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Abstract: Microvesicle generation is an integral part of the aging process of red blood cells in vivo 

and in vitro. Extensive vesiculation impairs function and survival of red blood cells after 

transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of 

microvesicle generation are largely unknown. In this study, we combined morphological, 

immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated 

understanding of the mechanisms underlying microvesicle generation during the storage of red 

blood cell concentrates. Our data indicate that changes in membrane organization, triggered by 

altered protein conformation, constitute the main mechanism of vesiculation, and precede changes 

in lipid organization. The resulting selective accumulation of membrane components in 

microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and 

coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of 

red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood 

bank storage and transfusion complications, and for assessing the role of microvesicles in 

pathologies affecting red blood cells. 
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1. Introduction 

In the blood bank, red blood cells (RBCs) are exposed to various stressful circumstances that 

affect their structure and function. The accumulated effect of these stressors consists of changes in 

cell shape [1], reduction in deformability [2,3], an increased tendency to aggregate [4], enhanced 

adherence to endothelial cells [5,6], and increased susceptibility to phagocytosis and hemolysis [7]. 

At the molecular level, there is an increase in removal signals on the RBC surface, caused by the 

generation of senescent cell antigens [8,9], the exposure of phosphatidylserine [10,11], and a decrease 

in concentration and/or activity of CD47 [12,13]. Associated—and possibly causative—processes are 
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the accumulation of oxidized proteins and lipids, increased protein breakdown, depletion of ATP, 

alterations in ion concentrations, and disturbed phospholipid organization [14]. All these phenomena 

are accompanied by the formation of microvesicles [15,16], making microvesicle generation an 

important consequence of RBC aging in vitro. 

Vesiculation has been postulated to protect against untimely removal of RBCs in vivo, by the 

shedding of cell membrane patches that have been damaged by aging-associated processes [17]. 

However, RBC-derived microvesicles contain hemoglobin, which, in pathological conditions, may 

enhance iron accumulation in the heart and the kidneys, and the removal signals on microvesicles 

may promote coagulation, inflammation, and autoimmune responses [18–20]. 

Even though data on RBC-derived vesicles in the circulation are scarce, they nevertheless show 

that these vesicles share essential features with those of RBC concentrates, suggesting that the same 

processes occur during RBC aging in vitro and in vivo [21,22]. Thus, the identification of the 

mechanism responsible for microvesicle generation in the blood bank may not only be instrumental 

in the reduction of transfusion side effects, but also in the elucidation of the fundamental mechanisms 

of RBC aging in vivo. The increasing awareness that alterations in RBC homeostasis affect the whole 

organism emphasizes the clinical value of molecular knowledge on RBC aging [23,24]. 

The presently available data for RBC concentrates show that the composition of microvesicles 

changes with storage time, but the extent and the cause–effect relationship between these changes 

remain unclear [22,25]. Therefore, we used a multidisciplinary approach combining 

immunochemical, morphological and multi-omics analysis for a detailed study of the changes that 

microvesicles undergo during storage in the blood bank. Our results indicate that different 

mechanisms become prominent at different storage times. Additionally, these results constitute a 

comprehensive, integrative data set for further elucidation of the causes and consequences of RBC 

vesiculation. 

2. Materials and Methods 

Microvesicles (MVs) were obtained from five standard RBC concentrates of anonymous donors 

of the regional blood bank Sanquin Bank South East Region, Nijmegen, The Netherlands, following 

the guidelines of the local medical ethical committee and in accordance with the declaration of 

Helsinki. At each storage time (one, three, and five weeks), the MVs were isolated from 10 mL 

samples as described before [26]. All analyses were performed on at least three biological replicates. 

MVs were analyzed by flow cytometry using mixtures of FITC-labeled CD235a (1:100, clone 

11E4B-7-6, Beckman Coulter, Fullerton, CA, USA) and Annexin V-PE (1:25, BD Pharmingen, Hoeven, 

the Netherlands), and with rabbit anti-human band 3 (1:1000, clone K2N6B/PM) combined with 

secondary antibody goat anti-rabbit Alexa 633 (IgG, A 21070, Rockford, USA). CD59 content was 

determined using PE-labeled CD59 (clone MEM43, 1:400, IQ products, Groningen, the Netherlands) 

in combination with FITC-labeled CD235a. Sulfate latex microspheres (0.9 μm; Invitrogen, Carlsbad 

CA, USA) and washed Flow-Count calibration beads (Beckman Coulter, Brea CA, USA) were used 

for quantification [26]. 

Cryo-transmission electron microscopy (Cryo-TEM) was performed using a JEM 1400 Flash 

electron microscope (120KV, Jeol, Tokyo, Japan; Nieuw-Vennep, The Netherlands) as described 

before [27]. To obtain more detailed structural information, some samples were imaged using bright 

field phase contrast transmission electron microscopy at 200 kV on a Talos Arctica microscope with 

a Falcon II direct electron detector and Volta phase plate with a total dose of about 100e-/Å2 in linear 

mode. Volta phase plate imaging was performed in focus. Samples were plunge-frozen into liquid 

ethane cooled by liquid nitrogen to just above its freezing point, with some solid ethane kept in 

equilibrium with the liquid. The plunging was performed on a Thermo Fisher Vitrobot Mark IV using 

2.5 s blot time, 4 °C, 100% relative humidity, and the blot force adjusted to have the blot pads just 

touch without blot paper. Quantifoil R1.2/1.3 holey carbon grids were used, and 2.5 μL of the sample 

was applied just before blotting. 

For proteomic analysis, MV samples were processed using a filter-aided sample preparation 

(FASP) procedure as described previously [28], and enzyme digests were acidified to a final 
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concentration of 0.1% TFA and purified by STAGE tips [29]. LC-MS/MS experiments were carried 

out by the LC-MS/MS platform composed of an Ultimate 3000 UPLC (Thermo Fisher, Dreieich, 

Germany) connected to the Orbitrap Velos Pro mass spectrometer (Thermo Fisher, Germany). 

Peptides were loaded on a 2-cm Acclaim PepMap100 Nano-Trap Column (Thermo Fisher, Germany) 

and separated by a 25-cm Acclaim PepMap100 Nano LC column (Thermo Fisher, Germany) packed 

with 3-μm C18 beads. The flow-rate was set at 300 nl/min in a 120 min gradient of 95% buffer A/5% 

buffer B to 65% buffer A/35% buffer B (buffer A: 0.5% acetic acid; buffer B: 0.5% acetic acid in 100% 

acetonitrile). Peptides eluting from the column were electrosprayed into the mass spectrometer at 2.3 

kV spray voltage. MS data acquisition was set in a data-dependent mode, automatically switching 

between MS and MS2, where full-scan spectra of intact peptides (m/z 350–1500) were acquired with 

an automated gain control accumulation value of 1,000,000 ions. The 10 most abundant ions were 

sequentially isolated and fragmented in the C trap, where dissociation was induced by HCD mode, 

using an accumulation target value of 10,000, a normalized collision energy of 45%, and a capillary 

temperature of 275 °C. Dynamic exclusion of ions sequenced within the 45 previous seconds was 

applied. Unassigned charge states and singly charged ions were excluded from sequencing. For MS2 

selection, a minimum of 10,000 counts was required. 

The MaxQuant—Andromeda search engine integrated in the MaxQuant software (Version 

1.3.0.5) was used for identifying proteins [30,31]. Peak lists were generated for the top 12 most intense 

MS peaks in 100 Da windows by MaxQuant prior to the human UNIPROT database (release 2017/04) 

search. The protein database was supplemented with frequently observed contaminants from 

MaxQuant. Andromeda search parameters for protein identification were set to a tolerance of 6 ppm 

for the parental peptide and 0.5 Da for fragmentation spectra and trypsin specificity allowing up to 

2 miscleaved sites. Deamination of glutamine, oxidation of methionine, and protein N-terminal 

acetylation were set as variable modifications, carboxyamidomethylation of cysteines was specified 

as a fixed modification. Minimal required peptide length was specified at six amino acids. The ‘match 

between run option’ for an elution time window of two minutes was enabled. Peptides and proteins 

detected by at least two peptides in one of the samples with a false discovery rate (FDR) of 1% were 

accepted. Excluded from validation were proteins identified by site only, external contaminants, and 

reversed proteins. Proteins were quantified by normalized summed peptide intensities [32], 

computed in MaxQuant with the label-free quantification (LFQ) option switched on. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset 

identifier PXD017056. 

Microvesicle lipids were analyzed by matrix-assisted laser desorption and ionization time-of-

flight (MALDI-TOF) mass spectrometry as described before [33,34]. 

The metabolomes of stored RBC microvesicles were charted as described before [35]. Raw files 

of replicates were exported, converted into mzXML format through MassMatrix (Cleveland, OH, 

USA), and then processed by MAVEN software (Version 8.0, http://maven.princeton.edu/). 

Metabolites were graphed with Graphpad Prism 5.01 (Graphpad Software, La Jolla, USA) and one-

way analysis of variance (ANOVA, p < 0.05) followed by a Bonferroni post-hoc test performed using 

the same software. 

3. Results 

3.1. Morphology by cryo-EM 

The formation of microvesicles (MVs) is an integral part of the aging process of the RBC in vitro. 

To identify aging-related changes in RBC derived vesicles, MVs were isolated from blood bank units 

after 1, 3, and 5 weeks of storage. These sampling times were selected mostly based on previous 

observations showing that most irreversible changes in morphology occur around 21 days of storage 

[1]. We found a considerable increase in the concentration of RBC-derived MVs during storage from 

4300 ± 1000 MVs/μL in week one and 7400 ± 5400 MVs/μL in week three to 25,400 ± 17,600 MVs/μL 

in week five, confirming previous observations, also regarding the large interindividual variation 
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[1,10,15]. Detailed electron microscopic analysis showed that the MVs became smaller with storage 

time, from a diameter of approximately 160 nm after week one and three to approximately 145 nm 

after five weeks of storage. Microvesicles are enriched in glycated and oxidized hemoglobins that are 

concentrated in denatured hemoglobin aggregates that are distinguished by a higher electron density 

[16,36]. We found that these aggregates accumulate especially during the first three weeks of storage 

(Figure 1). The fraction of aggregate-containing vesicles increases significantly from 24 ± 16% (N = 

141) in week one to 55 ± 13% in week three and five (N = 239; p < 0.05). Interestingly, approximately 

15 percent of the microvesicles contain a smaller vesicle (Figure 1B, C). This was confirmed by a more 

detailed analysis (Figure 1C). 

 

Figure 1. Cryo transmission electron microscopy images of microvesicles formed during RBC storage. 

(A) the arrow heads point to microvesicles with electron-dense material; the arrows point to less 

rounded, misshapen microvesicles; (B), images of a sample at 0° and tilted at 45°, showing vesicles 

inside other vesicles; (C), more detailed images of a sample obtained with a Talos Arctica electron 

microscope (see Materials and Methods). All images were obtained from the same RBC concentrate. 

3.2. Membrane Organization by Flow Cytometry 

Vesiculation is, in general, associated with changes in phospholipid organization, and most MVs 

expose phosphatidylserine (PS) [17,18,26]. During storage, the fraction of PS-positive MVs increased 

from approximately 70% in week one to almost 100% in week three and week five (Figure 2A). 

Notably, the concentration of phosphatidylserine was much higher in the three-week-old MVs than 

before or after that period, as indicated by the changes in mean fluorescence intensity (Figure 2B). As 

for the morphological data, we observed a relatively large heterogeneity in PS exposure and band 3 

content. These data provide the first indications that the mechanisms underlying microvesicle 

generation may change with storage time. 
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Figure 2. Aging markers on microvesicles during storage. (A), percentage of RBC-derived MVs 

reactive with Annexin V (PS+); (B), Annexin V mean fluorescence intensity (MFI). (C), percentage of 

RBC-derived MVs stained by anti-band 3 antibody; (D), anti-band 3 mean fluorescence intensity; (E), 

percentage of CD59-reactive MVs. RBC-derived MVs were categorized into wild type, CD59 low, and 

CD59-negative, as described before [37]. #,* p < 0.05 (N = 5), based on a comparison of the percentages. 

RBC-derived vesicles were isolated and analyzed by flow cytometry as described in Materials and 

Methods. 

Changes in band 3 may play a major role in microvesicle generation [16,17,38,39]. Flow 

cytometry analysis showed that the fraction of band 3-containing MVs, as well as the band 3 content 

per microvesicle, decreased with storage time (Figure 2C,D). 

Storage is accompanied not only by changes in membrane organization and protein content, but 

also by changes in protein function, as exemplified by our recent observations on the activity of GPI-

linked acetylcholinesterase [40]. Additionally, changes in GPI-linked proteins have been suggested 
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to be involved in the vesicle generation mechanism [37,41]. Therefore, we analyzed the presence of 

the GPI-linked CD59, the inhibitor of complement-induced lysis. Our data show that almost all MVs 

contained CD59 after the first week of storage, but that the population of CD59-positive MVs 

decreased significantly later during storage (Figure 2E). 

3.3. Phospholipid Composition by Mass Spectrometry 

The storage-associated changes in phosphatidylserine exposure on RBCs [11,42] and 

microvesicles (Figure 1) suggest that changes in the lipid component of the RBC membrane may be 

part of the mechanism of microvesicle generation. To obtain more direct information on lipid 

composition, we subjected the lipid fraction of microvesicles to mass spectrometry. Our analyses 

showed no changes in microvesicle phospholipid composition, except for an increase in lyso-

phosphatidylcholine after two weeks of storage (Figure 3). 

 

 

Figure 3. Storage-associated increase in lyso-phosphatidylcholine during microvesicle generation. All 

data were obtained from the positive ion MALDI-TOF mass spectra of microvesicles isolated from 

two RBC concentrates (B4 and B5) after two, four, and six weeks of storage (upper panel). The 

intensities of all detected peaks (either phosphatidylcholine (PC) or sphingomyelin (SM)) were added 
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and the sum of the proton and sodium adducts of selected lipids were divided by this value (lower 

panel). Only peaks with at least 0.1% of the intensity of the base peak were used. 

3.4. Storage-Related Changes in the Vesicular Metabolome 

Based on various descriptions about the relationship between RBC membrane organization and 

activity of key glycolytic enzymes [43–45], we postulated that the storage-associated changes in RBC 

membrane organization and associated disturbances in the kinetics of energy metabolism should be 

reflected in the microvesicle metabolome. 

Our data show that the vesicular concentrations of most metabolites of the central RBC 

pathways, such as the glycolysis (3-phospho-glycerate) and the pentose phosphate pathway (xylulose 

5-phosphate), did not change with storage time (Figure 4). However, the late intermediates of these 

pathways, such as ribose-5-phosphate in the pentose phosphate pathway and phosphoenolpyruvate 

of glycolysis, were significantly decreased in five-week-old microvesicles. Moreover, we found a 

strong decrease in lactate in the three- and five-week-old vesicles. Interestingly, the vesicular 

concentrations of the ATP-related metabolites inosine and hypoxanthine show the kinetics observed 

for the RBC cytoplasm during storage (Figure 4C), where energy depletion and a storage-induced 

activation of the purine salvage pathway has been observed [46]. Most of the amino acids in the 

vesicles increased in level after three weeks of storage. However, except for lysine and arginine, 

which further increased to week five, their concentration decreased in five-week-old microvesicles 

(Figure 4D). 
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Figure 4. Metabolite alterations in microvesicles during storage. (A) Time-course changes in 

metabolites of the glycolysis pathway; (B) Time-course changes in metabolites of the pentose 

phosphate pathway; (C) Time-course changes in metabolites of the purine salvage pathway; (D) 

Time-course changes in amino acids. 

All data are represented as the means of three biological and three technical replicates ± SEM. One-

way ANOVA (p < 0.05), followed by a Bonferroni post hoc test (alpha level 0.05) was used to 

determine pairwise statistically significant differences. If two variables have different letters, they are 

significantly different from each other; for all variables with the same letter, the difference between 

the means is not statistically significant. G6P, glucose 6-phosphate; F1,6BP, fructose 1,6 bisphosphate; 

GA3P, glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; 6PG, 6-

phosphogluconate; Ru5P, ribulose 5-phosphate; Xu5P, xylulose 5-phosphate; R5P, ribose 5-

phosphate; Sed7P, sedoheptulose 7-phosphate; E4P, erythrose 4-phosphate; PRPP, phosphoribosyl 

pyrophosphate; HPX, hypoxanthine. 

3.5. Storage-Dependent Changes in the Microvesicle Proteome 

Previous proteomic analyses have shown storage-associated changes in the proteomes of RBCs 

and RBC-derived microvesicles [16,22]. Here, we performed an analysis of the MV proteome to place 

the proteome into the context of our other analyses. From the 198 identified proteins (see Materials 
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and Methods), we selected some key markers. The cytoplasmic protein hemoglobin, the membrane 

protein band 3 and the plasma-derived IgG all increase with storage time (Figure 5). Band 3 is highly 

enriched in microvesicles, in comparison with other integral membrane proteins such as the glucose 

transporter GLUT2 (Figure 5, Table S1). It is noteworthy that this enrichment is also observed for the 

microdomain-associated proteins stomatin and flotillin-1 and flotillin-2 (Table S1). Overall, we could 

distinguish two patterns in the kinetics of vesicle enrichment. Vesicular enrichment either showed a 

maximum at week 3 followed by a decrease towards week five, or a continuous increase over the 

whole period. Even though the changes varied in extent, the overall patterns showed good 

reproducibility between the three biological replicates (Figure 5 and Table S1). The protein 

abundance patterns of the membrane protein band 3 and the cytoskeleton protein spectrin show 

conspicuous alterations in microvesicle membrane composition during storage (Figure 5). The band 

3/spectrin ratios show an approximate 10-fold enrichment of band 3 in the microvesicles relative to 

the RBC membrane between week 3 and week 5 [16,22], and the band3/GLUT2 and band 3/actin 

ratios show an even stronger enrichment of band 3 already during one week of storage from five-fold 

for the band 3/GLUT2 and up to 100-fold for the band 3/actin ratio; Table S1). The signals for IgG and 

complement show similar patterns, with a most pronounced increase after three weeks of storage 

(Figure 5). In contrast, the band 3/stomatin ratio decreases up to 10-fold with storage time (Table S1). 

 

Figure 5. Alterations in the microvesicle proteome during storage. The proteins in the microvesicles 

obtained after one, three, and five weeks of storage were identified and quantified as described in the 

Materials and Methods. The figure shows the selected proteins for various localizations/functions 

(hemoglobin and integral membrane proteins, cytoskeletal/membrane-associated proteins, GPI-
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linked proteins, plasma proteins involved in removal, metabolic enzymes, proteins involved in 

coagulation, proteins involved in redox status). LFQ, label-free quantification. The different colors 

show the values of three biological replicates, which partially overlap with the samples used for the 

other analyses (Figures 1–4). Note the different scales of the ordinates. 

4. Discussion 

Our integrated morphological and metabolic analysis of microvesicles generated during storage 

demonstrates that microvesicle composition changes on all levels. 

4.1. Morphology (cryo-EM) 

During the storage of RBC concentrates in the blood bank, the number of microvesicles increases 

strongly, especially between three to five weeks [1,10,15]. Our morphological analyses show high 

heterogeneity in the size and shape of these microvesicles at all time points, and that their 

morphology changes with storage time (Figure 1). These data confirm previous findings of a gradual 

increase in size from approximately 140 to 160 nm obtained in fixed microvesicle preparations, and 

data suggesting the presence of degenerated membrane patches [47]. A small number of these 

vesicles may be exosomes originating from the few reticulocytes that were present in the blood at the 

time of collection, which mature during the first days of storage [14,16]. Many vesicles contain 

electron-dense material, probably consisting of aggregated hemoglobin [22,47]. The presence of the 

extracellular hemoglobin-binding and heme-binding proteins haptoglobin and hemopexin in the 

microvesicle proteomes (Table S1) confirms electron microscopic indications for the shedding of 

intravesicular material, especially after prolonged storage [47]. Surprisingly, we observed smaller 

vesicles inside 15 percent of the microvesicles in all samples (Figure 1). Such intravesicular vesicles 

were found also in freshly isolated samples, making it unlikely that their presence is an artifact caused 

by the sample preparation. These observations require more detailed investigation but suggest that 

during storage, when microvesicles are not removed as in the circulation, vesiculation may proceed 

within existing vesicles. Together with the biphasic patterns of many of our present observations, 

these data support the hypothesis that various vesiculation mechanisms become active with 

increasing storage time, with a critical period around three weeks of storage [1,14,16,19,22,48]. 

4.2. Membrane Organization 1: Flow Cytometry and Phospholipid Analysis 

Quantitative analysis of PS exposure did not only show an increase in PS-exposing microvesicles 

during storage as described before [13,19,42], but also changes in the PS content with the highest 

concentration in microvesicles in three-week-old concentrates (Figure 2). Although we found no 

statistically significant correlations between microvesicle size and PS (or any other surface markers), 

these data indicate that changes in microvesicle morphology are associated with changes in the 

phospholipid component of the RBC membrane. Such changes likely consist of changes in the 

organization rather than changes in composition, as suggested by mass spectrometry showing a 

rather stable phospholipid composition (Figure 3). In agreement with other observations [49], we 

observed a small increase in SM 16:0 and a small decrease in SM 24:1, which may be associated with 

increased vesicle formation [34]. Additionally, we find an increase in lyso-PC upon prolonged storage 

(Figure 3). Lyso-PC and lyso-PE levels are increased after RBC rejuvenation in vitro, probably as a 

consequence of cell damage [50]. Previously, we have observed an increase in the lyso-PC content of 

the RBC membrane in patients with sepsis, together with increased microvesicle numbers and 

increased phospholipase A2 activity in the blood [34]. Additionally, we have found that lyso-PC is 

present in vesicles, but not in RBC membranes [48]. These findings all suggest that small changes in 

phospholipid composition of the RBC membrane, resulting in changes in organization, may be 

involved in the generation of microvesicles in affected, susceptible membrane regions. We postulate 

that the strong increase in apolipoprotein A content with storage (Figure 5), as has also been observed 

for apolipoprotein J [51], may be the result of the emergence of new phospholipid-binding sites. The 

concomitant appearance of PS and lyso-PC promotes microvesicle recognition and removal [51–54]. 
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4.3. Membrane Organization 2: Flow Cytometry and Proteomics 

Proteomic data on the storage-associated increase in the lipid raft-associated proteins stomatin 

and flotillin in microvesicles supports the involvement of the lipid-involving membrane 

reorganization in microvesicle formation [16,41,55]. The kinetics of the content of these proteins in 

microvesicles show a biphasic pattern, as observed for integral membrane proteins such as band 3 

(Figure 5). The binding of stomatin and/or flotillin to microdomains, in combination with 

oligomerization and binding to band 3 complexes [55–57], may affect the organization of the lipid 

part of the cell membrane and the stability of the spectrin/actin cytoskeleton. This will disturb the 

balance between the forces that determine membrane curvature, and result in evagination and vesicle 

formation [58]. Interestingly, the band 3/stomatin ratio decreased 10-fold after the first week of 

storage, whereas the band 3/spectrin and band 3/actin ratios increase 10-fold and six-fold, 

respectively. This may be caused by a weakening of the binding of band 3 to the ankyrin/spectrin 

binding site [22,55], leading to an increase in monomeric band 3 molecules. The increased mobility of 

band 3 monomers [59] could result in the enrichment of band 3 in the microvesicles. Interestingly, 

our proteome analysis shows an increase in band 3, whereas flow cytometry analysis shows a storage-

dependent decrease in band 3 exposure (Figure 3). These results support the hypothesis that storage-

associated changes in band 3 conformation affect the interaction between membrane and 

cytoskeleton especially at the band 3/ankyrin complex, and that the resulting microvesicles serve to 

remove damaged proteins from the aging RBCs [17,22]. In addition, changes in band 3 conformation 

may contribute to the fast removal of microvesicles by an increase in senescent cell antigen-binding 

IgG. Similar indications for storage-associated changes in membrane protein conformation as well as 

organization are provided by the enrichment of the GPI-linked proteins CD55, CD59, and 

acetylcholinesterase on microvesicles (Figure 5). There are indications that the microvesicle forms of 

these proteins are inactive [37,40]. Accumulation of inactive CD55 and CD59 is the likely cause of the 

accumulation of complement (Figure 5). Together with the exposed phosphatidylserine (Figure 2) 

and the microvesicle-bound IgG (Figure 5), this will contribute to the fast removal of the microvesicles 

from the circulation. However, flow cytometric, as well as proteomic data, show that microvesicles 

without CD55 and CD59 accumulate at longer storage times (Figures 4, 5). The concomitant 

accumulation of complement, in combination with the accumulation of proteins such as prothrombin, 

antithrombin, plasminogen, and IgG (Figure 5), indicates that removal of microvesicles or prevention 

of their generation will reduce the unwanted side effects of transfusion. This may be especially 

relevant when the physiological clearing system is overwhelmed by large microvesicle numbers, e.g., 

in transfusion-dependent patients or after transfusion of older RBC concentrates. The large 

interindividual heterogeneity we observed in quantity of protein and PS expression (Figures 1 and 2) 

suggests that microvesicle analysis may be a useful tool to select the least-harmful red blood cell 

concentrates for transfusion, especially in vulnerable patients. 

4.4. Metabolome Changes as Clues to Vesiculation Mechanisms 

Red blood cell aging in vivo and in vitro is accompanied not only by changes in morphology, 

function, and structure, but also by changes in metabolism. Some of these changes, such as decreases 

in ATP and 2,3-DPG, are part of the blood bank quality control system [60]. Recently, metabolome 

analyses have revealed many aging-associated changes in RBC metabolism [46,50]. These changes 

may reflect alterations in enzyme and/or membrane transport activity. Glycolytic enzymes are 

organized in multi-protein complexes that bind to band 3 and/or various other membrane proteins, 

and changes in band 3 conformation regulate their activity [44,45,61–63]. Metabolomic data of 

misshapen RBCs support the hypothesis that alterations in membrane protein conformation affect 

various metabolic pathways [2,64–66]. Therefore, we postulated that the metabolome of microvesicles 

could reveal changes in membrane protein organization. Our present data show that the kinetics of 

the concentrations of glycolysis intermediates reflect the microvesicle content of glycolysis enzymes 

(Figures 4 and 5). Additionally, the changes in the microvesicular concentration of most metabolites 

during storage mirror the changes in the parent RBCs [46]. One notable exception is the strong 

decrease in lactate in the microvesicles during storage, which is in marked contrast to the increase in 
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RBCs and in the supernatant [46]. This observation emphasizes the involvement of a carrier-

dependent pathway in the transport of lactate across the RBC membrane. Interestingly, the 

microvesicles from five-week-old RBC concentrates contained very high levels of hypoxanthine 

compared with the one-week-old microvesicles (Figure 4). Recently, the accumulation of 

hypoxanthine has been identified as a metabolic marker of storage lesions with clinical implications, 

which upon conversion by xanthine oxidase generates reactive oxygen species [67–70]. Our findings 

suggest that, next to old RBCs, microvesicles may be the main vehicle for this toxic molecule. 

The amino acids displayed various accumulation kinetics during storage, varying from an 

increase after three weeks followed by a decrease at five weeks for the aromatic amino acids 

phenylalanine, tryptophan, and tyrosine, to a strong increase over time for lysine and arginine, 

whereas the concentrations of valine and cysteine hardly changed during the storage period (Figure 

4). These data confirm metabolomic indications for aging-related and cell morphology-associated 

effects on the activity of various transport systems in RBCs [65,66]. Additionally, these data indicate 

that in-depth knowledge of the changes that the metabolism and transport of amino acids, as well as 

the activity of proteases that the RBC undergo during aging and storage, will be relevant for 

understanding the role of RBCs in maintaining organismal homeostasis [23,24]. 

5. Conclusions 

Our data emphasize the close interaction between the lipid and protein compartments of the 

membrane in maintaining an intact, functional RBC. However, the relatively small number of donors 

and samples that could be analyzed with all techniques (morphology, removal markers, lipidomics, 

proteomics, and metabolomics) precludes a conclusive correlation analysis of our microvesicle data 

with the regular RBC blood bank markers such as pH, ATP, etc. A few hypotheses can be postulated 

on the cause/effect relationship between the changes in the lipid, protein, and metabolite composition 

of microvesicles, leading to an integrative mechanism of vesicle formation. In a lipid-centered 

hypothesis, a small increase in lyso-PC and/or decrease in sphingomyelin is the initial event that 

could induce a weakening of the band 3/ankyrin/spectrin linkage. The recruitment of stomatin to 

cholesterol/ceramide-rich domains could enhance the curvature of the membrane at these sites. Loss 

of interactions with other proteins would then lead to changes in band 3 conformation. In this 

scenario, removal or inhibition of phospholipase or sphingomyelinase activity from the RBC 

concentrates should have a pronounced effect on microvesicle numbers and composition [71]. Our 

data do not support this hypothesis, as the largest increase in the lyso-PC content of the microvesicles, 

and the increase in the lipid-anchored acetylcholinesterase occurs especially after three weeks of 

storage. Thus, changes in phospholipid organization, if they play a causal role in microvesicle 

generation at all, are likely to be secondary processes. 

In a protein damage-centered hypothesis, vesiculation starts by changes in band 3 conformation 

that weaken the band 3/ankyrin/spectrin linkage. The high concentrations of catalase and 

peroxiredoxin (Figure 5) support the hypothesis that oxidative damage is the main mechanism for 

the aging-related changes in band 3 conformation, either directly or by an effect on the band 

3/ankyrin/spectrin linkage [17,22]. Thus, oxidative damage-inducing changes in band 3 conformation 

may be the primary trigger for vesiculation. Various observations support this hypothesis. The 

involvement of oxidative damage is supported by the reduction in microvesicle formation upon the 

addition of ascorbic acid to the storage medium [72]. The specific increase in vesicular band 3 content 

during the first three weeks of storage (Figure 5) and the concomitant decrease in band 3 antigenic 

activity (Figure 2) support the relationship between changes in conformation with a decrease in 

binding to the cytoskeleton. The changes in vesicle morphology (Figure 1) provide further evidence 

for the presence of progressive alterations in the interaction between the membrane and the 

cytoskeleton. Mechanical investigations, showing that vesicles from fresh RBCs are softer than 

vesicles from stored RBCs and that this is mainly dependent on the protein/lipid ratio [48], support 

the hypothesis that small changes in protein organization are the main triggers of vesicle generation. 

Our findings on the content of the microdomain-associated protein stomatin and the GPI-linked 
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proteins (Figure 2, Figure 5) indicate that small, local changes may trigger secondary changes in lipid 

organization. 
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A.G.V.D.; Bosman, G.J.C.G.M.; Van Berkel, T.J.C. Liver Kupffer cells rapidly remove red blood cell–

derived vesicles from the circulation by scavenger receptors. Blood 2005, 105, 2141–2145. 

53. Peter, C.; Waibel, M.; Radu, C.G.; Yang, L.V.; Witte, O.N.; Schulze-Osthoff, K.; Wesselborg, S.; Lauber, K. 

Migration to Apoptotic "Find-me" Signals Is Mediated via the Phagocyte Receptor G2A. J. Boil. Chem. 

2007, 283, 5296–5305. 

54. Fens, M.H.; Van Wijk, R.; Andringa, G.; Van Rooijen, K.L.; Dijstelbloem, H.M.; Rasmussen, J.T.; De 

Vooght, K.M.; Schiffelers, R.M.; Gaillard, C.A.; Van Solinge, W. A role for activated endothelial cells in 

red blood cell clearance: Implications for vasopathology. Haematologica 2011, 97, 500–508. 

55. Prudent, M.; Delobel, J.; Hübner, A.; Benay, C.; Lion, N.; Tissot, J.-D. Proteomics of Stored Red Blood Cell 

Membrane and Storage-Induced Microvesicles Reveals the Association of Flotillin-2 With Band 3 

Complexes. Front. Physiol. 2018, 9, 421. 

56. Lapatsina, L.; Brand, J.; Poole, K.; Daumke, O.; Lewin, G.R. Stomatin-domain proteins. Eur. J. Cell Boil. 

2012, 91, 240–245. 



Proteomes 2020, 8, 6 16 of 16 

57. Rungaldier, S.; Oberwagner, W.; Salzer, U.; Csaszar, E.; Prohaska, R. Stomatin interacts with 

GLUT1/SLC2A1, band 3/SLC4A1, and aquaporin-1 in human erythrocyte membrane domains. Biochim. Et 

Biophys. Acta (Bba)-Bioenerg. 2012, 1828, 956–66. 

58. Gov ,N., Müllner, E.W., Salzer, U. Cytoskeletal connectivity may guide erythrocyte membrane ex- and 

invagination–A discussion point how biophysical principles might be exploited by a parasite invading 

erythrocytes. Blood Cells Mol. Dis. 2017, 65, 78–80. 

59. Kodippili, G.C.; Spector, J.; Hale, J.; Giger, K.; Hughes, M.R.; McNagny, K.; Birkenmeier, C.; Peters, L.; 

Ritchie, K.; Low, P.S. Analysis of the Mobilities of Band 3 Populations Associated with Ankyrin Protein 

and Junctional Complexes in Intact Murine Erythrocytes*. J. Boil. Chem. 2011, 287, 4129–4138. 

60. Hess, J.R. Measures of stored red blood cell quality. Vox Sang. 2014, 107, 1–9. 

61. Puchulu-Campanella, E., Chu, H., Anstee, D.J., Galan, J.A., Tao, W.A.; Low, P.S. Identification of the 

components of a glycolytic metabolon on the human red lood cell membrane. J Biol. Chem. 2013, 288, 848–

858. 

62. Puchulu-Campanella, E.; Turrini, F.M.; Li, Y.-H.; Low, P.S. Global transformation of erythrocyte 

properties via engagement of an SH2-like sequence in band 3. Proc. Natl. Acad. Sci. 2016, 113, 13732–13737. 

63. Pallotta, V.; Rinalducci, S.; Zolla, L. Red blood cell storage affects the stability of cytosolic native protein 

complexes. Transfus. 2015, 55, 1927–1936. 

64. Cluitmans, J.C.A.; Gevi, F.; Siciliano, A.; Matte, A.; Leal, J.; De Franceschi, L.; Zolla, L.; Brock, R.; Adjobo-

Hermans, M.J.; Bosman, G. Red Blood Cell Homeostasis: Pharmacological Interventions to Explore 

Biochemical, Morphological and Mechanical Properties. Front. Mol. Biosci. 2016, 3, 4516. 

65. Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.; Bosman, G.; Delaunay, J.; Junot, C.; 

Romeo, P.-H. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis. 

Haematologica 2011, 96, 1861–1865. 

66.  Darghouth, D.; Koehl, B.; Madalinski, G.; Heilier, J.-F.; Bovee, P.; Xu, Y.; Olivier, M.-F.; Bartolucci, P.; 

Benkerrou, M.; Pissard, S.; et al. Pathophysiology of sickle cell disease is mirrored by the red blood cell 

metabolome. Blood 2011, 117, e57–e66. 

67. Pertinhez, T.A.; Casali, E.; Lindner, L.; Spisni, A.; Baricchi, R.; Berni, P. Biochemical assessment of red 

blood cells during storage by 1H nuclear magnetic resonance spectroscopy. Identification of a biomarker 

of their level of protection against oxidative stress. High Speed Blood Transfus. Equip. 2014, 12, 548–556. 

68. Casali, E.; Berni, P.; Spisni, A.; Baricchi, R.; Pertinhez, T.A. Hypoxanthine: A new paradigm to interpret 

the origin of transfusion toxicity. High Speed Blood Transfus. Equip. 2015, 14, 555–556. 

69. Paglia, G.; D’Alessandro, A.; Rolfsson, Óttar; Sigurjonsson, Ólafur, E.; Bordbar, A.; Palsson, S.; Nemkov, 

T.; Hansen, K.C.; Gudmundsson, S.; Palsson, B.O. Biomarkers defining the metabolic age of red blood 

cells during cold storage. Blood 2016, 128, e43–e50. 

70. Nemkov, T., Sun, K., Reisz, J.A., Song, A., Yoshida, T.; Dunham, A.; Wither, M.J.; Francis, R.O.; Roach, 

R.C.; Dzieciatkowska, M.; et al. Hypoxia modulates the purine salvage pathway and decreases red blood 

cell and supernatant levels of hypoxanthine duringe refrigerated storage. Haematologica 2018, 103,361–372. 

71. Pollet, H.; Conrard, L.; Cloos, A.-S.; Tyteca, D. Plasma Membrane Lipid Domains as Platforms for Vesicle 

Biogenesis and Shedding? Biomol. 2018, 8, 94. 

72. Stowell, S.R.; Smith, N.H.; Zimring, J.C.; Fu, X.; Palmer, A.; Fontes, J.; Banerjee, U.; Yazer, M.H. Addition 

of ascorbic acid solution to stored murine red blood cells increases posttransfusion recovery and 

decreases microparticles and alloimmunization. Transfus. 2013, 53, 2248–2257. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


