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Abstract 18 

Phenological variation in spring leafing between and within species can determine plant 19 

responses to warmer winter and spring temperatures in the short term. Methods are 20 

needed for monitoring canopy development that can be replicated on a large-scale, 21 

while retaining fine-scale resolution at the level of individual trees. Citizen science has 22 

potential to provide this, but a range of approaches exist in terms of the phenophase 23 

recorded (e.g., budburst or leaf expansion), how the phenophase is characterised (first 24 

events or intensity monitoring), and the portion of tree crown assessed and observation 25 

frequency. A comparison of spring budburst and leaf expansion of four tree species 26 

(Fraxinus excelsior, Fagus sylvatica, Quercus robur and Acer psuedoplatanus) was 27 

monitored in one woodland using (1) counts of expanded leaves on three crown 28 

sections, (2) percentage estimates of expanded leaves across the whole crown, and (3) 29 

a greenness index from photography. Logistic growth models were applied to make 30 

comparisons. First-event dates were found to be misleading due to high variation in leaf 31 

development rates within and between species. Percentage estimates and counts 32 

produced similar estimates of leaf expansion timing and rate. The greenness index 33 

produced similar estimates of timing, but not rate, and was compromised by 34 

practicalities of photographing individual crowns in closed canopy woodland. Citizen 35 

scientists could collect data across the period of spring leafing, with visual counts and/or 36 

estimates made every 3–4 days, subject to tests of reliability in pilot citizen science 37 

studies.  38 



1. Introduction 39 

Changes in leaf phenology of temperate trees are one of the best studied and most 40 

recognisable impacts of climate change, with evidence of earlier leafing with warmer 41 

spring temperatures over the last 50–60 years (Menzel and Fabian 1999; Menzel et al. 42 

2006; Polgar and Primack 2011; Fu et al. 2015; Melaas et al. 2018). Phenological data 43 

at the ecosystem level are now often obtained from remote-sensing, capturing 44 

phenological trends at regional and global scales, but at coarse temporal and spatial 45 

resolutions (Buitenwerf et al. 2015; Crabbe et al. 2016; Hamunyela et al. 2013; Wang et 46 

al. 2016; White et al. 2014; Wu and Liu 2013). By contrast, ground-based observations 47 

gather species and site-specific information, but tend to lack geographic coverage and 48 

vary considerably in their approaches to characterising phenology (Denny et al. 2014).  49 

While many studies have focussed on identifying large-scale phenological patterns, few 50 

have investigated how changes in phenology affect local-level forest ecosystem 51 

dynamics (Cole and Sheldon 2017).  Leaf phenology is fundamental to tree growth, 52 

fitness and survival (Chuine 2010; Vitasse et al. 2009b), and timing of canopy 53 

development has widespread implications for competition dynamics and trophic 54 

interactions (Cole and Sheldon 2017; Roberts et al. 2015; Thackeray et al. 2010). 55 

Therefore, understanding subtle changes in timing and order of leaf expansion in a 56 

forest ecosystem is important.  57 

Since forests are highly heterogeneous, there is a need for widespread monitoring of 58 

forests at high spatial and temporal resolution. Phenology at the local level varies 59 

according to species composition and genetic diversity (Basler 2016; Cleland et al. 60 

2007; Polgar and Primack 2011). Environmental factors such as topography (Fisher et 61 

al. 2006) and soils (Arend et al. 2016; Lapenis et al. 2017) can vary markedly over small 62 

spatial gradients, and influence phenology at scales missed by remote-sensing. 63 

Therefore, harmonised methods that enable large-scale data collection on the 64 

phenology of individual trees are needed to understand impacts on ecosystem 65 

dynamics and biodiversity. 66 

Monitoring methods that detect subtle changes in the sequence of leaf expansion 67 

among different tree species will be important for predicting future changes in forest 68 

composition. For example, Roberts et al. (2015) predicted a shift away from 69 

phenological complementarity, increasing competition for light and soil moisture, and 70 



driving changes in forest composition over time. Monitoring methods also need to detect 71 

within-species variability. Variation within species occurs between populations as a 72 

result of genetic adaptation to environmental conditions, particularly in relation to 73 

latitude and altitude (Chmura and Rozkowski 2002; Vitasse et al. 2009b). Delpierre et 74 

al. (2017) found that within-population genetic and phenotypic variability in budburst 75 

dates for oak and beech were more important than local environmental factors though 76 

this is likely to vary according to the heterogeneity of the forest site. Marked differences 77 

between neighbouring individuals of the same species demonstrate the need for high 78 

levels of replication of individual trees within and between sites. The extent of genetic 79 

and/or phenotypic variation within a species population could determine its persistence 80 

in a forest ecosystem. It could also determine the survival of insect species with 81 

synchronised life-cycles, and in turn the species that depend on them for food (Cole and 82 

Sheldon 2017).  83 

At present the approaches used in observational studies to characterise leaf phenology 84 

vary considerably. Key historic phenological records are based on first event dates 85 

(Primack and Miller-Rushing 2012; Sparks and Carey 1995) and many subsequent 86 

studies have characterised tree leaf phenology based on first budburst or first leaf 87 

expansion (Collinson and Sparks 2008; Menzel and Fabian 1999; Polgar et al. 2014; 88 

Roberts et al. 2015; Schaber and Badeck 2005; Fu et al. 2015). A number of 89 

international and national phenology monitoring programmes use first event metrics 90 

(Chmielewski No date; Project Budburst 2017; Nature's Calendar 2017; NatureWatch 91 

Canada 2017) as they need less survey effort (Miller-Rushing et al. 2008). Although 92 

some studies have shown correlations between different phenophases in tree leafing 93 

(e.g., Vander Mijnsbrugge and Janssens 2019), there is some evidence that relying on 94 

budburst dates alone to represent leafing phenology could lead to the misrepresentation 95 

of leaf development as a whole (Richardson and O'Keefe 2009). 96 

As an alternative to recording first budburst or first leaf expansion dates, some studies 97 

have recorded multiple dates to identify transitions between phenophase growth stages, 98 

using standardised scales such as the BBCH system (Finn et al. 2007) or bespoke 99 

indices (Capdevielle-Vargas et al. 2015; Cole and Sheldon 2017; Richardson et al. 100 

2006; Vitasse et al. 2009a). Recently the USA National Phenology Network (USA-NPN) 101 

introduced status and intensity monitoring into their citizen science programme (Denny 102 

et al. 2014; Elmendorf et al. 2016). Observers are encouraged to record both the 103 



phenophase growth stage and the intensity, for example by estimating the percentage 104 

budburst or leaf expansion, in order to track the entire progress of canopy development 105 

for individual trees. The advantage of collecting time-series for individual trees is it 106 

enables the rate of canopy development to be established, and peak leaf development 107 

timing to be identified. However, as observations increase in complexity, data quality 108 

challenges arise. Lower levels of accuracy have been reported when citizen scientists 109 

have to identify emerging leaves, as opposed to expanding leaves, as the former is 110 

harder to identify, particularly when the canopy is very high (Fuccillo et al. 2015). 111 

Subjectivity associated with visual estimates can also be a problem leading to between-112 

observer bias (Morrison 2016), particularly where a large and variable canopy is being 113 

considered, and can be affected by training and experience (Bison et al. 2019; Feldman 114 

et al. 2018).  115 

Observations should be made frequently enough to detect subtle variation in leaf 116 

expansion timing between and within species. Observational studies have monitored 117 

trees every other day (Wesolowski and Rowinski 2006), 2–3 times per week 118 

(Capdevielle-Vargas et al. 2015; Cole and Sheldon 2017), once a week (Delpierre et al. 119 

2017; Richardson et al. 2006) and every 10 days (Vitasse et al. 2009a). Remote-120 

sensing tends to obtain data sets with an 8–16 day resolution due to loss of images 121 

from cloud cover and atmospheric interference (Hamunyela et al. 2013; Ahl et al. 2006). 122 

It would be useful to determine how estimates of the same phenological process are 123 

affected by observations at different temporal grains, i.e., every two days, four days etc. 124 

Near-surface remote sensing techniques have emerged that provide high spatial and 125 

temporal resolution data on phenology of individual trees (Jeong et al, 2013; Keenan et 126 

al. 2014). Digital cameras or Normalised Difference Vegetation Index (NDVI) sensors 127 

that track canopy greening can be positioned just above the canopy, and capture data 128 

at multiple intervals per day. These methods detect green signals that indicate leaf 129 

emergence and development with high accuracy (Inoue et al. 2014; Soudani et al. 130 

2012). They are not affected by cloud conditions as is satellite imagery (Polgar and 131 

Primack 2011), but may be affected by understorey greening (Inoue et al. 2014). 132 

Sideways-facing cameras, as used in the Phenocams network in the USA (Richardson 133 

et al. 2007) and the Phenological Eyes Network in Japan (Inoue et al. 2014), are less 134 

influenced by the understorey, though image quality can be affected by light conditions 135 

(Mizunuma et al. 2012). With both types of imagery it is possible, though sometimes 136 



difficult, to isolate trees so that time-series of individual tree canopy development can be 137 

derived (Inoue et al. 2014; Polgar and Primack 2011). Despite the lower cost associated 138 

with these techniques, in comparison to manually operated techniques such as 139 

hemispherical photography (Richardson et al. 2007; Soudani et al. 2012), the cost and 140 

logistics of installing equipment still limit this approach to a relatively small number of 141 

sites.  142 

Given the recent rise in citizen science and phenology monitoring, citizen scientists 143 

could repeatedly photograph tree crowns and branches at fine spatial and temporal 144 

resolutions, avoiding time-consuming visual estimates with potential for between-145 

observer bias. However, the practicalities of photographing individual tree crowns and 146 

branches from the ground within a forest requires testing, along with the derivation of 147 

phenological metrics from the photographic sequences.  148 

In this study, we aim to test three different approaches to monitor the progress of spring 149 

canopy leafing in four species of tree in an English woodland: (1) counts of expanded 150 

leaves on three crown sections, (2) percentage estimates of expanded leaves across 151 

the whole crown, and (3) a greenness index from photography. We used these 152 

observations to determine key parameters of the time-series data, including first 153 

budburst, 50% completion estimates, and 95% leafing completion. We consider the 154 

potential use of these methods by citizen scientists in monitoring programmes 155 

associated with climate change.  156 



2. Materials and methods 157 

2.1. Study site and data collection 158 

The study took place in Widey Woods, an 8 ha broadleaved woodland in Plymouth, 159 

England (50°24 N, 7°7 W), during spring 2015. The four tree species included were 160 

European ash (Fraxinus excelsior), European beech (Fagus sylvatica), pedunculate oak 161 

(Quercus robur) and sycamore (Acer pseudoplatanus). These were selected as they 162 

were dominant in the canopy of the study site, and are widespread across European 163 

temperate forests. Ten mature trees from each species were haphazardly selected for 164 

inclusion and GPS-marked for ease of relocation. Trees were selected within the 165 

diameter at breast height (DBH) size of 20–60 cm. Average DBH was 35 cm (±10 cm) 166 

and average height was 18 m (±4 cm).  167 

The same observer visited trees each week from the middle of February 2015 to look 168 

for signs of imminent budburst, indicated by swelling. Checks began three weeks prior 169 

to earliest reported budburst for target species (Elmendorf et al. 2016), based on 170 

budburst records from the previous year for south-west England (Nature's Calendar 171 

2017). Bud-swelling was evident from the last week in March, so trees were visited 172 

every other day from then onwards, until all trees had attained full leaf expansion (2 173 

June).  174 

First budburst was recorded as the day of year (DOY) when green leaves were first 175 

visible emerging between bud scales at any location on the tree. First leaf expansion 176 

was recorded as the DOY when the first leaf with characteristic shape for its species 177 

was visible on the tree. From the date of first leaf expansion, two different methods of 178 

visual estimation were used to monitor canopy development. First, the extent of leaf 179 

expansion across the whole crown was estimated as a percentage of buds with 180 

expanded leaves. Estimates were made in increments of 5% between 5–100%, but 181 

allowed for smaller increments between 1–5% so that early activity could be captured. 182 

Secondly, counts were made of expanded leaves in three sections of the crown. These 183 

sections were established prior to first budburst, and reference photographs were taken 184 

to ensure the same areas were assessed on each visit. In each section, a count was 185 

made of the number of buds out of 50 that had at least one fully expanded leaf present, 186 

giving a total count out of 150 buds. Binoculars with x10 magnification were used to aid 187 

observations, and a clicker counter used to reduce risk of counting errors.  188 



For each tree, data were converted along a proportional scale from 0 to 1, with 0 189 

representing the crown prior to leaf expansion, and 1 representing the crown with full 190 

leaf expansion. For count data, this was achieved using equation (1): 191 

a = (𝑥 − 𝑐𝑟𝑜𝑤𝑛MIN)/ (𝑐𝑟𝑜𝑤𝑛MAX − 𝑐𝑟𝑜𝑤𝑛MIN) 192 

            (1) 193 

Here, 𝑎 represents the leaf expansion proportion for a given DOY, 𝑥 is the number of 194 

leaves out of 150 buds that were expanded on that DOY, 𝑐𝑟𝑜𝑤𝑛MIN represents the 195 

number of leaves expanded at the start of the time series (i.e., 0), and 𝑐𝑟𝑜𝑤𝑛MAX 196 

represents the number of buds with at least one fully expanded leaf at the end of the 197 

time series. As the canopy estimate data were in percent increments, these were simply 198 

divided by 100 to convert them to proportions.  199 

In addition to visual observations, photographs were taken to estimate leaf development 200 

on a subset of eight of the surveyed trees (four ash, two beech, one oak and one 201 

sycamore). The same crown sections that were used for counts were photographed, 202 

with the photographer standing at a fixed distance from the tree. Photographs were 203 

taken using a Panasonic Lumix DMC-TZ35 16.1 MP camera. The camera was 204 

handheld, and automatic exposure settings were used. It is important to note that while 205 

photos were taken of the same tree sections that counts were conducted on, they 206 

captured a larger area of the branch than the 50 buds assessed using the count 207 

method. Furthermore, the size of branch area captured in a photo was not standardised 208 

across the photographs, as the method was supposed to be rapid and easily used by 209 

citizen scientists conducting a walk around a site. Photographing stopped once the 210 

count data indicated all buds had expanded leaves. 211 

Images were stored as JPEGs (4608 x 3456) and analysed using the open access 212 

software ImageJ (Rueden 2016). The Region of Interest (ROI) manager was used to 213 

ensure the area contained in the image for each tree section was consistent for each 214 

date, accounting for small discrepancies in the original field of view. To estimate crown 215 

greening, red, green and blue colour channels were separated and analysed 216 

independently. The analysis was done using the multi-measure tool in the ROI manager 217 

to derive mean digital numbers (DN) representing intensity for each colour channel. The 218 

Greenness Index for each image was calculated using equation (2), after Richardson et 219 

al. (2007). 220 



𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 (%) =  
𝐺𝑟𝑒𝑒𝑛 𝐷𝑁

𝑅𝑒𝑑 𝐷𝑁 + 𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 + 𝐵𝑙𝑢𝑒 𝐷𝑁 
   221 

(2) 222 

Greenness Index values were then standardised on a proportional scale using equation 223 

(1), to provide a time-series of crown greening from 0 (no leaves) to 1 (maximum green 224 

signal). In this case, 𝑎 in equation (1) is the Greenness Index proportion on a given 225 

DOY, 𝑥 is the absolute Greenness Index value on that DOY, 𝑐𝑟𝑜𝑤𝑛MIN is the minimum 226 

Greenness Index value (i.e., from the first photo in the series where the crown section 227 

had no budburst), and 𝑐𝑟𝑜𝑤𝑛MAX represents the highest Greenness Index value in the 228 

photo series. Proportions were averaged across the three crown sections to obtain a 229 

single time series of crown greening for each photographed tree.  230 

2.2. Deriving phenological metrics from time-series data 231 

A range of phenological metrics were derived to characterise the phenology of each 232 

individual tree. In addition to first budburst DOY and first leaf expansion DOY obtained 233 

from visual observation of the whole crown, full leafing was determined as the DOY 234 

when it was first observed that expanded leaves exceeded 95% (hereafter referred to 235 

as completion DOY). We then fitted each time series, obtained from both observational 236 

and photographic methods, using a logistic growth model to identify when expanded 237 

leaves/crown greening reached the half maximum (hereafter referred to as 50% DOY) 238 

and to characterise the rate of the process. For observational methods, time to 50% 239 

expanded leaves was then calculated as the number of days from first budburst to 50% 240 

DOY. 241 

Logistic growth models have been widely used to characterise landscape and forest-242 

level phenology from remote sensing data (Calders et al. 2015; Richardson et al. 2007; 243 

Zhang et al. 2003). Logistic growth uses non-linear regression to fit a sigmoidal curve, 244 

equation (3): 245 

𝑦 =  
𝜃1

1 + exp [−(𝜃2 + 𝜃3𝑥)]
 246 

(3) 247 

where 𝑦 is the response variable (proportion of expanded leaves/greening), 𝑥 is the 248 

predictor variable (DOY), and 𝜃1, 𝜃2 and 𝜃3 are the model fitting parameters (Fox and 249 

Weisberg 2011). 𝜃1 is the upper asymptote. As the data were based on proportions, 𝜃1 250 



was fixed at 1, as this was the maximum possible value. Two parameters are derived 251 

from the model: the rate parameter (𝜃3) and the half-maximum (ψ).  The rate parameter 252 

is based on the steepness of the curve at its mid-point and represented the proportional 253 

increase per day. The half-maximum is a measure of timing, and represented the DOY 254 

when expanded leaves/greening reached 50%, calculated as ψ = 𝜃2/𝜃3, and hereafter 255 

referred to as 50% DOY. Standard error and statistical significance of model parameter 256 

estimates were assessed to provide a measure of confidence in the model fits for 257 

individual trees. All logistic models were fitted using the car package and nls function in 258 

R (Fox and Weisberg 2011).   259 

Finally, we generated time-series to explore the effect of interval time between sampling 260 

days (temporal grain) on 50% DOY and rate values from count and percentage estimate 261 

data. The original data was collected every other day (two-day temporal grain), so 262 

temporal grains of four-days and six-days were simulated by removing data for different 263 

DOYs. Regardless of when leaf expansion began for each tree, the start date for 264 

different temporal grains was held constant at DOY 107 for all time-series (which was 265 

the DOY when leaf expansion was first observed across the monitored trees), as in 266 

practise individual trees at a site would be monitored on the same days. Where the 267 

DOY for 𝑐𝑟𝑜𝑤𝑛MAX was removed as a result of altering the temporal grain, we inserted 268 

the maximum value on the next DOY when data collection would have been carried out. 269 

We then re-ran the logistic growth model for each tree.  270 

2.3. Statistical analyses 271 

Linear regression was used to explore relatedness between first budburst DOY, first leaf 272 

expansion DOY, 50% DOY and completion DOY, based on observational methods 273 

(count and percentage estimates). To explore whether these different metrics (and 274 

methods) identified different phenological patterns between species, separate one-way 275 

analysis of variance (ANOVA) tests were carried out for each metric and method, 276 

followed by pairwise comparisons of species using Tukey Honestly Significant 277 

Difference (HSD) tests. One-way ANOVA and Tukey HSD tests were also used to 278 

identify whether the time to leaf expansion (i.e., from first budburst to 50% DOY) 279 

differed between species. 280 

Linear regression was then used to explore relatedness between 50% DOY and rate 281 

metrics from counts, percentage estimates and photographs. Where relationships were 282 



identified, paired t-tests were conducted to assess whether the methods produced 283 

different absolute values of 50% DOY and rate for individual trees. Finally, linear 284 

regression and paired t-tests were used to compare 50% DOY and rate metrics derived 285 

from the 2-day temporal grain, with those derived from 4-day and 6-day temporal grains. 286 

All statistical analyses were carried out in R 3.3 (R Core Team, 2016).  287 

 288 

3. Results 289 

3.1. Comparison of phenological patterns from first event dates vs. time-series 290 

data 291 

Species were different in terms of first budburst dates (Supplementary Material Table 1; 292 

Fig. 1), with pairwise comparisons showing that ash budburst was significantly later than 293 

oak (p = 0.003) and sycamore (p = 0.045), but the other species were not different (p 294 

>0.05). There were significant differences between species in terms of first leaf 295 

expansion and 50% DOY, and ash did not differ from other species (p > 0.05). 296 

According to first leaf expansion dates, beech and oak were significantly different (p = 297 

0.027) as were sycamore and oak (p = 0.015), with oak leaf expansion beginning later 298 

than the other two species. However, using the 50% DOY only oak and sycamore were 299 

different, with oak leafing later than sycamore (p = 0.036). Using the completion DOY 300 

metric, differences between species were only significant based on visual estimates of 301 

percentage expanded leaves across the whole crown, with oak significantly later than 302 

sycamore (p = 0.046), but the other species did not differ (p > 0.05). 303 

As well as identifying differences between species, it is clear that there is considerable 304 

variation within species (Fig. 1 and Fig. 2). Ash is the most variable in terms of first 305 

budburst dates, with a 30-day difference in budburst timing from the earliest to the latest 306 

individual (Fig. 1). Other species showed lower intra-species variation in budburst timing 307 

(16–19 days). Both oak and ash were highly variable in terms of first leaf expansion 308 

(varying by 22–28 days respectively). However, oaks were much more consistent in 309 

terms of expanded leaves 50% DOY and completion DOY. Ash remained highly 310 

variable throughout the whole process of leaf development, with ash trees being both 311 

the earliest and latest to achieve full leaf expansion. Beech were fairly consistent in their 312 

first budburst and leaf expansion dates, though variability increased as time progressed. 313 



Sycamore were consistent in first budburst and completion of leaf expansion, but varied 314 

considerably at the start of leaf expansion and in their 50% DOY. 315 

There was a significant difference between oak and all three other species, in the time 316 

taken from first budburst to 50% DOY (Fig. 1), with oak taking significantly longer to 317 

achieve leaf expansion than the other three species. However, no significant differences 318 

were found between species in the time taken from first leaf expansion to 50% DOY, 319 

indicated by the similar rates of leaf expansion. The relationship between all metrics of 320 

leaf expansion timing, including first leaf expansion dates, were strongly related (all R2 > 321 

0.80, p < 0.001). The relationship between first budburst dates and leaf expansion 322 

appears curved, and was poorly explained by a linear model (Fig. 3; R2 = 0.40, p < 323 

0.001 based on counts, R2 = 0.42, p < 0.001 based on percentage estimates). This 324 

indicates that trees with later budburst tended to expand leaves more rapidly than trees 325 

with earlier budburst. 326 

3.2. Comparison of methods for obtaining time-series data 327 

All time series data from count and percentage estimate methods could be fit to the 328 

logistic model, obtaining model parameters with low standard error and high 329 

significance, indicating good fits (Supplementary Material Tables 2 and 3). Count and 330 

percentage estimate methods were highly related in terms of the 50% DOY values 331 

derived from the logistic model fits (R2 = 0.97, p< 0.001) and produced statistically 332 

similar values for individual trees (Table 1). Both methods identified very similar 333 

phenological patterns across species based on 50% DOY and completion DOY (Fig. 1). 334 

They also identified similar rates of leaf expansion between species, though the count 335 

method showed higher variability of leaf expansion rate for beech and sycamore (Fig. 336 

1). However, estimates of leaf expansion rate from the two methods were statistically 337 

similar (Table 1). 338 

Logistic models for the remaining eight time-series of Greenness Index values for whole 339 

crowns produced good fits with significant parameter estimates and low standard error 340 

(Supplementary Material: Table 4). Statistical comparisons between counts and 341 

photographs showed that 50% DOY values were related (Fig. 4, R2 = 0.76, p <0.001), 342 

and pairs of values were not statistically different (paired t-test: t19 = 0.10, p = 0.923). 343 

However, there was no relationship between the rate parameters from the two methods 344 

(R2 = 0.01, p = 0.696).  345 



After removing every other observation from the time-series to simulate a four-day 346 

temporal grain, logistic models could be fitted to all forty time-series based on 347 

percentage estimate data, and to thirty-seven time-series based on count data 348 

(Supplementary Material: Tables 5 and 6). The three time-series that could not be fitted 349 

with the logistic model (one from beech and two from oak) had only three data points 350 

remaining after removal of every other observation, since leaf expansion occurred very 351 

rapidly in those individuals. Using the 4-day temporal grain, 50% DOY and rate values 352 

were highly similar to values obtained from the 2-day temporal grain, for both 353 

percentage estimate and count data (Table 1). A six-day temporal grain was tested, but 354 

ten logistic models based on count data failed to run due to there being only three data 355 

points remaining (Supplementary Material: Table 7). Using estimate data, the six-day 356 

temporal grain still produced model fits for all but one time-series, but two further time-357 

series had non-significant parameter estimates (Supplementary Material: Table 8).  358 

4. Discussion  359 

The order in which species reached first budburst did not reflect the order in which they 360 

reached 50% or full leaf expansion. Oak was a particularly notable case in this study, 361 

taking on average twice as long to reach 50% leaf expansion after first budburst, 362 

compared to the other species. This appears to be due to a longer delay from first 363 

budburst to first leaf expansion, rather than a slower rate of leaf expansion, as there 364 

was no difference in leaf expansion rate between species. There was also intra-species 365 

variation in the time taken from first budburst to 50% DOY. The curved relationship 366 

between first budburst dates and 50% DOY was noticeable for all species, indicating a 367 

tendency for individuals with later budburst to leaf more rapidly than conspecific 368 

individuals with earlier budburst, as has been observed elsewhere (Cole and Sheldon 369 

2017). Interestingly, the curvature is most pronounced in oak, which is the species that 370 

bursts bud earliest. 371 

Given that first budburst dates were a poor predictor of leaf expansion timing, we 372 

suggest that caution be exercised when interpreting first budburst dates, as they do not 373 

fully characterise the trajectory of canopy development, or necessarily signal the order 374 

in which tree canopies mature. While first leaf expansion dates show more similar 375 

patterns to 50% DOY, they still identify a different ordering of phenology between 376 

species, and show different patterns of intra-species variation. In order to predict 377 

impacts of changing phenology on ecosystem processes and function, it is important to 378 



capture the entire process of individual tree canopy development. Later stages of leaf 379 

expansion correspond more closely to remote sensing indices, so would better validate 380 

satellite data (Elmore et al. 2016; White et al. 2014). In addition, finer-scale detection of 381 

variation in leaf development timing between and within species will help to identify 382 

environmental cues and improve predictive models for biosphere-climate modelling 383 

(Richardson et al. 2012). In this study, there were no significant differences between 384 

species in terms of leaf expansion rate, but there was substantial intra-species variation. 385 

The majority of phenology studies focus on timing metrics, and the rate of a process is 386 

often ignored (Brown et al. 2017), missing important information on within-species 387 

variability. The degree of variation in leaf expansion rate within a species could have 388 

important implications for fitness and resilience in a population. For example, two trees 389 

sharing similar 50% DOYs could have very different leaf emergence timings, making 390 

one individual more vulnerable to spring frosts and herbivory damage, but potentially 391 

able to take better advantage of milder conditions if they occurred. In a variable spring 392 

environment, a range of different phenological responses within a population is a likely 393 

outcome, since each different response would have some selective advantages and 394 

disadvantages, depending on specific conditions at any one time, with no single 395 

response displacing all others. The balance between these responses is also likely to 396 

be modified by climate change. The opportunity to see this population-level plasticity is 397 

one reason why time-series data are preferable to event monitoring data. 398 

Considerable intraspecific variation was also observed in leaf expansion timing, in 399 

agreement with other studies that have monitored multiple individuals of a species at a 400 

single site (Capdevielle-Vargas et al. 2015; Cole and Sheldon 2017; Delpierre et al. 401 

2017). The level of intraspecific variation differed between phenophases, further 402 

highlighting that snapshot assessments of tree phenology can be misleading. 403 

Interestingly, in this study there was no significant difference in leaf expansion timing 404 

between ash and sycamore, though ash is typically considered a late-leafing species 405 

while sycamore an early-leafing species (Morecroft et al. 2008; Roberts et al. 2015; 406 

Sparks and Carey 1995). The high variability among the ash trees in this study, if 407 

typical, could increase this species’ resilience to climate change. The fact that such 408 

variability exists within species, confirms the value of methods that facilitate high levels 409 

of within-site and within-species replication. While ten individuals is the recommended 410 

minimum sample size by the USA-NPN (Denny et al. 2014), we recommend that larger 411 



sample sizes be used initially where possible (Elmendorf et al. 2016) until suitable 412 

minimum sample sizes for target species have been proposed based on their inherent 413 

variability.  414 

Even when the interval between observations was extended, the model still provided 415 

very similar estimates of 50% DOY and rate. Our results suggest that for the relatively 416 

short time series of individual trees, observations at 3–4 day intervals are sufficient to 417 

describe phenological patterns in our study region. Less frequent observations could 418 

limit the reliability of the phenological model, especially in warmer years where budburst 419 

and leaf emergence could be more condensed. 420 

We found that observing three relatively small sections of a tree gives comparable 421 

results to whole tree crown estimates. This is promising, as three sections can be 422 

assessed relatively quickly, and though more time consuming than a single estimate of 423 

a tree crown, observer bias may be reduced by the increase in objectivity (Galloway et 424 

al. 2006; Vittoz et al. 2010). However, the trees included in this study were relatively 425 

small trees. The comparability between crown sections and whole crowns could 426 

decrease as crown size increases, as a smaller proportion of the total crown is 427 

assessed—though large trees pose problems for phenology monitoring generally, both 428 

in terms of viewing buds in order to make counts, and in terms of making accurate 429 

estimates (Fuccillo et al. 2015; Vittoz and Guisan 2007). Trials of count and estimate 430 

methods are needed with citizen scientists, to determine levels of error associated with 431 

both approaches, and the extent to which this varies with crown size, height and 432 

species. 433 

Ground-based photography offers potential to supplement data collection on individual 434 

tree phenology, though several issues need to be considered. Firstly, in a forest 435 

situation, the position from which photographs are taken must be carefully chosen. We 436 

had to exclude many of our trees because of the influence of background foliage, 437 

despite efforts to choose branch sections that would be unimpeded by surrounding 438 

vegetation. Given the potential difficulty in selecting appropriate regions to photograph, 439 

the use of fixed camera mounts (University of New Hampshire 2017; Smith and Ramsay 440 

2018) might be necessary if this method was to be used with citizen scientists. This 441 

would also ensure photos were taken of the same branch sections, and would allow 442 

different surveyors to take images.  443 



However, image processing costs must be carefully considered before use in a large 444 

citizen science project, since the effort involved could be high. A crowd-sourcing 445 

approach, where citizen scientists classify and analyse images online, has already been 446 

used to validate plant phenology data from webcam images (Kosmala et al. 2016) and 447 

to classify images of crown health in tropical rainforests (Zooniverse No date). Another 448 

option is to take advantage of the rapidly developing technology in smartphone apps. 449 

Tichý (2016) developed an app for calculating canopy cover (i.e., the vertical projection 450 

of the tree canopy onto the ground surface) from canopy photos taken with a 451 

smartphone or tablet. Image analysis algorithms are able to detect and eliminate poor 452 

quality images (e.g., those with lens flare), and select appropriate thresholds for 453 

separating canopy and sky pixels (Glatthorn and Beckschäfer 2014). An app for 454 

estimating chlorophyll content of individual leaves can be used as a cost-effective 455 

alternative to professional chlorophyll meters (Vesali et al. 2015), and carries out an 456 

analysis similar to our greenness method. Such an approach could be extended to 457 

assess greenness indices for plant canopies, using automatic algorithms to correct for 458 

lighting variation (Brown et al. 2016), allowing citizen scientists to track the green-up of 459 

the canopy in spring. 460 

The greenness index data was comparable to visual observations in terms of 50% DOY 461 

but not rate. Previous studies using fixed cameras on canopy towers, found greenness 462 

to be closely related to leaf expansion, though in one study greenness identified earlier 463 

50% DOY than visual observations (Mizunuma et al. 2011). Greenness is a function of 464 

both leaf expansion and pigment changes, so while related, leaf expansion and 465 

greenness are different (Keenan et al. 2014). This must be borne in mind when 466 

interpreting data from different methods. Greenness indices are an additional gauge of 467 

leaf development, and should be seen as complementary to leaf expansion data, rather 468 

than a substitute for it. 469 

5. Conclusions  470 

Citizen science phenology monitoring has the potential to replicate high resolution data, 471 

to describe tree leaf phenology in relation to a range of environmental and genetic 472 

factors. However, time-series data to track the development of individual tree crowns is 473 

necessary. Reliance on first event dates can mislead on the order of leaf development 474 

among species, and does not provide a rate of leaf development. Fixed mount 475 

photography from the ground could be used to supplement data on canopy greening 476 



currently collected through projects such as Phenocams. Low-cost digital cameras and 477 

smartphone cameras are becoming increasingly advanced, which could enhance 478 

prospects for obtaining reliable data on canopy greening. Nevertheless, visual 479 

observations remain the most viable option for widespread data collection on individual 480 

tree phenology at present. Further research is needed to assess volunteer accuracy 481 

using counts and percentage estimates of expanded leaves, along with further 482 

refinement of photographic approaches.  483 
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Table 717 

  
Relationship between 
methods (regression) 

 Difference in absolute values 
between methods  

(paired t-test) 

Method comparison Metric R2 p  df t p 

Counts vs  
Whole crown percentage estimates 

50% DOY 0.97 <0.001  39 0.083 0.935 

Completion of LE 0.96 <0.001  39 2.811 0.008 

Rate of LE 0.55 <0.001  39 0.609 0.546 

4-day  v 2-day temporal grain  
(Counts) 

50% DOY 0.99 <0.001  36 1.320 0.195 

Rate of LE 0.88 <0.001  36 -0.921 0.363 

2-day v 4-day observation frequency 
(Whole crown percentage estimates) 

50% DOY 0.99 <0.001  39 0.073 0.942 

Rate of LE 0.89 <0.001  39 -1.787 0.082 

 718 

Table 1: Comparison of methods for deriving time-series data on tree leaf development. The relationship between methods is 719 

explored with regressions: whether the first variable can be used as a predictor for the second variable. The proportion of variation 720 

explained (R2) and statistical significance (p) is shown. Where significant relationships existed, paired t-tests were carried out to 721 

assess whether the two methods produced different absolute values (significant p-values in bold).  722 
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Figures 724 

Fig. 1. Comparison of phenological patterns for four tree species, derived from different 725 

metrics and methods: first budburst dates; first leaf expansion dates; 50% DOY (from 726 

percentage estimates); 50% DOY (from counts); time from first budburst to 50% DOY 727 

(from percentage estimates); time from first budburst to 50% DOY (from counts); leaf 728 

expansion rate (as percentage estimates per day);  leaf expansion rate (as number of 729 

leaves per day); completion DOY (from percentage estimates); completion DOY (from 730 

counts). On the box and whisker plots, the horizontal black line shows the median, the 731 

red line is the mean, the box represents values within the 25–75% quartiles, and the 732 

whiskers show the 10% and 90% percentiles. In each panel, species sharing the same 733 

letter above the x-axis were not statistically different.  734 

Fig. 2. Logistic growth models showing model fits for 10 individual trees in each species 735 

category, based on count data.  736 

Fig. 3. Relationship between first budburst dates and 50% DOY for the four tree 737 

species; a = 50% DOY from percentage estimate data; b = 50% DOY from count data. 738 

For each species, a second-order polynomial fit (R2 = 0.64–0.93, p>0.05) shows a 739 

curved relationship. 740 

Fig. 4. Comparison of 50% DOY values from visual counts of leaf expansion on tree 741 

sections and 50% DOY values from photo-derived greenness index on tree sections. 742 

Data are from counts and photos of eight different trees (each a combined value from 743 

three different sections of the canopy). The line of best fit is shown. 744 
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Fig. 1 746 
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Fig. 2 749 
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Fig. 3 752 
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Fig. 4 756 
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