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Summary

In this work a novel framework for modeling role and task allocation in Coopera-
tive Heterogeneous Multi-Robot Systems (CHMRSs) is presented. This framework
encodes a CHMRS as a set of multi-dimensional relational structures (MDRSs). This
set of structure defines collaborative tasks through both temporal and spatial rela-
tions between processes of heterogeneous robots. These relations are enriched with
tensors which allow for geometrical reasoning about collaborative tasks. A learning
schema is also proposed in order to derive the components of each MDRS. Accord-
ing to this schema, the components are learnt from data reporting the situated history
of the processes executed by the team of robots. Data are organized as a Multi-
Robot Collaboration Treebank (MRCT) in order to support learning. Moreover, a
generative approach, based on a probabilistic model, is combined together with Non-
Negative Tensor Decomposition (NTD) for both building the tensors and estimating
latent knowledge. Preliminary evaluation of the performance of this framework is
performed in simulation with three heterogeneous robots, namely, two Unmanned
Ground Vehicles (UGVs) and one Unmanned Aerial Vehicle (UAV).

KEYWORDS:
Multi-robot collaboration, Task Allocation, Knowledge Factorization, Knowledge Discovery, Knowledge
Prediction

1 INTRODUCTION1

Multi-robot deployment is better suited than single robot deployment inmany domain applications. For instance, in safety-critical2

applications like Urban Search and Rescue, the deployment of multiple robots speeds up area coverage thus increasing the chance3

to find all potential survivors1. In rescue scenarios (considering the rescue environments after natural disaster such as earthquake,4

fire, building collapse etc.), it is very difficult for rescue workers or teams to access all the region of rescue environments due to5

the possible presence of radiation or extreme temperatures, dust, asbestos, hazardous substances2. A promising solution offered6

by rescue robots to assist rescue teams in terms of:7

1. minimizing personal injuries to rescue workers and rescue dogs by accessing unsettled structures,8

2. raising speed of response by penetrating ordinarily inaccessible voids,9

†Both authors were with Department of Computer Control and Management “A. Ruberti”, Sapienza University of Rome, Italy when the work was carried out. M.
Gianni is now with School of Engineering, Computing and Mathematics, University of Plymouth, UK, and M.S. Uddin is now with Department of Computer Science and
Engineering, East West University, Bangladesh
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3. through the use of sensor fusion and multiple cameras in order to enhance the reach of rescue workers to regions that are10

otherwise inaccessible.11

Rescue robots have many advantages compared to rescue workers and trained rescue dogs:12

1. unlike humans, a rescue robot will not become stressed or fatigued3;13

2. rescue robots can be developed in large quantities, while experienced rescue professionals and trained rescue dogs are14

sparse resources2;15

3. robots are expendable but humans and rescue dogs are not: if a rescue robot is damaged, it can be easily repaired or16

replaced, but the loss of rescue workers or dogs could be very difficult due to their relationship within society2.17

Thus, the robot or multi-robot deployment minimizes human exposure to danger. In planetary exploration homogeneous18

robot deployment introduces redundancy making the overall system more robust and reliable4. In agricultural as well as in19

manufacturing the use of heterogeneous robots can cope with hardware limitations of individual robot payload for complex task20

accomplishment5. Still, in assembly multiple robots deployment reduces human workload.21

However, makingmulti-robot deployment effectively operational has as a fundamental prerequisite the capability of the robots22

to collaborate among them6,7. Collaboration strongly depends on the capability of the robots to communicate, that is, to share23

as well as to exchange information about context-dependent tasks8,9. Information sharing can not take place if it does not exist24

a communication platform, common to all the robots, that is, a knowledge management structure, in which a language for25

representing knowledge, a mechanism for knowledge association, a protocol for information exchange and, finally, a memory26

system are well established10,11,12,13.27

Languages for representing knowledge in multi-robot systems are commonly based on beliefs intentions14, semantic net-28

works15, frame languages16 and resource description frameworks17,18. Knowledge association is responsible of the bidirectional29

information flow, where low-level data is passed upwards and the high-level information is returned downwards using logi-30

cal inference19, bayesian inference14, semantic relationships and hierarchies20 or computational learning methods21. FIPA22
31

together with KIF23 are the standard protocols for communication. Finally, memory is usually deployed on either centralized24
32

or on distributed25 database systems.33

Apart from providing a common ground for knowledge sharing supporting efficient collaboration among robots, knowledge34

management systems allow for information reuse11.35

In this regard, imagine a team of robots which operate into an environment such as a rescue scenario or a manufacturing36

building. Let us consider the variety of data, ranging from measurements, sensory information, robot descriptions, states and37

commands to environmental data, such as positions, maps and spatial relations, stored by the robots into the database of the38

knowledge management system. Now, imagine the same team of robots entering again in the same scenario, possibly changed39

due to some event. The team of robots might access to the information, gathered during previous operating activities and stored40

into the database, and filter out the information irrelevant for the current activities. Then, it might integrate this information with41

the incoming sensor measurements and reuse the fused information for reducing the computational overhead in the current task42

assignment process while taking into account the environmental changes.43

Recently, several research efforts in robotics as well as in Artificial Intelligence (AI) have been made for developing robotic44

systems based on knowledge management structures incorporating information reuse. Tenorth et al. in26 introduced KnowRob,45

a knowledge processing system that combines knowledge representation and reasoning methods with techniques for acquiring46

knowledge and for grounding the knowledge in a physical system thus serving as a common semantic framework for integrat-47

ing information from different sources. KnowRob combines static encyclopedic knowledge, common-sense knowledge, task48

descriptions, environment models, object information and information about observed actions that has been acquired from vari-49

ous sources. An extension of KnowRob framework, named RoboEarth, has been developed in12. On top of the KnowRob robot50

knowledge base, Beetz et al. developed Open-Ease27, a remote knowledge representation and processing service for robots.51

Open-Ease allows to retrieve the memorized experiences of task episodes and to ask queries regarding what robots saw, reasoned52

and did as well as how robots did it, why and what effects it caused. Until a few years ago, knowledge management structures for53

modeling multi-robot systems were fully integrated a single standalone architecture, thus limiting the knowledge of the robots54

to that stored into the memory over the past task episodes16. Recently, with the advent of the emerging fields of the Internet of55

Things and of the Web of Things, robots can rely on cloud-computing infrastructures to have access to a vast amounts of pro-56

cessing power and data in order to improve capabilities such as speech recognition, language translation, path planning and 3D57
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mapping28,29,30,5,31. The possibility to have access to big data repositories, such as the Web, has made even more effective the58

use of methods and techniques of learning in the context of multi-robot systems32,33.59

In robotics, assigning tasks to multiple robots is a challenging problem. Although, it has numerous practical applications. In60

the past, several strategies for task assignment were proposed for different application domains such as surveillance (aerial/un-61

derwater)34,35, search and rescue36, multi-robot patrolling37, feeding operation38 and health care39. For example, multi-robot62

search and rescue missions aim to rescue survivors by exploring the surrounding environment. Each sub-task explores a small63

area of the environment and seeks survival. The successful completion of each of these sub-tasks results in the completion of the64

entire mission. As survival (available tasks) and the size of the robot team increase, the task allocation process becomes more65

difficult40. Techniques for allocating tasks in multi-robot systems are commonly based on clustering41,42, swarm intelligence4366

and resources44. Some other task assignment methods for multi-robot systems are listed in the reference45,46,47.67

In this regard, we propose a framework for learning multi-dimensional relational structures (MDRSs) regulating role and68

task assignment in Cooperative Heterogeneous Multi-Robot Systems (CHMRSs). These structures define collaborative tasks as69

both temporal and spatial relations between the processes and tasks of the single robots in a logical as well as in a geometrical70

fashion. Through learning we extract from memorized experiences of task episodes, stored in the from of a suitably defined71

Multi-Robot Collaboration Treebank (MRCT), the syntaxes, the semantics and the geometrical spaces in which the MDRSs lie.72

Moreover, we propose a decomposition technique for dealing with both uncertainty of the data and the missing information in73

the treebank. Such a decomposition is also employed as a technique for knowledge discovery, based on link prediction. This74

framework allows for reasoning about task assignment based on both logical and geometrical inference. This work has been75

extended from the deliverable report of Tradr project48.76

The remainder of this work is organized as follows. Section 2 introduces themulti-dimensional relational structures. In Section77

3 we describe the Multi-Robot Collaboration Treebank. Section 4 illustrates the main components of the proposed schema for78

learning MDRSs together with the probabilistic model for building the geometrical spaces on top of which collaboration lies.79

In Section 5 we describe the approach based on Non-Negative Tensor Decomposition (NTD) for latent knowledge estimation.80

Section 6 concludes the work with preliminary results in simulation and discussion.81

2 MODELING MULTI-ROBOT COLLABORATION THROUGHMULTI-DIMENSIONAL82

RELATIONAL STRUCTURES83

Let us consider a CHMRS composed of two heterogeneous robots, that is, an UGV, named UGV1, and an UAV, named UAV2.84

Suppose that UGV1 has to explore an area of the environment (see Figure 1(a)). In order to navigate, this robot needs to have85

a representation of the area specifying what regions are traversable. The analysis of traversability builds upon a 3D metric86

representation of the area. However, it might happen that, due to the high degree of harshness of the terrain, the metric map87

built by UGV1 is quite sparse, thus making traversability analysis very inaccurate (see missing points on the left side of the88

robot in Figure 1(c)). Under this situation, UGV1 sends the request to UAV2 to fly over the area to build a more dense metric89

map (see Figure 1(b) and (d)). Upon the completion with success of this process, UGV1 requests the map of the area to UAV2, it90

integrates its own map with the map provided by UAV2 and, finally, it computes a more accurate estimate of the traversability of91

the surrounding. This form of collaboration can be represented by a MDRS encoding a temporal relation Before between four92

entities, two of type Robot and two of type Process.93

Under this perspective, we model a CHMRS as a set U={1,…,n} of multi-dimensional relational structures. Each MDRS94

is defined by a pair ⟨Si,Yi⟩. Where Si is the signature of MDRS. It comprises a relational symbol Ri of arity K∈ℕ, a finite95

set Σi={�1,…,�ni} of types, also called sorts, with ni≤K , a finite set Ci,�k of constant symbols ci,�k , for each sort �k∈Σi and,96

finally, a countable set Vi,�k of variable symbols vi,�k , for each sort �k∈Σi. Furthermore Yi∈ℝ
M1×⋯×MK
+ is a non-negative multi-97

dimensional matrix, also called K-order tensor, where eachMk is equal to the cardinality of the set Ci,�k with �k∈Σi sort of the98

k-th input term of Ri, for k=1,…,K .99

In other words, Yi has a number of dimensions equal to the arity K of Ri. Along the k-th direction, Yi has a number of100

elements equal to the cardinality of the set Ci,�k , where �k∈Σi is the sort of the k-th input argument of Ri.101

Note that, according to the definition of Yi, each tuple of indices
(

i1,…,iK
)

, with ik=1,…,Mk, corresponds to a tuple102
(

ci,�1 ,…,ci,�K
)

of constant symbols, with ci,�k∈Ci,�k and �k∈Σi sort of the k-th input term of Ri, for k=1,…,K .103
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(a) (b)

(c) (d)

FIGURE 1 UGV1 and UAV2 in both the virtual simulated environment49 and in ROS RVIZ50. (a) UGV1 enxploring the area;
(b) UAV2 flying over the roof of the simulated collapsed building; (c) 3D metric map of the area built by UGV1 (blue point
cloud); (d) 3D metric map of the area built by UAV2 (red point cloud).

The temporal relation representing the collaboration between UGV1 and UAV2, in the above example, is encoded by the a
four-dimensional structure i∈U, whose signature Si is defined as follows

K = 4, Σi = {Robot, Process}, Ri(⋅, ⋅, ⋅, ⋅)
def
= Before(⋅, ⋅, ⋅, ⋅),

Ci,Robot = {UAV2, UGV1,…} and Ci,Process = {mapping, exploring,…}.

Finally, for the tuple (UAV2, mapping, UGV1, exploring) of constant symbols, there exists a tuple of indices (i1, i2, i3, i4) such104

that yii1,i2,i3,i4∈ℝ+ is the element of the four-tensor Yi associated with this tuple.105

MDRSs are well suited for supporting two different types of inference. The first type is the standard logical entailment.106

The second type of inference is based on the extraction of fragments (e.g., tensor fibers and slices) of the tensors through107

mode-n operations. The strength of combining together these two types of inference for role and task assignment in multi-robot108

collaboration is demonstrated in the following example.109

Example 2.1. Let us consider a CHMRS composed of three UGVs, named UGV1, UGV2 and UGV3, respectively. Let us suppose
that U includes a MDRS 1, having the following signature S1

K = 4, Σ1 = {Robot, Process}, R1(⋅, ⋅, ⋅, ⋅)
def
= Equal(⋅, ⋅, ⋅, ⋅),

C1,Robot = {UGV1,UGV2,UGV3,…} and C1,Process = {grasping,…}.

1 represents a collaborative pick and place task. This task requires that two UGVs simultaneously hold and lift an object.
According to this specification, this form of collaboration has been encoded by a temporal relation Equal between four entities,
two of type Robot and two of type Process. Moreover, let us assume to have another structure 2 representing the processes
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which can be performed by each robot. The signature S2 of 2 is defined as follows

K = 2, Σ2 = {Robot, Process}, R2(⋅, ⋅)
def
= Process(⋅, ⋅),

C2,Robot = {UGV1,UGV2,UGV3,…} and C2,Process = {grasping,…}.

Now, suppose that UGV1 has to grasp an object for which it is required the collaboration of another UGV. Then, we want to know
to which robot to assign this collaborative task. According to logical entailment, we know that, in order to answer to this query,
we have to find, as usual, an interpretation I=(, �), with  first-order structure and � variable assignment function mapping
sorted variable symbols to elements of the domain of the right sort such that

I ⊧ ∃v Process(v,grasping) ∧Equal(UGV1,grasping,v,grasping)

Let us assume that the interpretation maps the constant symbols into themselves in the domain. Moreover, according to , let
us assume that

Process={⟨UGV1, grasping⟩, ⟨UGV2, grasping⟩, ⟨UGV3, grasping⟩}
Equal={⟨UGV1, grasping, UGV2, grasping⟩

⟨UGV1, grasping, UGV3, grasping⟩}

Under the mappings �
[

UGV2∕v
]

and �
[

UGV3∕v
]

, we know that both UGV2 and UGV3 can execute this task.110

Now, let y1
i1,i2,i3,i4

∈ℝ+ and y1
i1,i2,î3,i4

∈ℝ+, at positions (i1, i2, i3, i4) and (i1, i2, î3, i4), be the elements in the four-tensor Y1111

associated to the tuples in Equal . Let us also assume that these elements represent the number of times that UGV1 performed112

this task in collaboration with the two UGVs under consideration. According to the meaning that we are given to these tensor113

elements, the choice of the UGV which has to collaborate with UGV1 might be dictated by comparing the value of y1
i1,i2,i3,i4

with114

the value of y1
i1,i2,î3,i4

. Suppose that y1
i1,i2,î3,i4

>y1
i1,i2,i3,i4

. Then the choice falls onto UGV3.115

As above, let (i1, i2), (î1, i2) and (ĩ1, i2) be the three tuples of indices such that y2
i1,i2
∈ℝ+, y2î1,i2

∈ℝ+ and y2ĩ1,i2∈ℝ+ are the116

elements in the matrix Y2 associated with the terms in the interpretation Process . Now, suppose that these elements y2
î1,i2

and117

y2ĩ1,i2 represent the failure rate of the process grasping for UGV2 and UGV3, respectively. A comparison among the values of118

these two tensor elements should be also considered before assigning the task to UGV3. If the value of y2
k̃1,k2

is greater than the119

value of y2
k̂1,k2

then a better choice would be to assign the collaborative task to UGV2, rather than UGV3.120

Example 2.1 demonstrates the ability of a system, modeled by a set of MDRSs, of flexibly reasoning on multiple choices by121

combining both logical inference and reasoning on tensor fields. However, this joint reasoning mechanism, as highlighted in122

Example 2.1, strictly depends by the meaning that we are given to the tensor elements. Moreover, it still unclear where these123

multi-dimensional relational structures come from, how these structures are built and where tensor elements come from.124

To this end, we developed a learning schema trough which both signatures and tensors of each MRDS are learnt from data125

reporting the situated history of the activities performed by a group of cooperative heterogeneous robots. Here, data and, in126

particular, their linguistic structure, play a crucial role in making learning more tractable, as described in the next section.127

3 MULTI-ROBOT COLLABORATION TREEBANK128

Documents describing reports of missions executed by a team of robots are organized as a treebank51,52,53,54. A treebank is a129

collection of pairs ⟨si, i⟩, where each si is a statement and each i is a syntactic tree. Each statement is a sequence si,1,… , si,n130

of words. Here, we assume that statements do not contain anaphoric as well as elliptical references. Each i is composed of a131

seti of nodes and a set i of edges.i is composed of a seti,int of intermediate nodes and a seti,leaf of leaf nodes. Each132

node nu∈i,int is labeled with a non-terminal symbol NT of a formal system FS. On the other hand, each node nv∈i,leaf is133

labeled with a terminal symbol T of FS. There exists an edge ⟨nu, nv⟩∈i, with nu, nv∈i if there exists a production rule of134

the form →� in FS such that the label of nu is equal to  , the label of nv is equal to �, ∈NT and �∈NT∪T . Intuitively, each135

syntactic tree is a derivation of the string of words composing a statement. A derivation is a sequence of rule expansions defined136

by the formal system.137

In linguistic, a formal language is commonly used as a generative grammar. Instead, in natural language processing, it is used138

for semantic parsing of natural language sentences, possibly unconstrained and including complex compositional expressions.139
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In this context, the use of a formal language has a different purpose. It provides a priori a well-defined syntax of the relations140

encoding both individual and collaborative tasks. It has the effect to filter noise in the documents. Indeed, if a statement is141

aligned by a syntactic tree which does not correspond to any sequence of rule expansions of the formal system, then it can be142

simply disregarded and not considered in the learning phase. Finally, the syntactic trees associated with the statements together143

with the production rules of FS suggest a set of strategies to speed up learning of the MDRSs modeling a multi-robot system.144

In the following we provide a partial description of the formal system together with examples of syntactic trees annotating145

admissible statements describing the activities of heterogeneous robots cooperating in the execution of both individual and146

collaborative tasks. The full version of the formal system underlying the treebank is provided in Appendix A.1.147

The formal system consists of a set of domain-specific constituents. A constituent is either a single word or a group of words,
acting as a unit. For the multi-robot collaboration domain application we specify atomic process phrase (APP), temporal task
phrase (TTP), shifting-inhibition phrase (SIP) and atomic process execution state phrase (APESP) constituents. According to
these domain-specific constituents, a statement (S) can consist of either an atomic process phrase or of a temporal task phrase,
or of a shifting-inhibition phrase or of an atomic process execution state phrase, as specified by the following production rule

S → APP | TTP | SIP | APESP (1)

APP constituents are introduced to annotate statements describing single processes executed by individual robots. These pro-148

cesses comprise simple operations like acquiring an image, mapping an area of the environment, holding an object, but also149

spatial relations between objects, spatial relations between robots and relations of dispatching of information among robots.150

Syntactic trees associated to statements describing these activities and generated from the expansion of an APP constituent are151

illustrated in Figure 2.152

TTP constituents syntactically specify a wide class of complex collaborative behaviors of a group of robots. According to the153

definition of TTP, each behavior is a composition of individual robot processes linked by a temporal constraint. An examples of154

a syntactic tree annotating a statement represented by the expansion of an TTP is shown in Figure 3155

Statements in the treebank describing both shifting and inhibition behaviors of individual robots as well as reporting the156

status of the execution of a robot process are annotated by expanding SIP and APESP constituents, respectively. Syntactic trees157

associated with these kind of statements are illustrated in Figure 4(a) and Figure 4(b).158

Note that, the formal system differs from the semantic grammars used in case theory due to the choice of word-alignment55.159

In fact it is not a completely word-alignment grammar. Constituents may correspond to multi-word expressions, such as the160

spatial relation on top of or the process picked up. The main motivation is to facilitate learning of the MDRSs, as described161

in the next section.162

4 LEARNING OF THE MULTI-DIMENSIONAL RELATIONAL STRUCTURES163

LetD={⟨si, i⟩}Ni=1 be a collection of statement-syntactic-tree pairs where each syntactic tree annotates the corresponding state-164

ment on the basis of the formal system FS, introduced in Section 3. Learning of MDRS from the data-setD involves three main165

steps: (1) the definition of the signatures Si; (2) building of the tensors Yi and, finally, (3) the estimation of the values of the166

elements of each tensor.167

Signatures Si are directly derived from the specification of both constituents and production rules of the formal system and
from the syntactic trees i annotating the statements si. For example, let us consider the syntactic tree in Figure 5 annotating the
following statement

S∶Robot r5 inhibited wifi connection lost
while moving from area a37 to area a51

The sub-tree of the root node S is labeled with the non-terminal symbol SIP of FS. As introduced in Section 3, this sym-168

bol denotes a shifting-inhibition phrase constituent. This constituent encodes the behavior of a robot to either switch between169

processes or inhibit a stimulus by focusing on the process at hands. These two behaviors can be discriminated by looking at170

the the label of the right child of the node labeled with SIP. More precisely, if the label of the right child is labeled with the171

non-terminal symbol SwitchP in FS then the statement encodes a switching behavior. In other words, the production rule172

SIP → RP SwitchP has been applied to annotate the right branch of this sub-tree. Conversely, if the node is labeled with the173

non-terminal symbol InhibitP then the statement represents an inhibition behavior. This means that the node labeled with SIP174
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(a) S ∶ Robot r2 picked up object o5 on top of table t6 behind object o1

(b) S ∶ Robot r3 sent map m8 of area a5 to robot r1

FIGURE 2 Syntactic trees of statements on the basis of production rules (A1)-(A16) in Appendix A.1.

has been expanded by applying the production rule SIP → RP InhibitP of FS (more details about the meaning of these rules175

can be found in Appendix A.1). The label of the right child of the root in the syntactic tree in Figure 5 verifies the latter case.176

Therefore, from both the specification of both constituents and production rules of FS we know that the statement encodes a177

relation of inhibition Inhibition between three types of entities, the first of type Robot, the second of type Stimulus and the178

third of type Process. We also know that the set of constants Ci,Robot of sort Robot contains a constant symbol r5, the set of179

constants Ci,Stimulus of sort Stimulus includes a constant symbol wifi connection lost and, finally, the set of constants180

Ci,Process of sort Process contains the symbol moving. By applying these simple heuristics to every pair ⟨si, i⟩ the signature181

Si of the MDRS representing inhibition behaviors is extracted from the treebank D (see left side of Figure 6).182

Now, let Si be the signature of i, extracted from a treebank, according to the heuristics mentioned above. The tensor Yi183

associated with i, with signature i, is build as follows. The number of dimensions of Yi is fixed to be equal to the arity K of184

Ri∈i. If the k-th input term of Ri is of sort �k∈Σi then, along k-th direction the number of elements is fixed to be equal to185

the cardinalityMk of the constant set Ci,�k . Moreover, each index ik∈{1,…,Mk} is linked to one and only one constant symbol186

ci,�k∈Ci,�k . The 3-order tensor associated with the three-dimensional relational structure representing inhibition behaviors of a187

robot, on the basis of these rules, is illustrated on the right side of Figure 6.188

Finally, the last step of learning of MDRS is to estimate the values of the entries of the tensors. To this end, we propose189

a generative approach based on a probabilistic model, similar to those applied for document classification and information190

retrieval56,57,58.191
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FIGURE 3 S ∶ Robot r4 picked up object o5 inside container c1 after robot r7 lifted up lid l1 of container c1.

Let i be the language defined by the signature Si of the MDRS i. Let i be the Herbrand Universe of i, namely, the set192

of all ground terms of i. Let i be the Herbrand Base of the signature Si, namely, the set of all possible ground atoms that193

can be formed from the relation symbol Ri∈Si and terms in i. We denote with D
i ⊆i the sub-set of those ground atoms in194

i whose argument terms label the leaf nodes of the syntactic trees i annotating the statements si in the treebank D encoded195

by relation Ri∈Si. Let i be the Herband interpretation of Ri∈Si whose domain is i, where every constant is interpreted as196

itself and where Ri
i ≡D

i , that is, 
D
i specifies which ground atoms are true in the interpretation.197

Now, we introduce a binary vector x∈{0, 1}W whereW is the cardinality of D
i and each component xw is equal to 1 if the

labels of the leaf nodes of the syntactic trees i annotating the statements si encoded by relation Ri∈Si are the argument terms
of the ground atoms which are true, that is, that are inRi

i . xw is equal to 0 otherwise. According to this definition,
∑W
w=1 xw=1.

We denote with �w∈ [0, 1] the probability that xw=1. Then the probability of the vector x is given by

p(x|�)=
W
∏

w=1
�xww with

W
∑

w=1
�w=1 (2)

Let us assume that the pairs ⟨si, i⟩∈D are independent. Let us denote with mw the number of times that the component xw=1
in D. According to this definition a treebank can be represented by a vector m=

(

m1 ⋯ mW
)⊤ of counts whose probability

distribution follows a Multinomial with parameter vector �

p(m|�)= N!
∏W

w=1 mw!

W
∏

w=1
�mww (3)

HereN=
∑W
w=1 mw. Now, knowing that198

• from the definition of Yi, each tuple of indices
(

i1,…,iK
)

, with ik=1,…,Mk, corresponds to a tuple
(

ci,�1 ,…,ci,�K
)

of199

constant symbols, with ci,�k∈Ci,�k and �k∈Σi sort of the k-th input term of Ri;200

• the leaf nodes of the syntactic trees i might or might not be labeled with symbols in the tuples
(

ci,�1 ,…,ci,�K
)

;201

• the terms ci
i,�1
,…,ci

i,�K
might or might not belong to Ri

i ;202

under these isomorphisms, the entries of the tensors Yi are filled according to the following rule

yii1,…,iK
=

{

p(xw=1|m) if ci
i,�1
,…,ci

i,�K
∈Ri

i

null otherwise

Here null is introduced as a place-holder to denote the missing entries of the tensor. p(xw=1|m) is the posterior predictive
probability of the term ci

i,�1
,…,ci

i,�K
associated with the tuple of indices

(

i1,…,iK
)

. This probability is computed according to
the following distribution

p(xw=1|m)=∫ p(xw=1|�)p(�|m)d� (4)
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ObjectID 
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OP 

a51 

SDSpaP 

ObjectID 

base 

ObjNoun 

OP 

b0 

TP 

exploring 

to 

moving 

due to SNoun 
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low 

(a) S ∶ Robot r2 switched from exploring area a51 to moving from area a51 to base b0 due to battery low

ObjectID 

stair 

ObjNoun 

S 

TP 

OP  DP climbing 

s4 

SpaP 

RelP 

SimpleSpaRel 

in 
ObjectID 

area 

ObjNoun 

OP 

a2 

APESP 

SSEP 

SuccProcess 

RP 

RobotNoun RobotID 

Robot r5 

PartPP 

PartProcess completed 

(b) S ∶ Robot r5 completed climbing stair s4 in area a2

FIGURE 4 Syntactic trees of statements according to production rules (A20)-(A35) in Appendix A.1.

Here p(�|m) is the posterior distribution of �. This distribution is obtained by multiplying the likelihood in eq. (2) with the
prior distribution of �. Since the distribution over the space of the parameter vector � is confined to a simplex of dimensionality
W −1, as a consequence of the constraints 0≤�w≤1 and

∑W
w=1 �w=1, a Dirichlet prior with concentration parameters �1,…,�W

is chosen. Knowing that the Dirichlet is a conjugate prior of the Multinomial and that the posterior distribution is also Dirichlet,
the posterior predictive distribution in eq. (4) takes the following form

p(xw=1|m)=∫ p(xw=1|�w)
[

∫ p(�−w, �w|m)d�−w
]

d�w

=∫ �wp(�w|m)d�w=E
[

�w|m
]

=
mw+�w

∑W
w=1

(

mw+�w
)

(5)
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SDSpaP 
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ObjNoun 

OP 
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TP while 

moving 
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lost 
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FIGURE 5 Syntactic tree of the statement S ∶ Robot r5 inhibited wifi connection lost while moving from area a37 to area a51.

FIGURE 6 Signature and the 3-order tensor associated with the three-dimensional relational structure representing inhibition
behaviors of a robot, with respect to both processes and stimulus occurrences

that is, it is equal to the expected value E
[

�w|m
]

of the posterior. Therefore, when the rule in (4) is satisfied, the values of the203

elements yii1,…,iK
of a tensor Yi are fixed to be equal to the probabilities computed according to eq. (5).204

However, after this step, the tensor turns out to be sparse due to the lack of ground atoms in the interpretation Ri
i . This205

depends upon the lack of statements in the treebank. In order to fill the missing entries of the tensors we resort to Non-Negative206

Tensor Decomposition (NTD)59,60,61. Apart from completing the tensors, there are other reasons which motivate its application207

in the context of multi-robot collaboration. NTD reduces the dimensionality of the tensor through factorization. The components208

resulting from this factorization require less computational resources for both storage and information retrieval. NTD also filters209

the data thus reducing noise. Finally, by applying NTD, new knowledge can be discovered through link prediction62,63.210

5 LATENT KNOWLEDGE ESTIMATION THROUGH NON-NEGATIVE TENSOR211

DECOMPOSITION (NTD) WITH MISSING DATA212

Let Yi∈ℝ
M1×⋯×MK
+ be the K-order tensor associated with a structure i. Given a positive index J , with J≤min

(

M1,… ,MK
)

,
NTD factorizes Yi into a set of K non-negative component matrices A(k)=

[

a(k)1 , a
(k)
2 ,… , a(k)J

]

∈ℝMk×J
+ , with k=1,…,K , called
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common loading factors, such that

Yi = A(1),A(2),… ,A(K)+Ei
= I×1A(1)×2A(2)×3⋯×KA(K)+Ei

=
J
∑

j=1
a(1)j ◦a

(2)
j ◦⋯◦a(K)j +Ei (6)

Here, ×k denotes the mode-k tensor-matrix product, I is the identity tensor and Ei is the residual error. ◦ denotes the outer
product. The model in eq. (6) is often referred to as the Parallel Factor Analysis (PARAFAC) model with non-negativity con-
straints61,64. Our objective here is to estimate the non-negative component matrices A(k) or, equivalently, the set of vectors a(k)j ,
with k=1,…,K and j=1,…,J given the number of factors J . Approaches based on Alternating Least Squares (ALS) minimiza-
tion of the squared Euclidean distance are commonly employed for estimating the component matrices in NTD59. However,
these approaches do not deal with missing entries in Yi due to the incompleteness of the observations (see Section 4). In order
to cope with this issue, we propose an approach which embeds a variant of ALS, named Fast Hierarchical Alternating Least
Squares (F-HALS)65, into an imputation-alternation schema66. In this approach the missing values of Yi are imputed using the
interim model Ŷi=A

(1),A(2),… ,A(K), computed at the n-th iteration, as follows

Ỹi=Wi⊛Yi+
(

1−Wi

)

⊛Ŷi (7)

HereWi∈{0, 1}
M1×,…,×MK is the indicator tensor specifying which entries are missing in Yi, 1 is a tensor of the same dimension213

of Wi whose elements are all equal to 1 and ⊛ is the Hadamard product. Once Ỹi is generated, the factor matrices are then214

updated via the sequential minimization of a set of local cost functions with the same global minima (e.g., squared Euclidean215

distances) performed by F-HALS65. Ŷi is then updated at every iteration according to (6) as well as Ỹi, on the basis of eq. (7).216

nonNegativeRandomInitnonNegativeRandomInit diagdiag More precisely, let us consider the following set of local functions

Algorithm 1 Imputation-Alternation Fast HALS
Yi: K-order tensor; J : number of common loading factors Wi: indicator tensor.
K factors A(k)∈ℝMk×J

+ such that the cost functions in eq. (8) are minimized.

for ( do*[f]initialization)k = 1 K A(k)←( )
for ( do*[f]normalization)j = 1 J a(k)j ←a(k)j ∕‖a

(k)
j ‖2 T(1)←((A(1))⊤A(1))⊛⋯⊛((A(K))⊤A(K)) Ŷi←A(1),A(2),… ,A(K)

Ỹi←Wi⊛Yi+
(

1−Wi

)

⊛Ŷi; *[f]imputation step

repeata stopping criteria is met ←((A(K))⊤A(K))

for ( do*[f]alternation step)k = 1 K k=K←1 T(2)←Ỹi,(k)A⊙−k T(3)←T(1)⊘
(

(

A(k)
)⊤A(k)

)

for ( do*[f]update rule in eq. (12))j = 1 J a(k)j ←
[

ja
(k)
j +

[

T(2)
]

j −A
(k) [T(3)

]

j

]

+
k≠Ka(k)j ←a(k)j ∕‖a

(k)
j ‖2

T(1)←T(3)⊛((A(K))⊤A(K)) Ŷi←A(1),A(2),… ,A(K) Ỹi←Wi⊛Yi+
(

1−Wi

)

⊛Ŷi; *[f]imputation step

D(j)
F (a

(1)
j , a

(2)
j … a(K)j )=1

2
‖Ỹ(j)i −a

(1)
j ◦a

(2)
j ◦⋯◦a(K)j ‖

2
F (8)

for j=1,…,J , subject to the non-negativity constraints. Here a(k)j ∈ℝ
Mk
+ are the j-th column vectors of the loading matrices A(k),

with k=1,…,K . ‖ ⋅ ‖F is the Frobenius norm. Ỹ(j)i is the j-th sub-tensor of Ỹi, defined as follows

Ỹ(j)i =Ỹi−
∑

p≠j
a(1)p ◦a

(2)
p ◦⋯◦a(K)p

=Ỹi−

[ J
∑

p=1
a(1)p ◦a

(2)
p ◦⋯◦a(K)p −

(

a(1)j ◦a
(2)
j ◦⋯◦a(K)j

)

]

(9)

Based on the mode-k unfolding representation of a tensor, the cost function in eq. (8) can be re-written as follows

D(j)
F (a

(1)
j , a

(2)
j … a(K)j )=1

2
‖Ỹ(j)i,(k)−a

(k)
j {aj}

⊙−k⊤
‖

2
F (10)
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1-Mode Fibers 2-Mode Fibers 3-Mode Fibers 

FIGURE 7 From left to right, 1-mode, 2-mode and 3-mode fibers of a third-order tensor.

for j=1,…,J and k=1,…,K , where

{aj}⊙−k⊤=
[

a(K)j

]⊤
⊙⋯⊙

[

a(k+1)j

]⊤
⊙
[

a(k−1)j

]⊤
⊙⋯⊙

[

a(1)j
]⊤

=
[

A⊙−k⊤
]

j (Kharti-Rao propery) (11)

Here⊙ denotes the Kharti-Rao product. By setting the gradient of the cost functions in eq. (10) to zero, by replacing Ỹ(j)i,(k) terms
by those in eq. (9) and by exploiting the property of the Kharti-Rao and Kronecker product in eq. (11) we arrive at the update
rules referred to as the Fast HALS NTD algorithm

a(k)j ←

[

 (k)j a(k)j +
[

Ỹi,(k)A⊙−k
]

j −A
(k)

[

{A⊤A}⊛⊘
(

A(k)
)⊤A(k)

]

j

]

+
(12)

for j=1,…,J and k=1,…,K . Here  (k)j are the scaling coefficients. Ỹi,(k) is the mode-k unfolding representation of Ỹi.

{A⊤A}⊛=((A(1))⊤A(1))⊛⋯⊛((A(K))⊤A(K)) (13)

⊘ denotes the element-wise division. [⋅]+ is the non-linear half-wave rectifying projection replacing negative values of the217

argument by zero or by a small positive value �. [⋅]j selects the j-th column vector of the matrix argument. At the n-th iteration218

the common loading factors first are updated according to the rules in eq. (12) and then are fed into eq. (7) to update both Ŷi219

and Ỹi for the next iteration. This imputation-alternation schema is illustrated in Algorithm 1.220

Now, let A(k)=
[

a(k)1 , a
(k)
2 ,… , a(k)J

]

∈ℝMk×J
+ , for k=1,…,K , be the set of common loading factors, estimated according to the

imputation-alternation Fast HALS in Algorithm 1. Let (i1, i2,… , iK ) be a fixed tuple of indices, with ik=1,…,Mk. Then, the
estimation of the value of the tensor at position (i1, i2,… , iK ) is given by

ŷi1,i2,…,iK=
J
∑

j=1
a(1)i1,ja

(2)
i2,j
⋯ a(k)iK ,j (14)

However, reasoning about multiple choices for decision-making in a multi-robot system requires that entire one-dimensional221

fragments are extracted from the tensors. To this end, we resort tomode-kfiber operations on the tensors. Fibers can be commonly222

obtained from tensors by fixing all indices except one, as illustrated in Figure 7. In Example 5.1 we illustrate how these operations223

support reasoning as well as how link prediction handles knowledge discovery.224

Example 5.1. Let us consider the scenario described in Example 2.1. UGV1 has to grasp an object for which it is required the225

collaboration of another UGV. Therefore, we have to take a decision regarding which UGV has to take at hands this collaborative226

task. Now, let us assume that the set C1,Robot of the constant symbols of sort Robot includes another constant symbol referred227

to another UGV, that is UGV4. This means that in the treebank under consideration, there was a pair ⟨si, i⟩ which encoded a228
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(a) (b) (c)

FIGURE 8 (a) First UGV endowed with an arm for manipulating objects; (b) second UGV equipped with a Pan-Tilt Unit
with on top RGB-D camera sensor for dense 3D reconstruction; (c) UAV endowed with a 2D laser range finder, mounted on a
servomotor, on the bottom of the chassis for 3D scanning of the surrounding

temporal relation Equal between four entities, two of type Robot and two of type Process and such that UGV4 appeared as the229

label of a leaf of the right sub-tree of i. Moreover, let us assume that the tuple ⟨UGV1, grasping, UGV4, grasping⟩∉Equal1 ,230

namely, it does not belong to the Herbrand interpretation1 of Equal. This means that there was no pair ⟨si, i⟩ in the treebank231

that, as above, encoded a temporal relation Equal and it was such that UGV1 appeared as the label of a leaf of the left sub-232

tree of i. Consequently, the ground atom Equal(UGV1, grasping, UGV4, grasping)∉D
1 (see Section 4). Therefore, after the233

completion of the procedure of building of the tensor Y1, the element in position (i1, i2, ĩ3, i4) of Y1, corresponding to the term234

(UGV1, grasping, UGV4, grasping) results to be empty.235

However, after the factorization of Y1, on the basis of Algorithm 1, we have found a set A(k)=
[

a(k)1 , a
(k)
2 ,… , a(k)J

]

of factor
matrices, with k=1,…,4, such that

ŷi1,i2,ĩ3,i4=
J
∑

j=1
a(1)i1,ja

(2)
i2,j
a(3)ĩ3,ja

(4)
i4,j

≠ null (15)

that is, we have an estimate of the value of tensor element associated with the term ⟨UGV1, grasping, UGV4, grasping⟩, even if236

this term was not present in the treebank. In other words, through the decomposition, we have discovered new knowledge. Now,237

by suitably performing a fiber operation on the tensor we obtain a one-dimensional fragment whose entries are an estimation of238

the collaboration of UGV1 with all the other UGVs (or at least with all included in the domain of discourse). By interpreting this239

fragment as a recommendation vector, we can take a decision about which UGV has to be in charge of supporting UGV1 in the240

task of grasping the object67.241

6 EXPERIMENTS242

Through this paper we have shown, with several examples, the main features of the framework. In particular, the use of a many-243

sorted first order logic, even if restricted to conjunctions of ground atoms, makes the framework expressive enough for modeling244

a heterogeneous team of robots. The use of temporal relations makes the framework expressive enough for encoding a wide245

class of collaborative tasks among the robots. Operations on tensors allow us to reason about multiple choices in role and task246

assignment. Tensor decomposition endows the framework with the capability of both dealing with missing information and247

discovering new knowledge through link prediction. In this section we aim to show another key attribute of the framework,248

namely, the capability of supporting inference for task assignment in communication denied situations.249

In this regard, we built a multi-robot system, composed of two UGVs and one UAV, within a Virtual Simulated Environment.250

This environment comprises two main software modules. First module is responsible of modeling the dynamics of the system251

through a physics engine. This engine is based on the well-known Bullet Physics Library68. First module also implements a layer252

of bi-directional interfaces which allows for the integration with the Robot Operating System (ROS)50. The second software253

module is responsible of interconnecting the main functionalities of the robots under consideration (e.g., mapping, planning and254

control), developed in ROS, with the physics engine, through these bi-directional interfaces. First module has been developed255
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FIGURE 9 Simulated rescue scenario. Buildings are accessible from either staircases, or from windows, or from holes in the
ceilings.

within the cross-platform V-REP69. First UGV is endowed with an arm for manipulating objects (see Figure 8(a)). Second256

UGV is equipped with a Pan-Tilt Unit with on top RGB-D camera sensor for dense 3D reconstruction (see Figure 8(b)). The257

UAV is endowed with a 2D laser range finder, mounted on a servomotor, on the bottom of the chassis for 3D scanning of the258

surrounding (see Figure 8(c)). These robots are deployed in a urban virtual environment simulating a disaster scenario. The259

scenario is composed of 9 buildings (see Figure 9). Some of them are only accessible from a staircase. Others are accessible only260

from windows since we suitably simulated doors blocked at the ground floors. In others, it can be possible to enter only from261

holes in the roof caused by the collapse. Referred to the scenario in Figure 9, buildings A, C, E, F, H and I are only accessible262

through staircases leading to the free doors of the ground floors. Building B is accessible through both the hole in the roof and263

a door at the first floor. This door has not been blocked. Similarly, building G, namely the church on the right of Figure 9), is264

accessible through both the holes in the roof and a door. However, this door has been blocked. Building D is accessible only265

via its windows. The goal of the mission is to ensure that each building has been visited at least once by at least a robot of the266

team. A graph-based topological representation of the virtual environment is provided to all the robots70,71. We simulate the267

presence of a communication channel through which robots can exchange information about the buildings yet to be visited as268

well as those already explored. A building is considered explored if a robot visited the node of the topological graph associated269

with that building. We also simulate events which resemble in the virtual environment, the deterioration of the channel, up to270

deny the communication between a robot and the rest of the team.271

For the purpose of this experiment, we modeled this team of robots with the following MDRS

1 ∶
K1 = 4, Σ1 = {Robot, Process, Stimulus},

R1(⋅, ⋅, ⋅, ⋅)
def
= Switch(⋅, ⋅, ⋅, ⋅),

C1,Robot = {UGV1,UGV2,UAV1}, C1,Process = {grasping,moving,…} and
C1,Stimulus = {elapsed time,battery low,missing information,…}
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2 ∶
K2 = 4, Σ2 = {Robot, Stimulus, Process},

R2(⋅, ⋅, ⋅)
def
= Inhibition(⋅, ⋅, ⋅),

C2,Robot = {UGV1,UGV2,UAV1}, C2,Process = {climbing,flying,…} and
C1,Stimulus = {wifi connecton lost,subtrack failure,…}

3 ∶

K3 = 2, Σ3 = {Robot, Process}, R3(⋅, ⋅)
def
= Process(⋅, ⋅),

C3,Robot = {UGV1,UGV2,UAV1} and C3,Process = {track,explore,…}.

4 ∶

K4 = 2, Σ4 = {Robot, Process}, R4(⋅, ⋅)
def
= FailProcess(⋅, ⋅),

C4,Robot = {UGV1,UGV2,UAV1} and C4,Process = {adapt,pick up,…}.

5 ∶

K5 = 2, Σ5 = {Robot, Process}, R5(⋅, ⋅)
def
= SuccProcess(⋅, ⋅),

C5,Robot = {UGV1,UGV2,UAV1} and C5,Process = {fly,climb,compute,tracking,….

6 ∶
K6 = 4, Σ6 = {Robot, Object},

R6(⋅, ⋅, ⋅, ⋅)
def
= SendProcess(⋅, ⋅, ⋅, ⋅),

C6,Robot = {UGV1,UGV2,UAV1},
C6,Object = {base0,buildingA,buildingB,map0,map1,door2,stair4,…}

7 ∶
K7 = 4, Σ7 = {Robot, Object},

R7(⋅, ⋅, ⋅, ⋅)
def
= RequestProcess(⋅, ⋅, ⋅, ⋅),

C7,Robot = {UGV1,UGV2,UAV1},
C7,Object = {base0,buildingA,buildingB,buildingC,buildingD,…}

8 ∶

K8 = 4, Σ8 = {Robot, Process}, R8(⋅, ⋅, ⋅, ⋅)
def
= Before(⋅, ⋅, ⋅, ⋅),

C8,Robot = {UGV1,UGV2,UAV1} and C8,Process = {map, explore,acquire,…}.

At the beginning of the mission, we manually instructed the UGV endowed with the arm, named in the above MDRS UGV1,272

to explore the ground floor of building B. We instructed the UAV, encoded in the MDRS with UAV1 to enter into building D273

through a window in order to internally inspect the building. Finally, we manually instructed the UGV equipped with a Pan-Tilt274

RGB-D camera, represented in the framework by UGV2, to move inside building H. After this initial phase of bootstrapping,275

UGV1 successfully computed a path from its current position, represented by term base0 in the MDRS, to building B (encoded276

in the MDRS by the symbol buildingB) and started to execute it72. Similarly, both UGV2 and UAV1 started to move toward their277

own destination targets73,74. During the phase of climbing the stairs at the entrance of building B, trajectory tracking process75278

of UGV1 failed, causing the interruption of the task. Here, UGV1 has two possible choices: (1) recompute the path from its actual279

position to the target or (2) send a request of support to another robot. In order to show how the proposed framework handles280

collaborative tasks we forced UGV1 to select the second choice, namely ask for support. From the treebank we learned that UAV1281

built the map of a certain area before UGV1 explored that area. Moreover, we learnt that UGV1 requested the map of that area to282

UAV1 and that UAV1 sent this map to UGV1. On the other hand, from tensor decomposition we also have an estimate of this form283
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of collaboration between UGV1 and UGV2. Therefore, UGV1 knows that before exploring building B both UAV1 and UGV2 have to284

build the map of building B. In this regard, UGV1 has to take a decision concerning which robot has to be contacted in order to285

receive from it the map of building B. According to the estimates of this form of collaboration UGV1 chose UAV1. On the basis of286

this choice,UGV1 sent a request to UAV1, UAV1 flew over building B. Then UAV1 sent the map of the building to UGV1 which first287

integrated it with its ownmap of the area, then performed traversability analysis76 and, successively, re-stared to climb the stairs.288

In the meanwhile, UGV2 finished to explore building H and it was moving toward another node of the topological graph which289

has not been visited yes, namely that corresponding to building F. At this point of the mission we simulated an event which290

interrupted the communication between UGV2 and both UGV1 and UAV1. UGV1 and UAV1 only know that UGV2was moving toward291

building H, but they do not know the reason why UGV2 is not reachable on the communication channel. Moreover, they do not292

know whether UGV2 is still executing the task at hands or it has switched to another task. From the treebank we learnt that during293

a motion task UGV2might be elicited by several stimuli, such as wifi connecton lost, subtrack failure, battery low,294

tip over, etc. We also learnt the behavior of UGV2 in the case in which one of these stimuli occur. However, both UGV1 and295

UAV1 know neither which event occurred, causing the interruption of the communications with UGV2 nor which task is currently296

carrying on. That is the situation in which both the result of the tensors factorization and the mode-k operations on the tensors297

can be employed for estimating the current status of UGV2. Indeed, by suitably extracting the one-dimensional fragments of the298

tensors Y1 and Y2, associated with the multi-dimensional structures 1 and 2, respectively, we can have an estimate of the299

kind of stimuli which occurred as well as the response behavior of UGV2 to these stimuli. In fact, these estimate tell us whether300

UGV2 shifted from the current task to another task and which task has been chosen due to the occurrence of a stimulus (and301

which stimulus occurred) or if the robot inhibited the stimulus (and which stimulus has been inhibited) to focus on the task302

at hand. After reasoning on these estimates we discover that the stimulus wifi connecton lost might be occurred and that303

UGV2 probably inhibited this stimulus to continue its current task, that is, explore building F. Note that if UGV2 had shifted to304

another task such as go back to the base station base0 then building F resulted to be not visited and a re-allocation of the task305

of either UGV1 or of UAV1 would had been needed in order to accomplish the goal of the mission.306

7 CONCLUSIONS307

In this work we proposed a framework capable of learning, from data reporting the situated history of the activities performed308

by a team of robots, a model of collaboration. From the data we extracted information about the relations linking the robots, the309

tasks and the content-dependent features of the collaborative tasks. This information is used to define both the set of symbols310

and terms of the many-sorted first-order language encoding multi-robot collaboration. This information is further used to learn311

the geometrical spaces underlying both individual and group task execution. The spaces are decomposed for obtaining the latent312

factors regulating the tasks of the robots. The decomposition is also used for dealing with the lack of information in the data313

as well as for discovering new forms of collaborations between robots, never encountered in the memorized task episodes.We314

demonstrated performance in simulation experiments by using a team of robots. In the future, we plan to demonstrate the315

usefulness of such a framework in different robotic domains or scenarios. In this context, more simulated experiments with316

different environments are needed. Finally, the impact of this framework will be measured.317
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APPENDIX464

A APPENDICES465

A.1 The formal system underlying the Multi-Robot collaboration Treebank466

The formal system FS used for annotating the statements in the Multi-robot collaboration treebank, introduced in Section 3 is467

composed of468

• a finite setNT of non-terminal symbols;469

• a finite set T of terminal symbols;470

• a finite set P of production rules of the form →�, with ∈NT and �∈NT∪T ;471

• the symbol S∈NT used to represent the whole statement;472

Both Table A1 and Table A2 report the description of each non-terminal symbol of NT . Given the definition of all possible473

non-terminal symbols of the formal system FS, the production rules of P have been constructed as follows. A statement (S)474

can consist of either an atomic process phrase or of a temporal task phrase, or of a shifting-inhibition phrase or of an atomic475

process execution state phrase. An atomic process phrase is composed of a robot phrase (RP) and a process phrase (PP). A robot476
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TABLE A1 Description of the setNT of non-terminal symbols

Symbol Description

APP atomic process phrase
TTP temporal task phrase
RP robot phrase
PP process phrase
RobotNoun robot noun
RobotID robot identifier
Process process
TP target phrase
OP object phrase
SDSpaP source-destination spatial phrase
DP destination phrase
ObjNoun object noun
ObjectID object identifier
SourceParticle source particle
DestinationParticle destination particle
SpecP specification phrase
SpaP spatial phrase
IntP interaction phrase
SpecParticle specification particle
RelP relational phrase
SimSpaRel simple spatial relation
RecP receiver phrase
IntParticle interaction particle
TCP temporal constraint phrase

phrase is composed of a robot noun (RobotNoun) followed by a robot identifier (RobotID). A process phrase is composed of477

a process (Process) followed by a target phrase (TP). A target phrase can simply comprise either an object phrase (OP) or a478

source-destination spatial phrase (SDSpaP). It can also be composed of an object phrase (OP) followed by a destination phrase479

(DP).480

An object phrase can be specified by either a robot phrase or by an object noun (ObjNoun) followed by an object identifier481

(ObjectID). A source-destination spatial phrase comprises a source particle (SourceParticle) followed by an object phrase,482

followed by a destination particle (DestinationParticle), followed by another object phrase.483

A destination phrase can be composed of either a specification phrase (SpecP) or of a spatial phrase (SpaP) or of an interaction
phrase (IntP). A specification phrase is composed of a specification particle (SpecParticle) followed by an object phrase.
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TABLE A2 Description of the setNT of non-terminal symbols

Symbol Description

TCO temporal constrain operator
SIP shifting-inhibition phrase
APESP atomic process execution state phrase
SwitchP switching phrase
InhibitP inhibition phrase
SwitchProcess switching process
SwitchRelP switching relation process
CPP current process phase
NPP new process phrase
CSP causal stimulus phrase
PartPP participle process phrase
PartProcess participle process
CSParticle causal stimulus particle
StimulusP stimulus phrase
SNoun stimulus noun
InhibitProcess inhibition process
InhibitRelP inhibition relation process
InhibitConjP inhibition conjunction phrase
Conj conjunction
SSEP success state execution phrase
FSEP failure state execution phrase
SuccessProcess success process
FailProcess failure process

According to this initial specification, the following production rules are included into the formal system

S → APP | TTP | SIP | APESP (A1)
APP → RP PP (A2)
RP → RobotNoun RobotID (A3)
PP → Process TP (A4)
TP → OP (A5)
TP → SDSpaP (A6)
TP → OP DP (A7)
OP → RP (A8)
OP → ObjNoun ObjectID (A9)

SDSpaP → SourceParticle OP DestinationParticle OP (A10)
DP → SpecP | SpaP | IntP (A11)

SpecP → SpecParticle OP (A12)

Given the set of production rules in (A1)-(A12), we can build syntactic trees of statements admitted in the treebank, as those484

illustrated in Figure A1.485

A spatial phrase can be composed of either a relational phrase (RelP) or of relational phrase followed by a spatial phrase or
of a source-destination spatial phrase. A relational phrase is composed of a simple spatial relation (SimSpaRel) followed by an
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(a) S ∶ Robot r1 acquired image i3 of area a1

(b) S ∶ Robot r3 held handle h1 of door d5

FIGURE A1 Syntactic trees of statements on the basis of production rules in (A1)-(A12).

object phrase. The corresponding production rules are as follows

SpaP → RelP (A13)
SpaP → RelP SpaP (A14)
RelP → SimSpaRel OP (A15)
SpaP → SDSpaP (A16)

Rules (A13)-(A16) have been suitably defined for aligning statements describing both robot manipulation tasks and robot486

motions from a starting to an ending position. Syntactic trees of such statements are illustrated in Figure 2(a), Section 3, and in487

Figure A2.488

An interaction phrase is composed of either a receiver phrase (RecP) or of a receiver phrase preceded by a specification phrase.
A receiver phrase is defined by an interaction particle (IntParticle) and a robot phrase. Therefore, the following rules are
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FIGUREA2 Syntactic tree of the statement S ∶Robot r1 computed path p10 from area a3 to area a6, aligned with the production
rules in (A13)-(A16).

FIGURE A3 Syntactic tree of statement S ∶ Robot r3 sent map m8 of area a5 to robot r1, on the basis of production rules in
(A17)-(A19).

added into the system

IntP → RecP (A17)
IntP → SpecP RecP (A18)
RecP → IntParticle RP (A19)

Rules (A17)-(A19) model statements specifying a preliminary form of collaboration such as information dispatching with or489

without prepositions. An example of these forms of collaboration is shown in Figure A3.490

Note that, rules (A13)-(A16) can be also recursively expanded to align statements specifying forms of coordination among491

robots, in particular, in motion tasks, as illustrated in Figure A4.492

Finally, a temporal task phrase (TTP) is composed of either an atomic process phrase or of an atomic process phrase followed
by a temporal constraint phrase (TCP). A temporal constraint phrase consists of a temporal constraint operator (TCO) and a
temporal task phrase. According to this definition, the following set of production rules is added to the system

TTP → APP (A20)
TTP → APP TCP (A21)
TCP → TCO TTP (A22)
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FIGURE A4 Syntactic trees of statement S ∶ Robot r3 followed robot r5 along corridor c9, on the basis of production rules in
(A13)-(A16).

ObjectID 

object 

ObjNoun 

S 

APP 

PP RP 

RobotNoun RobotID Process TP 

OP  DP Robot r4 picked up 

o5 

SpaP 

RelP 
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inside 
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container 
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TTP 

TCP 

ObjectID 

lid 

ObjNoun 

APP 

PP RP 
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SpecP 

SpecParticle 

of 
ObjectID 

container 
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OP 
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after 

FIGURE A5 Syntactic tree of the statement S ∶ Robot r3 requested map m22 of area a7 to robot r2 before robot r3 computed
path p61 from area a11 to area a7, aligned according to production rules in (A20)-(A22).

Recursive rules (A20)-(A22) align statements describing a wide class of complex tasks, performed by a group of robots under493

collaboration. Each collaborative task is a composition of individual robot tasks linked by a temporal constraint. Examples of494

syntactic trees of statements expressing complex collaborative tasks are shown in Figure 3, Section 3, and in Figure A5.495

A shifting-inhibition phrase (SIP) is composed of either a robot phrase followed by a switching phrase (SwitchP) or of a robot
phrase followed by an inhibition phrase (InhibitP). A switching phrase is composed of a switching process (SwitchProcess)
followed by a switching relation process (SwitchRelP). A switching relation process is composed of a current process phase
(CPP) followed by a new process phrase (NPP) followed by a causal stimulus phrase (CSP). A current process phase is composed
of a source particle followed by a participle process phase (PartPP). A participle process phase is specified by a participle
process (PartProcess) followed by a target phrase. A new process phrase is composed of a destination particle followed by
a participle process phase. Finally, a causal stimulus phrase is defined by a causal stimulus particle (CSParticle) followed
by a stimulus phrase (StimulusP). A stimulus phrase can be composed of either a stimulus noun (SNoun) or of a stimulus
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StimulusP 
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SNoun 
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FIGURE A6 Syntactic tree of the statement S ∶ Robot r5 inhibited wifi connection lost while moving from area a37 to area a51
according to production rules in (A23)-(A35).

noun followed by a stimulus phrase. An inhibition phrase is composed of an inhibition process (InhibitProcess) followed
by an inhibition relation process (InhibitRelP). An inhibition relation process is composed of a stimulus phrase followed by
a inhibition conjunction phrase (InhibitConjP). This is composed of a conjunction (Conj) followed by a participle process
phase. On the basis of the above specification the formal system includes the following production rules

SIP → RP SwitchP (A23)
SIP → RP InhibitP (A24)

SwitchP → SwitchProcess SwitchRelP (A25)
SwitchRelP → CPP NPP CSP (A26)

CPP → SourceParticle PartPP (A27)
PartPP → PartProcess TP (A28)

NPP → DestinationParticle PartPP (A29)
CSP → CSParticle StimulusP (A30)

StimulusP → SNoun (A31)
StimulusP → SNoun StimulusP (A32)
InhibitP → InhibitProcess InhibitRelP (A33)

InhibitRelP → StimulusP InhibitConjP (A34)
InhibitConjP → Conj PartPP (A35)

An example of syntactic trees of statements for task switching behaviors is illustrated in Figure 4(a), Section 3, and in Figure A6.496

An atomic process execution state phrase (APESP) is composed of either a robot phase followed by a success state execution
phase (SSEP) or of a robot phase followed by a failure state execution phase (FSEP). A success state execution phase is composed
of a success process (SuccProcess) followed by a participle process phase whilst a failure state execution phase is specified
by a failure process (FailProcess) followed by a participle process. The set of production rules annotating execution status
statements is defined as follows

APESP → RP SSEP (A36)
APESP → RP FSEP (A37)
SSEP → SuccProcess PartPP (A38)
FSEP → FailProcess PartPP (A39)

Examples of syntactic trees of statements produced by rules (A36)-(A39) are shown in Figure 4(b), Section 3, and in Figure A7.497
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FIGURE A7 Syntactic tree of the statement S ∶ Robot r2 failed grasping object o7 on table t11 according to production rules
in (A36)-(A39)

To conclude, the formal system is completed with a set of production rules generating the leafs of the syntactic trees. An
excerpt of these rules is described in the following

ObjNoun → image | area | door | handle | table | path | map (A40)
Process → acquired | requested | picked up | computed | sent (A41)

SimpSpaRel → on top of | behind | along | in front of | inside (A42)
TCO → before | during | equal | start | overlap | meet (A43)

SwitchProcess → switched (A44)
InhibitProcess → inhibited (A45)

PartProcess → exploring | moving | climbing | grasping (A46)
SuccProcess → completed (A47)
FailProcess → failed (A48)

The head of the production rules in (A40)-(A48) are in the set T of terminal symbols of FS.498
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