
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2020

PROACTIVE BIOMETRIC-ENABLED

FORENSIC IMPRINTING SYSTEM

Alruban, A

http://hdl.handle.net/10026.1/15562

http://dx.doi.org/10.24382/986

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

PROACTIVE BIOMETRIC-ENABLED FORENSIC IMPRINTING

SYSTEM

by

ABDULRAHMAN ALRUBAN

A thesis submitted to the University of Plymouth

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Engineering, Computing and Mathematics

April 2020

ii

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without the author's prior consent.

Copyright © 2020 Abdulrahman Alruban

iii

Acknowledgements

First and foremost, all praise and gratitude are due to Allah Almighty, the All-

Merciful, for helping me and facilitating me in tackling all the challenges

throughout this PhD which could have constrained my study.

I am deeply indebted and most of my sincere thanks and appreciation go to my

beloved parents, for their considerable help and support, kindness, abundant love,

and prayers for my study and I ask Allah to reward them with the best. I would

also like to take this opportunity to express my sincere gratitude to my brothers

and sisters for their immeasurable love and encouragement through this

important stage of my life. For my parents, brothers and sisters, I am forever

grateful.

I also owe many thanks to my beautiful love my wife Mona and my children,

Alwaleed, Albaraa, Mohammed and Abdullah, for their patience, endless support,

and incredible care in assisting me throughout this endeavour. They all stood

alongside me and provided me with an abundance of love and support, even

when spending days, nights, and holidays without me. I really appreciate your

endless support and help through this PhD journey. I am eternally grateful.

Of course, I would like to extend my most sincere thanks and my heartfelt

appreciation to my supervision team, Professors Nathan Clarke, Fudong Li and

Steven Furnell, for their guidance, support, wisdom, help and a sympathetic ear.

Their experience and professionalism in various aspects, such as their critical

thinking, publications and presentations, have been invaluable throughout my

PhD journey and without their valuable comments and advice, I would not be able

to make this a success, so thank you.

iv

I would also like to express my thanks to my research colleagues at the Centre

for Security, Communication and Network Research, Saud Alotaibi, and

Abdulwahid Al Abdulwahid, who has been my motivation and inspiration and with

whom I have held interesting discussions during this PhD journey.

I would like to take this opportunity to thank all my colleagues at Majmaah

University in the Kingdom of Saudi Arabia for allowing me to take this great

opportunity to complete my PhD degree and for their support and assistance.

v

Author's Declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award without prior agreement of

the Doctoral College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not

formed part of any other degree either at the University of Plymouth or at another

establishment.

This study was financed with the aid of a studentship from the Royal Embassy of

the Kingdom of Saudi Arabia.

Relevant scientific seminars and conferences were regularly attended at which

work was often presented and published.

Word count of thesis: 47,956

List of Publications:

Alruban, A., Clarke, N., Li, F. and Furnell, S., 2016, June. Proactive biometric-

enabled forensic imprinting. In 2016 International Conference On Cyber Security

And Protection Of Digital Services (Cyber Security) (pp. 1-15). IEEE.

DOI: https://doi.org/10.1109/CyberSecPODS.2016.7502342

Alruban, A., Clarke, N., Li, F. and Furnell, S., 2016, 'Leveraging biometrics for

insider misuse identification', International Journal on Cyber Situational

Awareness (IJCSA), 1(7).

DOI: https://doi.org/10.22619/IJCSA

https://doi.org/10.1109/CyberSecPODS.2016.7502342
https://doi.org/10.22619/IJCSA

vi

Clarke, N., Li, F., Alruban, A. and Furnell, S., 2017, January. Insider misuse

identification using transparent biometrics. In Proceedings of the 50th Hawaii

International Conference on System Sciences.

DOI: https://doi.org/10.24251/HICSS.2017.487

Alruban, A., Clarke, N., Li, F. and Furnell, S., 2017, August. Insider misuse

attribution using biometrics. In Proceedings of the 12th International Conference

on Availability, Reliability and Security (p. 42). ACM.

DOI: https://doi.org/10.1145/3098954.3103160

Alruban, A., Clarke, N., Li, F. and Furnell, S., 2018, September. Biometrically

linking document leakage to the individuals responsible. In International

Conference on Trust and Privacy in Digital Business (pp. 135-149). Springer,

Cham.

DOI: https://doi.org/10.1007/978-3-319-98385-1_10

Alruban, A. and Clarke, N., 2016. Method of Associating A Person with A Digital

Object. GB Patent filing GB1609673, 7.

Signed: Abdulrahman

Date : 8 April 2020

https://doi.org/10.24251/HICSS.2017.487
https://doi.org/10.1145/3098954.3103160
https://doi.org/10.1007/978-3-319-98385-1_10

vii

Abstract

PROACTIVE BIOMETRIC-ENABLED FORENSIC IMPRINTING SYSTEM

ABDULRAHMAN ALRUBAN (MSc)

Insider threats are a significant security issue. The last decade has witnessed

countless instances of data loss and exposure in which leaked data have become

publicly available and easily accessible. Losing or disclosing sensitive data or

confidential information may cause substantial financial and reputational damage

to a company. Therefore, preventing or responding to such incidents has become

a challenging task. Whilst more recent research has focused explicitly on the

problem of insider misuse, it has tended to concentrate on the information itself—

either through its protection or approaches to detecting leakage. Although digital

forensics has become a de facto standard in the investigation of criminal activities,

a fundamental problem is not being able to associate a specific person with

particular electronic evidence, especially when stolen credentials and the Trojan

defence are two commonly cited arguments. Thus, it is apparent that there is an

urgent requirement to develop a more innovative and robust technique that can

more inextricably link the use of information (e.g., images and documents) to the

users who access and use them. Therefore, this research project investigates the

role that transparent and multimodal biometrics could play in providing this link by

leveraging individuals’ biometric information for the attribution of insider misuse

identification.

This thesis examines the existing literature in the domain of data loss prevention,

detection, and proactive digital forensics, which includes traceability techniques.

The aim is to develop the current state of the art, having identified a gap in the

literature, which this research has attempted to investigate and provide a possible

solution. Although most of the existing methods and tools used by investigators

to conduct examinations of digital crime help significantly in collecting, analysing

and presenting digital evidence, essential to this process is that investigators

establish a link between the notable/stolen digital object and the identity of the

individual who used it; as opposed to merely using an electronic record or a log

that indicates that the user interacted with the object in question (evidence).

Therefore, the proposed approach in this study seeks to provide a novel

viii

technique that enables capturing individual’s biometric identifiers/signals (e.g.

face or keystroke dynamics) and embedding them into the digital objects users

are interacting with. This is achieved by developing two modes—a centralised or

decentralised manner. The centralised approach stores the mapped information

alongside digital object identifiers in a centralised storage repository; the

decentralised approach seeks to overcome the need for centralised storage by

embedding all the necessary information within the digital object itself. Moreover,

no explicit biometric information is stored, as only the correlation that points to

those locations within the imprinted object is preserved.

Comprehensive experiments conducted to assess the proposed approach show

that it is highly possible to establish this correlation even when the original version

of the examined object has undergone significant modification. In many scenarios,

such as changing or removing part of an image or document, including words and

sentences, it was possible to extract and reconstruct the correlated biometric

information from a modified object with a high success rate. A reconstruction of

the feature vector from unmodified images was possible using the generated

imprints with 100% accuracy. This was achieved easily by reversing the

imprinting processes. Under a modification attack, in which the imprinted object

is manipulated, at least one imprinted feature vector was successfully retrieved

from an average of 97 out of 100 images, even when the modification percentage

was as high as 80%. For the decentralised approach, the initial experimental

results showed that it was possible to retrieve the embedded biometric signals

successfully, even when the file (i.e., image) had had 75% of its original status

modified. The research has proposed and validated a number of approaches to

the embedding of biometric data within digital objects to enable successful user

attribution of information leakage attacks.

ix

Table of Contents

Copyright Statement ... ii

Acknowledgements .. iii

Author's Declaration .. v

Abstract ... vii

List of Figures ... xv

List of Tables .. xix

List of Equations ... xx

Glossary ... xxi

1 Introduction .. 1

1.1 Introduction .. 1

1.2 Research Aim and Objectives .. 3

1.3 Thesis Structure ... 5

2 Insider Misuse and Digital Forensics ... 8

2.1 Introduction .. 8

2.2 Insider Misuse .. 8

2.2.1 Insider Threats .. 9

2.2.2 Monitoring Users’ Behaviour and the Law 11

2.3 Digital Forensic Investigation Processes ... 12

2.3.1 Reactive Model.. 13

2.3.2 Proactive Model... 16

2.4 Challenges in Digital Forensics .. 18

x

2.5 Digital Steganography ... 21

2.5.2 Transform Domain .. 25

2.5.3 Statistical Method .. 25

2.5.4 Distortion Techniques ... 26

2.6 Digital Watermarking ... 26

2.7 Role of Biometric Technology in Digital Forensics 28

2.8 Conclusion ... 32

3 Data Loss Detection, Prevention and Proactive Digital Forensics 33

3.1 Introduction .. 33

3.2 Literature Review Methodology ... 34

3.3 Literature Review of Data Loss Detection, Prevention and Proactive

Digital Forensics .. 38

3.3.1 Document Classification .. 41

3.3.2 Data Loss Detection in Emails .. 47

3.3.3 Biometrics and Human Behaviour ... 52

3.3.4 Distributed and Host-Based Solutions ... 55

3.3.5 Guilt Identification .. 60

3.3.6 Proactive Digital Forensics .. 62

3.4 Discussion ... 66

3.5 Conclusion ... 68

4 System Design and Use Cases ... 70

4.1 Introduction .. 70

xi

4.2 Description of Taxonomy ... 71

4.3 Main Scenarios .. 73

4.3.1 Leaking Classified Documents/Images ... 73

4.3.2 Leaking and Modifying Classified Documents/Images 74

4.4 Use Cases ... 75

4.4.1 Use Cases-Actors Inter-Relationships ... 76

4.4.2 Use Case Detailed Specifications ... 77

4.4.3 Legal, Ethical and Privacy Dimensions ... 84

4.5 Conclusion ... 85

5 Proactive Biometric Imprinting of Digital Objects 86

5.1 Introduction .. 86

5.2 Steganography and Transparent Biometrics .. 87

5.3 Null-Ciphered Imprinting Using Images ... 89

5.4 Grille-Ciphered Imprinting Using Images and Text Files 93

5.4.1 Digital Object Imprinting .. 94

5.4.2 Correlation Chaining.. 95

5.5 Discussion ... 98

5.5.1 Research Questions Identified .. 101

5.6 Conclusion ... 102

6 Investigation of a Biometric-Based Null Cipher Using Images 104

6.1 Introduction .. 104

6.2 Methodological Approach .. 105

xii

6.2.1 Capturing an Individual’s Biometric Information 106

6.2.2 Extracting a Biometric Signal .. 107

6.2.3 Transferring the Biometric Signal and Image into Byte Streams . 107

6.2.4 Padding the Flag and the Timestamp .. 107

6.2.5 Choosing the Embedding Locations .. 108

6.2.6 Encrypting the Payload ... 108

6.2.7 Embedding the Encrypted Data into the Image 108

6.3 Experimental Analysis ... 110

6.4 Discussion ... 118

6.5 Conclusion ... 120

7 Investigation into a Biometric-Based Grille Cipher Using Images 122

7.1 Introduction .. 122

7.2 Methodological Approach .. 123

7.2.1 Preparation of the Feature Vector and Object 125

7.2.2 Mapping the Feature Vector to the Object 126

7.2.3 Generating the Feature Vector Imprints 126

7.3 Experimental Methodology .. 130

7.3.1 Retrieving the Feature Vector from the Original Imprinted Image 131

7.3.2 Modification in One Area ... 132

7.3.3 Modification in Multiple Areas .. 134

7.3.4 Partial Image ... 135

7.4 Experimental Analysis ... 136

xiii

7.5 Discussion ... 147

7.6 Conclusion ... 149

8 Investigation into a Biometric-Based Grille Cipher Using Documents 151

8.1 Introduction .. 151

8.2 Methodological Approach .. 152

8.2.1 Correlation-Generation Pipeline .. 156

8.2.2 Extracting document text ... 156

8.2.3 Pre-Processing the Extracted Text .. 156

8.2.4 Computing the LSH Value of the Text ... 157

8.2.5 Mapping the Feature Vector to the Hash Digest Value 158

8.2.6 Generating Imprints ... 159

8.2.7 Recovery Algorithm ... 159

8.3 Experimental Analysis ... 160

8.4 Discussion ... 170

8.5 Conclusion ... 172

9 Conclusions and Future Work .. 174

9.1 Contributions and Achievements of the Research 174

9.2 Limitations of the Research ... 176

9.3 Ethics and the Moral Context and Implications of the Research 178

9.4 Suggestions and Scope for Future Work ... 180

References.. 182

Appendix A– Experiential Analysis Scripts (Python) .. 206

xiv

9.5 Null Cipher Embedding and Extracting Script 207

9.6 TLSH Generation and Attacks Against Text Files Script 212

9.7 Grille Cipher Mapping and Retrieving Script 236

xv

List of Figures

Figure 2.1: Generic reactive digital forensic process model (Palmer, 2001) 14

Figure 2.2: Proactive and reactive digital forensic investigation system process

(Alharbi, Weber-Jahnke and Traore, 2011) ... 17

Figure 2.3: Typical steganographic system process flow 23

Figure 2.4: General digital watermarking system (Shih, 2017) 27

Figure 2.5: Performance of three commercial facial recognition systems using the

CAS-PEAL-R1 dataset (Al-kawaz et al., 2018) ... 31

Figure 3.1: Systematic review methodology .. 33

Figure 3.2: Taxonomy of data leakage prevention solutions (Shabtai, Elovici and

Rokach, 2012b) ... 40

Figure 3.3: Accuracy of varying the length of C (Gessiou, Vu and Ioannidis, 2011)

 .. 41

Figure 3.4: Detection phase (Katz et al., 2014) ... 44

Figure 3.5: Singular value decomposition. Du et al. (2015) 46

Figure 3.6: Architectural diagram (Manmadhan et al., 2014b) 50

Figure 3.7: General architecture of a proposed framework (Balinsky, Perez and

Simske, 2011) ... 52

Figure 3.8: Concept behind a proposed DLP model matching (Wu et al., 2013)

 .. 54

Figure 3.9: Agent classifications and hierarchy (Lee et al., 2009). 55

xvi

Figure 3.10: Dugad’s image watermarking algorithm, the top part shows

watermark casting and the bottom part shows watermark detection (Dugad,

Ratakonda and Ahuja, 1998). ... 56

Figure 3.11: iLeak prototype implementation (Kemerlis et al., 2010) 58

Figure 3.12: Leakage problem instances (Papadimitriou and Garcia-Molina, 2011)

 .. 61

Figure 3.13: Enron automatic summarisation, matcher 60 (Shields, Frieder and

Maloof, 2011) .. 65

Figure 4.1: Use Case Scenarios Structure and Logic 70

Figure 4.2: General file leak scenario including Use Cases and relevant Actors

 .. 75

Figure 4.3: Use cases-actors inter-relationships ... 76

Figure 5.1: Decentralised process .. 90

Figure 5.2: Null-ciphered image .. 91

Figure 5.3: Embedding and extraction procedures used by the steganographic

system .. 92

Figure 5.4: Centralised process .. 93

Figure 5.5: Process of identifying an individual ... 94

Figure 5.6: Example of linking multiple persons’ biometric information with an

image .. 96

Figure 6.1: Applying LSB using one least significant bit 109

Figure 6.2: MSE1 and PSNR1: single biometric signal per print; MSE2 and

PSNR2: two biometric signals per print ... 114

xvii

Figure 6.3: Cropped versions of the test image... 115

Figure 6.4: Number of prints extracted for a single biometric signal per print .. 116

Figure 6.5: Number of extracted prints for two biometric signals per print 117

Figure 6.6: Correlation between the number of signals per print, size of the image

and the likelihood of recovery ... 118

Figure. 7.1: The proposed framework architecture .. 124

Figure 7.2: Grille cipher mapping example .. 125

Figure 7.3: Feature vector and an object .. 128

Figure 7.4: Hex representation of the feature vector and the object 128

Figure 7.5: Facial feature vector ... 131

Figure 7.6: Sample of a modified area of an image ... 133

Figure 7.7: Sample of a modified part of an image .. 134

Figure 7.8: Sample of a modified area of an image ... 135

Figure 7.9: Samples of an image cropped to certain percentages 136

Figure 7.10: One area modification attack .. 138

Figure 7.11: Multiple parts modification attack .. 139

Figure 7.12. Matrix of numbers to be used as an example of an object to be

imprinted with a given vector. .. 140

Figure 7.13. Matches values of the given vector highlighted in colour per imprint

 .. 140

Figure 7.14. Biometric information—document correlation generation pipeline 141

Figure 7.15. Biometric information—document correlation generation pipeline 142

xviii

Figure 7.16. Biometric information—document correlation generation pipeline 142

Figure 7.17. Biometric information—document correlation generation pipeline 143

Figure 7.18. Biometric information—document correlation generation pipeline 143

Figure 7.19: Partial image attack .. 145

Figure 7.20: Multiple parts modification attack .. 146

Figure 8.1. Biometric information—document correlation generation pipeline . 154

Figure 8.2: Examples of a feature vector and the TLSH digest sample 154

Figure 8.3: Feature vector—LSH digest mapping matrix 155

Figure 8.4: Slicing document text into 10-overlapped-folds 158

Figure 8.6: Samples of computed document hash digests using SHA256 and

TLSH... 164

Figure 8.7: Distribution of the imprints generated per document 165

Figure 8.8: Modification types and rates among the dataset documents 166

Figure 8.9: Averaged accuracy and F1-Score for a deleted words attack 168

Figure 8.10: Averaged accuracy and F1-Score for a deleted paragraphs attack

 .. 169

xix

List of Tables

Table 3.1: Number of returned references .. 37

Table 3.2: Publication genre and the number of primary studies 37

Table 4.1: Common Person-Class Actors ... 71

Table 4.2: Common Data-Class Actors ... 71

Table 4.3: Common Asset-Class Actors ... 72

Table 4.4: Common Attack-Class Actors .. 73

Table 4.5: Use cases description .. 76

Table 6.1: Maximum number of prints that can be embedded into a given RGB

image .. 113

Table 7.1: Feature vector value positions in the object 129

Table 7.2: Possible imprints .. 129

Table 8.1. Corpus statistics ... 161

Table 8.2. Possible document manipulation methods 162

Table 8.3. Content manipulation attack methods experimental results 167

xx

List of Equations

Equation 1: Illustrates how precision is calculated using true positive and false

positive values .. 43

Equation 2: Illustrates how the recall is calculated using true positive and false

negative values ... 43

Equation 3: Mean squared error ... 113

Equation 4: Peak signal-to-noise ratio .. 114

Equation 5: Modification size .. 132

xxi

Glossary

ASCII - American Standard Code for Information Interchange

AES - Advanced Encryption Standard

BIOFI - Biometric-enabled forensic imprinting system

CCTV - Closed-circuit television

DCT - Discrete cosine transform

DLD/P - Data loss detection and prevention

DLP - Data loss prevention

DOCX - Microsoft Word documents

EER - Equal error rate

FAR - False acceptance rate

FNIR - False negative identification rate

FPIR - False positive identification rate

FRR - False rejection rate

FV - Feature vector

HR - Heart rate

HRV - Heart rate variability

IP - Internet Protocol

IRILD - Information-retrieval-based information leakage detection

LDA - Linear discriminant analysis

LSA - Latent semantic analysis

LSB - Least significant bit

LSH - Locality sensitive hashing

MSE - Mean squared error

OCR - Optical character recognition

PCA - Principal component analysis

xxii

PDF - Portable document format

PSNR - Peak signal-to-noise ratio

RDBMS - Relational database management system

SHA - Secure Hash Algorithm

SQL - Structured Query Language

SVD - Singular value decomposition

SVM - Support vector machine

TAR - True acceptance rate

TLSH - Trend micro locality sensitive hash

TPIR - True positive identification rate

TRR - True rejection rate

Chapter 1- Introduction

1

1 Introduction

1.1 Introduction

Insider threats to enterprises have become widespread in the last decade (Liu et

al., 2018; Safa et al., 2018) and have, therefore, been considered as a crucial

security issue by many recent research studies (Shabtai, Elovici and Rokach,

2012a; Collins et al., 2013; Huth et al., 2013; L. Liu et al., 2018; Nourian and

Madnick, 2018). In addition, insiders who have legitimate access to an

organisation’s internal systems and databases have the advantage of accessing

all kinds of information—including those classified as confidential—as they possess

the appropriate permissions and rights. A study found that more than 300,000

internal security breaches took place in UK businesses in 2013 (IS Decisions,

2014). More recently, according to the 2018 Data Breach Investigations Report

by Verizon, which included 2,216 data breaches, one-quarter of the attacks that

occurred in organisations were mainly driven by misuse, mistakes, espionage or

financial gain (Verizon, 2018). Such breaches lead to substantial damage to the

exploited body as a result of the loss or disclosure of sensitive and confidential

intellectual property. In particular, when the exposure originates from an

authorised person (employee, contractor, etc.) who misuses the advantage of

privileged and legitimate access to the firm’s internal resources, this facilitates

potential access to restricted areas, in comparison with the approach of outsiders

who do not have the prior knowledge possessed by insiders. This is because

insiders are more likely to be able to bypass security controls compared with

Chapter 1- Introduction

2

outsiders who supposedly have limited knowledge about the internal

infrastructure. As a result, insiders pose a significantly greater threat to

organisations than outsiders (Stanton et al., 2005; Colwill, 2009).

According to Felix Gaehtgens, a research director at Gartner, in 2015, fewer than

5% of organisations were actually tracking and reviewing privileged activities,

while the remainder were, at best, controlling access and logging when, where

and by whom privileged access took place—but not what was actually done. Unlike

those who monitor and evaluate the privileged activity, those who do not are at

risk of being blindsided by insider threats, malicious users or errors that create

significant threats (Gartner Inc., 2016; L. Liu et al., 2018).

Digital forensics aims to produce and test a hypothesis about who did what, where,

when and how in relation to the incident under investigation. Indeed, existing

methods and tools used by investigators to conduct examinations of digital crime

are of significant help in collecting, analysing and presenting digital evidence

(Carbone, 2014; Widup, 2014; SANS Institute, 2016a). However, this remains a

challenging task, because it is currently difficult for digital forensic professionals

and investigators to prove beyond a reasonable doubt in a court of law that a

specific human being has used the specific identity of a digital subject at a

particular time (Shavers, 2013; Brown, 2015; Vincze, 2016). In many cases, the

furthest point that a forensic investigation can reach by analysing electronic

evidence—with the aim of tracing the origin of the crime committed—is the machine

or Internet Protocol (IP) address from which the crime was committed. In such

scenarios, criminals could argue and deny a charge by claiming that someone

Chapter 1- Introduction

3

else had used their computer, especially knowing that a lot of desk-based

employees think that there is no security risk to their employer in sharing work

login credentials (IS Decisions, 2018).

Having an approach that links information with those using it—beyond simple

accounts—is required to provide the ability to connect an individual with the data

being used. Most existing methods, such as digital watermarking or logs-based

systems, establish correlation solely by a digital record of the object being

monitored—not with the individual directly (Charbonneau and Simon, 2014;

Nelson and Xie, 2014). As a possible solution to this problem, research has

focused upon the use of biometrics that could provide such a link. Moreover,

transparently capturing the user’s biometrics and instantly generating a biometric

imprint that correlates the user interaction with the object used could give rise to

critical information that would help digital forensic investigators in answering the

“who” question. Upon detection of misuse, the biometric signal can be recovered

and this will identify the individual who sent or interacted with a given digital

object—negating the need for expensive and time-consuming investigation of a

system that could eventually lead to a digital record (e.g., username, IP address,

computer ID, etc.).

1.2 Research Aim and Objectives

The main aim of this research is to develop an efficient and robust proactive

biometric-based forensic system that can inextricably link the use of information

(evidence) to the individual users who access and use it. In order to achieve this

aim, the following research objectives were established:

Chapter 1- Introduction

4

1. To establish a current state-of-the-art understanding of data loss

prevention, detection and proactive digital forensic techniques focusing

on insider misuse, with a view to identifying and assessing the necessary

attributes to enable a proactive and innovative digital forensic approach.

2. To propose a novel biometric-based technique that works proactively to

establish a correlation between a digital object and the individual who

interacts with it. The following investigations were carried out:

2.1. Investigation of differing embedding processes, including

leveraging steganographic techniques such as null and grille

cipher methods.

2.2. Investigation of how the correlation between the biometric signal

acquired and the object being monitored could be established with

different file types, including images and text-based files.

2.3. Investigation of the impact on biometric retrieval given differing

levels of file modification (i.e., having a partial image, the removal

of paragraphs, sentences, and words, and file format conversion).

2.4. Investigation of the volume of biometric data that can be

embedded and the impact upon retrieval (single and multimodal).

3. To identify the strengths and limitations of the proposed approach based

upon the series of conducted investigations and experiments.

Chapter 1- Introduction

5

1.3 Thesis Structure

This thesis is organised into nine chapters. Chapter 1 introduces the research

problem and outlines the overall research aim and its objectives, along with the

structure of this report. The chapter concludes with a list of the works published

during this research project.

Chapter 2 explores the definition of ‘an insider’ and the scale and cost of insider

misuse. This chapter also provides background information about digital forensics

in general, including the investigation process and the models that most forensic

professionals follow when conducting a digital crime investigation. An overview

of the current challenges in digital forensics is presented and the role of

biometrics within digital forensics discussed.

Chapter 3 provides a literature review of related studies in the domain of data loss

detection, prevention and proactive digital forensic techniques. The chapter

concludes with a discussion section that identifies a gap that exists in the

literature.

Chapter 4 identifies system actors, use cases and a relevant scenario to define,

investigate, and evaluate how the system would react in normal operation. The

chapter form the bases for the design requirement of the proposed system.

Chapter 5 introduces a proactive digital forensic biometric-based approach to the

attribution of misuse via information leakage using biometrics and steganography.

Two main methods (i.e., null cipher and grille cipher imprinting techniques) are

Chapter 1- Introduction

6

discussed in this chapter. The chapter ends with the main research questions to

be investigated experimentally in the subsequent chapters.

Chapter 6 is the first of three chapters that consider an experimental investigation

and presents a biometric-based null cipher technique using images by

embedding individuals’ biometric signals into image files, with a particular focus

upon the ability to recover the biometric information under varying degrees of

modification attack. The chapter also provides a detailed analysis in evaluating

the performance of the approach used.

Chapter 7 presents an investigation conducted into a biometric-based grille cipher

technique using images by linking a subject (i.e., computer user) with an object

of interest (e.g., images) using the individual’s biometric sample, such as a facial

biometric, without modifying the object being imprinted. This investigation also

develops a set of experiments that employ a grille cipher technique to generate

the correlation that could identify the individual.

Chapter 8 presents an investigation into a biometric-based grille cipher technique

using documents to attribute document misuse via information leakage using

biometrics and a locality sensitive hashing scheme. A comprehensive set of

experiments for the proposed approach are conducted, such as changing the file

format and removing parts of the document, including words and sentences, to

measure the effectiveness of the developed technique.

Chapter 9 provides conclusions and highlights the main contributions and

achievements of the research project. The chapter also describes the limitations

Chapter 1- Introduction

7

identified during the project. The chapter ends with suggestions and scope for

possible future work.

At the end of this thesis, scripts and codes for the developed algorithms are

attached.

Chapter 2- Insider Misuse and Digital Forensics

8

2 Insider Misuse and Digital Forensics

This chapter provides information about insiders and the problem of insider

misuse, together with a brief background to the digital forensic investigation

processes and models that most forensic professionals follow when conducting

digital crime investigations. An overview of the current challenges in digital

forensics is also presented, together with an analysis of the role that biometrics

plays within the domain.

2.1 Introduction

It is deeply concerning for organisations when data exposure originates from an

authorised individual (e.g., an employee or contractor) who misuses their

legitimate access and the potential for adverse impacts is, in this case, typically

higher than for access by outsiders (Moshinsky, 2017; Titcomb, 2017; WikiLeaks,

2017). Insiders are more likely to bypass security controls than outsiders, as the

latter typically have limited knowledge of the internal infrastructure in a given case.

Therefore, insiders pose a significant threat and identifying criminals, especially

if the digital forensic process leads to the presentation of findings in legal

proceedings, is a challenging and crucial task.

2.2 Insider Misuse

There is no unified definition of an ‘insider’ since it depends heavily upon the

nature of the organisation and how its security perimeters are defined. It becomes

even more complicated when an organisation has a range of employees who are

involved in an incident. For instance, a company might have contractors,

Chapter 2- Insider Misuse and Digital Forensics

9

subcontractors, part-time employees, business partners, and even outsourcers.

The US Department of Homeland Security defines an ‘insider’ as “an individual

with privileged access to an information technology system” (Hunker and Probst,

2011). This definition is acceptable when the insider threat occurs in an

information technology (IT) context. However, it seems to ignore the question of

whether the individual is trusted or not (Bishop and Gates, 2008). It also ignores

other aspects of the issue, in addition to the IT resources. For instance, an

employee might work in a testing laboratory, where it is possible to leak

intellectual property (e.g., a documentary design or a prototype of a new secret

product). This type of malicious activity can be carried out without the need for

privileged access to IT resources. Therefore, limiting the definition simply to

having privileged access to IT resources is excessively specific and is not

necessarily appropriate to many other relevant scenarios.

Another definition defines an insider as any person who works within the security

boundaries of an organisation (Patzakis, 2003). However, the revolution in mobile

devices has enabled individuals to be freed from such security perimeters, and

their tasks may be accomplished outside the organisation’s physical site.

Therefore, legitimate users might work inside or outside their institution’s site via

modern technology. Hence, it is difficult to have a generic definition of an insider,

although the definition should be consistent with the context and environment.

2.2.1 Insider Threats

According to Cappelli et al. (2012) and Elmrabit, Yang and Yang (2015), insider

threats can be categorised into three main types: insider Internet technology

Chapter 2- Insider Misuse and Digital Forensics

10

sabotage, insider theft of intellectual property, and insider fraud. Most insider

threat cases that occurred in the past can fit into one of these three areas,

depending upon the intent of the malicious activity. Insider IT sabotage mostly

includes those incidents in which the crime is committed by a technical user, for

instance, a database, network or system administrator. In most documented

cases, it was found that insider IT sabotage crimes, such as causing denial of

service, were conducted as revenge against the victim organisation (Clark, 2016;

Jackson, Choi and Gelfand, 2019).

The underlying motivation for insider theft of intellectual property is typically to

steal something that belongs to the criminal’s institution. Such a crime is typically

committed by someone who has access to sensitive information and seeks to

gain personal benefit from stealing intellectual property. For instance, an

employee moving from one job to another in a different organisation might steal

a software source code or novel product design in order to use it in a new job.

The third category of insider threat is insider fraud, which is usually carried out by

low-level workers, such as a data entry worker, call centre representative or

secretary. In this case, the individual is trying to gain some benefit from the crime

committed for themselves or another organisation. An example of this type of

insider threat is someone leaking confidential financial information, such as

customer credit card details, to somebody who is not authorised to access those

data. Typically, the common motivation behind this type of crime is financial gain.

For the purpose of this research, the main focus is on insider theft of intellectual

Chapter 2- Insider Misuse and Digital Forensics

11

property, specifically data leakage; the other categories are thus beyond the

scope of this project.

2.2.2 Monitoring Users’ Behaviour and the Law

When it comes to observing employees’ activities, the law varies from one country

to another. For example, in the UK, it is obligatory to make staff aware that they

are being monitored (Gov.uk, 2015). Furthermore, employers must explain clearly

the type of observation that is undertaken and its purpose. However, according

to human rights law, there are two cases in which employers can monitor their

staff without their knowledge: when someone is suspected of breaking the law

and when making them aware of the observation would make it more difficult to

detect a crime.

In the US, the laws for monitoring employees differ from state to state. For

instance, some states, such as Delaware and Connecticut, regulate computer-

use observation and require the employer to notify employees in advance when

there is an active monitoring system in place. In other states, such as Michigan

and Illinois, employers are prohibited from monitoring their staff concerning

information related to “an employee’s associations, political activities,

publications, or communications of non-employment activities” (Huth, 2013). In

general, most US states require employers to inform their employees of

monitoring activity in advance.

Chapter 2- Insider Misuse and Digital Forensics

12

2.3 Digital Forensic Investigation Processes

The science of digital forensics has existed for a long time, aiding organisations

in investigating cybercrime. In the early days of digital forensics, professionals

and practitioners tended to use the term computer forensics to describe the

process of investigating a computer crime incident. Not until the emergence of

other electronic and embedded devices, such as mobiles and smartphones, did

forensic specialists move to call it the digital forensics domain. A modern and

trending term that describes wider branches in the domain of digital forensics is

cyber forensics, which encompasses digital and computer forensics. In general,

all three terms are likely to be used as synonyms to describe the process and

science of extracting information and data from electronic devices to serve as

electronic evidence for proving and legally prosecuting digital crime. This process

includes, but is not limited to, extracting relevant information from computers,

smartphones, network devices, databases, and storage media.

One of the main aims of the digital forensic process is to produce and test a

hypothesis about who did what, when, where and how in relation to the incident

under investigation in a way that is legally acceptable to the courts. Indeed, the

existing methods and tools used by investigators to conduct examinations of a

digital crime help significantly in collecting, analysing and presenting digital

evidence (Carbone, 2014; Widup, 2014; SANS Institute, 2016b). However, the

question of who committed the crime is crucial, especially if the digital forensic

process leads to the presentation of findings in a court of law (Valjarevic and

Venter, 2012). Therefore, employing the digital forensic process within an

Chapter 2- Insider Misuse and Digital Forensics

13

organisation in order to investigate crime incidents successfully is neither a

straightforward nor trivial task. Such a process involves several practical and

technical aspects, which, if not conducted properly, will significantly affect the

forensic value of the investigation and the resulting evidence (Clarke, 2010). Most

legal forensic practices are often post-incident investigations designed to gather

and analyse information that assists in building a hypothesis to form a case of the

law. Such action is typically called a reactive model, whereby the whole

investigation takes place following the incident. What could help in identifying the

source of a crime would be to prepare the environment by being proactive in

putting appropriate processes and technologies in place in order to be proactive

in aiding the post-incident investigation. This would significantly and effectively

boost the success of the overall investigation process in proving guilt in a crime.

2.3.1 Reactive Model

A reactive investigation acts like a typical digital forensic investigation process. It

mainly involves seven successive phases that forensic practitioners follow, as

Figure 2.1 illustrates. The process starts with the identification phase and ends

with a decision. The main phases are written along the top of the table. Each

column contains items and steps for the corresponding category to which it

belongs. However, according to the discussion during the first meeting of the

Digital Forensic Research Workshop (DFRWS) in 2001, it was debated that not

all the classes/phases were to be considered ‘forensic’. Those items in the centre

of the table (highlighted in grey) are those open to the least confusion, although

Chapter 2- Insider Misuse and Digital Forensics

14

there is still some argument about the use of the terms collection and preservation,

and whether one is really a subclass of the other (Palmer, 2001).

Figure 2.1: Generic reactive digital forensic process model (Palmer, 2001)

Each of the phases is subdivided into various components to give a broad outline

of the goal that particular phase is trying to achieve.

Identification includes the detection of an event or incident using existing tools,

for example, intrusion detection techniques or monitoring systems. However, the

identification process is not typically a digital forensics role but is required to begin

the investigation process.

Chapter 2- Insider Misuse and Digital Forensics

15

Preservation involves gathering relevant data. It is useful for the purposes of

digital investigations by ensuring that none of the data is lost or tampered with but

preserved according to the related procedures that are normally followed in an

accredited digital forensics house.

Collection consists of reducing the preserved information to relevant data by

appropriate hardware and software tools, using the right sampling techniques so

that the target data are much more relevant than the preserved data in terms of

the digital forensics examination purposes.

Examination includes close scrutiny of the data to find traces of a crime by

searching for aspects such as hidden data, pattern matches and validating the

data. During this phase, the digital evidence is evaluated to disclose data and

reduce volume.

Analysis involves examining the context and content of digital evidence to

determine relevancy. It also consists of following procedures such as statistical

techniques and data mining in order to achieve results.

Presentation includes preparing documentation for reporting purposes.

Since the above phases share and involve common tasks, some of them could

be grouped into a higher level; for instance, the identification, preservation, and

collection phases could be grouped under one category called gathering.

Furthermore, the examination and analysis phases could be grouped within a

processing phase.

Chapter 2- Insider Misuse and Digital Forensics

16

2.3.2 Proactive Model

Although reactive forensic investigation might lead to acceptable results in some

scenarios, there are many cases in which an organisation could benefit from

being able to record, gather and analyse intelligence proactively prior to tackling

an incident. Furthermore, being proactive—also called digital forensics readiness—

with regard to the design of the forensics capability within the organisation will

ensure that the incident response team is able to respond effectively and

efficiently (Clarke, 2010). There are several ways to implement such a model, one

of which was introduced by Alharbi et al. (2011). They proposed a hybrid model

of both reactive and proactive digital forensics that would operate simultaneously,

in order to provide a framework that incorporated different forensics analysis

algorithms to collect, trigger a malicious event, and preserve and analyse

evidence proactively to identify an incident as it occurs, as Figure 2.2 illustrates.

Chapter 2- Insider Misuse and Digital Forensics

17

Figure 2.2: Proactive and reactive digital forensic investigation system process

(Alharbi, Weber-Jahnke and Traore, 2011)

Several areas need to be addressed when an organisation intends to implement

forensic readiness. These areas include technical actions, such as continuously

monitoring and triggering responses to suspicious events. Non-technical

dimensions are also involved in the process of applying proactive digital forensics

effectively; for instance, staff training and conducting targeted security awareness

programmes will genuinely boost the organisation’s overall incident readiness.

Moreover, it is necessary for the organisation’s security policy and strategy to be

a good fit with its digital forensic goals.

Chapter 2- Insider Misuse and Digital Forensics

18

2.4 Challenges in Digital Forensics

Criminals are becoming more aware of digital forensics and investigation

capabilities. As a result, they can defeat the process of investigation in some

cases, which makes the analysis and reconstruction of attack scenarios more

difficult and challenging (Rekhis and Boudriga, 2012). In addition, adversaries are

even developing ‘anti-forensic’ methods and tools specifically designed to

conceal their activities and destroy any remaining digital evidence. Privacy/

confidentiality-preserving techniques put in place, such as the integration of

secure encryption into operating systems, are creating further challenges for

forensic examiners; this has the potential to complicate the recovery of digital

evidence from a computer, mobile or electronic device (Casey and Stellatos,

2008). Different encryption algorithms can be used for this task, which relies upon

the preference of the system designer as to whether a secure encryption

algorithm is required, such as the Advanced Encryption Standard (AES). Using a

combination of a robust cryptographic algorithm and a high-entropy long key

makes the process of brute-forcing the encryption key or breaking the algorithm

encryption process a much harder task. This also slows the pace of digital

investigation operations, as such a task takes an enormous amount of time to

achieve (if it succeeds) and is sometimes unbreakable; it is here that the term

‘anti-forensic’ emerges. In the UK, the Regulation of Investigatory Powers Act

(RIPA) 2000 states that it is illegal for a criminal not to reveal the access code

(e.g., password or encryption key) to the law enforcement agency concerned.

Failure to do so is considered a criminal offence, with a penalty of two years in jail

(RIPA, 2014). It can be presumed that the law enforcement agency involved may

Chapter 2- Insider Misuse and Digital Forensics

19

be able to build enough circumstantial evidence to prosecute. Nonetheless,

according to Udham Singh (2014), around two-thirds of cases that involve

encrypted files or devices go without processing, due to their inaccessibility even

when using advanced forensic tools such as Forensic Toolkit (FTK) or EnCase

Forensic Software (Eden et al., 2016).

An interesting example that shows how encryption could pose an extreme

challenge to law enforcement agencies when conducting investigations is the

recent case involving the US Federal Bureau of Investigation (Apple, Inc. 2016).

The FBI had asked Apple to make a new version of its most popular mobile device

(iPhone) operating system (OS) to circumvent several essential security features,

including the user’s data encryption, and to install this new OS on the device so

that the FBI could recover and have backdoor access to locked or encrypted

mobile devices during investigations. Moreover, the use of biometric signals (e.g.,

face, fingerprint and iris) in encrypting files and for access control introduces

further barriers to digital forensics investigators when attempting to bypass such

constraints to complete an investigation process and uncover evidence (Abed et

al., 2019).

Other emerging domains in digital forensics that pose technological and legal

issues are:

 Cloud computing forensics

 Big data forensics

 Internet of things forensics

Chapter 2- Insider Misuse and Digital Forensics

20

The dynamic nature of cloud computing models includes the different services

(software, platform and infrastructure as a service) that make it much harder for

investigators to collect and analyse evidence. For instance, the same cloud

infrastructure used by a criminal who conducted a massive and destructive

cybercrime yesterday is being used today by another firm for a legitimate purpose.

Some of the conventional computer forensic models and approaches are

insufficient and incompatible with the cloud environment (Grispos, Storer and

Glisson, 2012; Zawoad and Hasan, 2013).

One of the biggest challenges in investigating and prosecuting cybercrime is the

Trojan/Virus defence. The Trojan defence is used when blaming an offence and

actus reus (guilty act) on a piece of software, known as a Trojan (Brenner, Carrier

and Henninger, 2004). It has now become common for individuals accused of a

computer-related crime to claim that the responsibility lies with malware placed

on their machine without their knowledge (Bowles and Hernandez-Castro, 2015).

Several cases have ended with the release of suspects without being sentenced

and walking free from court due to the Trojan/Virus defence (Fox News, 2009;

Rutherford, 2010; Dalrymple, 2013). The current solution involves a layering of

security countermeasures, which include the comprehensive logging of servers

(including authentication requests) so that logs can be correlated in order to

understand who was using which machine at what time that resulted in specific

actions in a network (Quick and Choo, 2013; Ho, Kaarst-Brown and Benbasat,

2018; Khan, Foley and O’Sullivan, 2019). Assuming encryption is in place, proxy-

based network decryption and storage of network traffic is required to identify

misuse (possibly over prolonged periods of time). If third-party encryption is used,

Chapter 2- Insider Misuse and Digital Forensics

21

it will not be possible to decrypt and inspect the traffic. An underlying assumption

is that the computer account identified as being where the misuse occurred

belongs to the individual who perpetrated the attack. However, with generally

poor password use (e.g., shared and stolen accounts) and specific malicious

intent, the assumption is unlikely to be true. Therefore, an approach that could

biometrically correlate a user-based event/action directly with the individual who

conducted it is required. Proactive digital forensics approaches—such as the

method proposed in this research—could play a vital role in such cases and

identify the real criminal by establishing a correlation between identity and

evidence, such as a digital object.

Another major challenge that digital forensic investigators encounter when

carrying out a deep inspection of an acquired forensic image is that information

can be hidden inside image or text files. Hiding information is a well-known

method of transferring knowledge and communicating over an untrusted channel

that is used by criminals and spies to bypass monitored channels.

2.5 Digital Steganography

Steganography is the art of hiding information using a cover object, such as

embedding a secret message inside a legitimate image, document, audio or video

file, with the aim of not revealing a secret or leaving any signs that could indicate

the hidden message, other than to the target recipient. In contrast, cryptography

encrypts a message in such a way that it becomes unreadable by rendering it a

meaningless jumble of characters, but it is present, and not hidden. The

advantage of steganography over the use of cryptography alone is that the

Chapter 2- Insider Misuse and Digital Forensics

22

intended secret message does not attract attention to itself as an object of scrutiny.

However, for a long time, the difficulty of constructing the ordinary letter made

steganography nearly going to be information modification. Traditional

steganography methods, such as the least significant bit (LSB), which modifies

the cover data to hide information, did not strictly satisfy the condition of being

undetected and were vulnerable to being cracked by extensive steganalysis

techniques (J. Liu et al., 2018).

There is also a difference between steganography and a related data-hiding field

called watermarking. Although steganography and watermarking have some

fundamental similarities, in that they both hide secret information, they address

distinct applications. In steganography, the carrier object (e.g., image) is a mere

decoy and has no relationship with the secret message. In comparison,

watermarking typically carries additional data about the carrier object or some

other information related to the cover, such as tags classifying the source or the

destination of the message being sent (Fridrich, 2009). In summary:

 Steganography is the process of sending a secret message by hiding it in

a carrier object.

 Steganography is typically described as the prisoners’ problem, in which

two prisoners, Alice and Bob, want to hatch an escape plan but their

communication is monitored by a watcher (Eve), who will halt the

communication once she suspects an exchange of secret data.

 The most important property of steganography is that it is statistically

undetectable, which means that it should be difficult for Eve to notice the

Chapter 2- Insider Misuse and Digital Forensics

23

presence of a private message in a carrier. Statistically undetectable

steganographic algorithms are referred to as secure.

 A warden who merely observes the traffic between Alice and Bob is

referred to as passive. An active or malicious warden would tamper with

the communication in order to prevent the prisoners from using

steganography or to trick them into revealing their communication.

 Digital watermarking is a data-hiding application that is related to

steganography but is fundamentally different. Whereas in steganography

the secret message usually has no relationship with the cover object,

which merely plays the role of decoy, watermarks typically supply

additional information about the cover. Moreover, and most importantly,

watermarks do not have to be embedded undetectably (Fridrich, 2009).

Figure 2.3 shows a typical steganographic system process flow that incorporates

encryption when hiding secret data.

Figure 2.3: Typical steganographic system process flow

The steganographic process typically begins by encrypting a plain secret

message using a symmetric encryption key, which is shared between the sender

Chapter 2- Insider Misuse and Digital Forensics

24

and the receiver of the message to encrypt and decrypt the payload (the plain

message to be embedded). Encryption is a typical practice in such applications;

however, it is not always necessary. There are different techniques for hiding

information in digital files. These techniques include four main methods:

substitution, transform domain, statistical, and distortion.

2.5.1.1.1 Substitution System

Substitution-based techniques replace unnecessary or redundant bits of the

carrier object with the secret message required to be hidden (Chan and Cheng,

2004). A well-known example of this approach is LSB-based steganography, as

the LSB mostly has a low affect on the cover object, even when it is being

removed or replaced with a different value (Chan and Cheng, 2004). A practical

example of a substitution system with the LSB technique is replacing the last bit

of each colour band of the pixels of an image with one bit of the secret massage

(Wang, Lin and Lin, 2001). In the case of an RGB image, each pixel basically

consists of three bytes: red, green and blue, and each pixel can accommodate

three bits of the secret message (QL et al., 2018). The secret message can be

encrypted prior to being hidden within the cover object to preserve its secrecy in

the case of someone detecting it. However, adding this type of security cover to

a message introduces noise, as well as increasing the size of the original secret

message. Another downside of the substitution system, in addition to its being

naive, is that the secret message must almost always be smaller than the cover

object (Wang, Lin and Lin, 2001; Chan and Cheng, 2004). OpenStego is an

example of a software tool that utilises such an approach, in that it provides two

Chapter 2- Insider Misuse and Digital Forensics

25

main functionalities: data hiding and watermarking (OpenStego, 2017). It can hide

any data within a cover file (e.g., images). It can also watermark files with an

invisible signature. This type of approach is useful for detecting unauthorised file

copying and illegal distribution (Vaidya, 2019).

2.5.2 Transform Domain

In the transformation domain, the original space in the cover image is transformed

into a different space, using, for example, discrete cosine transform (DCT),

discrete Fourier transform, or wavelet transform (Poljicak, 2011; Cao et al., 2018).

These transformation techniques help in dividing the original image into parts

based on their signal strength or importance, whereby those parts with low

importance can be utilised to accommodate the secret message and reduce the

possibility of its being visually detected. In the Fourier transform, the original

image is transformed from the spatial domain into the frequency domain (Kipper,

2003). Once the cover object (i.e., image) is transformed into the frequency

domain, the low signals are leveraged to hide the payload and the image is then

transformed back to its original spatial domain (Cheddad et al., 2010; Poljicak,

2011). Wavelet transform is very similar to Fourier transform but involves more

complex mathematical operations (Edward Jero, Ramu and Ramakrishnan, 2014;

Miri and Faez, 2018).

2.5.3 Statistical Method

Statistical methods modify the cover object by changing only a single bit, in which

the modified object is considered as ‘1’ and the unmodified object is considered

as ‘0’. Therefore, the approach mainly relies upon the receiver detecting the

Chapter 2- Insider Misuse and Digital Forensics

26

change and reconstructing the secret message by identifying the sequences of

modified and unmodified objects to form the whole of the secret. OpenPuff is a

statistical-based steganographic and watermarking tool that allows users to hide

data in more than one carrier file (Sloan and Hernandez-Castro, 2018). When

hidden data are divided between a set of carrier files, a carrier chain is created,

with no enforced theoretical hidden data size limit (256MB, 512MB, depending

only on the implementation) that implements three layers of concealed data

obfuscation (cryptography, whitening and encoding) that extend deniable

cryptography into deniable steganography.

2.5.4 Distortion Techniques

A distortion technique makes a sequenced change in the cover object in a way

that it is only possible to decode the secret message by having both the original

and the modified version of the cover and then performing a comparison

operation to identify the changes. For example, Kim, Duric and Richards (2006)

proposed an algorithm for hiding information in the LSBs of JPEG coefficients.

The algorithm uses modified matrix encoding to choose the coefficients whose

modifications introduce minimal embedding distortion. The expected value of the

embedding distortion is derived as a function of the message length and the

probability distribution of the JPEG quantisation errors of the cover images.

2.6 Digital Watermarking

Many books, audio and video publishers and distributors use digital watermarking

to protect copyright and combat piracy. In simple terms, digital watermarking can

be described as a method of encoding arbitrary information into digital objects,

Chapter 2- Insider Misuse and Digital Forensics

27

such as using a unique customer ID number or company logo (Shih, 2017).

Utilising digital watermarking could help in identifying the source of the illegal

distribution of a watermarked digital object. For example, in the case of music

piracy, when someone buys an album or song, the producer or distributor can

leverage watermarking techniques to hide a unique identifier in the song file that

could lead to the person who buys it and then trace the source of the illegal activity.

Embedded digital watermarks can be used to verify the authenticity or integrity of

the carrier signal legitimately or to show the identity of its owners. Figure 2.4

shows the system components and process flow of general high-level digital

watermarking.

Figure 2.4: General digital watermarking system (Shih, 2017)

Overall, watermarking is very similar to a generic steganographic system. Hence,

steganographic techniques can sometimes be leveraged to perform a

watermarking task. Some digital watermarking schemes embed a unique

identifier inside a digital object that needs to be protected in a way that is not

visible, by using, for example, robust embedding algorithms such as those that

Chapter 2- Insider Misuse and Digital Forensics

28

work in the spatial or frequency domain. This makes a malicious intent to remove

the embedded watermarking information a non-trivial task to achieve.

2.7 Role of Biometric Technology in Digital Forensics

Biometric technology has various vital applications in forensic science (Gonzalez-

Sosa et al., 2018; Toor and Wechsler, 2018). Biometrics has contributed

significantly to forensic investigations. For example, it has been used to identify

missing individuals following natural disasters or accidents, such as fires.

Moreover, biometrics can help in identifying attackers who are involved in acts of

terrorism (Gonzalez-Sosa et al., 2018; Toor and Wechsler, 2018). Some of the

biometrics modalities and traits can be captured physically (e.g., fingerprints,

palm prints, DNA), and others captured digitally or transparently (e.g., face, voice,

body measurements, gait).

The use of facial pictures and video data in an investigation helps investigators to

track suspects’ faces, their locations, time of the crime, the people who are seen

with them, and their activities (Carrier, 2003). However, uncooperative subjects,

the low quality of the pictures and poor illumination make the recognition process

a challenging task for any digital forensic facial recognition system. For example,

for the Belgium Zaventem Airport attack in 2016, limitations in the forensic face

recognition system had a serious impact on the ability to perform successful

recognition, delaying the identification of the suspects in a time-critical

investigation (Shoichet, Botelho and Berlinger, 2016). The system failed to track

a suspect because of the distance between the camera and the individual,

resulting in low resolution of the face, and variations in illumination. Different

Chapter 2- Insider Misuse and Digital Forensics

29

expressions and facial poses can also cause a failure in facial recognition (Al-

kawaz et al., 2018).

Some attributes closely related to the human body, such as clothing and footwear,

are often treated as biometric modalities in forensic science because they are

collected, analysed and interpreted in the same way as biometric traces and

exploited using the same inference models. The stability of a modality over time

determines the obsolescence of the case-related data for investigation, from a

lifetime for fingerprints and DNA, to some months or years for face and speaker

recognition (Meuwly and Veldhuis, 2012).

In order to be of forensic interest, the biometric modality has to be available as a

trace and needs to be distinctive. At a crime scene, fingermarks and biological

traces are searched for as a matter of priority because they are often available

and can be very distinctive. In comparison, iris pattern, although also very

distinctive, is only rarely available as a digital trace. Digital traces may embed

information about the body height of a perpetrator, but this modality is only

privileged if no other option is available, due to its poor distinctiveness. The

modality also needs to be stable and robust in forensic conditions. Face

recognition is commonly exploited for forensic investigation but suffers from

severe limitations. For example, facial features can change significantly over

even short periods of time and unconstrained video captures constituting the main

part of the trace material can lose a substantial part of the distinctiveness of the

modality (Meuwly and Veldhuis, 2012).

Chapter 2- Insider Misuse and Digital Forensics

30

Unfortunately, as the use of technology increases, so, too, does digital crime and

terrorism develop ways to avoid being discovered. Nevertheless, the increased

use of technology could also provide an opportunity to derive new biometric and

digital signatures to pursue those who engage in criminal and terrorist activities,

as some electronic devices have their own unique digital signature (Jain, Flynn

and Ross, 2008). Human interaction with electronic devices also provides some

interesting new digital biometrics (Iyengar and Miller, 2015).

There are several open-source and commercial facial recognition systems that

can be leveraged for use as a digital forensic tool to aid in identifying and

matching individual suspects (e.g., AmazonRekognition, 2015; Baltrusaitis,

Robinson and Morency, 2016; Clarifai, 2018; Neurotechnology, 2018;

GoogleCloudVision, 2019; MicrosoftFace, 2019; OpenCV, 2019). Such systems’

accurate search capability allows investigators to identify (to a certain degree) a

person in a photo or video, using a private repository of face images. Figure 2.5

illustrates the performance of three of the commercial systems–-Neurotechnology,

Microsoft, and Amazon’s Rekognition—as they were examined in identifying

individual faces based on a public dataset called CAS-PEAL-R1 (Wen Gao et al.,

2008). The dataset consisted of 30,900 images across 1,040 subjects (595 men

and 445 women). A study by Al-kawaz et al. (2018) included only those images

that met all conditions (pose, illumination, expression, and accessories) (95

subjects); the remaining were excluded in order to investigate the performance of

the three commercial systems in different environmentally realistic conditions.

Chapter 2- Insider Misuse and Digital Forensics

31

Figure 2.5: Performance of three commercial facial recognition systems using

the CAS-PEAL-R1 dataset (Al-kawaz et al., 2018)

It can be seen in the above figure that the systems examined mostly achieved a

more than 80% success rate in matching a given face image with the person to

whom it belonged. However, in some conditions, such as different lighting

variability and pose orientation, the performance was much lower. It is important

to mention that the subjects’ pictures that were examined were captured using a

professional digital camera, in which the image resolution is high and all the faces

fully presented. More challenging settings could include a situation in which only

part of the person’s face can be seen. Identifying someone from partial, unclear

details of a face could be extremely challenging.

Chapter 2- Insider Misuse and Digital Forensics

32

2.8 Conclusion

This chapter presented the concerns regarding threats from insider misuse along

with the existing challenges and barriers that face a typical reactive digital

forensics investigation. Forensic practitioners encounter complex challenges,

including data encryption, information hiding and data destruction. Although much

research has been undertaken into the detection of insider misuse, and

particularly information leakage, less focus has been given to linking this to the

people who are committing the criminal activity. Assuming many will utilise

credentials stolen from colleagues to perpetrate misuse, there is frequently a

reliance upon other security controls to verify the identity of the person

responsible (e.g., through the use of logs, CCTV, etc.) if indeed this is possible at

all. As a result, much more is required from specialists in the domain in terms of

incorporating different technologies, such as biometrics, into forensic readiness

and ensuring that incident response teams and forensic investigators are able to

respond effectively and efficiently once an incident occurs. Therefore, aligning

individuals with the data objects with which they are interacting and leveraging

biometric signals and systems and steganographic techniques could be a useful

combination to attribute misuse and enable digital forensic investigations to reach

positive results.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

33

3 Data Loss Detection, Prevention and Proactive Digital

Forensics

In order to provide a better understanding of the existing literature, this chapter

provides a review of relevant research and state of the art on data loss detection,

prevention and proactive digital forensic techniques. The chapter begins by

describing the methodology used for conducting this review, followed by a

detailed critical review of related studies. The chapter concludes with a discussion

section that identifies a gap in the literature.

3.1 Introduction

A systematic literature review is used in this chapter as the review methodology

to identify, evaluate and interpret all published research relevant to the topic area.

This method follows a specific protocol that makes the result reproducible.

Applying a systematic review involves three main steps: planning, execution, and

documentation of the results, as illustrated in Figure 3.1 (Harris et al., 2014; Xiao

and Watson, 2019). Each step includes several sub-steps that ensure the

consistency of the search activity.

Figure 3.1: Systematic review methodology

Planning

1. Specify research question

2. Develop review protocol

3. Selection criteria

Execution

1. References search

2. Quality evaluation

3. Information extraction

Documentation

Write review report

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

34

In the planning phase, the author identified research questions the review should

answer. Specifying the research questions was the most important activity, as the

questions drove the entire literature review. The main research question selected

is: “What are all the existing data loss detection, prevention and proactive digital

forensics solutions?” The review was conducted from an academic perspective.

The next section explains in detail how the systematic literature review was

undertaken.

3.2 Literature Review Methodology

In addition to the main research question referred to above, the following sub-

questions helped to meet the established goals:

 What are the techniques used to detect data leakage?

 What are the document classification methods?

 What are the existing techniques for the identification of guilt?

 What are the existing proactive digital forensic techniques?

 What measures are used to evaluate performance?

 What was the performance achieved?

A review protocol was also developed to describe how the collected data were

selected. A protocol establishes predefined methods that reduce the possibility of

researcher bias (Budgen and Brereton, 2006). For instance, instead of selecting

review papers based upon the researcher’s expectations (in the absence of a

predefined protocol), the selection is driven systematically when a protocol is

used. The review protocol is explained in detail in the next section. During the

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

35

planning phase, selection criteria are specified to identify original papers that are

directly related to the research question. Therefore, the criteria are used to

include as many relevant studies as possible and exclude irrelevant material. Five

filters were applied to the search results returned in order to identify the most

relevant studies:

1. Papers with titles that clearly show no link to the primary question were

excluded from the review. For instance, many of the titles in the search

results have the words “water leakage”, “CO2”, and so forth.

2. Publications of less than two pages (including posters, presentations,

abstracts or some short theoretical papers) were excluded.

3. Non-peer-reviewed publications were eliminated.

4. No studies published prior to 2007 were included, the researcher has

conducted a preliminary search that resulted in no significant or up-to-date

research existing before that date.

5. The literature review focused only on those publications written in the

English language.

The systematic literature review was executed in three steps: references search,

quality evaluation and information extraction. It is essential to mention that the

search activity was limited to those academic papers that were indexed by

reference databases available on the Internet. After the research questions were

specified, four main research repositories were listed as being the most relevant

to the field of the literature domain. Google Scholar—a public index database—was

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

36

used as a sanity check. Various carefully chosen search terms and expressions

relating to the main questions were used during the enumeration activity. The

following databases were considered in the review:

1. IEEE Xplore: http://ieeexplore.ieee.org/Xplore/home.jsp

2. ScienceDirect: http://www.sciencedirect.com/

3. ACM Digital Library: http://dl.acm.org/

4. SpringerLink: http://link.springer.com/

5. Google Scholar: http://scholar.google.co.uk/

After performing several search tests on the above databases, the following

composite search expression was formed for the enumeration:

“(Data OR Information OR Document OR Documents) AND (Loss OR Leak OR

Leakage) AND (Prevention OR Detection)”

The use of “OR” and “AND” together facilitated the automation of 24 possible

phrase combinations.

Table 3.1 lists the number of publications returned for each database after several

enumeration rounds using the above query. The table also presents the final

number of studies selected after applying the inclusion/exclusion criteria.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

37

Table 3.1: Number of returned references

Database Number of references Final selected references

IEEE Xplore 58 10

ScienceDirect 18 4

ACM Digital Library 11 2

SpringerLink 9 3

Google Scholar 421 15

Total 517 33

In addition to the selection criteria, the primary publications were classified based

on the quality of each study, as Table 3.2 illustrates.

Table 3.2: Publication genre and the number of primary studies

Genre Number of primary studies

Peer-reviewed journal papers 16

Peer-refereed book chapters 2

Peer-reviewed conference papers 15

Total 33

While reviewing the research papers, the following set of information was

extracted from each study:

 Experimental methodology

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

38

 Dataset information

 Evaluation of performance

 Contribution of the study

 Study limitations

A comprehensive critique and interpretation of the primary studies is presented

in the next section.

3.3 Literature Review of Data Loss Detection, Prevention and

Proactive Digital Forensics

As part of the literature review, the publications were carefully classified into

seven main groups based upon the objective each publication was trying to

achieve. These groups were:

 Document classification

 Data loss detection in email

 Data encryption and access control

 Biometrics and human behaviour

 Distributed and host-based solutions

 Guilt identification

 Proactive digital forensics

It is noteworthy that the reviewed studies overlap in several aspects, such as the

methodology used for detecting leakage (such as a classifier algorithm) or the

type of action applied once a leak is detected.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

39

Shabtai et al. (2012) proposed a taxonomy of existing data loss detection and

prevention (DLD/P) solutions, as shown in Figure 3.2, which incorporates data

state, deployment scheme, leakage handling approach, and action was taken

upon leakage. These attributes answer the questions of what, where, and how to

protect sensitive data. The taxonomy covers a wide range of aspects and

technologies of DLD/P. The reason the organisation of this literature review does

not precisely follow the structure of the Shabtai et al. (2012) taxonomy is that most

of the studies investigated here contribute to a specific aspect of DLD/P, whereas

others fall into multiple categories. For instance, some publications propose a

classification technique to cluster documents based on context, and other studies

focus on email patterns using machine learning. Therefore, it was not feasible to

categorise the literature using Shabtai et al. (2012) classification. As a result, the

reviewed papers are mainly grouped based upon the aim of the study and the

methodology used.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

40

DLP
Solutions

Actions
Handling
Approach

Deployment
Schema

Data State

Detection PreventionData-At-Rest Data-In-Use
Data-In-
Motion

Endpoint

NetworkLocal

Remote
Screen
capture

Removable media
(USB, HDD, DVD)

Print/Fax

Communication
(IM, HTTP, serial, LAN,

WiFi, P2P ...)

Application
control

Known protocols
(email, HTTP, FTP, IM …)

Unknown protocols
(malware, other apps)

Context-based
inspection

Content-based
inspection

Content tagging

Encryption

Access control

Audit

Block/Remove

Notify

Encrypt

Quarantine

Copy & Past

Figure 3.2: Taxonomy of data leakage prevention solutions (Shabtai, Elovici and Rokach, 2012b)

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

41

3.3.1 Document Classification

Document classification or categorisation is an active area in which much

research has been undertaken and many studies have discussed in detail the

clustering of data for DLD/P. A study by Gessiou et al. (2011) proposed an

information retrieval-based method for information leakage detection (IRILD).

Fundamentally, their technique eliminates common phrases—by checking their

popularity—before performing a fingerprinting process. This results in only

sensitive phrases being fingerprinted, leading to much faster processing time with

fewer fingerprints generated. The fingerprint process uses a cyclical hashing

approach, which splits the document into multiple parts and generates

fingerprints for those parts. The proposed method provides better performance,

as it generates fewer fingerprints and reports fewer false positives (as illustrated

in Figure 3.3).

Figure 3.3: Accuracy of varying the length of C (Gessiou, Vu and Ioannidis,

2011)

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

42

Gessiou, Vu and Ioannidis (2011) conducted their experiment on an Enron email

dataset that contained around 600,000 emails. IRILD managed to generate 39%

fewer fingerprints compared with standard cyclical hashing. Unlike other research,

this method does not rely on a predefined list of keywords given by the user.

Conversely, the method is able to identify and classify confidential documents

using the fingerprints it has generated. Thus, the system requires the use of public

search engines, such as Google, Bing or Yahoo, to determine the common

phrase score. In confidential environments, submitting such sensitive information

to a third party could introduce a considerable risk to privacy. Furthermore, using

phrase or expression popularity to measure document sensitivity is not always an

accurate method, since not knowing the context in which the phrases appear

affects classification accuracy.

Similar to the concept of the elimination of phrases introduced by Gessiou et al.

(2011), Shapira et al. (2013) proposed an approach that distinguishes between

non-relevant (non-confidential) and relevant (sensitive) sections of a given

document. Their solution comes as an extension to the common fingerprinting

approach, except that it uses k-skip-n-grams. The proposed method employs

different "k" values to skip n-grams, which enables the system to conduct

contextual analysis. This approach was more robust against content manipulation

activities, such as rewording, paraphrasing, word deletion, and changing word

order. Evaluation of the proposed method shows that the sorted k-skip-n-grams

achieved higher detection accuracy than the traditional fingerprinting approach.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

43

Likewise, Alneyadi et al. (2014) investigated the effectiveness of using n-gram-

based statistical analysis for the purpose of document classification. The

proposed method utilises n-grams to measure the frequency of a given word

within a document. In this experiment, the system achieved an overall

classification accuracy of 92% and scored an average recall of 91%, with 92%

precision. Precision gives the fraction of the system prediction that is true; recall

is the fraction of the relevant result that is successfully retrieved or detected

(Davis and Goadrich, 2006).

Equation 1: Illustrates how precision is calculated using true positive and false

positive values

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Equation 2: Illustrates how the recall is calculated using true positive and false

negative values

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Although the system is able to attain a high level of accuracy in detecting sensitive

documents, the length of a document (especially minimal and very large

documents) can have a significant adverse effect on the accuracy of the

classification. This is due to the proposed technique depending upon the

frequency of a phrase, and frequency can be directly affected by the size of the

document.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

44

Katz et al. (2014) proposed an approach that leverages the advantages of both

keyword-based and statistical methods. This approach consists of two phases:

learning and detection. The learning phase generates a context-based

confidential terms graph for all the types of the confidential document an

organisation possesses. In the detection phase, the system calculates the

confidentiality score by matching the document concerned to one or more clusters

which have been identified in the learning phase, as Figure 3.4 illustrates.

Figure 3.4: Detection phase (Katz et al., 2014)

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

45

The system does not simply rely upon content or predefined keywords, but also

takes context into account, as does the Shapira et al. (2013) approach, both of

which are robust against rephrasing attacks. The system also detects small

sections of confidential information embedded in non-confidential documents.

The experiment was conducted on three datasets: Reuters news articles, the

Pan-PC-11 Plagiarism dataset (containing 22,186 documents), and the Enron

emails dataset. The authors collected a total of 6,102 news articles from Reuters.

The result was compared with other methods, such as support vector machines

(SVM), and fingerprinting. In terms of identifying whole confidential documents,

all the methods scored very close true positive and false-positive rates of ~95%

and ~10%, respectively. When detecting confidential sections in a non-

confidential document scenario, the fingerprint algorithm achieved a higher true

positive score than the proposed technique, followed by the SVM (90%, 70%, and

15%, respectively), all with ~5% false positives. It is clear that this system does

not perform better than fingerprinting in terms of the detection rate in both

scenarios. However, the authors claimed that the system addressed a new

scenario: rephrasing small parts of a confidential text. It can be argued that other

techniques had already investigated this particular aspect and managed to

achieve a promising result, such as Shapira et al. (2013).

Another study that tried to overcome the disadvantages of a regular expression

method was conducted by Du et al. (2015). The study introduced an approach

that extracts a limited number of critical semantic features and necessitates a

small training set. The ultimate objective of this study was to determine whether

a given file belonged to the same class as the training set. The proposed method

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

46

uses latent semantic analysis (LSA), which maps documents to a vector space

with reduced dimensionality. For feature extraction, LSA uses singular value

decomposition (SVD), which abstracts the semantics of training documents and

uses an algorithm to calculate those features. Given a training set of documents,

its term- frequency matrix A cab be can be written as A = [ai,j] ∈ R m×n, where m

is the number of terms, n is the number of documents and ai,j is the number of

times term i occurs in document j. Given A, we use SVD to decompose the term-

frequency matrix into three matrices:

𝐴 = 𝑈𝑆𝑉𝑇

Where S = diag(σ1, ..., σ min(m,n)), σ 1 ≥ ... ≥ σ min(m,n) is a rectangular diagonal

matrix. Each diagonal element in S corresponds to a concept or a semantic

feature, as shown in Figure 3.5.

Figure 3.5: Singular value decomposition. Du et al. (2015)

In their experiment, Du et al. (2015) used documents on different topics, each

category containing between 16 and 118 documents. They achieved true positive

rates of between 76.1% and 98.6% and false-positive rates of between 0.8% and

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

47

15.1% for all document sets. A possible pitfall of their study is that the document

dataset size could be considered small since other studies in the same field have

used many more documents. For instance, Katz et al. (2014) used more than

6,000 documents to evaluate the performance of their proposed system.

3.3.2 Data Loss Detection in Emails

One of the most common data loss exit points is email. A considerable amount of

research has been undertaken in detecting sensitive information sent by email

messages, including email content inspection and behaviour-based analyses.

For instance, Kalyan and Chandrasekaran (2007) proposed 17 variables as

generic attributes that would encapsulate a sender’s intent. The attributes include

time slot, attachment type and size, mail body size, type of action on the email

message (e.g., reply, forward, etc.), number of email addresses sent to, and the

messages sent. The system analyses the value of the input variables by using a

machine learning algorithm, and both SVM and neural networks were used in the

experiments. To perform binary classification sing SVM, given training data (xi, yi)

for i = 1 ...N, with xi ∈ Rd and yi ∈ {−1, 1}, learn a classifier f (x) such that

𝑓(𝑥𝑖) = {
 ≥ 0, 𝑦𝑖 = + 1
< 0, 𝑦𝑖 = − 1

i.e. yi f(xi) > 0 for a correct classification.

They evaluated their approach using a dataset that contained 554 emails, with 70

emails marked as leaked messages. The authors did not provide information

about the dataset and whether it was real or artificially created for the experiment

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

48

purpose. The results show that the high performance of this method was

demonstrated by achieving an overall accuracy of 92%.

Interestingly, the above results were obtained without performing any content

inspection or relying on predefined keywords. However, a possible weakness of

this approach is the necessity for user involvement in some of the stages. For

instance, the system user must perform manual inspections to distinguish

whether email messages are official or personal. Furthermore, the metric used

for examining system performance can be strongly criticised, as accuracy is a

vague metric for measuring the quality of such systems. Metrics such as true

positives and false positives would more clearly demonstrate the performance of

a method. Furthermore, the result cannot be compared with other studies in the

same domain, since the source of the dataset is not defined.

Along the same lines, Liu et al. (2014) introduced features that can distinctly

describe the characteristics of misdirected emails while preserving users’ privacy.

Misdirected emails are detected based on 22 features, none of which are content-

based attributes. The researchers employed a random forest classifier to detect

misdirected emails. The system evaluation used the version of the Enron dataset

compiled by (Shetty and Adibi., 2004). Since the Enron dataset does not contain

what the authors call misdirected emails, sample misdirected emails were

generated by Liu et al. (2014) for each email in the training set for experimental

purposes. Overall system performance reached an average recall rate of 82%

with a precision rate of 89%.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

49

Although both Kalyan and Chandrasekaran (2007) and Liu et al. (2014) used

machine learning techniques, together with a set of generic variables as inputs to

the classifiers used, it is not possible to compare the performance of the two

studies. Different datasets and evaluation metrics were used in each piece of

research.

A study by Manmadhan et al. (2014) used a naïve Bayes classifier to investigate

the possibility of categorising sensitive emails effectively. Naive Bayes algorithm

that uses conditional probability approach to classification is adopted

(Manmadhan et al., 2014b). The system architecture design consists of three

engines that work in sequence: the pre-processing engine performs data cleaning

by removing stop words and stemming as shown in Figure 3.6.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

50

Figure 3.6: Architectural diagram (Manmadhan et al., 2014b)

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

51

The output of the pre-processing engine is then fed into the classification engine

using a naïve Bayes algorithm; finally, the security enforcement engine evaluates

whether the email exchange satisfies the security property by applying a lattice

model (Denning, 1976). For detection, the system uses predefined keywords to

classify the documents into previously defined categories. As with Liu et al. (2014),

the experiment used the Enron email dataset. The authors achieved an overall

accuracy of 72.4%. Furthermore, what makes the Manmadhan et al. (2014)

approach different from that of both Liu et al. (2014) and Kalyan and

Chandrasekaran (2007) is that it performs content inspection, whereas the other

studies used behaviour-based approaches.

Balinsky et al. (2011) attempted to overcome the loss of data via email by

intercepting the corresponding application system calls. The general architecture

of the framework is demonstrated in Figure 3.7. The system first automatically

intercepts system calls, then performs a content inspection based on certain

predefined keywords (e.g., “customer”, “agreement”, “contract”, etc.). After that,

the system implements an appropriate policy based on the sensitivity level

determined in the previous step. In contrast with other approaches which are

limited to UNIX-based operating systems, this method works on Microsoft

Windows operating systems, despite the complexity of intercepting its system

calls. The policy framework used also covers a variety of leak points, such as

peripheral devices, shared locations, and accidental email leakage.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

52

Figure 3.7: General architecture of a proposed framework (Balinsky, Perez and

Simske, 2011)

The experimental results show that the overall process rate was 40-130 MB/ms.

However, the evaluation of the system is ambiguous, since there is no information

on how the system performs in terms of other metrics, for instance, true positives,

false positives rates, f-score, precision or recall. Moreover, it seems that this

system does not detect data leakage when a confidential message is embedded

in a cover file, such as a text file embedded in OOXML files using the unknown

parts and relationship data-hiding approach introduced by Park et al. (2009).

3.3.3 Biometrics and Human Behaviour

Some recent studies, such as Lee et al. (2013) and Lee et al. (2014), have

researched an interesting approach to preventing data leakage by measuring the

change in an individual’s bioelectrical signals. Both studies tried to predict the

intention of a data leak by analysing the change in the subject’s biometric pattern,

regardless of the identity of the subject in question. The method proposed by Lee

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

53

et al. (2013) also undertakes a proactive detection technique to measure the

average value of an insider's biometric signal, such as pulse and skin conduction

and compares it with one stored in a dataset. If this value exceeds the standard

signal value, the system assumes that this is a sign of intentional data leakage.

Nevertheless, the effectiveness of the method is arguable, since it is neither

demonstrated nor explained how the technique assumes that the insider’s

abnormal behaviour is related to data leakage. The researchers also presented

the basic design structure of their technique without conducting an evaluation or

demonstrating any pilot experiments.

Later, Lee et al. (2014) published another study, in which they measured a

subject’s vital signs, such as heart rate variability, core body temperature, and

skin temperature, while the subject watched a horror movie. The experiment

showed that there was a noticeable change in the heart rate (HR) of the test

subject when a dreadful scene suddenly took place during the movie. Despite this

change in HR, the proposed technique is strongly questionable since the authors

failed to indicate how the method could be transferred and implemented in the

field of DLD.

Using another technique, Wu et al. (2013) investigated profiling a subject’s

keystroke behaviour along with discovering the input of sensitive data

simultaneously. The system first hooks into the keyboard API records all the

user’s inputs and then eliminates irrelevant keystrokes and function keys, such

as Enter, Backspace and Shift. The system then performs intensive analysis on

the captured data and stores the results in a file that is compatible with the data

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

54

loss prevention (DLP) software (called Privacy ID) the authors used for a

detection-free DLP solution that supports the Chinese language (AmXecure,

2013). Since the system detects sensitive information as it is being written, this

eliminates the need for decoding or parsing different file formats. In terms of

identifying the user, the system collects the time cost of characters typed by the

user. It then uses an SVM to create the typing model of that user. The concept

behind the proposed DLP model matching is presented in Figure 3.8.

Figure 3.8: Concept behind a proposed DLP model matching (Wu et al., 2013)

The method of keystroke behaviour was able to score an average accuracy of

~80%. Overall, the experiments conducted demonstrate that this system

positively employs keystroke profiling for detecting data leakage and dynamically

identifying malicious intent. The system also resolves the issue of parsing

different file formats that are encountered in current commercial DLP systems,

since it does not require file inspection or content analysis. However, confidential

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

55

data could be leaked without being detected by the system as easily as sending

a document via email, since the proposed system only intercepts data input via

the keyboard. The proposed method is also unable to detect a simple copy and

paste action, a shortcoming that could be used to manipulate data and avoid

detection by the system. Furthermore, the system only detects keywords

predefined as sensitive, whereas an insider could easily rephrase or misspell the

input phrases to evade detection.

3.3.4 Distributed and Host-Based Solutions

Designing and evaluating a practical, working DLP solution is not an easy task. It

involves several techniques that are required to work together, intelligently to

detect and prevent leakage attempts. For instance, Lee et al. (2009) proposed an

agent-based distributed system designed in a way that it separates the powers

and responsibilities between the system’s agents. The system consists of seven

agents (as shown in Figure 3.9), three of which are installed on target hosts to

perform tasks such as content inspection and watermarking.

Figure 3.9: Agent classifications and hierarchy (Lee et al., 2009).

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

56

The other parts of the system are centrally managed to control the ones that are

distributed. Image watermarking (Dugad’s algorithm) is used to embed

permissions into the object content in a way that is ideally irremovable without

rendering the file content (Dugad, Ratakonda and Ahuja, 1998). Dugad’s

algorithm adds the watermark to the significant coefficients in the DWT and it

does not require the original image for watermark detection is presented.

Figure 3.10: Dugad’s image watermarking algorithm, the top part shows

watermark casting and the bottom part shows watermark detection (Dugad,

Ratakonda and Ahuja, 1998).

The following equations are using for the watermarking casting:

𝑉′𝑖 = 𝑉𝑖 + 𝛼 | 𝑉𝑖 | 𝑥𝑖

Where 𝑖 runs overall DWT coefficients > T1 (barring the low pass component).

𝑉denotes the corresponding DWT coefficient of the original image and 𝑉′ denotes

the DWT coefficient of the watermarked image. 𝑥𝑖 is the watermark value at the

position of 𝑉′. 𝑥𝑖 is generated from a uniform distribution of zero mean and unit

variance. 𝛼 is taken as 0.2.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

57

𝑧 =
1

𝑀
∑ ṽ𝑖 𝑦𝑖

𝑖

Where 𝑖 runs overall coefficients > T2 > T1 and M is the number of such

coefficients. The threshold 𝑆 is defined as

𝑆 =
𝛼

2𝑀
∑ | ṽ𝑖 |

𝑖

Despite the system’s scalability and architectural complexity of the proposed

system by Lee et al. (2009), the experiments focused only on image files, whereas

most data loss incidents occur in the form of documents. Moreover, the paper

does not include an evaluation that shows the system’s performance.

Nevertheless, the authors claim that the proposed system correctly identified all

invalid watermark images and quarantined the modified ones.

From distributed systems to host-based deployment aiming to detect inadvertent

information leaks, both Kemerlis et al. (2010) and Ko et al. (2014) have presented

end-user solutions that are capable of overcoming the limitations of controlling

suspicious events. These systems are designed for personal use only, in contrast

with Lee et al. (2009), who delivered a solution for enterprises. Kemerlis et al.

(2010) developed a lightweight system, called iLeaks, which dynamically traces

information retrieval services. It consists of three main components, as shown in

Figure 3.11: Uaudits, Inspectors, and Trail Gateway. iLeaks does not require

kernel modification to intercept the system calls concerned because it utilises

existing mechanisms in OS X, such as DTrace and data indexing services. These

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

58

services facilitate the tracing of computer program and process execution, along

with its interaction with OS system calls. The authors describe the iLeaks working

process as follows: once the Uaudit captures events that indicate a leak, it

forwards them to the Trail Gateway, which, in turn, invokes the corresponding

Inspector to verify that the candidate trail is indeed sensitive information that

leaked into the network (Kemerlis et al., 2010).

Figure 3.11: iLeak prototype implementation (Kemerlis et al., 2010)

For the purpose of monitoring, however, the system relies on a predefined set of

documents that are manually defined by the system user. In other words, the user

must tag sensitive documents as being of interest in order to be monitored by the

Trail Gateway.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

59

In contrast, Ko et al. (2014) gave the computer user full control of the data flow

during transmission, even when there is no predefined rule. Further, the designed

software notifies the user what data are leaving the system and requests a

decision to allow or block the transmission. By intercepting specific system calls,

for instance, sys_sendto: for sending a file in the Linux OS, the system can detect

suspicious activities that occur in the background. However, performing this kind

of interception requires kernel hardcoding, as explained in previous studies

reviewed in this chapter. Indeed, such low-level modification of the operating

system code is not always applicable. For instance, Microsoft Windows and Apple

OS X are both closed systems, which means access to the kernel code is not

possible. Ko et al. (2014) do not provide sufficient information about the

evaluation of this system, as it appears to be simply a theoretical model.

By trying to incorporate open-source data loss prevention systems, Koutsourelis

and Katsikas (2014) developed a DLP system that takes advantage of two sets

of free DLP software: MyDLP, (2014) and OpenDLP, (2014). The authors

amalgamated a number of techniques in order to automate several operational

processes that minimise user interaction with the system. Even with the many

features that the system facilitates, it does not introduce any novel techniques or

mechanisms that would help in detecting malicious data leakage. Instead, it

merely employs existing methods. The study did not include any information

regarding the performance evaluation of the developed system.

One of the most challenging data leak methods was investigated by Fujikawa,

Mori and Terada, (2014). The authors studied the possibility of detecting the body

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

60

motion of an individual who is performing photo shooting or video recording

(camera holding) to leak sensitive information. The system requires a motion

detection sensor, which is attached to the computer screen. First, the sensor

obtains three-dimensional information of the user’s motion. Then, the system

analyses the captured information to detect any camera holding. Finally, based

on the detection result, if the system suspected a potentially malicious activity,

the computer is locked and an alarm is triggered.

The above evaluation demonstrates that this technique is able to identify attempts

at computer screen shooting. It can also distinguish between a camera being held

by one or both hands. However, the system requires certain conditions to perform

well, such as the subject being in a stable position (sitting at a desk) during

photo/video shooting. This operation can be disrupted when an insider takes a

screenshot from a different angle, such as standing outside the scope of the

motion sensor, which significantly reduces the chance of detection. However,

digital cameras, and even smartphones, commonly feature deep zooming

technology that enables the shooter to take a high-resolution photo or video at

various distances from the object.

3.3.5 Guilt Identification

Various studies have examined the detection of the leakage of sensitive data by

a distributor’s agents. Some of these studies have further investigated the

possibility of identifying the agent that probably leaked the data (Papadimitriou

and Garcia-Molina, 2011; Kale and Kulkarni, 2012; Jadhav, 2012; Chavan and

Desai, 2013). It is important to mention that all these studies assume that the data

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

61

owner has full control over the data creation and distribution prior to their being

given to the agents. One of the most cited studies in this field was conducted by

Papadimitriou and Garcia-Molina (2011), who proposed an allocation strategy to

increase the possibility of detecting leaked data. Furthermore, they introduced a

model for assessing the ‘guilt’ of agents. The authors claimed that the proposed

method does not rely on alterations to the released data, such as watermarking.

This method considered two types of agent request, as presented in Figure 3.12:

explicit and sample requests. An explicit request holds particular settings and all

the items in the dataset that adhere to those settings must be returned. A sample

request determines the number of objects to be randomly chosen from the entire

dataset.

Figure 3.12: Leakage problem instances (Papadimitriou and Garcia-Molina,

2011)

Moreover, to increase the chance of identifying the agent responsible for a leak,

Papadimitriou and Garcia-Molina considered the feasibility of inserting fake

objects into requested data. The idea was to add a unique object to the data prior

to handing them to the agent. However, adding fake objects is not always possible;

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

62

for instance, in the case of medical records, manipulating the data or injecting

invalid information could lead to enormous risk. Therefore, the method is based

on the nature of the data and how the fake elements generated modify the

integrity of the original data. Examination of the feasibility of the system found that

the proposed algorithms performed better in identifying the source of the data

leakage compared with simple data allocation algorithms. Papadimitriou

conducted several experiments, achieving scores with an average confidence

level of 95%.

Subsequent implementations of the guilt model by Kale and Kulkarni (2012),

Jadhav (2012), Chavan and Desai (2013), and Kumar et al. (2014) resulted in the

development of several prototype models. All those models use the concept of

inserting unique fake objects or digital watermarks into data prior to distribution.

In general, the data creator (in this case the distributor) is responsible for

generating and embedding the fake object, whereas, in many cases, the data can

be created by an insider who leaks the sensitive data themselves. However,

Jadhav (2012) admitted that the process of creating fake but real-looking objects

is a complicated task and beyond the scope of that author’s study.

3.3.6 Proactive Digital Forensics

The last part of this literature review discusses studies that provide some

proactive functionality for digital forensics. The studies selected touch on the

problem of data leakage from a forensic perspective, and the problem of

identifying users who manipulate the use of sensitive files. For example, Cohen

et al. (2011) developed a live, remotely accessed forensic solution that uses the

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

63

web interface for administering hosts and instantly accessing running computers.

It is designed to be a centralised controlling framework and to support multiple

operating systems, including Windows, OSX and Linux. Rafique and Khan (2013)

argued that requiring a client-server environment makes the system less

applicable for standalone machines and represents a limitation in Cohen et al.’s

framework. Despite Rafique and Khan’s argument, the proposed system

facilitates a rich set of forensic analysis features, such as attributes related to an

object (e.g., file memory location, accessed timestamp, AFF4 stream).

Cohen et al. (2011) also investigated a leakage of intellectual property scenario

in which restricted information had been leaked. The aim of the investigation was

to identify people who had access to that information. The task was performed by

searching for specific keywords across hosts that run the system’s agent, as the

technique could determine a list of machines that had those keywords. Further

investigation could then, as stated by the authors, successfully isolate users of

interest. However, the scenario only leads to document allocation, without

providing intelligence information that would inextricably link the use of the

information to the individual who used and accessed it.

Similarly, Magklaras et al. (2011) developed an audit engine for actively logging

user actions in a relational database management system (RDBMS). The

proposed system could be used by post-case forensic examiners to aid an

incident investigation. It stores actions, including files accessed (e.g., name, type,

and location), timestamps, process execution, network endpoint and hardware

device, in addition to other related information. Furthermore, the engine employs

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

64

a linguistic analysis of users’ correspondence as a monitoring technique, thus

proactively detecting potential insider threat risks in the organisation. It also

facilitates the use of Structured Query Language (SQL), which enables instance

selection and completion. This function allows investigators to enumerate

databases and execute different types of enquiry. The system was tested on a

variety of simulated insider misuse scenarios. Although the evaluation results are

promising in terms of logging different types of user actions along with useful

information, it still does not correlate those actions to the identity of the individual

who performed them.

The final paper in this review is by Shields et al. (2011), who proposed a system,

called PROOFS, that proactively and continuously collects evidence by creating

and storing file signatures that are deleted, edited, or copied within the computers

in the local network. The system uses a centralised database to store the

signatures of the objects generated, which provides significant information, such

as user ID, object timestamp, and the type of event. For instance, in events such

as file creation or deletion, the signature contains the fingerprint (the bit-vector

fingerprint of the document), user identifier, file name, file path, a timestamp for

the event, and a machine identifier. This is especially helpful when conducting a

forensic activity. The fingerprints generated are equal to around 1% of the storage

space of the original file, which is a significant reduction in the size of the object.

The system supports text files, such as Microsoft Word documents (.docx) and

portable document formats (PDFs).

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

65

Overall, when the documents were shrunk by 60% of their original text size, the

system was able to achieve an average recall rate of 95%, with a precision rate

of 85%, of relevant documents based on the fingerprints generated, as illustrated

in Figure 3.13. The experiment used the Enron email dataset, and a cosine

similarity measure to measure the match between the queried fingerprints and

the inspected documents. For its deployment, the system requires patching the

system kernel in order to intercept system calls. Unfortunately, this low-level

kernel hardcoding is limited to open-source operating systems, as explained

earlier.

Figure 3.13: Enron automatic summarisation, matcher 60 (Shields, Frieder and

Maloof, 2011)

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

66

3.4 Discussion

Academics have contributed to the field of DLD/P by proposing numerous

methods and techniques to combat and reduce existing issues. A number of

studies have investigated document classification to detect the existence of

confidential information by clustering documents based on their similarities.

Among those studies, fingerprint-based methods that use a cycling hashing

approach attained a high performance compared with other classification

algorithms, such as SVM, as examined by Katz et al. (2014). This is not surprising

since fingerprinting is applied widely in different applications, such as plagiarism

detection. However, fingerprint accuracy can be affected by text manipulation

techniques when the confidential part of a text is rephrased and changed, which

results in different versions in the training set. Other attempts have been made

by researchers to detect data leaks via email by employing text and document

classification, as examined in Liu et al. (2014) and Manmadhan et al. (2014),

whereas both Kalyan and Chandrasekaran (2007) and Liu et al. (2014) proposed

generic variables to detect the probability of data leakage. These methods were

expected to generate a high rate of false positives, although the authors did not

discuss this issue.

Research employing data encryption or encoding techniques to preserve

confidential data has focused upon preventing outsiders from reaching them, as

investigated by Sobh (2013) and Prakash and Singaravel (2015), although insider

threats have been considered the utmost security issue by many recent research

studies (Shabtai, Asaf, Yuval Elovici 2012; Collins et al., 2013; Huth et al., 2013).

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

67

Encryption and access control significantly help prevent data from being leaked

by untrustworthy subjects. However, the focus of such research is on protecting

the confidentiality aspect of the data, rather than focusing on tracing the source

of the leakage. Mainly when the case involves insiders who supposedly have

legitimate access to highly sensitive information by providing their credentials,

encryption and encoding mechanisms fail to control the intent of the subject.

Consequently, a user could gain full control over the data and a malicious user

could even use encryption schemes to bypass intrusion detection systems.

Interestingly, studies such as those by Lee et al. (2013) and Wu et al. (2013) have

tried to use biometric information as a factor in detecting the malicious activities

of an insider. It is clear, however, that the experimental setup is rather

controversial, and there is neither an indistinct, strong correlation between their

hypotheses nor the actual implementation of the data field of DLD. In addition,

linking the subject with leak incidents is not a simple task to achieve, even with

methods such as the guilt identification model, as this model is designed precisely

for a case in which a data distributor has given sensitive information to a group of

supposedly trusted agents (Papadimitriou and Garcia-Molina 2011). Therefore,

the distributor should have full control over the distribution process, which is not

always possible; for instance, insiders could have a legitimate right to access

confidential data without the need to request it. Similarly, studies using proactive

forensic solutions that take into account the issue of DLD can potentially offer

some functionalities for linking leakage incidents with the suspected user.

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

68

Regardless of whether the object is in the form of an image, document or email

message, it appears from the studies as mentioned above that numerous

investigations have been conducted on the detection and prevention of data

leakage. However, no attempt has been made to investigate the possibility of

linking an incident to a suspicious subject in a biometric manner. Digital forensic

investigators could benefit from linking the identity of a digital object to an

individual, as opposed to simply using an electronic record or a log that indicates

a user interacted with the object in question (evidence). Indeed, this is a

challenging task, as it is currently difficult for digital forensic professionals and

investigators to prove beyond a reasonable doubt in a court of law that a specific

human being used the particular identity of a digital subject at a particular time

(Shavers, 2013; Brown, 2015; Vincze, 2016). Biometric techniques could provide

such a link to correlate the user interaction with the used object, thus giving rise

to relevant information that would help investigators to answer the question: “Who

did the crime?”

The next chapter conducts an investigation into a biometric-based null cipher

technique using images, in which the object that has been interacted with is linked

to the individual who accessed it.

3.5 Conclusion

As presented in this chapter, several methods and systems from different

perspectives have been proposed for solving the problem of data leakage. Overall,

it is challenging to compare the studies reviewed with each other adequately in

terms of evaluation performance due to the variation between the studies, as the

Chapter 3- Data Loss Detection, Prevention and Proactive Digital Forensics

69

authors used different metrics and datasets to present the results of their

experiments. The outcomes of this review also exposed an absence of significant

literature on the specific aspects of the topic of investigation of this research.

The existing literature has largely failed to overcome the key problem of being

able to associate a specific person with electronic evidence and, as a result,

stolen credentials and the Trojan defence are two commonly cited defences.

There is, therefore, an urgent requirement to develop a technique that can

inextricably link the use of information (e.g., documents and emails) to the

individuals who access it, rather than intermediate controls. The next chapter

introduces a proposed approach, which leverages biometrics technology along

with steganographic techniques to provide this link.

Chapter 4- System Design and Use Cases

70

4 System Design and Use Cases

4.1 Introduction

This chapter describes how the system components work to correlate a leakage

incident with the person who is responsible along with potential attack vectors. As

shown in Figure 4.1, Actors such as user, outsider and digital forensics

investigators are involved within a given scenario within which use cases is

descript to explain how the incident and system reacts systematically.

Figure 4.1: Use Case Scenarios Structure and Logic

The elements of Figure 4.1 above work together to describe the system

functionality both under normal operation and under attack conditions. These

elements are linked to the use cases to describe how the system operates in such

different cases.

Chapter 4- System Design and Use Cases

71

4.2 Description of Taxonomy

To derive accurate scenarios and use cases, a system engineering approach has

been used whereby actors have been derived and will be used throughout the

use cases. Table 4.1 illustrates the main actors in the system.

Table 4.1: Common Person-Class Actors

ID Description

P1 An Insider/user who works at the entity/company who owns that

classified/secret data

P2 An outsider who might receive a leaked data (e.g. document/image)

P3 An investigator who can use the system to extract correlated suspect

information

In Table 4.2 are the three categories of data collected as Cyber-Trust deals with

different categories of data.

Table 4.2: Common Data-Class Actors

ID Name Description

D1 File data Reflects data related to digital objects (e.g.

documents/images) such as file content data,

fingerprint and hash digest.

D2 Biometrics data Reflects computer data that is created during a

biometric process. This includes samples,

models, fingerprints, similarity scores and all

verification or identification data

Chapter 4- System Design and Use Cases

72

D3 Forensic data Reflects the collection, processing and storage

of information that may contain evidentiary

material

Because it is necessary to link the elements to corresponding use cases, Table

4.3 places current envisioned components into actor roles:

Table 4.3: Common Asset-Class Actors

ID Name Description

A1 Biometrics engine Captures and extracts the user’s biometric

samples and stores it in a database on the

user’s computer

A2 Imprinting engine Retrieves the object metadata and a recent

biometric sample(s) from the biometric

engine and perform the imprinting process

A3 Biometrics centralised

database

Stores users’ biometrics (e.g. extracted

facial feature vector)

A4 Interactions/logs

centralised database

Stores the generated imprints and

individuals’ along with user-object

interaction logs

A5 Generic electronic

device

This includes computers, smartphone, USB

thumb drive, web-camera…etc.

Chapter 4- System Design and Use Cases

73

Table 4.4: Common Attack-Class Actors

ID Name Description

T1 File-type

conversion

attacks

Reflects attacks in which a file type/extension is

changed into another (e.g. docx to pdf or jpg to

png)

T2 Document

Formatting

change attacks

Reflects attacks in which a format/style of a

document’s text is changed (e.g. change in font

size, font type, colour…etc.)

T3 Content

manipulation

attacks

Reflects attacks in which file content is

changed/modified (e.g. remove part(s) of the file,

cropping an image…etc.)

4.3 Main Scenarios

To effectively develop the use cases, this chapter defines the main scenario,

which then is detailed with the possible attack vector(s). The specific system

functionality will then develop and shape the associated use cases, according to

the main scenario, and describes how their system element will respond to the

attack vectors described below.

4.3.1 Leaking Classified Documents/Images

This real scenario reflects a case in which an insider employee [P1] leaked a

classified document [D1] to a reporter [P2] in the United States. Hale [P1] served

as an enlisted airman in the United States Air Force after receiving intelligence

and language training, Hale has been assigned to work in the National Security

Agency (NSA) and deployed to Afghanistan as an intelligence analyst. According

Chapter 4- System Design and Use Cases

74

to Hal’s active duty service and function for the NSA, Hale’s period in NGA, Hale

held a leading Secret/Sensitive compartmented information security clearance

and has been entrusted with access to classified national personal information

[D1] Hale published six classified documents [D1] to a reporter [P2]. Each one of

those six records [D1] was afterwards published by the reporter publicly (Stuev,

2019). These leaked documents [D1] could be imprinted [UC3] with Hale

biometric information [D2] using use case UC1 if the proposed system was

deployed and operated in place. Hale owned a thumb drive [A5], which was

analysed by a digital forensic investigator [P3], and it has been found out that it

comprised a classified document [D1] that Hale had published in February 2014

and had tried to delete [D3] in the thumb drive [A5] (Stuev, 2019). Use case [UC6],

could be used to retrieve the imprinted suspect biometric information [D2] in which

correlated and more information can be established and extracted.

4.3.2 Leaking and Modifying Classified Documents/Images

The following scenario includes leaking and modified a classified document [D1].

As Reality Winner [P1], a 25-year-old Air Force veteran and federal contractor

sent journalists a top-secret NSA intelligence report [D1], which showed that the

NSA had collected intelligence suggesting that Russian military intelligence had

tried to gain access to states' electronic voting systems in 2016. The Intercept

published [P2] a partially-redacted version of the report [T1, T2, T3] on June 5,

2017 (Pressfreedomtracker.us, 2019).

These two scenarios can be correlated with the isdentifed use cases and actors

as shown in Figure 4.2.

Chapter 4- System Design and Use Cases

75

Figure 4.2: General file leak scenario including Use Cases and relevant Actors

4.4 Use Cases

The use cases presented in this section composed of the functional components

of the system. The use case covers incidents, and the respective scenarios of

each explained in the previous section. These use cases will be the stepping

stone to produce in the system the architecture. In total, five use cases are

identified in the table below. These use cases are explained in detail in section

4.4.2.

Chapter 4- System Design and Use Cases

76

Table 4.5: Use cases description

UC ID Name

UC1 Biometric feature vector generation

UC2 File fingerprint generation

UC3 Imprinting process

UC4 Storing biometrics in database

UC5 Storing file fingerprint in the database

UC6 Post-incident biometric extraction process

4.4.1 Use Cases-Actors Inter-Relationships

The main actors of the use cases are defined in section 4.2 of this chapter, and

they are detailed as primary or secondary actors across the use cases in section

4.4.2 below. In addition, each use case details the inter-relations between the use

cases to provide a meta-picture within each use case of the dependencies

resulting between the components of the system.

 A1 A2 A3 A4 A5

UC1 X X X

UC2 X X

UC3 X X X

UC4 X X

UC5 X X

UC6 X X X

Figure 4.3: Use cases-actors inter-relationships

Chapter 4- System Design and Use Cases

77

4.4.2 Use Case Detailed Specifications

ID: UC1

Name: Biometric feature vector generation use case

Description: User [P1] facial image(s) [D2] is captured by fitted camera [A5] and

the biometric engine [A1] processes the captured image(s) to generate a

biometric feature vector [D2].

Primary Actor: [A1] biometric engine

Supporting/Secondary actors: [A5] camera device and [P1] user

Stakeholders Interest

[A1] biometric engine Process and generates user’s biometric vector

[A5] camera device Captures user’s frontal facial view

Frequency of use

Every time the user uses the device (e.g. computer)

Related use cases

[UC4] stores biometrics in database

Example

A user [P1] is set in front of a computer screen which is fitted with a camera

device [A5] and started interacting with computer files [D1]. The camera [A5]

capture the user facial image and is sent to the biometric engine [A1]. The

biometric engine analyses the captured image and generates feature vector

[D2], which then stores in the biometric database [A3].

Chapter 4- System Design and Use Cases

78

Main Scenario

Step Actor Action description

1 [P1]
User starts using and interacting with computer files (e.g.
document/image)

2 [A5] A fitted camera device captures user facial image

3 [A1]
The biometric engine process the user’s captured image and
extracts the biometric features vector

4 [A3]
The generated feature vector is stored in the biometric
database

ID: UC2

Name: File fingerprint generation use case

Description: When a user [P1] interacts with a computer file [D1], one or more

fingerprints are generated by the imprinting engine [A2] to be used for

establishing a correlation log.

Primary Actor: [A2] Imprinting engine

Supporting/Secondary actors: [D1] file data

Stakeholders Interest

[A2] imprinting engine Process and generates files’ fingerprint(s)

Frequency of use

Every time the user interacts with a computer file (e.g. document/image)

Related use cases

Chapter 4- System Design and Use Cases

79

[UC5] stores file’s fingerprint data

Example

A user [P1] is interacting with computer files [D1]. The imprinting engine [A2]

analyses the files and generates fingerprint/local sensitivity hashing digest [D2]

which then stores in the fingerprint/logs database [A4].

Main Scenario

Step Actor Action description

1 [P1]
User starts using and interacting with computer files (e.g.
document/image)

3 [A2]
The imprinting engine analysis and process files and generates
a fingerprint

4 [A4]
The generated fingerprint is stored in the fingerprint/logs
database

ID: UC3

Name: Imprinting process use case

Description: A computer user [P1] interacts with a computer file [D1], the

imprinting engine uses the generated (one or more) fingerprints and biometric

feature vector [D2] establishing a correlation log (i.e. imprint file).

Primary Actor: [A2] Imprinting engine

Supporting/Secondary actors: [A1] biometric engine

Stakeholders Interest

[A2] imprinting engine Process and generates imprint file

Chapter 4- System Design and Use Cases

80

Frequency of use

Every time the user interacts with a computer file (e.g. document/image)

Related use cases

[UC1] Biometric feature vector generation use case

[UC2] File fingerprint generation use case

Example

A user [P1] is interacting with computer files [D1]. The imprinting engine [A2]

generate an imprint file in which it uses one or more of the generated file

fingerprints [D1] and user’s biometric feature vector [D2].

Main Scenario

Step Actor Action description

1 [P1]
User starts using and interacting with computer files (e.g.
document/image)

3 [A2]
generate an imprint file in which it uses one or more of the
generated file fingerprints and user’s biometric feature vector

4 [A4]
The generated imprint file is stored in the fingerprint/logs
database

ID: UC4

Name: Storing biometrics in the database use case

Description: When the biometric engine [A1] generates a biometric feature vector

[D2], the system stores it in the biometrics database [A3].

Primary Actor: [A3] biometrics database

Chapter 4- System Design and Use Cases

81

Supporting/Secondary actors: [A1] biometric engine

Stakeholders Interest

System Stores the generated biometric data in the database

Frequency of use

Every time the user interacts with a computer file (e.g. document/image)

Related use cases

[UC1] Biometric feature vector generation use case

Example

A Biometric feature vector [D2] is generated by the biometric engine [A1]. The

system stores the generated data in the biometrics database [A3].

Main Scenario

Step Actor Action description

1 [A1]
A user biometric feature vector is generated by the biometric
engine.

2 [A3]
The generated biometric vector is stored in the biometrics
database

ID: UC5

Name: Storing files fingerprints in the database use case

Description: When the imprinting engine [A2] generates a files fingerprints [D1],

the system stores it in the fingerprints/logs database [A4].

Primary Actor: [A4] fingerprints/logs database

Chapter 4- System Design and Use Cases

82

Supporting/Secondary actors: [A1] biometric engine

Stakeholders Interest

System
Stores the generated file fingerprints in fingerprints/

logs database

Frequency of use

Every time the imprint engine generates file fingerprints

Related use cases

[UC2] File fingerprint generation use case

Example

File fingerprints [D1] are generated by the imprinting engine [A2]. The system

stores the generated fingerprints in the fingerprints/logs database [A4].

Main Scenario

Step Actor Action description

1 [A2]
The imprinting engine analysis and process files and generates
a fingerprint

2 [A4]
The generated fingerprint is stored in the fingerprint/logs
database

ID: UC6

Name: Post-incident biometric extraction process

Description: After a document [D1] is leaked and obtained by a digital forensic

investigator [P3] for analysis, the document is processed and the correlated

Chapter 4- System Design and Use Cases

83

imprint file is located by the system by analysing the forensic data [D3] and the

relevant biometric feature vector [D2] is extracted.

Primary Actor: System

Supporting/Secondary actors: [A3] biometrics database, [A4] logs database

Stakeholders Interest

System Analysis on the leaked document

Frequency of use

Every time a leaked document is analysed

Related use cases

[UC4] stores biometrics in database

[UC5] stores file’s fingerprint data

Example

A classified document and an image file [D1] are leaked by an insider employee

[P1] to a repository website (e.g. WikiLeaks) [P2], the document has been

modified and its content is manipulated [T1, T2, T3] to remove any potential

tracking/embedded data (e.g. watermarks/user-related data) that could lead to

the source of the leakage. A digital forensic investigator obtained a copy of the

leaked file [D1] and performed a forensic analysis to reveal who is responsible

for the leak. The investigator began the analysis by generating a fingerprint of

the file to be compared with the correlated imprint file by retrieving the logs from

the database [A4] in which a correlation can be established and a biometric

data [D2] can be located once there is a positive match.

Chapter 4- System Design and Use Cases

84

Main Scenario

Step Actor Action description

1 [P3] An investigator gets a copy of a leaked file

2 [A2] File fingerprint is generated

3 [A4]
The generated fingerprint is compared with those stored in the
fingerprint/logs database.

4 System
Once there is a match, the biometric information is
reconstructed using the imprint file that is intact with the
matched fingerprint/log.

4.4.3 Legal, Ethical and Privacy Dimensions

The impact on an individual´s privacy should always be assessed on a case-by-

case basis. The system capabilities and functions should be only activated by

specific incidents that are more likely to correlate to suspicious activity. For

example, a user is accessing a classified document, and at the same time there

is a USB memory stick plugged into the computer, in such case, the relevant

engines (biometrics and imprinting) should be activated by the system.

Data subject´s rights are fully communicated to the users. Users should be able

to understand the implications of the system, detailed data protection and privacy

statement should be easily accessible, including information about which types

of data is collected, for which time-period, who can access it. The storage and

transmission of data collected must be safeguarded. For example, by using

suitable integrity, encryption algorithms and safe network transmission protocol.

It must be ensured, that only persons with the right authorisation can access

information generated by the system, which might include personal data,

Chapter 4- System Design and Use Cases

85

individual’s biometrics and performed activities (e.g. user interactions with

computer files). The participation of external entities/parties to the system (e.g.

digital forensic investigator) and their access rights must be elaborated

accordingly, to minimise the possibility of false positives or the likelihood of

access to a user´s data without the right authorisation.

4.5 Conclusion

This chapter identifies system actors, use cases and a relevant scenario to define,

investigate, and evaluate the system would react in normal operation. It is worth

noting that the design of the use cases aims to provide scenarios to conceptually

stress-test the proposed system, rather than act as an exhaustive validation set.

Both use cases and actors are applicable across all the scenarios and described

as part of the methodology that also introduces the system design in the following

chapter. Chapter 5, explains the proposed system and its components and

capabilities in more details.

Chapter 5- Proactive Biometric Imprinting of Digital Objects

86

5 Proactive Biometric Imprinting of Digital Objects

This chapter introduces a proactive digital forensics biometric-based approach to

the attribution of misuse via information leakage, using biometrics and

steganography. Two main methods are discussed: null cipher and grille cipher

imprinting techniques. The chapter concludes with the main research questions

investigated experimentally in subsequent chapters.

5.1 Introduction

From the exploration of the existing insider misuse tracing techniques conducted

in the previous chapter, a limited number of studies have tried to leverage soft

biometric signals in detecting malicious insiders’ activities (Almehmadi and El-

Khatib, 2014; Lee et al., 2014; Hashem et al., 2015). Those studies proposed

systems that employ the use of human bio-signals, such as

electroencephalography and electrocardiogram, to detect insiders' malicious

activities. For detection, they measure the difference in bio-signal deviations

between normal and malicious activity phases. Although both systems deployed

their approaches in real-life scenarios and achieved high detection accuracy, the

experimental setups relied on users wearing a headset that continuously monitors

bio-signals and a finger sensor to capture them. It is both unrealistic and un-user-

friendly to wear these sensors continuously in real life. None of the current

literature has specifically sought to embed individuals’ physiological and

behavioural biometric signals transparently into digital objects, such as images,

other than one study that mentioned a grille cipher (Alruban et al., 2016).

Chapter 5- Proactive Biometric Imprinting of Digital Objects

87

5.2 Steganography and Transparent Biometrics

Several studies successfully leveraged transparent biometric techniques for the

purpose of user authentication, verification and profiling (Clarke, Karatzouni and

Furnell, 2008; Saevanee et al., 2015; Al Abdulwahid et al., 2016; Al-Bayati et al.,

2018; Abed et al., 2019). Such techniques can also be utilised to acquire

biometric signals from individuals transparently as they interact naturally with a

computer system and then embed the captured signals within digital objects, such

as documents, PDFs, emails and photographs. In this manner, the last individual

to access a digital object will have their biometric information bound to it.

Subsequent misuse of the information, through disclosure, for example, would

enable a legitimate organisation to process the digital object, recover the

biometric identifiers and identify the last employee who accessed it. The

transparent acquisition of biometric information is key to the solution, as an

employee will not knowingly provide samples in an intrusive manner (i.e., the

system will never ask the employee to provide a fingerprint sample or look at a

camera) (Clarke, 2011). Rather, the approach seeks to employ a range of

biometric modalities and continuously acquire biometric samples in a frictionless

manner while the user is interacting with the system; for example, facial

recognition using a web camera while the user is responding to an email or surfing

the Internet. A multimodal and transparent/frictionless approach significantly

reduces the opportunity for forgery and circumvention. The frictionless nature of

the biometric capture also means that no action is required on the part of the

user—thereby removing any additional workload or effort.

Chapter 5- Proactive Biometric Imprinting of Digital Objects

88

This research proposes an approach that is designed to operate in one of two

modes: centralised or decentralised. Whilst it is envisaged an organisation is

likely to select one of the two modes, the approach is capable of simultaneously

operating in both—with the organisation being able to select which types of digital

object use for which approach. For example, a document classification scheme

could be used, with lower classification approaches utilising a decentralised mode

and more highly classified documents using a centralised approach. The two

modes offer a different level of repudiation but also introduce additional

overheads in terms of storage and processing of data.

Conceptually, the centralised approach seeks to provide a mapping between a

digital object and biometric identifiers, storing the mapping information alongside

document identifiers in a centralised storage repository. When objects are

recovered or analysed, the information stored in the repository is used to recover

the biometric information which is subsequently used to identify the user. The key

advantage of this approach is that the underlying digital object is not modified in

any form. Whilst the nature of typical watermarking or steganography processes

is not to modify the digital object in a manner that is noticeable, it does still modify

the document and there may be situations in which this modification is not

desirable. It also disassociates any biometric information from the digital object

itself, thereby minimising any attacks against the biometric data. This approach

allows larger volumes of information to be embedded, making it more suitable for

digital objects that are smaller or when greater levels of information need to be

embedded (i.e., multimodal biometric samples). It does, however, introduce the

Chapter 5- Proactive Biometric Imprinting of Digital Objects

89

need for a centralised repository, which will grow as users interact with objects

and will thus require configuration and management.

The decentralised approach seeks to overcome the need for centralised storage

by embedding all the necessary information within the digital object itself. This

will result in the modification of the object but only in a manner that is not visually

noticeable. The organisation need only process the recovered object to obtain the

biometric identifier and identify the user. The amount of biometric information that

can be embedded is directly linked to the digital object, introducing a trade-off

between embedding a uni biometric or multimodal biometric identifier.

The key to this proposed solution is its ability to recover biometric identifiers

successfully, even under significant modification attack. Rather than requiring the

complete digital object, it is possible to recover the necessary information with

only snippets of the original document.

The following sections provide a detailed breakdown of the decentralised and

centralised approaches using null-ciphered and grille-ciphered steganographic

techniques, respectively.

5.3 Null-Ciphered Imprinting Using Images

The decentralised approach is a secure and portable method that can link

individuals with an object with which they have interacted (e.g., digital images)

without the need for a centralised database. The correlation between the

computer user and the digital object is established by leveraging biometric signals

in a transparent fashion, along with a steganographic technique for embedding it

Chapter 5- Proactive Biometric Imprinting of Digital Objects

90

into the object. Figure 5.1 illustrates the decentralised approach elements and the

main process flow.

Figure 5.1: Decentralised process

The embedding procedure, as illustrated in Figure 5.1, follows the following steps:

1. Capturing and extracting the individual’s biometric information.

2. Transferring the biometric signal and image into a byte stream and adding the

required padding, flag and timestamp.

3. Encrypting the payload.

4. Selection and embedding of the encrypted data into the file.

A detailed description of the embedding and extraction process is provided in

Chapter 6.

Figure 5.2 schematically represents an image file that shows image data c and

flag data contained in two portions, a, b, which together form the flag and data to

be embedded. On creating or handling file c, biometric information corresponding

to the creator or handler of file c is processed by the computer in which file c is

Chapter 5- Proactive Biometric Imprinting of Digital Objects

91

created or handled to generate a digital biometric feature vector file. Data portions

corresponding to parts of the digital biometric feature vector file are then

distributed amongst and embedded within other data within flag portion a

according to a key, and key data corresponding to the key is stored or embedded

within header portion b. The key corresponds to locations within flag portion a

where the data portions are embedded. In order to associate file c with the creator

or handler of the file, the flag portions a, b are processed to reconstruct the digital

biometric feature vector file. The reconstructed digital biometric feature vector file

can then be compared with each set of examples in digital biometric feature vector

files held in a database in order to identify the creator or handler of file c. When

the digital biometric feature vector file of the creator or handler of file c is

processed into flag portion a, it may at the same time be added to the database

so that the database is dynamically updated.

Figure 5.2: Null-ciphered image

Chapter 5- Proactive Biometric Imprinting of Digital Objects

92

The watermarking/steganographic process was specifically designed to counter

file modification attacks, resulting in robust and reliable retrieval of biometric

information.

Figure 5.3: Embedding and extraction procedures used by the steganographic

system

To maintain the privacy of the biometric data, all data are encrypted prior to the

watermarking process. Only a legitimate organisation will have the ability to

process, identify, extract and biometrically identify an employee from an

electronic file.

The solution mitigates against the need to collect, decrypt and store large

volumes of network, server and application logs and provides a lightweight

approach that embeds the necessary information within the file itself. Apart from

an organisation needing to store a copy of an individual’s biometric data securely

against which future data can be compared, no other information or continuous

centralised storage is necessary.

Chapter 5- Proactive Biometric Imprinting of Digital Objects

93

5.4 Grille-Ciphered Imprinting Using Images and Text Files

The centralised approach consists of two engines: a biometric and an imprinting

cipher engine. The biometrics engine transparently captures and extracts the

user’s biometric samples and stores them in a temporary database on the user’s

computer. The imprinting engine retrieves the object metadata and a recent

biometric sample(s) from the biometric engine to be used in the imprinting

process. Finally, the imprints generated are stored in a centralised database for

later analysis when required. Figure 5.4 illustrates the framework architecture of

the centralised approach.

Figure 5.4: Centralised process

Chapter 5- Proactive Biometric Imprinting of Digital Objects

94

The most important process in the centralised approach is mapping the

biometrics signal(s) with the object. A detailed description of the mapping process

is given in chapter 7 and 8.

Upon the detection of data leakage, the object (whether it be posted on a public

website or captured by the network) can be analysed for its biometric imprint. The

sample is extracted and then processed by a biometric system in order to

determine the last user to interact with the object, as presented in Figure 5.5.

Figure 5.5: Process of identifying an individual

5.4.1 Digital Object Imprinting

The imprinting process technique takes a digital object file, such as an image or

text file, and processes it with a biometric feature vector file that corresponds to

an individual to produce a series of digital imprint files that are kept in centralised

storage. A given digital imprint file represents locations within the original

electronic file, each of which corresponds to a respective portion of the biometric

feature vector file. A given electronic file, which may be the original file or a

modified version of it, is processed with each of the digital imprint files to generate

Chapter 5- Proactive Biometric Imprinting of Digital Objects

95

the respective reconstructed biometric feature vector file. The reconstructed

biometric feature vector files are compared with the biometric feature vector files

in storage to associate the individual with the given electronic file. The method

allows a particular digital object file to be linked to an individual with greater

certainty than is possible with the use of fake objects, watermarks or digital

signatures, even if the file was created following substantial modification of the

original electronic file.

5.4.2 Correlation Chaining

The proposed approach can also serve an application other than mitigating

malicious insiders, such as by embedding a person’s biometric trait signal (e.g.,

facial or iris biometric information) into an image being captured by, for instance,

a smartphone or computer webcam. This can also be extended to handle a

chaining scenario, in which more than one individual’s biometric information can

be linked and stored once they have interacted with a traced image.

Figure 5.6 shows a schematic of an example application of how a null-ciphered

approach can be applied to a smartphone scenario. The first person (A), has a

smartphone (not shown), which stores the biometric information of the first person

and updates it over time, such as daily, weekly or monthly. The biometric

information includes one or more of the fingerprint characteristics captured during

logging-in, voice characteristics captured during phone calls and/or the operation

of the speech recognition functionality of the smartphone and facial

characteristics (possibly including iris characteristics) captured with a rear-facing

built-in digital camera in the smartphone. A biometric feature vector file (FV) for

Chapter 5- Proactive Biometric Imprinting of Digital Objects

96

the person A is generated and updated over time using the biometric information

of the first person captured by the first person’s smartphone and the biometric

feature vector file is stored on the first person’s smartphone.

Figure 5.6: Example of linking multiple persons’ biometric information with an

image

Chapter 5- Proactive Biometric Imprinting of Digital Objects

97

Person A creates an image file using a built-in forward-facing digital camera in

the smartphone. Immediately after the image file is created, a biometric feature

vector file is processed, together with the image file, as described above, to

generate a set of digital imprint files which is stored in a central database. The

digital imprint files are transmitted over a wireless network to the central database,

which is maintained at a remote location. Person A then transmits the image file

by email or MMS to the smartphone of a second person (B). The second person’s

smartphone (not shown) captures biometric information from the second person

and maintains a regularly updated biometric feature vector file on the second

person’s smartphone using that biometric data. Person B opens the file but does

not modify the image data of the image file. On opening the image file, the second

person’s smartphone operates to process that person’s biometric feature vector

file with the image file to produce a second set of digital imprint files, which is

added to the central database. The second person then uses her smartphone to

send the image file to the smartphone of a third person (C).

The third person’s smartphone (not shown) operates to maintain a biometric

feature vector file using the biometric information of the third person, captured by

the third person’s smartphone. The third person opens the file and modifies the

image data of the image file to produce a modified image file. The modified image

file may, for example, be produced by cropping the image data, pixelating one or

more parts of it, combining it with other image data, or by a combination of two or

more such operations. The third person’s smartphone operates to process the

biometric feature vector file with the modified image file to generate a third set of

digital imprint files, which is added to the central database. The modified image

Chapter 5- Proactive Biometric Imprinting of Digital Objects

98

file is then subsequently transmitted by the third person to further recipients in

turn whom each handle the modified image file (e.g., opening, closing, saving or

transmitting the file), either with or without further modifying the image data of the

file.

The above steps result in an image file comprising image data related to those of

file. The identities of individuals, such as A, B and C, who have handled and/or

modified earlier versions of image file are identified by processing the image file

with each of the digital imprint files held in the central database to generate a set

of reconstructed biometric feature vector files from which the individuals (A, B,

and C) can be identified.

Starting from a given electronic file, the identity of someone who has handled the

file (either with or without modifying the file’s image data) can be recovered by

processing the electronic file with digital imprint files held in the central database

to generate a set of reconstructed biometric feature vector files.

The reconstructed biometric feature vector files may be processed with each of a

set of example or candidate biometric feature vector files held in a separate

database in order to identify individuals. That database can be compiled by

adding digital biometric feature vector files to the database by transmitting them

over the wireless network after the users’ smartphones generate them.

5.5 Discussion

The proposed system aims to facilitate a proactive approach to tracing digital

object leakages by linking individuals’ biometric signals to the objects with which

Chapter 5- Proactive Biometric Imprinting of Digital Objects

99

they interact. On the other hand, the current approach to detecting insider

misuse—as explored in chapter 3—involves a layering of security countermeasures

that include comprehensive logging of servers (including authentication requests),

which suffer when encryption is in place, proxy-based network decryption and the

storage of network traffic, which are required to identify misuse, possibly over

prolonged periods of time (Pilli, Joshi and Niyogi, 2010; Birk and Wegener, 2011;

Khan et al., 2016). However, there are a number of approaches that utilise

steganography and watermarking techniques to embed specific data that could

point to the action generator (Chaabane, Charfeddine and Ben Amar, 2013; Macq,

Alface and Montanola, 2015; Bouslimi and Coatrieux, 2016; Alruban et al, 2017).

While conventional watermarking or steganographic processes do not modify the

digital object in a noticeable manner, they nonetheless alter the document. There

may be situations in which this modification is not desirable, for instance, when

preserving the integrity of the object is crucial.

In contrast, the approach proposed in this study seeks to provide a mapping

technique between the digital object and biometric identifiers, storing the mapped

information alongside object identifiers in a standalone and centralised storage

repository. When the mapped (imprinted) objects are recovered or analysed, the

information stored in the repository is used to recover the biometric information

that is subsequently used to identify the user. The two key advantages of this

approach are that it leverages transparent biometrics to establish the desired

correlation between user and object and the underlying digital object is not

modified in any way, in contrast with the aforementioned watermarking and logs-

Chapter 5- Proactive Biometric Imprinting of Digital Objects

100

based studies. In addition, no explicit biometric information is stored, as only the

correlation that points to locations within the imprinted object is preserved.

As stated above, the proposed approach provides two main methods for

attributing insider misuse by creating a correlation between individuals and the

digital objects with which they have interacted. The novelty of these approaches

can be summarised in the following points:

 The system serves the frictionless capture of biometric identifiers, resulting

in a usable yet secure approach to associating users with the digital

objects with which they interact.

 The multimodal design enables broad participation and mitigates against

forgery and circumvention.

 The centralised and decentralised approaches provide flexibility and

differing levels of repudiation capability.

 The system offers the capability to recover biometric identifiers under

significant levels of modification attack.

While the introduction of such a system has the foundations for providing such a

link, several concerns and issues need to be considered and addressed before

the ubiquitous adoption and effective operation of this system. Thus far, the

following aspects require further consideration throughout the development

phase.

Privacy: since the proposed framework incorporates biometric recognition

technologies, this involves the use of an individual’s characteristics. Those data

Chapter 5- Proactive Biometric Imprinting of Digital Objects

101

are considered personal and sensitive and this raises issues related to biometric

security and privacy. For that reason, storing and transferring a subject’s

biometrics must be achieved in a manner that minimises the threat to the

interception and misuse of that information.

Scalability: developing a system that continuously generates data and stores and

transfers them to a central data server introduces several challenges. This

includes traffic management and synchronisation where optimisation is needed.

Storage: capturing, generating, and storing data raises technical and conceptual

challenges. In particular, as the proposed system generates and collects more

substantial amounts of data, this will require more investigation to enhance the

system and adapt the storage issue.

Attack vectors: several threats are faced by the proposed framework, which

include object manipulation (most of which are discussed in the experimental

chapters 6, 7 and 8). It is, therefore, necessary to proceed to investigate and

identifying attack vectors and security concerns and subsequently consider

mitigation techniques in order to counter any potentially significant threats, as well

as to evaluate the robustness and efficiency of the proposed system against such

threats.

5.5.1 Research Questions Identified

Having introduced a system for the proactive biometric imprinting of digital objects,

this research needs to investigate further how efficient and robust the proposed

system is in inextricably linking the use of information (evidence) to the individual

Chapter 5- Proactive Biometric Imprinting of Digital Objects

102

users who access and use it. The following research questions are examined and

investigated in the following chapters:

1. What is the feasibility of developing a biometric-based null-ciphered

technique using digital images to better understand the robustness of

hiding and successfully recovering biometric information under different

levels of modification attacks to digital images?

2. What is the feasibility of developing a biometric-based grille-ciphered

technique using digital images to better understand the robustness of

mapping and successfully recovering biometric information under different

levels of modification attacks to digital images?

3. What is the feasibility of developing a biometric-based grille-ciphered

technique using digital documents to better understand the robustness of

mapping and successfully recovering biometric information under different

levels of modification attacks to digital documents?

4. What are the potential limitations and challenges in deploying a system for

the proactive biometric imprinting of digital objects?

In order to investigate scientifically and answer the above questions, a set of

extensive experiments were conducted to identify the strengths and limitations of

the proposed approach.

5.6 Conclusion

The proposed system for the proactive biometric imprinting of digital objects is a

novel digital forensic approach that would enable investigators to link the use of

information (e.g., images, documents, and emails) inextricably to the individual

Chapter 5- Proactive Biometric Imprinting of Digital Objects

103

users who use and access it, through the use of steganography and transparent

biometrics. The system utilises the computer hardware available (i.e., camera,

keyboard, and mouse) to monitor an individual’s interactions transparently and

continuously by utilising different biometric techniques. However, as raised in this

chapter, several considerations need to be taken into account of the privacy,

efficiency, and security aspects introduced by the proposed framework.

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

104

6 Investigation of a Biometric-Based Null Cipher Using

Images

This chapter investigates the feasibility of embedding individuals’ biometric

information inside digital objects (i.e., images) by utilising a null-ciphered

technique, such as the LSB. The chapter includes an evaluation of the approach

developed by measuring the success rate of retrieving the embedded signals

under different types of attacks, such as cropping part of the image using different

ratios. The chapter concludes with discussion and conclusion sections that

examine the findings, along with a comparison with the previous research, and

then highlights the limitations identified in the proposed approach.

6.1 Introduction

As explored in chapter 3, the detection of insiders’ malicious activities is an

important task. However, tracking and tracing such activities back to the source

of the leakage are also key elements in preventing future incidents and seeking

compensation. Linking the leaked data after they have been made public to the

insiders concerned is not a simple task. Even if useful information were

successfully mined from server and network logs, the sharing of authentication

credentials and the Trojan defence are all too frequently used to mitigate the

evidence.

Biometrics is a mean of identifying people by making use of someone’s individual

physical and behavioural characteristics, enabling a stronger association

between the users and the IT system they are using (Ashbourn, 2015). Extending

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

105

the use of biometrics into transparent capture further enhances usability and

security. Usability is enhanced as samples are captured without explicit or

intrusive interaction with the user, merely capturing samples as the user regularly

interacts with the system. Security is enhanced because, rather than having a

single sample, the system is able to capture samples continuously from a range

of biometric modalities, providing a far stronger approach than usual (Clarke,

2011). This could include capturing someone’s facial image while that individual

usually interacts with a computer, using, for example, the embedded web camera.

Furthermore, multimodal transparent biometrics could be employed that would

make circumvention and forgery that much more challenging (Ceccarelli et al.,

2015). More closely aligning users’ biometric information to the data with which

they are interacting could lead to more reliable and timely attribution of activities.

Therefore, the next section provides an investigation into a biometric-based null

cipher using images.

6.2 Methodological Approach

This investigation proposes a secure and portable approach that can link

individuals with the object with which they interacted (e.g., digital images) without

the need for a centralised database that stores interaction logs or the presence

of the original object. The correlation between the user and the digital object is

established by leveraging biometric signals, such as distinctive facial features,

transparently (so the user is neither inconvenienced nor aware when samples are

captured, which will mitigate forgery) with a steganographic technique for

embedding them into the object. It is essential to state that the proposed algorithm

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

106

is not intended to develop a new data-hiding technique but rather to investigate

whether the biometric signal(s) can still be recovered after significant modification

of the original digital object.

The main components of the proposed approach are built around the capturing,

processing and classification of biometric signals derived from built-in sensors

within the computing technology that can be captured without explicit interaction

by the user. The transparent, continuous and multimodal capture of biometric

signals is a key method in mitigating against forgery (Clarke et al., 2017). As

illustrated in Figure 5.1, the system elements and the main process flow form

critical parts of the imprint process. The design of the embedding algorithm also

takes into consideration the following aspects: the effectiveness of the system,

the security of the biometric information, and robustness against potential attacks,

such as cropping and modification of the image. The embedding procedure, as

illustrated in Figure 5.3, follows the steps outlined below.

6.2.1 Capturing an Individual’s Biometric Information

An individual’s biometric signals are transparently and continuously captured

while the user interacts with the object. For instance, when the user edits/writes

a particular document, different biometric modalities could be used to profile the

subject, including facial recognition and keystroke dynamics. A camera fitted in a

computer can capture facial samples while the user is looking at the computer

screen. In addition, keystroke dynamics can be used to identify individuals by the

way they type, which can also be analysed and processed to provide a

discriminative biometric signal.

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

107

6.2.2 Extracting a Biometric Signal

The biometric signal is then extracted and forms the biometric feature vector(s).

The size and number of dimensions of the vector vary—depending upon the

algorithm that is used for detecting and extracting the signals for the given

biometric modality. For instance, a typical facial feature vector used in this study

is 60 digits long.

6.2.3 Transferring the Biometric Signal and Image into Byte Streams

For most spatial domain image steganography systems, the first step in the

process is to transfer the representation of the data (that is to be embedded) along

with the carrier into byte streams. Only those pixel bits selected are converted

into a bit matrix and substituted with the payload data with respect to the

steganographic algorithm used.

6.2.4 Padding the Flag and the Timestamp

In order to maximise the anonymity of the embedded data, a flag of 10 alphabet

characters in length is randomly generated for each print and padded to the

beginning of the signal to be used later as a lead for the extraction algorithm to

identify the locations of the embedded data. The length of this generated token

ensures high entropy, as no two prints could hold the same token. A timestamp

in the Epoch time format (also known as POSIX time) is inserted after the padded

characters (flag) to provide more intelligence information to the investigator, as it

indicates when exactly the user interacted with the object that is being examined.

In the recovery process, the flag bytes are then decrypted one by one, looking for

ten consecutive alphabet characters (the flag). This helps to ensure the number

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

108

of spurious keys is zero and thus the information that follows is a viable timestamp

and biometric feature vector.

6.2.5 Choosing the Embedding Locations

The number of times (prints) that the payload is injected into the image can be

specified as a variable within the embedding algorithm. Hiding the tracing

information in multiple locations increases the likelihood of finding the hidden data

after the image is modified, for instance by cropping part of the image. Therefore,

the coordinates of the pixels (xi, yi) are randomly selected by the embedding

algorithm to specify where the payload is injected.

6.2.6 Encrypting the Payload

Prior to the embedding process, the data are encrypted using AES. AES is

symmetric encryption and the encryption keys (Ki) are generated based upon a

predefined master key. The keys are used to encrypt each print of the payload so

that the inserted data are not alike, in contrast with a single key being used to

encrypt all the prints. This ensures that the imprints (payloads) have a different

pattern and detecting those data can be harder. If the same key is used to encrypt

the data, the resulting ciphers will be identical; thus, finding those payloads is

simply a matter of searching for identical values across the carrier object.

6.2.7 Embedding the Encrypted Data into the Image

The embedding function inserts the encrypted byte streams into the image. The

maximum embedding capacity varies depending on the given image size, colour

depth and steganography method. For instance, within true colour images, the

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

109

number of elements in the cover, n, is three times larger than those in greyscale

images.

Figure 6.1 illustrates the concept of how the bits in the original carrier are replaced

when using the LSB method to hide data. Each bit in the payload is substituted

for the LSB in the original data.

Figure 6.1: Applying LSB using one least significant bit

The resulting image conceals the biometric signal(s), flag and timestamp. A

substantial advantage of this system is that the embedding process is entirely

random, which makes predicting where the data are hidden highly challenging.

To recover the embedded information, the extraction algorithm works in reverse

when compared with the embedding algorithm. It takes the image in question and

the decryption keys as inputs; the keys are the same as those used by the

embedding algorithm to encrypt the payload. Since the location of the pixels in

which the embedded data are located are selected randomly, the extraction

process starts at the first pixel (0, 0) and continues until the last (xn, yn) (i.e., all

possible locations). All the interesting bits are mapped out into a matrix of byte

streams.

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

110

The following steps explain the process of extracting the embedded data from the

examined object:

1. Read the examined image.

2. Find the hidden flag that indicates the location of the secret data.

3. Continue the process until the message is fully extracted from the image.

4. Split the extracted message into parts (flag and biometric signal).

5. Use the encryption key to decrypt the ciphertext to find the original

information.

6. Reconstruct the biometric and supplemental information.

The bytes are then decrypted one by one, looking for 10 consecutive alphabet

characters (the flag). Once the flag has been found, the 70 bytes (131 bytes when

two biometric signals were embedded) next to the flag are written out in plaintext

format, which illustrates the embedded payload that contains the timestamp as

well as the biometric signal(s).

6.3 Experimental Analysis

This research aims to investigate and better understand the nature of hiding and

successfully recovering biometric information under different levels of

modification attack to the digital object in a way that could lead to the individual

who interacted with the digital files (images in this experiment). In order to achieve

this, a real facial biometric vector was captured for one individual using a

developed script while the individual was interacting naturally with the computer.

Two variations of the payloads were examined. The first variation consists of only

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

111

a single biometric feature vector (facial biometric) along with the flag and

timestamp. The Fisherface algorithm was used to generate the feature vectors

for the facial images captured from the user (Belhumeur, Hespanha and

Kriegman, 1997). Fisherface projects the image set to a lower-dimensional space

so that the resulting within-class scatter matrix SW is non-singular. This is

achieved by using PCA to reduce the dimension of the feature space to N - c, and

then applying the standard Fisher’s Linear Discriminant (FLD) to reduce the

dimension to c - 1. The optimal projection (𝑊 𝑜𝑝𝑡) is given by:

𝑊𝑜𝑝𝑡
𝑇 = 𝑊𝑓𝑙𝑑

𝑇 𝑊𝑝𝑐𝑎
𝑇

Where

𝑊𝑝𝑐𝑎 = arg
max

𝑤
| 𝑊𝑇𝑆𝑇 𝑊 |

𝑊𝑓𝑙𝑑 = arg
max

𝑤

|𝑊𝑇𝑊𝑝𝑐𝑎
𝑇

𝑆𝐵 𝑊𝑝𝑐𝑎𝑊|

|𝑊𝑇𝑊𝑝𝑐𝑎
𝑇

𝑆𝑊 𝑊𝑝𝑐𝑎𝑊|

Where 𝑆𝐵the between-class scatter matrix is be defined as:

𝑆𝐵 = ∑ 𝑁𝑖

𝑐

𝑖=1

 (µ𝑖 − µ)(µ𝑖 − µ)𝑇

Where 𝑆𝑤the within-class scatter matrix is be defined as:

𝑆𝑊 = ∑ ∑ (𝑥𝑘 − µ𝑖)(µ𝑘 − µ𝑖)𝑇

𝑥𝑘 ∊ 𝑋𝑖

𝑐

𝑖=1

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

112

Where mi is the mean image of class 𝑋𝑖 , and 𝑁𝑖 is the number of samples in

class 𝑋𝑖.

The optimization for 𝑊 𝑝𝑐𝑎 is performed over n × (N - c) matrices with

orthonormal columns, while the optimization for 𝑊 𝑓𝑙𝑑 is performed over (N - c)

× m matrices with orthonormal columns. In 𝑊 𝑝𝑐𝑎 , the smallest c - 1 principal

component is ignored.

The resulting vector is four-dimensional and 60 digits long (zeros are padded to

the beginning of a vector whenever it has fewer than 60 digits). The cipher stream

of the payload is 80 bytes long. The second variation combines two biometric

signals (e.g., facial and keystrokes) and, along with the flag and timestamp, is

141 bytes. The Lena picture (a standard test image widely used in the field of

image processing) was used as the test image in this study.

The minimum pixel size needed to carry out at least one imprint of a single

biometric modality is 214 pixels for RGB images and 1,128 pixels for greyscale

images when the LSB approach is used for embedding. To determine the

maximum number of prints that a test image can accommodate, when only the

LSB per colour is substituted, the total number of LSBs of the given image is

divided by the size of the payload (in bits).

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

113

Table 6.1 shows the maximum number of prints (times) that the payload can be

embedded in the test image for the various image sizes.

Table 6.1: Maximum number of prints that can be embedded into a given RGB

image

Image size

(Pixels)

Max. number of prints using all available LSBs

Single bio-signal Two bio-signals

256x256 307 174

512x512 1,220 696

1,024x1,024 4,880 2,784

2,048x2,048 19,520 11,136

By using this steganographic approach, in which the biometric signals are directly

inserted into the image, the quality of the original object changes depending upon

the size of the embedded data. Therefore, to measure the error rate and noise

introduced by the embedding algorithm, both the mean squared error (MSE) and

peak signal-to-noise ratio (PSNR) are calculated. MSE is a metric that estimates

the quality of the modified image compared with its reference (original) based on

the squared difference between the two. The MSE value for the original image (x)

and the modified version (y) is computed using Equation 3:

Equation 3: Mean squared error

𝑀𝑆𝐸(𝑥, 𝑦) =
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1
 Equation 3

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

114

The MSE is used to compute the PSNR using a logarithm (dB, as shown in

Equation 4:

Equation 4: Peak signal-to-noise ratio

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
𝐿2

𝑀𝑆𝐸
 Equation 4

Where L represents the dynamic range of possible image pixel intensities. For

instance, for images that have allocations of 8 bits per pixel of greyscale, L is

computed by 256 − 1 = 255. Figure 6.2 illustrates the effect of embedding

payloads into an image (512x512 pixels) measured by MSE and PSNR. It is

generally known and expected that, as the size of the embedding data increases

(the number of prints in this case), the error rate and noise introduced to the image

will also rise.

Figure 6.2: MSE1 and PSNR1: single biometric signal per print; MSE2 and

PSNR2: two biometric signals per print

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

115

The watermarked images are then randomly cropped—to ensure that the result is

more generalised—by 25%, 50% and 75% of their original size (as Figure 6.3

illustrates). The cropping attack simulates a case in which only part of an

imprinted image is available for examination. Such an attack could be performed

by a malicious user to wipe any traces that could identify the source of the leakage.

25% 50%

75%

Figure 6.3: Cropped versions of the test image

Figure 6.4 illustrates the number of recovered prints under the three cropping

ratios (25%, 50% and 75%), along with the different number of embedded prints

per image. It is clear that, as the size of the examined watermarked image

increases, the number of prints being extracted also rises. The result for the single

biometric signal per print experiment shows that even with only 25% of the

watermarked image, it is still possible to retrieve and recover the embedded data

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

116

successfully by searching for the encrypted flag. Therefore, the number of

recovered prints is significantly correlated with the number of embedded prints,

as well as the type of modification being performed on the image.

Figure 6.4: Number of prints extracted for a single biometric signal per print

Furthermore, two biometric signals per print were experimentally examined to

investigate whether the length of the embedded data could affect the number of

recovered prints. Figure 6.5 demonstrates the number of recovered prints when

the watermarked image is cropped by 75%.

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

117

Figure 6.5: Number of extracted prints for two biometric signals per print

By comparing the results obtained with the experiment above, it is notable that

the number of recovered prints has dropped significantly due to the increase in

payload size. The size of the payload that contains two signals is 141 bytes (1,128

bits), which requires 376 pixels to accommodate (when 1 bit per colour is

substituted). Whereas, the payload that contains a single biometric signal is 80

bytes long, which uses 214 pixels of the watermarked image. The difference

between the two variations is ~76% in terms of size. Therefore, due to this

difference, cropping a watermarked image that carries two signals per print by

less than 75% (i.e., 50% or 25%) is highly likely to render extracting the

embedded prints unfeasible. However, it is still possible to retrieve at least one

signal, which is sufficient for the ultimate aim (i.e., having a biometric signal that

could indicate a particular individual).

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

118

Figure 6.6: Correlation between the number of signals per print, size of the

image and the likelihood of recovery

To further demonstrate the correlation between the number of signals per print/

payload, size of the image and the likelihood of the successful recovery of the

embedded data, Figure 6.6 shows that the correlation between those variables is

a direct relation. The colour indicates the recovery likelihood: dark red expresses

a low chance and dark green implies a high chance of recovery. The circles

represent the number of signals per print/payload. From this data, it can be seen

that, as the size of the image increases, the number of signals per print also rises,

as does the likelihood of recovering the embedded prints.

6.4 Discussion

From the results obtained, it is clear that the use of the LSB approach, especially

under a modification attack (i.e., cropping the image), enables the embedding and

recovery of biometric information. Although embedding the payload directly into

the image when using the null cipher approach introduces noise to the object, it

does not require the original image to be present or the existence of a database

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

119

to store metadata or signatures. Whereas, a grille cipher stores the generated

digital imprint file in a centralised database. This file represents the locations

within the object, each of which corresponds to a respective portion of the

extracted biometric features.

That said, some several limitations and challenges exist and require further

research, these include:

 The placement of the bits to be embedded could be randomised using a random

function (e.g., scattering) so that it would be almost impossible to retrieve the

embedded data without knowing the seed for the random function. Although

this is a useful approach, it only works if the image has not been modified or

cropped after the data were embedded.

 Using the LSB for inserting the payload is vulnerable to file type transformation.

For instance, transforming the resulting image (e.g., PNG) into other formats

(e.g., JPEG) is highly likely to destroy the embedded data by using the

compression algorithm.

 The proposed algorithm uses a conventional spatial technique (LSB substitution)

that embeds the data directly in the intensity of the pixels. In other

steganographic approaches, such as frequency techniques, the images are first

transformed into an intermediate image and then the data are embedded in the

image. A common method in the frequency domain is to modify the relative size

of two or more DCT coefficients in an image block, embedding one bit of

information in each block. The algorithm should be robust against JPEG

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

120

compression, so DCT coefficients with equal quantisation values should be

chosen, in accordance with the JPEG quantisation table (Soria-Lorente and

Berres, 2017).

Further investigation and experimentation are needed into attacks targeting LSB

techniques, such as the Chi-square and the extended Chi-square attacks, and

the Zhang and Ping Method, which targets the Jsteg-like algorithm (Fridrich,

2004). This study has focused only upon the image file type and differing file types

have varying degrees of stability due to their structure. For example, Word

documents and their underlying data structure can change considerably, given

small alterations to a file. Therefore, alternative approaches need to be developed

to overcome this issue.

6.5 Conclusion

This chapter has examined the feasibility of embedding an individual’s biometric

signals into image files by utilising a null-ciphered technique, the LSB

steganography approach. The proposed algorithm takes the biometric signals as

a feature vector along with the supplementary information (flag and timestamp)

and embeds them into the interacted image after the payload is encrypted. The

experimental results have shown that it is possible to retrieve the biometric

signals successfully even when the image is cropped to 25% of its original.

The results obtained are robust against many of the scenarios examined, and the

nature of conventional watermarking and null cipher-based processes is not to

modify the digital object in a manner that is noticeable. It does, nonetheless,

Chapter 6- Investigation of a Biometric-Based Null Cipher Using Images

121

modify the digital object. There may be situations in which this modification is not

desirable; for instance, when preserving the integrity of the object is crucial, as is

the case in a digital forensic investigation. Directly performing modifications to the

object, beyond the computer user’s awareness, would change the integrity of the

file. Hence, this type of evidence of a crime would not be accepted in a court of

law. The next chapter proposes a novel approach that does not directly modify or

change the examined object and preserves its integrity. Instead, it generates a

correlation file and stores it in a local database to be used later when needed.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

122

7 Investigation into a Biometric-Based Grille Cipher Using

Images

This chapter presents an investigation into a biometric-based grille cipher using

images by linking a subject (i.e., computer user) with an object of interest (e.g.,

image) and using the individual’s biometric sample, such as a facial biometric,

without modifying the object being imprinted. The chapter begins by introducing

the proposed approach, including the core process, followed by an explanation of

the experimental methodology of using different types of attack vectors to

evaluate the robustness of the proposed method. The experimental results are

then presented, followed by a discussion of the findings and the limitations

identified from the experimental analysis.

7.1 Introduction

Unlike most existing methods, such as digital watermarking or null ciphers, in

which the integrity of the object is modified (Charbonneau and Simon, 2014;

Nelson and Xie, 2014), a generic grille cipher approach employs a template that

is used to cover the carrier message; the words that appear in the openings of

the template are the hidden message. Unfortunately, designing a cipher scheme

that satisfies all the constraints remains a difficult problem. The approach

proposed in this chapter ‘imprints’ the object with any given data (i.e., the user’s

biometric feature vector). Therefore, the imprinting process employed can be

described as a correlation of the feature vector with the object.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

123

7.2 Methodological Approach

The proposed framework consists of two engines: a biometric engine and a grille

cipher engine. The biometric engine transparently captures and extracts the

user’s biometric samples (e.g., facial features, keystroke analysis, behavioural

profiling) and stores them in a database on the user’s computer. The grille cipher

engine retrieves the object metadata and its hexadecimal (hex) representations

and requests the latest user’s biometric feature vector from the biometric engine

for use in the imprinting process. Finally, the imprints generated are stored in a

centralised database for later analysis when required. Figure. 7.1 illustrates the

framework architecture for the proactive biometric-enabled forensic imprinting

system. Upon detection of data leakage, the object (whether it is posted on a

public website or captured by the network) can be analysed for the biometric

imprint.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

124

Figure. 7.1: The proposed framework architecture

The sample is extracted and then processed by a biometric system in order to

determine the last user to interact with the object. The generation process of the

imprints is inspired by the benefits of employing the grille cipher technique. Grille

ciphers were used in the past (prior to the modern null cipher) as a means of

transferring/exchanging secret messages between two parties. They were initially

used to extract hidden messages from a plain text by mapping the text through a

pierced sheet, such as card. For instance, the words “secret” and “plan” can be

Biometric engine

Fingerprinting

engine

Confidential

objects

User

Centralized

Fingerprints

database

o
b
je

c
t

fi
n
g

e
rp

ri
n
t

captures user’s face

transparently

stores generated

imprints
fa

ci
al

fe
at

u
re

st
o
re

fe
at

u
re

local biometrics DB

re
tr

ie
v
e

fe
at

u
re

+

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

125

extracted from a letter puzzle by applying a piece of cardboard with appropriate

apertures that map the desired locations of the letters, as Figure 7.2 illustrates.

 p s k r s

secret

t u e l

 e

 c a r q c r

 h e n t e t

Cardboard Plain text Mapped letters Extracted text

 p s k r p

plan

t u e l

 l

 c a r q a

 h e n t n

Cardboard Plain text Mapped letters Extracted text

Figure 7.2: Grille cipher mapping example

The embedded secret message can be retrieved by mapping specific locations.

Hence, applying the same technique to imprint a biometric feature vector to an

object file is possible, as the object can be an image file, document, video, or any

other digital file type. Adapting the grille cipher technique to the proposed

approach involves several consecutive steps, which are described below.

7.2.1 Preparation of the Feature Vector and Object

The preparation step converts both the feature vector and object into their hex

representations for mapping purposes. The index of each character is preserved

during this conversion, which begins with zero for the first character and continues

in ascending order until the last. The process of conversion is not necessarily

achieved by transforming each character, since reading the whole object in binary

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

126

mode allows for low-level representations of both hex and binary. Character-by-

character (or byte-by-byte) indexing is still required in order to generate the object

index list.

7.2.2 Mapping the Feature Vector to the Object

After obtaining the hex representations of the feature vector and the object, each

hex value in the feature vector is mapped to its equivalent position in the object’s

hexes to retrieve possible positions where they both match. Accordingly, the

mapping process returns lists of indexes of the matched hexes.

7.2.3 Generating the Feature Vector Imprints

By retrieving the positions of each character of the feature vector with the object,

it is now possible to generate imprints based on the list of indexes, which means

that multiple imprints of the whole feature vector can be generated by combining

those positions.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

127

The pseudocode of the imprinting process, starting from the preparation is

illustrated below in Algorithm 1.

Algorithm 1: Imprinting algorithm

Input: Feature Vector (FV), Object (O)

Output: Imprints

1: function PREP (FV, O)

2: for each value in FV & O:

3: Convert FV, O into its HEX representations

4: Retrieve the index of each value

5: Return FVHEX, index, OHEX, index

6: function MAPPING (FVHEX, index, OHEX, index)

7: for each value in FVHEX, OHEX:

8: index (Oindex) ← FVHEX ⋂ OHEX

9: Return index (Oindex)

10: function IMPRINTING (indexes)

11: imprint ← Combine unique indexes from the

12: retrieved index list

13: Return imprints

The following example explains how the imprinting algorithm works in practice.

For demonstration purposes, assume that the following feature vector needs to

be mapped to an object, as presented in Figure 7.3.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

128

Figure 7.3: Feature vector and an object

 FV 0 1 2 3 4 5

 𝐇𝐞𝐱(𝐅𝐕) 30 31 32 33 34 35

 𝐇𝐞𝐱(𝐅𝐕)𝐢𝐧𝐝𝐞𝐱 0 1 2 3 4 5

O 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

𝐇𝐞𝐱(𝐎) 30 31 32 33 34 35 30 31 32 33 34 35 30 31 32 33 34 35

𝐇𝐞𝐱(𝐎)𝐢𝐧𝐝𝐞𝐱 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 7.4: Hex representation of the feature vector and the object

The process occurs regardless of the file type of the object since any file type can

be transformed and treated as a hex representation. The first step in the proposed

algorithm is to convert both the feature vector and the object into their hex

representations. In accordance with the ASCII table, Figure 7.4 shows the

converted characters as the hex alongside the position of each value (index). In

this example, each value of the feature vector exists in more than one location

within the object. For example, “30” (the hex representation of zero) is located in

positions 0, 6, and 12 (as show in Table 7.1). In the same manner, the mapping

process continues for all subsequent feature vector values until all possible

positions are retrieved. In addition, the column titled “positions in the object”

presents the retrieved positions for each value of the feature vector.

FV: [012345]

O: [012345012345012345]

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

129

Table 7.1: Feature vector value positions in the object

Original value Hex representation Positions in the object

0 30 0, 6, 12

1 31 1, 7, 13

2 32 2, 8, 14

3 33 3, 9, 15

4 34 4, 10, 16

5 35 5, 11, 17

The last step in this example is to generate all possible imprints from the positions

retrieved. Since each feature vector value is located in three different locations,

the total number of unique imprints that can be generated from these positions is

three, as illustrated in Table 7.2. Therefore, using any value for these imprints, it

is possible to reconstruct the original feature vector from the object by reversing

the mapping process. After explaining how the imprinting technique works

through the example given, the next section investigates the feasibility of

imprinting biometric feature vectors with images and later recovering them (even

after object modification).

Table 7.2: Possible imprints

Imprint number Imprint

1 0, 1, 2, 3, 4, 5

2 6, 7, 8, 9, 10, 11

3 12, 13, 14, 15, 16, 17

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

130

7.3 Experimental Methodology

The primary goal of the experiment is to assess the feasibility of the proposed

hypothesis of the subject’s feature vector being forensically linked to and retrieved

from an object of interest. Therefore, it is critical to evaluate its performance in a

sophisticated, subject-related manner. A total of four experiments were

conducted:

 The first experiment retrieved the feature vector from the original imprinted

image.

 The second experiment examined a situation in which the image is modified

in one area with an increasing proportion of modification.

 The third experiment verified the case in which an image is modified in

several areas.

 The final experiment investigated what happens when only parts of the

original image are available and the rest is missing.

The feature vector used in the experiments represented a real facial feature

vector sample with a length of 57 numeric characters, as illustrated in Figure 7.5.

The length of the vector relies upon the feature extraction algorithm used to

compute the feature vector. In this study, the Fisherface algorithm was used to

compute the feature vector for the captured user’s facial images (Belhumeur,

Hespanha and Kriegman, 1997). The algorithm also performs PCA and LDA for

dimensionality reduction (Yu and Yang, 2001).

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

131

Figure 7.5: Facial feature vector

With regard to the objects used in the experiments, UCID image dataset version

2 was used (Schaefer and Stich, 2003). The database contains a total of 1,300

images of two sizes: 1,234 x 1,858 or 1,858 x 1,234 width, height in pixels. For

this study, only the first 100 images were used from the dataset, since it was

assumed that this number would be enough for the purpose of evaluation. The

implementation of the proposed algorithm was developed in Python due to its

flexibility in terms of list comprehension and image processing. Moreover,

Python’s built-in library has several useful functions, such as map and zip, which

facilitate a number of relevant operations.

7.3.1 Retrieving the Feature Vector from the Original Imprinted Image

The aim of this experiment was to imprint the feature vector as many times as

possible with each image in the dataset. The first experiment examined the

possibility of generating imprints between the feature vector and the object used.

Since there is a high probability that the subject or another party (intentionally or

unintentionally) could somehow modify the object in question after it is imprinted,

the subsequent experiments investigated the accuracy of retrieving the feature

vector from the object in several situations.

[1679.2235398, -1555.40390834, -1140.07728186, -1999.85500108]

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

132

7.3.2 Modification in One Area

The second experiment evaluated the imprinting mechanism after the image was

modified by a different percentage. The simulation of this was performed by

randomly choosing a section of the image as a rectangular box of a growing size

to reflect an increasing proportion of modification. Equation 5 was used to

determine the size and random position of the modified section. The equation

takes the following three variables:

 w: image width;

 l: image height;

 s: the desired modification percentage.

The equation gives four values: x and y are random values between zero (image

width) and zero (image height), respectively. These set the top-left pixel position

of the modified rectangle (as highlighted in red in Figure 7.6); the third and fourth

values are for the bottom-right corner of the rectangle (shown in blue).

Equation 5: Modification size

𝑃(𝑤,𝑙,𝑠) = ∑ ∑(𝑥, 𝑦,

𝑙−1

𝑦=0

 𝑥 +
𝑤

10 ∙ √𝑠
, 𝑦 +

𝑙

10 ∙ √𝑠
)

𝑤−1

𝑥=0

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

133

Figure 7.6: Sample of a modified area of an image

In this experiment, the imprinted images were modified by 5% increments, which

means that the first alteration rate was 5%, then 10%, 15% and so forth until

reaching 100%. Figure 7.7 demonstrates samples of an image modified by

different rates. The (a) image is modified by 5% of its original size and the other

three samples (b, c and d) are modified at rates of 35%, 65%, and 95%,

respectively.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

134

(a) 5% (b) 35%

(c) 65% (d) 95%

Figure 7.7: Sample of a modified part of an image

7.3.3 Modification in Multiple Areas

The third experiment was similar to the previous one, except that the

modifications occurred in several parts of the image instead of an increasing

proportion of one area. This type of attack is more influential since various and

random parts of an image are affected by these alterations. In order to simulate

this type of modification, the dataset images were altered using multiple

rectangular boxes, each of which was equal to 1% of the total image size.

Therefore, simulating a 5% alteration of random locations would need five of

these boxes in an image. This experiment also assessed the proposed technique

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

135

with object alteration in 5% increments of the original size. Figure 7.8 illustrates

four sample images modified by 5%, 35%, 65%, and 95%, respectively.

5% 35%

65% 95%

Figure 7.8: Sample of a modified area of an image

7.3.4 Partial Image

Further investigation was needed to better understand the effects of different

attack vectors on retrieving the imprinted feature vector. Therefore, the last

experiment presented in this chapter is interesting in terms of the results obtained.

The fourth experiment simulated a scenario in which only part of the imprinted

image was available and the rest was missing; for instance, the imprinted image

might have been resized or cropped. To simulate this type of alteration, a random

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

136

section of the images in the dataset was cropped to different sizes, starting from

5% of the original size; then, in each subsequent test, random sections were

again cropped at increments of 5%. Figure 7.9 illustrates some of the cropped

samples.

5% 35%

65% 95%

Figure 7.9: Samples of an image cropped to certain percentages

7.4 Experimental Analysis

The results of experiment one show that the average number of generated

imprints was 854 per image. The minimum number of imprints in a single image

was 244 and the maximum 1,815. This suggests that the mapped feature vector

could be retrieved and reconstructed from any of the imprints. The number of

imprints achieved is not surprising since the feature vector always contains

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

137

numerical values (0-9). Therefore, there are many matches between the feature

vector and the hex values of the images. A reconstruction of the feature vector

from the unmodified images was also possible using those generated imprints

with an accuracy of 100%. This was achieved by reversing the imprinting

processes.

In the second experiment, it was found that the imprinting technique was effective

since the imprinted feature vector was successfully retrieved from an average of

97 out of 100 images, even when the modification percentage was 80%, as Figure

7.10 illustrates. On average, it takes around 3 milliseconds to generate an imprint

(with an average size of imprints of 472 bytes). However, after a modification of

80% to the images, the number of valid retrieved feature vectors significantly

drops due to the loss of most of the imprint values across those images. It can be

seen that there is a fluctuation in the percentage of retrieved feature vectors while

the modification rate increases. It worths to mention that if at least one imprint per

image is successfully retrieved (with a minimum number of imprints in a single

image was 244 and the maximum 1,815), the result is counted valid. Now, the

fluctuation in the result has occurred as the nature of these imprints are scattered

among the image, and due to the randomness of the attack (modifying part of the

image in random locations), this could change the values of the mapped

offsets/indices while in another rate of modification, although it is still restoring

those mapped imprints, some of which are not affected. While after a massive

amount of change, a decline occurs because the critical set of mapped index

values changes after such a high modification rate. However, it was clearly

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

138

illustrated that it is feasible to reconstruct the feature vector from the imprinted

objects even after significant destruction of its original values.

Figure 7.10: One area modification attack

In the third experiment, in which the modification took place in multiple areas, the

results show that the imprinted feature vector was successfully retrieved, even

when the images were altered in a more sophisticated way than in the one area

modification attack (experiment two). Figure 7.11 shows the percentage of

images for which the feature vector was successfully retrieved.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
et

ri
v
ed

 F
ea

tu
re

 v
ec

to
r

Modification Percentage

Retrived FV

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

139

Figure 7.11: Multiple parts modification attack

Changing the values of specific pixels by printing the black boxes after the

imprinting process with the feature vector affects the values of the mapped

indexes. Therefore, many of the imprints were rendered useless after this type of

attack. Despite significant destruction to the image visualisation with an increased

rate of modification, it was possible to recapture the feature vector from some of

the images, even following enormous alteration, such as when the object was

changed by 95%. At the same time, this attack caused significant loss of the

mapped index values compared with the experiment that investigated

modification in one area, where the latter was vandalised less than the former in

terms of the impact on the pixels of interest.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f
R

et
ri

v
ed

 f
ea

tu
re

 v
ec

to
r

Modification Percentage

Retrived FV

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

140

To explain why there is a fluctuation in the resulting graph in both Figure 7.10 and

Figure 7.11, the following simulation gives a possible justification of the obtained

results of these to attacks extermination. Assume that a vector of [0 1 2 3 4 5 6 7

8 9] needs to be imprinted with this given random matrix of numbers from 0-9 (i.e.

pixels or similar type of object) which has dimensions of 7 x 7 (49 values) as

shown in Figure 7.12.

4 5 2 1 9 4 9

7 0 1 6 4 3 2

1 9 2 9 2 8 3

7 3 5 8 3 8 8

6 0 2 7 5 0 1

9 8 3 6 1 1 2

9 7 5 0 8 4 0

Figure 7.12. Matrix of numbers to be used as an example of an object to be
imprinted with a given vector.

By mapping the given vector value with this matrix, this should result in 4 possible,

complete, and non-overlapped imprints scattered among the matrix as shown in

Figure 7.13.

4 5 2 1 9 4 8

7 0 1 6 4 3 2

1 9 2 9 0 8 3

7 5 3 8 3 0 1

6 0 2 7 5 0 1

9 6 8 6 1 1 2

4 7 5 0 8 4 0

Figure 7.13. Matches values of the given vector highlighted in colour per imprint

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

141

Now, by simulating some attacks (shown in a black background in Figure 7.14,

Figure 7.15, Figure 7.16, and Figure 7.17) to reflect why the fluctuation in the

results occurred. As shown in Figure 7.14, the yellow, blue and green imprints are

affected by the attack in which only the red imprint is still valid to be retrieved.

This results in 1 out of 4 possible imprints can be retrieved from this given

simulation.

4 5 2 1 9 4 8

7 0 1 6 4 3 2

1 9 2 9 0 8 3

7 5 3 8 3 0 1

6 0 2 7 5 0 1

9 6 8 6 1 1 2

4 7 5 0 8 4 0

Figure 7.14. Biometric information—document correlation generation pipeline

In Figure 7.15, although that the affected area is larger than the previous example

(shown in Figure 7.14), only the green imprint is affected by the attack in which

the yellow, blue and red imprints are still valid to be retrieved. This resulted in 3

out of 4 possible imprints can be retrieved from this given simulation.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

142

4 5 2 1 9 4 8

7 0 1 6 4 3 2

1 9 2 9 0 8 3

7 5 3 8 3 0 1

6 0 2 7 5 0 1

9 6 8 6 1 1 2

4 7 5 0 8 4 0

Figure 7.15. Biometric information—document correlation generation pipeline

With this attack in Figure 7.16, all imprints are affected by the attack in which no

valid imprint to be retrieved. This results in 0 out of 4 possible imprints can be

retrieved from this given simulation.

4 5 2 1 9 4 8

7 0 1 6 4 3 2

1 9 2 9 0 8 3

7 5 3 8 3 0 1

6 0 2 7 5 0 1

9 6 8 6 1 1 2

4 7 5 0 8 4 0

Figure 7.16. Biometric information—document correlation generation pipeline

Although the attack shown in Figure 7.17 affected more values of the matrix in

comparison with the previous attacks, the yellow imprint is not affected by the

attack in which this results in 1 out of 4 possible imprints can be retrieved from

this given simulation.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

143

4 5 2 1 9 4 8

7 0 1 6 4 3 2

1 9 2 9 0 8 3

7 5 3 8 3 0 1

6 0 2 7 5 0 1

9 6 8 6 1 1 2

4 7 5 0 8 4 0

Figure 7.17. Biometric information—document correlation generation pipeline

By plotting the number of retrieved imprints in the function of modification rate, it

can be seen in Figure 7.18 that the resulted graph is fluctuating in which even

with more areas/values modified, the affected imprints can vary. This fluctuating

will depends on the object values and the vector values to be imprinted.

Figure 7.18. Biometric information—document correlation generation pipeline

These simulated attacks in this small matrix/imprints explain why the rate of

retrieved imprints have fluctuated at some modification rations and not a steady,

smooth decline. In the conducted experimentation, the tested images have

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

R
e
tr

iv
e

d
 i
m

p
ri

n
ts

Number of modified values

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

144

dimensions of 1,234 x 1,858 and 1,858 x 1,234 width, height in pixels, this is equal

to 2,292,772 pixels per image which enabled (a minimum of 244 and of maximum

1,815) of imprints to be generated. If only one imprint per image is successfully

retrieved, the result is counted valid as we only need one imprint to find a match

in the biometric signal.

Finally, in the last experiment, the most striking finding to emerge from the results

is that of all the tests in this experiment, the feature vector was retrieved and

reassembled 100% for all the images tested. This suggests that by giving only

part of the original imprinted image, it is possible to restore the feature vector to

its original values. Figure 7.19 shows the percentage of successfully retrieved

feature vectors under a partial image attack. The results relating to this attack

also show that, as long as the corresponding locations of the imprints are not

changed, it is still possible to retrieve the imprinted information, as the mapped

indexes are still valid.

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

145

Figure 7.19: Partial image attack

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
et

ri
v
ed

 F
ea

tu
re

 v
ec

to
r

Modification Percentage

% of Images with successful retrieved feature vectors

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

146

Figure 7.20: Multiple parts modification attack

Figure 7.20 shows that the average, maximum, and minimum numbers of a

retrieved feature vector cross for all the images examined. However, these results

were obtained by assuming that the preserved indexes of the hexes of interest

had not been changed after the cropping process. This suggests that all the

imprints in the database correlated with the samples in question as part of the

original images. In practice, this is not always possible, since the original object

might not be accessible or available after the imprinting process takes place.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
u

m
b

er
 o

f
R

et
ri

v
ed

 I
m

p
ri

n
ts

Cropped image size in percentage compared to the original

Max average Min

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

147

Therefore, more research is needed to find a link between the parts of an object

and the original.

7.5 Discussion

The results have shown that, by mapping the hex representations of a feature

vector to the hex representations of an image of interest, it is feasible that one or

more imprints of the feature vector can be generated. The results of the first

experiment conducted revealed an ‘expected’ outcome by imprinting the feature

vector from the original imprinted image. Since 100% of the imprinted feature

vector was retrieved using only the generated imprints that contained the indexes

of the corresponding positions, this was expected because the mapped objects

(images in this case) had not been exposed to any kind of alteration and, therefore,

were tested based on their original status.

Being able to achieve such high scores is attributable to the nature of the

examined object. Since images are a set of pixels that range from 0 to 255,

changing the value of one pixel does not affect the value or the position of other

pixels. Thus, altering part of an image is not necessary, as it affects the values of

all the imprinted indexes. Therefore, generating as many imprints as possible in

various positions of the image will, in turn, increase the likelihood of successfully

retrieving the imprinted values.

It is worth mentioning that the approach introduced in this chapter could be

applied to other types of object, such as Microsoft Office Word documents and

PDF files. Nevertheless, the results do not necessarily reflect a robust success

rate, since changing a small part these file types could affect the offset of binary

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

148

representation of these files. An initial experiment was also carried out in which a

small set of Office Word and PDF files were examined using the same imprinting

technique that was conducted on the images. The results showed that, unlike

images, changing a small value in the document/file content leads to an

adjustment of the entire offset/index sequence. For that reason, many attacks

would have a considerable impact on the accuracy of retrieving the imprinted

feature vector from such objects.

In comparison with the experiment in Chapter 6—Investigation of a Biometric-

Based Null Cipher Using Images, the use of a grille cipher increases the likelihood

of retrieving the mapped information (biometric signals). Moreover, the grille

cipher approach does not change the integrity of the data by directly modifying

the examined image, as it only generates those imprints, which is simply a

mapping between individual biometric signals and the corresponding matching

location within the object. Another advantage of this approach is that it works

across different file types, not only images (i.e., the text-based files that are

investigated in the next chapter).

Nevertheless, these findings provide interesting insights for future research,

whereby other techniques could be investigated for robust object alteration. A

possible solution for tackling this type of issue could be that, instead of mapping

the feature vector to the object at the hex level, a higher level of representation

could be used. For instance, in the case of documents, mapping the feature vector

with static representations of the text of the document (such as a locality sensitive

hashing digest) might possibly become less vulnerable to an alteration attack,

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

149

especially when the imprints generated preserve more static values related to the

object. Therefore, the next chapter provides an investigation into leveraging

locality sensitive hashing algorithms to generate a feature vector less sensitive to

a modification that could be used for establishing the desired document to a user

correlation file.

7.6 Conclusion

This chapter proposed a proactive framework that uses transparent biometrics to

inextricably link the use of information (images) to the individual users who use

and access them, rather than intermediate controls. Such an approach would aid

digital forensic investigators in their analysis of electronic evidence and could

increase the likelihood of evidence being admissible in a court of law. The results

of all the experiments conducted show that even when an object is altered in a

sophisticated way, there is still a chance that the imprinted feature vector can be

retrieved and reconstructed.

Despite these promising results, the use of transparent biometrics to monitor and

acquire a subject’s traits introduces several challenges that need to be

considered when developing this type of system. For instance, in the case of

facial detection, environmental and external factors, such as light, the subject’s

distance from the camera and facial orientation, significantly affect the accuracy

of the samples obtained. Even with extensive research being undertaken in this

field, such issues cannot be overcome very easily, primarily because the

operation of transparent biometric monitoring is meant to be unobtrusive and

unsupervised. Further work is required to investigate the ability to utilise a broader

Chapter 7- Investigation into a Biometric-Based Grille Cipher Using Images

150

range of file types, such as text documents (i.e., PDF and DOCX) since different

file types operate differently from an embedding perspective.

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

151

8 Investigation into a Biometric-Based Grille Cipher Using

Documents

The preceding chapter presented promising experimental results in validating the

feasibility of the grille cipher approach in generating a forensically rich correlation

between the user and the image file is used. This chapter investigates the

feasibility of mapping an individual’s biometric information to documents by

leveraging locality sensitive hashing (LSH) algorithms, such as Trend Micro

Locality Sensitive Hashing (TLSH) (Oliver, Cheng and Chen, 2013). The chapter

includes an evaluation of the developed approach by measuring the success rate

for retrieving the mapped signals to assess how robust the method is given

subsequent modification of the document. The chapter concludes with discussion

and conclusion sections that examine the findings and highlight the limitations

identified.

8.1 Introduction

This investigation sought to provide a technique for mapping between a digital

object and biometric identifiers and storing the mapped information alongside

document identifiers in a centralised storage repository. When the mapped

(imprinted) objects are recovered or analysed, the information stored in the

repository is used to recover the biometric information, which is subsequently

used to identify the user. The key advantage of this approach is that the

underlying digital object is not modified in any way, in contrast with the

watermarking techniques referred to previously. No explicit biometric information

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

152

is stored, as only the correlation that points to locations within the imprinted object

is preserved.

8.2 Methodological Approach

The proposed approach takes advantage of LSH schemes to generate a

representation that is less sensitive to modification of a document (text). In

general, LSH algorithms are mainly used for dimensionality reduction by mapping

high-dimensional input space into a lower-dimensional space. A key difference

between LSH-based algorithms and cryptographic schemes is that the former are

less sensitive to small changes in the mapped input space. In contrast, hash-

based cryptographic schemes are designed for ensuring data integrity by

maximising its sensitivity to the input space. Both methods map the input stream

into a fixed output called a digest (hash values).

This study leverages the LSH property of maximising the probability of a collision

of similar inputs. This is achieved by directly mapping the biometric feature vector

representation of an individual with the computed LSH digest of a given document,

which generates a digital record—known as an ‘imprint’ file. The resulting imprint

file represents locations within the computed LSH hash value, each of which

corresponds to a respective portion of the digital biometric feature vector. The

user’s biometric samples from which the feature vector is computed (e.g., facial

features, iris, keystroke analysis or behavioural profiling) are transparently and

continuously captured—using suitable sensors—while the person is interacting

with the computer.

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

153

Finally, the imprints generated are stored in a centralised, secure database for

later analysis when required.

The locality sensitive hashing scheme TLSH is utilised in this research to

construct documents digest. The construction of the TLSH digest is computed as

the following steps:

1. Process the byte string of the given document using a sliding window of

size 5 to populate an array of bucket counts

2. Calculate the quartile points, q1, q2 and q3

3. Construct the digest header values

Construct the digest body by processing the bucket array

Steps 1, 2 and 4 combine to use a modified bit sampling method; instead of bit

sampling, these steps are sampling pairs of bits. The sampling process is done

to a finite precision so as to have a fixed-length digest. Step 3 constructs

innovative features based on the approach used to get a fixed-length digest. The

final TLSH digest constructed from the Byte string is the concatenation of the

hexadecimal representation of the digest header values from step 3, and the

hexadecimal representation of the binary string from step 4 (Oliver, Cheng and

Chen, 2013).

Figure 8.1 illustrates the process of generating imprint files, which establishes the

correlation between the biometric information acquired from the corresponding

person and the triggered document. Data leakage in the form of a document

(whether posted on a public website or captured by the network) can then be

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

154

analysed by processing the imprint file with the given ‘leaked’ document, which

was already imprinted at some point before it was leaked, to reconstruct the

mapped biometric feature vector. Once the sample is extracted, it can be

processed by a biometric system in order to determine the last user to interact

with the object.

Figure 8.1. Biometric information—document correlation generation pipeline

To illustrate how mapping the biometric feature vector with the LSH digest works,

assume that the following feature vector needs to be mapped to the given LSH

digest, as shown in Figure 8.2.

 Value

Feature

vector

sample

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

LSH

digest

sample [F1751BD78C133A4A9303D6365E78E4933D843436A7921120789B58138AFB927BF7DE]

Index

 0…………...….10……….…….20……….………30..………...…40….………....50.……………60……………….…

Figure 8.2: Examples of a feature vector and the TLSH digest sample

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

155

In this example, each value (digit) of the feature vector exists in more than one

location within the hash digest. The sample digest in this figure was computed

using the TLSH scheme, the output of which is 70 hex characters long (35 bytes).

TLSH is an LSH scheme developed by TrendMicro (Oliver, Cheng and Chen,

2013). In mapping, zero is located in two locations: 18 and 47.

In the same manner, the mapping process finds all matching locations for the

remaining values of the given feature vector, as shown in

Figure 8.3.

F.V. Matched index location within the TLSH digest

0 18 47

1 1 4 10 44 45 54

2 43 46 61

3 11 12 17 19 22 31 32 36 38 55

4 14 29 35 37

5 3 24 52

6 21 23 39

7 2 7 26 41 48 62 65

8 8 27 34 49 56

9 16 30 42 50 60

 1st 2nd

 imprints

Figure 8.3: Feature vector—LSH digest mapping matrix

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

156

Combining the mapped locations (one location from each row) forms a single

imprint. Hence, the total number of unique imprints that can be generated from

the mapped indexes is two, as highlighted in light green in

Figure 8.3. Therefore, using any of these imprints, it is possible to reconstruct the

original (mapped) feature vector from the document by reversing the mapping

process. The next subsection describes the correlation-generation pipeline,

including the mapping process step.

8.2.1 Correlation-Generation Pipeline

The generation process of the imprint file that associates an individual’s biometric

signal with a document of interest involves six main steps, starting with acquiring

the text from the document and ending with generating the target imprint file.

8.2.2 Extracting document text

The document text is extracted from the file; the text itself is processed, not the

document file type. This approach makes it possible to imprint any document type

so that its text can be extracted. For example, PDF, DOCX, TXT, HTML or even

email messages can all be analysed and their content parsed. Furthermore, the

extraction process eliminates any text formatting and, therefore, the subsequent

steps of the imprinting process rely purely on the text.

8.2.3 Pre-Processing the Extracted Text

In this phase, all extra spaces between words, lines, paragraphs and pages that

exist in the text are removed and replaced with a single space. This ensures that

the computed LSH digest is based only on plain text, which means that if the

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

157

document is maliciously manipulated later, for instance by adding extra spaces

or page breaks, it will have low or even no effect on the computed hash value.

8.2.4 Computing the LSH Value of the Text

The LSH value can be computed by using one of the widely known open-source

algorithms, including Ssdeep, Sdhash, Nilsimsa and TLSH (Damiani et al., 2004;

Kornblum, 2006; Roussev, 2010; Oliver, Cheng and Chen, 2013). It is well

established that TLSH is more robust than the other schemes with regard to

digest entropy, collision likelihood, and manipulation attacks (e.g., removing,

swapping, and inserting words) (Oliver, Forman and Cheng, 2014). Therefore,

the TLSH algorithm was chosen for use in this study to compute the hash digest

of the extracted text. Two approaches can be used to compute the hash digest of

the document:

a) Only a single hash digest is computed for the whole document, which

makes the imprinting process much faster and stores fewer data in the

database, as only one digest is used to generate the correlation with the

biometric signal.

Hashing the text using a different resolution to produce multiple digests per

document, for example, per page, half page, and paragraph, or using the k-

overlapped-folds of the examined document, as illustrated in

b) Figure 8.4. The figure presents how the document text is sliced into 10-

overlapped-folds, each of which is processed separately and its LSH value

computed.

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

158

Figure 8.4: Slicing document text into 10-overlapped-folds

In this study, methods (a) and (b) are both examined and evaluated against

different possible attack vectors, as detailed in section 8.3.

Another LSH hash digest is computed (using, for instance, Nilsimsa) and stored

in a centralised database to be used later to locate the associated imprint file

when a document is queried. The biometric signal is also hashed using the

Secure Hash Algorithm (SHA) digest and stored. The SHA is used for checking

the integrity of the extracted biometric signal. The reason for using another LSH

algorithm is to avoid storing the same LSH digest that was used for generating

the imprint. This ensures that having only the imprint in the database without the

correlated document makes it impossible to reconstruct the related biometric

information.

8.2.5 Mapping the Feature Vector to the Hash Digest Value

The feature vector and the LSH hash value of the text are mapped to its equivalent

location in the text LSH hash value to retrieve the locations where they might

match, as described previously in this section.

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

159

8.2.6 Generating Imprints

By retrieving the locations of each character in the feature vector with the object,

it becomes possible to generate imprints based on the list of indexes obtained.

This means that multiple imprints of the whole feature vector can be generated

by combining those positions.

8.2.7 Recovery Algorithm

The recovery algorithm used to extract and reconstruct the imprinted biometric

information from a questioned document in the case of information leakage

shares the same steps 1-3 of the imprinting process listed above. This is followed

by the steps given below:

1. The questioned document hash digest is computed (e.g., Nilsimsa) as

input to the next step.

2. The related stored imprint file is retrieved by querying the centralised

database–-using the computed hash digest–-where previously generated

fingerprints and imprints for all documents are stored.

3. The retrieved imprint file is mapped to the computed LSH value of the

document in question, and the correlated biometric signal is reconstructed

from the mapped locations.

4. To validate the integrity of the reconstructed biometric signal, its SHA

digest is compared against the stored digest generated when the imprint

was created.

After explaining how the imprinting and retrieval techniques of the proposed

approach work, the next section investigates the feasibility of imprinting biometric

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

160

information with documents and later recovering them (even after the text has

been modified).

8.3 Experimental Analysis

The fundamental research question concerning the imprinting of a biometric

signature is how robust the approach is given subsequent modification of the

document—arguably, the key attack vector against this approach. An insider who

intends to leak a confidential document could maliciously manipulate its content

in order to destroy any tracks to avoid being traced. Therefore, to examine the

feasibility and effectiveness of the proposed approach, genuine leaked

documents from WikiLeaks were chosen for experimental purposes. WikiLeaks

is an international non-profit organisation that publishes secret information, news

leaks and classified media provided by anonymous sources (WikiLeaks, no date).

In 2009, it released more than 6,000 reports commissioned by the United States

Congress. These reports are classified as confidential documents but are now

publicly available and accessible online in the form of text files (WikiLeaks.org,

2009)..

Table 8.1 provides statistical information about the dataset used. Leaking

repositories, such as WikiLeaks and The Intercept, typically perform some kind of

modification to the leaked documents. For instance, they watermark uploaded

documents and files with extra information, such as a document ID, date, website

address or logo (The Intercept, no date).

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

161

Table 8.1. Corpus statistics

File size distribution

(KB)
of docs

Document

content
Min. Max. Average

1-99 4,920 Chars. 1,288 874,548 47,345

100-199 853 Words 233 155,614 8,873

200+ 227 Lines 38 16,160 981

Total 6,000 Pages 1 622 34

A number of experiments were designed and conducted to evaluate the proposed

approach in scenarios that consider malicious intent with regard to any possible

modification that might be performed on a document. The first experiment maps

the biometric feature vector to the computed text TLSH digest and retrieves it.

The goal was to compute the possible number of imprints that could be generated

from the mapping process. A total of 21 attacks were developed and included file,

formatting and text-based manipulation methods. The attacks were employed to

examine critically the effectiveness of possible modification attacks on the

imprinted documents and how such attacks could affect the retrieval performance

of the mapped biometric information. The developed attacks can be classified into

three main categories: file-type conversion, formatting change and content

manipulations, as shown in Table 8.2.

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

162

Table 8.2. Possible document manipulation methods

File-type conversion Formatting change Content manipulation

1. PDF to .docx

2. PDF to .txt

3. PDF to Image

4. Docx to PDF

5. Docx to txt

6. Txt to PDF

7. Txt to .docx

8. Txt to Image

9. Font resizing

10. Font type changing

11. Colour changing

12. Text highlighting

13. Line and para spaces

14. Deleting words

15. Deleting sentences

16. Deleting lines

17. Swapping words

18. Swapping sentences

19. Swapping lines

20. Substituting synonyms

21. Inserting new words

In the imprinting process, the biometric feature vectors used to represent real

facial features. The Fisherfaces feature extraction algorithm was used to compute

these vectors for the captured users’ facial images (Belhumeur, Hespanha and

Kriegman, 1997). The dimensions of the generated feature vector when using the

Fisherface algorithm are small compared with deep learning approaches, as the

length of the vector is a prime factor when performing the imprinting process. The

resulting vector is four-dimensional, with a length of 60 digits. The chosen vector

includes the frequency of all digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), as well as a ‘-’ sign,

to ensure that this study covers all possible numbers within the mapping process.

For all the manipulation methods referred to above, the original document TLSH

value was computed before it was modified and the resulting digest was then

imprinted with the biometric information. After that, the manipulation methods

were applied to the imprinted documents. Finally, the TLSH value of the modified

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

163

version was computed again and compared with the original. As long as the

original text has not changed, the fully mapped biometric feature vector should

be successfully retrieved by reversing the imprinting process. However, this is not

always the case, since a leaked document is highly likely to have been

manipulated or modified. Consequently, the computed hash value is directly

affected, to what degree depends upon the scale of the modification. Fortunately,

the TLSH is less sensitive to small changes than cryptographic hashing

algorithms, such as the SHA, since a small modification in the input drastically

changes the output computed digest. This is the so-called avalanche effect.

In contrast, all similar digest schemes have the property that a small change to

the file being hashed results in a small change to the hash (Oliver, Cheng and

Chen, 2013). Figure 8.5 shows two samples of computed document hash digests

using SHA256 and TLSH. Each present two values: one for the original document

and one for the modified version of the same document.

It is clear in the above that the digest of the modified document computed by

SHA256 is entirely different from the originals. The TLSH digest is only slightly

affected; the characters shown in red are those that have changed, while the

others remain the same with exact locations. Therefore, the TLSH can be used in

this approach to give a less sensitive representation of the whole document.

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

164

Figure 8.5: Samples of computed document hash digests using SHA256 and

TLSH

Figure 8.6 shows the average distribution of the number of imprints generated per

document for the 6,000 documents examined in the dataset. The histogram

indicates that most of the imprinted documents generated more than three

imprints. The number of obtainable imprints mainly depends on the TLSH digest

entropy generated and the digit frequency. The rate of entropy and the frequency

differ from one document to another, as this is a natural property of hash schemes.

Although multiple imprints per document were generated, as the figure illustrates,

only one imprint was needed to reconstruct the biometric information successfully.

Indeed, having multiple imprints for a given document significantly increases the

likelihood of recovering the mapped information, even after the document is

exposed to manipulation.

6efa3f05f084127249ebe7e0b37ffdda41db9ceacfbb65c04cd7de6a

SHA256 digest of the original document

49ca48a970f02c40cf85667d1708416ccca84de06d65467856aa3ef1

SHA256 the digest of the modified document

77F1866D9E10AF925F4228F3475961F8C0DAB4751388000565A1B8571D67C7E1F5A6FE1BE78C1
33A4A9303D6365E7CE8933D843437A7D21120789B58238AFB927BF7DE

TLSH digest of the original document

4DF1856D4E106F925F4224F7476961F8C0DBB0751388001565A178571D67C7E0F1AAFF1BE78C1
33A0A9303D6365E68E5A33D843437A7911520789B58238AFB927BF7EE

TLSH digest of the modified document

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

165

Figure 8.6: Distribution of the imprints generated per document

The experimental results of the method developed indicate that the proposed

approach is resistant and robust against both file-type conversion and formatting

change attacks, with an accuracy of 100%. Since the nature of these modification

methods does not change the actual text or content that is fed into the LSH

algorithm, the mapped biometric signal is fully retrievable, even when the text

format or file type is changed, including converting the document into an image.

However, in such a case, optical character recognition (OCR) technologies could

be used to analyse and convert the image content (printed text) into machine-

encoded text. In this study, test documents were converted into images (JPEG)

to simulate such an attack, and a Tesseract-OCR engine was used to read all the

images and recognise and extract the embedded text (Smith, 2007). As long as

the OCR was able to recognise the correct text, which it did, the integrity of the

text can be preserved when compared with its original version. For the content

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

166

manipulation attacks, random settings were configured for the rate of modification,

as Figure 8.7 illustrates, ranging from 1 to 100 for word-type attacks and from 1

to 20 for line and paragraph attacks. As this rate increases, the number of

changes also rises. For instance, in the case of a word-deleting attack, a number

of random words (between 1 and 100) are deleted from each document in the

dataset. This also applies to all other attacks that fit the same category.

Figure 8.7: Modification types and rates among the dataset documents

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

167

Table 8.3 presents the results of retrieving the mapped feature vector under

content manipulation attack methods.

Table 8.3. Content manipulation attack methods experimental results

No. Attack type
Rate

(number)
of retrieved F.V.

Score

(%)

TLSH diff.

(original/modified) 1

Min. Max. Avg.

1 Del words 1-100 5,359 89.31 0 217 8

2 Swap words 1-100 5,464 91.06 0 82 7

3 Insert words 1-100 5,304 88.40 1 471 33

4 Words syn. 1-100 5,751 95.85 1 465 30

5 Del lines 1-10 2,708 45.13 7 466 43

6 Swap lines 1-10 2,637 43.95 7 874 71

7 Swap sentences 1-10 5,929 98.81 0 30 3

8 Swap paras 1-10 2,853 47.55 5 125 26

9 Del paras 1-10 2,767 46.11 5 149 26

10 Del sentences 1-10 4,915 82.00 1 788 15

11 Multi attacks 2 1-10 3,828 64.00 1 456 31

1 TLSH diff. is the distance score between two digests (texts).

2 A number of attack methods were randomly chosen.

In addition, the TLSH uses a distance score of zero, which indicates that the files

are identical (or nearly identical), while scores above that represent a greater

distance between the examined documents. A higher score should indicate that

there are more differences between the documents (Oliver, Cheng and Chen,

2013). From the data in Table 8.3, it can be seen that given the ability to recover

biometric identifiers under significant levels of modification—such as deleting 100

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

168

words—it is still possible to regenerate the correlation established between the

biometric information and the imprinted document with a success rate of 89.31%.

In addition, Figure 8.8 illustrates how accuracy changes along with a defined

number of deleted words.

Figure 8.8: Averaged accuracy and F1-Score for a deleted words attack

Two levels of hashing resolution were applied on the examined documents: one

hash digest per document and a multi-hash digest using 10-overlapped-folds per

document. The overall accuracy improved when multi-hash digests were

generated. In general, a document was counted as correctly identified (feature

vector retrieved) if at least one imprint was perfectly extracted from the imprinted

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

169

feature vector, even when the computed hash digest was not identical to the one

from which the original correlation was established.

Furthermore, paragraph attacks (swap and delete methods) scored low rates, of

47.55% and 46.11%, respectively. These rates are considered low as biometric

information of more than half of the documents could not be reconstructed due to

the effect of the attack. Indeed, removing a number of paragraphs from the

document significantly affected the computed hash digest to a greater degree

than other types of modification, such as deleting words or sentences. This can

be improved by changing the hashing resolution (i.e., using k-folds). For instance,

instead of hashing the whole document and generating a single hash digest,

multiple digests were computed for the document, for example per page, half

page or paragraph, and correlated the biometric information with the resulted

hashes.

Figure 8.9: Averaged accuracy and F1-Score for a deleted paragraphs attack

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

170

Figure 8.9 shows the averaged accuracy and F1-Score for a deleted paragraphs

attack using 10-overlapped-folds. The overall accuracy is higher than for the

single hash digest per document approach, as it scored 93%. In contrast, the F-

Score achieved is not high, as it was computed for all the generated imprints,

while only one valid retrieved imprint of a given document was needed to

reconstruct the mapped biometric information. Moreover, the chances of

recovering correlated biometric signals vary based on the type and scale of the

attack vector. However, in many leakage cases, the leaked document might not

be exposed to severe modification. Hence, reconstructing the biometric sample

is highly likely to be possible and, as a result, the source of the leak can be

identified.

8.4 Discussion

The most apparent finding to emerge from this study is that the underlying digital

objects, documents, in this case, are not modified in any way. The proposed

approach also disassociates any biometric information from the digital object itself,

thereby minimising any attacks on the biometric data. This suggests that the

biometric signal is not stored by any means in a database; it is only its correlation

to the imprinted object (document/text in this case) that is preserved in the imprint

file. Thus, the signal becomes useless without the presence of the imprinted

document in the recovery process, since the imprint file that correlates the object

with the related biometric signal only contains those locations within the

document from which the signal can be extracted. It also allows larger volumes

of information to be imprinted, making it more suitable for digital objects when

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

171

more significant levels of information need to be correlated (i.e., multimodal

biometric samples). It does, however, introduce the need for a centralised

repository which will grow as users interact with objects and thus require

configuration and management.

Although the above investigation has critically examined the proposed approach

against possible malicious attacks and shown robustness and strength, some

challenges exist and require further research. These include the ability to

automate the process of capturing biometric signals and detecting user

interaction with the object instantly, along with establishing the correlation with

the interacted object. This requires the development of a smart and active agent

that continually captures an individual’s biometric information (using a camera in

the case of facial information) and performs the imprinting process.

Furthermore, the proposed approach raises substantial privacy concerns for

those individuals who are monitored by the system, as processing, transmitting

and storing biometric samples into a centralised database requires a high level of

confidentiality and sufficient resources. This obviously needs to be investigated

in-depth in future work. More broadly, research is also needed to determine the

ability to utilise a broader range of digital objects. Different objects have varying

degrees of stability due to their structure. For example, executable files and their

underlying data structure can change considerably given small alterations to a

file, in contrast with the text. Therefore, the proposed approach needs to be

examined for such file types to measure its usefulness and robustness fully.

Further study also needs to be carried out regarding the ability to utilise soft

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

172

biometric features, such as the gender, age and even race of individuals, to

increase the discriminative ability and provide more reliable information to the

investigator.

8.5 Conclusion

This chapter introduced a proactive approach to aiding an incident investigator to

establish and examine a case of insider misuse, particularly with respect to

information leakage, which could increase the likelihood of the evidence being

admissible in a court of law. This study has shown that it is possible to recover

biometric information from text files successfully, even under significant

modification attacks. Rather than requiring the complete digital object, it is

possible to recover the necessary information with even a modified version of the

questioned document. This was achieved by utilising the TLSH algorithm to

enable the creation of a compact representation of the examined text files, in

which mapping these with biometric feature vectors becomes less sensitive to

malicious modification. Based on the experimental results obtained, when the

imprinted documents are significantly modified (i.e., deleting more than two

paragraphs of a document that has 20 paragraphs), the imprinted values can be

lost. At which point, retrieving and reconstructing mapped biometric information

becomes less likely to be successful. Therefore, further investigation and

experimentation into leveraging different locality sensitive hashing or

dimensionality reduction schemes and algorithms are strongly recommended.

Some possible future studies using the same experimental setup are apparent. It

would be interesting to assess the effects of employing deep learning algorithms,

Chapter 8- Investigation into a Biometric-Based Grille Cipher Using Documents

173

such as autoencoders, to combine the original object with the biometric

information. As such, this could generate a robust correlation that is resistant to

more sophisticated modifications.

Chapter 9- Conclusions and Future Work

174

9 Conclusions and Future Work

This chapter concludes the thesis by outlining the key contributions and

achievements of the research. This is followed by a summary of the limitations

and obstacles encountered during the development of the research project.

Finally, potential areas of further research work are also presented.

9.1 Contributions and Achievements of the Research

The research has accomplished all the objectives stated initially in chapter 1, with

a series of experimental studies leading to the development of a proactive

biometric-enabled forensic imprinting system. The key contributions and

achievements of this research are as follows:

 Proposing a novel proactive digital forensic approach that correlates

individuals with the digital objects with which they interact. The proposed

approach operates in two modes—centralised or decentralised—each of

which overcomes the limitations of the other. For instance, the centralised

mode can map biometric signals with multiple file types, while the

decentralised mode requires a specific embedding technique for each file

type. However, the latter does not require a centralised database in order

to operate.

 Conducting an investigation into biometric-based image steganography by

embedding individuals’ biometric signals directly into image files, with a

particular focus upon the ability to recover the biometric information under

varying degrees of modification attack. The experimental results show that

Chapter 9- Conclusions and Future Work

175

even when a watermarked object is significantly modified (e.g., only 25%

of the image is available), it is still possible to recover the embedded

biometric information.

 Conducting an investigation into biometric-based image imprinting by

linking a subject (i.e., a computer user) with an object of interest (e.g.,

images) using the individual’s biometric sample, such as a facial biometric,

without modifying the object being imprinted. This investigation has also

developed a set of experiments that employ a grille cipher technique to

generate a correlation that could identify the individual. The experimental

results of the proposed approach have shown that it is possible to correlate

an individual’s biometric feature vector with images and still successfully

recover the biometric information, even with significant file modification.

 Conducting an investigation into biometric-based document mapping to

attribute document misuse via information leakage using biometrics and a

locality sensitive hashing scheme. Comprehensive experiments using the

proposed approach have shown that it is highly possible to establish this

correlation even when the original version has undergone significant file

modification. In many scenarios, such as changing the file format or

removing parts of the document, including words and sentences, it was

possible to extract and reconstruct the correlated biometric information

from a modified document (e.g., 100 words were deleted) with an average

success rate of 89.31%.

A number of papers related to the research programme have been presented and

published in refereed journals and conferences. As a result, the research is

Chapter 9- Conclusions and Future Work

176

deemed to have made positive contributions to the field of proactive digital

forensics, and specifically in the biometric identity tracing domain.

9.2 Limitations of the Research

The proposed proactive biometric-based forensic imprint system provides a

proactive digital forensic approach to inextricably link the use of information (e.g.,

documents and images) to the individual users who use and access them,

through the use of steganography and transparent biometrics. Whilst the set of

experimental tests conducted with the system has the foundation for providing

such a link, several limitations and concerns need to be considered and

addressed before ubiquitous adoption and fully effective operation of the system.

The key limitations of this study are briefly listed below.

 In the investigation into an experiment on a biometric-based null cipher

using images, the placement of the bits to be embedded (payload) could

be randomised using a random function, so that the payload is scattered

among the image’s pixel space. It is then almost impossible to retrieve the

embedded data without knowing the seed of the random function. Although

this is an instrumental approach, the recovery of the embedded payload

(biometric information) is only possible if the image has not been modified

or cropped after the data were embedded.

 Using the LSB for inserting the payload is vulnerable to file-type

transformation attacks. For instance, transforming the resulting image (e.g.,

PNG) to other formats (e.g., JPEG) is highly likely to lead to the destruction

of the embedded data by the compression algorithm. Therefore, a more

Chapter 9- Conclusions and Future Work

177

robust null-ciphered approach could be used, in which, instead of using a

conventional spatial technique (LSB substitution) that embeds the data

directly in the intensity of the pixels, other approaches, such as frequency

techniques, can be used, in which images are first transformed into an

intermediate image and then the data are embedded in the image.

 An approach that involves documents with a grille cipher raises significant

privacy concerns for those individuals who are monitored by the system.

Processing, transmitting and storing biometric samples into a centralised

database require a high level of confidentiality and sufficient resources. It

is clear that this needs to be investigated in depth in future work.

 The proposed proactive digital forensic approach relies mainly on an

individual’s biometric information being captured transparently. Hence, the

robustness and quality of the captured samples vary dramatically,

depending on the stability and the conditions in which the samples were

captured. Therefore, further investigation is needed to examine the

robustness and reliability of transparent biometric samples in relation to

the identification of the individual to whom the captured sample belongs.

 The proposed approach was examined in generating a correlation of the

last person who modifies or accesses a digital object, while in more

realistic scenarios, the object (such as a document) could be modified or

leaked by more than one person. Tracing the leak back to the source is

more challenging, as the timing factor needs to be further investigated and

the research focused only on generating a correlation and the ability to

retrieve it.

Chapter 9- Conclusions and Future Work

178

 The experiments conducted were all performed offline, while a more

realistic study could evaluate the proposed approach in real-life settings

while the computer user is performing normal daily tasks. Hence, not only

would the retrieval of the biometric samples be measured as a

performance metric, the other operations could also be considered, such

as the operational overhead of the proposed system with regard to CPU

and memory consumption.

 Whilst the system is designed to be able to identify information leakage

and the misuse of classified/secret data, yet there is one type of category

which is whistleblowers that means it will be possible to identify

whistleblowers. A whistleblower is a person who exposes secretive

information or activity that is deemed illegal, unethical, or not correct within

a private or public organisation. Thus, future work should consider

addressing the issue of identifying whistleblowers by the system. In which

the system should be compliance with the organisation’s whistleblowing

policies. For example, what is the procedure to be undertaken when the

system identifies a whistleblowing incident? Will be there any protection

for the Whistleblower such as using the United Kingdome criminal law to

protect whistleblowers?

9.3 Ethics and the Moral Context and Implications of the Research

As the proposed proactive biometric-based forensic imprint system inextricably

link the use of information (evidence) to the individual users who access and use

it by utilising individual biometrics, yet the system has some possible ethical

Chapter 9- Conclusions and Future Work

179

implications. The relevance of ethical implications of the developed system

includes those issues raised by processing, storing and managing individuals’

biometrics. Thus, individual rights such as the protection of personal data,

confidentiality, and personal liberty, the relationship between individual and

collective rights. Biometrics is one of the most significant examples of how

complex it is to match individual and collective needs. It indeed leads to questions

associated with an individual, social and collective identity which according to

some (Mordini and Petrini, 2007). As the presented system in this research is

designed to capture, process, store information, containing user-specific data

such as digital objects usage data and other personal biometric features to a

centrally managed system. This introduces some privacy issues, which typically

would not be tolerable for a real-world implementation. Therefore, despite specific

measures have been suggested in the system design (e.g. encrypting the

biometric feature vector), further practical consideration should be addressed in

any future enhancement. Moreover, more work is needed on securing the storage

of biometrics-based information to reduce the privacy concern about centralising

such information.

 In addition, leveraging facial recognition in this research to generate biometric

feature vectors which is used as the main lead to match individuals, actions, along

with the digital object that they could interact with, have some ethics areas include

necessity, complicity, impartiality, bias, and accountability. Concerns surround

the issue of privacy, data control, the right that users to remove their own data

from the centralised system(s). Also, the implication of having a biased facial

recognition algorithm could lead to a false match/result in which the system could

Chapter 9- Conclusions and Future Work

180

accuse an innocent person. Therefore, thoroughly examining the used algorithms

against any potential biases is essential to ensure that the system does not

compromise any ethical constraints.

Finally, as the proposed system acts as an active monitoring engine, in the case

of using an endpoint camera (e.g. a fitted web camera) this could lead to capture

unnecessary user-related activities, such calling on the phone or talking to a

friend without interaction with the computer. Therefore, monitoring and tracking

processes should be limited to those activities directly related to digital objects.

9.4 Suggestions and Scope for Future Work

This research project has advanced the field of proactive digital forensics in

general and insider misuse identification in particular. However, a number of

areas for future work exist that are specifically related to this research. These

suggestions are detailed below.

 More research is needed to determine the ability to utilise a broader range

of digital objects. Differing objects have varying degrees of stability due to

their structure. For example, executable files and their underlying data

structure can change considerably given small alterations to a file, in

contrast with the text. Therefore, the proposed approach needs to be

examined for different file types to measure fully its usefulness and

robustness.

Chapter 9- Conclusions and Future Work

181

 Further study also needs to be carried out regarding the ability to utilise

soft biometric features, such as the gender, age and even race of

individuals, to offer discriminative ability and information to the investigator.

 Further research could also consider the ability to automate the process of

capturing biometric signals and detecting user interaction with the object

instantly, along with establishing the correlation with the interacted object.

This requires the development of a smart and active agent that would

continually capture an individual’s biometric information (using a camera

in the case of facial information) and perform the imprinting process as the

capture is taking place.

 With the recent advances in deep learning algorithms, more advanced

facial feature extraction techniques can be explored, including utilising

deep learning algorithms to generate more robust and less noisy feature

representations of a person’s facial image.

 Further investigation and experimentation into the liveness of biometric

samples are strongly recommended. It would be interesting to assess the

effects of using fake biometric samples, such as printed pictures, and to

develop a counter machine learning algorithm that could detect such a

forgery. This would reduce the chance of cheating in front of the camera

so that the system would be able to detect an attack vector.

References

182

References

Al Abdulwahid, A. et al. (2016) ‘Continuous and transparent multimodal

authentication: reviewing the state of the art’, Cluster Computing, 19(1), pp. 455–

474. doi: 10.1007/s10586-015-0510-4.

Abed, L. et al. (2019) ‘Securing Cloud Storage by Transparent Biometric

Cryptography’, in, pp. 97–108. doi: 10.1007/978-3-030-12942-2_9.

Al-Bayati, B. et al. (2018) ‘Misuse Detection in a Simulated IaaS Environment’,

in International Workshop on Emerging Technologies for Authorization and

Authentication, pp. 103–115. doi: 10.1007/978-3-030-04372-8_9.

Al-kawaz, H. et al. (2018) ‘Advanced Facial Recognition for Digital Forensics’, in

17th European Conference on Cyber Warfare and Security. Oslo, Norway.

Alharbi, S., Weber-Jahnke, J. and Traore, I. (2011) ‘The proactive and reactive

digital forensics investigation process: A systematic literature review’,

International Journal of Security and its Applications, 5(4), pp. 59–72.

Almehmadi, A. and El-Khatib, K. (2014) ‘On the Possibility of Insider Threat

Detection Using Physiological Signal Monitoring’, in Proceedings of the 7th

International Conference on Security of Information and Networks - SIN ’14.

New York, New York, USA: ACM Press, pp. 223–230. doi:

10.1145/2659651.2659654.

Alneyadi, S., Sithirasenan, E. and Muthukkumarasamy, V. (2014) ‘A Semantics-

References

183

Aware Classification Approach for Data Leakage Prevention’, in Information

Security and Privacy, pp. 413–421. doi: 10.1007/978-3-319-08344-5_27.

Alruban, A. et al. (2016) ‘Proactive Biometric-Enabled Forensic Imprinting’, in

The International Conference On Cyber Incident Response, Coordination,

Containment & Control (Cyber Incident 2016). London, UK.

Alruban, A. et al. (2017) ‘Insider Misuse Attribution using Biometrics’, in

Proceedings of the 12th International Conference on Availability, Reliability and

Security - ARES ’17. New York, New York, USA: ACM Press, pp. 1–7. doi:

10.1145/3098954.3103160.

AmazonRekognition (2015) Amazon Rekognition. Available at:

https://aws.amazon.com/rekognition/ (Accessed: 16 March 2019).

AmXecure (2013) PrivacyID. Available at: http:

//www.amxecure.com/index.php/zh/siem/453-privacyid (Accessed: 6 March

2019).

Apple Inc. (2016) A Message to Our Customers. Available at:

http://www.apple.com/customer-letter/ (Accessed: 15 March 2016).

Ashbourn, J. (2015) Practical Biometrics: From Aspiration to Implementation.

2nd edn. Springer. Available at:

http://searchsecurity.techtarget.com/tip/Practical-biometrics.

Balinsky, H., Perez, D. S. and Simske, S. J. (2011) ‘System Call Interception

Framework for Data Leak Prevention’, in 2011 IEEE 15th International

References

184

Enterprise Distributed Object Computing Conference. IEEE, pp. 139–148. doi:

10.1109/EDOC.2011.19.

Baltrusaitis, T., Robinson, P. and Morency, L.-P. (2016) ‘OpenFace: An open

source facial behavior analysis toolkit’, in 2016 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE, pp. 1–10. doi:

10.1109/WACV.2016.7477553.

Belhumeur, P. N., Hespanha, J. P. and Kriegman, D. J. (1997) ‘Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(7), pp. 711–720.

doi: 10.1109/34.598228.

Birk, D. and Wegener, C. (2011) ‘Technical Issues of Forensic Investigations in

Cloud Computing Environments’, in 2011 Sixth IEEE International Workshop on

Systematic Approaches to Digital Forensic Engineering. IEEE, pp. 1–10. doi:

10.1109/SADFE.2011.17.

Bishop, M. and Gates, C. (2008) ‘Defining the insider threat’, in Proceedings of

the 4th annual workshop on Cyber security and informaiton intelligence

research developing strategies to meet the cyber security and information

intelligence challenges ahead - CSIIRW ’08. New York, New York, USA: ACM

Press, p. 1. doi: 10.1145/1413140.1413158.

Bouslimi, D. and Coatrieux, G. (2016) ‘A crypto-watermarking system for

ensuring reliability control and traceability of medical images’, Signal

Processing: Image Communication. Elsevier, 47, pp. 160–169. doi:

References

185

10.1016/j.image.2016.05.021.

Bowles, S. and Hernandez-Castro, J. (2015) ‘The first 10 years of the Trojan

Horse defence’, Computer Fraud & Security. Elsevier Ltd, 2015(1), pp. 5–13. doi:

10.1016/S1361-3723(15)70005-9.

Brenner, S. W., Carrier, B. and Henninger, J. (2004) ‘The Trojan Horse Defense

in Cybercrime Cases’, Santa Clara Computer & High Technology Law Journal,

21(1), pp. 1–53.

Brown, C. S. D. (2015) ‘Investigating and prosecuting cyber crime: Forensic

dependencies and barriers to justice’, International Journal of Cyber

Criminology, 9(1), pp. 55–119. doi: 10.5281/zenodo.22387.

Budgen, D. and Brereton, P. (2006) ‘Performing systematic literature reviews in

software engineering’, in Proceeding of the 28th international conference on

Software engineering - ICSE ’06. New York, New York, USA: ACM Press, p.

1051. doi: 10.1145/1134285.1134500.

Cao, Y. et al. (2018) ‘Coverless Information Hiding Based on the Molecular

Structure Images of Materia’, Computers, Materials & Continua, 54(2). doi:

10.3970/cmc.2018.054.197.

Cappelli, D., Moore, A. and Trzeciak, R. (2012) The CERT Guide to Insider

Threats: How to Prevent, Detect, and Respond to Information Technology

Crimes (Theft, Sabotage, Fraud). Available at:

http://books.google.com/books?hl=en&lr=&id=Rl_44PuReBkC&oi=fnd&pg=PR7

&dq=The+CERT+Guide+to+Insider+Threats+How+to+Prevent,+Detect+and+R

References

186

espond+to+Information+Technology+Crimes+(Theft,+Sabotage,+Fraud)&ots=ZI

rxDGOh97&sig=OhbOggntxIuh_VksY_YJ0fNPS7o.

Carbone, F. (2014) Computer Forensics with FTK. 1st edn. Birmingham: Packt

Publishing Ltd.

Carrier, B. (2003) ‘Defining Digital Forensic Examination and Analysis Tools

Using Abstraction Layers’, International Journal of Digital Evidence, 1(4).

Casey, E. and Stellatos, G. J. (2008) ‘The impact of full disk encryption on

digital forensics’, ACM SIGOPS Operating Systems Review, 42(3), p. 93. doi:

10.1145/1368506.1368519.

Ceccarelli, A. et al. (2015) ‘Continuous and Transparent User Identity

Verification for Secure Internet Services’, IEEE Transactions on Dependable

and Secure Computing, 12(3), pp. 270–283. doi: 10.1109/TDSC.2013.2297709.

Chaabane, F., Charfeddine, M. and Ben Amar, C. (2013) ‘A survey on digital

tracing traitors schemes’, in 2013 9th International Conference on Information

Assurance and Security (IAS). IEEE, pp. 85–90. doi:

10.1109/ISIAS.2013.6947738.

Chan, C.-K. and Cheng, L. M. (2004) ‘Hiding data in images by simple LSB

substitution’, Pattern Recognition, 37(3), pp. 469–474. doi:

10.1016/j.patcog.2003.08.007.

Charbonneau, S. R. D. J. and Simon, E. J. (2014) ‘Method and system for

generating trusted security labels for electronic documents’. U.S.

References

187

Chavan, J. and Desai, P. (2013) ‘Relational Data Leakage Detection using Fake

Object and Allocation Strategies’, International Journal of Computer

Applications, 80(16), pp. 15–21. doi: 10.1.1.403.2895.

Cheddad, A. et al. (2010) ‘Digital image steganography: Survey and analysis of

current methods’, Signal Processing, 90(3), pp. 727–752. doi:

10.1016/j.sigpro.2009.08.010.

Clarifai (2018) Clarifai. Available at: https://clarifai.com/ (Accessed: 16 March

2019).

Clark, J. W. (2016) ‘Threat from Within: Case Studies of Insiders Who

Committed Information Technology Sabotage’, in 2016 11th International

Conference on Availability, Reliability and Security (ARES). IEEE, pp. 414–422.

doi: 10.1109/ARES.2016.78.

Clarke, N. (2010) Computer Forensics: A Pocket Guide. New york: IT

Governance Ltd. Available at: http://www.amazon.com/Computer-Forensics-A-

Pocket-Guide/dp/1849280398.

Clarke, N. (2011) Transparent user authentication: biometrics, RFID and

behavioural profiling. Springer Science & Business Media.

Clarke, N. et al. (2017) ‘Insider Misuse Identification using Transparent

Biometrics’, Proceedings of the 50th Hawaii International Conference on

System Sciences, pp. 4031–4040.

Clarke, N., Karatzouni, S. and Furnell, S. (2008) ‘Transparent facial recognition

References

188

for mobile devices’, in Proceedings of the 7th Security Conference. Las Vegas.

Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Transparent+F

acial+Recognition+for+Mobile+Devices#0.

Cohen, M. I., Bilby, D. and Caronni, G. (2011) ‘Distributed forensics and incident

response in the enterprise’, Digital Investigation. Elsevier Ltd, 8, pp. S101–S110.

doi: 10.1016/j.diin.2011.05.012.

Collins, M. L. et al. (2013) Spotlight On : Insider Theft of Intellectual Property

inside the U . S . Involving Foreign Governments or Organizations, Intellectual

Property.

Colwill, C. (2009) ‘Human factors in information security: The insider threat –

Who can you trust these days?’, Information Security Technical Report. Elsevier

Ltd, 14(4), pp. 186–196. doi: 10.1016/j.istr.2010.04.004.

Dalrymple, J. (2013) Man’s child porn charges dismissed to make way for

federal case. Available at: http://www.heraldextra.com/news/local/crime-and-

courts/man-s-child-porn-charges-dismissed-to-make-way-for/article_bc5c1cd5-

44d1-5e4a-9401-b2e971b1084b.html (Accessed: 1 May 2016).

Damiani, E. et al. (2004) ‘An Open Digest-based Technique for Spam

Detection’, Proceedings of the 2004 International Workshop on Security in

Parallel and Distributed Systems, 1(1), pp. 559–564. Available at:

http://spdp.di.unimi.it/papers/pdcs04.pdf.

Davis, J. and Goadrich, M. (2006) ‘The relationship between Precision-Recall

References

189

and ROC curves’, in Proceedings of the 23rd international conference on

Machine learning - ICML ’06. New York, New York, USA: ACM Press, pp. 233–

240. doi: 10.1145/1143844.1143874.

Denning, D. E. (1976) ‘A lattice model of secure information flow’,

Communications of the ACM, 19(5), pp. 236–243. doi: 10.1145/360051.360056.

Du, D., Yu, L. and Brooks, R. R. (2015) ‘Semantic Similarity Detection For Data

Leak Prevention’, in Proceedings of the 10th Annual Cyber and Information

Security Research Conference on - CISR ’15. New York, New York, USA: ACM

Press, pp. 1–6. doi: 10.1145/2746266.2746270.

Dugad, R., Ratakonda, K. and Ahuja, N. (1998) ‘A new wavelet-based scheme

for watermarking images’, in Proceedings 1998 International Conference on

Image Processing. ICIP98 (Cat. No.98CB36269). IEEE Comput. Soc, pp. 419–

423. doi: 10.1109/ICIP.1998.723406.

Eden, P. et al. (2016) ‘Forensic Readiness for SCADA/ICS Incident Response’,

in. doi: 10.14236/ewic/ICS2016.16.

Edward Jero, S., Ramu, P. and Ramakrishnan, S. (2014) ‘Discrete Wavelet

Transform and Singular Value Decomposition Based ECG Steganography for

Secured Patient Information Transmission’, Journal of Medical Systems, 38(10),

p. 132. doi: 10.1007/s10916-014-0132-z.

Elmrabit, N., Yang, S.-H. and Yang, L. (2015) ‘Insider threats in information

security categories and approaches’, in 2015 21st International Conference on

Automation and Computing (ICAC). IEEE, pp. 1–6. doi:

References

190

10.1109/IConAC.2015.7313979.

Fox News (2009) Framed for Child Porn by a PC Virus. Available at:

http://www.foxnews.com/story/2009/11/09/framed-for-child-porn-by-pc-

virus.html (Accessed: 1 May 2009).

Fridrich, J. (2004) ‘Feature-Based Steganalysis for JPEG Images and Its

Implications for Future Design of Steganographic Schemes’, in, pp. 67–81. doi:

10.1007/978-3-540-30114-1_6.

Fridrich, J. (2009) Steganography in Digital Media. Cambridge: Cambridge

University Press. doi: 10.1017/CBO9781139192903.

Fujikawa, M., Mori, H. and Terada, K. (2014) ‘Study of the Detection System for

Onscreen Contents Shooting (Countermeasure against Information Leakage by

Video Recording/Photo Shooting)’, International Journal of Information and

Electronics Engineering, 4(3). doi: 10.7763/IJIEE.2014.V4.444.

Gartner Inc. (2016) Gartner Says By 2018 25 Percent of Organizations Will

Review Privileged Activity and Reduce Data Leakage Incidents By 33 Percent.

Available at: http://www.gartner.com/newsroom/id/3207217 (Accessed: 18

March 2016).

Gessiou, E., Vu, Q. H. and Ioannidis, S. (2011) ‘IRILD: An Information Retrieval

Based Method for Information Leak Detection’, 2011 Seventh European

Conference on Computer Network Defense, pp. 33–40. doi:

10.1109/EC2ND.2011.21.

References

191

Gonzalez-Sosa, E. et al. (2018) ‘Facial Soft Biometrics for Recognition in the

Wild: Recent Works, Annotation, and COTS Evaluation’, IEEE Transactions on

Information Forensics and Security, 13(8), pp. 2001–2014. doi:

10.1109/TIFS.2018.2807791.

GoogleCloudVision (2019) Google Cloud Vision. Available at:

https://cloud.google.com/vision/ (Accessed: 16 March 2019).

Gov.uk (2015) Data protection and your business - GOV.UK. Available at:

https://www.gov.uk/data-protection-your-business/monitoring-staff-at-work

(Accessed: 20 June 2015).

Grispos, G., Storer, T. and Glisson, W. B. (2012) ‘Calm Before the Storm: The

Challenges of Cloud Computing in Digital Forensics’, International Journal of

Digital Crime and Forensics, 4(2), pp. 28–48. doi: 10.4018/jdcf.2012040103.

Harris, J. D. et al. (2014) ‘How to Write a Systematic Review’, The American

Journal of Sports Medicine, 42(11), pp. 2761–2768. doi:

10.1177/0363546513497567.

Hashem, Y. et al. (2015) ‘Towards Insider Threat Detection Using

Psychophysiological Signals’, in Proceedings of the 7th ACM CCS International

Workshop on Managing Insider Security Threats - MIST ’15. New York, New

York, USA: ACM Press, pp. 71–74. doi: 10.1145/2808783.2808792.

Ho, S. M., Kaarst-Brown, M. and Benbasat, I. (2018) ‘Trustworthiness

attribution: Inquiry into insider threat detection’, Journal of the Association for

Information Science and Technology, 69(2), pp. 271–280. doi:

References

192

10.1002/asi.23938.

Hong, T. (2014) ‘A Mantrap-Inspired, User-Centric Data Leakage Prevention

(DLP) Approach’, 2014 IEEE 6th International Conference on Cloud Computing

Technology and Science, pp. 1033–1039. doi: 10.1109/CloudCom.2014.23.

Hunker, J. and Probst, C. (2011) ‘Insiders and Insider Threats An Overview of

Definitions and Mitigation Techniques’, Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable Applications, 2(1), pp. 4–27. Available

at: http://isyou.info/jowua/papers/jowua-v2n1-1.pdf.

Huth, C. L. et al. (2013) ‘Guest editorial: A brief overview of data leakage and

insider threats’, Information Systems Frontiers, 15(1), pp. 1–4. doi:

10.1007/s10796-013-9419-8.

Huth, C. L. (2013) ‘The insider threat and employee privacy: An overview of

recent case law’, Computer Law & Security Review. Elsevier Ltd, 29(4), pp. 368–

381. doi: 10.1016/j.clsr.2013.05.014.

IS Decisions (2014) The Insider Threat Security Manifesto: Beating the threat

within. Available at:

http://www.isdecisions.com/resources/pdf/insiderthreatmanifesto.pdf (Accessed:

24 April 2016).

IS Decisions (2018) A STUDY OF INSIDER THREAT PERSONAS. Available at:

https://www.isdecisions.com/insider-threat-persona-study/.

Iyengar, S. S. and Miller, J. (2015) Biometrics and digital forensics: Cyber

References

193

security connections. Available at:

http://www.deccanherald.com/content/515241/biometrics-digital-forensics-

cyber-security.html (Accessed: 16 March 2016).

Jackson, J. C., Choi, V. K. and Gelfand, M. J. (2019) ‘Revenge: A Multilevel

Review and Synthesis’, Annual Review of Psychology, 70(1), pp. 319–345. doi:

10.1146/annurev-psych-010418-103305.

Jadhav, R. (2012) ‘Data leakage detection’, International Journal of Computer

Science & Communication Networks, 03(01), pp. 37–45.

Jain, A. K., Flynn, P. and Ross, A. A. (eds) (2008) Handbook of Biometrics.

Boston, MA: Springer US. doi: 10.1007/978-0-387-71041-9.

Kale, S. A. and S.V.Kulkarni (2012) ‘Data Leakage Detection’, International

Journal of Advanced Research in Computer and Communication Engineering,

1(9), pp. 668–678.

Kalyan, C. and Chandrasekaran, K. (2007) ‘Information leak detection in

financial e-mails using mail pattern analysis under partial information’, in

Proceedings of the 7th WSEAS International Conference on Applied Informatics

and Communications. Athens, Greece, pp. 104–109. Available at:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.413.1013.

Katz, G., Elovici, Y. and Shapira, B. (2014) ‘CoBAn: A context based model for

data leakage prevention’, Information Sciences. Elsevier Inc., 262(June 2002),

pp. 137–158. doi: 10.1016/j.ins.2013.10.005.

References

194

Kemerlis, V. P. et al. (2010) ‘iLeak: A lightweight system for detecting

inadvertent information leaks’, Proceedings - European Conference on

Computer Network Defense, EC2ND 2010, pp. 21–28. doi:

10.1109/EC2ND.2010.13.

Khan, M. I., Foley, S. N. and O’Sullivan, B. (2019) ‘DBMS Log Analytics for

Detecting Insider Threats in Contemporary Organizations’, in, pp. 207–234. doi:

10.4018/978-1-5225-5984-9.ch010.

Khan, S. et al. (2016) ‘Network forensics: Review, taxonomy, and open

challenges’, Journal of Network and Computer Applications. Elsevier, 66, pp.

214–235. doi: 10.1016/j.jnca.2016.03.005.

Kim, Y., Duric, Z. and Richards, D. (2006) ‘Modified Matrix Encoding Technique

for Minimal Distortion Steganography’, in Information Hiding. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 314–327. doi: 10.1007/978-3-540-74124-4_21.

Kipper, G. (2003) Investigator’s Guide to Steganography. 1st edn. New York:

Auerbach Publications.

Kornblum, J. (2006) ‘Identifying almost identical files using context triggered

piecewise hashing’, Digital Investigation, 3(SUPPL.), pp. 91–97. doi:

10.1016/j.diin.2006.06.015.

Koutsourelis, D. and Katsikas, S. K. (2014) ‘Designing and developing a free

Data Loss Prevention system’, in Proceedings of the 18th Panhellenic

Conference on Informatics - PCI ’14. New York, New York, USA: ACM Press,

pp. 1–5. doi: 10.1145/2645791.2645833.

References

195

Kumar, N. et al. (2014) ‘Detection of Data Leakage in Cloud Computing

Environment’, in 2014 International Conference on Computational Intelligence

and Communication Networks. IEEE, pp. 803–807. doi:

10.1109/CICN.2014.172.

Lee, H. et al. (2014) ‘An Application of Data Leakage Prevention System based

on Biometrics Signals Recognition Technology’, in The 3rd International

Conference on Networking and Technology., pp. 1–5.

Lee, S. et al. (2013) ‘PDT-BI: Proactive Detection Technology based on the

Biometric Information for Preventing Internal Information Leakage’, International

Journal of Bio-Science and Bio-Technology, 5(5), pp. 187–196. doi:

10.14257/ijbsbt.2013.5.5.20.

Lee, Y.-C. et al. (2009) ‘Information leakage detection in distributed systems

using software agents’, in 2009 IEEE Symposium on Intelligent Agents. IEEE,

pp. 128–135. doi: 10.1109/IA.2009.4927510.

Liu, J. et al. (2018) ‘The Reincarnation of Grille Cipher: A Generative Approach’.

Available at: http://arxiv.org/abs/1804.06514.

Liu, L. et al. (2018) ‘Detecting and Preventing Cyber Insider Threats: A Survey’,

IEEE Communications Surveys & Tutorials, 20(2), pp. 1397–1417. doi:

10.1109/COMST.2018.2800740.

Liu, T. et al. (2014) ‘Towards misdirected email detection for preventing

information leakage’, in 2014 IEEE Symposium on Computers and

Communications (ISCC). IEEE, pp. 1–6. doi: 10.1109/ISCC.2014.6912554.

References

196

Macq, B., Alface, P. R. and Montanola, M. (2015) ‘Applicability of watermarking

for intellectual property rights protection in a 3D printing scenario’, in

Proceedings of the 20th International Conference on 3D Web Technology -

Web3D ’15. New York, New York, USA: ACM Press, pp. 89–95. doi:

10.1145/2775292.2775313.

Magklaras, G., Furnell, S. and Papadaki, M. (2011) ‘LUARM – An Audit Engine

for Insider Misuse Detection’, International Journal of Digital Crime and

Forensics, 3(3), pp. 37–49. doi: 10.4018/jdcf.2011070103.

Manmadhan, N. et al. (2014a) ‘Design for Prevention of Intranet Information

Leakage via Emails’, in Communications in Computer and Information Science,

pp. 136–148. doi: 10.1007/978-3-662-44966-0_13.

Manmadhan, N. et al. (2014b) ‘Design for Prevention of Intranet Information

Leakage via Emails’, in Security in Computing and Communications, pp. 136–

148. doi: 10.1007/978-3-662-44966-0_13.

Meuwly, D. and Veldhuis, R. (2012) ‘Forensic biometrics: From two

communities to one discipline’, Biometrics Special Interest Group (BIOSIG),

2012 BIOSIG-Proceedings of the International Conference of the. IEEE, 2012.

Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6313550.

MicrosoftFace (2019) Microsoft Face API. Available at:

https://azure.microsoft.com/en-gb/services/cognitive-services/face/ (Accessed:

16 March 2019).

Miri, A. and Faez, K. (2018) ‘An image steganography method based on integer

References

197

wavelet transform’, Multimedia Tools and Applications, 77(11), pp. 13133–

13144. doi: 10.1007/s11042-017-4935-z.

Mordini, E. and Petrini, C. (2007) ‘Ethical and social implications of biometric

identification technology’, Annali dell’Istituto superiore di sanita, 47(1), pp. 5–11.

Moshinsky, B. (2017) LEAKED DOCUMENT: Bank of England has ‘significant

concern’ over post-Brexit approval for Deutsche Bank’s UK branch. Available at:

http://uk.businessinsider.com/bank-of-england-document-deutsche-bank-post-

brexit-uk-2017-8 (Accessed: 7 September 2017).

MyDLP (2014) MyDLP. Available at: https://www.mydlp.com (Accessed: 16

March 2019).

Nelson, M. D. and Xie, M. (2014) ‘DATA LEAK PROTECTION’. U.S.

Neurotechnology (2018) Neurotechnology. Available at:

http://www.neurotechnology.com (Accessed: 16 March 2019).

Nourian, A. and Madnick, S. (2018) ‘A Systems Theoretic Approach to the

Security Threats in Cyber Physical Systems Applied to Stuxnet’, IEEE

Transactions on Dependable and Secure Computing, 15(1), pp. 2–13. doi:

10.1109/TDSC.2015.2509994.

Oliver, J., Cheng, C. and Chen, Y. (2013) ‘TLSH -- A Locality Sensitive Hash’, in

2013 Fourth Cybercrime and Trustworthy Computing Workshop. IEEE, pp. 7–13.

doi: 10.1109/CTC.2013.9.

Oliver, J., Forman, S. and Cheng, C. (2014) ‘Using Randomization to Attack

References

198

Similarity Digests’, in, pp. 199–210. doi: 10.1007/978-3-662-45670-5_19.

OpenCV (2019) OpenCV. Available at:

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html

(Accessed: 16 March 2019).

OpenDLP (2014) OpenDLP. Available at: https://code.google.com/p/opendlp/

(Accessed: 16 March 2019).

OpenStego (2017). Available at: https://www.openstego.com/ (Accessed: 16

March 2019).

Palmer, G. (2001) ‘A Road Map for Digital Forensic Research (DFRWS)’, in The

Digital Forensic Research Conference.

Papadimitriou, P. and Garcia-Molina, H. (2011) ‘Data Leakage Detection’, IEEE

Transactions on Knowledge and Data Engineering, 23(1), pp. 51–63. doi:

10.1109/TKDE.2010.100.

Park, B., Park, J. and Lee, S. (2009) ‘Data concealment and detection in

Microsoft Office 2007 files’, Digital Investigation. Elsevier Ltd, 5(3–4), pp. 104–

114. doi: 10.1016/j.diin.2008.12.001.

Patzakis, B. J. (2003) ‘New Incident Response Best Practices’, (September).

Pilli, E. S., Joshi, R. C. and Niyogi, R. (2010) ‘Network forensic frameworks:

Survey and research challenges’, Digital Investigation. Elsevier Ltd, 7(1–2), pp.

14–27. doi: 10.1016/j.diin.2010.02.003.

References

199

Poljicak, A. (2011) ‘Discrete Fourier transform–based watermarking method with

an optimal implementation radius’, Journal of Electronic Imaging, 20(3), p.

033008. doi: 10.1117/1.3609010.

Pressfreedomtracker.us (2019) Reality Winner charged with leaking information

to The Intercept. Available at: https://pressfreedomtracker.us/all-

incidents/reality-winner-charged-leaking-information-intercept/ (Accessed: 20

October 2019).

QL, Z. et al. (2018) ‘Steganography using reversible texture synthesis based on

seeded region growing and LSB’, Comput. Mater. Con, 55(1), pp. 151–163.

Quick, D. and Choo, K.-K. R. (2013) ‘Forensic collection of cloud storage data:

Does the act of collection result in changes to the data or its metadata?’, Digital

Investigation. Elsevier Ltd, 10(3), pp. 266–277. doi: 10.1016/j.diin.2013.07.001.

Rafique, M. and Khan, M. N. A. (2013) ‘Exploring Static and Live Digital

Forensics: Methods, Practices and Tools’, International Journal of Scientific &

Engineering Research, 4(10), pp. 1048–1056.

Rekhis, S. and Boudriga, N. (2012) ‘A System for Formal Digital Forensic

Investigation Aware of Anti-Forensic Attacks’, IEEE Transactions on Information

Forensics and Security, 7(2), pp. 635–650. doi: 10.1109/TIFS.2011.2176117.

RIPA (2014) Regulation of Investigatory Powers Act 2000. Available at:

https://www.legislation.gov.uk/ukpga/2000/23/pdfs/ukpga_20000023_en.pdf

(Accessed: 16 March 2019).

References

200

Roussev, V. (2010) ‘Data Fingerprinting with Similarity Digests’, in IFIP

Advances in Information and Communication Technology, pp. 207–226. doi:

10.1007/978-3-642-15506-2_15.

Rutherford, C. (2010) Man had thousands of child porn images, Daily Record.

Available at: htt://www.dailyrecord.co.uk/news/local-news/man-thousands-child-

porn-images-2422584 (Accessed: 1 May 2016).

Saevanee, H. et al. (2015) ‘Continuous user authentication using multi-modal

biometrics’, Computers & Security, 53, pp. 234–246. doi:

10.1016/j.cose.2015.06.001.

Safa, N. S. et al. (2018) ‘Motivation and opportunity based model to reduce

information security insider threats in organisations’, Journal of Information

Security and Applications, 40, pp. 247–257. doi: 10.1016/j.jisa.2017.11.001.

SANS Institute (2016a) SANS Investigative Forensics Toolkit Documentation.

Release 3.0. Available at: https://media.readthedocs.org/pdf/sift/latest/sift.pdf

(Accessed: 12 February 2016).

SANS Institute (2016b) SANS Investigative Forensics Toolkit Documentation.

Schaefer, G. and Stich, M. (2003) ‘UCID: an uncompressed color image

database’, in Yeung, M. M., Lienhart, R. W., and Li, C.-S. (eds) SPIE 5307,

Storage and Retrieval Methods and Applications for Multimedia 2004, pp. 472–

480. doi: 10.1117/12.525375.

Shabtai, A., Elovici, Y. and Rokach, L. (2012a) A Survey of Data Leakage

References

201

Detection and Prevention Solutions. 1st edn, Springer Science & Business

Media. 1st edn. Boston, MA: Springer US (SpringerBriefs in Computer Science).

doi: 10.1007/978-1-4614-2053-8.

Shabtai, A., Elovici, Y. and Rokach, L. (2012b) A Survey of Data Leakage

Detection and Prevention Solutions. Boston, MA: Springer US (SpringerBriefs in

Computer Science). doi: 10.1007/978-1-4614-2053-8.

Shapira, Y., Shapira, B. and Shabtai, A. (2013) ‘Content-based data leakage

detection using extended fingerprinting’, arXiv preprint arXiv:1302.2028.

Available at: http://arxiv.org/abs/1302.2028.

Shavers, B. (2013) Placing the suspect behind the keyboard: using digital

forensics and investigative techniques to identify cybercrime suspects. 1st edn.

Newnes.

Shetty, J. and Adibi., J. (2004) ‘The Enron email dataset database schema and

brief statistical report (2004)’, Information sciences institute technical report,

University of Southern California, 4(1), pp. 120–128.

Shields, C., Frieder, O. and Maloof, M. (2011) ‘A system for the proactive,

continuous, and efficient collection of digital forensic evidence’, Digital

Investigation, 8(SUPPL.), pp. 3–13. doi: 10.1016/j.diin.2011.05.002.

Shih, F. Y. (2017) Digital Watermarking and Steganography: Fundamentals and

Techniques. CRC press.

Shoichet, C., Botelho, G. and Berlinger, J. (2016) Brothers ID’d as suicide

References

202

bombers in Belgium, 1 suspect ‘on the run’, CNN. Available at:

http://edition.cnn.com/2016/03/23/europe/brussels-investigation/ (Accessed: 5

March 2019).

Sloan, T. and Hernandez-Castro, J. (2018) ‘Dismantling OpenPuff PDF

steganography’, Digital Investigation, 25, pp. 90–96. doi:

10.1016/j.diin.2018.03.003.

Smith, R. (2007) ‘An Overview of the Tesseract OCR Engine’, in Ninth

International Conference on Document Analysis and Recognition (ICDAR 2007)

Vol 2. IEEE, pp. 629–633. doi: 10.1109/ICDAR.2007.4376991.

Soria-Lorente, A. and Berres, S. (2017) ‘A Secure Steganographic Algorithm

Based on Frequency Domain for the Transmission of Hidden Information’,

Security and Communication Networks, 2017, pp. 1–14. doi:

10.1155/2017/5397082.

Stanton, J. M. et al. (2005) ‘Analysis of end user security behaviors’, Computers

& Security, 24(2), pp. 124–133. doi: 10.1016/j.cose.2004.07.001.

Stuev, J. (2019) Former Intelligence Analyst Charged with Disclosing Classified

Information. Available at: https://www.justice.gov/usao-edva/pr/former-

intelligence-analyst-charged-disclosing-classified-information (Accessed: 20

October 2019).

The Intercept (no date). Available at: https://theintercept.com/ (Accessed: 5

September 2017).

References

203

Titcomb, J. (2017) WikiLeaks releases thousands of hacked Macron campaign

emails. Available at: http://www.telegraph.co.uk/news/2017/07/31/wikileaks-

releases-thousands-hacked-macron-campaign-emails/ (Accessed: 7 September

2017).

Toor, A. S. and Wechsler, H. (2018) ‘Biometrics and forensics integration using

deep multi-modal semantic alignment and joint embedding’, Pattern Recognition

Letters, 113, pp. 29–37. doi: 10.1016/j.patrec.2017.02.012.

UdhamSingh, K. (2014) ‘A Survey on Image Steganography Techniques’,

International Journal of Computer Applications, 97(18), pp. 10–20. doi:

10.5120/17105-7746.

Vaidya, S. (2019) OpenStego. Available at:

https://www.openstego.com/index.html (Accessed: 5 March 2019).

Valjarevic, A. and Venter, H. (2012) ‘Towards Solving the Identity Challenge’, in

The 7th International Workshop on Digital Forensics and Incident Analysis

(WDFIA 2012), pp. 129–138.

Verizon (2018) 2018 Data Breach Investigation Report. Available at:

https://enterprise.verizon.com/resources/reports/dbir (Accessed: 10 May 2019).

Vincze, E. A. (2016) ‘Challenges in digital forensics’, Police Practice and

Research, 4263(February), pp. 1–12. doi: 10.1080/15614263.2015.1128163.

Wang, R.-Z., Lin, C.-F. and Lin, J.-C. (2001) ‘Image hiding by optimal LSB

substitution and genetic algorithm’, Pattern Recognition, 34(3), pp. 671–683. doi:

References

204

10.1016/S0031-3203(00)00015-7.

Wen Gao et al. (2008) ‘The CAS-PEAL Large-Scale Chinese Face Database

and Baseline Evaluations’, IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 38(1), pp. 149–161. doi:

10.1109/TSMCA.2007.909557.

Widup, S. (2014) Computer Forensics and Digital Investigation with EnCase

Forensic v7. 1st edn. McGraw-Hill Osborne.

WikiLeaks.org (2009) A billion in secret Congressional reports. Available at:

https://wikileaks.org/wiki/Change_you_can_download:_a_billion_in_secret_Con

gressional_reports (Accessed: 4 September 2017).

WikiLeaks (2017) WikiLeaks publishes ‘biggest ever leak of secret CIA

documents’. Available at:

https://www.theguardian.com/media/2017/mar/07/wikileaks-publishes-biggest-

ever-leak-of-secret-cia-documents-hacking-surveillance (Accessed: 9

September 2017).

WikiLeaks (no date). Available at: https://wikileaks.org (Accessed: 5 September

2017).

Wu, J.-S. et al. (2013) ‘Key Stroke Profiling for Data Loss Prevention’, in 2013

Conference on Technologies and Applications of Artificial Intelligence. IEEE, pp.

7–12. doi: 10.1109/TAAI.2013.16.

Xiao, Y. and Watson, M. (2019) ‘Guidance on Conducting a Systematic

References

205

Literature Review’, Journal of Planning Education and Research, 39(1), pp. 93–

112. doi: 10.1177/0739456X17723971.

Yu, H. and Yang, J. (2001) ‘A direct LDA algorithm for high-dimensional data —

with application to face recognition’, Pattern Recognition, 34(10), pp. 2067–

2070. doi: 10.1016/S0031-3203(00)00162-X.

Zawoad, S. and Hasan, R. (2013) ‘Cloud Forensics: A Meta-Study of

Challenges, Approaches, and Open Problems’. Available at:

http://arxiv.org/abs/1302.6312.

Appendix A– Experiential Analysis Scripts (Python)

206

Appendix A– Experiential Analysis Scripts (Python)

Appendix A– Experiential Analysis Scripts (Python)

207

9.5 Null Cipher Embedding and Extracting Script 1

Mapped to Chapter 6 experimental investigation

-*- coding: utf-8 -*- 2
""" 3
Created on Wed Jun 03 19:11:39 2015 4
 5
@author: aalruban 6
__author__ = 'aalruban' 7
 8
 9
""" 10
How to install the dependencies on a mac 11
-- 12
 13
1) Reinstall brew. 14
```bash 15 
rm -rf /usr/local/Cellar /usr/local/.git && brew cleanup 16 
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 17 
``` 18 
2) Install opencv 19
```bash 20 
brew tap homebrew/science 21 
brew install opencv 22 
``` 23 
3) Add the packages to python 24
```bash 25 
mkdir -p $HOME/Library/Python/2.7/lib/python/site-packages 26 
echo 'import site; site.addsitedir("/usr/local/lib/python2.7/site-packages")' >> 27 
$HOME/Library/Python/2.7/lib/python/site-packages/homebrew.pth 28 
``` 29 
""" 30
 31
import cv2.cv as cv 32
import sys 33
 34
class SteganographyException(Exception): 35
 pass 36
 37
class LSBSteg(): 38
 def __init__(self, im): 39
 self.image = im 40
 self.width = im.width 41
 self.height = im.height 42
 self.size = self.width * self.height 43
 self.nbchannels = im.channels 44
 45
 self.maskONEValues = [1,2,4,8,16,32,64,128] 46
 #Mask used to put one ex:1->00000001, 2->00000010 .. associated with OR bitwise 47
 self.maskONE = self.maskONEValues.pop(0) #Will be used to do bitwise operations 48
 49
 self.maskZEROValues = [254,253,251,247,239,223,191,127] 50

Appendix A– Experiential Analysis Scripts (Python)

208

 #Mak used to put zero ex:254->11111110, 253->11111101 .. associated with AND bitwise 51
 self.maskZERO = self.maskZEROValues.pop(0) 52
 53
 self.curwidth = 0 #Current width position 54
 self.curheight = 0 #Current height position 55
 self.curchan = 0 #Current channel position 56
 57
 def saveImage(self,filename): 58
 # Save the image using the given filename 59
 cv.SaveImage(filename, self.image) 60
 61
 62
 def putBinaryValue(self, bits): #Put the bits in the image 63
 for c in bits: 64
 val = list(self.image[self.curheight,self.curwidth]) #Get the pixel value as a list 65
 if int(c) == 1: 66
 val[self.curchan] = int(val[self.curchan]) | self.maskONE #OR with maskONE 67
 else: 68
 val[self.curchan] = int(val[self.curchan]) & self.maskZERO #AND with maskZERO 69
 70
 self.image[self.curheight,self.curwidth] = tuple(val) 71
 self.nextSpace() #Move "cursor" to the next space 72
 73
 def nextSpace(self):#Move to the next slot were information can be taken or put 74
 if self.curchan == self.nbchannels-1: #Next Space is the following channel 75
 self.curchan = 0 76
 if self.curwidth == self.width-1: #Or the first channel of the next pixel of the same line 77
 self.curwidth = 0 78
 if self.curheight == self.height-1:#Or the first channel of the first pixel of the next line 79
 self.curheight = 0 80
 if self.maskONE == 128: #Mask 1000000, so the last mask 81
 raise SteganographyException, "Image filled" 82
 else: #Or instead of using the first bit start using the second and so on.. 83
 self.maskONE = self.maskONEValues.pop(0) 84
 self.maskZERO = self.maskZEROValues.pop(0) 85
 else: 86
 self.curheight +=1 87
 else: 88
 self.curwidth +=1 89
 else: 90
 self.curchan +=1 91
 92
 def readBit(self): #Read a single bit int the image 93
 val = self.image[self.curheight,self.curwidth][self.curchan] 94
 val = int(val) & self.maskONE 95
 self.nextSpace() 96
 if val > 0: 97
 return "1" 98
 else: 99
 return "0" 100
 101
 def readByte(self): 102
 return self.readBits(8) 103
 104
 def readBits(self, nb): #Read the given number of bits 105
 bits = "" 106
 for i in range(nb): 107

Appendix A– Experiential Analysis Scripts (Python)

209

 bits += self.readBit() 108
 return bits 109
 110
 def byteValue(self, val): 111
 return self.binValue(val, 8) 112
 113
 def binValue(self, val, bitsize): #Return the binary value of an int as a byte 114
 binval = bin(val)[2:] 115
 if len(binval) > bitsize: 116
 raise SteganographyException, "binary value larger than the expected size" 117
 while len(binval) < bitsize: 118
 binval = "0"+binval 119
 return binval 120
 121
 def hideText(self, txt): 122
 l = len(txt) 123
 binl = self.binValue(l, 16) #Length coded on 2 bytes so the text size can be up to 65536 bytes long 124
 self.putBinaryValue(binl) #Put text length coded on 4 bytes 125
 for char in txt: #And put all the chars 126
 c = ord(char) 127
 self.putBinaryValue(self.byteValue(c)) 128
 129
 def unhideText(self): 130
 ls = self.readBits(16) #Read the text size in bytes 131
 l = int(ls,2) 132
 i = 0 133
 unhideTxt = "" 134
 while i < l: #Read all bytes of the text 135
 tmp = self.readByte() #So one byte 136
 i += 1 137
 unhideTxt += chr(int(tmp,2)) #Every chars concatenated to str 138
 return unhideTxt 139
 140
 def hideImage(self, imtohide): 141
 w = imtohide.width 142
 h = imtohide.height 143
 if self.width*self.height*self.nbchannels < w*h*imtohide.channels: 144
 raise SteganographyException, "Carrier image not big enough to hold all the datas to 145
steganography" 146
 binw = self.binValue(w, 16) #Width coded on to byte so width up to 65536 147
 binh = self.binValue(h, 16) 148
 self.putBinaryValue(binw) #Put width 149
 self.putBinaryValue(binh) #Put height 150
 for h in range(imtohide.height): #Iterate the hole image to put every pixel values 151
 for w in range(imtohide.width): 152
 for chan in range(imtohide.channels): 153
 val = imtohide[h,w][chan] 154
 self.putBinaryValue(self.byteValue(int(val))) 155
 156
 157
 def unhideImage(self): 158
 width = int(self.readBits(16),2) #Read 16bits and convert it in int 159
 height = int(self.readBits(16),2) 160
 unhideimg = cv.CreateImage((width,height), 8, 3) #Create an image in which we will put all the 161
pixels read 162
 for h in range(height): 163
 for w in range(width): 164

Appendix A– Experiential Analysis Scripts (Python)

210

 for chan in range(unhideimg.channels): 165
 val = list(unhideimg[h,w]) 166
 val[chan] = int(self.readByte(),2) #Read the value 167
 unhideimg[h,w] = tuple(val) 168
 return unhideimg 169
 170
 def hideBin(self, filename): 171
 f = open(filename,'rb') 172
 bin = f.read() 173
 l = len(bin) 174
 if self.width*self.height*self.nbchannels < l+64: 175
 raise SteganographyException, "Carrier image not big enough to hold all the datas to 176
steganography" 177
 self.putBinaryValue(self.binValue(l, 64)) 178
 for byte in bin: 179
 self.putBinaryValue(self.byteValue(ord(byte))) 180
 181
 def unhideBin(self): 182
 l = int(self.readBits(64),2) 183
 output = "" 184
 for i in range(l): 185
 output += chr(int(self.readByte(),2)) 186
 return output 187
 188
 189
 190
''' 191
Methods to expose this functionality to the command-line 192
''' 193
def binary_steg_hide(image, binary, result): 194
 carrier = cv.LoadImage(image) 195
 steg = LSBSteg(carrier) 196
 steg.hideBin(binary) 197
 steg.saveImage(result) 198
 199
def binary_steg_reveal(steg_image, out): 200
 inp = cv.LoadImage(steg_image) 201
 steg = LSBSteg(inp) 202
 bin = steg.unhideBin() 203
 f = open(out, "wb") 204
 f.write(bin) 205
 f.close() 206
 207
import argparse 208
 209
parser = argparse.ArgumentParser(description='This python program applies LSB Steganography to an 210
image and some type of input') 211
 212
def main(av): 213
 bgroup = parser. add_argument_group("Hide binary with steg") 214
 bgroup.add_argument('-image', help='Provide the original image') 215
 bgroup.add_argument('-binary', help='The binary file to be obfuscated in the image') 216
 bgroup.add_argument('-steg-out', help='The resulting steganographic image') 217
 218
 bgroup = parser.add_argument_group("Reveal binary") 219
 bgroup.add_argument('-steg-image', help='The steganographic image') 220
 bgroup.add_argument('-out', help='The original binary') 221

Appendix A– Experiential Analysis Scripts (Python)

211

 222
 args = parser.parse_args(av[1:]) 223
 224
 if len(av) == 7: 225
 binary_steg_hide(args.image, args.binary, args.steg_out) 226
 elif len(av) == 5: 227
 binary_steg_reveal(args.steg_image, args.out) 228
 else: 229
 print "Usage: '", av[0], "-h' for help", "\n", args 230
 231
if __name__=="__main__": 232
 from sys import argv as av 233
 main(av) 234

Appendix A– Experiential Analysis Scripts (Python)

212

9.6 TLSH Generation and Attacks Against Text Files Script 235

Mapped to Chapter 8 experimental investigation

-*- coding: utf-8 -*- 236
""" 237
Created on Wed Jun 03 19:11:39 2015 238
 239
@author: aalruban 240
from __future__ import print_function 241
import pytesseract 242
from PIL import Image 243
import matplotlib.pyplot as plt 244
import numpy as np 245
import sys 246
import tlsh 247
import os 248
import csv 249
import re, string 250
import random 251
from unidecode import unidecode 252
import shutil 253
import subprocess 254
import pickle 255
import reportlab.pdfbase.ttfonts 256
from reportlab.lib.units import inch 257
from reportlab.pdfgen import canvas 258
from docx import Document 259
import pandas as pd 260
import re 261
import os 262
import io 263
 264
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter 265
from pdfminer.converter import TextConverter 266
from pdfminer.layout import LAParams 267
from pdfminer.pdfpage import PDFPage 268
from random import randint 269
 270
from nltk.corpus import wordnet 271
from nltk.tokenize import word_tokenize 272
from random import randint 273
import nltk.data 274
 275
PUNCTUATION = re.compile('[%s]' % re.escape(string.punctuation)) 276
 277
class Fingerprinter(object): 278
 ''' 279
 Python implementation of Google Refine fingerprinting algorithm described here: 280
 https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth 281
 282
 Requires the unidecode module: https://github.com/iki/unidecode 283
 ''' 284
 285

Appendix A– Experiential Analysis Scripts (Python)

213

 def __init__(self, string): 286
 self.string = self._preprocess(string) 287
 288
 def _preprocess(self, string): 289
 ''' 290
 Strip leading and trailing whitespace, lowercase the string, remove all punctuation, 291
 in that order. 292
 ''' 293
 return PUNCTUATION.sub('', string.strip().lower()) 294
 295
 def _latinize(self, string): 296
 297
 return unidecode(string.decode('utf-8')) 298
 299
 def _unique_preserving_order(self, seq): 300
 ''' 301
 Returns unique tokens in a list, preserving order. Fastest version found in this 302
 exercise: http://www.peterbe.com/plog/uniqifiers-benchmark 303
 ''' 304
 seen = set() 305
 seen_add = seen.add 306
 return [x for x in seq if not (x in seen or seen_add(x))] 307
 308
 def get_fingerprint(self): 309
 ''' 310
 Gets conventional fingerpint. 311
 ''' 312
 return self._latinize(' '.join(313
 self._unique_preserving_order(314
 sorted(self.string.split()) 315
) 316
)) 317
 318
 def get_ngram_fingerprint(self, n=1): 319
 ''' 320
 Gets ngram fingerpint based on n-length shingles of the string. 321
 Default is 1. 322
 ''' 323
 return self._latinize(''.join(324
 self._unique_preserving_order(325
 sorted([self.string[i:i + n] for i in range(len(self.string) - n + 1)]) 326
) 327
)) 328
 329
 330
def getFingerprint(text): 331
 f = Fingerprinter(text) 332
 f.get_fingerprint() 333
 return f.get_ngram_fingerprint(n=1) 334
 335
 336
def compute_1(path): 337
 with open(path, 'rb') as f: 338
 data = f.read() 339
 hs = tlsh.hash(data) 340
 return hs 341
 342

Appendix A– Experiential Analysis Scripts (Python)

214

def compute_2(path): 343
 h = tlsh.Tlsh() 344
 with open(path, 'rb') as f: 345
 for buf in iter(lambda: f.read(512), b''): 346
 h.update(buf) 347
 h.final() 348
 return h 349
 350
 351
def readDoc(path): 352
 name = 1 353
 354
 docList = [] 355
 356
 for filename in os.listdir(path): 357
 358
 if not (filename.endswith('.txt')): 359
 continue # skip non-image files and the logo file itself 360
 361
 doc = path+'/'+filename 362
 #shutil.move(doc, 'txt/'+str(name).zfill(4)+'.txt') 363
 docList.append(path+'/'+filename) 364
 name += 1 365
 return docList 366
def docStats(): 367
 path = 'tmp/txt/' 368
 numOfChar = [] 369
 numOfWords = [] 370
 numOfLines = [] 371
 numOfPars = [] 372
 numOfPages = [] 373
 374
 for filename in os.listdir(path): 375
 376
 if not (filename.endswith('.txt')): 377
 continue # skip non-image files and the logo file itself 378
 with open('txt/'+filename) as file: 379
 lines = file.read().splitlines() 380
 paras = [value for value in lines[:] if value != '\t'] 381
 text = ' '.join(lines) 382
 wordsList = text.split() 383
 chars = ''.join(wordsList) 384
 385
 386
 numOfChar.append(len(chars)) 387
 numOfWords.append(len(wordsList)) 388
 numOfLines.append(len(lines)) 389
 numOfPars.append(len(paras)) 390
 numOfPages.append(len(wordsList)/250) 391
 392
 return [[min(numOfChar), max(numOfChar), sum(numOfChar)/6000], [min(numOfWords), 393
max(numOfWords), sum(numOfWords)/6000],[min(numOfLines), max(numOfLines), 394
sum(numOfLines)/6000], [min(numOfPars), max(numOfPars), 395
sum(numOfPars)/6000],[min(numOfPages), max(numOfPages), sum(numOfPages)/6000]] 396
 397
 398
def delWordsInc(): 399

Appendix A– Experiential Analysis Scripts (Python)

215

 import os.path 400
 path = 'tmp/txt/' 401
 402
 403
 for numWords in range(1,101): 404
 n = 1 405
 for filename in range(1,6001): 406
 print(str(numWords)+':'+str(n)) 407
 408
 filename = str(filename).zfill(4)+'.txt' 409
 410
 if not (filename.endswith('.txt')): 411
 continue # skip non-image files and the logo file itself 412
 413
 with open('tmp/txt/'+filename) as file: 414
 wordsList = file.read().split() 415
 416
 417
 for i in range(0, numWords): 418
 del wordsList[randint(0, len(wordsList)-1)] 419
 420
 421
 text = ' '.join(wordsList) 422
 if not os.path.exists('modifiedText/delWordsInc/'+str(numWords).zfill(3)): 423
 os.makedirs('modifiedText/delWordsInc/'+str(numWords).zfill(3)) 424
 425
 with open('modifiedText/delWordsInc/'+str(numWords).zfill(3)+'/'+filename, 426
'wb') as f: 427
 f.write(text) 428
 429
 if os.path.exists('hash/delWordsInc/'+str(numWords).zfill(3)+'.txt'): 430
 with open('hash/delWordsInc/'+str(numWords).zfill(3)+'.txt', 'a') as 431
hashFile: 432
 hash = 433
compute_1('modifiedText/delWordsInc/'+str(numWords).zfill(3)+'/'+filename) 434
 hashFile.write(filename[0:4]+str(hash)+'\n') 435
 436
 else: 437
 with open('hash/delWordsInc/'+str(numWords).zfill(3)+'.txt', 'wb') as 438
hashFile: 439
 hash = 440
compute_1('modifiedText/delWordsInc/'+str(numWords).zfill(3)+'/'+filename) 441
 hashFile.write(filename[0:4]+str(hash)+'\n') 442
 443
 444
 445
 os.remove('modifiedText/delWordsInc/'+str(numWords).zfill(3)+'/'+filename) 446
 447
 n += 1 448
 449
 450
def delWordsInc_test(): 451
 import os.path 452
 path = 'tmp/txt/' 453
 454
 455
 for numWords in range(1,2): 456

Appendix A– Experiential Analysis Scripts (Python)

216

 n = 1 457
 for filename in range(1,6001): 458
 print(str(numWords)+':'+str(n)) 459
 460
 filename = str(filename).zfill(4)+'.txt' 461
 462
 if not (filename.endswith('.txt')): 463
 continue # skip non-image files and the logo file itself 464
 465
 with open('tmp/txt/'+filename) as file: 466
 wordsList = file.read().split() 467
 468
 469
 for i in range(0, numWords): 470
 #del wordsList[randint(0, len(wordsList)-1)] 471
 #del wordsList[10] 472
 pass 473
 text = ' '.join(wordsList) 474
 if not os.path.exists('modifiedText/delWordsInc2/'+str(numWords).zfill(3)): 475
 os.makedirs('modifiedText/delWordsInc2/'+str(numWords).zfill(3)) 476
 477
 with open('modifiedText/delWordsInc2/'+str(numWords).zfill(3)+'/'+filename, 478
'wb') as f: 479
 f.write(text) 480
 481
 if os.path.exists('hash/delWordsInc2/'+str(numWords).zfill(3)+'.txt'): 482
 with open('hash/delWordsInc2/'+str(numWords).zfill(3)+'.txt', 'a') as 483
hashFile: 484
 hash = 485
compute_1('modifiedText/delWordsInc2/'+str(numWords).zfill(3)+'/'+filename) 486
 hashFile.write(filename[0:4]+str(hash)+'\n') 487
 488
 else: 489
 with open('hash/delWordsInc2/'+str(numWords).zfill(3)+'.txt', 'wb') 490
as hashFile: 491
 hash = 492
compute_1('modifiedText/delWordsInc2/'+str(numWords).zfill(3)+'/'+filename) 493
 hashFile.write(filename[0:4]+str(hash)+'\n') 494
 495
 496
 497
 498
 os.remove('modifiedText/delWordsInc2/'+str(numWords).zfill(3)+'/'+filename) 499
 500
 n += 1 501
 502
 503
def delWordsIncRand(): 504
 path = 'tmp/txt/' 505
 kList = [] 506
 n = 1 507
 508
 for filename in os.listdir(path): 509
 print(n) 510
 511
 k= randint(1, 101) 512
 kList.append(k) 513

Appendix A– Experiential Analysis Scripts (Python)

217

 if not (filename.endswith('.txt')): 514
 continue # skip non-image files and the logo file itself 515
 with open('tmp/txt/'+filename) as f: 516
 wordsList = f.read().split() 517
 518
 519
 for i in range(0, k): 520
 del wordsList[randint(0, len(wordsList)-1)] 521
 522
 523
 text = ' '.join(wordsList) 524
 525
 with open('modifiedText/delWordsIncRand/'+filename, 'wb') as f2: 526
 f2.write(text) 527
 528
 if os.path.exists('hash/delWordsIncRand.txt'): 529
 with open('hash/delWordsIncRand.txt', 'a') as hashFile: 530
 hash = compute_1('modifiedText/delWordsIncRand/'+filename) 531
 hashFile.write(filename[0:4]+str(hash)+'\n') 532
 533
 else: 534
 with open('hash/delWordsIncRand.txt', 'wb') as hashFile: 535
 hash = compute_1('modifiedText/delWordsIncRand/'+filename) 536
 hashFile.write(filename[0:4]+str(hash)+'\n') 537
 538
 539
 540
 os.remove('modifiedText/delWordsIncRand/'+filename) 541
 542
 n += 1 543
 544
 pickle.dump(kList, open('plots/delWordsIncRand.p', "wb")) 545
 return kList 546
 547
def delWords(): 548
 path = 'tmp/txt/' 549
 kList = [] 550
 n = 1 551
 for filename in os.listdir(path): 552
 print(n) 553
 k= randint(1, 101) 554
 kList.append(k) 555
 if not (filename.endswith('.txt')): 556
 continue # skip non-image files and the logo file itself 557
 558
 559
 560
 with open('tmp/txt/'+filename) as file: 561
 wordsList = file.read().split() 562
 for i in range(0, k): 563
 del wordsList[randint(0, len(wordsList)-1)] 564
 565
 566
 text = ' '.join(wordsList) 567
 with open('modifiedText/delWords/'+filename, 'wb') as f: 568
 f.write(text) 569
 n += 1 570

Appendix A– Experiential Analysis Scripts (Python)

218

 571
 pickle.dump(kList, open('plots/delWords.p', "wb")) 572
 return kList 573
 574
def swapWords(): 575
 kList = [] 576
 n = 1 577
 for filename in os.listdir('tmp/txt/'): 578
 print(n) 579
 k= randint(1, 51) 580
 kList.append(k) 581
 if not (filename.endswith('.txt')): 582
 continue # skip non-image files and the logo file itself 583
 584
 with open('tmp/txt/'+filename) as file: 585
 wordsList = file.read().split() 586
 587
 for itera in range(0, k): 588
 i = randint(0, len(wordsList)-1) 589
 j = randint(0, len(wordsList)-1) 590
 wordsList[i], wordsList[j] = wordsList[j], wordsList[i] 591
 592
 #print(len(wordsList)) 593
 text = ' '.join(wordsList) 594
 595
 if not os.path.exists('modifiedText/swapWords'): 596
 os.makedirs('modifiedText/swapWords') 597
 598
 with open('modifiedText/swapWords/'+filename, 'wb') as f2: 599
 f2.write(text) 600
 601
 if os.path.exists('hash/swapWords.txt'): 602
 with open('hash/swapWords.txt', 'a') as hashFile: 603
 hash = compute_1('modifiedText/swapWords/'+filename) 604
 hashFile.write(filename[0:4]+str(hash)+'\n') 605
 606
 else: 607
 with open('hash/swapWords.txt', 'wb') as hashFile: 608
 hash = compute_1('modifiedText/swapWords/'+filename) 609
 hashFile.write(filename[0:4]+str(hash)+'\n') 610
 611
 612
 os.remove('modifiedText/swapWords/'+filename) 613
 614
 615
 n += 1 616
 617
 pickle.dump(kList, open('plots/swapWords.p', "wb")) 618
 return kList 619
 620
 621
def wordsSyn(): 622
 623
 # Load a text file if required 624
 # Load the pretrained neural net 625
 #nltk.download('punkt') 626
 #nltk.download('averaged_perceptron_tagger') 627

Appendix A– Experiential Analysis Scripts (Python)

219

 #nltk.download('wordnet') 628
 629
 kList = [] 630
 n = 1 631
 tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') 632
 for filename in os.listdir('tmp/txt/'): 633
 output = "" 634
 print(n) 635
 k= randint(1, 101) 636
 kList.append(k) 637
 if not (filename.endswith('.txt')): 638
 continue # skip non-image files and the logo file itself 639
 640
 with open('tmp/txt/'+filename) as file: 641
 642
 words = file.read().split() 643
 644
 645
 # Identify the parts of speech 646
 647
 tagged = nltk.pos_tag(words) 648
 removedWords = [] 649
 for item in range(0, k): 650
 ind = randint(0, len(words)-1) 651
 removedWords.append(ind) 652
 653
 for i in range(0,len(words)): 654
 replacements = [] 655
 656
 # Only replace nouns with nouns, vowels with vowels etc. 657
 for syn in wordnet.synsets(words[i]): 658
 659
 # Do not attempt to replace proper nouns or determiners 660
 if tagged[i][1] == 'NNP' or tagged[i][1] == 'DT': 661
 break 662
 663
 if i not in removedWords: 664
 break 665
 # The tokenizer returns strings like NNP, VBP etc 666
 # but the wordnet synonyms has tags like .n. 667
 # So we extract the first character from NNP ie n 668
 # then we check if the dictionary word has a .n. or not 669
 670
 671
 word_type = tagged[i][1][0].lower() 672
 673
 if syn.name().find("."+word_type+"."): 674
 # extract the word only 675
 r = syn.name()[0:syn.name().find(".")] 676
 replacements.append(r) 677
 678
 if len(replacements) > 0: 679
 # Choose a random replacement 680
 replacement = replacements[randint(0,len(replacements)-1)] 681
 output = output + " " + replacement 682
 683
 else: 684

Appendix A– Experiential Analysis Scripts (Python)

220

 # If no replacement could be found, then just use the 685
 # original word 686
 output = output + " " + words[i] 687
 688
 if not os.path.exists('modifiedText/wordsSyn'): 689
 os.makedirs('modifiedText/wordsSyn') 690
 691
 with open('modifiedText/wordsSyn/'+filename, 'wb') as f2: 692
 f2.write(output) 693
 694
 if os.path.exists('hash/wordsSyn.txt'): 695
 with open('hash/wordsSyn.txt', 'a') as hashFile: 696
 hash = compute_1('modifiedText/wordsSyn/'+filename) 697
 hashFile.write(filename[0:4]+str(hash)+'\n') 698
 699
 else: 700
 with open('hash/wordsSyn.txt', 'wb') as hashFile: 701
 hash = compute_1('modifiedText/wordsSyn/'+filename) 702
 hashFile.write(filename[0:4]+str(hash)+'\n') 703
 704
 705
 os.remove('modifiedText/wordsSyn/'+filename) 706
 707
 n += 1 708
 709
 pickle.dump(kList, open('plots/wordsSyn.p', "wb")) 710
 return kList 711
 712
def delLines(): 713
 714
 kList = [] 715
 n = 1 716
 717
 for filename in os.listdir('txt/'): 718
 print(n) 719
 k= randint(1, 11) 720
 kList.append(k) 721
 722
 if not (filename.endswith('.txt')): 723
 continue # skip non-image files and the logo file itself 724
 725
 with open('txt/'+filename) as file: 726
 lines = file.read().splitlines() 727
 728
 random_lines = random.sample(lines, k) 729
 730
 with open('tmp/cm/'+filename, 'wb') as output_file: 731
 output_file.writelines(line + "\n" 732
 for line in lines if line not in random_lines) 733
 734
 #elif lines: # file is too small 735
 #print("\n".join(lines)) # print all lines 736
 #with open('modifiedText/delLines/'+filename, 'wb', 0): # empty the file 737
 #pass 738
 739
 740
 with open('tmp/cm/'+filename) as final_file: 741

Appendix A– Experiential Analysis Scripts (Python)

221

 wordsList = final_file.read().split() 742
 text = ' '.join(wordsList) 743
 744
 with open('modifiedText/delLines/'+filename, 'wb') as modFile: # empty the file 745
 modFile.write(text) 746
 747
 n += 1 748
 749
 pickle.dump(kList, open('plots/delLines.p', "wb")) 750
 return kList 751
 752
def linesAllignemt(): 753
 754
 kList = [] 755
 n = 1 756
 757
 for filename in os.listdir('txt/'): 758
 print(n) 759
 k= randint(1, 11) 760
 if not (filename.endswith('.txt')): 761
 continue # skip non-image files and the logo file itself 762
 763
 with open('txt/'+filename) as file: 764
 lines = file.read().splitlines() 765
 766
 random_lines = random.sample(lines, k) 767
 768
 with open('tmp/cm/'+filename, 'wb') as output_file: 769
 output_file.writelines(line + "\n" for line in lines if line not 770
in random_lines) 771
 772
 #elif lines: # file is too small 773
 #print("\n".join(lines)) # print all lines 774
 #with open('modifiedText/delLines/'+filename, 'wb', 0): # empty the file 775
 #pass 776
 777
 with open('tmp/cm/'+filename) as f1: 778
 wordsList = f1.read().split() 779
 text = ' '.join(wordsList) 780
 781
 if not os.path.exists('modifiedText/delLines'): 782
 os.makedirs('modifiedText/delLines') 783
 784
 with open('modifiedText/delLines/'+filename, 'wb') as f2: 785
 f2.write(text) 786
 787
 if os.path.exists('hash/delLines.txt'): 788
 with open('hash/delLines.txt', 'a') as hashFile: 789
 hash = compute_1('modifiedText/delLines/'+filename) 790
 hashFile.write(filename[0:4]+str(hash)+'\n') 791
 792
 else: 793
 with open('hash/delLines.txt', 'wb') as hashFile: 794
 hash = compute_1('modifiedText/delLines/'+filename) 795
 hashFile.write(filename[0:4]+str(hash)+'\n') 796
 797
 798

Appendix A– Experiential Analysis Scripts (Python)

222

 os.remove('modifiedText/delLines/'+filename) 799
 n += 1 800
 801
 pickle.dump(kList, open('plots/delLines.p', "wb")) 802
 return kList 803
 804
 805
def swapLines(): 806
 kList = [] 807
 n = 1 808
 809
 for filename in os.listdir('txt/'): 810
 print(n) 811
 k= randint(1, 11) 812
 kList.append(k) 813
 814
 if not (filename.endswith('.txt')): 815
 continue # skip non-image files and the logo file itself 816
 817
 with open('txt/'+filename) as file: 818
 lines = file.read().splitlines() 819
 for itera in range(1, k): 820
 i = randint(0, len(lines)-1) 821
 j = randint(0, len(lines)-1) 822
 lines[i], lines[j] = lines[j], lines[i] 823
 text = ' '.join(lines) 824
 825
 826
 827
 with open('tmp/cm/'+filename, 'wb') as modFile: # empty the file 828
 modFile.write(text) 829
 830
 with open('tmp/cm/'+filename) as final_file: 831
 wordsList = final_file.read().split() 832
 text = ' '.join(wordsList) 833
 834
 if not os.path.exists('modifiedText/swapLines'): 835
 os.makedirs('modifiedText/swapLines') 836
 837
 with open('modifiedText/swapLines/'+filename, 'wb') as f2: 838
 f2.write(text) 839
 840
 if os.path.exists('hash/swapLines.txt'): 841
 with open('hash/swapLines.txt', 'a') as hashFile: 842
 hash = compute_1('modifiedText/swapLines/'+filename) 843
 hashFile.write(filename[0:4]+str(hash)+'\n') 844
 845
 else: 846
 with open('hash/swapLines.txt', 'wb') as hashFile: 847
 hash = compute_1('modifiedText/swapLines/'+filename) 848
 hashFile.write(filename[0:4]+str(hash)+'\n') 849
 850
 851
 n += 1 852
 853
 pickle.dump(kList, open('plots/swapLines.p', "wb")) 854
 return kList 855

Appendix A– Experiential Analysis Scripts (Python)

223

 856
 857
 858
def swapSentences(): 859
 kList = [] 860
 n = 1 861
 tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') 862
 for filename in os.listdir('tmp/txt/'): 863
 print(n) 864
 k= randint(1, 6) 865
 kList.append(k) 866
 if not (filename.endswith('.txt')): 867
 continue # skip non-image files and the logo file itself 868
 869
 with open('tmp/txt/'+filename) as file: 870
 text = file.read() 871
 sentences = tokenizer.tokenize(text) 872
 873
 for itera in range(1, k): 874
 i = randint(0, len(sentences)-1) 875
 j = randint(0, len(sentences)-1) 876
 sentences[i], sentences[j] = sentences[j], sentences[i] 877
 878
 text = ' '.join(sentences) 879
 880
 881
 if not os.path.exists('modifiedText/swapSentences'): 882
 os.makedirs('modifiedText/swapSentences') 883
 884
 with open('modifiedText/swapSentences/'+filename, 'wb') as f2: 885
 f2.write(text) 886
 887
 if os.path.exists('hash/swapSentences.txt'): 888
 with open('hash/swapSentences.txt', 'a') as hashFile: 889
 hash = compute_1('modifiedText/swapSentences/'+filename) 890
 hashFile.write(filename[0:4]+str(hash)+'\n') 891
 892
 else: 893
 with open('hash/swapSentences.txt', 'wb') as hashFile: 894
 hash = compute_1('modifiedText/swapSentences/'+filename) 895
 hashFile.write(filename[0:4]+str(hash)+'\n') 896
 897
 898
 os.remove('modifiedText/swapSentences/'+filename) 899
 900
 n += 1 901
 902
 pickle.dump(kList, open('plots/swapSentences.p', "wb")) 903
 return kList 904
def delSentences(): 905
 kList = [] 906
 n = 1 907
 tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') 908
 for filename in os.listdir('tmp/txt/'): 909
 print(n) 910
 k= randint(1, 11) 911
 kList.append(k) 912

Appendix A– Experiential Analysis Scripts (Python)

224

 if not (filename.endswith('.txt')): 913
 continue # skip non-image files and the logo file itself 914
 915
 with open('tmp/txt/'+filename) as file: 916
 text = file.read() 917
 sentences = tokenizer.tokenize(text) 918
 919
 for itera in range(1, k): 920
 try: 921
 del sentences[randint(0, len(sentences)-1)] 922
 except: 923
 pass 924
 text = ' '.join(sentences) 925
 926
 if not os.path.exists('modifiedText/delSentences'): 927
 os.makedirs('modifiedText/delSentences') 928
 929
 with open('modifiedText/delSentences/'+filename, 'wb') as f2: 930
 f2.write(text) 931
 932
 if os.path.exists('hash/delSentences.txt'): 933
 with open('hash/delSentences.txt', 'a') as hashFile: 934
 hash = compute_1('modifiedText/delSentences/'+filename) 935
 hashFile.write(filename[0:4]+str(hash)+'\n') 936
 937
 else: 938
 with open('hash/delSentences.txt', 'wb') as hashFile: 939
 hash = compute_1('modifiedText/delSentences/'+filename) 940
 hashFile.write(filename[0:4]+str(hash)+'\n') 941
 942
 943
 os.remove('modifiedText/delSentences/'+filename) 944
 n += 1 945
 pickle.dump(kList, open('plots/delSentences.p', "wb")) 946
 return kList 947
 948
def insertWords(): 949
 950
 kList = [] 951
 n = 1 952
 with open('wordsList.txt') as file: 953
 wordsList = file.read().split() 954
 955
 tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') 956
 for filename in os.listdir('tmp/txt/'): 957
 print(n) 958
 k= randint(1, 101) 959
 kList.append(k) 960
 if not (filename.endswith('.txt')): 961
 continue # skip non-image files and the logo file itself 962
 963
 with open('tmp/txt/'+filename) as file: 964
 words = file.read().split() 965
 966
 967
 for itera in range(0, k): 968
 words.insert(randint(0, len(words)-1), wordsList[randint(0, len(wordsList)-1)]) 969

Appendix A– Experiential Analysis Scripts (Python)

225

 970
 971
 text = ' '.join(words) 972
 973
 if not os.path.exists('modifiedText/insertWords'): 974
 os.makedirs('modifiedText/insertWords') 975
 976
 with open('modifiedText/insertWords/'+filename, 'wb') as f2: 977
 f2.write(text) 978
 979
 if os.path.exists('hash/insertWords.txt'): 980
 with open('hash/insertWords.txt', 'a') as hashFile: 981
 hash = compute_1('modifiedText/insertWords/'+filename) 982
 hashFile.write(filename[0:4]+str(hash)+'\n') 983
 984
 else: 985
 with open('hash/insertWords.txt', 'wb') as hashFile: 986
 hash = compute_1('modifiedText/insertWords/'+filename) 987
 hashFile.write(filename[0:4]+str(hash)+'\n') 988
 989
 990
 os.remove('modifiedText/insertWords/'+filename) 991
 992
 n += 1 993
 994
 pickle.dump(kList, open('plots/insertWords.p', "wb")) 995
 return kList 996
 997
def delLine_range(): 998
 999
 k= 0.20 1000
 for filename in os.listdir('wikileaks-crs-reports'): 1001
 #for filename in os.listdir('test'): 1002
 #print(filename) 1003
 if not (filename.endswith('.txt')): 1004
 continue # skip non-image files and the logo file itself 1005
 1006
 with open('wikileaks-crs-reports/'+filename) as file: 1007
 #with open('test/'+filename) as file: 1008
 lines = file.read().splitlines() 1009
 1010
 removePercentage = int(round(len(lines)*k)) 1011
 idx = random.randint(0, len(lines)-removePercentage) 1012
 1013
 random_lines = random.sample(lines, int(removePercentage)) 1014
 1015
 with open('modifiedText/randomRangeLines/20/'+filename, 'w') as output_file: 1016
 output_file.writelines(line + "\n" 1017
 for line in lines if line not in lines[idx:idx+removePercentage]) 1018
def swapParas(): 1019
 kList = [] 1020
 n = 1 1021
 1022
 for filename in os.listdir('txt/'): 1023
 print(n) 1024
 k= randint(1, 11) 1025
 kList.append(k) 1026

Appendix A– Experiential Analysis Scripts (Python)

226

 1027
 if not (filename.endswith('.txt')): 1028
 continue # skip non-image files and the logo file itself 1029
 1030
 with open('txt/'+filename) as file: 1031
 paragraphs = file.read().splitlines() 1032
 paragraphs = [value for value in paragraphs[:] if value != '\t'] 1033
 for itera in range(1, k): 1034
 i = randint(0, len(paragraphs)-1) 1035
 j = randint(0, len(paragraphs)-1) 1036
 paragraphs[i], paragraphs[j] = paragraphs[j], paragraphs[i] 1037
 1038
 text = ' '.join(paragraphs) 1039
 1040
 with open('tmp/cm/'+filename, 'wb') as modFile: 1041
 modFile.write(text) 1042
 1043
 with open('tmp/cm/'+filename) as final_file: 1044
 wordsList = final_file.read().split() 1045
 text = ' '.join(wordsList) 1046
 1047
 if not os.path.exists('modifiedText/swapParas'): 1048
 os.makedirs('modifiedText/swapParas') 1049
 1050
 with open('modifiedText/swapParas/'+filename, 'wb') as f2: 1051
 f2.write(text) 1052
 1053
 if os.path.exists('hash/swapParas.txt'): 1054
 with open('hash/swapParas.txt', 'a') as hashFile: 1055
 hash = compute_1('modifiedText/swapParas/'+filename) 1056
 hashFile.write(filename[0:4]+str(hash)+'\n') 1057
 1058
 else: 1059
 with open('hash/swapParas.txt', 'wb') as hashFile: 1060
 hash = compute_1('modifiedText/swapParas/'+filename) 1061
 hashFile.write(filename[0:4]+str(hash)+'\n') 1062
 1063
 1064
 os.remove('modifiedText/swapParas/'+filename) 1065
 1066
 n += 1 1067
 1068
 pickle.dump(kList, open('plots/swapParas.p', "wb")) 1069
 return kList 1070
 1071
def delParas(): 1072
 kList = [] 1073
 n = 1 1074
 1075
 for filename in os.listdir('txt/'): 1076
 print(n) 1077
 k= randint(1, 11) 1078
 kList.append(k) 1079
 1080
 if not (filename.endswith('.txt')): 1081
 continue # skip non-image files and the logo file itself 1082
 1083

Appendix A– Experiential Analysis Scripts (Python)

227

 with open('txt/'+filename) as file: 1084
 paragraphs = file.read().splitlines() 1085
 paragraphs = [value for value in paragraphs[:] if value != '\t'] 1086
 for itera in range(1, k): 1087
 del paragraphs[randint(0, len(paragraphs)-1)] 1088
 1089
 text = ' '.join(paragraphs) 1090
 1091
 #print(paragraphs) 1092
 with open('tmp/cm/'+filename, 'wb') as modFile: 1093
 modFile.write(text) 1094
 1095
 with open('tmp/cm/'+filename) as final_file: 1096
 wordsList = final_file.read().split() 1097
 text = ' '.join(wordsList) 1098
 1099
 if not os.path.exists('modifiedText/delParas'): 1100
 os.makedirs('modifiedText/delParas') 1101
 1102
 with open('modifiedText/delParas/'+filename, 'wb') as f2: 1103
 f2.write(text) 1104
 1105
 if os.path.exists('hash/delParas.txt'): 1106
 with open('hash/delParas.txt', 'a') as hashFile: 1107
 hash = compute_1('modifiedText/delParas/'+filename) 1108
 hashFile.write(filename[0:4]+str(hash)+'\n') 1109
 1110
 else: 1111
 with open('hash/delParas.txt', 'wb') as hashFile: 1112
 hash = compute_1('modifiedText/delParas/'+filename) 1113
 hashFile.write(filename[0:4]+str(hash)+'\n') 1114
 1115
 1116
 os.remove('modifiedText/delParas/'+filename) 1117
 1118
 n += 1 1119
 1120
 pickle.dump(kList, open('plots/delParas.p', "wb")) 1121
 return kList 1122
 1123
 1124
def delPara(folder): 1125
 path = 'modifiedText/randomPara/'+folder 1126
 1127
 n = 1 1128
 if os.path.exists('tmp'): 1129
 shutil.rmtree('tmp') 1130
 os.mkdir('tmp') 1131
 for filename in os.listdir(path): 1132
 print(n) 1133
 os.mkdir('tmp/'+filename[:-4]) 1134
 #for filename in os.listdir('test'): 1135
 #print(filename) 1136
 if not (filename.endswith('.txt')): 1137
 continue # skip non-image files and the logo file itself 1138
 1139
 optimizedPara = [] 1140

Appendix A– Experiential Analysis Scripts (Python)

228

 with open(path+'/'+filename, 'r') as file: 1141
 #with open('test/'+filename) as file: 1142
 paragraphs = file.read().splitlines() 1143
 paragraphs = (value for value in paragraphs[:] if value != '\t') 1144
 1145
 ITEM ='' 1146
 1147
 for para in paragraphs: 1148
 #print(para) 1149
 if len(ITEM) < 260 : 1150
 ITEM = ITEM+para+' ' 1151
 1152
 else: 1153
 optimizedPara.append(ITEM) 1154
 ITEM = '' 1155
 1156
 for index, newPara in enumerate(optimizedPara): 1157
 with open('tmp/'+filename[:-4]+'/'+str(index).zfill(4)+'.txt', 'w') as f: 1158
 f.write(newPara) 1159
 1160
 hashTocsv(generateHash(readDoc('tmp/'+filename[:-4]+'/')), filename, folder) 1161
 n += 1 1162
 1163
 1164
def ParaHash2Ways(folder): 1165
 path = 'modifiedText/randomLines/'+folder 1166
 #path = 'wikileaks-crs-reports' 1167
 1168
 n = 1 1169
 if os.path.exists('tmp'): 1170
 shutil.rmtree('tmp') 1171
 os.mkdir('tmp') 1172
 for filename in os.listdir(path): 1173
 print(n) 1174
 os.mkdir('tmp/'+filename[:-4]) 1175
 1176
 if not (filename.endswith('.txt')): 1177
 continue # skip non-image files and the logo file itself 1178
 1179
 optimizedPara = [] 1180
 with open(path+'/'+filename, 'r') as file: 1181
 paragraphs = file.read().splitlines() 1182
 paragraphs = [value for value in paragraphs[:] if value != '\t'] 1183
 1184
 ITEM ='' 1185
 1186
 for para in reversed(paragraphs): 1187
 1188
 if len(ITEM) < 260 : 1189
 ITEM = ITEM+para+' ' 1190
 1191
 else: 1192
 optimizedPara.append(ITEM) 1193
 ITEM = '' 1194
 1195
 for index, newPara in enumerate(optimizedPara): 1196
 with open('tmp/'+filename[:-4]+'/'+str(index).zfill(4)+'.txt', 'w') as f: 1197

Appendix A– Experiential Analysis Scripts (Python)

229

 f.write(newPara) 1198
 1199
 hashTocsv(generateHash(readDoc('tmp/'+filename[:-4]+'/')), folder, filename) 1200
 n += 1 1201
 1202
 1203
 1204
def delParaFormText(): 1205
 path = 'wikileaks-crs-reports' 1206
 k= 0.40 1207
 1208
 n = 1 1209
 for filename in os.listdir(path): 1210
 print(n) 1211
 if not (filename.endswith('.txt')): 1212
 continue # skip non-image files and the logo file itself 1213
 1214
 1215
 with open(path+'/'+filename, 'r') as file: 1216
 1217
 paragraphs = file.read().splitlines() 1218
 paragraphs[:] = (value for value in paragraphs[:] if value != '\t') 1219
 1220
 removePercentage = int(round(len(paragraphs[:])*k)) 1221
 idx = random.randint(0, len(paragraphs[:])-removePercentage) 1222
 1223
 random_lines = random.sample(paragraphs[:], int(removePercentage)) 1224
 1225
 with open('modifiedText/randomPara/40/'+filename, 'w') as output_file: 1226
 output_file.writelines(line + "\n" 1227
 for line in paragraphs[:] if line not in random_lines) 1228
 n += 1 1229
 1230
def ParaList(): 1231
 #path = 'modifiedText/randomPara/'+folder 1232
 path = 'test' 1233
 1234
 n = 1 1235
 if os.path.exists('tmp'): 1236
 shutil.rmtree('tmp') 1237
 os.mkdir('tmp') 1238
 for filename in os.listdir(path): 1239
 print(n) 1240
 os.mkdir('tmp/'+filename[:-4]) 1241
 1242
 if not (filename.endswith('.txt')): 1243
 continue # skip non-image files and the logo file itself 1244
 1245
 optimizedPara = [] 1246
 with open(path+'/'+filename, 'r') as file: 1247
 1248
 lines=0 1249
 words=0 1250
 characters=0 1251
 1252
 for line in file: 1253
 wordslist = line.split() 1254

Appendix A– Experiential Analysis Scripts (Python)

230

 lines=lines+1 1255
 words=words+len(wordslist) 1256
 characters += sum(len(word) for word in wordslist) 1257
 print(lines) 1258
 print(words) 1259
 print(characters) 1260
 paragraphs = file.read().splitlines() 1261
 paragraphs = (value for value in paragraphs[:] if value != '\t') 1262
 1263
 ITEM ='' 1264
 for para in paragraphs: 1265
 if len(ITEM) < 260 : 1266
 ITEM = ITEM+para+' ' 1267
 else: 1268
 optimizedPara.append(ITEM) 1269
 ITEM = '' 1270
 return optimizedPara 1271
 1272
 1273
 1274
def generateHash(docList): 1275
 n = 1 1276
 hashList= [] 1277
 for index, doc in enumerate(docList): 1278
 #letters = ['A', 'B', 'C', 'D', 'E', 'F'] 1279
 1280
 #delLine(doc) 1281
 1282
 1283
 hash = compute_1(doc) 1284
 hashList.append(hash) 1285
 1286
 #print(len(hash[3:])) 1287
 1288
 1289
 1290
 #for num in numbers: 1291
 1292
 1293
 #if str(num) not in hash[6:]: 1294
 #n +=1 1295
 #print('doc#',n,num) 1296
 #print(getFingerprint(str(hash[6:]))) 1297
 #for index, letter in enumerate(letters): 1298
 #if letter in hash[3:]: 1299
 # print(num,':',letter) 1300
 # del letters[index] 1301
 # break 1302
 #else: 1303
 # print(hash[6:]) 1304
 # print('Not found') 1305
 # continue 1306
 1307
 1308
 1309
 1310
 return hashList 1311

Appendix A– Experiential Analysis Scripts (Python)

231

 1312
def hashTocsv(hashList): 1313
 1314
 1315
 with open('hash/original/original.txt', 'wb') as f: 1316
 1317
 for index, line in enumerate(hashList): 1318
 1319
 f.write(line+'\n') 1320
 1321
 1322
 1323
def wirteTextPDF(docs): 1324
 1325
 for filename in os.listdir(docs): 1326
 #for filename in os.listdir('test'): 1327
 #print(filename) 1328
 if not (filename.endswith('.txt')): 1329
 continue # skip non-image files and the logo file itself 1330
 1331
 with open(docs+'/'+filename, 'r') as file: 1332
 1333
 c = canvas.Canvas('pdf /'+filename[:-4]+'.pdf') 1334
 c.drawString(100,750, file) 1335
 c.save() 1336
 1337
 1338
 1339
def text2pdf(): 1340
 path = 'txt/' 1341
 k = 1 1342
 for filename in os.listdir(path): 1343
 print(k) 1344
 if not (filename.endswith('.txt')): 1345
 continue # skip non-image files and the logo file itself 1346
 1347
 outputfn='pdf/'+filename[:-4]+'.pdf' 1348
 command = str('python txt2pdf.py -o '+outputfn+' '+path+filename) 1349
 print(command) 1350
 print(subprocess.call(command, shell=True)) 1351
 1352
 1353
 1354
def tex2docx(): 1355
 n = 1 1356
 path = 'cleanedText/' 1357
 for filename in os.listdir(path): 1358
 print(n) 1359
 document = Document() 1360
 #document.add_heading(filename, 0) 1361
 myfile = open(path+filename).read() 1362
 myfile = re.sub(r'[^\x00-\x7F]+|\x0c',' ', myfile) # remove all non-XML-compatible characters 1363
 p = document.add_paragraph(myfile) 1364
 document.save('docx/'+filename[:-4]+'.docx') 1365
 n += 1 1366
 1367
def pdf2txt(path): 1368

Appendix A– Experiential Analysis Scripts (Python)

232

 rsrcmgr = PDFResourceManager() 1369
 retstr = io.BytesIO() 1370
 codec = 'utf-8' 1371
 laparams = LAParams() 1372
 device = TextConverter(rsrcmgr, retstr, codec=codec, laparams=laparams) 1373
 fp = open(path, 'rb') 1374
 interpreter = PDFPageInterpreter(rsrcmgr, device) 1375
 password = "" 1376
 maxpages = 0 1377
 caching = True 1378
 pagenos = set() 1379
 1380
 for page in PDFPage.get_pages(fp, pagenos, maxpages=maxpages, 1381
 password=password, 1382
 caching=caching, 1383
 check_extractable=True): 1384
 interpreter.process_page(page) 1385
 1386
 text = retstr.getvalue() 1387
 1388
 fp.close() 1389
 device.close() 1390
 retstr.close() 1391
 myfile = re.sub(r'[^\x00-\x7F]+|\x0c',' ', text) # remove all non-XML-compatible characters 1392
 text2 = "".join([s for s in myfile.splitlines(True) if s.strip("\r\n")]) 1393
 1394
 text3 = "".join([s.lstrip() for s in text2.splitlines(True) if s.lstrip()]) 1395
 1396
 return text3 1397
 1398
def docx2txt(path): 1399
 document = Document(path) 1400
 newparatextlist = [] 1401
 for paratext in document.paragraphs: 1402
 newparatextlist.append(paratext.text.encode("utf-8")) 1403
 text2 = '\n\n'.join(newparatextlist) 1404
 text3 = "".join([s.lstrip() for s in text2.splitlines(True) if s.lstrip()]) 1405
 return text3 1406
 1407
 1408
def text2file(filename): 1409
 1410
 if filename[-3:] == 'pdf': 1411
 #print(pdf2txt(filename)) 1412
 with open('tmp/'+filename[:-4]+'.txt', 'wb') as f: 1413
 for line in pdf2txt(filename): 1414
 f.write(line.rstrip('\n')) 1415
 1416
 elif filename[-4:] == 'docx': 1417
 with open('tmp/txt/'+filename[:-5]+'.txt', 'wb') as f: 1418
 for line in docx2txt(filename): 1419
 f.write(line.rstrip('\n')) 1420
 elif filename[-3:] == 'txt': 1421
 with open('tmp/txt/'+filename[:-4]+'.txt', 'wb') as f: 1422
 with open('txt/'+filename, 'rb') as text: 1423
 line = "".join([s.lstrip() for s in text.readlines() if s.lstrip()]) 1424
 line2 = "".join([s.rstrip('\n') for s in line if s.rstrip('\n')]) 1425

Appendix A– Experiential Analysis Scripts (Python)

233

 f.write(line2) 1426
 1427
 1428
 1429
def tlshHash(): 1430
 for doc in range(1,2): 1431
 print(str(doc).zfill(4)) 1432
 txt = 'txt/'+str(doc).zfill(4)+'.txt' 1433
 docx = 'docx/'+str(doc).zfill(4)+'.docx' 1434
 pdf = 'pdf/'+str(doc).zfill(4)+'.pdf' 1435
 1436
 text2file(txt) 1437
 text2file(pdf) 1438
 #text2file(docx) 1439
 1440
 if compute_1('tmp/'+txt[:-3]+'txt') == compute_1('tmp/'+docx[:-4]+'txt') and 1441
compute_1('tmp/'+docx[:-4]+'txt') == compute_1('tmp/'+pdf[:-3]+'txt'): 1442
 print(1) 1443
 1444
 else: 1445
 print(0) 1446
 print(compute_1('tmp/'+txt[:-3]+'txt')) 1447
 print(compute_1('tmp/'+docx[:-4]+'txt')) 1448
 1449
 print(tlsh.diff(compute_1('tmp/'+txt[:-3]+'txt'), compute_1('tmp/'+docx[:-4]+'txt'))) 1450
 1451
def ocr(): 1452
 1453
 print(pytesseract.image_to_string(Image.open('test/temp.png'))) 1454
 1455
#ocr() 1456
#SwapSentence() 1457
#delSentence() 1458
#insertWords() 1459
#swapLines() 1460
#wordsSyn() 1461
#wordsSwap() 1462
#delWordsInc() 1463
 1464
def loop(): 1465
 n = 1 1466
 for file in os.listdir('txt/'): 1467
 print(n) 1468
 text2file(file) 1469
 n += 1 1470
 1471
 1472
def plotHist(): 1473
 x = swapParas() 1474
 plt.hist(x, bins=20, edgecolor='black',linewidth=1) 1475
 plt.title("Histogram of swapParas") 1476
 plt.xlabel("Number of swapParas") 1477
 plt.ylabel("Frequency") 1478
 plt.savefig('plots/swapParas.png', bbox_inches='tight') 1479
 #plt.show() 1480
 1481
def computeTLSH(): 1482

Appendix A– Experiential Analysis Scripts (Python)

234

 #with open('hash/swapParas.txt', 'wb') as f: 1483
 with open('hash/original.txt', 'wb') as f: 1484
 for file in range(1,6001): 1485
 #print(str(k)+':'+str(file)) 1486
 filename = str(file).zfill(4)+'.txt' 1487
 #text2file('txt/'+filename) 1488
 hash = compute_1('tmp/txt/'+filename) 1489
 f.write(filename[0:4]+str(hash)+'\n') 1490
 1491
#computeTLSH() 1492
#delWordsIncRand() 1493
#delWordsInc() 1494
#swapWords() 1495
#wordsSyn() 1496
#linesAllignemt() 1497
#swapLines() 1498
#delSentences() 1499
#swapParas() 1500
#delParas() 1501
def joinWords(): 1502
 size = [] 1503
 for file in range(1,6001): 1504
 filename = str(file).zfill(4)+'.txt' 1505
 #text2file('txt/'+filename) 1506
 size.append(os.stat('txt/'+filename).st_size/1000) 1507
 #print(sorted(size)) 1508
 #count, division = np.histogram(size, bins=3, range=[1, 300]) 1509
 #for index, c in enumerate(count): 1510
 #print(c, division[index]) 1511
 1512
 plt.hist(size, bins=3, edgecolor='w', range=[1,300]) 1513
 plt.show() 1514
 1515
def computeAvgDiff(output): 1516
 1517
 diffList = [] 1518
 filename = str(file).zfill(2)+'.txt' 1519
 originalTLSH = pd.read_csv('hash/original.txt', header=None) 1520
 ModifiedTLSH = pd.read_csv('hash/delWordsIncRand.txt', header=None) 1521
 1522
 for index, row in originalTLSH.iterrows(): 1523
 #print(index+1) 1524
 hex1 = row[0][4:] 1525
 hex2 = [0][4:] 1526
 1527
 diffList.append(tlsh.diff(hex1, hex2)) 1528
 1529
 data = str(file)+','+str(min(diffList))+','+str(max(diffList))+','+str(sum(diffList)/6000)+'\n' 1530
 output.write(data) 1531
 1532
 1533
#for k in range(42,90): 1534
 #delWordsInc(k) 1535
 #computeTLSH(str(k).zfill(2)) 1536
#stat = docStats() 1537
#for list in stat: 1538
print(list) 1539

Appendix A– Experiential Analysis Scripts (Python)

235

 1540
#plotHist() 1541
#computeTLSH() 1542
with open('result/retrivel/HAShes_diff.csv', 'w') as output: 1543
 computeAvgDiff(output) 1544
 1545
#print(len(compute_1('wordsList.txt'))) 1546
#print('The total number of documents is:', len(docList)) 1547
#path = 'modifiedText/randomLines/5' 1548
#ParaHash2Ways() 1549
#hashTocsv(generateHash(readDoc(path))) 1550
#hashTocsv(generateHash(readDoc(path))) 1551
#hex1 = compute_1(sys.argv[1]) 1552
#print(len(hex1)) 1553
#print('tlsh.hash hex1', hex1) 1554
#hex2 = compute_1(sys.argv[2]) 1555
#print('tlshcd .hash hex2', hex2) 1556
#print('tlsh.diff(hex1, hex2)', tlsh.diff(hex1, hex2)) 1557
#print('tlsh.diff(hex2, hex1)', tlsh.diff(hex2, hex1)) 1558
#h1 = compute_2(sys.argv[1]) 1559
#hex1 = h1.hexdigest() 1560
#print('tlsh.Tlsh hex1', hex1) 1561
#h2 = compute_2(sys.argv[2]) 1562
#hex2 = h2.hexdigest() 1563
#print('tlsh.Tlsh hex2', hex2) 1564
#print('h1.diff(h2)', h1.diff(h2)) 1565
#print('h2.diff(h1)', h2.diff(h1)) 1566
#print('h1.diff(hex2)', h1.diff(hex2)) 1567
#print('h2.diff(hex1)', h2.diff(hex1)) 1568
#h3 = tlsh.Tlsh() 1569
#h3.fromTlshStr(hex2) 1570
#print('tlsh.Tlsh.fromTlshStr', hex2) 1571
#print('h3.diff(h2)', h3.diff(h2)) 1572
 1573

Appendix A– Experiential Analysis Scripts (Python)

236

9.7 Grille Cipher Mapping and Retrieving Script 1574

Mapped to chapter 7 and 8 experimental investigations

-*- coding: utf-8 -*- 1575
""" 1576
Created on Wed Jun 03 19:11:39 2015 1577
 1578
@author: aalruban 1579
""" 1580
import hashlib 1581
from timeit import default_timer as timer 1582
import collections, binascii # 1583
import numpy as np 1584
import time 1585
from tqdm import tqdm #for counter the timer and status bar 1586
from os.path import basename 1587
import itertools 1588
import datetime 1589
import sqlite3 1590
import sys, os 1591
import cPickle as pickle 1592
import openxmllib 1593
from PyPDF2 import PdfFileReader 1594
import pandas as pd 1595
import shutil 1596
 1597
def db(insertDB): 1598
 conn = sqlite3.connect('Bio.db') 1599
 1600
 c = conn.cursor() 1601
 #check weather the table is exist or not 1602
 tb_exists = "SELECT name FROM sqlite_master WHERE type='table' AND name='mappedBio'" 1603
 if not conn.execute(tb_exists).fetchone(): 1604
 c.execute('''CREATE TABLE mappedBio 1605
 (objname, mappingddate, objhash, author, creator, creationdate, moddate, biobytes, 1606
mappedbytesindex)''') 1607
 1608
 # Insert a row of data 1609
 c.execute("INSERT INTO mappedBio VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);", (insertDB)) 1610
 1611
 # Save (commit) the changes 1612
 conn.commit() 1613
 1614
 # We can also close the connection if we are done with it. 1615
 # Just be sure any changes have been committed or they will be lost. 1616
 conn.close() 1617
 1618
 1619
computing hash value of the object, in order to use it for comparison later when we want to make sure 1620
that the 1621
object has not been modified after we have created the record 1622
def gethash(user_object): 1623
 #print "Calculating", user_object, "hash..." 1624

Appendix A– Experiential Analysis Scripts (Python)

237

 1625
 1626
 hashx = [hashlib.md5(open(user_object, 'rb').read()).hexdigest()] 1627
 return hashx 1628
 1629
 1630
this function return object's bytes as a list 1631
def byte_target(user_object): 1632
 #print "Loading", user_object, "bytes..." 1633
 with open(user_object, "rb") as f: 1634
 # defining the list that we want to store the object's bytes in 1635
 tlist = [] 1636
 while True: 1637
 # [1] means to read the object byte by byte 1638
 b = f.read(1) 1639
 # get file bytes 1640
 t = "%s" % (binascii.hexlify(b)) 1641
 # when reached the end of the object it breaks 1642
 if not b: 1643
 break 1644
 # add this byte to the list 1645
 tlist.append(t) 1646
 1647
 #print tlist 1648
 return tlist 1649
 1650
def obj_char(user_object): 1651
 with open(user_object) as f: 1652
 line = f.read().split() 1653
 1654
 char_list = [c for c in line[0]] 1655
 1656
 return char_list 1657
 1658
 1659
this function return Bio source file bytes as a list 1660
def bio(bioSource): 1661
 with open(bioSource) as f: 1662
 #print "Loading", bioSource, "bytes..." 1663
 # defining the list that we want to store the object's bytes in 1664
 biolist = [] 1665
 while True: 1666
 # [1] means to read the object byte by byte 1667
 b = f.read(1) 1668
 # get file bytes 1669
 t = "%s" % (binascii.hexlify(b)) 1670
 # when reached the end of the object it breaks 1671
 if not b: 1672
 break 1673
 # add this byte to the list 1674
 biolist.append(t) 1675
 # print b 1676
 #print biolist 1677
 return biolist 1678
 1679
 1680
def bio_char(bioSource): 1681

Appendix A– Experiential Analysis Scripts (Python)

238

 with open(bioSource) as f: 1682
 line = f.read().split() 1683
 1684
 char_list = [c for c in line[0]] 1685
 1686
 return char_list 1687
 1688
 1689
def bio(bioSource): 1690
with open(bioSource, "rb") as f: 1691
#print "Loading", bioSource, "bytes..." 1692
defining the list that we want to store the object's bytes in 1693
biolist = [] 1694
while True: 1695
[1] means to read the object byte by byte 1696
b = f.read(1) 1697
get file bytes 1698
t = ' '.join(format(ord(x), 'b') for x in b) 1699
when reached the end of the object it breaks 1700
if not b: 1701
break 1702
add this byte to the list 1703
biolist.append(t) 1704
print b 1705
return biolist 1706
 1707
 1708
this function compares objects bytes with Bio source file bytes and returns matched objects bytes' 1709
index as list 1710
def mapping_1st_match(user_object, bioSource): 1711
 #print "Mapping", bioSource, "with", user_object, "..." 1712
 #print "Mapping..." 1713
 # defining the list that we want to store the matched objects bytes in 1714
 m = [] 1715
 # for each byte in the bio byte list 1716
 for z in bio_byte_final: 1717
 # for each byte in the object byte list 1718
 for index, i in enumerate(byte_target_final): 1719
 #if bytes are equal 1720
 if i == z: 1721
 # add the index to the list 1722
 tostr = byte_target_final.index(i) 1723
 1724
 m.append(str(tostr)) 1725
 1726
 break 1727
 # to make sure that all bio bytes are mapped 1728
 # if the length of the mapped list = the length of the bio source bytes list, that means all the bio bytes 1729
has matched bytes in the object 1730
 if len(m) == len(bio_byte_final): 1731
 print("bytes mapping succeeded :)") 1732
 # else, there is a shortage in the object bytes which they are 'lendiff' 1733
 else: 1734
 lendiff = len(bio_byte_final) - len(m) 1735
 print("bytes mapping NOT succeeded,", lendiff, "bytes is needed!") 1736
 1737
 return m 1738

Appendix A– Experiential Analysis Scripts (Python)

239

 1739
 1740
this function compares objects bytes with Bio source file bytes and returns matched objects bytes' index 1741
as list 1742
def nLocations(object_, bioSource): 1743
 #print "Mapping", bioSource, "with", user_object, "..." 1744
 #print "Mapping..." 1745
 # defining the list that we want to store the matched objects bytes in 1746
 1747
 # for each byte in the bio byte list 1748
 1749
 c = 0 1750
 m = [] 1751
 1752
 for z in tqdm(bioSource, desc='mapping', leave=True): 1753
 # 1754
 # if z == '101100': 1755
 # m.append([","]) 1756
 # elif z == '101110': 1757
 # m.append(["."]) 1758
 1759
 # for each byte in the object byte list 1760
 indexes = [i for i, x in enumerate(object_) if x == z] 1761
 m.append(indexes) 1762
 1763
 1764
 1765
 # to make sure that all bio bytes are mapped 1766
 # if the length of the mapped list = the length of the bio source bytes list, that means all the bio bytes 1767
has matched bytes in the object 1768
 if len(m) == len(bioSource): 1769
 1770
 print("bytes mapping succeeded :)") 1771
 # else, there is a shortage in the object bytes which they are 'lendiff' 1772
 else: 1773
 lendiff = len(bioSource) - len(m) 1774
 print("bytes mapping NOT succeeded,", lendiff, "bytes is needed!") 1775
 1776
 return m 1777
 1778
 1779
this function return metadata info when the object is a PDF document 1780
def pdfMetadata(user_object): 1781
 # load pdf 1782
 pdf = PdfFileReader(open(user_object, 'rb')) 1783
 # retrieve pdf metadata 1784
 docinfo = pdf.getDocumentInfo() 1785
 # get author 1786
 docAuthor = docinfo.author 1787
 # if there is no author, make it 'None' 1788
 if docAuthor == "": 1789
 docAuthor = 'None' 1790
 else: 1791
 docAuthor = docinfo.author 1792
 # get creator name 1793
 docCreator = docinfo.creator 1794
 # get creation date 1795

Appendix A– Experiential Analysis Scripts (Python)

240

 docCreationDate = docinfo['/CreationDate'] 1796
 # get modified date 1797
 docModDate = docinfo['/ModDate'] 1798
 # creat a list 1799
 MetaData = [docAuthor, docCreator, docCreationDate, docModDate] 1800
 return MetaData 1801
 1802
 1803
this function return metadata info when the object is an office document include, docx, xlsx, and 1804
pptx(not tested yet) 1805
def docxMetadata(user_object): 1806
 # load document 1807
 doc = openxmllib.openXmlDocument(path=user_object) 1808
 # load function 1809
 doc2 = doc.coreProperties 1810
 # get creator 1811
 docCreator = doc2['creator'] 1812
 # get the name of the person who is the last modified it 1813
 doclastmodBy = doc2['lastModifiedBy'] 1814
 # get creation date 1815
 docCreationDate = doc2['created'] 1816
 # get modified date 1817
 docModDate = doc2['modified'] 1818
 # create a list 1819
 MetaData = [docCreator, doclastmodBy, docCreationDate, docModDate] 1820
 return MetaData 1821
 1822
 1823
def finalrecord(): 1824
 if user_object[-3:] == "pdf": 1825
 # the record is stored as a list right now (in a database later on), the list item order as follow: 1826
 # object title, current system time, object hash value, metadata(docAuthor, docCreator, 1827
docCreationDate, docModDate), bio bytes(spaceless), matched index 1828
 record = filenameAsText + ttime + gethash(user_object) + pdfMetadata(user_object) + Biobits + 1829
convertedtodb 1830
 # to print the first 7 items in the list 1831
 #print "Object Record:", record[:7] 1832
 elif user_object[-4:] == "docx" or user_object[-4:] == "xlsx" or user_object[-4:] == "pptx": 1833
 # object title, current system time, object hash value, metadata(docCreator, doclastmodBy, 1834
docCreationDate, docModDate) , bio bytes(spaceless), matched index 1835
 record = filenameAsText + ttime + gethash(user_object) + docxMetadata(user_object) + Biobits + 1836
convertedtodb 1837
 # to print the first 7 items in the list 1838
 #print "Object Recored:", record[:7] 1839
 else: 1840
 # object title, current system time, object hash value, bio bytes(spaceless), matched index 1841
 record = filenameAsText + ttime + gethash(user_object) + nonelist + Biobits + convertedtodb 1842
 # to print the first 4 items in the list 1843
 #print "Object Record:", record[:7] 1844
 return record 1845
 1846
 1847
def extract_bio(byte_target_final, mappedBio): 1848
 #print "Extracting", bioSource, "from", user_object, "..." 1849
 # defining the list that we want to store the matched objects bytes in 1850
 m = [] 1851
 1852

Appendix A– Experiential Analysis Scripts (Python)

241

 #m = [i for index, i in enumerate(byte_target_final) for j in mappedBio if index == j] 1853
 1854
 #for each byte index in the bio 1855
 for z in mappedBio: 1856
 1857
 # for each byte index in the object 1858
 for index, i in enumerate(byte_target_final): 1859
 1860
 # if indexes are equal 1861
 if index == z: 1862
 # add the byte to the list 1863
 m.append(i) 1864
 break 1865
 return m 1866
 1867
 1868
def validation(featureVector, byte_target_final, bioSource): 1869
 #this function checks how many imprints can be retiereved 1870
 counter = [] #conut number of success retireved 1871
 lengtbar = len(featureVector) 1872
 1873
 1874
 for index, i in tqdm(enumerate(featureVector), desc='Number of imprints',total=lengtbar, leave=True): 1875
 1876
 if str(extract_bio(byte_target_final, i)) == bioSource: 1877
 # when the retived values are equall add 1 to the counter 1878
 1879
 counter.append(index) 1880
 1881
 1882
 print("") 1883
 print("%s out of %s retrieved" % (len(counter), len(featureVector))) 1884
 #the function returns the number of success retreived 1885
 return [len(counter),len(featureVector)] 1886
 # return 1887
 1888
def validationFrequncy(featureVector, byte_target_final, bioSource): 1889
 m = [] 1890
 1891
 #m = [i for index, i in enumerate(byte_target_final) for j in mappedBio if index == j] 1892
 1893
 #for each byte index in the bio 1894
 1895
 1896
 1897
 1898
 1899
 # for each byte index in the object 1900
 # for index, i in enumerate(byte_target_final): 1901
 # 1902
 # # if indexes are equal 1903
 # if index == z: 1904
 # # add the byte to the list 1905
 # m.append(i) 1906
 # break 1907
 return m 1908
 1909

Appendix A– Experiential Analysis Scripts (Python)

242

 1910
def Vm(attack, bio_byte_final): 1911
 n = 1 1912
 retrivedImprints = [] 1913
 allelipsidtime = [] 1914
 totalimprints = [] 1915
 #path = "images/modified/dataset" 1916
 1917
 path = "TLSH_FILES/"+attack+'/' 1918
 for filename in os.listdir(path): 1919
 if not (filename.endswith('.txt')): 1920
 continue 1921
 1922
 filenameWithoutJpg = os.path.splitext(filename)[0] 1923
 path2 = "imprints/original/"+filenameWithoutJpg+".p" 1924
 1925
 byte_target_final = obj_char('TLSH_FILES/'+attack+'/'+str(filename)) 1926
 featureVector = pickle.load(open(path2, "rb")) 1927
 1928
 print(n) 1929
 start = timer() 1930
 valditionreturn = validation(featureVector, byte_target_final, str(bio_byte_final)) 1931
 retrivedImprints.append(valditionreturn) 1932
 end = timer() 1933
 elipsidtime = end - start 1934
 allelipsidtime.append(elipsidtime) 1935
 totalimprints.append(valditionreturn[1]) 1936
 1937
 n += 1 1938
 1939
 print(sum(allelipsidtime)) 1940
 print(sum(totalimprints)) 1941
 print((sum(allelipsidtime)/sum(totalimprints))) 1942
 1943
 pickle.dump(retrivedImprints, open("result/retrivel/"+attack+".p", "wb")) 1944
 1945
 1946
 1947
 1948
 shutil.rmtree('TLSH_FILES/'+attack) 1949
 1950
def result(attack): 1951
 zero_mapped, total_retrived, total_mapped,lost, total_document_retrived, 1952
total_document_retrived_perentage = [], [], [], [], [], [] 1953
 for file in range(1, 2): 1954
 1955
 featureVector = pickle.load(open('result/retrivel/'+attack+'.p', "rb")) 1956
 1957
 n = 0 1958
 1959
 m, x, y = [], [], [] 1960
 #print(featureVector) 1961
 for i in featureVector: 1962
 #print(i[0]) 1963
 #print(i[1]) 1964
 try: 1965
 i01 = float(i[0]) / float(i[1]) 1966

Appendix A– Experiential Analysis Scripts (Python)

243

 m.append(i01*100) 1967
 except ZeroDivisionError: 1968
 n += 1 1969
 x.append(i[0]) 1970
 y.append(i[1]) 1971
 1972
 1973
 null = [] 1974
 for i in m: 1975
 if i == 0.0: 1976
 null.append(i) 1977
 1978
 zero_mapped.append(n) 1979
 total_retrived.append(sum(x)) 1980
 total_mapped.append(sum(y)) 1981
 lost.append(len(null)) 1982
 total_document_retrived.append(len(featureVector)-len(null)) 1983
 1984
 1985
 result_dict = ({'zero_mapped':zero_mapped, 'total_retrived':total_retrived, 1986
'total_mapped':total_mapped, 'lost':lost, 'total_document_retrived':total_document_retrived}) 1987
 1988
 result_df = pd.DataFrame.from_dict(result_dict) 1989
 result_df.index = np.arange(1,len(result_df)+1) 1990
 result_df['total_document_retrived_perentage'] = ((6000-result_df['lost'])/6000)*100 1991
 1992
 result_df.to_csv('result/retrivel/'+attack+'.csv') 1993
 1994
 1995
def readText(path, folder): 1996
 text = pd.read_csv('hash/delWordsInc/'+folder+'.txt', header=None) 1997
 for index, row in text.iterrows(): 1998
 if not os.path.exists('TLSH_FILES/delWordsInc/'+folder+'/'): 1999
 os.makedirs('TLSH_FILES/delWordsInc/'+folder+'/') 2000
 2001
 with open('TLSH_FILES/delWordsInc/'+folder+'/'+str(int(row[0][0:4]) - 1).zfill(4) + '.txt', 'w') as 2002
f: 2003
 f.write(row[0][6:]) 2004
 2005
def readText_sigleHashFile(attack): 2006
 text = pd.read_csv('hash/'+attack+'.txt', header=None) 2007
 for index, row in text.iterrows(): 2008
 if not os.path.exists('TLSH_FILES/'+attack+'/'): 2009
 os.makedirs('TLSH_FILES/'+attack+'/') 2010
 2011
 with open('TLSH_FILES/'+attack+'/'+str(int(row[0][0:4]) - 1).zfill(4) + '.txt', 'w') as f: 2012
 f.write(row[0][6:]) 2013
 2014
 2015
 2016
for k in range(35, 90): 2017
print k 2018
if not os.path.exists('TLSH_FILES/delWordsInc_70/' + str(k).zfill(2)): 2019
os.makedirs('TLSH_FILES/delWordsInc_70/' + str(k).zfill(2)) 2020
text = pd.read_csv('result/hash/delWordsInc_70/'+str(k).zfill(2)+'.txt', header=None) 2021
for index, row in text.iterrows(): 2022

Appendix A– Experiential Analysis Scripts (Python)

244

dest = 'TLSH_FILES/delWordsInc_70/' + str(k).zfill(2) + '/' + str(int(row[0][0:4]) - 1).zfill(4) 2023
+ '.txt' 2024
with open(dest, 'w') as f: 2025
f.write(row[0][6:]) 2026
 2027
if __name__ == '__main__': 2028
 # define a time object in order to calculate process time 2029
 t0 = time.clock() 2030
 now = datetime.datetime.now() 2031
 2032
 if len(sys.argv) < 1 or len(sys.argv) > 4 or sys.argv == "-help" or sys.argv == "-h": 2033
 print("") 2034
 print("Usage: python binariesMapping.py <mapping method> <object path> <Biometric feature 2035
vector file>") 2036
 print("e.g: Usage: python binariesMapping.py --nL objects/obj.jpg objects/fv.txt") 2037
 print("Supported mapping methods:") 2038
 print(" -fT :first matched location only") 2039
 print(" -nL :mappes every feature to n-locations for one object") 2040
 print(" -nLm :mappes every feature to n-locations for list of objects") 2041
 print(" -V :retireves mapped imprints from a given object") 2042
 print(" -Vm :retireves mapped imprints from list of object") 2043
 print(" -nT :mappes feature vector n-times throughout object") 2044
 2045
 # define the target file which is the user object that we want to hide Bio inside 2046
 sys.exit() 2047
 2048
 user_object = sys.argv[2] 2049
 2050
 # define Bio source file, for this experiment I just assumed that we got the model file from function 2051
 bioSource = sys.argv[3] 2052
 2053
 # load functions into variables are 10x faster than using functions directly 2054
 # define variables 2055
 # object bytes list 2056
 byte_target_final = byte_target(user_object) 2057
 # bio bytes list 2058
 #bio_byte_final = bio(bioSource) 2059
 2060
 bio_byte_final = bio_char(bioSource) 2061
 # get object name to be used in the record 2062
 filenameAsText = [user_object] 2063
 2064
 # replacing bio bytes list into spaceless to be used the record for comparison later on 2065
 Biobits = [''.join(bio_byte_final)] 2066
 2067
 # formatting time 2068
 currenttime = now.strftime("%Y-%m-%d %H:%M:%S") 2069
 # defining time object to be stored in the record 2070
 ttime = [currenttime] 2071
 nonelist = ['None', 'None', 'None', 'None'] 2072
 # because object extension may vary, I use this condition to make sure we get the right meta data 2073
 2074
 if sys.argv[1] == ("-fT"): 2075
 cvrtmappied = mapping_1st_match(byte_target_final, bio_byte_final) 2076
 #in order to isert the mapped indexes into the db, I converted ',' into smt else such as '-' to be inserted 2077
into 'mappedbytesindex' colunm 2078
 print(cvrtmappied) 2079

Appendix A– Experiential Analysis Scripts (Python)

245

 2080
 convertedtodb = ['-'.join(cvrtmappied)] 2081
 # to remove '-' sign 2082
 print(convertedtodb) 2083
 2084
 2085
 elif sys.argv[1] == '-nL': 2086
 # this argument will imprints a given objects 2087
 cvrtmappied = nLocations(byte_target_final, bio_byte_final) 2088
 2089
 print(cvrtmappied) 2090
 2091
 featureVector = map(list, zip(*cvrtmappied)) 2092
 #this generates the imprints from each character list 2093
 2094
 2095
 print("") 2096
 #print featureVector 2097
 print(featureVector) 2098
 print(len(featureVector), "imprints generated") 2099
 2100
 pickle.dump(featureVector, open("imprints.p", "wb")) 2101
 # to save the generated imprints into a file 2102
 2103
 2104
 2105
 elif sys.argv[1] == '-nLm': 2106
 # this argument will imprints list of given objects 2107
 #variable = "dataset" 2108
 # this where the objects are located 2109
 path = "TLSH_FILES/original/" 2110
 n = 0 2111
 imprints = [] 2112
 allimprint = [] 2113
 allelipsidtime = [] 2114
 totalimprints = [] 2115
 2116
 for filename in os.listdir(path): 2117
 #for each object on the givin directory 2118
 if not (filename.endswith('.txt')): 2119
 #ignor any object other than specified 2120
 continue 2121
 2122
 #byte_target_final = byte_target(path+filename) 2123
 # this variable stores object's Hex as a list 2124
 byte_target_final = obj_char(path+filename) 2125
 2126
 2127
 start = timer() 2128
 2129
 cvrtmappied = nLocations(byte_target_final, bio_byte_final) 2130
 # this variable stores mapped indexes 2131
 #print(cvrtmappied) 2132
 2133
 end = timer() 2134
 2135
 elipsidtime = end - start 2136

Appendix A– Experiential Analysis Scripts (Python)

246

 allelipsidtime.append(elipsidtime) 2137
 featureVector = map(list, zip(*cvrtmappied)) 2138
 #print(featureVector) 2139
 #this generates the imprints from each character list 2140
 totalimprints.append(len(featureVector)) 2141
 print(n,"object:", filename, len(featureVector), "imprints generated") 2142
 filenameWithoutJpg = os.path.splitext(filename)[0] 2143
 path2 = "imprints/original/"+filenameWithoutJpg+".p" 2144
 2145
 pickle.dump(featureVector, open(path2, "wb")) 2146
 2147
 2148
 n+=1 2149
 imprints.append(len(featureVector)) 2150
 allimprint.append(featureVector) 2151
 print(sum(allelipsidtime)) 2152
 print(sum(totalimprints)) 2153
 print((sum(allelipsidtime)/sum(totalimprints))) 2154
 pickle.dump(imprints, open("result/original.p", "wb")) 2155
 # to write each obect imprints into a file 2156
 pickle.dump(allimprint, open("result/original_All.p", "wb")) 2157
 # to write all the imprints into a single file 2158
 2159
 elif sys.argv[1] == '-V': 2160
 featureVector = pickle.load(open("imprints.p", "rb")) 2161
 validation(featureVector, byte_target_final, str(bio_byte_final)) 2162
 2163
 elif sys.argv[1] == '-Vm': 2164
 2165
 n = 1 2166
 retrivedImprints = [] 2167
 allelipsidtime = [] 2168
 totalimprints = [] 2169
 #path = "images/modified/dataset" 2170
 folder = 'delWordsInc' 2171
 path = "TLSH_FILES/"+folder+"/" 2172
 for filename in os.listdir(path): 2173
 if not (filename.endswith('.txt')): 2174
 continue 2175
 2176
 filenameWithoutJpg = os.path.splitext(filename)[0] 2177
 path2 = "imprints/delWordsInc/"+filenameWithoutJpg+".p" 2178
 2179
 byte_target_final = obj_char("TLSH_FILES/"+folder+"/"+str(filename)) 2180
 featureVector = pickle.load(open(path2, "rb")) 2181
 2182
 print(n) 2183
 start = timer() 2184
 valditionreturn = validation(featureVector, byte_target_final, str(bio_byte_final)) 2185
 retrivedImprints.append(valditionreturn) 2186
 end = timer() 2187
 elipsidtime = end - start 2188
 allelipsidtime.append(elipsidtime) 2189
 totalimprints.append(valditionreturn[1]) 2190
 2191
 n += 1 2192
 2193

Appendix A– Experiential Analysis Scripts (Python)

247

 print(sum(allelipsidtime)) 2194
 print(sum(totalimprints)) 2195
 print((sum(allelipsidtime)/sum(totalimprints))) 2196
 2197
 pickle.dump(retrivedImprints, open("result/retrivel/"+folder+".p", "wb")) 2198
 # for k in range(34, 90): 2199
 # n = 1 2200
 # retrivedImprints = [] 2201
 # allelipsidtime = [] 2202
 # totalimprints = [] 2203
 # # path = "images/modified/dataset" 2204
 # folder = 'delWordsInc_70/'+str(k).zfill(2) 2205
 # path = "TLSH_FILES/" + folder + "/" 2206
 # for filename in os.listdir(path): 2207
 # if not (filename.endswith('.txt')): 2208
 # continue 2209
 # 2210
 # filenameWithoutJpg = os.path.splitext(filename)[0] 2211
 # path2 = "imprints/original/" + filenameWithoutJpg + ".p" 2212
 # 2213
 # byte_target_final = byte_target("TLSH_FILES/" + folder + "/" + str(filename)) 2214
 # featureVector = pickle.load(open(path2, "rb")) 2215
 # 2216
 # print n 2217
 # start = timer() 2218
 # valditionreturn = validation(featureVector, byte_target_final, str(bio_byte_final)) 2219
 # retrivedImprints.append(valditionreturn) 2220
 # end = timer() 2221
 # elipsidtime = end - start 2222
 # allelipsidtime.append(elipsidtime) 2223
 # totalimprints.append(valditionreturn[1]) 2224
 # 2225
 # n += 1 2226
 # 2227
 # print sum(allelipsidtime) 2228
 # print sum(totalimprints) 2229
 # print (sum(allelipsidtime) / sum(totalimprints)) 2230
 # 2231
 # pickle.dump(retrivedImprints, open("result/result/" + folder + ".p", "wb")) 2232
 2233
 elif sys.argv[1] == '-nF': 2234
 cvrtmappied = nLocations(byte_target_final, bio_byte_final) 2235
 pickle.dump(cvrtmappied, open("imprints.p", "wb")) 2236
 2237
 2238
 elif sys.argv[1] == '-Vf': 2239
 cvrtmappied = pickle.load(open("imprints.p", "rb")) 2240
 2241
 2242
 #print cvrtmappied 2243
 m = [] 2244
 for i in cvrtmappied: 2245
 counter = collections.Counter(extract_bio(byte_target_final, i)) 2246
 2247
 print(counter) 2248
 2249
 print("") 2250

Appendix A– Experiential Analysis Scripts (Python)

248

 print("") 2251
 2252
 elif sys.argv[1] == '-p': 2253
 #for folder in range(1,101): 2254
 2255
 #readText(sys.argv[2], str(folder).zfill(3)) 2256
 #Vm(str(folder).zfill(3), bio_byte_final) 2257
 attack = 'delSentences' 2258
 readText_sigleHashFile(attack) 2259
 Vm(attack, bio_byte_final) 2260
 result(attack) 2261
 2262
 #featureVector = map(list, zip(*cvrtmappied)) 2263
 2264
 #print len(featureVector), "imprints generated" 2265
 #pickle.dump(featureVector, open("imprints.p", "wb")) 2266
 2267
 # insertDB = finalrecord() 2268
 # print "inserting data into database" 2269
 # db(insertDB) 2270
 # 2271
 # assert isinstance(t0, object) 2272
 # print time.clock()2273

Appendix A– Experiential Analysis Scripts (Python)

End of Thesis

