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Abstract
The influence of complementary macropores, present in hierarchical macroporous mesoporous SBA-15, on the performance 
of supported Ni nanoparticles for ethanol steam reforming has been investigated. The increased open nature of the architec-
ture, afforded through the incorporation of the secondary macropore network, enables superior metal dispersion. This, in 
turn, enhances catalytic hydrogen production performance through the generation of a greater density of active sites.
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1 Introduction

Hydrogen represents a clean and potentially sustainable 
fuel, which can address increasing uncertainties regard-
ing the availability and accessibility of fossil fuel reserves. 

Furthermore, a hydrogen-based energy economy could 
address concerns regarding the impact of fossil fuel combus-
tion on climate change, which itself is driving such research 
into alternative fuel feedstocks [1]. As such, the develop-
ment of alternative environmental friendly renewable fuels is 
vital to meeting legally mandated targets for EU  CO2 emis-
sions [2]. Biomass has been widely accepted as a sustainable 
chemical feedstock, with hydrogen derived from catalytic 
bioethanol steam reforming acknowledged to be a viable 
production route [3]. The development of novel catalytic 
systems, with optimal on-stream performance and stability, 
is, therefore, a key parameter to enabling this future process 
for sustainable fuel production.

Low-cost-earth-abundant base metals, such as Ni, are 
commonly the active site of choice for ethanol steam reform-
ing (ESR) due to superior economics [4], but routinely suf-
fer on-stream deactivation by coking and sintering [5, 6]. 
Fine-tuning of reaction conditions can inhibit carbon depo-
sition, through increased process temperature or addition of 
 O2 to drive coke oxidation, but at the expense of increased 
potential for active site sintering, operating costs, or active 
site oxidation [7]. Alternatively, modifying the chemical 
nature of the support structure provides a second strategy 
to address coke accumulation. Alkali metal or alkali earth 
metal promotors switch-off ethanol dehydration and ethylene 
polymerisation, through tuning of the acid/base nature [7], 
in contrast acidic supports, such as zeolites, enhance etha-
nol dehydration the formation of ethylene increase coking 
and deactivation [6]. Basic oxides of Ca and Mg have been 
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used to increase  H2 production performance via sorption-
enhance steam reforming [8, 9], praseodymium and barium 
oxides have also promoted enhance steam reforming activity 
through reduced Ni sintering [10, 11], whereas rare earth 
and transition metal oxides, e.g. CeO2 or  ZrO2, impart labile 
surface oxygen which assists oxidation of carbon deposits 
to  CO2 [12]. The ratio of these to the active phase play-
ing an important role in Ni crystallite size, which in turn 
controls activity and resistance to carbon deposition [13]. 
Such reducible oxide materials typically exhibit low intrin-
sic surface areas, and as such are ineffective for stabilis-
ing highly dispersed base metal active sites, whilst porous 
analogues typically suffer reduced hydrothermal stability. 
Alternative approaches have been to co-deposit these oxides 
in conjunction with the active Ni species [14–16], yet these 
could result in a capping layer on top of the active species, 
whereas adlayer oxide growth has also shown potential to 
address the inherent issues of these oxides [17].

We have previously demonstrated the capacity of silica as 
a support material in ESR, with its intrinsic high surface area 
and chemically inertness, for both commercial and simple 
sol–gel synthesised silica, enabling high active site disper-
sion [18], and accessibility [19]. These beneficial attributes 
can be further enhanced through the utilisation of ordered 
mesoporous silicas, such as SBA-15, SBA-16 and KIT-6, 
which have demonstrated superior active site generation 
whilst overcoming internal mass diffusion constraints for 
C4 and C9 alcohols [20]. Controlling ESR performance over 
Ni deposited on SBA-15 is dependent on the location of 
the active species. Sintering and coking are apparent where 
the active site exists as large nanoparticles located on the 
external surfaces of the support skeleton, with nanoparticle 
size > mesopore diameter [15]. Whilst promotors (including 
Ce, Au, Ca, or Mg [14, 21, 22]) afford one strategy to tackle 
this undesirable phenomenon, encapsulating the Ni active 
species provides an alternative, for example, successfully 
incorporating the Ni sites within the mesopores of SBA-15 
or KIT-6 [23]. Control of the location of the Ni species in 
this way prohibits sintering, via confinement, with the more 
open 3-dimensional architecture of KIT-6 also mitigating 
against pore blockage through coking, resulting in high on-
stream stability. The incorporation of ethylene glycol within 
the impregnation protocol being critical, similarly, EDTA 
has recently been shown to assist in crystallite size control 
[24].

The incorporation of a complementary macropore net-
work within SBA-15, to yield macroporous mesoporous 
SBA-15 (MM-SBA-15), has shown to be beneficial for both 
active site dispersion and internal mass diffusion of bulk 
substrates for liquid-phase catalytic selective oxidation reac-
tions [25]. Here we further demonstrate the benefit of this 

secondary structural framework within MM-SBA-15 for the 
gas-phase catalytic ESR over deposited Ni nanoparticles.

2  Experimental

MM-SBA-15, comprising a framework of 400 nm spherical 
macropores with a two-dimensional hexagonal close-packed 
assembly of mesopore channels (P6mm), was synthesised by 
the method of Dhainaut et al. [26] MM-SBA-15 was doped 
with Ni nanoparticles, via a glycol assisted impregnation to 
enhance metal dispersion, and screened for catalytic hydro-
gen production from ESR [23].

2.1  400 nm Polystyrene Nanosphere Synthesis

Styrene (50  cm3) and divinylbenzene (9.5  cm3) were each 
washed three times with sodium hydroxide solution (0.1 M, 
1:1 vol/vol) followed by three washings with deionised 
water (1:1 vol/vol) to remove the polymerisation inhibitors. 
The washed organic phases were added to degassed deion-
ised water (377  cm3), purged under  N2 (10  cm3 min−1), at 
70 °C. An aqueous initiator solution of potassium persulfate 
(0.16 g) in deionised water (12  cm3) was added dropwise, 
and the resulting mixture stirred at 300 rpm under  N2 (10 
 cm3 min−1) for 18 h. The solid polystyrene nanospheres were 
isolated by filtration and washed with deionised water.

2.2  MM‑SBA‑15 Synthesis

Pluronic P123 (10 g) was dissolved in deionised water (75 
 cm3) and hydrochloric acid (2 M, 290  cm3) with stirring 
at 35 °C. Polystyrene beads (45 g) were added to the solu-
tion and left to stir for 1 h. Tetraethoxysilane (22.8  cm3) 
was added and left for 20 h with agitation at 500 rpm. The 
resulting sol–gel was aged within a sealed container for 
24 h at 80 °C under static conditions. The solid was filtered, 
washed with deionised water (1000  cm3) and dried at room 
temp before calcination at 550 °C for 6 h in air (ramp rate 
0.5 °C min−1).

2.3  Ethylene Glycol Assisted Ni Impregnation

MM-SBA-15 (1.5 g) was stirred in aqueous impregnation 
solution (12 ml) containing nickel nitrate hexahydrate to 
give metal loadings of 10, 5 and 2.5 and 1 wt% and ethylene 
glycol (1:1 Ni:glycol mol ratio) for 16 h. The solution was 
heated to 50 °C and stirred for 8 h to form a dry powder. The 
resulting solid was calcined at 400 °C for 2 h in air (ramp 
rate 1 °C min−1) followed by reduction at 600 °C for 2 h 
under flowing hydrogen (ramp rate 1 °C min−1 hydrogen 
flow 10  cm3 min−1).
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2.4  Characterisation

Powder X-ray diffraction (XRD) patterns were collected 
on a Bruker D8 Advance Diffractometer with a LynxEye 
high-speed strip detector using Cu Kα (1.54 Å) radiation, 
Si(111) monochromated, Ni filter and calibrated to quartz. 
Low-angle data were collected between 2θ = 0.45°–8° and 
wide-angle data between 2θ = 10°–80°. Nitrogen adsorp-
tion–desorption isotherms were recorded on a Quan-
tachrome Autosorb IQTPX porosimeter with analysis using 
ASiQwin v3.01 software. Samples were degassed at 150 °C 
for 12 h prior to recording  N2 adsorption/desorption iso-
therms. BET surface areas were calculated over the rela-
tive pressure range 0.02–0.2 with microporosity assessed by 
the t-plot method over the range P/P0 = 0.2–0.5. Mesopore 
properties were calculated by the fitting of isotherms to the 
relevant DFT kernel within the software package. XPS anal-
ysis was performed using a Kratos Axis SUPRA XPS fitted 
with a monochromated Al Kα X-ray source (1486.7 eV). 
Survey scans were recorded at a pass energy of 160 eV, and 
high-resolution scans recorded at a pass energy of 20 eV. 
Electronic charge neutralization was achieved using a mag-
netic immersion lens. All sample data was recorded at a 
pressure below  10–8 Torr and a room temperature of 294 K. 
Data was analysed using CasaXPS v2.3.19PR1.0. High reso-
lution scanning transmission microscopy (STEM) images 
were obtained on an aberration-corrected JEOL 2100-F 
microscope operated at 200 kV, with image analysis using 
ImageJ 1.41 software. Samples were dispersed in methanol 
and drop cast on 200-mesh carbon coated copper grids and 
dried under ambient conditions.

2.5  Catalytic Screening

Ethanol steam reforming for hydrogen production was car-
ried out using a two-stage fixed-bed reaction system. The two 
stages were heated externally using two heaters (each one 
has a diameter of 25 mm and length of 150 mm) and con-
trolled individually. During the experiment, 100 ml min−1 
 N2 gas (controlled by a mass flow meter) was used as the 
carrier gas. 0.2 g catalyst was placed into the second reactor 
and heated by the second furnace to 600 °C, while the first 
furnace (quartz wool was placed inside for enhancing the 
dispersion of vapours) was heated to 200 °C. The gas hourly 
space velocity was 6000 h−1.

When temperatures stabilized, a mixture of ethanol 
and water (molar ratio 1:4, total flow rate of 3 ml h−1) was 
injected using a syringe pump into the first reactor to be 
vaporised. The vapours passed through the second reactor 
for catalytic reforming reactions. The products produced 
from the second reactor were cooled using a condensation 
system (air and dry ice cooled) to collect the liquid prod-
ucts. The non-condensable products  (H2, CO and  CO2) were 

analysed on-lined by an ETG Syngas Analyser MCA 100. 
Experiments were repeated in triplicate to confirm catalytic 
performance reproducibility. Initial and steady-state hydro-
gen productivity was calculated from the average hydrogen 
production over 0–0.16 and 0.5–1.5 h respectively.

To confirm that we were not operating under reagent 
limiting conditions, full or equilibrium limited conversion 
[27], simulations to evaluate reaction equilibrium were 
determined using Aspen Plus®. An Idea model was used, 
for which a Gibbs reactor was employed at 600 °C and 1 
atmosphere with a mixture of ethanol and water (molar ratio 
of 1:4) at a flow rate of 3 g h−1, with possible products con-
sistent with the literature [28].

3  Results and Discussion

The physicochemical properties of the Ni-MM-SBA-15 
catalysts series were evaluated by XRD and nitrogen 
adsorption–desorption isotherms, shown in Fig. 1. The d10 
reflection in the low-angle XRD pattern (Fig. 1a) indicates 
a P6mm ordered mesopore structure, with a constant cell 
parameter of ~ 9.3 nm irrespective of Ni loading, which 
agrees with our previous studies [25, 26]. Wide-angle XRD 
(Fig. 1b) revealed the presence of both Ni and NiO phases, 
with Ni[111] reflection at 43.9° and NiO[111] at 36.9°, 
witnessed for loadings great than 2.5 wt%. Unfortunately, 
the presence of both phases prevents Scherrer average par-
ticle size evaluation due to the overlap of the NiO[200] and 
Ni[111] reflections. The presence of NiO is attributed to the 
storage conditions, since the catalysts were stored in air after 
reduction, and was also apparent for similarly prepared Ni/
SBA-15 series [23]. Furthermore, this oxidation indicates 
that the ethylene glycol was fully removed during the syn-
thesis’s thermal processing steps [29]. Nitrogen adsorption 
isotherms, in Fig. 1c, reveal all catalytic materials exhibit 
type 4 isotherms with H1 hysteresis, which is typical of 
mesoporous materials comprising uniform diameter chan-
nel pores. Brunauer–Emmett–Teller (BET) surface areas 
showed an inverse correlation with metal loading, spanning 
from 420  m2 g−1 to 330  m2 g−1 for 1 and 10 wt% Ni loading 
respectively. These represent a maximum loss of 31% rela-
tive to the unfunctionalized parent, which has a surface area 
of 478  m2 g−1, whereas intermediate loadings exhibit surface 
areas of 392 (2.5 wt%) and 363 (5 wt%)  m2  g−1 respectively. 
T-plot analysis, to deconvolute the contribution of micropo-
rosity to the total surface area, confirmed that the BET sur-
face areas are contributed to solely from mesoporosity and 
macroporosity, with the complementary microporosity pre-
sent in conventional cooperative self-assemble synthesized 
mesoporous SBA-15 absent [30, 31]. Average mesopore 
diameters of 5.6 nm across the series are consistent with 
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the literature and exhibit monomodal pore size distributions, 
shown in Fig. 1d.

XPS was utilised to further investigate the chemical 
nature of the Ni active sites, shown in Fig. 2. As observed 
previously for purely mesoporous silica supports, the Ni 
species are predominately present as  Ni(II), apparent from 
binding energy peak positions which are consistent with Ni 
 2p3/2 NiO at 856 eV. Although all samples are subjected to 
a reduction step during Ni impregnation, storage in air at 
room temperature leads to significant nanoparticle oxidation.

Bright field STEM confirmed the presence of both 
macropores and mesopores within the support frame-
work (Fig.  3), with the macropores acting to break up 
the mesopore domains, thus, decreasing the mesopore 

channel length relative to conventional SBA-15 [32]. Aver-
age macropore diameters of 360 nm represent only a minor 
contraction, during calcination, of the hard template size of 
390 nm, shown in Fig. 3b. This slight decrease is consistent 
with our previous investigations, with a decrease typically 
around 10% [33]. Figure 2c, d clearly reveal the hexago-
nal close packed arrangement of cylindrical channels of the 
mesostructures, as expected for SBA-15 [34], confirming the 
P6mm space group assigned by low angle XRD.

The open pore architecture afforded by MM-SBA-15 
results in exceptional Ni dispersions, with Ni nanoparti-
cles deposited throughout the material. High angle annular 
dark field STEM (Fig. 4), reveals the Ni nanoparticles as 
the brightest features due to the Z-contrasting nature of the 
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Fig. 1  Characterisation of Ni/MM-SBA-15 catalysts series; a stacked 
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isotherms offset by 400 (2.5 wt%), 800 (5 wt%) and 1200 (10 wt%) 
 cm3  g−1, and d stacked mesopore size distribution plot offset for clar-
ity
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technique [35]. Average Ni particle sizes range from 1.4 
to 3.0 nm for 1 and 10 wt% loading respectively, with all 
sample showing reasonably monomodal size distributions 
(Fig. 4b, d, f, and h). These sizes are considerably smaller 
than the average mesopore diameters, consistent with our 
study employing the ethyl glycol assisted impregnation for 
mesoporous only supports [23], and differ to non-assisted 
impregnated Ni/SBA-15 [15, 36]. Comparing our hierar-
chal MM-SBA-15 to the conventional SBA-15, we see a 
significant enhancement in Ni dispersion for the macropo-
rous mesoporous framework. This decrease in average Ni 
nanoparticle size opens up more sites for catalysis, repre-
senting a more efficient utilisation of the support’s available 
surface area.

The performance of our Ni/MM-SBA-15 catalyst series 
for hydrogen production, from ESR, was evaluated as a 
potential route for sustainable production [37].  H2 produc-
tion was evaluated at 600 °C, identical conditions to those 
used in our previous studies, to quantify initial activity and 
on-stream deactivation over the initial 2 h of the reaction 
(Fig. 5).
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Binding energy / eV

10wt% Ni/
MM-SBA-15

5wt% Ni/
MM-SBA-15

1wt% Ni/
MM-SBA-15

2.5wt% Ni/
MM-SBA-15

Ni(II) Ni

Fig. 2  Stacked Ni 2p XPS spectra offset for clarity, with binding 
energies of Ni metal and NiO indicated

Fig. 3  Bright field STEM of 
MM-SBA-15; a macropore 
structure, b polystyrene 
macropore hard template, c 
mesopore channels, and d hex-
agonal packing of mesopores
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Fig. 4  HAADF-STEM and Ni 
particle size distribution of a, 
b 10 wt% Ni/MM-SBA-15, c, 
d 5 wt% Ni/MM-SBA-15, e, f 
2.5 wt% Ni/MM-SBA-15, g, h 1 
wt% Ni/MM-SBA-15
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This relatively short on-stream time frame represents the 
period over which considerable losses in performance were 
previously observed for conventional SBA-15, with up to a 
50% decrease observed. The time on-stream profiles show 
unvarying hydrogen production across all four catalysts, with 
overall hydrogen production increasing with metal loading. 
This absence in observed deactivation reflects the highly 
beneficial role of macropore incorporation for this gas-phase 
reaction. The capacity of macroporosity to overcome cok-
ing (the deactivation route occurrent in conventional SBA-
15) is particularly striking given the relative dimensions of 
substrate and products (0.38 nm) and mesopore (5.5 nm) 
respectively. Furthermore, we can rule out a difference in 

on-stream stability to be a size effect, direct comparison of 
equal Ni particles sizes (10 wt% Ni/MM-SBA-15 vs 2.5 wt% 
Ni/SBA-15) show deactivations of ~ 0% vs 50% respectively. 
This also discredits differences in other physicochemical 
properties of the Ni sites being responsible, as these can 
be assumed to be comparable given the identical synthesis 
protocols and equal mesopore structure. Given that ~ 90% 
of the surface area in MM-SBA-15 is within the mesopores 
[38], the vast majority of the Ni can be expected to reside 
within these. Therefore, we conclude that the beneficial role 
of the macropores in preventing deactivation is diffusion 
driven, with the shortened mesopore domains resulting in 
a decrease in residence time of the substrate/products and 
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thus a decrease in potential for coke formation [39]. It is 
also worth noting that under our reaction conditions, etha-
nol conversion is not equilibrium limited, confirmed by 
simulation and in agreement with the literature [40, 41]. 
Therefore, an optimal ethanol conversion of 65% (5 wt% 
Ni/MM-SBA-15) validates that our reaction conditions are 
reagent limited [27].

Mass normalised  H2 productivity averaged over the initial 
10 min of the reaction revealed an inverse correlation with 
loading (Fig. 6a). This MM-SBA-15 series shows enhance-
ment in performance of up to 80%, and an average across the 
series of 60% (for comparable loading), when benchmarked 
against our previously reported conventional SBA-15 [23]. 
The performance of these materials is also considerably 
greater than citric acid assisted sol–gel Ni/SiO2 and Ni/
SBA-15 prepared via aqueous incipient wetness impregna-
tion (1375 and 850 mmol h−1  gNi

−1 respectively) [15, 19]. 
The superior activity arises from a smaller Ni particle size, 
from higher metal dispersions, which is likely to result in 
the formation of unique ensembles which presumably favour 
a higher density of low coordination sites and is consist-
ent with a size sensitive active species, as previously pro-
posed. Quantitative comparison of these initial activities and 
steady-state activities confirms the absence of deactivation.

As observed previously for our Ni/SBA-15 and Ni/KIT-6 
catalyst families, the Ni/MM-SBA-15 series displays a com-
mon hydrogen selectivity of 70% (Fig. 6b), with CO and 
 CO2 formation in approximately a 1:1 ratio. This common 
selectivity across this series (and our previous investigation) 
[23] is indicative of a common reforming mechanism that is 

independent of nickel particle size, support, and also time 
on stream when deactivation is absent.

4  Conclusions

The incorporation of secondary macropore networks within 
mesoporous SBA-15, via a hard-templating strategy, yields 
an excellent catalyst support framework for ESR. Highly 
dispersed Ni nanoparticles within our MM-SBA-15 skeleton 
show excellent activity and selectivity for hydrogen produc-
tion. The open architecture for the bimodal porous support 
material enables superior Ni dispersion during catalyst 
preparation, which subsequently imparts improved perfor-
mance, both initially and under steady-state conditions, with 
the latter due to support resistance to on-stream deactivation.
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