Faculty of Science and Engineering

School of Biological and Marine Sciences

2020-09

# Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development

Firth, Louise

http://hdl.handle.net/10026.1/15713

10.1111/1365-2664.13683 Journal of Applied Ecology Wiley

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

## 1 Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal

#### 2 development

- 3
- 4
- 5 L.B. Firth<sup>1</sup>, L. Airoldi<sup>2</sup>, F. Bulleri<sup>3</sup>, S. Challinor<sup>4</sup>, S.-Y. Chee<sup>5</sup>, A.J. Evans<sup>6</sup>, M.E. Hanley<sup>1</sup>, A.M.
- 6 Knights<sup>1</sup>, K.O'Shaughnessy<sup>1</sup>, R.C. Thompson<sup>1</sup>, S.J. Hawkins<sup>7,8</sup>
- 7
- 8 <sup>1</sup>School of Biological and Marine Sciences, University of Plymouth, UK
- 9 <sup>2</sup>Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Italy
- 10 <sup>3</sup>Dipartimento di Biologia, University of Pisa, Italy
- 11 <sup>4</sup>Green Room Environmental Consultancy Services Ltd, Exeter, UK
- 12 <sup>5</sup>Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Penang, Malaysia
- 13 <sup>6</sup>Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, UK
- 14 <sup>7</sup>The Marine Biological Association of the United Kingdom, UK
- <sup>15</sup> <sup>8</sup>School of Ocean and Earth Science, University of Southampton, UK
- 16
- 17 Corresponding author: L.B. Firth, School of Biological and Marine Sciences, University of
- 18 Plymouth, UK, <a href="mailto:louise.firth@plymouth.ac.uk">louise.firth@plymouth.ac.uk</a>
- 19
- 20

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

21

22

## 23 ABSTRACT

- Climate change and coastal urbanisation are driving the replacement of natural
   habitats with artificial structures and reclaimed land globally. These novel habitats
   are often poor surrogates for natural habitats.
- 27 2. The application of integrated greening of grey infrastructure (IGGI) to artificial
- 28 shorelines demonstrates how multifunctional structures can provide biodiversity
- 29 benefits whilst simultaneously serving their primary engineering function. IGGI is
- 30 being embraced globally, despite many knowledge gaps and limitations. It is a
- 31 management tool to compensate anthropogenic impacts as part of the Mitigation
- 32 Hierarchy. There is considerable scope for misuse and 'greenwashing' however, by
- 33 making new developments appear more acceptable, thus facilitating the regulatory
- 34 process.
- We encourage researchers to exercise caution when reporting on small-scale
   experimental trials. We advocate that greater attention is paid to when experiments
   'fail' or yield unintended outcomes. We advise revisiting, repeating and expanding
   on experiments to test responses over broader spatio-temporal scales to improve
   the evidence base.
- 4. Synthesis and applications. Where societal and economic demand makes
   41 development inevitable, particular attention should be paid to avoiding, minimising
   42 and rehabilitating environmental impacts. Integrated greening of grey infrastructure

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 43 |      | (IGGI) should be implemented as partial compensation for environmental damage.        |
|----|------|---------------------------------------------------------------------------------------|
| 44 |      | Mutual benefits for both humans and nature can be achieved when IGGI is               |
| 45 |      | implemented retrospectively in previously-developed or degraded environments.         |
| 46 |      | We caution however, that any promise of net biodiversity gain from new                |
| 47 |      | developments should be scrutinised and any local ecological benefits set in the       |
| 48 |      | context of the wider environmental impacts. A 'greened' development will always       |
| 49 |      | impinge on natural systems, a reality that is much less recognised in the sea than on |
| 50 |      | land.                                                                                 |
| 51 |      |                                                                                       |
| 52 | RESU | MEN                                                                                   |
| 53 | 1.   | Cambio climático y urbanización costera están causando el reemplazo de hábitats       |
| 54 |      | naturales con estructuras artificiales y aprovechamiento del territorio a nivel       |
| 55 |      | mundial. Estos nuevos hábitats a menudo son sustitutos pobres de los hábitats         |
| 56 |      | naturales.                                                                            |
| 57 | 2.   | La aplicación de 'Integrated greening of grey infrastructure' (IGGI) a costas         |
| 58 |      | artificiales, demuestra como estructuras multifuncionales pueden proporcionar         |
| 59 |      | beneficios a la biodiversidad mientras cumplen simultáneamente su función             |
| 60 |      | principal. IGGI está siendo adoptada a nivel mundial, a pesar de un gran deficit en   |
| 61 |      | nuestro conocimiento en cuanto a su efectifidad. Es una herramienta de gestión para   |
| 62 |      | compensar los impactos antropogénicos, usada como parte de la Jerarquía de            |
| 63 |      | Mitigación. Sin embargo, existe un margen considerable para que sea usada de          |

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 64       |    | forma inapropiada y como 'ecoblanqueamiento', hacienda que los nuevos                  |
|----------|----|----------------------------------------------------------------------------------------|
| 65       |    | explotaciones parezcan más aceptables, lo que facilita el proceso de regulación.       |
| 66       | 3. | Animamos a los investigadores a tener precaución al informar sobre pruebas             |
| 67       |    | experimentales desarrolladas a pequeña-escala. Recomendamos que se preste              |
| 68       |    | mayor atención cuando los experimentos 'fallan' o producen resultados no               |
| 69       |    | deseados. Recomendamos revisar, repetir y ampliar los experimentos para evaluar        |
| 70       |    | las respuestas en escalas espacio-temporales más amplias para mejorar la base          |
| 71       |    | empirica.                                                                              |
| 72       | 4. | Síntesis y aplicaciones. Donde la demanda social y económica hace que el desarrollo    |
| 73       |    | sea inevitable, se debe prestar especial atención a evitar, minimizar y rehabilitar el |
| 74       |    | impacto ambiental. IGGI debe implementarse como compensación parcial por los           |
| 75       |    | daños ambientales. Se pueden lograr beneficios mutuos para los humanos y la            |
| 76       |    | naturaleza cuando IGGI se implementa retrospectivamente en entornos                    |
| 77       |    | previamente-desarrollados o degradados. Sin embargo, advertimos que cualquier          |
| 78       |    | promesa de ganancia neta de biodiversidad a partir de nuevos desarrollos debe ser      |
| 79       |    | analizada a fondo y cualquier beneficio ecológico local debe establecerse en el        |
| 80       |    | contexto de los impactos ambientales más amplios. Un desarrollo 'ecológico'            |
| 81       |    | siempre afectará a los ecosistemas naturales, una realidad que es mucho menos          |
| 82       |    | reconocida en el mar que en la tierra.                                                 |
| 83<br>84 |    |                                                                                        |
| 85       |    |                                                                                        |

85

86 KEYWORDS

Firth LB, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. DOI: 10.1111/(ISSN)1365-2664

- 87 biodiversity offsetting, dual-use dilemma, environmental damage, marine planning,
- mitigation hierarchy, novel ecosystem, sustainable development, Integrated greening of 88

89 grey infrastructure

90

# 91 Greening of the grey: making space for nature in the marine built environment 92 Climate change and urbanisation is driving 'artificialisation' of the global coastline (Fig. 1, 93 Firth et al., 2016). Artificial structures that support human activities (e.g. seawalls, 94 breakwaters, artificial islands) are replacing natural habitats with myriad negative environmental impacts (Dafforn et al., 2015; Airoldi et al. 2021). The resultant marine built 95 96 environments have been likened to 'novel ecosystems' (Bulleri et al., 2020) because they 97 have been deflected irrevocably from their historical trajectories. The novel ecosystem 98 concept has generated intense debate with some arguing that it is an inevitable, and even 99 necessary consequence of the challenges and opportunities facing conservationists (Perring 100 et al., 2013), and others claiming that it provides a 'license to trash' nature for prospective developments (Murcia et al., 2014). 101

102

Integrated Greening of Grey Infrastructure (IGGI) is a new conservation strategy that 103 104 involves biodiversity enhancement of hard infrastructure that cannot be replaced with 105 green solutions (Naylor et al., 2017). In an effort to promote more sustainable marine built 106 environments, IGGI is being used to improve multifunctionality; in particular the ecological 107 value of hard infrastructure. The field has flourished recently (Strain et al., 2018), with many successful examples emerging (see O'Shaughnessy et al., 2020 for review). It remains a 108

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 109 | comparatively young science, however, and has not been subject to the long-term                |
|-----|------------------------------------------------------------------------------------------------|
| 110 | experimentation, implementation and critical evaluation that is necessary before being         |
| 111 | considered a mainstream solution. Nevertheless, governmental agencies and planning             |
| 112 | authorities are recommending and implementing IGGI as compensation for environmental           |
| 113 | damage caused by new developments (Dafforn et al., 2015; Evans et al., 2019).                  |
| 114 |                                                                                                |
| 115 | IGGI raises some challenging ethical considerations. Whilst it aims to promote biodiversity    |
| 116 | and ecosystem services enhancement, there is scope for it to be misused for greenwashing       |
| 117 | purposes. Through enabling new coastal developments to be viewed more favourably by            |
| 118 | regulators and the public, this potentially facilitates the regulatory process and increases   |
| 119 | likelihood of consent (Rijks et al., 2015); the "dual-use dilemma", where science can be used  |
| 120 | for good or bad (Miller & Selgelid, 2007). We discuss the potential for IGGI to be misused for |
| 121 | greenwashing. Specifically, we explore three topics central to this debate: (1) What are the   |
| 122 | arguments for and against IGGI; (2) what is the scope for greenwashing; and (3) where are      |
| 123 | the opportunities and risks? Additionally, we identify knowledge gaps and research             |
| 124 | priorities that will lead to improved understanding of the future role of IGGI.                |
| 125 |                                                                                                |

## 126 Arguments for/against IGGI

127 The very concept of sustainable development demands implementation of IGGI. The
128 *Mitigation Hierarchy* has emerged as a best-practice framework for achieving sustainable
129 development (CSBI, 2015). Practitioners seek to limit negative impacts on biodiversity
130 through a series of steps: avoid, minimise, restore/rehabilitate, and compensate.

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 131 | Compensation is intended as a last resort for developers seeking to compensate for             |
|-----|------------------------------------------------------------------------------------------------|
| 132 | unavoidable damage, after having applied all other stages. The goal is to achieve no net loss  |
| 133 | in terms of biodiversity and increasingly, net gain. As developments are typically permanent,  |
| 134 | the ensuing habitat loss can only be compensated and not mitigated (Elliott & Cutts, 2004).    |
| 135 |                                                                                                |
| 136 | Biodiversity offsetting (hereafter offsetting) is an increasingly popular compensation         |
| 137 | approach (Biodiversity Consultancy, 2017), offering (arguably) potentially powerful ways of    |
| 138 | balancing conservation and development. Offsetting has been criticised because                 |
| 139 | quantitative decision-making guidelines are lacking, ecological equivalence regulations are    |
| 140 | being relaxed, many offsets fall short of their goals; and there is concern that offsets could |
| 141 | be used as a "licence to trash nature" by making development projects appear more              |
| 142 | acceptable (McKenney & Kieseker, 2010). If applied as part of the Mitigation Hierarchy as      |
| 143 | compensation for environmental damage, IGGI could represent a form of offsetting, and          |
| 144 | much can be learnt from the criticisms of it.                                                  |
| 145 |                                                                                                |
| 146 | The emerging field of IGGI in the marine environment is producing numerous examples of         |
| 147 | multifunctional structures yielding multiple biodiversity benefits. This has been achieved     |
| 148 | through myriad techniques, including manipulating building materials composition, building     |
| 149 | in topographic complexity and transplanting organisms directly onto substrata (see             |
| 150 | O'Shaughnessy et al. 2020 for review). To date, much of this has been done by the research     |
| 151 | community on experimental scales and has typically been applied retrospectively to existing    |
| 152 | artificial structures. Despite the many possible ecological benefits of IGGI, limitations and  |

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 153 | knowledge gaps remain. All experiments have the potential to be oversold, fail, or yield            |
|-----|-----------------------------------------------------------------------------------------------------|
| 154 | unintended outcomes (Fig. 2, Chapman & Underwood, 2011). IGGI has typically been                    |
| 155 | implemented over limited spatio-temporal scales, with bias towards intertidal and                   |
| 156 | temperate systems (Strain et al., 2018). Often benefits are measured for species, habitats or       |
| 157 | processes that are not those originally impacted or lost. The goal is typically to encourage        |
| 158 | colonisation of native species, but responses are unpredictable, particularly under future          |
| 159 | climate scenarios. 'Success' is typically assessed using ecological metrics (e.g. species           |
| 160 | richness) or probability tests which have already proven to be inefficient for assessment of        |
| 161 | restoration success (Palmer & Filoso, 2009). Little is known about the role of multifunctional      |
| 162 | structures in facilitating the spread of pathogens and non-native species (Firth et al., 2016).     |
| 163 | Indeed, they may function as ecological traps (reducing fitness of colonising organisms) or         |
| 164 | environmental filters; leading to biotic and functional homogenisation (McKinney, 2006).            |
| 165 | There remains a dearth of large demonstration tests that show how interventions will                |
| 166 | perform when scaled-up operationally in 'real' developments (Evans et al., 2019).                   |
| 167 |                                                                                                     |
| 168 | Seattle, USA and Sydney, Australia have pioneered the implementation of IGGI at                     |
| 169 | ecologically-relevant scales through large-scale urban regeneration (Toft et al., 2013). The        |
| 170 | incorporation of IGGI in redevelopment/regeneration projects represents a win-win or                |
| 171 | 'laurel wreath', with measurable benefits for humans and nature. The promise of making              |
| 172 | space for nature in new developments that involve breaking ground in natural                        |
| 173 | environments, or through land reclamation is much more limited. Not only could the                  |
| 174 | practice of IGGI be viewed as a ' <i>fig leaf</i> '; covering up the environmental damage caused by |

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

- the development; but if used prospectively to gain consent on the development, it could be
- 176 viewed as a '*Trojan Horse*'; deliberate strategy causing environmental damage.
- 177
- 178 What is the scope for greenwashing?

179 We are increasingly hearing consultants, developers and local authorities discussing how

- 180 implementing IGGI can expedite, facilitate and reduce costs of regulatory processes.
- 181 Through implementation of the Mitigation Hierarchy there is a clear incentive for
- 182 implementing IGGI. Artificial reefs (analogous to IGGI), have long been deployed as
- 183 compensation for habitat loss associated with coastal development. Unlike IGGI, artificial
- 184 reefs have been subject to criticism (Baine, 2001). Here, we draw on the lessons learnt from
- 185 artificial reefs to illustrate how IGGI could potentially be misused for greenwashing.
- 186

187 All artificial structures have the capacity to function as 'artificial reefs' as they inevitably provide habitat and refuge for marine life. The word "reef" often conjures up images of 188 healthy, diverse biological communities; and may be more acceptable or appealing to 189 developers than sedimentary habitats that may be perceived as "barren". For instance, the 190 191 developers of the Palm Jumeirah artificial island, Dubai claim that not only is this the 192 'world's largest artificial reef', but that the construction of The World artificial island 193 development actually 'improved the quality of the seawater surrounding the islands' in 194 comparison to that tested along the shoreline of Dubai (Nakheel, 2018). Although the 195 breakwaters do support diverse marine life, the new communities differ greatly from natural reefs (Burt et al., 2013). We view this example as a fig leaf; covering up the damage 196

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 197 | caused by the construction of the island on sedimentary and coral reef habitats (Burt et al., |
|-----|-----------------------------------------------------------------------------------------------|
| 198 | 2008). Some planned artificial reefs are even more pernicious. Whilst some proponents         |
| 199 | argue that artificial reefs are prudent recycling projects creating valuable fisheries for    |
| 200 | recreation, many artificial reefs are merely disguised ocean dumping (Fig. 1b). We view such  |
| 201 | examples as Trojan Horses which may be the result of either wilful or misguided intent to     |
| 202 | dispose of material at sea.                                                                   |

203

204 It has long been recognised that oil platforms support diverse marine life and they have 205 been likened to novel ecosystems (van Elden et al., 2019). The decommissioning of rigs to 206 become artificial reefs (Rigs-to-reefs) is common practice in the Gulf of Mexico, saving the industry millions of dollars in removal costs. Claisse et al. (2014) reported that Californian 207 208 platforms supported the highest secondary production in marine habitats globally. The 209 standard unit was seafloor surface area, which did not consider the vertical nature of the 210 structures. Media outputs had irresponsible headlines like "why abandoned oil-rigs are better than coral reefs" (Global Citizen, 2018). Assertions that artificial structures support 211 better fisheries than natural habitats, may prospectively cause environmental damage 212 213 through influencing governments to relax regulations or develop policies (e.g. US National 214 Fishing Enhancement Act, BSEE, 2018) which may play a role in facilitating the proliferation 215 of oil platforms and further environmental damage. These structures will inevitably 216 degrade, potentially losing their reef functions and causing pollution. This highlights the 217 importance of full life-cycle-analysis for all marine artificial structures. Whilst we do not question the integrity of scientists in honestly reporting data as they see them, there is 218

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

nonetheless, obvious potential for misrepresentation by the media and misuse by theindustry (Macura et al., 2019).

221

Arguably, there is already evidence for greenwashing with megaprojects. For instance, an 222 223 online search using the term 'artificial islands' reveals myriad futuristic utopian paradises 224 where people can live and play in newly-urbanised, eco-friendly island cities and resorts. 225 Whilst these projects may have impressive ecological designs, they are all constructed on 226 reclaimed land, and any biodiversity benefits must be viewed in the context of the wider 227 environmental damage caused by the construction. 228 Furthermore, with global coastal artificialisation, it is inevitable that perceptions about what 229 230 is acceptable is becoming normalised towards the degraded/artificial through shifting 231 baseline syndrome (Pauly 1995; Strain et al., 2019). Not only are we accustomed to heavily 232 modified coastal environments, but the public often prefer the aesthetics of a neat seawall to a natural shoreline. This preference can be driven by perceived 'ecosystem disservices' 233 234 that are associated with natural wetlands; mangroves in particular are associated with 235 darkness and disease (Freiss, 2016). One of the most insidious environmental threats is perhaps that the artificial legacy left behind by current coastal developments will re-position 236 237 baseline perceptions and standards for future generations. 238

239 Where do the opportunities lie?

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 240                             | IGGI can easily be applied retrospectively to existing coastlines to enhance ecological                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 241                             | functioning and ecosystem services. This is particularly true for large projects that can apply                                                                                                                                                                                                                                                                                                                                                                        |
| 242                             | hybrid approaches combining hard engineered structures with rehabilitation of pre-existing                                                                                                                                                                                                                                                                                                                                                                             |
| 243                             | biogenic habitats (Morris et al., 2018). For example, the global restoration of native oysters                                                                                                                                                                                                                                                                                                                                                                         |
| 244                             | is yielding many success stories, even in highly urbanised areas. In New York, the Billion                                                                                                                                                                                                                                                                                                                                                                             |
| 245                             | Oyster Project (www.billionoysterproject.org) is using artificial structures (e.g. bulkheads,                                                                                                                                                                                                                                                                                                                                                                          |
| 246                             | gabions) to install oysters with widespread success. Such regeneration/rehabilitation                                                                                                                                                                                                                                                                                                                                                                                  |
| 247                             | projects represent 'laurel wreaths'; win-win for both humans and nature.                                                                                                                                                                                                                                                                                                                                                                                               |
| 248                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 249                             | Many megadevelopments are being built with little or no consideration for nature. For                                                                                                                                                                                                                                                                                                                                                                                  |
| 249<br>250                      | Many megadevelopments are being built with little or no consideration for nature. For instance, Penang Island, Malaysia is experiencing rapid economic and population growth;                                                                                                                                                                                                                                                                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 250                             | instance, Penang Island, Malaysia is experiencing rapid economic and population growth;                                                                                                                                                                                                                                                                                                                                                                                |
| 250<br>251                      | instance, Penang Island, Malaysia is experiencing rapid economic and population growth;<br>driving large-scale land reclamation and artificial island construction (Chee et al., 2017).                                                                                                                                                                                                                                                                                |
| 250<br>251<br>252               | instance, Penang Island, Malaysia is experiencing rapid economic and population growth;<br>driving large-scale land reclamation and artificial island construction (Chee et al., 2017).<br>Where a project has been consented (and therefore IGGI has not facilitated the process),                                                                                                                                                                                    |
| 250<br>251<br>252<br>253        | instance, Penang Island, Malaysia is experiencing rapid economic and population growth;<br>driving large-scale land reclamation and artificial island construction (Chee et al., 2017).<br>Where a project has been consented (and therefore IGGI has not facilitated the process),<br>arguably opportunities abound for implementing operational-scale IGGI, including hybrid                                                                                         |
| 250<br>251<br>252<br>253<br>254 | instance, Penang Island, Malaysia is experiencing rapid economic and population growth;<br>driving large-scale land reclamation and artificial island construction (Chee et al., 2017).<br>Where a project has been consented (and therefore IGGI has not facilitated the process),<br>arguably opportunities abound for implementing operational-scale IGGI, including hybrid<br>approaches. Where such projects emerge, researchers, engineers and local authorities |

#### 258 Where are the places that are most at risk in the future?

Over the last 30 years, Asia and the Middle East have experienced the greatest population
and urban growth (United Nations, 2017). Coincidentally, many of these (e.g. United Arab
Emirates, Qatar) have constructed some of the most ambitious and iconic land reclamation

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 262 | projects (Fig. 3), yet few have biodiversity offsetting policies (Biodiversity Consultancy,      |
|-----|--------------------------------------------------------------------------------------------------|
| 263 | 2017). While controversial, the implementation of offsetting at least gives some indication      |
| 264 | of willingness to compensate environmental damage. Of the top 50 countries expected to           |
| 265 | experience the fastest population growth from 2020-2100, 86% are African; 72% of which           |
| 266 | are coastal (United Nations, 2017). Many of these countries are characterised by some of         |
| 267 | the largest remaining stretches of 'unaltered' coastlines (Firth et al., 2016), but with limited |
| 268 | environmental protection policies (Biodiversity Consultancy, 2017). Whilst                       |
| 269 | megadevelopments continue apace in Asia and the Middle East, arguably, these African             |
| 270 | countries are the most vulnerable to future habitat loss and megadevelopment.                    |
| 271 |                                                                                                  |
| 272 | Moving forward, what can be done?                                                                |
| 273 | Whilst it is impossible for scientists to prevent their science being used for harm, there are a |
| 274 | number of things that they can do to improve the science and to reduce the risk of such          |
| 275 | practice. The majority of IGGI projects have been conducted in few locations, under              |
| 276 | particular environmental conditions and over short timescales. These experiments should          |
| 277 | be revisited, repeated and expanded on (e.g. Hsiung et al. 2020) to improve the evidence         |
| 278 | base for policy development. The rise of the global research network (e.g.                       |
| 279 | www.worldharbourproject.org) represents a great platform for implementation of large-            |
| 280 | scale experiments and information sharing. Furthermore, the research and practice should         |
| 281 | move together in tandem. New developments and redevelopments should trial and                    |
| 282 | implement IGGI. Such projects will provide essential insight into how biological communities     |
| 283 | will respond at anthropogenically and ecologically relevant scales. The information gathered     |

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

- from such experiments should be collated in an evidence-based catalogue (Evans et al.,
- 285 2019) that is constantly updated and made available to policy makers and practitioners in a
- 286 globally available and accessible format such as Conservation Evidence
- 287 (www.conservationevidence.com).
- 288

289 We urge researchers to go beyond simple biodiversity measures and measure functional

responses and other biologically-meaningful responses (Perkins et al. 2015). Importantly,

this needs to go beyond simply comparing "like-with-like" reef habitats (which may not have

been the habitat that was lost), but should also develop ways of comparing pre-existing

293 sedimentary and new hard artificial habitats.

294

Finally, we advocate that greater attention is given to when experiments 'fail' or yield 295 296 unintended outcomes. Researchers should not be afraid to point out shortcomings and 297 limitations to ensure broader progress; and should be careful not to oversell short-term, localised experimental trials. In an age of Open Science, research 'impact', and "perverse 298 incentives and hypercompetition" in academia (Edwards & Roy 2017), now more than ever, 299 300 researchers must maintain standards and scientific integrity. It is important that researchers exercise nuance in the manner in which they communicate their findings, and that 301 302 developers, planners and decision-makers responsibly use the research-based knowledge available to them. Furthermore, the point above about failure and unintended outcomes 303 304 could also be extended to funders and publishers in particular. Publication bias, whereby studies reporting positive outcomes are more likely to be published and cited more, is 305

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 306 | particularly prevalent in the applied and biological sciences with implications for scientific  |
|-----|-------------------------------------------------------------------------------------------------|
| 307 | and social agendas (Fanelli, 2013). We urge that publishers actively encourage and promote      |
| 308 | null and negative results in an effort to reduce the risk from this potentially harmful         |
| 309 | practice.                                                                                       |
| 310 |                                                                                                 |
| 311 | Conclusions                                                                                     |
| 312 | The artificialisation of the global coastline is driving humanity to develop novel solutions to |
| 313 | halt biodiversity loss and enhance the marine built environment. Whilst IGGI has                |
| 314 | demonstrated real promise in experimental trials and redevelopment projects, there are          |
| 315 | many limitations and unknowns. Now is the time to have an open discussion about the risks       |
| 316 | and benefits of the practice.                                                                   |
| 317 |                                                                                                 |
| 318 | Acknowledgements                                                                                |
| 319 | LBF was supported by British Ecological Society (5546-6590) and Royal Society (IE150435).       |
| 320 | LBF, LA, MEH, RCT, SJH were supported by EU-FP7.2009-1 Contract 244104. LF, RCT, SJH            |
| 321 | were supported by Esmée Fairbairn Foundation. FB was supported by University of Pisa PRA        |
| 322 | 2017. AJE was supported by European Regional Development Fund Ireland-Wales                     |
| 323 | Cooperation Programme 2014-2020. Conversations between co-authors during the joint              |
| 324 | foresight/ECORES workshop (supported by Euromarine & World Harbour Project) inspired            |
| 325 | some content of this paper. Thanks to Gee Chapman for commenting on early drafts of this        |
| 326 | paper.                                                                                          |

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

### 328 Authors' contributions

- 329 LF conceived the concept following discussions with all authors. All authors contributed
- 330 critically to the drafts and gave final approval for publication.
- 331 Data availability statement
- 332 This article does not use data.
- 333

## 334 References

- Airoldi, L., Beck, M.W., Firth, L.B., Bugnot, A., Steinberg, P.A., Dafforn, K.A. (2021). Emerging
- 336 Solutions to Return Nature to the Urban Ocean. Annual Review of Marine Science, 13:X–X
- 337 <u>https://doi.org/10.1146/annurev-marine-032020-020015</u>
- 338
- Baine, M. (2001). Artificial reefs: a review of their design, application, management and
- 340 performance. Ocean & Coastal Management, 44, 241-259. doi:10.1016/S0964-
- 341 <u>5691(01)00048-5</u>
- 342
- Biodiversity Consultancy, (2017). <u>https://portals.iucn.org/offsetpolicy/</u>). 28/03/2019.
- 344
- 345 BSEE, Bureau of Safety and Environmental Enforcement (2018)
- 346 https://www.bsee.gov/what-we-do/environmental- focuses/rigs-to-reefs. 26/4/18

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 348 | Bulleri, F., Batten, S., Connell, S., Benedetti-Cecchi, L., Gibbons, M., Nugues, M.M. et al.       |
|-----|----------------------------------------------------------------------------------------------------|
| 349 | (2020). Human pressures and the emergence of novel marine ecosystems. Oceanography                 |
| 350 | and Marine Biology: an Annual Review. In press.                                                    |
| 351 |                                                                                                    |
| 352 | Burt, J., Bartholomew, A. & Usseglio, P. (2008). Recovery of corals a decade after a bleaching     |
| 353 | event in Dubai, United Arab Emirates. Marine Biology, 154, 27-36. doi:10.1007/s00227-007-          |
| 354 | 0892-9                                                                                             |
| 355 |                                                                                                    |
| 356 | Burt, J.A., Feary, D.A., Cavalcante, G., Bauman, A.G. & Usseglio, P. (2013). Urban                 |
| 357 | breakwaters as reef fish habitat in the Persian Gulf. Marine Pollution Bulletin, 72, 342-350.      |
| 358 | doi:10.1016/j.marpolbul.2012.10.019                                                                |
| 359 |                                                                                                    |
| 360 | Chee, S.Y., Othman, A.G., Sim, Y.K., Adam, A.N.M. & Firth, L.B. (2017). Land reclamation and       |
| 361 | artificial islands: Walking the tightrope between development and conservation. Global             |
| 362 | Ecology and Conservation, 12, 80-95. doi:10.1016/j.gecco.2017.08.005                               |
| 363 |                                                                                                    |
| 364 | Claisse, J.T., Pondella, D.J., Love, M., Zahn, L.A., Williams, C.M., Williams, J.P. et al. (2014). |
| 365 | Oil platforms off California are among the most productive marine fish habitats globally.          |
| 366 | Proceedings of the National Academy of Sciences USA, 111, 15462-15467.                             |
| 367 | doi:10.1073/pnas.141147711d                                                                        |
| 368 |                                                                                                    |

This is an accepted proof. **Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

- 369 CSBI, Cross Sector Biodiversity Initiative (2015). http://www.csbi.org.uk/our-
- 370 work/mitigation-hierarchy-guide/) 22/05/19.
- 371
- 372 Dafforn, K.A., Glasby, T.M., Airoldi, L., Rivero, N.K., Mayer-Pinto, M. & Johnston, E.L. (2015).
- 373 Marine urbanization: An ecological framework for designing multifunctional artificial
- 374 structures. Frontiers in Ecology and the Environment, 13, 82–90. doi:10.1890/140050
- 375
- 376 Edwards, M.A. & Roy, S. (2017). Academic research in the 21st century: Maintaining
- 377 scientific integrity in a climate of perverse incentives and hypercompetition. Environmental
- 378 Engineering Science, 34, 51-61. doi:10.1089/ees.2016.0223
- 379
- 380 Elliott, M. & Cutts, N.D. (2004). Marine habitats: loss and gain, mitigation and
- compensation. Marine Pollution Bulletin, 49, 671-674. Doi:10.1016/j.marpolbul.2004.08.018

- 383 Evans, A.J., Firth, L.B., Hawkins, S.J., Hall, A.E., Ironside, J.E., Thompson, R.C. et al. (2019).
- 384 From ocean sprawl to blue-green infrastructure–A UK perspective on an issue of global
- 385 significance. Environmental Science & Policy, 91, 60-69. doi:10.1016/j.envsci.2018.09.008
- 386
- 387 Fanelli, D. (2012). Positive results receive more citations, but only in some disciplines.
- 388 Scientometrics, 94, 701–709. doi:10.1007/s11192-012-0757-y
- 389

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 390 | Firth, L.B, Knights, A.M., Thompson, R.C., Mieszkowska, N., Bridger, D., Evans, A., et al.         |
|-----|----------------------------------------------------------------------------------------------------|
| 391 | (2016). Ocean sprawl: challenges and opportunities for biodiversity management in a                |
| 392 | changing world. Oceanography and Marine Biology: an Annual Review, 54, 193-269.                    |
| 393 |                                                                                                    |
| 394 | Firth, L.B., Thompson, R.C., Bohn, K., Abbiati, M., Airoldi, L., Bouma, T.J., et al. (2014).       |
| 395 | Between a rock and a hard place: environmental and engineering considerations when                 |
| 396 | designing coastal defence structures. Coastal Engineering, 87, 122-135.                            |
| 397 | doi:10.1016/j.coastaleng.2013.10.015                                                               |
| 398 |                                                                                                    |
| 399 | Friess, D. (2016). Ecosystem services and disservices of mangrove forests: insights from           |
| 400 | historical colonial observations. Forests, 7, 183. doi:10.3390/f7090183                            |
| 401 |                                                                                                    |
| 402 | Global Citizen (2016). https://www.globalcitizen.org/en/content/why-abandoned-oil-rigs-            |
| 403 | are-better-than-coral-reefs/). 2/2/2020                                                            |
| 404 |                                                                                                    |
| 405 | Hsiung, A.R., Tan, W.T., Loke, L.H.L., Firth, L.B., Heery, E.C., Ducker, J., Clark, V., Pek, Y.S., |
| 406 | Birch, W.R., Ang, A.C.F., Hartanto, R.S., Chai, T.M.F., Todd, P.A. (2020). Little evidence that    |
| 407 | lowering the pH of concrete supports greater biodiversity on tropical and temperate                |
| 408 | seawalls. Marine Ecology Progress Series. In Press                                                 |
| 400 |                                                                                                    |

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 410 | Macura, B., Byström, P., Airoldi, L., Eriksson, B.K., Rudstam, L., & Støttrup, J. (2019). Impact |
|-----|--------------------------------------------------------------------------------------------------|
| 411 | of structural habitat modifications in coastal temperate systems on fish recruitment: a          |
| 412 | systematic review. Environmental Evidence, 8, 1-22. doi:10.1186/s13750-019-0157-3                |
| 413 |                                                                                                  |
| 414 | McKenney, B.A., & Kiesecker, J.M. (2010). Policy development for biodiversity offsets: a         |
| 415 | review of offset frameworks. Environmental Management, 45, 165-176.                              |
| 416 | doi:10.1007/s00267-009-9396-3                                                                    |
| 417 |                                                                                                  |
| 418 | McKinney, M.L. (2006). Urbanization as a major cause of biotic homogenization. Biological        |
| 419 | Conservation, 127, 247-260. doi:10.1016/j.biocon.2005.09.005                                     |
| 420 |                                                                                                  |
| 421 | Miller, S., & Selgelid, M.J. (2007). Ethical and philosophical consideration of the dual-use     |
| 422 | dilemma in the biological sciences. Science and Engineering Ethics, 13, 523-580.                 |
| 423 | doi:10.1007/s11948-007-9043-4                                                                    |
| 424 |                                                                                                  |
| 425 | Morris, R.L., Konlechner, T.M., Ghisalberti, M., & Swearer, S.E. (2018). From grey to green:     |
| 426 | Efficacy of eco-engineering solutions for nature-based coastal defence. Global Change            |
| 427 | Biology, 24, 1827-1842. doi:10.1111/gcb.14063                                                    |
| 428 |                                                                                                  |
| 429 | Murcia, C., Aronson, J., Kattan, G.H., Moreno-Mateos, D., Dixon, K., & Simberloff, D. (2014).    |
| 430 | A critique of the 'novel ecosystem' concept. Trends in Ecology & Evolution, 29, 548-553.         |
| 431 | doi:10.1016/j.tree.2014.07.006                                                                   |

This is an accepted proof. **Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

432

433 Nakheel 2018. https://www.nakheel.com/en/environment/artificial-reefs.) 25/03/19

434

- 435 Naylor, L.A., Kippen, H., Coombes, M.A., et al. (2017). Greening the Grey: a framework for
- 436 integrated green grey Infrastructure (IGGI). <u>http://eprints.gla.ac.uk/150672/</u>

437

- 438 Palmer, M.A., & Filoso, S. (2009). Restoration of ecosystem services for environmental
- 439 markets. Science, 325, 575-576. doi:10.1126/science.1172976

440

- 441 Pauly, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. Trends in
- 442 Ecology & Evolution, 10, 430. doi:https://doi.org/10.1016/S0169-5347(00)89171-5

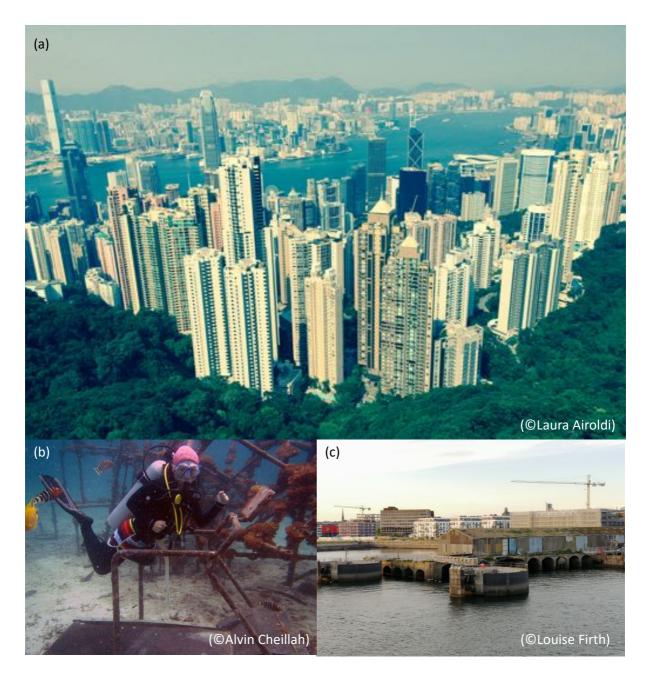
- 444 Perkins, M.J., Ng, T.P., Dudgeon, D., Bonebrake, T.C. and Leung, K.M. (2015). Conserving
- 445 intertidal habitats: what is the potential of ecological engineering to mitigate impacts of
- 446 coastal structures?. Estuarine, Coastal and Shelf Science, 167, 504-515.
- 447 doi:<u>https://doi.org/10.1016/j.ecss.2015.10.033</u>
- 448
- 449 Perring, M.P., Manning, P., Hobbs, R.J., Lugo, A.E., Ramalho, C.E., & Standish, R.J. (2013).
- 450 Novel urban ecosystems and ecosystem services. In R.J. Hobbs, E.S. Higgs & C. Hall (Eds.).
- 451 Novel ecosystems: intervening in the new ecological world order (pp.310-325). Chichester,
- 452 UK: Wiley-Blackwell.
- 453

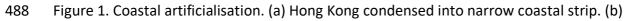
**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

- 454 Rijks, D.C., Aarninkhof, S.G.A., van Spreeken, A., & Legierse, E. (2015) Eco-engineering
- 455 opportunities for offshore marine infrastructure projects. Offshore Technology Conference.
- 456 doi:10.4043/26207-MS
- 457
- 458 Strain, E.M., Olabarria, C., Mayer-Pinto, M., Cumbo, V., Morris, R.L., Bugnot, A.B., et al.
- 459 (2018). Eco-engineering urban infrastructure for marine and coastal biodiversity: Which
- 460 interventions have the greatest ecological benefit?. Journal of Applied Ecology, 55, 426-441.
- 461 doi:10.1111/1365-2664.12961
- 462
- 463 Strain, E.M., Alexander, K.A., Kienker, S., Morris, R., Jarvis, R., Coleman, R., et al. (2019).
- 464 Urban blue: A global analysis of the factors shaping people's perceptions of the marine
- 465 environment and ecological engineering in harbours. Science of the Total Environment, 658,
- 466 1293-1305. doi:10.1016/j.scitotenv.2018.12.285

467

468 Toft, J.D., Ogston, A.S., Heerhartz, S.M., Cordell, J.R., & Flemer, E.E. (2013). Ecological


469 response and physical stability of habitat enhancements along an urban armored shoreline.


- 470 Ecological Engineering, 57, 97-108. <u>doi:10.1016/j.ecoleng.2013.04.022</u>
- 471
- 472 United Nations, (2017). <u>https://population.un.org/wpp/</u>) 2/02/20

This is an accepted proof. **Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

| 474 | van Elden, S., Meeuwig, J., Hemmi, J.M., & Hobbs, R. (2019). Offshore oil and gas platforms |
|-----|---------------------------------------------------------------------------------------------|
| 475 | as novel ecosystems: A global perspective. Frontiers in Marine Science, 6, p.548.           |
| 476 | doi:10.3389/fmars.2019.00548                                                                |
| 477 |                                                                                             |
| 478 |                                                                                             |
| 479 |                                                                                             |
| 480 |                                                                                             |
| 481 |                                                                                             |
| 482 |                                                                                             |
| 483 |                                                                                             |
| 484 |                                                                                             |
| 485 |                                                                                             |

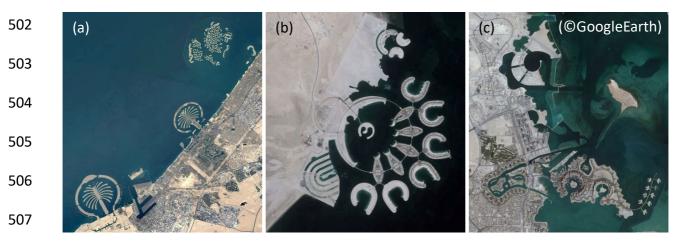
**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664





- 489 Treadmill dumped as part of artificial reef, Malaysia. (c) Artificial structures in industrialised
- 490 landscape, UK.

**Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664




491

492 Figure 2. Unintended outcomes from IGGI experiments. Drilled pits after five (a) and nine
493 years (b); longer-term observations revealed that many (red circle indicates outline) had
494 become dominated by individual barnacles. (c) Drilled rockpools after 1.5 (c) and five years

This is an accepted proof. **Firth LB**, Airoldi L, Bulleri F, Challinor S, Chee S-Y, Evans AJ, Hanley ME, Knights AM, O'Shaughnessy K, Thompson RC, Hawkins SJ. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology. **DOI:** 10.1111/(ISSN)1365-2664

- 495 (d); longer-term observations revealed that some rockpools filled up with the worm
- 496 Sabellaria alveolata. (e) The BIOBLOCK is a habitat-enhancement unit. Following 2013/14
- 497 storms the BIOBLOCK become covered by sand; it was still buried in 2019. All examples from
- 498 Firth et al. (2014).
- 499
- 500
- 501



- 508
- 509 Figure 3. Artificial island construction in (a) Dubai; (b) Bahrain; (c) Qatar.
- 510
- 511