nega-

tive sign, large magnitude and significance (-3.09, p<0.01) – as one would

expect if shadow bank and central bank money are treated as substitutes.

The absolute magnitude (>1) of this estimate also suggests a procyclical at-

tribute to shadow bank narrow money creation – ‘overreacting’ to injections

or withdrawals of official money. Model B1d introduces the overnight gilt

repo rate as a measure of the return on shadow bank narrow money, and this

enters with expected positive sign and marginal significance (0.02, p=0.07).

Removing the insignificant independent variables from model B1d yields

model B1e, an appealing specification showing quantity of shadow bank

narrow money responds positively to real economic activity (0.63, p<0.01)

and to own interest rate (0.03, p<0.01), and negatively to broad money

quantity (-0.23, p<0.01) and to inflation, a measure of the opportunity cost

of holding nominal money balances (-0.02, p<0.01). These regressions are

summarised in Table 4.6.

Model B1f fits a VECM to the system composed of log real money mar-

ket instruments issued by OFIs, log real gdp, log real M4, RPI, and the
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overnight gilt repo rate. The long run relationships are left unidentified in

the absence of plausible identifying restrictions, but are normalised to the

shadow bank money measure, real gdp, and real M4 for interpretability.

The short-run estimates indicate that shadow bank money responds to dis-

equilibrium in the long-run equation for real GDP (λ = −0.33), and also

displays a significant negative relationship to one lag of M4 quantity (-0.99,

p<0.01) – suggesting that an increase (decrease) in broad money leads to an

almost precisely offsetting fall (rise) in shadow bank issued money market

instruments the following quarter.

Models of group B2 concern the constructed measure of M4 securitisa-

tion as the dependent variable. B2a offers an OLS equation comprising log

real gdp, log real M4, RPI and the overnight gilt repo rate as explanatory

variables. Only the measures of internal return and opportunity cost – the

repo rate and RPI respectively – display the expected sign and significance.

Model B2b fits a VECM to the same system of variables involved in B2a,

but a tractable system of short-run equations proves elusive.

Models of group B3 extend the measure of shadow bank money to all

money market instruments issued by UK residents, a sector sum we trans-

form into log real terms and refer to as ‘l realB3’. The contemporaneous

OLS model B3a incorporates log real gdp, RPI, the 10-year gilt yield as

external return, and the overnight repo rate as a measure of the return to

holding shadow bank money. All variables except real gdp (which is in-

significant) enter with the expected sign and significance. Model B3b fits a

VECM to the same variable space, and the long-run forms reported in Table

4.7 show promise. In the long-run equation with shadow bank activity as the

dependent variable, equilibrium relationships are as hypothesised – positive

to GDP (4.76), negative to M4 (-1.40), positive to the overnight repo rate

(0.21) and negative to the yield on gilts (-0.09). The short-run forms prove

intractable once more, but are reported in Table 4.8 nevertheless.

Models of group B4 are all vector error-correction models, and intro-

duce measures of alternative safe asset issuance by banks and government

in order to address hypotheses H3 and H4. Model B4a estimates a system

composed of log real M4 securitisation, log real gdp, log of the gdp defla-

tor, 1-month LIBOR, the 20-year gilt yield, and log real short-term cen-
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tral government debt outstanding. The Johansen rank-selection procedure

suggests one or two long-run equations, and we estimate and report both.

Model B4a presents the single long-run equation form, and we normalise to

the measure of shadow banking activity as the ‘dependent’ of this long-run

equation. We find the expected negative equilibrium relationship with gov-

ernment debt issuance (-1.33), positive relationship with GDP (42.57) and

negative relationship with inflation (-18.43), but the return metrics confound

expectations. The short-run equations suggest that shadow banking activity

does correct disequilibrium in the long-run relationship (λ = −0.04). Model

B4b introduces the 2-equation long-run forms, and the long-run form with

shadow banking activity as the dependent has similar properties to B4a, as

does the short-run equation with shadow banking activity as the dependent.

B4c and B4d mirror B4a and B4b respectively but substitute the mea-

sure of long-term debt issuance by central government for the short-term

measure. Neither produces a short- or long-run system that provides evi-

dence for our hypotheses, and we do not discuss them in detail here.

Model B4e introduces a (log real) measure of deposits held in the tradi-

tional banking sector by private non-financial corporates (‘lr PNFC MMI deposits’).

We thereby seek to address our hypothesis H3, that corporate cash pools

are a key source of demand for shadow banking sector safe assets. Log

real M4 securitisation remains the proxy for shadow banking activity. The

long-run equation with shadow banking activity as the dependent displays

the expected negative relationship in equilibrium with regulated bank de-

posits (-1.41) – however this estimate is not significant given the identifying

restrictions used.

Model B4f introduces quarterly realised volatility in the FTSE 100 as

an exogenous explanatory variable in the short-tun adjustment equations.

This volatility measure aims to proxy financial distress, and the coefficient

should capture how financial stress impacts demand for shadow banking

sector services. Initially we permit this measure to enter contemporaneously,

and the coefficient in the short-run equation for log real M4 securitisation is

positive and significant (0.002, p<0.05), suggesting that elevated financial

distress increases securitisation activity at the margin – possibly as regulated

banks, faced with volatility in their equity holdings and loan securities, seek
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to move assets off-balance-sheet. However this may also reflect a preference

by safe-asset demanders for instruments that are explicitly asset-backed,

or are at arms’ length from troubled publicly-traded banks. Model B4g

modifies the FTSE volatility variable to enter the short-run equations with a

one-quarter lag. Model B4g is our preferred functional form, and is therefore

discussed in more detail hereinafter.

Model B4h fits a VECM system around the broadest measure of shadow

banking activity, non-core bank funding as defined by Errico et al [Errico

et al., 2014]. It does not yield evidence in support of our hypotheses and is

not discussed in detail here, though full parameter estimates are published

in Appendix A, as they are for all other models estimated.

4.2.3 Summary of results: model group B

Contemporaneous OLS models concerning MMIs liabilities issued by OFIs

display the expected sign and significance with respect to GDP, coefficients

varying from 0.63 to 4.65 depending upon specification. RPI as a measure

of opportunity cost also enters with the expected (negative) sign and is

significant though of smaller magnitude. Alternative measures of narrow

and broad money, introduced as controls, also pick up some significance in

these specifications. Among the vector models, the preferred model for this

most limited of SBS measures, model B1f, estimates a negative coefficient

to GDP in the long-run equation – albeit with the caveat that the long-run

relationships in this case are under-identified, and so significance cannot be

assessed. A tractable short-run error correcting relationship for this system

proved elusive.

Modelling the constructed measure M4 securitisation as a proxy for ac-

tivity in the shadow banking sector yields the vector systems B2b and B4g,

where B4g also includes measures of long-term central government debt

issuance and private non-financial corporates’ holdings of deposits in the

regulated banking sector in order to address hypotheses H3 and H4 as de-

fined above. In both cases the measure of interest is in log-real terms, and

as such the long run relationship with the measure of price level is con-

strained to be zero to achieve identification and estimate standard errors
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for the long-run equations. B4g yields the form that most closely complies

with the hypotheses – albeit with a large and marginally-significant coeffi-

cient of 39.29 to log real GDP. Measures of long-term central government

debt issuance and PNFC deposits in regulated banks do not enter the long-

run cointegrating relationships with significance, and so no evidence can be

given for hypotheses H3 and H4 from this part of the model. However, the

short-run adjustment equation corresponding to this long-run form and with

(the first difference of) log real M4 securitisation as the dependent contains

a negative and significant coefficient of -1.14 to long-term debt issuance by

the central government, and this may be considered as evidence in favour of

the ‘crowding out’ hypothesis due to Krishnamurthy & Vissing-Jorgensen

[Krishnamurthy and Vissing-Jorgensen, 2012]. The short-run equation for

(change in log real) M4 securitisation is as follows:

∆lr M4 sec =− 14.13 +−0.18 ∗∆lr M4 sect−1 + 0.98 ∗∆l gdpdeft−1

+ 0.09 ∗∆LIBOR 1mt−1 +−0.08 ∗∆ytm 20yrGiltt−1

+−1.14 ∗∆lr LT Debt CGt−1 + 0.70 ∗∆lr PNFC MFI depositst−1

+ 0.001 ∗ FTSE V olt−1 + 0.03 ∗ λ1 +−0.47 ∗ λ2

(4.3)

where all variables are named as in the statistical tables with the ex-

ception of λ1 and λ2, which give the error-correction speed-of-adjustment

parameters with respect to the first (λ1) and second (λ2) long-run equations.

The first long-run equation is normalised to the measure of securitisation ac-

tivity and is reported in Table 4.7 , while the second equation is normalised

to the gdp deflator and is reported in Appendix A.

4.2.4 Discussion: model group B

Applying the time-series methodology of Johansen [Johansen, 1988] to the

question of shadow banking as a provider of monetary services, we document

evidence from the short-run model in favour of our hypothesis H4. Equation

4.3 shows the short-run equation with M4 securitisation as the dependent

variable, and the significant coefficient of -1.14 to central government debt
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Table 4.5: Hypotheses, revisited

Hypothesis Variable entering

SBS money de-

mand function

Expected sign

and magnitude

Evidence from VECM models

H2 Log real GDP + , approxi-

mately 1

B3b and B4g positive but of much greater

magnitude

H2 Own interest

rate

+ B4g positive to LIBOR in long-run form

H2 Opportunity

cost / alter-

native interest

rates

– Inconclusive – N4g positive to term rates in

long run, negative in short run

H3 Corporate

deposits in tra-

ditional banking

sector

– , around 1 in

absolute magni-

tude if ‘crowding

out’ is total

Inconclusive

H4 Government

debt outstand-

ing, government

debt issuance in

short-run models

– , as above 1

in absolute mag-

nitude if crowd-

ing out is total

Good – B4g shows significant short run re-

sponse to change in level of outstanding

central government debt (ie. issuance), and

close to hypothesized magnitude
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Table 4.6: Contemporaneous OLS results for models of group B1

Model Code B1a B1b B1c B1d B1e B2a B3a

Dependent

Var

log real

MMIs OFIs

liabilities

log real

MMIs OFIs

liabilities

log real

MMIs OFIs

liabilities

log real

MMIs OFIs

liabilities

log real

MMIs OFIs

liabilities

log real M4

securitiza-

tion

log real

MMIs ex-

cluding

RoW

log real GDP 1.21*** 2.64*** 4.65*** 0.98* 0.63*** -1.93*** -0.37

RPI -0.09*** -0.07*** -0.04*** -0.02*** -0.02*** -0.03** -0.02**

10-year gilt

yield

0.01 -0.004 -0.09*** 0.004 - - -0.06***

Overnight

gilt repo rate

- - - 0.02* 0.03*** 0.04*** 0.02*

log real M4 - -0.76*** 0.06 -0.23*** -0.23*** 4.34*** -

log real M0

notes &

coins

- - -3.09*** -0.22 - - -

R2 0.57 0.61 0.87 0.73 0.73 0.99 0.16



Table 4.7: VECM long-run equations for systems of group B

Model Code B1f B2b B3b B4g

Dependent Var log real MMIs OFIs li-

abilities

log real M4 securitisa-

tion

log real MMIs liabili-

ties excl RoW

log real M4 securitisa-

tion

log real GDP -5.2 -7.88*** 4.76*** 39.29*

RPI -0.81 0.00 (constrained) 0.00 (constrained) -

log GDP deflator - - - 0.00 (constrained)

10-year gilt yield - - -0.09 -

20-year gilt yield - - - 3.21***

Overnight gilt repo

rate

0.51 -0.32*** 0.21*** -

1-month LIBOR - - - 0.02

log real M4 4.52 4.66*** -1.40* -

log real M0 notes &

coins

- - - -

log real long-term cen-

tral govt debt

- - - 1.85

log real private non-

financial corporates

deposits with MFIs

- - - -5.9



Table 4.8: VECM short-run equations for variables of interest in systems of group B

Model Code B1f B2b B3b B4g

Dependent Var log real MMIs OFIs liabilities log real M4 securitisation log real MMIs liabilities excl

RoW

log real M4 securitisation

autoregressive term in diffs 0.14 -0.07 -0.16 -0.18

diff log real GDP t-1 0.82 -2.28 -3.02* -5.36***

diff RPI t-1 0.01 0.01 0.04** -

diff log GDP deflator t-1 - - - 0.98

diff 10-year gilt yield t-1 - - 0.002 -

diff 20-year gilt yield t-1 - - - -0.08*

diff overnight gilt repo rate t-1 -0.03* -0.004 -0.04 -

diff 1m LIBOR t-1 - - - 0.09***

diff log real M4 t-1 -0.99*** -0.76 -0.62 -

diff log real M0 notes & coins

t-1

- - - -

diff log real long-term central

govt debt

- - - -1.14***

diff log real PNFC deposits at

MFIs

- - - 0.70*

Acceptable error correction

specification?

No - LR eq 1 has no correction

mechanism

No - LR eq 1 has no correction

mechanism

No - no significant responses to

disequilibrium

Yes - correction to diseq flows

through rates - LIBOR and gilt

yields



issuance implies that extra availability of government debt drains deposits

out of the shadow banking system, and correspondingly a fall in government

debt issuance leads to increasing securitisation and shadow bank money

issuance the following quarter. With a standard error of 0.34 the coefficient is

statistically distinguishable from zero with p < 0.01, but it is not statistically

distinguishable from 1 and we may tentatively conclude that ‘crowding out’

of the shadow banking sector by government-issued safe assets is supported

in the data. This finding accords with the work of Krishnamurthy & Vissing-

Jorgensen [Krishnamurthy and Vissing-Jorgensen, 2012] and supports the

assertion of Pozsar [Pozsar, 2013] and of Gorton et al [Gorton et al., 2012]

that the shadow banking sector arises in response to insufficient quantities

of government debt for purchase as safe assets. We assume that quarter-

to-quarter issuance of government debt is related to government’s need for

working capital and not the demand for quality collateral within the financial

sector, and on that basis we identify shifts in shadow banking activity with

shifts in demand for shadow banking services, rather than idiosyncratic shifts

in supply.

Though we demonstrate evidence for hypothesis H4 regarding substi-

tutability of shadow banking assets with government debt, support for our

other hypotheses remains weak – and a potential culprit is that our chosen

dependent variables are poor proxies for shadow banking activity, or fail to

incorporate enough information. In the next chapter we take inspiration

from Stock & Watson, Bernanke et al, and Banerjee & Marcellino to derive

information from considering a broader set of potential dependent variables

[Stock and Watson, 2002, Bernanke et al., 2005, Banerjee and Marcellino,

2009].
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Chapter 5

The Shadow Banking Factor

5.1 Principal Components Analysis

5.1.1 Introduction

With only weak evidence for the hypotheses arising from specific, individual-

variable-focused regression forms in the previous chapter, we now consider

methods whereby the larger column span of our money-market-funds-by-

investor dataset may be leveraged to provide extra information.

Dimension reduction strategies for data analysis, and more generally

techniques for uncovering latent ‘fundamental’ structure in datasets, are

commonplace in the social and hard sciences. Psychologists, biologists and

others who deal chiefly with cross-sectional data with many attributes but

perhaps relatively few rows (‘large p small n’) were early adopters of the

methods of principal components and exploratory factor analysis. The lit-

erature concerning their use in economics is due in large part to the pro-

lific statisticians and longtime co-authors James Stock and Mark Watson.

Though pioneered by Sargent & Sims in 1977’s ‘Business cycle modelling

without pretending to have too much a priori economic theory’ [Sargent

et al., 1977], factor strategies owe much of their prominence in econometrics

to the work of Stock & Watson, beginning with 1998’s ‘Diffusion Indexes’

[Stock and Watson, 1998]. The present work is closest in spirit to Stock &

Watson’s 2002 ‘Forecasting using principal components from a large number

of predictors’ [Stock and Watson, 2002]. Therein, it is established that a
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correlated time series dataset can be summarized by a potentially smaller

number of uncorrelated, unobservable factors – and that these factors can be

consistently recovered (in the statistical sense) by the method of principal

components under fairly general assumptions about what form the cross-

sectional and temporal correlations within the original dataset take. Treat-

ing these principal components as estimates of the unobservable factors,

Stock & Watson are then able to incorporate them in otherwise standard

forecasting VARs.

Bernanke et al [Bernanke et al., 2005] employ a similar approach to

pioneer the factor-augmented vector autoregression (FAVAR). They also es-

timate the latent factors by the method of principal components, also offer-

ing a Bayesian likelihood approach which we do not pursue here. FAVARs

have since become commonplace in the literature, but the present work

may be subcategorized as the relatively rarer factor-augmented vector error-

correction model (FAVECM), introduced by Banerjee & Marcellino [Baner-

jee and Marcellino, 2009]. Banerjee & Marcellino characterize the functional

form – and we agree – as a natural extension of the FAVAR, and further

note that just as standard VARs in first differences may be misspecified (or

at least improved upon) in the presence of cointegration, so too must be

factor-augmented VARs. Banerjee & Marcellino consider as their examples

US interest rates and the US macroeconomy generally, and the present work

is believed to be a novel application of the FAVECM to the field of shadow

banking – and possibly to the broader field of money demand. A further

point of differentiation is that Banerjee & Marcellino introduce factor repre-

sentations to augment the study of ‘real’ (non-constructed) macroeconomic

variables, whereas in the present study the factors themselves are the object

of focus.

An assumption of the methodology is that one or more latent (unobserv-

able) factors exists, and captures the phenomenon of interest – in this case

we assume the existence of two latent factors carrying information about

the level of shadow banking activity, and we further assume that measured

variables contain information about and are correlated with these latent fac-

tors, but no one observable variable is equal to a latent factor. Owing to

the normalisation of the data that takes place during the principal compo-

102



nents procedure, the ability to interpret the coefficients of the FAVECM as

semi-elasticities or elasticities is lost – the factors are in z-score terms. We

can still make statements about sign and significance, and perhaps about

the behaviour of explanatory variables when the latent factors are above or

below their own mean.

5.1.2 Results

We consider four possible structures for a factor structure study of the

shadow banking activity dataspace:

• Panel 1a: A small, four-column dataset containing the Errico ‘noncore’

measure, our constructed measure M4 securitisation, and total MMI

asset and liability series, with all variables entering in log real terms;

• Panel 1b: The same four variables in first-differenced log real form;

• Panel 2a: An expanded dataset with the four previous variables, in

addition to measures of MMI holdings broken out by economic sector:

PNFCs, MFIs, OFI assets, OFI liabilities, Insurers & Pension Funds,

local government, households, and the Rest of World sector. As before

all variables are in log-real terms;

• Panel 2b: The first-differenced version of the above.

Panel 1a Panel 1a: After normalising and scaling the input variables to

be mean zero and have unit variance, we extract the principal components.

In general, and unlike the rank-reduction cointegration work of Johansen

relied upon above, the principal components of a dataset may span a space

of dimension equal to the dataset, that is to say there are as many principal

components defined as there are variables in the dataset. However, like

the Johansen procedure [Johansen, 1988], principal components are closely

related to the eigenvalues of (the covariance matrix of) the dataset, and so

some ‘later’ principal components may be discarded as they explain little

of the remaining unspanned variance in the dataset. The proportion of

variance spanned by each successive principal component may be assessed

numerically, where a rule of thumb is to seek at least 50% explained variance,
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Figure 5.1: Scree plot of variance structure in Panel 1a

or visualised in a scree plot like Figure 5.1 below. In analysing a scree plot

it is practice to look for an ‘elbow’ where the next principal component adds

substantially less explanatory power than the component that preceded it.

In the case of panel 1a, this ‘elbow’ is notable at principal component

2, and the first component accounts for nearly 60% of the variance in the

dataset. Following the Stock &Watson procedure [Stock and Watson, 2002],

it would be acceptable to incorporate just the first principal component of

panel 1a into a subsequent analysis.

We can also graph the variable loadings on the first two principal compo-

nents to gain more information about the covariance structure of the dataset.

Figure 5.2 below depicts this plot for panel 1a – and we can see that the

first principal component contains information about the variables noncore

and M4 securitisation, while the measure of MMI assets, and particularly

liabilities, load on principal component 2.
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Figure 5.2: Variable loading on Principal Components 1 and 2 of Panel 1a

Panel 2a A similar analysis was carried out for the other 3 panels, and full

results are shown in Appendix B. Panel 2a, the larger panel of undifferenced

variables, offered the most promising results and the analysis hereinafter will

focus upon that dataset exclusively. Figure 5.3 below depicts the scree plot

of explained variance associated with the principal components of panel 2a,

and Figure 5.4 depicts the variable loadings.

As with panel 1a it will be seen that principal component 1 contains in-

formation about the variables noncore and M4 securitisation, now joined by

MMIs held by local governments. These variables are somewhat negatively

correlated with total MMI assets, which loads negatively on PC1 along with

MMI liabilities to OFIs, and MFIs MMI assets. Broadly uncorrelated with

the above, by orthogonality of principal components, are MMI assets held

by the Rest of the World, PNFCs, and the measure of total MMI liabilities

in the UK economy. Indeed this finding is borne out by examining X-Y scat-

terplots of the variables themselves, an example of which (M4 securitisation

vs. Rest of World MMI assets in the UK) is shown in Figure 5.5 below.
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Figure 5.3: Scree plot of variance structure in Panel 2a

Given the 59% of variance explained by the first two principal compo-

nents, along with their identifiability with underlying transactional phenom-

ena, these will form the factors to be incorporated into subsequent analysis.

Hereafter, we term Panel 2a’s first principal component ‘SBS Factor 1’ and

the second component ‘SBS Factor 2’.

5.2 Factor-Augmented VECM

Having derived by principal components analysis, estimates of the latent

factors driving activity in the ultimate liabilities of the shadow banking

sector, we now incorporate these estimated factors into vector systems to

assess their validity with respect to our hypotheses about shadow banking

behaviour. The system we attempt to solve also includes log of real GDP,

log of the GDP deflator as a measure of price level, 1 month LIBOR and the

20-year gilt yield (both of which enter untransformed), PNFC deposits with

regulated banks, and central government long-term debt outstanding. We
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Figure 5.4: Variable loading on Principal Components 1 and 2 of Panel 2a

also permit a measure of the realised volatility of the FTSE 100 (proxying

times of financial turbulence) to enter the short-run adjustment equations,

though we do not postulate its membership of a long-run equilibrium system.

The Johansen method for assessing the number of cointegrating relation-

ships offers some evidence for either 1 or 2 such equations, and as such we

assess both. In the 2-equation model, we employ what is believed to be a

novel identification strategy in this field. As the SBS factors were estimated

by the method of principal components, they are orthogonal by construc-

tion, and so each factor can be constrained to have coefficient zero in the

long-run equation normalised to the other – without loss of information as

these variables are known to be uncorrelated.

5.2.1 Guide to models: group C

Incorporating the shadow banking factors into a VECM specification, we

report the single-long-run-equation form as model C1a. Table 5.1 contains

the parameter estimates of this long-run equation, normalised to SBS Fac-
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Figure 5.5: Scatterplot of log real MMIs held as assets by Rest of World

sectors (x-axis) and log real M4 securitisation (y-axis)
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Table 5.1: Model C1a: cointegrating vector

Cointegrating Vector Coefficient Standard Error

SBS Factor 1 -1 0

SBS Factor 2 1.21 0.46

log GDP deflator 125.58 40.78

log real GDP -119.64 34.28

LIBOR 1m -2.35 0.49

20-year gilt yield -5.84 1.37

log real PNFC deposits 20.58 12.17

log real long term central government debt -28.3 5.98

tor 1. Table 5.2 contains the short-run equations with SBS Factor 1 and

SBS Factor 2 as the dependent variables, the other short-run equations are

reported in Appendix B.

We present the results of the two-long-run-equation form as model C1b.

Table 5.3 contains these cointegrating vectors, normalised to SBS Factors 1

and 2. Table 5.4 contains the short-run equations with SBS Factors 1 and

2, and long-term government debt issuance, as dependents, and the other

short-run adjustment equations are presented in Appendix B.

5.2.2 Discussion

While the single long-run equation is trivially identified by a normalisation

on SBS Factor 1, its coefficients defy easy interpretation and its associated

error correction model is not admissible as no error correction takes place

at a significant level of correct sign. Furthermore, both SBS factors ap-

pear exogenous in the short-run equations, with no significant coefficients

appearing at any level.

The 2-equation FAVECM offers more promising results. The identifica-

tion strategy employed allows the standard hypotheses to be assessed for

both of the factor measures of SBS activity. Both display the expected neg-

ative sign to price level and positive coefficient to GDP, with the coefficient

magnitudes likely inflated by the normalising procedure carried out before

extracting principal components – this analysis must therefore be limited
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Table 5.2: Model C1a: short-run equations involving the constructed SBS

factors

Short run equations Dependent

d SBS Factor 1 d SBS Factor 2

d SBS Factor 1 t-1 -0.0629097 -0.250320

d SBS Factor 2 t-1 -0.0399412 -0.127386

d log GDP deflator t-1 -14.1922 14.2779

d log real GDP t-1 -2.82896 27.816

d LIBOR 1m t-1 0.143102 -0.220656

d 20-year gilt yield t-1 0.240002 -0.0665184

d log real PNFC deposits t-1 1.07614 4.71506

d log real long term central govern-

ment debt t-1

0.190477 0.432416

FTSE vol t-1 0.00693117 0.00755645

EC1 0.0173887 0.0141519

Table 5.3: Model C1b: cointegrating vectors

Cointegrating vector 1 Cointegrating vector 2

SBS Factor1 -1 (0) 0 (0)

SBS Factor2 0 (0) -1 (0)

l gdpdef -96.014 (23.84) -182.45 (45.787)

l rgdp 85.4 (20.978) 168.82 (40.291)

LIBOR 1m 0.52721 (0.22525) 2.3655 (0.43261)

ytm 20yrGilt 4.1485 (0.93516) 8.2249 (1.7961)

lr PNFC deposits -20.972 (7.4514) -34.21 (14.311)

lr LTDebt CG 25.086 (3.5125) 43.956 (6.7462)

Standard errors in parentheses
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Table 5.4: Model C1b: short-run equations involving the constructed SBS

factors

Short run equa-

tions

Dependent

d SBS Factor1 d SBS Factor2 d lr LTDebt CG

d SBS Factor1 1 0.0175607 -0.320436 0.00827825

d SBS Factor2 1 -0.0723002 -0.0991912 0.00770703

d l gdpdef 1 -9.68669 10.3521 0.894

d l rgdp 1 -8.59420 32.8394 -0.384870

d LIBOR 1m 1 0.130688 -0.209840 -0.00853873

d ytm 20yrGilt 1 0.180573 -0.0147364 0.0344487*

d lr

PNFC deposits 1

-0.192738 5.82066 -0.0952932

d lr LTDebt CG 1 1.09478 -0.355524 0.426481***

FTSE Vol 1 0.00939051 0.00541357 -0.00117685**

EC1 0.216317** -0.159179 -0.0217623***

EC2 -0.104260** 0.055255 0.00850515**
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to assessing sign and significance, the coefficients having lost easy numeric

interpretability. The factors also share positive relationships to the two

measures of rates, and negative relationships with the measure of PNFC

deposits in the traditional banking sector – offering support for Pozsar’s

[Pozsar, 2013] hypothesis that shadow bank money assets are substitutable

with more traditional safe assets, and in support of the work of Serletis &

Xu [Serletis and Xu, 2019] concerning substitutability of shadow bank ser-

vices with those of traditional banks. Parameter estimates are displayed in

Equations 5.1 & 5.2.

SBS Factor1 =− 96.00 ∗ l gdpdef + 85.40 ∗ l rgdp

+ 0.53 ∗ LIBOR 1m+ 4.15 ∗ ytm 20yrGilt

+−20.98 ∗ lr PNFC deposits+ 25.09 ∗ lr LT Debt CG

(5.1)

SBS Factor2 =− 182.45 ∗ l gdpdef + 168.82 ∗ l rgdp

+ 2.37 ∗ LIBOR 1m+ 8.22 ∗ ytm 20yrGilt

+−34.21 ∗ lr PNFC deposits+ 44.00 ∗ lr LT Debt CG

(5.2)

We also find a well-behaved system of short run equations, in which

the first SBS factor (along with gilt rates and PNFC deposits) responds to

disequilibrium in the second long-run equation, while disequilibrium in the

first cointegrating vector prompts shifts in central government long-term

debt issuance. With the exception of the error-correction terms, the SBS

factors remain weakly exogenous in the short-run dynamics of this system.

SBS Factor 2 however appears to contain information about the short-run

response of 20-year gilt yields, and appears in that equation with significance

and negative sign. Thus, increases in the value of the second shadow banking

factor – which given the factor loadings we can associate with decreased

issuance of money market liabilities, decreased holdings by private NFCs,

and/or decreased holdings by the rest of the world, are associated with

downward shifts in gilt yields in the following quarter. We reproduce the
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short-run equation with 20-year gilt yields as dependent herein as Equation

5.3.

∆ytm 20yrGilt =50.2 + 0.06 ∗∆SBS Factor1t−1 +−0.08 ∗∆SBS Factor2t−1

+−3.94 ∗∆l gdpdeft−1 +−2.14 ∗∆l rgdpt−1

+ 0.09∆ ∗ LIBOR 1mt−1 +−0.23 ∗∆ytm 20yrGiltt−1

+−0.04 ∗∆lr PNFC depositst−1 +−4.85 ∗∆lr LT Debt CGt−1

+ 0.001 ∗ FTSE V olt−1 + 0.07 ∗ λ1

+−0.07 ∗ λ2

(5.3)

where as before λ1 and λ2 represent response to disequilibrium in the

first and second long-run cointegrating vectors – the first having SBS Factor

1 as the dependent, the second having SBS Factor 2.

5.2.3 Conclusion

While the factor-augmented VECM fails to offer the strong evidence in

favour of hypothesis H4 drawn from conventional VECMs, other hypotheses

are better supported. GDP appears to show a positive relationship with the

constructed measures of shadow banking activity, though the data transfor-

mation renders the coefficient values impossible to interpret meaningfully.

The evidence for a shadow banking repsonse to opportunity cost is also in-

conclusive. However H3 is well supported by the long-run models, which

demonstrate a negative equilibrium relationship between the measures of

shadow banking activity and corporate deposits in the regulated banking

sector. We are unable to demonstrate this relationship in the short-run

models, perhaps suggesting that the assumption of quarter-to-quarter rigid-

ity in demand for regulated bank deposits by corporates is too strong an

assumption, and as such it is difficult to statistically disentangle supply

and demand, leaving the information imparted by the quantum of shadow

banking activity ambiguous. Nevertheless, the evidence for H3 is a com-

parable finding to that of Serletis & Xu [Serletis and Xu, 2019] who find

substitutability between shadow bank and traditional bank services.
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Table 5.5: Hypotheses, revisited once more

Hypothesis Variable entering

SBS money de-

mand function

Expected sign

and magnitude

Evidence from VECM models

H2 Log real GDP + , approxi-

mately 1

Log real GDP appears with positive sign

in the long-run equilibria for the shadow

banking activity factors. Due to variable

abstraction it is not possible to assess the

magnitude of this effect against H2.

H2 Own interest

rate

+ Inconclusive - SBS factors show a positive

long-run association with all measures of

rates.

H2 Opportunity

cost / alter-

native interest

rates

– Inconclusive - SBS factors show a positive

long-run association with all measures of

rates.

H3 Corporate

deposits in tra-

ditional banking

sector

– , around 1 in

absolute magni-

tude if ‘crowding

out’ is total

Good – the SBS factors show a negative

long-run relationship with the log real level

of corporate deposits in the regulated bank-

ing sector.

H4 Government

debt outstand-

ing, government

debt issuance in

short-run models

– , as above 1

in absolute mag-

nitude if crowd-

ing out is total

Not demonstrated – in the long-run forms

estimated here, level of government debt

appears to ‘crowd in’ money market hold-

ings, and the short-run relationship is in-

conclusive.
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Serletis & Xu also document regime-switching behaviour in their paper.

Applying a 2-state Markov model they find a single large state transition in

the middle of the time period they study [Serletis and Xu, 2019]. We also

consider the possiblity of regime-switching behaviour within our dataset,

along with a relaxation of the key orthogonality assumption of the method

of principal components.

5.3 Exploratory Factor Analysis

5.3.1 Introduction and methodology

With the FAVECM producing some encouraging results in support of hy-

pothesis H3, we further consider a more generalized study of the latent factor

structure of Panel 2a, the (log real) levels data for money market instrument

asset holdings by sector in the UK. We initially relax the orthogonality re-

straint imposed by principal components analysis in an exploratory factor

analysis to check the validity of our method above; subsequently we perform

a k-means clustering in variable space that may suggest a state-transitioning

or time-varying-parameter structure like that documented by Serletis & Xu

[Serletis and Xu, 2019].

The motive for this exploratory factor analysis is that the principal-

component-based estimates of latent factors are constrained to be mutually

uncorrelated. We exploit that characteristic above to achieve identification

of our long-run cointegrating equations, but that goal may conflict with the

objective of seeking latent factors that have an economic interpretation –

such factors would very likely be correlated, at minimum in the time do-

main as macroeconomic variables broadly increase over time. We employ

the same dataset, Panel 2a, as above, and with the same rationale we ex-

tract two factors by maximum likelihood. We employ the ‘oblimin’ rotation

strategy, which seeks the simplest possible factor representation but unlike

‘varimax’ allows for the extracted factors to be correlated. The extracted

factor representation is depicted in Figure 5.6 below.
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Figure 5.6: Extracted factor representation

5.3.2 Results and discussion

In Figure 5.6 ML1 and ML2 represent the first and second factor respectively,

extracted by maximum likelihood. The underlying variables are depicted at

left, and the arrows give the loadings of those variables on those factors –

it will be seen that these loadings are very similar to those extracted by

principal components, with factor 1 loading heavily and equally on M4 se-

curitization and noncore, while factor 2 contains information about rest of

world money market holdings and, to a lesser extent, total liabilities. Fur-

ther, the two factors share a low correlation of only 5%, and we can conclude

that the assumption of no correlation required by principal components is

valid in this case. We will return to the method of principal components for

the following work.
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5.4 Time-Cluster Analysis

5.4.1 Introduction and methodology

A second novel methodology we adopt, closely related to the methods of

factor and principal components analysis, is cluster analysis. The general

goal of cluster analysis is to classify observations into groups or sets, hav-

ing the property that the members of the set are as similar as possible to

one another while the sets themselves are as distinct from each other as

possible. Any clustering algorithm must therefore strike a balance between

within-group similarity and between-group distinction. A well-established

algorithm for this purpose is k-means, sometimes known as the Lloyd-Forgy

algorithm, developed at Bell Labs in the 1960s. Considering each datapoint

as a location in high-dimensional space (of dimension equal to the column

span of the dataset), the algorithm initializes a number of random points

equal to the number of clusters desired – and so this must be exogenously

given to the process.

The algorithm then alternates between two steps – assigning each ob-

servation to the cluster to whose centroid it is closest in squared Euclidean

distance terms (L2 norm), and recalculating the new initial means to be the

centroids of the clusters so generated. The algorithm exits and is said to

have converged when the assignments, and therefore the centroids, no longer

change. The initial random points may be simple random draws (known as

Random Partition) or a random row from the dataset (the Forgy method),

but in general there is no guarantee that the algorithm will converge to

the globally optimal solution. Statistical methods exist for optimizing the

number of clusters sought, but as the ‘closeness’ or ‘distance’ of points in

variable space is closely related to their covariance, it is common to simply

examine the 2D projection of the dataset onto the plane defined by the first

two principal components – as we do here in Figure 5.7 below.

Adding the individual observations to the principal-component-space

plot, we can hypothesize the existence of 3 clusters, and so initialize k-

means with 3 centroids. Though we are dealing with time series, we cluster

in variable space only, not in the time dimension – and so observations in

the same cluster need not be consecutive or adjacent in time. Time-series-
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Figure 5.7: Principal Components Analysis biplot - datapoints and loadings

in PC space
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Figure 5.8: K-means cluster plot of observations in PC space

specific clustering algorithms such as Dynamic Time Warping do exist, but

these aim to classify whole time series as the single unit of observation – as

we are content to split the time series across observations, standard methods

suffice here. Performing the 3-cluster k-means, we find the expected result,

depicted in Figure 5.8.

5.4.2 Results and discussion

Though it is by no means a deterministic or typical result of this approach,

it emerges in this application that all observations clustered together are

also consecutive in time – cluster 3 occurs first and runs from Q4 1997 to

Q4 2003, followed by Q1 from Q1 2004 to Q3 2008, and finally cluster 2

from Q4 2008 to Q2 2016. This suggests a strong state-transition structure

underlying the economic relations observed here, and hints at parameter

instability or nonlinearity of the type that might be assessed by a Chow or

Quandt Likelihood Ratio test in traditional time series macroeconometrics.

Certainly the state transition time periods are interpretable as economic
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regime shifts, Q4 2008 in particular. This is comparable with the single

large regime shift observed in the dataset of Serletis & Xu [Serletis and Xu,

2019].

Limited degrees of freedom prevent us from fitting a full state-transition

specification to the preferred vector model C1b above – however a longer

or higher-frequency time-series dataset should enable this, and we highlight

this as a key avenue for future research. Given the changing economic and

regulatory context of shadow banking, notably before and after the finan-

cial crisis, it seems very likely to the structural parameters are time-varying,

and utilizing a factor representation and a time-clustering approach would

be only one of many ways to admit time-varying parameters into a macroe-

conomic model of the role of shadow banking in the composition of safe

assets in the monetary economy.
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Chapter 6

Conclusions, Limitations,

and Further Study

The present work has sought to define the shadow banking sector, a growing

area of study that leapt to prominence following the financial crisis, but an

area in which basic questions of macroeconomic interest remain to be ad-

dressed. In particular, we highlight the role of the shadow banking sector in

concealing, warehousing or otherwise obfuscating risk in order to produce

‘safe’ assets to meet demand unmet by sovereign issuance and not coverable

by the deposit insurance provisions of traditional regulated banks. Review-

ing the literature, we noted the paucity of work focusing on the UK, the

relative lack of data-driven econometric studies by comparison with descrip-

tive and thoeretical papers, and gaps in the understanding of the role of the

shadow banking sector in meeting demand for safe assets. Filling these gaps

in our understanding should be of interest for monetary policy makers – we

established the role of the shadow banking sector in the transmission chan-

nels of monetary policy. Prudential regulators may also be interested in our

work given a perception of shadow banking as a procyclical, destabilising,

endogenous source of risk.

Following the methodology of Errico et al [Errico et al., 2014], we initially

broaden our data view much beyond the shadow banking sector, considering

all financial asset and liability positions observable in the UK monetary

economy, from publicly-available data. Also following the recommendations
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of Errico et al, the UK’s national statistical authority the ONS has begun to

publish flow-of-funds matrices for the UK financial economy, and while we

do not claim prior art – the contribution here is merely to arrange, not source

the data – we take this as evidence that this is a relevant and important

area of study. As a result of this work we are able to narrow our focus to the

safe-asset juncture between the shadow banking sector and the real economy

– money market instruments held on-balance-sheet by UK economic agents.

Extending a broad and deep literature concerning macroeconomic de-

mand functions for money, the ultimate safe, liquid asset, we follow the

practice in that field by employing the time-series econometric methodology

of cointegration and error correction due to Engle & Granger [Engle and

Granger, 1987] and to Johansen [Johansen, 1988] / Johansen & Juselius

[Johansen and Juselius, 1990]. We have mixed results in attempting to

replicate existing estimates of money demand functions for the UK, with

a strong likelihood that parameter nonlinearity or time-instability are at

cause.

Defining four groups of hypotheses firmly grounded in the existing liter-

ature on shadow banking, we are able to provide evidence for these hypothe-

ses from our econometric study. In line with the work of Krishnamurthy &

Vissing-Jorgensen [Krishnamurthy and Vissing-Jorgensen, 2012], we present

evidence that shadow bank safe assets are treated as substitutable with gov-

ernment debt.

We subsequently extend the empirical component of the present work

by studying factor representations to augment our vector time-series mod-

els, following a literature built on the work of Bernanke et al [Bernanke

et al., 2005] and Stock & Watson [Stock and Watson, 1999, Stock and Wat-

son, 2002, Stock and Watson, 2005]. We demonstrate a factor-augmented

vector autoregression in the style of Banerjee & Marcellino [Banerjee and

Marcellino, 2009] with appealing econometric qualities and offering some

evidence in favour of our hypotheses. To wit, we present evidence that a

long-run equilibrium relationship of negative sign exists between shadow

bank activity and the volume of traditional bank deposits – that is to say

that these assets are also treated as substitutable by safe-asset buyers, as

hypothesised by Serletis & Xu among others [Pozsar, 2013, Serletis and Xu,
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2019].

Finally, we employ a time-cluster analysis to begin to uncover the time-

varying nature of the shadow banking activity factor, in the manner of

Serletis & Xu [Serletis and Xu, 2019], and we demonstrate a strong 3-state

transition structure, the time series split into three contiguous phases.

The key contributions of the thesis are threefold: to the shadow bank-

ing literature, to the literature concerned with money demand, and to

the methodological literature concerned with factor-augmented and regime-

switching models. To the shadow banking literature, we contribute the

collection of a large dataset, albeit a publicly-available one. We further offer

multiple time-series proxies for shadow banking activity in the UK (noncore

bank funding, money-market instrument sector shares, and M4 Securiti-

sations). We assess the predictions of theoretical and general-equilibrium

modellers such as Krishnamurthy & Vissing-Jorgensen, Gennaioli et al, and

Plantin [Krishnamurthy and Vissing-Jorgensen, 2012, Gennaioli et al., 2013,

Plantin, 2014]: we show evidence that both government debt and regulated

bank deposits are treated as substitutable with shadow bank deposits by

safe-asset buyers.

To the literature concerned with money demand, we adopt the stan-

dard models and demonstrate a commonality between models of demand

for broad money and demand for shadow bank money. Like demand for

broad money, demand for shadow bank money appears to scale with real

GDP, but is ambiguous with respect to the price level. We are not able to

conclusively establish the response of demand for shadow bank money to

opportunity cost, i.e. better interest rates available elsewhere.

To the methodological literature we offer a novel dataset and question

– we are not aware of any other papers taking a factor-model, data-driven

approach to assessing shadow banking. While the methodology is well-

established, the object of study is not – and certainly not for the case of the

UK. We also introduce a novel identification strategy for long-run equations

in factor-augmented VECMs. Provided the factors have been constructed

by the method of principal components, they are orthogonal by construction

– and so factors extracted from the same dataset can be constrained to zero

in the long-run equation normalised to any other factor extracted from the
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same dataset. For identification to be achieved, it suffices to include as many

principal components as the rank of the full system – in the present paper, we

include two principal components and have two long-run equations requiring

identification. We are not aware of any other work in the field of shadow

banking having implemented this methodology. The method of k-means

time clustering is also believed to be novel in this field, as an atheoretic and

non-parametric assessment of regime-switching behaviour in a time series.

Naturally, the present study is not without its limitations. Principally,

while we have at least one model giving evidence in favour of each of our

hypotheses, these are typically different and we have no single model that

decisively gives evidence for all our hypotheses in a single system. Miss-

ing data, and the relatively low quarterly frequency, means that degrees

of freedom can be in short supply for high-dimensional vector models, and

longer or more frequently observed time series would ease this constraint.

This – or a more parsimonious estimation method – would also allow for the

study of time-varying structural parameters in the macroeconomic relation-

ships governing shadow banking, which we view as the key next step in this

programme of research.

Our study is also vulnerable to critiques around dataset decisions that

we took – that our variables are so specific as to be a macroeconomic irrel-

evance, or do not capture the underlying economic activity we attribute to

them. Other studies have focused on shadow banking ‘in the middle’ of the

manufacturing process (so to speak) with repo markets, or on the origina-

tion of lending. Pozsar [Pozsar, 2014] holds that as all lending transactions

inevitably involve a regulated bank somewhere along the line, only banks

can create endogenous or inside money, and so it is a mistake to credit the

shadow banking sector with the power to innovate unilaterally in the money

supply. Our choice of the UK as the nation for study is idiosyncratic, though

it does offer the opportunity for novelty when most studies focus on the US

– where data is more readily available.

Certain assumptions are required to achieve identification of the econo-

metric models – specifically, because we observe shadow banking activity

in the form of quantity of financial instruments, in order to identify shifts

in these quantities with shifts in demand we must deal with the matter of
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supply. Our assumption that alternative safe assets are subject to supply

rigidity in the short term is a strong one. An instrumental variables approach

may be able to achieve identification more explicitly. Also, with the excep-

tion of taking logarithms, we do not permit for nonlinearity in our functional

forms – we typically seek a linear model. We also estimate equilibrating re-

lationships across the whole time series, when in fact regime switches seem

very likely to be at play – as demonstrated by our time-clustering model.

Future researchers may wish to consider relaxing any or all of these assump-

tions and constraints in search of better models of the behaviour of the

shadow banking sector in response to demand for safe assets.

Nevertheless, we believe our results should be of interest to academics

and policymakers. We have documented the existence of a shadow banking

sector in the UK, which scales activity up and down at the margin depend-

ing upon the availability of safe-asset substitutes. While we were unable

to conclusively demonstrate a link with policy interest rates, we believe the

shadow banking sector to be important in the transmission channel of mon-

etary policy. We also believe that the response to demand for safe assets

should be of interest to regulators charged with supervising the health of

the banking system – when government debt or bank deposits, for what-

ever reason, are insufficient to meet demand for safety, activity will increase

in the dimly-lit, lightly-regulated, fragile, and procyclical shadow banking

sector.
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Appendix A

Regression Model Output

A.1 Group A Hypotheses

A.1.1 A1, Models of M0 notes & coins

Variables of interest

A1a, log real M0 dependent, contemporaneous OLS with log real

GDP, log GDP deflator (price level), 20-year gilt yield (level)

A1a: OLS, using observations 2000:1–2016:2 (T = 66)

Dependent variable: l realM0

Coefficient Std. Error t-ratio p-value

const −2.02091 1.18497 −1.705 0.0931

l rgdp 0.230969 0.118109 1.956 0.0550

l gdpdef 1.22102 0.0986565 12.38 0.0000

yrGilt −0.0333071 0.00641835 −5.189 0.0000

Mean dependent var 6.318674 S.D. dependent var 0.164152

Sum squared resid 0.041353 S.E. of regression 0.025826

R2 0.976390 Adjusted R2 0.975247

F (3, 62) 854.6552 P-value(F ) 2.31e–50

Log-likelihood 149.7337 Akaike criterion −291.4674

Schwarz criterion −282.7088 Hannan–Quinn −288.0065

ρ̂ 0.831678 Durbin–Watson 0.271744
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Figure A.1: Log Real M0 notes & coins
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Figure A.2: Log Real GDP
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Figure A.3: Log of GDP Deflator
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Figure A.4: 10-year (yrGilt1) and 20-year (yrGilt) gilt yields
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Figure A.5: RPI, annual percentage change
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Figure A.6: A1a, residual time-series plot

A1b, log real M0 dependent, contemporaneous OLS with log real

GDP, log GDP deflator (price level), 10-year gilt yield (level)

A1b: OLS, using observations 1984:1–2016:2 (T = 130)

Dependent variable: l realM0

Coefficient Std. Error t-ratio p-value

const −12.7990 1.84347 −6.943 0.0000

l rgdp 1.79672 0.168915 10.64 0.0000

l gdpdef −0.880605 0.120987 −7.279 0.0000

yrGilt1 −0.0405174 0.00820433 −4.939 0.0000
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Figure A.7: A1b, residual time-series plot

Mean dependent var 6.052984 S.D. dependent var 0.299578

Sum squared resid 0.967779 S.E. of regression 0.087640

R2 0.916408 Adjusted R2 0.914417

F (3, 126) 460.4381 P-value(F ) 1.08e–67

Log-likelihood 134.0566 Akaike criterion −260.1131

Schwarz criterion −248.6430 Hannan–Quinn −255.4524

ρ̂ 0.966484 Durbin–Watson 0.060896

A1c, log real M0 dependent, contemporaneous OLS with log real

GDP, RPI inflation (% per annum), 10-year gilt yield (level)

A1c: OLS, using observations 1984:1–2016:2 (T = 130)

Dependent variable: l realM0
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Figure A.8: A1c, residual time-series plot

Coefficient Std. Error t-ratio p-value

const −2.26121 1.98725 −1.138 0.2573

l rgdp 0.673638 0.151231 4.454 0.0000

RPI 0.0193701 0.00619177 3.128 0.0022

yrGilt1 −0.0529921 0.0117588 −4.507 0.0000

Mean dependent var 6.052984 S.D. dependent var 0.299578

Sum squared resid 1.275603 S.E. of regression 0.100617

R2 0.889819 Adjusted R2 0.887196

F (3, 126) 339.1916 P-value(F ) 3.82e–60

Log-likelihood 116.1055 Akaike criterion −224.2110

Schwarz criterion −212.7408 Hannan–Quinn −219.5503

ρ̂ 0.946952 Durbin–Watson 0.080439
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Table A.1: Information criteria for lag selection, system A1d

lags loglik p(LR) AIC BIC HQC

1 671.21559 -10.675665 -10.215990 -10.488959

2 734.86702 0.00000 -11.456836 -

10.629420*

-

11.120766*

3 749.85749 0.01810 -11.440287 -10.245130 -10.954851

4 766.94405 0.00515 -11.458099 -9.895202 -10.823299

5 787.31869 0.00060 -11.529815 -9.599177 -10.745649

6 809.34827 0.00019 -

11.628660*

-9.330282 -10.695130

7 823.99566 0.02202 -11.606486 -8.940368 -10.523592

8 832.69189 0.36065 -11.486752 -8.452893 -10.254493

A1d, VECM system on log real M0, log real GDP, RPI level,

10-year gilt yield level

VAR lag selection for system A1d
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Table A.2: Trace and maximum eigenvalue tests for system A1d

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.40823 124.78 [0.0000] 67.154 [0.0000]

1 0.20877 57.630 [0.0000] 29.973 [0.0015]

2 0.19406 27.656 [0.0003] 27.615 [0.0001]

3 0.00032337 0.041398 [0.8388] 0.041398 [0.8388]

Johansen rank selection for system A1d
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Model A1d

VECM system, lag order 2

Maximum likelihood estimates, observations 1984:3–2016:2 (T = 128)

Cointegration rank = 3

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[2,2] = -1 b[3,3] = -1

Cointegrating vectors

l realM0t−1 1.00000 −0.0151742 −11.4217

l rgdpt−1 0.576930 1.00000 −0.843360

RPIt−1 0.241855 −0.0137198 1.00000

yrGilt1t−1 0.161216 0.0640785 −1.80388

Adjustment vectors

l realM0t−1 1.00000 0.172926 −0.0120991

l rgdpt−1 0.154549 1.00000 0.00496597

RPIt−1 33.8217 −29.2986 1.00000

yrGilt1t−1 11.5545 28.4149 −0.221770

Log-likelihood = 756.938

Determinant of covariance matrix = 8.58286e–011

AIC = −11.2647

BIC = −10.4625

HQC = −10.9387

Equation 1: ∆l realM0
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Coefficient Std. Error t-ratio p-value

const 0.392516 0.203993 1.924 0.0566

d l realM0 1 −0.162161 0.0885569 −1.831 0.0695

d l rgdp 1 −0.241354 0.145159 −1.663 0.0989

∆RPIt−1 0.000388793 0.00120483 0.3227 0.7475

∆yrGilt1t−1 0.00307347 0.00218397 1.407 0.1619

EC1 0.0112620 0.00164196 6.859 0.0000

EC2 0.00675067 0.0152094 0.4438 0.6579

EC3 −0.00140624 0.000472403 −2.977 0.0035

Mean dependent var 0.006624 S.D. dependent var 0.011339

Sum squared resid 0.010778 S.E. of regression 0.009361

R2 0.339930 Adjusted R2 0.318464

ρ̂ −0.026731 Durbin–Watson 2.048188

Equation 2: ∆l rgdp

Coefficient Std. Error t-ratio p-value

const 0.487275 0.105440 4.621 0.0000

d l realM0 1 0.0426092 0.0457735 0.9309 0.3537

d l rgdp 1 0.356129 0.0750299 4.747 0.0000

∆RPIt−1 0.000846155 0.000622755 1.359 0.1767

∆yrGilt1t−1 0.00143990 0.00112886 1.276 0.2045

EC1 0.00174053 0.000848699 2.051 0.0424

EC2 0.0390379 0.00786147 4.966 0.0000

EC3 0.000577177 0.000244177 2.364 0.0197

Mean dependent var 0.005742 S.D. dependent var 0.006464

Sum squared resid 0.002879 S.E. of regression 0.004838

R2 0.457434 Adjusted R2 0.439790

ρ̂ −0.068122 Durbin–Watson 2.135652

Equation 3: ∆RPI
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Coefficient Std. Error t-ratio p-value

const −19.3012 13.3102 −1.450 0.1496

d l realM0 1 −5.12637 5.77821 −0.8872 0.3767

d l rgdp 1 12.4812 9.47138 1.318 0.1900

∆RPIt−1 0.512585 0.0786134 6.520 0.0000

∆yrGilt1t−1 0.111888 0.142501 0.7852 0.4339

EC1 0.380900 0.107135 3.555 0.0005

EC2 −1.14375 0.992392 −1.153 0.2513

EC3 0.116226 0.0308236 3.771 0.0003

Mean dependent var −0.028906 S.D. dependent var 0.801490

Sum squared resid 45.88417 S.E. of regression 0.610772

R2 0.437577 Adjusted R2 0.419287

ρ̂ 0.041431 Durbin–Watson 1.909041

Equation 4: ∆yrGilt1

Coefficient Std. Error t-ratio p-value

const 18.6449 9.31051 2.003 0.0474

d l realM0 1 −3.36837 4.04186 −0.8334 0.4063

d l rgdp 1 −1.70718 6.62524 −0.2577 0.7971

∆RPIt−1 −0.0193206 0.0549901 −0.3513 0.7259

∆yrGilt1t−1 0.214768 0.0996797 2.155 0.0331

EC1 0.130127 0.0749413 1.736 0.0850

EC2 1.10926 0.694179 1.598 0.1126

EC3 −0.0257756 0.0215612 −1.195 0.2342

Mean dependent var −0.078935 S.D. dependent var 0.435720

Sum squared resid 22.45119 S.E. of regression 0.427235

R2 0.068846 Adjusted R2 0.038565

ρ̂ 0.034429 Durbin–Watson 1.925528
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Figure A.9: Log real M4
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Figure A.10: Bank of England base rate
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Figure A.11: Term Spread
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A.1.2 A2, Models of M4 broad money

Variables of interest

A2a, log real M4 dependent, contemporaneous OLS with log real

GDP, log GDP deflator, 20-year gilt yield

A2a: OLS, using observations 2000:1–2016:2 (T = 66)

Dependent variable: l realM4

Coefficient Std. Error t-ratio p-value

const 4.38405 2.20791 1.986 0.0515

l rgdp −0.921665 0.220067 −4.188 0.0001

l gdpdef 3.73590 0.183823 20.32 0.0000

yrGilt 0.120728 0.0119591 10.10 0.0000

Mean dependent var 9.754190 S.D. dependent var 0.242639

Sum squared resid 0.143568 S.E. of regression 0.048121

R2 0.962484 Adjusted R2 0.960668

F (3, 62) 530.2023 P-value(F ) 3.95e–44

Log-likelihood 108.6600 Akaike criterion −209.3199

Schwarz criterion −200.5613 Hannan–Quinn −205.8590

ρ̂ 0.684255 Durbin–Watson 0.620972

A2b, log real M4 dependent, contemporaneous OLS with log real

GDP, log GDP deflator, 10-year gilt yield

A2b: OLS, using observations 1984:1–2016:2 (T = 130)

Dependent variable: l realM4

Coefficient Std. Error t-ratio p-value

const −12.1295 1.94380 −6.240 0.0000

l rgdp 1.44301 0.178109 8.102 0.0000

l gdpdef 0.713900 0.127572 5.596 0.0000

yrGilt1 0.00387092 0.00865086 0.4475 0.6553
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Mean dependent var 9.343253 S.D. dependent var 0.485480

Sum squared resid 1.075991 S.E. of regression 0.092410

R2 0.964610 Adjusted R2 0.963768

F (3, 126) 1144.787 P-value(F ) 3.36e–91

Log-likelihood 127.1670 Akaike criterion −246.3340

Schwarz criterion −234.8638 Hannan–Quinn −241.6733

ρ̂ 0.977833 Durbin–Watson 0.044233

A2c, log real M4 dependent, contemporaneous OLS with log real

GDP, RPI inflation, 10-year gilt yield

A2c: OLS, using observations 1984:1–2016:2 (T = 130)

Dependent variable: l realM4

Coefficient Std. Error t-ratio p-value

const −15.4105 1.96811 −7.830 0.0000

l rgdp 1.95088 0.149774 13.03 0.0000

yrGilt1 −0.0261071 0.0116455 −2.242 0.0267

RPI 0.0186921 0.00613214 3.048 0.0028

Mean dependent var 9.343253 S.D. dependent var 0.485480

Sum squared resid 1.251153 S.E. of regression 0.099648

R2 0.958849 Adjusted R2 0.957869

F (3, 126) 978.6370 P-value(F ) 4.48e–87

Log-likelihood 117.3635 Akaike criterion −226.7270

Schwarz criterion −215.2568 Hannan–Quinn −222.0663

ρ̂ 0.966441 Durbin–Watson 0.071366

A2d, log real M4 dependent, contemporaneous OLS with log real

GDP, RPI inflation, 10-year gilt yield, LIBOR

A2d: OLS, using observations 1984:1–2016:2 (T = 130)

Dependent variable: l realM4

156



Figure A.12: A2c, residual time-series plot
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Coefficient Std. Error t-ratio p-value

const −14.6115 2.10551 −6.940 0.0000

l rgdp 1.66504 0.192071 8.669 0.0000

l gdpdef 0.617276 0.129459 4.768 0.0000

yrGilt1 0.0331322 0.0136929 2.420 0.0170

LIBOR −0.0187619 0.00691345 −2.714 0.0076

Mean dependent var 9.343253 S.D. dependent var 0.485480

Sum squared resid 1.016122 S.E. of regression 0.090161

R2 0.966579 Adjusted R2 0.965510

F (4, 125) 903.8034 P-value(F ) 3.46e–91

Log-likelihood 130.8882 Akaike criterion −251.7763

Schwarz criterion −237.4386 Hannan–Quinn −245.9504

ρ̂ 0.971128 Durbin–Watson 0.060120

A2e, log real M4 dependent, contemporaneous OLS with log real

GDP, RPI inflation, 10-year gilt yield, Bank of England Base Rate

A2e: OLS, using observations 1984:1–2016:2 (T = 130)

Dependent variable: l realM4

Coefficient Std. Error t-ratio p-value

const −14.5787 1.97809 −7.370 0.0000

l rgdp 1.66421 0.180946 9.197 0.0000

l gdpdef 0.609170 0.125330 4.861 0.0000

yrGilt1 0.0350726 0.0119742 2.929 0.0040

BankRate −0.0199387 0.00553559 −3.602 0.0005

Mean dependent var 9.343253 S.D. dependent var 0.485480

Sum squared resid 0.974815 S.E. of regression 0.088309

R2 0.967938 Adjusted R2 0.966912

F (4, 125) 943.4257 P-value(F ) 2.59e–92

Log-likelihood 133.5857 Akaike criterion −257.1714

Schwarz criterion −242.8338 Hannan–Quinn −251.3456

ρ̂ 0.962098 Durbin–Watson 0.078667

158



A2f, log real M4 dependent, contemporaneous OLS with log real

GDP, RPI inflation, 10-year gilt yield, Term Spread (10-year yield

minus Base Rate)

A2f: OLS, using observations 1984:1–2016:2 (T = 130)

Dependent variable: l realM4

Coefficient Std. Error t-ratio p-value

const −14.5787 1.97809 −7.370 0.0000

l rgdp 1.66421 0.180946 9.197 0.0000

l gdpdef 0.609170 0.125330 4.861 0.0000

BankRate 0.0151339 0.00883858 1.712 0.0893

TermSpread 0.0350726 0.0119742 2.929 0.0040

Mean dependent var 9.343253 S.D. dependent var 0.485480

Sum squared resid 0.974815 S.E. of regression 0.088309

R2 0.967938 Adjusted R2 0.966912

F (4, 125) 943.4257 P-value(F ) 2.59e–92

Log-likelihood 133.5857 Akaike criterion −257.1714

Schwarz criterion −242.8338 Hannan–Quinn −251.3456

ρ̂ 0.962098 Durbin–Watson 0.078667

A2g, VECM system on log real M4 dependent, log real GDP, RPI

inflation, 10-year gilt yield, Bank of England Base Rate)

VAR lag selection for system A2g
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Table A.3: Information criteria for lag selection, system A2g

lags loglik p(LR) AIC BIC HQC

1 561.80784 -8.718161 -8.028648 -8.438102

2 633.03810 0.00000 -9.476034 -8.211926* -8.962593*

3 661.70413 0.00024 -9.536133 -7.697431 -8.789309

4 685.63034 0.00388 -9.518530 -7.105233 -8.538324

5 717.76446 0.00003 -9.635483 -6.647592 -8.421894

6 743.64081 0.00129 -9.649849* -6.087364 -8.202878

7 763.20248 0.03580 -9.560696 -5.423616 -7.880342

8 787.68058 0.00286 -9.552141 -4.840466 -7.638404
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Table A.4: Trace and maximum eigenvalue tests for system A2g

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.40081 157.09 [0.0000] 65.558 [0.0000]

1 0.28752 91.533 [0.0000] 43.392 [0.0001]

2 0.16968 48.141 [0.0001] 23.801 [0.0183]

3 0.16364 24.340 [0.0014] 22.874 [0.0012]

4 0.011387 1.4659 [0.2260] 1.4659 [0.2260]

Johansen rank selection for system A2g
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Model A2g

VECM system, lag order 2

Maximum likelihood estimates, observations 1984:3–2016:2 (T = 128)

Cointegration rank = 4

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[2,2] = -1 b[3,3] = -1 b[4,4] = -1

Cointegrating vectors

l realM4t−1 1.00000 −1.94023 50.6276 −2.14471

l rgdpt−1 −0.911490 1.00000 −177.137 11.1956

RPIt−1 −0.111096 −0.0478950 1.00000 0.0536435

yrGilt1t−1 0.0522684 −0.0807639 −2.97725 1.00000

BankRatet−1 0.0629579 −0.0671178 −2.37287 −0.444878

Adjustment vectors

l realM4t−1 1.00000 1.70074 −0.0765620 0.00182400

l rgdpt−1 −0.0829001 1.00000 0.0151717 0.00589447

RPIt−1 181.771 31.6822 1.00000 −0.368823

yrGilt1t−1 −17.8581 19.0595 −0.0598497 1.00000

BankRatet−1 −65.3581 50.9624 0.207558 −1.42342

Log-likelihood = 637.907

Determinant of covariance matrix = 3.22763e–011

AIC = −9.1079

BIC = −7.8824

HQC = −8.6100

Equation 1: ∆l realM4
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Coefficient Std. Error t-ratio p-value

const −0.918447 0.361536 −2.540 0.0123

d l realM4 1 0.0890399 0.0842507 1.057 0.2927

d l rgdp 1 −0.545268 0.231719 −2.353 0.0202

∆RPIt−1 0.00622877 0.00193128 3.225 0.0016

∆yrGilt1t−1 0.000107026 0.00333006 0.03214 0.9744

∆BankRatet−1 −0.000972555 0.00222573 −0.4370 0.6629

EC1 −0.0139394 0.0101400 −1.375 0.1717

EC2 −0.0130519 0.00382223 −3.415 0.0009

EC3 0.000594869 0.000138566 4.293 0.0000

EC4 0.000269878 0.00204074 0.1322 0.8950

Mean dependent var 0.012054 S.D. dependent var 0.015942

Sum squared resid 0.022717 S.E. of regression 0.013646

R2 0.296204 Adjusted R2 0.267360

ρ̂ −0.021708 Durbin–Watson 2.042263

Equation 2: ∆l rgdp

Coefficient Std. Error t-ratio p-value

const 0.375521 0.124864 3.007 0.0032

d l realM4 1 0.0175548 0.0290978 0.6033 0.5474

d l rgdp 1 0.287895 0.0800293 3.597 0.0005

∆RPIt−1 9.35278e–006 0.000667010 0.01402 0.9888

∆yrGilt1t−1 0.000725344 0.00115011 0.6307 0.5294

∆BankRatet−1 0.00200378 0.000768705 2.607 0.0103

EC1 0.00115558 0.00350207 0.3300 0.7420

EC2 −0.00767426 0.00132009 −5.813 0.0000

EC3 −0.000117880 4.78568e–005 −2.463 0.0152

EC4 0.000872141 0.000704815 1.237 0.2183

Mean dependent var 0.005742 S.D. dependent var 0.006464

Sum squared resid 0.002710 S.E. of regression 0.004713

R2 0.489403 Adjusted R2 0.468477

ρ̂ −0.019724 Durbin–Watson 2.038601

Equation 3: ∆RPI
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Coefficient Std. Error t-ratio p-value

const 13.6517 15.6909 0.8700 0.3860

d l realM4 1 −4.12123 3.65654 −1.127 0.2619

d l rgdp 1 20.5047 10.0568 2.039 0.0436

∆RPIt−1 0.477566 0.0838190 5.698 0.0000

∆yrGilt1t−1 0.0576436 0.144527 0.3988 0.6907

∆BankRatet−1 0.223571 0.0965984 2.314 0.0223

EC1 −2.53378 0.440084 −5.757 0.0000

EC2 −0.243137 0.165887 −1.466 0.1453

EC3 −0.00776977 0.00601387 −1.292 0.1988

EC4 −0.0545707 0.0885697 −0.6161 0.5390

Mean dependent var −0.028906 S.D. dependent var 0.801490

Sum squared resid 42.79082 S.E. of regression 0.592237

R2 0.475494 Adjusted R2 0.453998

ρ̂ −0.052315 Durbin–Watson 2.103078

Equation 4: ∆yrGilt1

Coefficient Std. Error t-ratio p-value

const 18.2900 10.9024 1.678 0.0960

d l realM4 1 −1.23949 2.54065 −0.4879 0.6265

d l rgdp 1 −1.74161 6.98769 −0.2492 0.8036

∆RPIt−1 0.0686298 0.0582394 1.178 0.2409

∆yrGilt1t−1 0.320304 0.100421 3.190 0.0018

∆BankRatet−1 −0.219208 0.0671189 −3.266 0.0014

EC1 0.248932 0.305781 0.8141 0.4172

EC2 −0.146268 0.115263 −1.269 0.2069

EC3 0.000465018 0.00417858 0.1113 0.9116

EC4 0.147959 0.0615404 2.404 0.0177

Mean dependent var −0.078935 S.D. dependent var 0.435720

Sum squared resid 20.65856 S.E. of regression 0.411500

R2 0.143195 Adjusted R2 0.108080

ρ̂ 0.099762 Durbin–Watson 1.796765

Equation 5: ∆BankRate
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Coefficient Std. Error t-ratio p-value

const −22.9879 16.4136 −1.401 0.1639

d l realM4 1 −2.73248 3.82495 −0.7144 0.4764

d l rgdp 1 0.903511 10.5200 0.08589 0.9317

∆RPIt−1 0.155939 0.0876796 1.779 0.0778

∆yrGilt1t−1 0.206807 0.151184 1.368 0.1739

∆BankRatet−1 0.0283991 0.101048 0.2810 0.7792

EC1 0.911055 0.460353 1.979 0.0501

EC2 −0.391099 0.173528 −2.254 0.0260

EC3 −0.00161268 0.00629086 −0.2564 0.7981

EC4 −0.210609 0.0926492 −2.273 0.0248

Mean dependent var −0.065270 S.D. dependent var 0.693708

Sum squared resid 46.82338 S.E. of regression 0.619514

R2 0.233865 Adjusted R2 0.202466

ρ̂ 0.070693 Durbin–Watson 1.828528

A.2 Group B Hypotheses

A.2.1 Variables of interest

A.2.2 B1, Models of log real Money Market Instruments

that are liabilities of Other Financial Institutions (lo-

greal B1)

B1a, log real B1 dependent, contemporaneous OLS with log real

GDP, RPI, 10-year gilt yield

B1a: OLS, using observations 1987:1–2016:2 (T = 118)

Dependent variable: logreal B1

Coefficient Std. Error t-ratio p-value

const −10.5273 5.47665 −1.922 0.0571

l rgdp 1.20814 0.417238 2.896 0.0045

RPI −0.0852940 0.0160438 −5.316 0.0000

ytm 10yrGilt 0.0174733 0.0309267 0.5650 0.5732
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Figure A.13: MMIs OFIs liab (Total economy balance sheet, Money Market

Instruments that are liabilities of Other Financial Institutions, £m
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Figure A.14: logreal B1 (log of MMIs OFIs liab deflated by GDP deflator
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Figure A.15: M4 Securitisation (’M4 lending’ minus ’M4 lending excluding

intermediate OFCs’)
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Figure A.16: l realM4 securit (log of M4 Securitisation deflated by GDP

deflator
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Figure A.17: Measures of Money Market Instruments

MMI Liab total (total economy, short-term debt securities issued, MMIs by other UK

residents), MMIs check2 (checksum of all-sector asset holdings of MMIs by other UK

residents), ROWplusOFIs (checksum of RoW position in UK MMIs plus OFI sector net

position
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Mean dependent var 4.723014 S.D. dependent var 0.381452

Sum squared resid 7.295281 S.E. of regression 0.252970

R2 0.571476 Adjusted R2 0.560199

F (3, 114) 50.67643 P-value(F ) 6.87e–21

Log-likelihood −3.210790 Akaike criterion 14.42158

Schwarz criterion 25.50432 Hannan–Quinn 18.92150

ρ̂ 0.860419 Durbin–Watson 0.187877

B1b, log real B1 dependent, contemporaneous OLS with log real

GDP, RPI, 10-year gilt yield, log real M4

B1b: OLS, using observations 1987:1–2016:2 (T = 118)

Dependent variable: logreal B1

Coefficient Std. Error t-ratio p-value

const −21.6101 6.12502 −3.528 0.0006

l rgdp 2.63929 0.573044 4.606 0.0000

RPI −0.0696629 0.0159645 −4.364 0.0000

ytm 10yrGilt −0.00486824 0.0302186 −0.1611 0.8723

l realM4 −0.755757 0.217539 −3.474 0.0007

Mean dependent var 4.723014 S.D. dependent var 0.381452

Sum squared resid 6.591269 S.E. of regression 0.241516

R2 0.612829 Adjusted R2 0.599124

F (4, 113) 44.71525 P-value(F ) 1.85e–22

Log-likelihood 2.776636 Akaike criterion 4.446728

Schwarz criterion 18.30015 Hannan–Quinn 10.07163

ρ̂ 0.857588 Durbin–Watson 0.188092

B1c, log real B1 dependent, contemporaneous OLS with log real

GDP, RPI, 10-year gilt yield, log real M4, log real M0

B1c: OLS, using observations 1987:1–2016:2 (T = 118)

Dependent variable: logreal B1
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Coefficient Std. Error t-ratio p-value

const −35.8117 3.64701 −9.819 0.0000

l rgdp 4.65155 0.355502 13.08 0.0000

RPI −0.0391315 0.00940470 −4.161 0.0001

ytm 10yrGilt −0.0874356 0.0182228 −4.798 0.0000

l realM4 0.0554890 0.136155 0.4075 0.6844

l realM0 −3.08743 0.203890 −15.14 0.0000

Mean dependent var 4.723014 S.D. dependent var 0.381452

Sum squared resid 2.162979 S.E. of regression 0.138969

R2 0.872947 Adjusted R2 0.867275

F (5, 112) 153.9041 P-value(F ) 1.78e–48

Log-likelihood 68.51794 Akaike criterion −125.0359

Schwarz criterion −108.4118 Hannan–Quinn −118.2860

ρ̂ 0.720019 Durbin–Watson 0.543468

Test for normality of residual –

Null hypothesis: error is normally distributed

Test statistic: χ2(2) = 20.1092

with p-value = 4.29865e-005

B1d, log real B1 dependent, contemporaneous OLS with log real

GDP, RPI, 10-year gilt yield, log real M4, log real M0, ON gilt repo

(overnight gilt repo rate)

B1d: OLS, using observations 1996:1–2016:2 (T = 82)

Dependent variable: logreal B1

172



Coefficient Std. Error t-ratio p-value

const −4.09477 4.34624 −0.9421 0.3491

l rgdp 0.978479 0.525015 1.864 0.0663

RPI −0.0178944 0.00542075 −3.301 0.0015

ytm 10yrGilt 0.00359471 0.0119117 0.3018 0.7637

l realM4 −0.234658 0.0790249 −2.969 0.0040

l realM0 −0.221615 0.396908 −0.5584 0.5783

ON gilt repo 0.0235946 0.0131353 1.796 0.0765

Mean dependent var 4.910360 S.D. dependent var 0.105133

Sum squared resid 0.239937 S.E. of regression 0.056561

R2 0.732000 Adjusted R2 0.710560

F (6, 75) 34.14187 P-value(F ) 1.49e–19

Log-likelihood 122.8451 Akaike criterion −231.6902

Schwarz criterion −214.8432 Hannan–Quinn −224.9264

ρ̂ 0.563276 Durbin–Watson 0.873827

Test for normality of residual –

Null hypothesis: error is normally distributed

Test statistic: χ2(2) = 0.074737

with p-value = 0.963321

Test for omission of variables –

Null hypothesis: parameters are zero for the variables

ytm 10yrGilt

Test statistic: F (1, 75) = 0.0910706

with p-value = P (F (1, 75) > 0.0910706) = 0.763656

B1e, log real B1 dependent, contemporaneous OLS with log real

GDP, RPI, log real M4, ON gilt repo

B1e: OLS, using observations 1996:1–2016:2 (T = 82)

Dependent variable: logreal B1
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Coefficient Std. Error t-ratio p-value

const −1.10176 1.36592 −0.8066 0.4224

l rgdp 0.633515 0.146510 4.324 0.0000

RPI −0.0179379 0.00537575 −3.337 0.0013

l realM4 −0.229085 0.0743865 −3.080 0.0029

ON gilt repo 0.0325179 0.00574796 5.657 0.0000

Mean dependent var 4.910360 S.D. dependent var 0.105133

Sum squared resid 0.242284 S.E. of regression 0.056094

R2 0.729378 Adjusted R2 0.715320

F (4, 77) 51.88250 P-value(F ) 4.07e–21

Log-likelihood 122.4459 Akaike criterion −234.8918

Schwarz criterion −222.8582 Hannan–Quinn −230.0605

ρ̂ 0.564196 Durbin–Watson 0.870875

Test for normality of residual –

Null hypothesis: error is normally distributed

Test statistic: χ2(2) = 0.129169

with p-value = 0.937457

QLR test for structural break –

Null hypothesis: no structural break

Test statistic: max χ2(5) = 36.0221 (2006:1)

with asymptotic p-value = 3.33404e-005

B1f, VECM system on log real B1, log real GDP, RPI, log real

M4, overnight repo rate

VAR lag selection for system B1f
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Figure A.18: B1e, residuals time-series

Table A.5: Information criteria for lag selection, system B1f

lags loglik p(LR) AIC BIC HQC

1 562.48711 -14.391543 -13.457463 -14.018927

2 622.04804 0.00000 -15.325623 -

13.613142*

-

14.642493*

3 638.84084 0.11707 -15.103806 -12.612925 -14.110163

4 663.93843 0.00202 -15.106444 -11.837162 -13.802287

5 696.18373 0.00002 -15.302263 -11.254581 -13.687593

6 725.60603 0.00015 -15.421785 -10.595702 -13.496601

7 753.60175 0.00036 -15.502750 -9.898267 -13.267053

8 791.31382 0.00000 -

15.846319*

-9.463436 -13.300109
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Table A.6: Trace and maximum eigenvalue tests for system B1f

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.45382 124.86 [0.0000] 48.385 [0.0002]

1 0.41412 76.477 [0.0000] 42.771 [0.0001]

2 0.24089 33.706 [0.0160] 22.048 [0.0350]

3 0.11867 11.658 [0.1763] 10.106 [0.2090]

4 0.019211 1.5518 [0.2129] 1.5518 [0.2129]

Johansen rank selection for system B1f
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Model B1f

VECM system, lag order 2

Maximum likelihood estimates, observations 1996:3–2016:2 (T = 80)

Cointegration rank = 3

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[2,2] = -1 b[3,3] = -1

Cointegrating vectors

logreal B1t−1 1.00000 −0.502864 48.8954

l rgdpt−1 5.19998 1.00000 −17.4703

RPIt−1 0.814023 −0.00153295 1.00000

l realM4t−1 −4.51823 −0.262809 3.58678

ON gilt repot−1 −0.509455 0.0418617 −1.24931

Adjustment vectors

logreal B1t−1 1.00000 −17.0425 0.176440

l rgdpt−1 −0.889697 1.00000 −0.00236186

RPIt−1 −486.257 163.590 1.00000

l realM4t−1 −8.54742 −6.37799 −0.0448890

ON gilt repot−1 −49.8364 92.3759 0.0311784

Log-likelihood = 651.731

Determinant of covariance matrix = 0.00000

AIC = −14.9183

BIC = −13.2806

HQC = −14.2617

Equation 1: ∆logreal B1
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Coefficient Std. Error t-ratio p-value

const −2.46729 0.666273 −3.703 0.0004

d logreal B1 1 0.136635 0.0998750 1.368 0.1754

d l rgdp 1 0.816191 0.864436 0.9442 0.3481

∆RPIt−1 0.0113690 0.00786313 1.446 0.1524

d l realM4 1 −0.992754 0.316112 −3.141 0.0024

d ON gilt repo 1 −0.0303551 0.0173529 −1.749 0.0844

EC1 −0.000859652 0.00526468 −0.1633 0.8707

EC2 −0.338850 0.0805242 −4.208 0.0001

EC3 0.00564307 0.00156653 3.602 0.0006

Mean dependent var −0.002191 S.D. dependent var 0.048483

Sum squared resid 0.114306 S.E. of regression 0.039302

R2 0.384456 Adjusted R2 0.342865

ρ̂ −0.102060 Durbin–Watson 2.124484

Equation 2: ∆l rgdp

Coefficient Std. Error t-ratio p-value

const 0.179764 0.0796332 2.257 0.0269

d logreal B1 1 −0.00627500 0.0119371 −0.5257 0.6007

d l rgdp 1 0.644017 0.103318 6.233 0.0000

∆RPIt−1 −0.000651315 0.000939804 −0.6930 0.4905

d l realM4 1 0.00412171 0.0377819 0.1091 0.9134

d ON gilt repo 1 0.00284878 0.00207402 1.374 0.1737

EC1 0.000764830 0.000629237 1.215 0.2280

EC2 0.0198827 0.00962429 2.066 0.0423

EC3 −7.55393e–005 0.000187233 −0.4035 0.6878

Mean dependent var 0.005112 S.D. dependent var 0.006219

Sum squared resid 0.001633 S.E. of regression 0.004697

R2 0.465643 Adjusted R2 0.429538

ρ̂ −0.091770 Durbin–Watson 2.180684

Equation 3: ∆RPI
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Coefficient Std. Error t-ratio p-value

const 39.6062 8.55896 4.627 0.0000

d logreal B1 1 0.549089 1.28300 0.4280 0.6699

d l rgdp 1 18.6588 11.1046 1.680 0.0971

∆RPIt−1 0.399824 0.101010 3.958 0.0002

d l realM4 1 −0.0761019 4.06079 −0.01874 0.9851

d ON gilt repo 1 0.735537 0.222915 3.300 0.0015

EC1 0.418012 0.0676303 6.181 0.0000

EC2 3.25261 1.03442 3.144 0.0024

EC3 0.0319830 0.0201237 1.589 0.1163

Mean dependent var −0.010000 S.D. dependent var 0.764331

Sum squared resid 18.86275 S.E. of regression 0.504878

R2 0.591291 Adjusted R2 0.563675

ρ̂ −0.049408 Durbin–Watson 2.093142

Equation 4: ∆l realM4

Coefficient Std. Error t-ratio p-value

const −0.857259 0.227154 −3.774 0.0003

d logreal B1 1 0.0107231 0.0340506 0.3149 0.7537

d l rgdp 1 −0.834473 0.294714 −2.831 0.0060

∆RPIt−1 0.0105163 0.00268079 3.923 0.0002

d l realM4 1 −0.189910 0.107773 −1.762 0.0822

d ON gilt repo 1 −0.00426957 0.00591615 −0.7217 0.4728

EC1 0.00734781 0.00179490 4.094 0.0001

EC2 −0.126811 0.0274533 −4.619 0.0000

EC3 −0.00143568 0.000534082 −2.688 0.0089

Mean dependent var 0.010602 S.D. dependent var 0.017515

Sum squared resid 0.013286 S.E. of regression 0.013399

R2 0.451757 Adjusted R2 0.414714

ρ̂ −0.083829 Durbin–Watson 2.156081

Equation 5: ∆ON gilt repo
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Coefficient Std. Error t-ratio p-value

const 15.8551 4.78435 3.314 0.0014

d logreal B1 1 0.146839 0.717180 0.2047 0.8383

d l rgdp 1 22.9627 6.20732 3.699 0.0004

∆RPIt−1 −0.0564972 0.0564634 −1.001 0.3203

d l realM4 1 0.850612 2.26993 0.3747 0.7089

d ON gilt repo 1 0.633211 0.124607 5.082 0.0000

EC1 0.0428419 0.0378045 1.133 0.2608

EC2 1.83668 0.578226 3.176 0.0022

EC3 0.000997179 0.0112489 0.08865 0.9296

Mean dependent var −0.067627 S.D. dependent var 0.404656

Sum squared resid 5.893994 S.E. of regression 0.282221

R2 0.544373 Adjusted R2 0.513587

ρ̂ 0.042980 Durbin–Watson 1.905166

A.2.3 B2, Models of log real M4 Securitisation

B2a, log real M4 securitisation dependent, contemporaneous OLS

with log real gdp, RPI, log real M4, overnight gilt repo rate

B2a: OLS, using observations 1997:4–2016:2 (T = 75)

Dependent variable: l realM4 securit

Coefficient Std. Error t-ratio p-value

const −9.62668 3.11366 −3.092 0.0029

l rgdp −1.93684 0.315865 −6.132 0.0000

RPI −0.0271704 0.0107663 −2.524 0.0139

l realM4 4.33907 0.148678 29.18 0.0000

ON gilt repo 0.0384803 0.0116064 3.315 0.0015
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Table A.7: Information criteria for lag selection, system B2b

lags loglik p(LR) AIC BIC HQC

1 513.28286 -13.613602 -

12.657540*

-13.233406

2 565.45155 0.00000 -

14.378917*

-12.626137 -

13.681892*

3 584.52736 0.04471 -14.212038 -11.662540 -13.198184

4 610.21068 0.00144 -14.231287 -10.885070 -12.900603

5 696.18373 0.00002 -15.302263 -11.254581 -13.687593

6 725.60603 0.00015 -15.421785 -10.595702 -13.496601

7 753.60175 0.00036 -15.502750 -9.898267 -13.267053

8 791.31382 0.00000 -

15.846319*

-9.463436 -13.300109

Mean dependent var 7.494599 S.D. dependent var 0.981025

Sum squared resid 0.875338 S.E. of regression 0.111825

R2 0.987709 Adjusted R2 0.987007

F (4, 70) 1406.317 P-value(F ) 4.86e–66

Log-likelihood 60.47837 Akaike criterion −110.9567

Schwarz criterion −99.36930 Hannan–Quinn −106.3300

ρ̂ 0.714617 Durbin–Watson 0.565530

Test for omission of variables –

Null hypothesis: parameters are zero for the variables

l realM4

Test statistic: F (1, 70) = 851.723

with p-value = P (F (1, 70) > 851.723) = 6.48505e-041

B2b, VECM system on log real M4 securitisation, log real GDP,

log real M4, RPI, overnight gilt repo rate

VAR lag selection for system B2b
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Table A.8: Trace and maximum eigenvalue tests for system B2b

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.50388 126.19 [0.0000] 51.169 [0.0001]

1 0.45408 75.018 [0.0000] 44.186 [0.0001]

2 0.22649 30.832 [0.0375] 18.748 [0.1061]

3 0.11709 12.084 [0.1544] 9.0905 [0.2852]

4 0.040178 2.9936 [0.0836] 2.9936 [0.0836]

Johansen rank selection for system B2b
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Model B2b

VECM system, lag order 2

Maximum likelihood estimates, observations 1998:2–2016:2 (T = 73)

Cointegration rank = 2

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[2,5] = -1 b[1,4] = 0 b[2,3] = 0

Cointegrating vectors (standard errors in parentheses)

l rgdpt−1 −1.00000 −7.88366

(0.00000) (1.49453)

l realM4t−1 0.562120 4.66209

(0.187578) (0.667194)

RPIt−1 −0.0404615 0.00000

(0.00461929) (0.00000)

ON gilt repot−1 0.00000 −0.322364

(0.00000) (0.0521174)

l realM4 securitt−1 −0.0556035 −1.00000

(0.0541789) (0.00000)

Adjustment vectors (standard errors in parentheses)

l rgdpt−1 0.0121671 0.00187216

(0.0125080) (0.00149121)

l realM4t−1 0.118876 −0.0251547

(0.0316655) (0.00377519)

RPIt−1 9.02615 −0.305206

(1.38320) (0.164907)

ON gilt repot−1 0.735664 0.0695498

(0.798845) (0.0952391)

l realM4 securitt−1 0.0283297 −0.0890182

(0.198576) (0.0236744)

Log-likelihood = 562.599

Determinant of covariance matrix = 1.39171e–013

AIC = −13.9068
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BIC = −12.1811

HQC = −13.2191

Equation 1: ∆l rgdp

Coefficient Std. Error t-ratio p-value

const 0.220111 0.0914881 2.406 0.0190

d l rgdp 1 0.662164 0.106890 6.195 0.0000

d l realM4 1 0.0781860 0.0450486 1.736 0.0874

∆RPIt−1 −0.00142475 0.000987911 −1.442 0.1541

d ON gilt repo 1 0.00292868 0.00216363 1.354 0.1806

d l realM4 securit 1 −0.00566784 0.00858256 −0.6604 0.5114

EC1 0.0121671 0.0125080 0.9727 0.3343

EC2 0.00187216 0.00149121 1.255 0.2139

Mean dependent var 0.004856 S.D. dependent var 0.006380

Sum squared resid 0.001420 S.E. of regression 0.004710

R2 0.515669 Adjusted R2 0.455128

ρ̂ −0.137351 Durbin–Watson 2.268273

Equation 2: ∆l realM4

Coefficient Std. Error t-ratio p-value

const −0.673759 0.231613 −2.909 0.0050

d l rgdp 1 −0.341838 0.270606 −1.263 0.2111

d l realM4 1 −0.215833 0.114046 −1.893 0.0629

∆RPIt−1 0.0101124 0.00250102 4.043 0.0001

d ON gilt repo 1 −0.00537574 0.00547749 −0.9814 0.3301

d l realM4 securit 1 0.0125172 0.0217278 0.5761 0.5666

EC1 0.118876 0.0316655 3.754 0.0004

EC2 −0.0251547 0.00377519 −6.663 0.0000

Mean dependent var 0.010170 S.D. dependent var 0.016620

Sum squared resid 0.009098 S.E. of regression 0.011923

R2 0.542523 Adjusted R2 0.485338

ρ̂ −0.083548 Durbin–Watson 2.161971

Equation 3: ∆RPI
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Coefficient Std. Error t-ratio p-value

const 52.1778 10.1173 5.157 0.0000

d l rgdp 1 15.5617 11.8205 1.317 0.1927

d l realM4 1 −2.66532 4.98172 −0.5350 0.5945

∆RPIt−1 0.391807 0.109249 3.586 0.0006

d ON gilt repo 1 0.885337 0.239266 3.700 0.0004

d l realM4 securit 1 0.936560 0.949107 0.9868 0.3275

EC1 9.02615 1.38320 6.526 0.0000

EC2 −0.305206 0.164907 −1.851 0.0688

Mean dependent var −0.027397 S.D. dependent var 0.789560

Sum squared resid 17.36029 S.E. of regression 0.520821

R2 0.613229 Adjusted R2 0.564883

ρ̂ −0.057376 Durbin–Watson 2.097659

Equation 4: ∆ON gilt repo

Coefficient Std. Error t-ratio p-value

const 10.2627 5.84305 1.756 0.0838

d l rgdp 1 18.8508 6.82674 2.761 0.0075

d l realM4 1 1.16471 2.87711 0.4048 0.6870

∆RPIt−1 −0.0481441 0.0630947 −0.7630 0.4482

d ON gilt repo 1 0.567800 0.138184 4.109 0.0001

d l realM4 securit 1 −0.454505 0.548141 −0.8292 0.4101

EC1 0.735664 0.798845 0.9209 0.3606

EC2 0.0695498 0.0952391 0.7303 0.4679

Mean dependent var −0.092126 S.D. dependent var 0.408442

Sum squared resid 5.790431 S.E. of regression 0.300791

R2 0.517921 Adjusted R2 0.457661

ρ̂ 0.102602 Durbin–Watson 1.793509

Equation 5: ∆l realM4 secu
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Coefficient Std. Error t-ratio p-value

const −5.51344 1.45246 −3.796 0.0003

d l rgdp 1 −2.27609 1.69698 −1.341 0.1846

d l realM4 1 −0.760797 0.715189 −1.064 0.2914

∆RPIt−1 0.0145751 0.0156840 0.9293 0.3562

d ON gilt repo 1 −0.00456690 0.0343497 −0.1330 0.8946

d l realM4 securit 1 −0.0668258 0.136256 −0.4904 0.6255

EC1 0.0283297 0.198576 0.1427 0.8870

EC2 −0.0890182 0.0236744 −3.760 0.0004

Mean dependent var 0.029218 S.D. dependent var 0.085319

Sum squared resid 0.357799 S.E. of regression 0.074770

R2 0.317318 Adjusted R2 0.231983

ρ̂ −0.017708 Durbin–Watson 1.989616

A.2.4 B3, Models of log real aggregate Monemy Market

Instruments held by UK sectors (Rest of World ex-

cluded)

B3a, log real B3 dependent (aggreagate MMIs held by UK sec-

tors), contemporaneous OLS with log real GDP, RPI, 10-year gilt

yield, overnight gilt repo rate

Model 8: OLS, using observations 1996:1–2016:2 (T = 82)

Dependent variable: l realB3

Coefficient Std. Error t-ratio p-value

const 10.9721 3.06417 3.581 0.0006

l rgdp −0.367171 0.233663 −1.571 0.1202

RPI −0.0226267 0.0102548 −2.206 0.0303

ytm 10yrGilt −0.0583795 0.0210940 −2.768 0.0071

ON gilt repo 0.0179871 0.0107146 1.679 0.0973
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Table A.9: Information criteria for lag selection, system B3b

lags loglik p(LR) AIC BIC HQC

1 535.26832 -12.980745 -

11.692708*

-12.465983

2 601.65878 0.00000 -13.780494 -11.388426 -

12.824508*

3 631.29112 0.00862 -13.612924 -10.116824 -12.215713

4 677.75191 0.00000 -13.888208 -9.288076 -12.049773

5 730.92782 0.00000 -

14.340206*

-8.636043 -12.060546

6 766.42814 0.00045 -14.327056 -7.518862 -11.606172

Mean dependent var 5.989774 S.D. dependent var 0.126097

Sum squared resid 1.079577 S.E. of regression 0.118408

R2 0.161773 Adjusted R2 0.118229

F (4, 77) 3.715150 P-value(F ) 0.008099

Log-likelihood 61.18320 Akaike criterion −112.3664

Schwarz criterion −100.3328 Hannan–Quinn −107.5351

ρ̂ 0.758938 Durbin–Watson 0.469674

B3b, VECM system on log real B3, log real GDP, log real M4,

RPI, 10-year gilt yield, overnight gilt repo rate

VAR lag selection for system B3b
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Table A.10: Trace and maximum eigenvalue tests for system B3b

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.48061 140.29 [0.0000] 52.408 [0.0006]

1 0.38971 87.880 [0.0007] 39.506 [0.0069]

2 0.23605 48.374 [0.0430] 21.540 [0.2530]

3 0.16590 26.834 [0.1083] 14.512 [0.3378]

4 0.11116 12.321 [0.1432] 9.4270 [0.2579]

Johansen rank selection for system B3b
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Model B3b

VECM system, lag order 2

Maximum likelihood estimates, observations 1996:3–2016:2 (T = 80)

Cointegration rank = 2

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[2,5] = -1 b[1,4] = 0 b[2,3] = 0

Cointegrating vectors (standard errors in parentheses)

l rgdpt−1 −1.00000 4.76364

(0.00000) (1.54487)

l realM4t−1 0.661695 −1.40227

(0.0978451) (0.658874)

RPIt−1 −0.0743605 0.00000

(0.00962004) (0.00000)

ON gilt repot−1 0.00000 0.208170

(0.00000) (0.0570393)

l realB3t−1 0.223743 −1.00000

(0.104322) (0.00000)

ytm 10yrGiltt−1 0.0608575 −0.0862104

(0.0192218) (0.102157)

Adjustment vectors (standard errors in parentheses)

l rgdpt−1 0.00771335 −0.00109431

(0.00655359) (0.00169169)

l realM4t−1 0.0649795 0.0313673

(0.0183302) (0.00473160)

RPIt−1 4.00654 0.157481

(0.696519) (0.179793)

ON gilt repot−1 0.498821 −0.121655

(0.379584) (0.0979825)

l realB3t−1 −0.132623 0.0414051

(0.100908) (0.0260475)

ytm 10yrGiltt−1 0.0154528 0.0521443

(0.392707) (0.101370)
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Log-likelihood = 607.104

Determinant of covariance matrix = 0.00000

AIC = −13.2276

BIC = −10.9051

HQC = −12.2965

Equation 1: ∆l rgdp

Coefficient Std. Error t-ratio p-value

const 0.0874665 0.0605917 1.444 0.1533

d l rgdp 1 0.656865 0.107526 6.109 0.0000

d l realM4 1 0.000445433 0.0399534 0.01115 0.9911

∆RPIt−1 −0.000787217 0.000989476 −0.7956 0.4290

d ON gilt repo 1 0.00258064 0.00217468 1.187 0.2394

d l realB3 1 0.00404349 0.00738239 0.5477 0.5856

∆ytmt−10 0.000423920 0.00193229 0.2194 0.8270

EC1 0.00771335 0.00655359 1.177 0.2432

EC2 −0.00109431 0.00169169 −0.6469 0.5198

Mean dependent var 0.005112 S.D. dependent var 0.006219

Sum squared resid 0.001672 S.E. of regression 0.004887

R2 0.452910 Adjusted R2 0.382570

ρ̂ −0.085262 Durbin–Watson 2.164297

Equation 2: ∆l realM4

Coefficient Std. Error t-ratio p-value

const −0.975327 0.169473 −5.755 0.0000

d l rgdp 1 −0.769393 0.300748 −2.558 0.0127

d l realM4 1 −0.201419 0.111748 −1.802 0.0758

∆RPIt−1 0.0104060 0.00276753 3.760 0.0003

d ON gilt repo 1 −0.00744568 0.00608251 −1.224 0.2250

d l realB3 1 0.00506154 0.0206483 0.2451 0.8071

∆ytmt−10 0.00267863 0.00540456 0.4956 0.6217

EC1 0.0649795 0.0183302 3.545 0.0007

EC2 0.0313673 0.00473160 6.629 0.0000
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Mean dependent var 0.010602 S.D. dependent var 0.017515

Sum squared resid 0.013078 S.E. of regression 0.013669

R2 0.460335 Adjusted R2 0.390950

ρ̂ −0.093842 Durbin–Watson 2.181085

Equation 3: ∆RPI

Coefficient Std. Error t-ratio p-value

const 13.7523 6.43971 2.136 0.0362

d l rgdp 1 20.7261 11.4280 1.814 0.0740

d l realM4 1 −2.04952 4.24626 −0.4827 0.6308

∆RPIt−1 0.355752 0.105162 3.383 0.0012

d ON gilt repo 1 0.665037 0.231126 2.877 0.0053

d l realB3 1 −1.20758 0.784604 −1.539 0.1283

∆ytmt−10 0.0207714 0.205365 0.1011 0.9197

EC1 4.00654 0.696519 5.752 0.0000

EC2 0.157481 0.179793 0.8759 0.3841

Mean dependent var −0.010000 S.D. dependent var 0.764331

Sum squared resid 18.88364 S.E. of regression 0.519390

R2 0.590838 Adjusted R2 0.538232

ρ̂ −0.098699 Durbin–Watson 2.194768

Equation 4: ∆ON gilt repo

Coefficient Std. Error t-ratio p-value

const 7.55162 3.50947 2.152 0.0349

d l rgdp 1 22.4503 6.22792 3.605 0.0006

d l realM4 1 0.0187311 2.31410 0.008094 0.9936

∆RPIt−1 −0.0746235 0.0573105 −1.302 0.1972

d ON gilt repo 1 0.580518 0.125957 4.609 0.0000

d l realB3 1 −0.249672 0.427588 −0.5839 0.5612

∆ytmt−10 0.236660 0.111918 2.115 0.0380

EC1 0.498821 0.379584 1.314 0.1931

EC2 −0.121655 0.0979825 −1.242 0.2185
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Mean dependent var −0.067627 S.D. dependent var 0.404656

Sum squared resid 5.608356 S.E. of regression 0.283054

R2 0.566454 Adjusted R2 0.510712

ρ̂ 0.016497 Durbin–Watson 1.955576

Equation 5: ∆l realB3

Coefficient Std. Error t-ratio p-value

const −2.40053 0.932952 −2.573 0.0122

d l rgdp 1 −3.01586 1.65562 −1.822 0.0728

d l realM4 1 −0.617211 0.615176 −1.003 0.3192

∆RPIt−1 0.0379102 0.0152353 2.488 0.0152

d ON gilt repo 1 −0.0356932 0.0334843 −1.066 0.2901

d l realB3 1 −0.164558 0.113669 −1.448 0.1522

∆ytmt−10 0.00154396 0.0297522 0.05189 0.9588

EC1 −0.132623 0.100908 −1.314 0.1930

EC2 0.0414051 0.0260475 1.590 0.1164

Mean dependent var 0.001984 S.D. dependent var 0.079093

Sum squared resid 0.396343 S.E. of regression 0.075247

R2 0.198016 Adjusted R2 0.094904

ρ̂ −0.062699 Durbin–Watson 2.120615

Equation 6: ∆ytm 10yrGilt

Coefficient Std. Error t-ratio p-value

const −2.22292 3.63079 −0.6122 0.5424

d l rgdp 1 9.56734 6.44323 1.485 0.1421

d l realM4 1 −2.32396 2.39410 −0.9707 0.3350

∆RPIt−1 0.0130531 0.0592917 0.2202 0.8264

d ON gilt repo 1 −0.288074 0.130312 −2.211 0.0303

d l realB3 1 −0.284739 0.442370 −0.6437 0.5219

∆ytmt−10 0.305928 0.115787 2.642 0.0102

EC1 0.0154528 0.392707 0.03935 0.9687

EC2 0.0521443 0.101370 0.5144 0.6086
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Table A.11: Information criteria for lag selection, system B4a

lags loglik p(LR) AIC BIC HQC

1 572.73602 -18.301242 -

16.809197*

-17.720061

2 635.77201 0.00000 -19.233517 -16.462577 -18.154180

3 658.90749 0.11735 -18.789914 -14.740077 -17.212421

4 710.14888 0.00000 -19.315478 -13.986747 -17.239830

5 751.21150 0.00002 -19.490052 -12.882424 -16.916247

6 808.61067 0.00000 -20.227954 -12.341431 -17.155994

7 877.07155 0.00000 -21.347295 -12.181876 -17.777179

8 1020.07189 0.00000 -

25.036962*

-14.592647 -

20.968690*

Mean dependent var −0.082487 S.D. dependent var 0.302689

Sum squared resid 6.002831 S.E. of regression 0.292839

R2 0.170652 Adjusted R2 0.064021

ρ̂ −0.005071 Durbin–Watson 2.002234

A.2.5 B4, Models of log real M4 Securitisation incorporating

measures of government debt issuance

B4a, VECM system on log real M4 securitisation, log real GDP,

log GDP deflator, 1 month LIBOR, 20-year gilt yield, log real

short-term debt outstanding as a liability of central government

(lr STDebt CG)

VAR lag selection for system B4a
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Table A.12: Trace and maximum eigenvalue tests for system B4a

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.50305 127.77 [0.0000] 44.753 [0.0105]

1 0.44398 83.012 [0.0025] 37.565 [0.0138]

2 0.28208 45.447 [0.0815] 21.210 [0.2727]

3 0.20383 24.237 [0.1968] 14.588 [0.3319]

4 0.13133 9.6488 [0.3144] 9.0108 [0.2919]

5 0.0099201 0.63806 [0.4244] 0.63806 [0.4244]

Johansen rank selection for system B4a
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Model B4a

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)

Cointegration rank = 1

Case 3: Unrestricted constant

Cointegrating vectors (standard errors in parentheses)

lr M4 sect−1 1.00000

(0.00000)

l gdpdeft−1 18.4302

(7.18518)

l rgdpt−1 −42.5662

(8.83466)

LIBOR 1mt−1 0.913443

(0.231148)

ytm 20yrGiltt−1 −2.03626

(0.303748)

lr STDebt CGt−1 1.32729

(0.423698)

Adjustment vectors

lr M4 sect−1 1.00000

l gdpdeft−1 0.0254281

l rgdpt−1 0.00843449

LIBOR 1mt−1 0.996402

ytm 20yrGiltt−1 −1.01457

lr STDebt CGt−1 3.76863

Log-likelihood = 618.281

Determinant of covariance matrix = 0.00000

AIC = −16.8838

BIC = −14.2526

HQC = −15.8472

Equation 1: ∆lr M4 sec
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Coefficient Std. Error t-ratio p-value

const −18.1476 5.51408 −3.291 0.0017

d lr M4 sec 1 0.0460085 0.128565 0.3579 0.7218

d l gdpdef 1 3.80414 2.16813 1.755 0.0848

d l rgdp 1 −6.06143 2.04716 −2.961 0.0045

∆LIBORt−1 0.0735219 0.0282886 2.599 0.0119

∆ytmt−20 −0.0369230 0.0475793 −0.7760 0.4410

d lr STDebt CG 1 0.0226388 0.0357992 0.6324 0.5297

EC1 −0.0397359 0.0120540 −3.297 0.0017

Mean dependent var 0.029617 S.D. dependent var 0.088053

Sum squared resid 0.323168 S.E. of regression 0.075966

R2 0.338393 Adjusted R2 0.255693

ρ̂ −0.014158 Durbin–Watson 2.004873

Equation 2: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const −0.456157 0.351723 −1.297 0.2000

d lr M4 sec 1 0.000207723 0.00820072 0.02533 0.9799

d l gdpdef 1 −0.200038 0.138297 −1.446 0.1536

d l rgdp 1 −0.112187 0.130581 −0.8591 0.3939

∆LIBORt−1 0.00251757 0.00180443 1.395 0.1685

∆ytmt−20 −0.00277472 0.00303491 −0.9143 0.3645

d lr STDebt CG 1 0.000462693 0.00228350 0.2026 0.8402

EC1 −0.00101041 0.000768878 −1.314 0.1942

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001315 S.E. of regression 0.004846

R2 0.100816 Adjusted R2 -0.011582

ρ̂ −0.072317 Durbin–Watson 2.132418

Equation 3: ∆l rgdp
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Coefficient Std. Error t-ratio p-value

const −0.150985 0.334307 −0.4516 0.6533

d lr M4 sec 1 −0.0148048 0.00779466 −1.899 0.0627

d l gdpdef 1 −0.122525 0.131450 −0.9321 0.3553

d l rgdp 1 0.665573 0.124115 5.363 0.0000

∆LIBORt−1 −0.00141186 0.00171508 −0.8232 0.4139

∆ytmt−20 0.000124877 0.00288463 0.04329 0.9656

d lr STDebt CG 1 −0.00166231 0.00217043 −0.7659 0.4470

EC1 −0.000335152 0.000730807 −0.4586 0.6483

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001188 S.E. of regression 0.004606

R2 0.538038 Adjusted R2 0.480293

ρ̂ −0.045868 Durbin–Watson 2.082137

Equation 4: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const −18.2512 23.0342 −0.7924 0.4315

d lr M4 sec 1 −0.991448 0.537062 −1.846 0.0702

d l gdpdef 1 −1.14968 9.05704 −0.1269 0.8994

d l rgdp 1 25.7704 8.55171 3.013 0.0039

∆LIBORt−1 0.288446 0.118171 2.441 0.0178

∆ytmt−20 0.224451 0.198755 1.129 0.2636

d lr STDebt CG 1 0.00856753 0.149546 0.05729 0.9545

EC1 −0.0395929 0.0503535 −0.7863 0.4350

Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 5.639346 S.E. of regression 0.317337

R2 0.514368 Adjusted R2 0.453664

ρ̂ 0.042832 Durbin–Watson 1.913858

Equation 5: ∆ytm 20yrGilt
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Coefficient Std. Error t-ratio p-value

const 18.3308 16.7326 1.096 0.2780

d lr M4 sec 1 0.616649 0.390136 1.581 0.1196

d l gdpdef 1 1.17052 6.57927 0.1779 0.8594

d l rgdp 1 12.2907 6.21218 1.978 0.0528

∆LIBORt−1 −0.162457 0.0858427 −1.892 0.0636

∆ytmt−20 0.131227 0.144381 0.9089 0.3673

d lr STDebt CG 1 −0.0952677 0.108634 −0.8770 0.3843

EC1 0.0403149 0.0365781 1.102 0.2751

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 2.975852 S.E. of regression 0.230522

R2 0.115165 Adjusted R2 0.004561

ρ̂ 0.005530 Durbin–Watson 1.986342

Equation 6: ∆lr STDebt CG

Coefficient Std. Error t-ratio p-value

const −68.3671 15.3982 −4.440 0.0000

d lr M4 sec 1 −0.123071 0.359023 −0.3428 0.7330

d l gdpdef 1 −12.8274 6.05459 −2.119 0.0386

d l rgdp 1 −15.7139 5.71677 −2.749 0.0080

∆LIBORt−1 −0.0924954 0.0789968 −1.171 0.2466

∆ytmt−20 −0.233112 0.132867 −1.754 0.0848

d lr STDebt CG 1 −0.438035 0.0999705 −4.382 0.0001

EC1 −0.149750 0.0336611 −4.449 0.0000

Mean dependent var 0.042230 S.D. dependent var 0.279060

Sum squared resid 2.520139 S.E. of regression 0.212138

R2 0.486325 Adjusted R2 0.422115

ρ̂ 0.051234 Durbin–Watson 1.832908

B4b, VECM system of same composition as B4a but with 2 coin-

tegrating vectors

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)
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Cointegration rank = 2

Case 3: Unrestricted constant

Cointegrating vectors (standard errors in parentheses)

lr M4 sect−1 1.00000 0.00000

(0.00000) (0.00000)

l gdpdeft−1 0.00000 1.00000

(0.00000) (0.00000)

l rgdpt−1 −16.2657 −1.42704

(2.13017) (0.0919944)

LIBOR 1mt−1 0.295563 0.0335255

(0.0808181) (0.00349024)

ytm 20yrGiltt−1 −1.29042 −0.0404684

(0.175691) (0.00758744)

lr STDebt CGt−1 0.327062 0.0542711

(0.219380) (0.00947423)

Adjustment vectors

lr M4 sect−1 1.00000 86.8952

l gdpdeft−1 0.0193173 1.00000

l rgdpt−1 0.0189507 2.81449

LIBOR 1mt−1 −0.625030 −234.363

ytm 20yrGiltt−1 −2.44386 −371.075

lr STDebt CGt−1 −1.76134 −767.126

Log-likelihood = 637.063

Determinant of covariance matrix = 0.00000

AIC = −17.4707

BIC = −14.8396

HQC = −16.4342

Equation 1: ∆lr M4 sec
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Coefficient Std. Error t-ratio p-value

const −7.91907 7.28644 −1.087 0.2819

d lr M4 sec 1 −0.0248176 0.130400 −0.1903 0.8498

d l gdpdef 1 1.57474 2.37617 0.6627 0.5103

d l rgdp 1 −4.32766 2.16975 −1.995 0.0512

∆LIBORt−1 0.0390856 0.0322315 1.213 0.2305

∆ytmt−20 −0.0237123 0.0470282 −0.5042 0.6162

d lr STDebt CG 1 −0.00942618 0.0382698 −0.2463 0.8064

EC1 −0.126167 0.0429833 −2.935 0.0049

EC2 1.30660 0.998976 1.308 0.1964

Mean dependent var 0.029617 S.D. dependent var 0.088053

Sum squared resid 0.298956 S.E. of regression 0.074406

R2 0.387960 Adjusted R2 0.285954

ρ̂ 0.026272 Durbin–Watson 1.937936

Equation 2: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const −0.287305 0.482016 −0.5960 0.5536

d lr M4 sec 1 −0.000961466 0.00862626 −0.1115 0.9117

d l gdpdef 1 −0.236840 0.157189 −1.507 0.1377

d l rgdp 1 −0.0835662 0.143534 −0.5822 0.5629

∆LIBORt−1 0.00194910 0.00213219 0.9141 0.3647

∆ytmt−20 −0.00255664 0.00311103 −0.8218 0.4148

d lr STDebt CG 1 −6.66313e–005 0.00253164 −0.02632 0.9791

EC1 −0.00243720 0.00284345 −0.8571 0.3952

EC2 0.0150365 0.0660847 0.2275 0.8209

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001308 S.E. of regression 0.004922

R2 0.105328 Adjusted R2 -0.043784

ρ̂ −0.079554 Durbin–Watson 2.144768

Equation 3: ∆l rgdp

200



Coefficient Std. Error t-ratio p-value

const 0.0923059 0.456646 0.2021 0.8406

d lr M4 sec 1 −0.0164894 0.00817224 −2.018 0.0486

d l gdpdef 1 −0.175552 0.148916 −1.179 0.2436

d l rgdp 1 0.706811 0.135980 5.198 0.0000

∆LIBORt−1 −0.00223094 0.00201997 −1.104 0.2743

∆ytmt−20 0.000439098 0.00294729 0.1490 0.8821

d lr STDebt CG 1 −0.00242499 0.00239840 −1.011 0.3165

EC1 −0.00239095 0.00269379 −0.8876 0.3787

EC2 0.0423200 0.0626065 0.6760 0.5019

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001174 S.E. of regression 0.004663

R2 0.543365 Adjusted R2 0.467259

ρ̂ −0.083899 Durbin–Watson 2.152638

Equation 4: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const −32.2691 31.5187 −1.024 0.3105

d lr M4 sec 1 −0.894383 0.564065 −1.586 0.1187

d l gdpdef 1 1.90564 10.2785 0.1854 0.8536

d l rgdp 1 23.3943 9.38562 2.493 0.0158

∆LIBORt−1 0.335640 0.139423 2.407 0.0195

∆ytmt−20 0.206346 0.203428 1.014 0.3149

d lr STDebt CG 1 0.0525116 0.165542 0.3172 0.7523

EC1 0.0788580 0.185931 0.4241 0.6732

EC2 −3.52400 4.32123 −0.8155 0.4184

Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 5.593872 S.E. of regression 0.321854

R2 0.518284 Adjusted R2 0.437998

ρ̂ 0.059696 Durbin–Watson 1.880523

Equation 5: ∆ytm 20yrGilt
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Coefficient Std. Error t-ratio p-value

const −13.3876 22.0713 −0.6066 0.5467

d lr M4 sec 1 0.836279 0.394992 2.117 0.0389

d l gdpdef 1 8.08382 7.19763 1.123 0.2664

d l rgdp 1 6.91436 6.57237 1.052 0.2975

∆LIBORt−1 −0.0556708 0.0976320 −0.5702 0.5709

∆ytmt−20 0.0902613 0.142453 0.6336 0.5290

d lr STDebt CG 1 0.00416484 0.115923 0.03593 0.9715

EC1 0.308335 0.130200 2.368 0.0215

EC2 −5.57967 3.02598 −1.844 0.0707

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 2.743034 S.E. of regression 0.225382

R2 0.184391 Adjusted R2 0.048456

ρ̂ −0.008104 Durbin–Watson 2.002871

Equation 6: ∆lr STDebt CG

Coefficient Std. Error t-ratio p-value

const −112.388 19.1812 −5.859 0.0000

d lr M4 sec 1 0.181744 0.343270 0.5294 0.5987

d l gdpdef 1 −3.23273 6.25514 −0.5168 0.6074

d l rgdp 1 −23.1755 5.71176 −4.058 0.0002

∆LIBORt−1 0.0557081 0.0848477 0.6566 0.5142

∆ytmt−20 −0.289967 0.123799 −2.342 0.0229

d lr STDebt CG 1 −0.300037 0.100743 −2.978 0.0043

EC1 0.222223 0.113151 1.964 0.0547

EC2 −11.5349 2.62975 −4.386 0.0001

Mean dependent var 0.042230 S.D. dependent var 0.279060

Sum squared resid 2.071698 S.E. of regression 0.195869

R2 0.577729 Adjusted R2 0.507351

ρ̂ 0.052040 Durbin–Watson 1.845851
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Table A.13: Information criteria for lag selection, system B4c

lags loglik p(LR) AIC BIC HQC

1 688.74210 -22.301452 -

20.809407*

-21.720270

2 750.51850 0.00000 -23.190293 -20.419353 -22.110956

3 772.44240 0.17298 -22.704910 -18.655074 -21.127417

4 815.94646 0.00000 -22.963671 -17.634939 -20.888022

5 853.06818 0.00018 -23.002351 -16.394723 -20.428547

6 902.99944 0.00000 -23.482739 -15.596216 -20.410779

7 997.52633 0.00000 -25.500908 -16.335489 -21.930792

8 1140.69366 0.00000 -

29.196333*

-18.752019 -

25.128062*

B4c, VECM system on log real M4 securitisation, log real GDP,

log GDP deflator, 1 month LIBOR, 20-year gilt yield, log real

long-term debt outstanding as a liability of central government

(lr LTDebt CG)

VAR lag selection for system B4c
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Table A.14: Trace and maximum eigenvalue tests for system B4c

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.55933 134.33 [0.0000] 52.446 [0.0006]

1 0.46505 81.887 [0.0033] 40.037 [0.0057]

2 0.27433 41.850 [0.1637] 20.523 [0.3167]

3 0.18427 21.327 [0.3478] 13.035 [0.4634]

4 0.11778 8.2924 [0.4419] 8.0204 [0.3851]

5 0.0042411 0.27201 [0.6020] 0.27201 [0.6020]

Johansen rank selection for system B4c
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Model B4c

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)

Cointegration rank = 1

Case 3: Unrestricted constant

Cointegrating vectors (standard errors in parentheses)

lr M4 sect−1 1.00000

(0.00000)

l gdpdeft−1 7.08442

(9.45041)

l rgdpt−1 4.22303

(6.60968)

LIBOR 1mt−1 −0.275945

(0.0908059)

ytm 20yrGiltt−1 −0.476773

(0.336862)

lr LTDebt CGt−1 −4.97299

(1.30576)

Adjustment vectors

lr M4 sect−1 1.00000

l gdpdeft−1 0.0652256

l rgdpt−1 −0.000332372

LIBOR 1mt−1 5.32455

ytm 20yrGiltt−1 2.46620

lr LTDebt CGt−1 0.344324

Log-likelihood = 768.848

Determinant of covariance matrix = 0.00000

AIC = −21.5890

BIC = −18.9578

HQC = −20.5524

Equation 1: ∆lr M4 sec
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Coefficient Std. Error t-ratio p-value

const −2.00446 0.789937 −2.537 0.0140

d lr M4 sec 1 0.0739946 0.130218 0.5682 0.5721

d l gdpdef 1 1.19717 2.27015 0.5274 0.6000

d l rgdp 1 −4.36920 2.08716 −2.093 0.0409

∆LIBORt−1 0.0906192 0.0292215 3.101 0.0030

∆ytmt−20 −0.0370122 0.0508369 −0.7281 0.4696

d lr LTDebt CG 1 −0.971803 0.398453 −2.439 0.0179

EC1 0.0439350 0.0169128 2.598 0.0120

Mean dependent var 0.029617 S.D. dependent var 0.088053

Sum squared resid 0.336250 S.E. of regression 0.077488

R2 0.311611 Adjusted R2 0.225562

ρ̂ −0.069477 Durbin–Watson 2.114181

Equation 2: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const −0.126828 0.0462350 −2.743 0.0082

d lr M4 sec 1 −0.00431565 0.00762164 −0.5662 0.5735

d l gdpdef 1 −0.334123 0.132872 −2.515 0.0148

d l rgdp 1 −0.0997837 0.122161 −0.8168 0.4175

∆LIBORt−1 0.00389165 0.00171033 2.275 0.0267

∆ytmt−20 −0.00472842 0.00297548 −1.589 0.1177

d lr LTDebt CG 1 −0.0565541 0.0233214 −2.425 0.0186

EC1 0.00286569 0.000989903 2.895 0.0054

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001152 S.E. of regression 0.004535

R2 0.212261 Adjusted R2 0.113794

ρ̂ −0.140016 Durbin–Watson 2.226542

Equation 3: ∆l rgdp
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Coefficient Std. Error t-ratio p-value

const 0.00337533 0.0471950 0.07152 0.9432

d lr M4 sec 1 −0.0136789 0.00777989 −1.758 0.0842

d l gdpdef 1 −0.145433 0.135631 −1.072 0.2882

d l rgdp 1 0.660620 0.124698 5.298 0.0000

∆LIBORt−1 −0.000956276 0.00174585 −0.5477 0.5860

∆ytmt−20 0.000185003 0.00303726 0.06091 0.9516

d lr LTDebt CG 1 −0.00918843 0.0238056 −0.3860 0.7010

EC1 −1.46028e–005 0.00101046 −0.01445 0.9885

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001200 S.E. of regression 0.004630

R2 0.533233 Adjusted R2 0.474887

ρ̂ −0.047206 Durbin–Watson 2.082800

Equation 4: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const −10.9847 2.83406 −3.876 0.0003

d lr M4 sec 1 −1.53908 0.467183 −3.294 0.0017

d l gdpdef 1 −11.3059 8.14463 −1.388 0.1706

d l rgdp 1 23.5613 7.48811 3.146 0.0026

∆LIBORt−1 0.411715 0.104838 3.927 0.0002

∆ytmt−20 −0.00172128 0.182388 −0.009437 0.9925

d lr LTDebt CG 1 −4.66061 1.42953 −3.260 0.0019

EC1 0.233934 0.0606780 3.855 0.0003

Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 4.328080 S.E. of regression 0.278006

R2 0.627288 Adjusted R2 0.580698

ρ̂ −0.010812 Durbin–Watson 1.987719

Equation 5: ∆ytm 20yrGilt
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Coefficient Std. Error t-ratio p-value

const −5.03091 1.98654 −2.532 0.0142

d lr M4 sec 1 0.0424648 0.327473 0.1297 0.8973

d l gdpdef 1 −4.92092 5.70899 −0.8620 0.3924

d l rgdp 1 −0.171134 5.24881 −0.03260 0.9741

∆LIBORt−1 −0.0323812 0.0734866 −0.4406 0.6612

∆ytmt−20 −0.231707 0.127845 −1.812 0.0753

d lr LTDebt CG 1 −5.02145 1.00203 −5.011 0.0000

EC1 0.108353 0.0425324 2.548 0.0136

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 2.126534 S.E. of regression 0.194869

R2 0.367700 Adjusted R2 0.288662

ρ̂ 0.031984 Durbin–Watson 1.892125

Equation 6: ∆lr LTDebt CG

Coefficient Std. Error t-ratio p-value

const −0.694289 0.304165 −2.283 0.0263

d lr M4 sec 1 −0.0519608 0.0501403 −1.036 0.3045

d l gdpdef 1 0.909087 0.874119 1.040 0.3028

d l rgdp 1 −1.08964 0.803658 −1.356 0.1806

∆LIBORt−1 0.00580074 0.0112517 0.5155 0.6082

∆ytmt−20 0.0273707 0.0195747 1.398 0.1675

d lr LTDebt CG 1 0.315834 0.153424 2.059 0.0442

EC1 0.0151279 0.00651225 2.323 0.0238

Mean dependent var 0.022390 S.D. dependent var 0.034964

Sum squared resid 0.049853 S.E. of regression 0.029837

R2 0.352675 Adjusted R2 0.271760

ρ̂ 0.002627 Durbin–Watson 1.918330

B4d, VECM system of same composition as B4c but with 2 coin-

tegrating vectors

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)
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Cointegration rank = 2

Case 3: Unrestricted constant

Cointegrating vectors (standard errors in parentheses)

lr M4 sect−1 1.00000 0.00000

(0.00000) (0.00000)

l gdpdeft−1 0.00000 1.00000

(0.00000) (0.00000)

l rgdpt−1 4.15915 0.00901688

(1.53019) (0.0987245)

LIBOR 1mt−1 −0.215114 −0.00858658

(0.0604348) (0.00389911)

ytm 20yrGiltt−1 −0.474067 −0.000381906

(0.178411) (0.0115107)

lr LTDebt CGt−1 −3.29106 −0.237413

(0.414338) (0.0267321)

Adjustment vectors

lr M4 sect−1 1.00000 79.3367

l gdpdeft−1 −0.0149964 1.00000

l rgdpt−1 0.0197157 1.01694

LIBOR 1mt−1 −3.53181 −38.4565

ytm 20yrGiltt−1 −2.73590 −75.0592

lr LTDebt CGt−1 −0.264637 −4.37306

Log-likelihood = 788.866

Determinant of covariance matrix = 0.00000

AIC = −22.2146

BIC = −19.5834

HQC = −21.1780

Equation 1: ∆lr M4 sec
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Coefficient Std. Error t-ratio p-value

const −4.02356 0.798313 −5.040 0.0000

d lr M4 sec 1 −0.163601 0.122101 −1.340 0.1859

d l gdpdef 1 −0.148232 1.96226 −0.07554 0.9401

d l rgdp 1 −5.38373 1.79792 −2.994 0.0041

∆LIBORt−1 0.0736745 0.0252471 2.918 0.0051

∆ytmt−20 −0.0759320 0.0442475 −1.716 0.0919

d lr LTDebt CG 1 −0.672807 0.346572 −1.941 0.0574

EC1 −0.118621 0.0371643 −3.192 0.0024

EC2 3.07846 0.591702 5.203 0.0000

Mean dependent var 0.029617 S.D. dependent var 0.088053

Sum squared resid 0.237204 S.E. of regression 0.066277

R2 0.514382 Adjusted R2 0.433446

ρ̂ 0.002255 Durbin–Watson 1.972555

Equation 2: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const −0.140327 0.0555245 −2.527 0.0145

d lr M4 sec 1 −0.00590415 0.00849239 −0.6952 0.4899

d l gdpdef 1 −0.343118 0.136480 −2.514 0.0149

d l rgdp 1 −0.106567 0.125050 −0.8522 0.3979

∆LIBORt−1 0.00377836 0.00175600 2.152 0.0359

∆ytmt−20 −0.00498862 0.00307751 −1.621 0.1108

d lr LTDebt CG 1 −0.0545551 0.0241049 −2.263 0.0277

EC1 0.00177889 0.00258486 0.6882 0.4943

EC2 0.0388025 0.0411542 0.9429 0.3500

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001147 S.E. of regression 0.004610

R2 0.215289 Adjusted R2 0.084504

ρ̂ −0.149334 Durbin–Watson 2.243994

Equation 3: ∆l rgdp
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Coefficient Std. Error t-ratio p-value

const −0.0254920 0.0563056 −0.4527 0.6525

d lr M4 sec 1 −0.0170758 0.00861187 −1.983 0.0525

d l gdpdef 1 −0.164668 0.138400 −1.190 0.2393

d l rgdp 1 0.646115 0.126809 5.095 0.0000

∆LIBORt−1 −0.00119854 0.00178070 −0.6731 0.5038

∆ytmt−20 −0.000371439 0.00312081 −0.1190 0.9057

d lr LTDebt CG 1 −0.00491364 0.0244440 −0.2010 0.8414

EC1 −0.00233869 0.00262123 −0.8922 0.3762

EC2 0.0394597 0.0417332 0.9455 0.3486

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001180 S.E. of regression 0.004675

R2 0.541106 Adjusted R2 0.464624

ρ̂ −0.052732 Durbin–Watson 2.091531

Equation 4: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const −8.68670 3.35912 −2.586 0.0124

d lr M4 sec 1 −1.26866 0.513772 −2.469 0.0167

d l gdpdef 1 −9.77459 8.25675 −1.184 0.2417

d l rgdp 1 24.7160 7.56524 3.267 0.0019

∆LIBORt−1 0.431001 0.106234 4.057 0.0002

∆ytmt−20 0.0425753 0.186183 0.2287 0.8200

d lr LTDebt CG 1 −5.00091 1.45829 −3.429 0.0012

EC1 0.418947 0.156379 2.679 0.0098

EC2 −1.49221 2.48974 −0.5993 0.5515

Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 4.199778 S.E. of regression 0.278879

R2 0.638336 Adjusted R2 0.578059

ρ̂ −0.015379 Durbin–Watson 1.994864

Equation 5: ∆ytm 20yrGilt
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Coefficient Std. Error t-ratio p-value

const −2.34572 2.28971 −1.024 0.3102

d lr M4 sec 1 0.358443 0.350208 1.024 0.3106

d l gdpdef 1 −3.13168 5.62813 −0.5564 0.5802

d l rgdp 1 1.17809 5.15678 0.2285 0.8202

∆LIBORt−1 −0.00984652 0.0724135 −0.1360 0.8923

∆ytmt−20 −0.179948 0.126910 −1.418 0.1620

d lr LTDebt CG 1 −5.41909 0.994033 −5.452 0.0000

EC1 0.324536 0.106594 3.045 0.0036

EC2 −2.91249 1.69711 −1.716 0.0919

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 1.951359 S.E. of regression 0.190095

R2 0.419786 Adjusted R2 0.323084

ρ̂ −0.018085 Durbin–Watson 1.982282

Equation 6: ∆lr LTDebt CG

Coefficient Std. Error t-ratio p-value

const −0.492279 0.362324 −1.359 0.1799

d lr M4 sec 1 −0.0281895 0.0554169 −0.5087 0.6130

d l gdpdef 1 1.04369 0.890597 1.172 0.2464

d l rgdp 1 −0.988136 0.816009 −1.211 0.2312

∆LIBORt−1 0.00749605 0.0114587 0.6542 0.5158

∆ytmt−20 0.0312646 0.0200823 1.557 0.1254

d lr LTDebt CG 1 0.285919 0.157296 1.818 0.0747

EC1 0.0313915 0.0168675 1.861 0.0682

EC2 −0.169686 0.268551 −0.6319 0.5301

Mean dependent var 0.022390 S.D. dependent var 0.034964

Sum squared resid 0.048862 S.E. of regression 0.030081

R2 0.365549 Adjusted R2 0.259807

ρ̂ 0.011345 Durbin–Watson 1.904819
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Table A.15: Information criteria for lag selection, system B4e

lags loglik p(LR) AIC BIC HQC

1 895.67220 -27.086200 -

25.164917*

-26.331856

2 977.57011 0.00000 -

28.147423*

-24.545018 -

26.733028*

3 1017.51171 0.00349 -27.855216 -22.571689 -25.780770

4 1075.34002 0.00000 -28.140001 -21.175351 -25.405504

B4e, VECM system on log real M4 securitisation, log real GDP,

log GDP deflator, 1 month LIBOR, 20-year gilt yield, log real long-

term debt outstanding as a liability of central government, and log

real deposits in Monetary Financial Institutions held as assets of

UK Private Non-Financial Corporates (lr PNFC MFI deposits)

VAR lag selection for system B4e
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Table A.16: Trace and maximum eigenvalue tests for system B4e

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.59748 165.44 [0.0000] 58.241 [0.0008]

1 0.46435 107.20 [0.0056] 39.954 [0.0477]

2 0.41641 67.243 [0.0771] 34.467 [0.0385]

3 0.22550 32.776 [0.5734] 16.355 [0.6425]

4 0.14422 16.421 [0.6892] 9.9677 [0.7502]

5 0.094812 6.4534 [0.6467] 6.3752 [0.5728]

6 0.0012200 0.078127 [0.7799] 0.078127 [0.7799]

Johansen rank selection for system B4e
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Model B4e

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)

Cointegration rank = 2

Case 3: Unrestricted constant

Cointegrating vectors (standard errors in parentheses)

lr M4 sect−1 1.00000 0.00000

(0.00000) (0.00000)

l gdpdeft−1 0.00000 1.00000

(0.00000) (0.00000)

l rgdpt−1 1.64947 −0.256491

(4.36084) (0.252107)

LIBOR 1mt−1 −0.232189 −0.00969886

(0.0609398) (0.00352302)

ytm 20yrGiltt−1 −0.383155 0.00389188

(0.213965) (0.0123696)

lr LTDebt CGt−1 −3.37919 −0.240485

(0.571246) (0.0330246)

lr PNFC MFI depositst−1 1.40989 0.123122

(2.16446) (0.125131)

Adjustment vectors

lr M4 sect−1 1.00000 109.992

l gdpdeft−1 −0.0149850 1.00000

l rgdpt−1 0.0203989 1.71087

LIBOR 1mt−1 −3.12487 −53.5566

ytm 20yrGiltt−1 −2.57672 −113.490

lr LTDebt CGt−1 −0.202185 −3.53857

lr PNFC MFI depositst−1 −0.0265532 −9.06060

Log-likelihood = 966.628

Determinant of covariance matrix = 0.00000

AIC = −26.9259
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BIC = −23.3839

HQC = −25.5305

Equation 1: ∆lr M4 sec

Coefficient Std. Error t-ratio p-value

const 1.11195 0.315651 3.523 0.0009

d lr M4 sec 1 −0.111933 0.120504 −0.9289 0.3572

d l gdpdef 1 0.477883 2.00350 0.2385 0.8124

d l rgdp 1 −5.49677 1.82393 −3.014 0.0040

∆LIBORt−1 0.0811123 0.0255594 3.173 0.0025

∆ytmt−20 −0.0951529 0.0457080 −2.082 0.0422

d lr LTDebt CG 1 −0.691931 0.352069 −1.965 0.0546

d lr PNFC MFI deposits 1 0.493697 0.394537 1.251 0.2163

EC1 −0.133980 0.0401527 −3.337 0.0016

EC2 3.41059 0.684681 4.981 0.0000

Mean dependent var 0.029617 S.D. dependent var 0.088053

Sum squared resid 0.235793 S.E. of regression 0.066700

R2 0.517271 Adjusted R2 0.426190

ρ̂ 0.037135 Durbin–Watson 1.917205

Equation 2: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const −0.00820795 0.0219236 −0.3744 0.7096

d lr M4 sec 1 −0.00314527 0.00836961 −0.3758 0.7086

d l gdpdef 1 −0.297178 0.139153 −2.136 0.0373

d l rgdp 1 −0.120241 0.126681 −0.9492 0.3468

∆LIBORt−1 0.00407666 0.00177523 2.296 0.0256

∆ytmt−20 −0.00550482 0.00317465 −1.734 0.0887

d lr LTDebt CG 1 −0.0552086 0.0244529 −2.258 0.0281

d lr PNFC MFI deposits 1 0.0324503 0.0274026 1.184 0.2416

EC1 0.00200768 0.00278881 0.7199 0.4747

EC2 0.0310076 0.0475545 0.6520 0.5172
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Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001137 S.E. of regression 0.004633

R2 0.222138 Adjusted R2 0.075371

ρ̂ −0.117855 Durbin–Watson 2.193254

Equation 3: ∆l rgdp

Coefficient Std. Error t-ratio p-value

const 0.0238348 0.0219543 1.086 0.2825

d lr M4 sec 1 −0.0170698 0.00838133 −2.037 0.0467

d l gdpdef 1 −0.144089 0.139348 −1.034 0.3058

d l rgdp 1 0.625412 0.126859 4.930 0.0000

∆LIBORt−1 −0.000942162 0.00177772 −0.5300 0.5983

∆ytmt−20 −0.000957516 0.00317909 −0.3012 0.7644

d lr LTDebt CG 1 −0.00540357 0.0244872 −0.2207 0.8262

d lr PNFC MFI deposits 1 0.0311130 0.0274409 1.134 0.2620

EC1 −0.00273304 0.00279271 −0.9786 0.3322

EC2 0.0530500 0.0476211 1.114 0.2703

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001141 S.E. of regression 0.004639

R2 0.556406 Adjusted R2 0.472709

ρ̂ −0.080243 Durbin–Watson 2.133639

Equation 4: ∆LIBOR 1m
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Coefficient Std. Error t-ratio p-value

const −3.29042 1.31351 −2.505 0.0154

d lr M4 sec 1 −1.19838 0.501449 −2.390 0.0204

d l gdpdef 1 −7.62399 8.33708 −0.9145 0.3646

d l rgdp 1 23.6902 7.58986 3.121 0.0029

∆LIBORt−1 0.447422 0.106359 4.207 0.0001

∆ytmt−20 −0.00504913 0.190203 −0.02655 0.9789

d lr LTDebt CG 1 −5.13138 1.46505 −3.503 0.0009

d lr PNFC MFI deposits 1 1.83447 1.64177 1.117 0.2689

EC1 0.418669 0.167086 2.506 0.0153

EC2 −1.66066 2.84914 −0.5829 0.5625

Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 4.083014 S.E. of regression 0.277557

R2 0.648391 Adjusted R2 0.582050

ρ̂ −0.049210 Durbin–Watson 2.072402

Equation 5: ∆ytm 20yrGilt

Coefficient Std. Error t-ratio p-value

const −2.67147 0.893982 −2.988 0.0042

d lr M4 sec 1 0.412972 0.341290 1.210 0.2316

d l gdpdef 1 −1.19596 5.67427 −0.2108 0.8339

d l rgdp 1 0.0983520 5.16571 0.01904 0.9849

∆LIBORt−1 −0.00166212 0.0723890 −0.02296 0.9818

∆ytmt−20 −0.192523 0.129453 −1.487 0.1429

d lr LTDebt CG 1 −5.41928 0.997122 −5.435 0.0000

d lr PNFC MFI deposits 1 1.64091 1.11740 1.469 0.1479

EC1 0.345228 0.113720 3.036 0.0037

EC2 −3.51905 1.93914 −1.815 0.0752

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 1.891357 S.E. of regression 0.188907

R2 0.437627 Adjusted R2 0.331519

ρ̂ −0.061198 Durbin–Watson 2.093640

Equation 6: ∆lr LTDebt CG
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Coefficient Std. Error t-ratio p-value

const −0.191627 0.140691 −1.362 0.1789

d lr M4 sec 1 −0.0374205 0.0537107 −0.6967 0.4890

d l gdpdef 1 0.809786 0.892993 0.9068 0.3686

d l rgdp 1 −0.836766 0.812957 −1.029 0.3080

∆LIBORt−1 0.00641706 0.0113923 0.5633 0.5756

∆ytmt−20 0.0291567 0.0203728 1.431 0.1583

d lr LTDebt CG 1 0.269950 0.156923 1.720 0.0912

d lr PNFC MFI deposits 1 −0.236840 0.175852 −1.347 0.1838

EC1 0.0270887 0.0178967 1.514 0.1361

EC2 −0.109722 0.305174 −0.3595 0.7206

Mean dependent var 0.022390 S.D. dependent var 0.034964

Sum squared resid 0.046843 S.E. of regression 0.029729

R2 0.391758 Adjusted R2 0.276995

ρ̂ −0.002914 Durbin–Watson 1.929953

Equation 7: ∆lr PNFC MFI d

Coefficient Std. Error t-ratio p-value

const −0.0255874 0.0903292 −0.2833 0.7781

d lr M4 sec 1 0.111241 0.0344844 3.226 0.0022

d l gdpdef 1 −0.511422 0.573336 −0.8920 0.3764

d l rgdp 1 1.66067 0.521950 3.182 0.0024

∆LIBORt−1 −0.00465654 0.00731428 −0.6366 0.5271

∆ytmt−20 0.0141228 0.0130801 1.080 0.2852

d lr LTDebt CG 1 0.219361 0.100751 2.177 0.0339

d lr PNFC MFI deposits 1 −0.269996 0.112904 −2.391 0.0204

EC1 0.00355760 0.0114904 0.3096 0.7581

EC2 −0.280947 0.195934 −1.434 0.1575

Mean dependent var 0.010924 S.D. dependent var 0.021537

Sum squared resid 0.019310 S.E. of regression 0.019087

R2 0.339189 Adjusted R2 0.214508

ρ̂ 0.192806 Durbin–Watson 1.597545
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B4f, VECM system on log real M4 securitisation, log real GDP,

log GDP deflator, 1 month LIBOR, 20-year gilt yield, log real

long-term debt outstanding as a liability of central government,

log real deposits in Monetary Financial Institutions held as assets

of UK Private Non-Financial Corporates, and contemporaneous

FTSE 100 realised volatility (in short-run equations only)

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)

Cointegration rank = 2

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[1,2] = 0 b[2,1] = 0 b[2,2] = -1

Cointegrating vectors (standard errors in parentheses)

lr M4 sect−1 −1.00000 0.00000

(0.00000) (0.00000)

l gdpdeft−1 0.00000 −1.00000

(0.00000) (0.00000)

l rgdpt−1 −11.9356 0.678709

(7.02852) (0.158050)

LIBOR 1mt−1 0.298670 0.00777223

(0.0978904) (0.00220125)

ytm 20yrGiltt−1 −0.277951 0.0201613

(0.345082) (0.00775982)

lr LTDebt CGt−1 3.89871 0.225157

(0.918025) (0.0206435)

lr PNFC MFI depositst−1 −0.357625 −0.180049

(3.47773) (0.0782033)

Adjustment vectors (standard errors in parentheses)
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lr M4 sect−1 −0.0571836 0.616420

(0.0273628) (1.20677)

l gdpdeft−1 −0.00389074 0.0703436

(0.00169991) (0.0749706)

l rgdpt−1 0.00550362 −0.264296

(0.00149527) (0.0659453)

LIBOR 1mt−1 −0.0727362 −5.26022

(0.0952487) (4.20071)

ytm 20yrGiltt−1 0.133360 −9.63428

(0.0649533) (2.86461)

lr LTDebt CGt−1 −0.0141666 0.0866862

(0.0110553) (0.487568)

lr PNFC MFI depositst−1 0.0221308 −0.632921

(0.00667464) (0.294369)

Log-likelihood = 985.954

Determinant of covariance matrix = 0.00000

AIC = −27.3111

BIC = −23.5330

HQC = −25.8227

Equation 1: ∆lr M4 sec

Coefficient Std. Error t-ratio p-value

const −10.5090 9.27601 −1.133 0.2624

d lr M4 sec 1 −0.0546572 0.134898 −0.4052 0.6870

d l gdpdef 1 2.38062 2.23330 1.066 0.2914

d l rgdp 1 −3.49364 2.14010 −1.632 0.1086

∆LIBORt−1 0.0822294 0.0310819 2.646 0.0108

∆ytmt−20 −0.0550258 0.0494216 −1.113 0.2707

d lr LTDebt CG 1 −1.15013 0.389362 −2.954 0.0047

d lr PNFC MFI deposits 1 0.868084 0.442456 1.962 0.0551

FTSE Vol 0.00247224 0.00111104 2.225 0.0304

EC1 −0.0571836 0.0273628 −2.090 0.0415

EC2 0.616420 1.20677 0.5108 0.6117
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Mean dependent var 0.029617 S.D. dependent var 0.088053

Sum squared resid 0.278614 S.E. of regression 0.073198

R2 0.429606 Adjusted R2 0.308945

ρ̂ −0.078949 Durbin–Watson 2.147703

Equation 2: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const −0.849929 0.576273 −1.475 0.1463

d lr M4 sec 1 −0.00944595 0.00838057 −1.127 0.2649

d l gdpdef 1 −0.249640 0.138744 −1.799 0.0778

d l rgdp 1 −0.103109 0.132954 −0.7755 0.4415

∆LIBORt−1 0.00278184 0.00193096 1.441 0.1557

∆ytmt−20 −0.00553021 0.00307032 −1.801 0.0775

d lr LTDebt CG 1 −0.0638612 0.0241892 −2.640 0.0109

d lr PNFC MFI deposits 1 0.0427010 0.0274876 1.553 0.1264

FTSE Vol 6.78124e–005 6.90235e–005 0.9825 0.3304

EC1 −0.00389074 0.00169991 −2.289 0.0262

EC2 0.0703436 0.0749706 0.9383 0.3524

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001075 S.E. of regression 0.004547

R2 0.264636 Adjusted R2 0.109078

ρ̂ −0.143692 Durbin–Watson 2.234701

Equation 3: ∆l rgdp
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Coefficient Std. Error t-ratio p-value

const 2.03404 0.506898 4.013 0.0002

d lr M4 sec 1 −0.000802620 0.00737167 −0.1089 0.9137

d l gdpdef 1 −0.244114 0.122041 −2.000 0.0507

d l rgdp 1 0.595225 0.116948 5.090 0.0000

∆LIBORt−1 0.00240610 0.00169850 1.417 0.1626

∆ytmt−20 −0.000673632 0.00270070 −0.2494 0.8040

d lr LTDebt CG 1 0.0109813 0.0212772 0.5161 0.6080

d lr PNFC MFI deposits 1 0.00882989 0.0241785 0.3652 0.7164

FTSE Vol −0.000148782 6.07141e–005 −2.451 0.0177

EC1 0.00550362 0.00149527 3.681 0.0006

EC2 −0.264296 0.0659453 −4.008 0.0002

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.000832 S.E. of regression 0.004000

R2 0.676440 Adjusted R2 0.607995

ρ̂ −0.141604 Durbin–Watson 2.264331

Equation 4: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const 16.9623 32.2894 0.5253 0.6016

d lr M4 sec 1 −1.02363 0.469576 −2.180 0.0338

d l gdpdef 1 −11.9085 7.77401 −1.532 0.1316

d l rgdp 1 12.7334 7.44962 1.709 0.0934

∆LIBORt−1 0.443894 0.108195 4.103 0.0001

∆ytmt−20 −0.109193 0.172035 −0.6347 0.5284

d lr LTDebt CG 1 −4.24914 1.35536 −3.135 0.0028

d lr PNFC MFI deposits 1 0.682216 1.54017 0.4429 0.6596

FTSE Vol −0.0148968 0.00386749 −3.852 0.0003

EC1 −0.0727362 0.0952487 −0.7636 0.4485

EC2 −5.26022 4.20071 −1.252 0.2161
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Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 3.375995 S.E. of regression 0.254800

R2 0.709276 Adjusted R2 0.647777

ρ̂ −0.101352 Durbin–Watson 2.176305

Equation 5: ∆ytm 20yrGilt

Coefficient Std. Error t-ratio p-value

const 65.4218 22.0192 2.971 0.0045

d lr M4 sec 1 0.640652 0.320219 2.001 0.0507

d l gdpdef 1 −7.40365 5.30136 −1.397 0.1685

d l rgdp 1 −5.33714 5.08014 −1.051 0.2983

∆LIBORt−1 0.0673599 0.0737816 0.9130 0.3655

∆ytmt−20 −0.278010 0.117316 −2.370 0.0215

d lr LTDebt CG 1 −4.05817 0.924263 −4.391 0.0001

d lr PNFC MFI deposits 1 0.325578 1.05030 0.3100 0.7578

FTSE Vol −0.00892829 0.00263737 −3.385 0.0014

EC1 0.133360 0.0649533 2.053 0.0451

EC2 −9.63428 2.86461 −3.363 0.0015

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 1.569950 S.E. of regression 0.173757

R2 0.533194 Adjusted R2 0.434446

ρ̂ 0.046460 Durbin–Watson 1.872677

Equation 6: ∆lr LTDebt CG
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Coefficient Std. Error t-ratio p-value

const −2.27136 3.74777 −0.6061 0.5471

d lr M4 sec 1 −0.0879912 0.0545027 −1.614 0.1125

d l gdpdef 1 0.876730 0.902314 0.9716 0.3357

d l rgdp 1 −0.499507 0.864662 −0.5777 0.5660

∆LIBORt−1 0.00127688 0.0125579 0.1017 0.9194

∆ytmt−20 0.0266269 0.0199677 1.333 0.1882

d lr LTDebt CG 1 0.282170 0.157313 1.794 0.0787

d lr PNFC MFI deposits 1 −0.203796 0.178765 −1.140 0.2595

FTSE Vol 0.000729558 0.000448891 1.625 0.1102

EC1 −0.0141666 0.0110553 −1.281 0.2057

EC2 0.0866862 0.487568 0.1778 0.8596

Mean dependent var 0.022390 S.D. dependent var 0.034964

Sum squared resid 0.045481 S.E. of regression 0.029574

R2 0.409453 Adjusted R2 0.284530

ρ̂ 0.051578 Durbin–Watson 1.818612

Equation 7: ∆lr PNFC MFI d

Coefficient Std. Error t-ratio p-value

const 6.03582 2.26271 2.668 0.0102

d lr M4 sec 1 0.141265 0.0329059 4.293 0.0001

d l gdpdef 1 −0.919859 0.544771 −1.689 0.0973

d l rgdp 1 1.51641 0.522038 2.905 0.0054

∆LIBORt−1 0.00332076 0.00758184 0.4380 0.6632

∆ytmt−20 0.0116627 0.0120555 0.9674 0.3378

d lr LTDebt CG 1 0.306217 0.0949778 3.224 0.0022

d lr PNFC MFI deposits 1 −0.353337 0.107929 −3.274 0.0019

FTSE Vol −0.000426558 0.000271018 −1.574 0.1216

EC1 0.0221308 0.00667464 3.316 0.0017

EC2 −0.632921 0.294369 −2.150 0.0362
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Mean dependent var 0.010924 S.D. dependent var 0.021537

Sum squared resid 0.016578 S.E. of regression 0.017855

R2 0.432658 Adjusted R2 0.312644

ρ̂ 0.035792 Durbin–Watson 1.907162

B4g, VECM system of same composition as B4f but with lagged

FTSE volatility in short-run equations

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)

Cointegration rank = 2

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[1,2] = 0 b[2,1] = 0 b[2,2] = -1

Cointegrating vectors (standard errors in parentheses)

lr M4 sect−1 −1.00000 0.00000

(0.00000) (0.00000)

l gdpdeft−1 0.00000 −1.00000

(0.00000) (0.00000)

l rgdpt−1 39.2880 0.390668

(14.4618) (0.262048)

LIBOR 1mt−1 0.0233637 0.0110085

(0.192625) (0.00349038)

ytm 20yrGiltt−1 3.21607 0.00140918

(0.690938) (0.0125198)

lr LTDebt CGt−1 1.85093 0.255430

(1.83133) (0.0331838)

lr PNFC MFI depositst−1 −5.90349 −0.176024

(7.00448) (0.126922)

Adjustment vectors (standard errors in parentheses)
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lr M4 sect−1 0.0307592 −0.466006

(0.00993404) (0.453193)

l gdpdeft−1 0.000334583 −0.0516170

(0.000684615) (0.0312323)

l rgdpt−1 −0.00107524 −0.0510168

(0.000670832) (0.0306035)

LIBOR 1mt−1 −0.0834168 −6.95224

(0.0373538) (1.70409)

ytm 20yrGiltt−1 −0.100418 −4.84181

(0.0265642) (1.21187)

lr LTDebt CGt−1 −0.00311761 −0.362989

(0.00433776) (0.197890)

lr PNFC MFI depositst−1 −0.00607654 0.0442925

(0.00267557) (0.122060)

Log-likelihood = 976.936

Determinant of covariance matrix = 0.00000

AIC = −27.0292

BIC = −23.2512

HQC = −25.5409

Equation 1: ∆lr M4 sec

Coefficient Std. Error t-ratio p-value

const −14.1336 5.26480 −2.685 0.0097

d lr M4 sec 1 −0.175205 0.131261 −1.335 0.1878

d l gdpdef 1 0.976367 2.09075 0.4670 0.6425

d l rgdp 1 −5.35791 1.88515 −2.842 0.0064

∆LIBORt−1 0.0864890 0.0313690 2.757 0.0080

∆ytmt−20 −0.0803863 0.0471503 −1.705 0.0942

d lr LTDebt CG 1 −1.14018 0.349426 −3.263 0.0020

d lr PNFC MFI deposits 1 0.697880 0.400810 1.741 0.0876

FTSE Vol 1 0.00175840 0.00125787 1.398 0.1681

EC1 0.0307592 0.00993404 3.096 0.0032

EC2 −0.466006 0.453193 −1.028 0.3086
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Mean dependent var 0.029617 S.D. dependent var 0.088053

Sum squared resid 0.240664 S.E. of regression 0.068031

R2 0.507299 Adjusted R2 0.403073

ρ̂ 0.017993 Durbin–Watson 1.959172

Equation 2: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const −0.0780815 0.362829 −0.2152 0.8305

d lr M4 sec 1 −0.00609627 0.00904597 −0.6739 0.5033

d l gdpdef 1 −0.302825 0.144086 −2.102 0.0404

d l rgdp 1 −0.138495 0.129917 −1.066 0.2913

∆LIBORt−1 0.00374952 0.00216183 1.734 0.0888

∆ytmt−20 −0.00591313 0.00324941 −1.820 0.0746

d lr LTDebt CG 1 −0.0493926 0.0240811 −2.051 0.0453

d lr PNFC MFI deposits 1 0.0297935 0.0276222 1.079 0.2857

FTSE Vol 1 8.61554e–006 8.66873e–005 0.09939 0.9212

EC1 0.000334583 0.000684615 0.4887 0.6271

EC2 −0.0516170 0.0312323 −1.653 0.1044

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001143 S.E. of regression 0.004688

R2 0.218341 Adjusted R2 0.052990

ρ̂ −0.126116 Durbin–Watson 2.212847

Equation 3: ∆l rgdp
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Coefficient Std. Error t-ratio p-value

const 0.596566 0.355525 1.678 0.0994

d lr M4 sec 1 −0.0104696 0.00886384 −1.181 0.2429

d l gdpdef 1 −0.163130 0.141185 −1.155 0.2532

d l rgdp 1 0.662642 0.127302 5.205 0.0000

∆LIBORt−1 0.000994934 0.00211830 0.4697 0.6405

∆ytmt−20 −5.81941e–005 0.00318399 −0.01828 0.9855

d lr LTDebt CG 1 −0.0153699 0.0235962 −0.6514 0.5177

d lr PNFC MFI deposits 1 0.0307461 0.0270661 1.136 0.2612

FTSE Vol 1 1.75551e–005 8.49421e–005 0.2067 0.8371

EC1 −0.00107524 0.000670832 −1.603 0.1150

EC2 −0.0510168 0.0306035 −1.667 0.1015

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001097 S.E. of regression 0.004594

R2 0.573205 Adjusted R2 0.482921

ρ̂ −0.114752 Durbin–Watson 2.214886

Equation 4: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const 50.8007 19.7966 2.566 0.0132

d lr M4 sec 1 −0.684951 0.493564 −1.388 0.1711

d l gdpdef 1 −4.11303 7.86161 −0.5232 0.6031

d l rgdp 1 19.6295 7.08851 2.769 0.0078

∆LIBORt−1 0.305250 0.117953 2.588 0.0125

∆ytmt−20 −0.125953 0.177294 −0.7104 0.4806

d lr LTDebt CG 1 −2.73661 1.31391 −2.083 0.0422

d lr PNFC MFI deposits 1 1.01165 1.50712 0.6712 0.5050

FTSE Vol 1 −0.0175007 0.00472982 −3.700 0.0005

EC1 −0.0834168 0.0373538 −2.233 0.0299

EC2 −6.95224 1.70409 −4.080 0.0002
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Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 3.402752 S.E. of regression 0.255808

R2 0.706972 Adjusted R2 0.644985

ρ̂ 0.016859 Durbin–Watson 1.921060

Equation 5: ∆ytm 20yrGilt

Coefficient Std. Error t-ratio p-value

const 55.6953 14.0784 3.956 0.0002

d lr M4 sec 1 0.672389 0.350999 1.916 0.0609

d l gdpdef 1 −3.66033 5.59079 −0.6547 0.5155

d l rgdp 1 0.362009 5.04101 0.07181 0.9430

∆LIBORt−1 0.0562197 0.0838826 0.6702 0.5057

∆ytmt−20 −0.201613 0.126083 −1.599 0.1159

d lr LTDebt CG 1 −4.33125 0.934386 −4.635 0.0000

d lr PNFC MFI deposits 1 0.930537 1.07179 0.8682 0.3893

FTSE Vol 1 −0.00207843 0.00336362 −0.6179 0.5393

EC1 −0.100418 0.0265642 −3.780 0.0004

EC2 −4.84181 1.21187 −3.995 0.0002

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 1.720896 S.E. of regression 0.181918

R2 0.488312 Adjusted R2 0.380070

ρ̂ −0.029872 Durbin–Watson 2.019962

Equation 6: ∆lr LTDebt CG
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Coefficient Std. Error t-ratio p-value

const 2.07728 2.29891 0.9036 0.3704

d lr M4 sec 1 −0.0160791 0.0573158 −0.2805 0.7802

d l gdpdef 1 1.05164 0.912939 1.152 0.2546

d l rgdp 1 −1.12112 0.823163 −1.362 0.1791

∆LIBORt−1 −0.00435808 0.0136975 −0.3182 0.7516

∆ytmt−20 0.0214891 0.0205885 1.044 0.3014

d lr LTDebt CG 1 0.422391 0.152579 2.768 0.0078

d lr PNFC MFI deposits 1 −0.283451 0.175016 −1.620 0.1114

FTSE Vol 1 −0.00101259 0.000549256 −1.844 0.0709

EC1 −0.00311761 0.00433776 −0.7187 0.4755

EC2 −0.362989 0.197890 −1.834 0.0723

Mean dependent var 0.022390 S.D. dependent var 0.034964

Sum squared resid 0.045887 S.E. of regression 0.029706

R2 0.404174 Adjusted R2 0.278134

ρ̂ 0.000851 Durbin–Watson 1.918937

Equation 7: ∆lr PNFC MFI d

Coefficient Std. Error t-ratio p-value

const 2.87737 1.41799 2.029 0.0476

d lr M4 sec 1 0.144408 0.0353528 4.085 0.0002

d l gdpdef 1 −0.491298 0.563109 −0.8725 0.3870

d l rgdp 1 1.71411 0.507734 3.376 0.0014

∆LIBORt−1 −0.00314489 0.00844872 −0.3722 0.7112

∆ytmt−20 0.0144284 0.0126991 1.136 0.2611

d lr LTDebt CG 1 0.250243 0.0941120 2.659 0.0104

d lr PNFC MFI deposits 1 −0.286470 0.107951 −2.654 0.0105

FTSE Vol 1 −0.000381350 0.000338786 −1.126 0.2655

EC1 −0.00607654 0.00267557 −2.271 0.0273

EC2 0.0442925 0.122060 0.3629 0.7182
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Table A.17: Information criteria for lag selection, system B4h

lags loglik p(LR) AIC BIC HQC

1 748.37955 -18.712961 -

16.969344*

-18.017411

2 837.28846 0.00000 -

19.791580*

-16.522299 -

18.487423*

3 885.44908 0.00006 -19.768894 -14.973948 -17.856131

4 934.53258 0.00004 -19.771151 -13.450540 -17.249781

Mean dependent var 0.010924 S.D. dependent var 0.021537

Sum squared resid 0.017458 S.E. of regression 0.018323

R2 0.402556 Adjusted R2 0.276173

ρ̂ 0.118762 Durbin–Watson 1.727330

B4h, VECM system on log real non-core funding measure (lr noncore),

log real GDP, RPI, 1 month LIBOR, 10-year gilt yield, log real

long-term debt outstanding as a liability of central government,

and log real deposits in Monetary Financial Institutions held as as-

sets of UK Private Non-Financial Corporates (lr PNFC MFI deposits)

VAR lag selection for system B4h
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Table A.18: Trace and maximum eigenvalue tests for system B4h

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.59816 183.49 [0.0000] 69.290 [0.0000]

1 0.45069 114.20 [0.0012] 45.532 [0.0080]

2 0.29573 68.670 [0.0596] 26.646 [0.2926]

3 0.26416 42.024 [0.1586] 23.312 [0.1638]

4 0.16177 18.712 [0.5243] 13.411 [0.4296]

5 0.060417 5.3012 [0.7757] 4.7362 [0.7732]

6 0.0074067 0.56500 [0.4523] 0.56500 [0.4523]

Johansen rank selection for system B4h
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Model B4h

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:2–2016:2 (T = 65)

Cointegration rank = 2

Case 3: Unrestricted constant

Cointegrating vectors (standard errors in parentheses)

lr noncoret−1 1.00000 0.00000

(0.00000) (0.00000)

RPIt−1 0.00000 1.00000

(0.00000) (0.00000)

l rgdpt−1 69.4887 504.168

(121.946) (916.268)

LIBOR 1mt−1 8.24134 62.0216

(2.10519) (15.8178)

ytm 10yrGiltt−1 −4.58552 −34.1747

(4.98048) (37.4219)

lr LTDebt CGt−1 −7.91261 −55.9429

(14.4534) (108.598)

lr PNFC MFI depositst−1 −1.79009 −3.65625

(59.6338) (448.070)

Adjustment vectors

lr noncoret−1 1.00000 0.0241100

RPIt−1 40.5493 1.00000

l rgdpt−1 0.00704295 0.000204794

LIBOR 1mt−1 6.11046 0.150818

ytm 10yrGiltt−1 8.58164 0.211116

lr LTDebt CGt−1 0.264533 0.00658900

lr PNFC MFI depositst−1 0.114252 0.00291506

Log-likelihood = 727.646

Determinant of covariance matrix = 0.00000

AIC = −18.9430
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BIC = −15.1963

HQC = −17.4647

Equation 1: ∆lr noncore

Coefficient Std. Error t-ratio p-value

const −3.24949 0.621753 −5.226 0.0000

d lr noncore 1 −0.200929 0.141201 −1.423 0.1606

∆RPIt−1 0.0145792 0.00556203 2.621 0.0114

d l rgdp 1 −1.70509 0.693611 −2.458 0.0173

∆LIBORt−1 0.0158241 0.0144367 1.096 0.2780

∆ytmt−10 0.00679798 0.0157886 0.4306 0.6685

d lr LTDebt CG 1 −0.00816026 0.140954 −0.05789 0.9541

d lr PNFC MFI deposits 1 0.253435 0.143803 1.762 0.0838

FTSE Vol 1 6.80326e–005 0.000440918 0.1543 0.8780

EC1 0.0775325 0.0214747 3.610 0.0007

EC2 −0.0100962 0.00285163 −3.540 0.0008

Mean dependent var 0.010741 S.D. dependent var 0.033930

Sum squared resid 0.033344 S.E. of regression 0.025083

R2 0.547437 Adjusted R2 0.453509

ρ̂ −0.114476 Durbin–Watson 2.185167

Equation 2: ∆RPI
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Coefficient Std. Error t-ratio p-value

const −75.7597 12.0207 −6.302 0.0000

d lr noncore 1 −1.24109 2.72991 −0.4546 0.6512

∆RPIt−1 0.481275 0.107534 4.476 0.0000

d l rgdp 1 9.52784 13.4100 0.7105 0.4805

∆LIBORt−1 0.894809 0.279114 3.206 0.0023

∆ytmt−10 −0.672875 0.305250 −2.204 0.0319

d lr LTDebt CG 1 −10.3373 2.72513 −3.793 0.0004

d lr PNFC MFI deposits 1 6.91777 2.78022 2.488 0.0160

FTSE Vol 1 −0.00236292 0.00852452 −0.2772 0.7827

EC1 3.14389 0.415182 7.572 0.0000

EC2 −0.418756 0.0551322 −7.595 0.0000

Mean dependent var −0.013846 S.D. dependent var 0.809490

Sum squared resid 12.46370 S.E. of regression 0.484937

R2 0.702803 Adjusted R2 0.641121

ρ̂ −0.131058 Durbin–Watson 2.252940

Equation 3: ∆l rgdp

Coefficient Std. Error t-ratio p-value

const 0.0667205 0.117730 0.5667 0.5733

d lr noncore 1 0.0172274 0.0267365 0.6443 0.5221

∆RPIt−1 −0.000286381 0.00105317 −0.2719 0.7867

d l rgdp 1 0.664820 0.131336 5.062 0.0000

∆LIBORt−1 0.000290958 0.00273361 0.1064 0.9156

∆ytmt−10 −0.00148051 0.00298959 −0.4952 0.6225

d lr LTDebt CG 1 −0.0183381 0.0266897 −0.6871 0.4950

d lr PNFC MFI deposits 1 0.0440186 0.0272292 1.617 0.1119

FTSE Vol 1 −7.29696e–006 8.34883e–005 −0.08740 0.9307

EC1 0.000546057 0.00406625 0.1343 0.8937

EC2 −8.57588e–005 0.000539959 −0.1588 0.8744
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Mean dependent var 0.004343 S.D. dependent var 0.006349

Sum squared resid 0.001196 S.E. of regression 0.004749

R2 0.536631 Adjusted R2 0.440461

ρ̂ −0.095632 Durbin–Watson 2.182800

Equation 4: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const −10.8850 6.71295 −1.621 0.1108

d lr noncore 1 −1.86870 1.52452 −1.226 0.2257

∆RPIt−1 0.0807005 0.0600521 1.344 0.1847

d l rgdp 1 16.4795 7.48878 2.201 0.0321

∆LIBORt−1 0.187351 0.155871 1.202 0.2347

∆ytmt−10 −0.0195910 0.170467 −0.1149 0.9089

d lr LTDebt CG 1 −2.08699 1.52185 −1.371 0.1760

d lr PNFC MFI deposits 1 1.88981 1.55261 1.217 0.2289

FTSE Vol 1 −0.0166650 0.00476051 −3.501 0.0009

EC1 0.473759 0.231858 2.043 0.0460

EC2 −0.0631559 0.0307885 −2.051 0.0452

Mean dependent var −0.083777 S.D. dependent var 0.426532

Sum squared resid 3.886995 S.E. of regression 0.270813

R2 0.666165 Adjusted R2 0.596879

ρ̂ 0.101277 Durbin–Watson 1.790659

Equation 5: ∆ytm 10yrGilt

237



Coefficient Std. Error t-ratio p-value

const −17.2657 6.34052 −2.723 0.0087

d lr noncore 1 −0.593376 1.43994 −0.4121 0.6819

∆RPIt−1 0.0178583 0.0567205 0.3148 0.7541

d l rgdp 1 1.20946 7.07331 0.1710 0.8649

∆LIBORt−1 −0.00196091 0.147223 −0.01332 0.9894

∆ytmt−10 −0.145526 0.161009 −0.9038 0.3702

d lr LTDebt CG 1 −4.82816 1.43742 −3.359 0.0015

d lr PNFC MFI deposits 1 2.18188 1.46647 1.488 0.1427

FTSE Vol 1 −0.00551641 0.00449640 −1.227 0.2253

EC1 0.665356 0.218995 3.038 0.0037

EC2 −0.0884059 0.0290804 −3.040 0.0037

Mean dependent var −0.063542 S.D. dependent var 0.293037

Sum squared resid 3.467668 S.E. of regression 0.255788

R2 0.369026 Adjusted R2 0.238069

ρ̂ 0.001812 Durbin–Watson 1.976847

Equation 6: ∆lr LTDebt CG

Coefficient Std. Error t-ratio p-value

const −0.289252 0.755719 −0.3828 0.7034

d lr noncore 1 0.0120274 0.171624 0.07008 0.9444

∆RPIt−1 0.00954187 0.00676044 1.411 0.1640

d l rgdp 1 −1.60738 0.843059 −1.907 0.0620

∆LIBORt−1 −0.00784951 0.0175473 −0.4473 0.6565

∆ytmt−10 0.0106554 0.0191905 0.5552 0.5811

d lr LTDebt CG 1 0.307141 0.171324 1.793 0.0787

d lr PNFC MFI deposits 1 −0.298457 0.174787 −1.708 0.0936

FTSE Vol 1 −0.000723212 0.000535921 −1.349 0.1829

EC1 0.0205099 0.0261017 0.7858 0.4355

EC2 −0.00275918 0.00346605 −0.7961 0.4295
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Mean dependent var 0.022221 S.D. dependent var 0.034716

Sum squared resid 0.049261 S.E. of regression 0.030487

R2 0.361353 Adjusted R2 0.228803

ρ̂ −0.053358 Durbin–Watson 2.045446

Equation 7: ∆lr PNFC MFI d

Coefficient Std. Error t-ratio p-value

const 0.0396407 0.516176 0.07680 0.9391

d lr noncore 1 0.284382 0.117224 2.426 0.0187

∆RPIt−1 −0.00800502 0.00461756 −1.734 0.0888

d l rgdp 1 1.51661 0.575832 2.634 0.0110

∆LIBORt−1 0.0161359 0.0119853 1.346 0.1839

∆ytmt−10 −0.00773745 0.0131076 −0.5903 0.5575

d lr LTDebt CG 1 −0.0138027 0.117019 −0.1180 0.9066

d lr PNFC MFI deposits 1 −0.330726 0.119384 −2.770 0.0077

FTSE Vol 1 −9.51081e–006 0.000366048 −0.02598 0.9794

EC1 0.00885824 0.0178282 0.4969 0.6213

EC2 −0.00122070 0.00236741 −0.5156 0.6083

Mean dependent var 0.011780 S.D. dependent var 0.022455

Sum squared resid 0.022982 S.E. of regression 0.020823

R2 0.287827 Adjusted R2 0.140018

ρ̂ 0.078751 Durbin–Watson 1.786397
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Appendix B

Principal Components

Analysis

Principal Components Analysis

B.1 Data Spaces for PCA

B.1.1 Undifferenced, Small:

Variables

Scree Plot

Table B.1: Variables for Undifferenced Small panel

lr noncore

lr M4 sec

lr MMI liab total

lr MMI asset total
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Figure B.1: Scree plot of Undifferenced Small panel
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Figure B.2: Biplot of Undifferenced Small panel

Biplot
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Table B.2: Principal Components summary for Undifferenced Small panel

Comp.1 Comp.2 Comp.3 Comp.4

Standard

deviation

1.5302416 0.9753368 0.8346909 0.101833102

Proportion

of Variance

0.5854098 0.2378204 0.1741772 0.002592495

Cumulative

Proportion

0.5854098 0.8232303 0.9974075 1.000000000

Importance of components
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Table B.3: Variables for Differenced Small panel

d lr noncore

d lr M4 sec

d lr MMI liab total

d lr MMI asset total

B.1.2 Differenced, Small:

Variables

Scree Plot
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Figure B.3: Scree plot of Differenced Small panel
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Figure B.4: Biplot of Differenced Small panel

Biplot
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Table B.4: Principal Components summary for Differenced Small panel

Comp.1 Comp.2 Comp.3 Comp.4

Standard

deviation

1.232286 1.1988487 0.7484104 0.6957843

Proportion

of Variance

0.379632 0.3593095 0.1400295 0.1210289

Cumulative

Proportion

0.379632 0.7389415 0.8789711 1.0000000

Importance of components
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Table B.5: Variables for Undifferenced Large panel

lr noncore

lr M4 sec

lr MMI liab total

lr MMI asset total

lr MMI PNFC

lr MMI MFI asset

lr MMI OFI asset

lr MMI OFI liab

lr MMI IPF

lr MMI CG

lr MMI LG

lr MMI HH

lr MMI RoW

B.1.3 Undifferenced, Large:

Variables

Scree Plot
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Figure B.5: Scree plot of Undifferenced Large panel
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Figure B.6: Biplot of Undifferenced Large panel

Biplot
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Table B.6: Augmented Dickey-Fuller tests of components of Undifferenced

Large panel

Variable ADF p-value

lr noncore 0.67

lr M4 sec 0.41

lr MMI liab total 0.02

lr MMI asset total 0.00

lr MMI PNFC 0.07

lr MMI MFI asset 0.74

lr MMI OFI asset 0.04

lr MMI OFI liab 0.01

lr MMI IPF 0.07

lr MMI CG 0.53

lr MMI LG 0.07

lr MMI HH 0.04

lr MMI RoW 0.00

Importance of components

B.1.4 Differenced, Large:

Variables

Scree Plot
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Table B.7: Variables for Differenced Large panel

d lr noncore

d lr M4 sec

d lr MMI liab total

d lr MMI asset total

d lr MMI PNFC

d lr MMI MFI asset

d lr MMI OFI asset

d lr MMI OFI liab

d lr MMI IPF

d lr MMI CG

d lr MMI LG

d lr MMI HH

d lr MMI RoW

Figure B.7: Scree plot of Differenced Large panel
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Table B.8: Principal Components summary for Undifferenced Large panel

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12

Standard de-

viation

2.13584 1.60850 1.27410 1.10510 0.91496 0.73084 0.51557 0.43381 0.32314 0.24819 0.09464 0.07727

Proportion of

Variance

0.38015 0.21560 0.13527 0.10177 0.06976 0.04451 0.02215 0.01568 0.00870 0.00513 0.00074 0.00049

Cumulative

Proportion

0.38015 0.59576 0.73104 0.83281 0.90257 0.94708 0.96923 0.98492 0.99362 0.99875 0.99950 1.00000



Biplot
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Figure B.8: Biplot of Differenced Large panel
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Figure B.9: Time series plot of extracted shadow banking factors

Importance of components

B.2 Time-series plot of Factors
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Table B.9: Principal Components summary for Differenced Large panel

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12

Standard de-

viation

1.63149 1.38494 1.27449 1.11775 1.05363 0.92387 0.85444 0.78938 0.70124 0.65674 0.53873 0.12743

Proportion of

Variance

0.22181 0.15983 0.13536 0.10411 0.09251 0.07112 0.06084 0.05192 0.04097 0.03594 0.02418 0.00135

Cumulative

Proportion

0.22181 0.38165 0.51701 0.62113 0.71364 0.78477 0.84561 0.89753 0.93851 0.97446 0.99864 1.00000



Table B.10: Information criteria for lag selection, group C1 models

lags loglik p(LR) AIC BIC HQC

1 741.11706 -22.037235 -

19.244776*

-20.944951

2 816.73764 0.00000 -22.424588 -17.398161 -20.458476

3 875.90524 0.00004 -22.263508 -15.003114 -19.423569

4 967.64416 0.00000 -23.188139 -13.693777 -19.474372

5 1073.91728 0.00000 -24.597243 -12.868913 -20.009648

6 1330.60625 0.00000 -

31.020208*

-17.057911 -

25.558786*

B.3 Factor Models

B.3.1 C1, Factor-Augmented Vector Error Correction Mod-

els

VAR lag selection for group C1
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Table B.11: Trace and maximum eigenvalue tests for group C1

Rank Eigenvalue Trace test [p-value] Lmax test [p-value]

0 0.61821 187.03 [0.0005] 61.625 [0.0025]

1 0.51867 125.41 [0.0501] 46.796 [0.0391]

2 0.43820 78.610 [0.4143] 36.902 [0.1087]

3 0.22311 41.708 [0.9135] 16.157 [0.9393]

4 0.17210 25.551 [0.8995] 12.087 [0.9184]

5 0.15299 13.463 [0.8681] 10.627 [0.6907]

6 0.040131 2.8365 [0.9665] 2.6213 [0.9587]

7 0.0033557 0.21513 [0.6428] 0.21513 [0.6428]

Johansen rank selection for group C1
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C1a, Factor-Augmented VECM system with two shadow banking

system activity factors, log GDP deflator, log real GDP, 1-month

LIBOR, 20-year gilt yield, log real deposits held by UK Private

Non-Financial Corporates (lr PNFC deposits), log real long-term

debt outstanding as a liability of central government, and FTSE

volatility in short-run equations

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)

Cointegration rank = 1

Case 3: Unrestricted constant

Restrictions on beta: b1 = -1

Cointegrating vectors (standard errors in parentheses)

SBS Factor1t−1 −1.00000

(0.00000)

SBS Factor2t−1 1.21453

(0.457903)

l gdpdeft−1 125.577

(40.7837)

l rgdpt−1 −119.636

(34.2762)

LIBOR 1mt−1 −2.34571

(0.488553)

ytm 20yrGiltt−1 −5.84087

(1.36978)

lr PNFC depositst−1 20.5778

(12.1653)

lr LTDebt CGt−1 −28.2994

(5.98395)

Adjustment vectors (standard errors in parentheses)
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SBS Factor1t−1 0.0173887

(0.0234098)

SBS Factor2t−1 0.0141519

(0.0474180)

l gdpdeft−1 0.000234749

(0.000265375)

l rgdpt−1 0.000616720

(0.000252376)

LIBOR 1mt−1 0.0429598

(0.0146164)

ytm 20yrGiltt−1 0.0480830

(0.00959577)

lr PNFC depositst−1 0.00141455

(0.00114784)

lr LTDebt CGt−1 0.000741032

(0.00161967)

Log-likelihood = 785.726

Determinant of covariance matrix = 0.00000

AIC = −20.0539

BIC = −15.1964

HQC = −18.1403

Equation 1: ∆SBS Factor1
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Coefficient Std. Error t-ratio p-value

const 19.1907 25.7995 0.7438 0.4603

d SBS Factor1 1 −0.0629097 0.137212 −0.4585 0.6485

d SBS Factor2 1 −0.0399412 0.0758163 −0.5268 0.6005

d l gdpdef 1 −14.1922 12.7572 −1.112 0.2709

d l rgdp 1 −2.82896 11.7347 −0.2411 0.8104

∆LIBORt−1 0.143102 0.195340 0.7326 0.4670

∆ytmt−20 0.240002 0.280023 0.8571 0.3953

d lr PNFC deposits 1 1.07614 2.56222 0.4200 0.6762

d lr LTDebt CG 1 0.190477 2.06105 0.09242 0.9267

FTSE Vol 1 0.00693117 0.00772870 0.8968 0.3739

EC1 0.0173887 0.0234098 0.7428 0.4609

Mean dependent var 0.089722 S.D. dependent var 0.402435

Sum squared resid 9.523594 S.E. of regression 0.423899

R2 0.066600 Adjusted R2 -0.109514

ρ̂ −0.059563 Durbin–Watson 2.091345

Equation 2: ∆SBS Factor2

Coefficient Std. Error t-ratio p-value

const 15.1775 52.2585 0.2904 0.7726

d SBS Factor1 1 −0.250320 0.277932 −0.9007 0.3718

d SBS Factor2 1 −0.127386 0.153571 −0.8295 0.4105

d l gdpdef 1 14.2779 25.8405 0.5525 0.5829

d l rgdp 1 27.8160 23.7694 1.170 0.2471

∆LIBORt−1 −0.220656 0.395674 −0.5577 0.5794

∆ytmt−20 −0.0665184 0.567204 −0.1173 0.9071

d lr PNFC deposits 1 4.71506 5.18992 0.9085 0.3677

d lr LTDebt CG 1 0.432416 4.17477 0.1036 0.9179

FTSE Vol 1 0.00755645 0.0156549 0.4827 0.6313

EC1 0.0141519 0.0474180 0.2985 0.7665
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Mean dependent var −0.003823 S.D. dependent var 0.828717

Sum squared resid 39.07428 S.E. of regression 0.858633

R2 0.096895 Adjusted R2 -0.073502

ρ̂ −0.127495 Durbin–Watson 2.237635

Equation 3: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const 0.264708 0.292465 0.9051 0.3695

d SBS Factor1 1 0.00261089 0.00155545 1.679 0.0991

d SBS Factor2 1 0.000195126 0.000859459 0.2270 0.8213

d l gdpdef 1 −0.229493 0.144616 −1.587 0.1185

d l rgdp 1 −0.112579 0.133026 −0.8463 0.4012

∆LIBORt−1 0.00379396 0.00221439 1.713 0.0925

∆ytmt−20 −0.00351940 0.00317436 −1.109 0.2726

d lr PNFC deposits 1 0.0291612 0.0290454 1.004 0.3199

d lr LTDebt CG 1 −0.0285282 0.0233642 −1.221 0.2275

FTSE Vol 1 2.15901e–005 8.76130e–005 0.2464 0.8063

EC1 0.000234749 0.000265375 0.8846 0.3804

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001224 S.E. of regression 0.004805

R2 0.163068 Adjusted R2 0.005157

ρ̂ 0.009062 Durbin–Watson 1.972657

Equation 4: ∆l rgdp
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Coefficient Std. Error t-ratio p-value

const 0.681665 0.278139 2.451 0.0176

d SBS Factor1 1 0.000144244 0.00147926 0.09751 0.9227

d SBS Factor2 1 −0.00108571 0.000817360 −1.328 0.1898

d l gdpdef 1 −0.237944 0.137533 −1.730 0.0894

d l rgdp 1 0.696582 0.126510 5.506 0.0000

∆LIBORt−1 0.00106489 0.00210592 0.5057 0.6152

∆ytmt−20 −0.00134955 0.00301887 −0.4470 0.6567

d lr PNFC deposits 1 0.0236879 0.0276227 0.8576 0.3950

d lr LTDebt CG 1 −0.0183880 0.0222197 −0.8276 0.4116

FTSE Vol 1 6.61444e–006 8.33215e–005 0.07938 0.9370

EC1 0.000616720 0.000252376 2.444 0.0179

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001107 S.E. of regression 0.004570

R2 0.569538 Adjusted R2 0.488319

ρ̂ −0.086181 Durbin–Watson 2.144622

Equation 5: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const 47.5116 16.1084 2.949 0.0047

d SBS Factor1 1 0.0993907 0.0856711 1.160 0.2512

d SBS Factor2 1 0.0272250 0.0473373 0.5751 0.5676

d l gdpdef 1 −3.33627 7.96519 −0.4189 0.6770

d l rgdp 1 19.6299 7.32679 2.679 0.0098

∆LIBORt−1 0.267879 0.121964 2.196 0.0325

∆ytmt−20 −0.115613 0.174838 −0.6613 0.5113

d lr PNFC deposits 1 1.01487 1.59977 0.6344 0.5286

d lr LTDebt CG 1 −1.62843 1.28685 −1.265 0.2112

FTSE Vol 1 −0.0157766 0.00482555 −3.269 0.0019

EC1 0.0429598 0.0146164 2.939 0.0049
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Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 3.712641 S.E. of regression 0.264669

R2 0.680286 Adjusted R2 0.619963

ρ̂ 0.098141 Durbin–Watson 1.790741

Equation 6: ∆ytm 20yrGilt

Coefficient Std. Error t-ratio p-value

const 53.0183 10.5753 5.013 0.0000

d SBS Factor1 1 0.0544695 0.0562438 0.9685 0.3372

d SBS Factor2 1 −0.0785162 0.0310774 −2.526 0.0145

d l gdpdef 1 −4.50594 5.22922 −0.8617 0.3927

d l rgdp 1 −1.42035 4.81010 −0.2953 0.7689

∆LIBORt−1 0.0915086 0.0800707 1.143 0.2582

∆ytmt−20 −0.227493 0.114783 −1.982 0.0527

d lr PNFC deposits 1 0.115052 1.05026 0.1095 0.9132

d lr LTDebt CG 1 −4.96596 0.844830 −5.878 0.0000

FTSE Vol 1 0.00121250 0.00316802 0.3827 0.7034

EC1 0.0480830 0.00959577 5.011 0.0000

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 1.600162 S.E. of regression 0.173758

R2 0.524211 Adjusted R2 0.434439

ρ̂ −0.001229 Durbin–Watson 1.980461

Equation 7: ∆lr PNFC depos
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Coefficient Std. Error t-ratio p-value

const 1.56937 1.26502 1.241 0.2202

d SBS Factor1 1 −0.00340503 0.00672788 −0.5061 0.6149

d SBS Factor2 1 −0.00177348 0.00371747 −0.4771 0.6353

d l gdpdef 1 −0.715632 0.625518 −1.144 0.2577

d l rgdp 1 1.26691 0.575383 2.202 0.0320

∆LIBORt−1 0.00343574 0.00957804 0.3587 0.7212

∆ytmt−20 0.00302072 0.0137303 0.2200 0.8267

d lr PNFC deposits 1 −0.325128 0.125632 −2.588 0.0124

d lr LTDebt CG 1 0.0860259 0.101058 0.8512 0.3985

FTSE Vol 1 6.07151e–006 0.000378958 0.01602 0.9873

EC1 0.00141455 0.00114784 1.232 0.2233

Mean dependent var 0.010924 S.D. dependent var 0.021537

Sum squared resid 0.022897 S.E. of regression 0.020785

R2 0.216434 Adjusted R2 0.068591

ρ̂ 0.034652 Durbin–Watson 1.860952

Equation 8: ∆lr LTDebt CG

Coefficient Std. Error t-ratio p-value

const 0.844675 1.78501 0.4732 0.6380

d SBS Factor1 1 0.0173813 0.00949341 1.831 0.0727

d SBS Factor2 1 0.00404649 0.00524555 0.7714 0.4439

d l gdpdef 1 1.40368 0.882640 1.590 0.1177

d l rgdp 1 −1.03705 0.811898 −1.277 0.2071

∆LIBORt−1 −0.00994300 0.0135151 −0.7357 0.4652

∆ytmt−20 0.0277259 0.0193742 1.431 0.1583

d lr PNFC deposits 1 −0.238833 0.177274 −1.347 0.1836

d lr LTDebt CG 1 0.528778 0.142599 3.708 0.0005

FTSE Vol 1 −0.000898642 0.000534730 −1.681 0.0987

EC1 0.000741032 0.00161967 0.4575 0.6492
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Mean dependent var 0.022390 S.D. dependent var 0.034964

Sum squared resid 0.045589 S.E. of regression 0.029329

R2 0.408049 Adjusted R2 0.296360

ρ̂ −0.011821 Durbin–Watson 1.969369

C1b,

VECM system, lag order 2

Maximum likelihood estimates, observations 2000:3–2016:2 (T = 64)

Cointegration rank = 2

Case 3: Unrestricted constant

Restrictions on beta: b[1,1] = -1 b[1,2] = 0 b[2,1] = 0 b[2,2] = -1

Cointegrating vectors (standard errors in parentheses)

SBS Factor1t−1 −1.00000 0.00000

(0.00000) (0.00000)

SBS Factor2t−1 0.00000 −1.00000

(0.00000) (0.00000)

l gdpdeft−1 −96.0138 −182.450

(23.8398) (45.7867)

l rgdpt−1 85.4001 168.819

(20.9785) (40.2912)

LIBOR 1mt−1 0.527211 2.36546

(0.225245) (0.432605)

ytm 20yrGiltt−1 4.14853 8.22490

(0.935158) (1.79606)

lr PNFC depositst−1 −20.9717 −34.2103

(7.45139) (14.3111)

lr LTDebt CGt−1 25.0861 43.9557

(3.51255) (6.74618)

Adjustment vectors (standard errors in parentheses)
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SBS Factor1t−1 0.216317 −0.104260

(0.102169) (0.0501020)

SBS Factor2t−1 −0.159179 0.0552550

(0.213450) (0.104672)

l gdpdeft−1 −0.000928238 0.000200954

(0.00119101) (0.000584052)

l rgdpt−1 0.000997914 −0.000908343

(0.00114246) (0.000560242)

LIBOR 1mt−1 −0.0647954 −0.00714021

(0.0644060) (0.0315836)

ytm 20yrGiltt−1 0.0730613 −0.0688378

(0.0433397) (0.0212530)

lr PNFC depositst−1 0.0159102 −0.00777638

(0.00476672) (0.00233751)

lr LTDebt CGt−1 −0.0217623 0.00850515

(0.00658957) (0.00323141)

Log-likelihood = 809.124

Determinant of covariance matrix = 0.00000

AIC = −20.7851

BIC = −15.9276

HQC = −18.8715

Equation 1: ∆SBS Factor1
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Coefficient Std. Error t-ratio p-value

const −2.98563 27.6524 −0.1080 0.9144

d SBS Factor1 1 0.0175607 0.140594 0.1249 0.9011

d SBS Factor2 1 −0.0723002 0.0761711 −0.9492 0.3470

d l gdpdef 1 −9.68669 12.7252 −0.7612 0.4500

d l rgdp 1 −8.59420 11.8759 −0.7237 0.4726

∆LIBORt−1 0.130688 0.191869 0.6811 0.4989

∆ytmt−20 0.180573 0.276506 0.6531 0.5167

d lr PNFC deposits 1 −0.192738 2.59427 −0.07429 0.9411

d lr LTDebt CG 1 1.09478 2.07335 0.5280 0.5998

FTSE Vol 1 0.00939051 0.00768652 1.222 0.2274

EC1 0.216317 0.102169 2.117 0.0391

EC2 −0.104260 0.0501020 −2.081 0.0425

Mean dependent var 0.089722 S.D. dependent var 0.402435

Sum squared resid 8.832088 S.E. of regression 0.416147

R2 0.134374 Adjusted R2 -0.069303

ρ̂ −0.036888 Durbin–Watson 2.068671

Equation 2: ∆SBS Factor2

Coefficient Std. Error t-ratio p-value

const 34.5002 57.7709 0.5972 0.5530

d SBS Factor1 1 −0.320436 0.293726 −1.091 0.2804

d SBS Factor2 1 −0.0991912 0.159135 −0.6233 0.5359

d l gdpdef 1 10.3521 26.5853 0.3894 0.6986

d l rgdp 1 32.8394 24.8109 1.324 0.1915

∆LIBORt−1 −0.209840 0.400849 −0.5235 0.6029

∆ytmt−20 −0.0147364 0.577673 −0.02551 0.9797

d lr PNFC deposits 1 5.82066 5.41991 1.074 0.2879

d lr LTDebt CG 1 −0.355524 4.33160 −0.08208 0.9349

FTSE Vol 1 0.00541357 0.0160586 0.3371 0.7374

EC1 −0.159179 0.213450 −0.7457 0.4592

EC2 0.0552550 0.104672 0.5279 0.5999
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Mean dependent var −0.003823 S.D. dependent var 0.828717

Sum squared resid 38.54929 S.E. of regression 0.869407

R2 0.109029 Adjusted R2 -0.100611

ρ̂ −0.130457 Durbin–Watson 2.252751

Equation 3: ∆l gdpdef

Coefficient Std. Error t-ratio p-value

const 0.394356 0.322351 1.223 0.2268

d SBS Factor1 1 0.00214044 0.00163894 1.306 0.1974

d SBS Factor2 1 0.000384305 0.000887946 0.4328 0.6670

d l gdpdef 1 −0.255833 0.148341 −1.725 0.0907

d l rgdp 1 −0.0788741 0.138440 −0.5697 0.5714

∆LIBORt−1 0.00386653 0.00223666 1.729 0.0899

∆ytmt−20 −0.00317196 0.00322331 −0.9841 0.3297

d lr PNFC deposits 1 0.0365794 0.0302421 1.210 0.2320

d lr LTDebt CG 1 −0.0338150 0.0241695 −1.399 0.1678

FTSE Vol 1 7.21216e–006 8.96038e–005 0.08049 0.9362

EC1 −0.000928238 0.00119101 −0.7794 0.4394

EC2 0.000200954 0.000584052 0.3441 0.7322

Mean dependent var 0.004801 S.D. dependent var 0.004818

Sum squared resid 0.001200 S.E. of regression 0.004851

R2 0.179231 Adjusted R2 -0.013891

ρ̂ −0.002472 Durbin–Watson 1.995883

Equation 4: ∆l rgdp
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Coefficient Std. Error t-ratio p-value

const 0.639170 0.309210 2.067 0.0438

d SBS Factor1 1 0.000298444 0.00157212 0.1898 0.8502

d SBS Factor2 1 −0.00114771 0.000851747 −1.347 0.1838

d l gdpdef 1 −0.229311 0.142294 −1.612 0.1132

d l rgdp 1 0.685535 0.132797 5.162 0.0000

∆LIBORt−1 0.00104110 0.00214548 0.4853 0.6296

∆ytmt−20 −0.00146343 0.00309190 −0.4733 0.6380

d lr PNFC deposits 1 0.0212564 0.0290092 0.7327 0.4671

d lr LTDebt CG 1 −0.0166551 0.0231842 −0.7184 0.4758

FTSE Vol 1 1.13271e–005 8.59510e–005 0.1318 0.8957

EC1 0.000997914 0.00114246 0.8735 0.3865

EC2 −0.000908343 0.000560242 −1.621 0.1111

Mean dependent var 0.004298 S.D. dependent var 0.006389

Sum squared resid 0.001104 S.E. of regression 0.004653

R2 0.570526 Adjusted R2 0.469473

ρ̂ −0.084775 Durbin–Watson 2.138022

Equation 5: ∆LIBOR 1m

Coefficient Std. Error t-ratio p-value

const 59.5240 17.4317 3.415 0.0013

d SBS Factor1 1 0.0558018 0.0886282 0.6296 0.5318

d SBS Factor2 1 0.0447532 0.0480171 0.9320 0.3557

d l gdpdef 1 −5.77681 8.02180 −0.7201 0.4747

d l rgdp 1 22.7528 7.48639 3.039 0.0037

∆LIBORt−1 0.274604 0.120951 2.270 0.0274

∆ytmt−20 −0.0834218 0.174306 −0.4786 0.6343

d lr PNFC deposits 1 1.70220 1.63539 1.041 0.3029

d lr LTDebt CG 1 −2.11827 1.30701 −1.621 0.1112

FTSE Vol 1 −0.0171087 0.00484547 −3.531 0.0009

EC1 −0.0647954 0.0644060 −1.006 0.3191

EC2 −0.00714021 0.0315836 −0.2261 0.8220
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Mean dependent var −0.086511 S.D. dependent var 0.429329

Sum squared resid 3.509743 S.E. of regression 0.262333

R2 0.697759 Adjusted R2 0.626643

ρ̂ 0.027278 Durbin–Watson 1.907327

Equation 6: ∆ytm 20yrGilt

Coefficient Std. Error t-ratio p-value

const 50.2338 11.7300 4.283 0.0001

d SBS Factor1 1 0.0645736 0.0596392 1.083 0.2840

d SBS Factor2 1 −0.0825793 0.0323114 −2.556 0.0136

d l gdpdef 1 −3.94020 5.39798 −0.7299 0.4688

d l rgdp 1 −2.14426 5.03770 −0.4256 0.6722

∆LIBORt−1 0.0899499 0.0813897 1.105 0.2743

∆ytmt−20 −0.234955 0.117293 −2.003 0.0505

d lr PNFC deposits 1 −0.0442743 1.10048 −0.04023 0.9681

d lr LTDebt CG 1 −4.85242 0.879503 −5.517 0.0000

FTSE Vol 1 0.00152131 0.00326059 0.4666 0.6428

EC1 0.0730613 0.0433397 1.686 0.0979

EC2 −0.0688378 0.0212530 −3.239 0.0021

Mean dependent var −0.039531 S.D. dependent var 0.231049

Sum squared resid 1.589259 S.E. of regression 0.176527

R2 0.527452 Adjusted R2 0.416265

ρ̂ 0.007455 Durbin–Watson 1.971133

Equation 7: ∆lr PNFC depos
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Coefficient Std. Error t-ratio p-value

const −0.0465887 1.29013 −0.03611 0.9713

d SBS Factor1 1 0.00245872 0.00655942 0.3748 0.7093

d SBS Factor2 1 −0.00413144 0.00355377 −1.163 0.2504

d l gdpdef 1 −0.387322 0.593697 −0.6524 0.5171

d l rgdp 1 0.846808 0.554071 1.528 0.1326

∆LIBORt−1 0.00253117 0.00895165 0.2828 0.7785

∆ytmt−20 −0.00130979 0.0129004 −0.1015 0.9195

d lr PNFC deposits 1 −0.417590 0.121036 −3.450 0.0011

d lr LTDebt CG 1 0.151921 0.0967321 1.571 0.1225

FTSE Vol 1 0.000185280 0.000358616 0.5167 0.6076

EC1 0.0159102 0.00476672 3.338 0.0016

EC2 −0.00777638 0.00233751 −3.327 0.0016

Mean dependent var 0.010924 S.D. dependent var 0.021537

Sum squared resid 0.019225 S.E. of regression 0.019415

R2 0.342089 Adjusted R2 0.187287

ρ̂ 0.003884 Durbin–Watson 1.976835

Equation 8: ∆lr LTDebt CG

Coefficient Std. Error t-ratio p-value

const 3.35332 1.78348 1.880 0.0658

d SBS Factor1 1 0.00827825 0.00906782 0.9129 0.3656

d SBS Factor2 1 0.00770703 0.00491277 1.569 0.1229

d l gdpdef 1 0.894000 0.820734 1.089 0.2812

d l rgdp 1 −0.384870 0.765955 −0.5025 0.6175

∆LIBORt−1 −0.00853873 0.0123749 −0.6900 0.4933

∆ytmt−20 0.0344487 0.0178337 1.932 0.0590

d lr PNFC deposits 1 −0.0952932 0.167322 −0.5695 0.5715

d lr LTDebt CG 1 0.426481 0.133724 3.189 0.0024

FTSE Vol 1 −0.00117685 0.000495754 −2.374 0.0214

EC1 −0.0217623 0.00658957 −3.303 0.0018

EC2 0.00850515 0.00323141 2.632 0.0112
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Mean dependent var 0.022390 S.D. dependent var 0.034964

Sum squared resid 0.036740 S.E. of regression 0.026840

R2 0.522950 Adjusted R2 0.410702

ρ̂ −0.049775 Durbin–Watson 1.995296
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Appendix C

Online Technical Appendix

See online technical appendix at:

https://s3.eu-west-2.amazonaws.com/domsilman-thesis-technical-appendix/BSAMatrix.xlsx
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