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Purpose: Hydroxyapatite (HA) is a biologically active ceramic which promotes bone

growth, but it suffers from relatively weak mechanical properties. Multi-walled carbon

nanotubes (MWCNTs) have high tensile strength and a degree of stiffness that can be used

to strengthen HA; potentially improving the clinical utility of the bone implant.

Methods: HA was precipitated by the wet precipitation method in the presence of pristine

(p) or functionalised (f) MWCNTs, and polyvinyl alcohol (PVA) or hexadecyl trimethyl

ammonium bromide (HTAB) as the surfactant. The resulting composites were characterised

and the diametral tensile strength and compressive strength of the composites were mea-

sured. To determine the biocompatibility of the composites, human osteoblast cells (HOB)

were proliferated in the presence of the composites for 7 days.

Results: The study revealed that both the MWCNTs and surfactants play a crucial role in the

nucleation and growth of the HA. Composites made with f-MWCNTs were found to have

better dispersion and better interaction with the HA particles compared to composites with p-

MWCNTs. The mechanical strength was improved in all the composites compared to pure

HA composites. The biocompatibility study showed minimal LDH activity in the media

confirming that the composites were biocompatible. Similarly, the ALP activity confirmed

that the cells grown on the composites containing HTAB were comparable to the control

whereas the composites containing PVA surfactant showed significantly reduced ALP

activity.

Conclusions: The study shows that the composites made of f-MWCNTs HTAB are stronger

than pure HA composites and biocompatible making it a suitable material to study further.

Keywords: calcium phosphate, carbon nanotubes, osteoblast cells, LDH assay, alkaline

phosphatase

Introduction
A unique feature of bone is that it has apparently contradictory properties of

stiffness yet flexibility, and lightness yet strength. Bone provides mechanical sup-

port for the body and also protects the vital organs; but also enables physiological

processes such as erythropoiesis in the marrow, serves as a reservoir for minerals,

and takes part in acid–base balance.1 However, many circumstances call for bone

grafting owing to bone defects from traumatic or from non-traumatic destruction.

Synthetic nanostructured hydroxyapatite (HA) has long been an attractive choice

for the partial replacement of bone because of its similarity to the mineral compo-

nent of natural bone. Synthetic HA has shown excellent biocompatibility in vitro
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with cultured osteoblasts, as well as other cells, that read-

ily grow on HA composites or HA-coated surfaces.2

However, synthetic HA does not mimic all the mechanical,

chemical or biological properties of natural bone. A major

disadvantage of synthetic HA is its poor mechanical prop-

erties, such as brittleness and low tensile strength; thus the

clinical uses have been limited particularly in load-bearing

applications or where the section of bone replacement is

large.3 Natural HA in bone and synthetic HA also differ in

their chemical composition. Natural HA contains other

ions: mainly CO3
2− and traces of Na+, Mg2+, Fe2+,

Cl−, F−, whereas synthetic HA is usually stoichiometric,

with a chemical composition of Ca10(PO4)6(OH)2.
4

Regardless of the precise chemistry, HA plays an impor-

tant role in bone repair including osteoblast cell adhesion,

proliferation and in bone remodelling.

To overcome the mechanical problem of synthetic HA

not imparting all the desired properties of natural bone, it

has been usual to present the synthetic HA as part of a

composite material for bone replacement. Composites can

be defined as a material consisting of two or more different

components, which are combined with the aim of improv-

ing the mechanical and/or biological properties of the

overall material.5,6 Over the years, synthetic HA micro-

composites have been developed with various metals (tita-

nium, stainless steel, titanium alloys),7,8 other ceramics

(bioglass, tricalcium phosphate, alumina, zirconia)9,10 and

polymers (collagen, gelatine, chitosan, poly lactic-co-gly-

colic acid (PLGA), polylactic acid (PLA) and polymethyl

methacrylate (PMMA)). However, these composites suffer

from either very strong or very poor mechanical properties

[e.g., Stainless steel, PLGA, PLA,11,12]; induce an adverse

immune response from the host bone [e.g., Calcium

sulphate13]; or lack strong interfacial bonding between

the constituents such that the composite is not durable or

satisfactorily homogenous for clinical use.14 Recently,

with advances in nanotechnology, nanocomposites have

gained much interest and might overcome some of these

shortcomings of the micron scale composites by allowing

the manipulation of the composite constituents at the nano

level.

Nanocomposites can be defined as a heterogeneous

combination of two or more materials in which at least

one of those materials should be on a nanometer scale.5

Since natural bone has a nanoscale structure made of

several chemicals, designing bone grafts in the form of

nanocomposite is perceived to be beneficial over single-

phase and microcomposite materials. Nanocomposites are

usually made of two components; the basic matrix and the

reinforcement. In bone implants, the reinforcement serves

to improve the strength of the nanocomposite by blocking

the growth of cracks in them.15 This can be achieved by

employing materials that have a high aspect ratio. One

such reinforcement is carbon nanotubes (CNTs).

CNTs with their intrinsic properties including: a high

tensile strength (approximately ×100 times greater than

steel); high flexibility and elasticity; high electrical and

thermal conductivity and a low thermal expansion coeffi-

cient; and a high aspect ratio; is an ideal reinforcement

material.16 Therefore, in the case of HA-CNTs nanocom-

posites, a synthetic HA matrix reinforced with CNTs can

be anticipated to be biocompatible and strong.

There are many reports on the development of HA

matrix composites reinforced with multi-walled carbon

nanotubes (MWCNTs) as reviewed by Lahiri et al,17 and

Shin et al.18 Previous studies focussed on the HA matrix

composites reinforced with MWCNTs through various

processes such as sol–gel precipitation, spark plasma

deposition or ball milling.19,20 It was found that the addi-

tion of CNTs does improve the mechanical strength of the

HA composites but requires further improvement for load-

bearing devices. The dispersion of CNTs has a significant

effect on the mechanical properties. Most researchers used

functionalised CNTs with strong acids or surfactants21,22

to obtain a homogenous dispersion of the CNTs in the

matrix. The surface modifications of CNTs also have a

significant effect on the subsequent nucleation and growth

of HA crystals during the sol–gel precipitation process.

However, there are few reports on the interplay of surface

modifications and surfactants on the mechanical proper-

ties. In addition, controversy exists on the biocompatibility

of the CNTs. Some studies have reported that CNTs

increase the adhesion and proliferation of osteoblasts and

fibroblasts,19,23,24 although the biocompatibility with these

cells may depend on the diameter and surface energy of

the CNTs. In contrast, CNTs have also been reported to

reduce the proliferation of osteoblast cells and are toxic to

them.25–28 Hence, although CNTs have remarkable proper-

ties, their application in nanocomposites for bone implants

is still uncertain owing to the difficulty in obtaining a

homogenous composite that would be durable and clini-

cally robust, as well as disagreement on biocompatibility

of the composites, especially for bone cells.

The overall aims of the current study were therefore to

provide a HA-MWCNTcomposite that would be acceptable,

in principal, for clinical use. Initial experiments explored the
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best approaches to preparing a homogeneous composite by

using functionalised and pristine MWCNTs and various dis-

persing agents to explore nucleation of the HA and growth of

the composite. Then, after testing the resulting composites

for their mechanical properties, the best materials were

selected for biocompatibility studies. These latter experi-

ments explored cell health in vitro using cultured human

osteoblasts (HOB) cells.

Materials And Methods
In order to study the effect of MWCNTs in synthetic HA

nanocomposites, 4 different types of nanocomposite pow-

ders were produced using pristine (p, as produced) and

functionalised (f, oxidised with Nitric acid) MWCNTs

with two types of surfactants – polyvinyl alcohol (PVA)

and hexadecyl trimethyl ammonium bromide (HTAB), in

combinations as follows: 1. p-MWCNTs-PVA, (HA + pris-

tine MWCNTs + PVA); 2. f-MWCNTs-PVA, (HA + func-

tionalized MWCNTs + PVA); 3. p-MWCNTs-HTAB,

(HA + pristine MWCNTs + HTAB); 4. f-MWCNTs-

HTAB, (HA + functionalized MWCNTs + HTAB). Pure

HA powder (without the presence of MWCNTs or surfac-

tants) was produced in house and used as a control. The

nanocomposite powders were then mixed with PVA, or

HTAB as appropriate, to produce the final composites.

Analytical grade reagents were used throughout the produc-

tion process.

Functionalization Of MWCNTs
MWCNTs were functionalised to improve their dispersivity in

aqueous media and to compare against the pristine (not func-

tionalised) nanotubes. Commercially supplied MWCNTs

(Shenzhen Nanotech Port, China) with a diameter of 10–30

nm, length 5–15 μm and ≥95% purity (manufacturer’s infor-

mation) were functionalised in house using concentrated nitric

acid (Sigma Aldrich, UK) following an established protocol.29

Briefly, 0.3 g of the as-received MWCNTs was mixed with

25 mL of 14.5 mol/L concentrated nitric acid and refluxed at

room temperature for 48 hrs. The resulting dispersionwas then

filtered through a whatman® glass microfiber filter paper

(WHA1827070, Sigma Aldrich, Irvine, UK) with pore size

1.5 µm and washed in deionised water until neutral pH was

achieved. The sample was then dried in a vacuum oven

(Edwards High Vacuum Ltd, Crawley, Sussex) at 40°C for

24 hrs. Where measurements could be made using TEM, the

pristine MWCNTs had a length ranging between 2 and 10 μm
and diameters between 19 and 25 nm. The functionalised

MWCNTs in comparison were less tangled, and the tubes

had a curled appearance (Figure S1). The functionalised

MWCNTs were fragmented compared to the pristine material,

with lengths between 0.8 −2 μm and diameters of 13–24 nm.

Preparation Of HA-MWCNTs Powder
The various HA-MWCNT nanocomposites were prepared

using the sol–gel technique. To produce the nanocompo-

site powders, HA must be nucleated on the walls of the

MWCNTs in the presence of the surfactant. In a typical

experiment, to produce 10 g of the nanocomposite powder,

0.005 g of PVA (MW- 70,000–100,000, Sigma Aldrich,

UK) or 0.005 g of HTAB (Sigma Aldrich, UK) was added

to 100 mL ultrapure water. Then, 0.05 g of pristine or

functionalized MWCNTs was added to the mixture which

was sonicated at 50–60 Hz (Metason 120T, Struers, UK)

for 30 mins at room temperature until all the MWCNTs

were dispersed. HA was nucleated into the dispersion by

the addition of 200 mL of 0.1 mol/L calcium acetate and

0.06 mol/L of ammonium phosphate to obtain a final

calcium: phosphate ratio of 10:6, normally expressed as

1.67. The reaction occurs as follows:

5Ca (CH3COO)2·H2O + 3(NH4)2H2PO4→Ca5 (PO4)3
(OH) + 3NH4 (CH3CO2) + 7CH3CO2H

The solution was stirred at the rate of 900–1000 rpm

using a magnetic stirrer (dial setting 9, Hotplate/stirrer,

RCT basic, IKA Oxford, UK). While stirring, the pH of

the solution was checked periodically and maintained at

9.5–10 by the addition of 6 mol/L sodium hydroxide

solution. The solution was stirred for 1 hr and left to

mature for 24 hrs at 40°C. The resulting dispersion con-

taining the HA nucleated on the MWCNTs was then

filtered through a Whatman® filter paper (WHA1001070,

Sigma Aldrich, Irvine, UK) with a pore size of 11 µm. The

precipitate collected was washed with ultrapure water and

subsequently dried under a vacuum at 60°C for 24 hrs. The

dry precipitate was manually crushed with a glass pestle

and mortar to make a fine powder, and was then sintered at

100°C for 8 hrs. In order to obtain HA alone, the process

was conducted exactly as above, but without the addition

of the MWCNTs.

HA-MWCNTs Composites
The nanocomposite powders obtained from the above

method were used to prepare the final composites which

were produced following an established protocol in our

laboratory.30 Briefly, 1 g of the calcined nanocomposite

powder was mixed with 1 mL of 20% PVA at room
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temperature. The mixture was packed into cylindrical

moulds. Different sizes of moulds were used for mechan-

ical and biocompatibility test; to comply with the interna-

tional testing standards on mechanical testing (see below)

and to ensure that the composites fitted in 24 well plates

for cell culture work, respectively. The ends of the moulds

were blocked with short aluminium cylinders and then

pressure was applied on top of the cylinders using

mechanical mini pellet press (GS03940, Specac, UK).

The pressure applied on each sample was 26 MPa, which

was held for 1 min; then the aluminium cylinders were

removed from the moulds. The samples were placed in an

oven at 40°C for 48 hrs to dry the composite. Afterwards,

the samples were carefully removed from the moulds and

stored at room temperature, until required for mechanical

testing and biocompatibility studies (see below)

Characterisation Of The Composite

Materials
Physico-chemical characterisation was performed at sev-

eral steps in the synthesis of the composites including; the

original materials and their functionalised forms in disper-

sions, as well as the resulting powers that were subse-

quently compressed into pellets to make the final

composite. In addition to the manufacturer’s information,

the materials were examined by electron microscopy for

their appearance and primary size. X-ray diffraction

(XRD) is the most common technique to determine crystal

structures and atomic spacing; and was used to identify the

phase purity of the produced nanocomposite powders.

Fourier transform infrared spectroscopy (FTIR) analysis

was performed to detect the functional groups and to

characterise covalent bonding.

To confirm the primary dimensions (length, tube dia-

meter) and morphology (straightness, branches and bun-

dles), the MWCNTs as supplied by the manufacturer were

examined by transmission electron microscopy (TEM).

Batches of the functionalized MWCNTs prior to making

the nanocomposite powder were also examined; followed

by the nanocomposite powders, especially for morphology

of the HA crystal. Briefly, in separate runs, approximately

0.05 g of the material to be analysed (pristine MWCNTs,

functionalised MWCNTs and nanocomposite powders)

were dispersed separately in distilled water and sonicated

for 5 mins to create a stock dispersion. All electron micro-

scope observations were made on 3 sub-samples of each

stock. A drop of the relevant dispersion was placed on a

copper grid, then air dried, and subsequently observed at

an accelerating voltage of 120 kV using a high resolution

transmission electron microscope (TEM, JEOL 1400,

JEOL ltd, Japan). On each specimen, 30 random images

were collected for quantification of dimensions of the

materials. The images were processed using image J soft-

ware (Windows version 1.48) to measure the length and

diameter of the tubes. The same process was used to

analyse the shape, size and growth of the HA crystals

around MWCNTs powder.

Slight changes in the Ca:P ratio of the reaction mixture

and/or sintering temperature during the production of

nanocomposite powders can yield other types of calcium

phosphates such as tri- and tetra-calcium phosphate.

Hence, the phase purity of the sintered nanocomposite

powders was determined by XRD. The patterns were

obtained by an automated Philips powder diffractometer.

Briefly, each specimen was irradiated using copper anode

K (alpha) X-ray (CuKα, wavelength 1.5418 Å) generated

by 45 kV and 40 mA of current in the cathode-ray source.

All data were collected in a 2ϴ scan mode in the range of

20–40° using a step width of 0.03 Å and a 1 sec count time

(see31 for discussion of XRD parameters).

The quality of the materials was also examined by

FTIR. Briefly, FTIR involves shining a beam of light that

contains many frequencies at the specimen, and then deter-

mining which frequencies are absorbed by the specimen.

The pattern of the absorbed frequencies is characteristic of

the molecular structure of the specimen (review,32). FTIR

was used to especially determine the functional groups in

the nanocomposite powders and the final composites

which were measured for every new batch that was pro-

duced. A Bruker αP FTIR spectrometer (Bruker, UK) was

used for the measurements in attenuated total reflection

(ATR) mode with an ATR accessory utilizing diamond

prism. Spectra were recorded using small amount

(approximately 2–5 mg) of each sample (starting powders

and the final composites), enough to cover the prism. The

prepared nanocomposite powders did not require further

processing, whereas the final composites were ground in a

glass pestle and mortar to obtain a fine powder. Each

spectrum was the result of 16 accumulated scans at 4

cm−1 resolution on the same sample.

Mechanical Testing
Mechanical tests were performed to determine the tensile

and compressive strength (CS) of the produced compo-

sites. To determine the tensile strength, the diametral
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tensile strength (DTS) method was used. Diametral tensile

strength is a property described by the American National

Standards Institute (ANSI) for characterizing dental com-

posites. For each material, five replicates of the final

composites were prepared as explained in the

“HA-MWCNTs composites” section to evaluate CS and

DTS. The dimensions of the composites were 6.0 mm

diameter × 12.0 mm height for the CS test and 6.0 mm

diameter × 3.0 mm height for the DTS test. The specimens

were tested under compressive load in a universal testing

machine (3300 single column Instron, UK) at a crosshead

speed of 1.0 mm/min for CS and 0.5 mm/min for the DTS

test. For the CS test, the specimens were placed in a

vertical position, with the force incident on the long axis

of the specimen. For the DTS measurements, load was

applied vertically on the lateral portion of the cylinder,

producing tensile stress perpendicular to the vertical plane

passing through the centre of the specimen.33 The DTS

was calculated as follows:

DTS ¼ 2F=πdh

where F is the load applied; d is the diameter of the

composite; h is the height of the composite; π = 3.14

(constant).

Experimental Design And Preparation Of

The In Vitro Study
In vitro cultures of human osteoblasts were used to

demonstrate the biocompatibility of the finished compo-

sites. Human osteoblast cells (406-05A; Sigma Aldrich,

UK) were grown in Dulbecco’s modified eagle medium

(DMEM; product number 11530596; Thermo Fisher scien-

tific, Loughborough, UK) supplemented with 10% Fetal

bovine serum (FBS, product number 11563397; Thermo

Fisher scientific, Loughborough, UK) and 1% Antibiotic-

antimycotic (contains penicillin, streptomycin and Gibco

Amphotericin B; product number 15240–096; Thermo

Fisher scientific, Loughborough, UK), referred to hereafter

as “DMEM”. Cells were sub-cultured in 25 cm2 cell cul-

ture flasks until the required amount were available.

The experimental design involved exposing the osteo-

blast cells to the composites. Before exposing the cells, the

composites were sterilized using Gamma radiation (dosage:

36.42–40.72). Then, using Sterile forceps, the sterile com-

posites (d = 15mm) were carefully placed at the bottom of

24 well plate (flat bottom sterile, tissue culture treated

polystyrene microplate; 662,160, Greiner bio-one,

Stonehouse, UK). The cell culture plate containing all the

controls and treatments, and was the unit of replication in

the study design. Composites made of pure HA served as a

positive control, while HOB cells grown in wells without

the presence of any composites served as negative controls

on each cell culture plate. In addition to these controls, the

treatments were: p-MWCNTs-PVA, f-MWCNTs-PVA,

p-MWCNTs-HTAB, f-MWCNTs-HTAB. Since the unit of

replication was the cell culture plate with each plate con-

tained all the materials and controls, a total of nine plates

were prepared to give n = 9 replicates. To ensure the cells

used were representative, the experiments were repeated on

three separate days with different aliquots of cells from the

stock cultures (i.e., triplicate runs of triplicate plates with all

material to make nine replicates). Each well was seeded

with 1.2×104 cells/well and the microplates were incubated

for seven days at 37°C under 5% CO2 in atmospheric air to

allow the cells to grow. The DMEM media was changed at

24 and 96 hrs to ensure the culture conditions were not

limiting. Changes in pH and presence of lactate dehydro-

genase activity (LDH) were measured from the collected

media at the three time points (1st, 4th and 7th day). In

addition, six of the replicate plates were used to make cell

homogenates for biochemistry and three plates were left

intact for electron microscope observation on the cells

(see below).

For biochemistry, cell homogenates were prepared in

hypo-osmotic buffer at the end of the experiment according

to Gitrowski et al34. Briefly, cells were carefully washed twice

with 2 mL of isosmotic sucrose buffer (300 mmol/L sucrose,

0.1 mmol/L ethylenediaminetetraacetic acid (EDTA), 20

mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), buffered to pH 7.4 with a few drops of 2 mol/L

Trizma base). The cells attached to each composite were then

treated with 1 mL of a lysis buffer (hypo-osmotic version of

the buffer above consisting of 30 mmol/L of sucrose). The

lysis buffer containing the cell homogenate was sonicated for

30 s to ensure the lysed sample was mixed well. Fresh aliquots

of the cell homogenate were used for the assessment of LDH,

alkaline phosphatase activity (ALP), the protein content and

the electrolyte composition (Na+, K+, Ca2+, P+ and Mg2+) of

the cells.

Biochemical Indicators Of Cell Health

The presence of lactate dehydrogenase activity in the

external media (DMEM) was used to assess the viability

of the cells in terms of membrane integrity (i.e., membrane

leak of this normally cytosolic enzyme). In addition, the

LDH activity in the cell homogenates was also measured
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to indicate the metabolic status of the cells. Briefly, LDH

activity was measured according to Campbell et al,35 with

minor modification. The collected DMEM, and cell homo-

genates, were gently centrifuged for 1 min at approxi-

mately 13,000 ×g (Heraeus pico 17 centrifuge, Thermo

electron crop, UK) to remove debris. Then, 100 μL of the

supernatant from each sample was added to 2.9 mL of a

reaction mixture consisting of 2800 μL of 6 mmol/L

pyruvate in 50 mmol/L of phosphate buffer (pH 7.4) and

100 μL of 6 mmol/L nicotinamide adenine dinucleotide

(NADH, Melford Laboratories Ltd, Suffolk, UK), directly

in a 3 mL cuvette. The change in absorbance was mea-

sured immediately over 2 mins at 340 nm (Helios β

Spectrophotometer, UK). LDH activity was calculated

using the extinction coefficient of NADH at 340 nm of

6.3 mmol/L and a 1 cm path length. The cell homogenate

LDH was normalized with the homogenate protein

content.

The total protein content in cell homogenates was

measured using the Pierce BCA protein assay kit

(Product number: 23227, Thermo Fisher scientific,

Loughborough UK). The assay was performed according

to the manufacturer’s instructions. Briefly, a working

reagent was prepared by mixing reagents A and B in a

50:1 ratio. Twenty μL of the cell homogenate (in triplicate)

was transferred to a 96-well microplate, to which 200 μL

of the working reagent was added and carefully mixed.

Plates were covered and incubated at 37°C for 30 mins and

absorbances were read at 562 nm on microplate reader

(OptiMax Tunable microplate reader, Molecular devices,

UK) against bovine serum albumin protein standards.

Alkaline phosphatase activity in the homogenates was

also measured. This enzyme is involved in the calcification

of bone and is therefore of functional significance to

osteoblasts as developing bone cells. Alkaline phosphatase

activity is, therefore, useful to assess the health and func-

tionality of osteoblast. The activity of alkaline phosphatase

enzyme was measured using a colorimetric assay based on

the hydrolysis of para-nitrophenylphosphate (pNPP) to

p-nitrophenol (PNP), a yellow-coloured substrate.36

Briefly, 65 μL of the cell homogenate was added to 595

μL of the reagent assay (265 μL of 0.1 mol/L glycine

buffer + 330 μL of 0.5 mmol/L pNPP in glycine buffer).

The appearance of p-nitrophenol was measured spectro-

photometrically at 405 nm (Helios β Spectrophotometer,

Thermo scientific, England). ALP activity was calculated

using an extinction coefficient of 18.3 mmol/L for a path

length of 1 cm. The cell homogenate ALP activity was

normalized with cell protein content as above.

Electrolytes In The Culture Media And Cell

Homogenates

The total concentration of Na+, K+, Ca2+, P and Mg2+ was

determined in the DMEMmedia after 1, 4 and 7 days, and in

the cell homogenates at the end of the experiment. The

electrolyte measurements were made in the context of the

osmotic health (ie, electrolytes involved in cell volume con-

trol and integrity of the cells), as well to inform on the

presence of the minerals needed for bone formation. For

electrolyte analysis, 400 µL of the external media from

each well was acidified with 20 µL of 70% nitric acid. For

the cell homogenate, 800 µL from each sample was taken

and acid digested with 1 mL of 70% nitric acid and left

overnight for complete acid digestion. Then, Na+, K+ and

Ca2+ P and Mg2+ of each sample were determined using

inductively coupled plasma optical emission spectroscopy

(ICP-OES, iCAP 7400 RADIAL, Hemel Hempstead, UK)

against matrix-matched standards. Sample runs included

blanks to correct for instrument drift and procedural blanks

to correct for background metal concentrations. The concen-

tration of electrolytes was expressed as mmol/L in the media,

and as µmol/mg cell protein in the cell homogenates.

Cell Morphology

Morphology (shape and appearance) of the cells was reg-

ularly observed by light microscope to determine the

health of the cells. The DMEM media appeared normal

with no loss of the pH indicator or excessive cell debris.

Light microscopy observations showed no signs of dete-

rioration of the cells such as; necrosis, detachment of cells

from the substrate, granularity around the nucleus or

obvious disruption of the cell membrane (i.e., no mem-

brane blebs or cell swelling). At the end of the experiment,

the presence and health of the cells were determined using

a scanning electron microscope (SEM, JEOL JSM

−5600LV, JEOL ltd, Japan). For logistical reasons, a sepa-

rate run (n = 3 replicates) was done for the SEM work.

After the media was removed, samples were washed twice

with phosphate-buffered saline (PBS) and fixed using

2.5% glutaraldehyde in 0.05 mol/L cacodylate buffer at

pH 7.4 for 2 hrs. Fixed samples were dehydrated through a

series of ethanol and then critical point dried. Samples

were mounted on conducting carbon stubs and coated

with gold in a sputter coater (EMITECH K550, Quorum

Technologies, UK). SEM images were collected using a 15
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kV accelerating voltage. The observations were conducted

systematically, starting at a lower magnification (×30) to

examine the distribution of the cells on the composites,

and then at a higher magnification (×1000) to observe the

morphology of the cell membrane, organelles and nucleus

as well as to determine the attachment of cells on the

composites.

Statistics
All data are presented as mean � standard error and were

analysed using statgraphics software for windows (version

XVI.I). After descriptive statistics to determine normality,

skewness or kurtosis, parametric data were analysed by

ANOVA. Briefly, after a variance check (Levene’s test)

and one-way ANOVAwas conducted followed by Tukey’s

multiple range test to identify the locations of any differ-

ences. The differences between the treatments and controls

at each time point, and time effects within treatment were

evaluated using one-way analysis of variance (ANOVA).

Non- parametric data were analysed by the Kruskal–Wallis

test. For treatment × time effects, a two-way ANOVA was

also applied to the data. All statistical analysis used the

default 95% confidence limit for statistical significance.

Results
Physico-Chemical Characterization Of

The Dispersed Powders And Final

Composites
The prepared dispersions of each of the nanocomposite

powders were examined for morphology by electron micro-

scopy and characterised by XRD and FTIR. In addition, the

final composites which were made by mixing the powders

with PVA and compressed into pellets were also studied by

FTIR. TEM analysis (Figure 1) of the nanocomposite pow-

ders dried from the stock dispersions shows the presence of

nano HA in all the samples. The HA crystals exhibited the

typical needle-like morphology as expected in the pure HA

control, p-MWCNTs-PVA and f-MWCNTs-PVA nanocom-

posite powders (Figure 1A–C, respectively). The crystal

structure of nanocomposite powders made in the presence

of HTAB surfactant (p-MWCNTs-HTAB and f-MWCNTs-

HTAB; Figure 1D and E) show short nano-rod like struc-

tures. The difference in length of the overall powder

rod-like HA structure is detailed in Table 1 with the pure

HA powder exhibiting maximum size and the powders

containing HTAB surfactant exhibiting the least size.

Figure 1 shows that, in all the treatments, the HA had

nucleated and grown around the MWCNTs.

XRD analysis was performed to determine the crystal

structure and phase purity of the HA in the nanocomposite

powders during the TEM work. The XRD spectrums of the

powders are shown (Figure 2). The data obtained from

XRD are consistent with the morphology observed in the

TEM images, which indicates that the HA phase was

produced in all the samples. Broad diffraction peaks

were observed in all the nanocomposite powders, indicat-

ing the presence of nanocrystals.

FTIR spectroscopy is an effective tool for determining

the presence of functional groups. Figure 3 represents the

FTIR absorption peaks of the prepared nanocomposite

Figure 1 Representative transmission electron microscopy images of stock disper-

sions of the prepared composite powders depicting the difference in HA particle

structure and interaction with the CNTs (n = 3 samples/treatment for each batch);

(A) Pure HA crystals; (B) p-MWCNTs-PVA; (C) f-MWCNTs-PVA; (D) p-
MWCNTs-HTAB; (E) f-MWCNTs-HTAB; (F) p-MWCNTs-HTAB (closer observa-

tion). In panel (A), the arrows point to the appearance of needle-shaped particles;

in panels (B–D) the arrows point to the interaction between the HA and the

CNTs. Note, in panel (B) the clusters of needle like HA surrounding the CNTs. In

panel (D, E), the growth of HA crystal and the CNTs shows that the crystals have

not obtained the needle structure, but have a rod shape (F).
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powders and the final composites. All the major charac-

teristic bands of HA are observed in all the nanocompo-

site powders as shown in Figure 3A. Additionally, a peak

at 2917 cm−1 was observed in all the powders, except the

pure HA. This is due to C–H bond which is expected

from the presence of MWCNTs. The intensity of the

peaks suggests a chemisorption nature of the bond.

FTIR analysis of the final composites (Figure 3B)

shows that all the peaks present in the powders exist in

the composites. However, the peak corresponding to the

MWCNTs was not visible above the background, and this

is not surprising given the µg amounts of MWCNTs in

the composites. An important peak was verified at 1141

cm−1 that is attributed to the crystallinity of the PVA. The

peaks corresponding to PVA (reference spectra) were

observed in all the composites.

The tensile and compressive strength test results of the

pure HA nanocomposite (control) and all the final compo-

site treatments (p-MWCNTs-PVA, f-MWCNTs-PVA,

p-MWCNTs-HTAB and f-MWCNTs-HTAB) after 48 hrs

curing are presented in Table 2. The tensile strength of all

the final composites was significantly higher than pure HA

composites. There was also a significant difference in the

tensile strength between all the composites. The maximum

tensile strength was observed in the composite made of

p-MWCNTS-PVA which was an increase of 215% com-

pared to the pure HA composite. The least tensile strength

among the composites containing MWCNTs was observed

Table 1 Average HA Crystal Size Of The Prepared

Nanocomposite Powders*

Composite Powder Average HA Crystal Size (nm)

HA (Control) 130.12 ± 12 a

p-MWCNTs-PVA 87.16 ± 36 b

f-MWCNTs-PVA 80.6 ± 22 b

p-MWCNTs-HTAB 62.6 ± 18 c

f-MWCNTs-HTAB 52.4 ± 13 d

Notes: *The data represent mean ± S.E.M (n = 20 measurements per composite

powder). TEM images were processed through Image J software to obtain the

measurements. Different letters a, b, c, d represent statistical difference

(ANOVA, P <0.05) between the nanocomposite powders.

Figure 2 X-Ray Diffraction analysis of the nanocomposite powders dried from the

stock dispersions prepared for transmission electron microscopy. (A) XRD peaks

data for a HA certified reference material from the ICDD no. 9–432;50 (B) XRD
analysis of the powders: i) Pure HA control; ii) p-MWCNTs-PVA; iii) f-MWCNTs-

PVA; iv) p-MWCNTs-HTAB; v) f-MWCNTs-HTAB. The peaks observed in the

powders correspond to the reference HA sample from the ICDD. The spectra

lines are from triplicate measurement on two batches.

Figure 3 (A) Fourier Transform Infrared Spectroscopy analysis of the prepared

powders and (B) the final composites. i) Pure HA control; ii) p-MWCNTs-PVA; iii)

f-MWCNTs-PVA; iv) p-MWCNTs-HTAB; v) f-MWCNTs-HTAB; vi) PVA (refer-

ence). Arrows point to the absorbance peaks for the functional groups present in

the powders and the composites. The spectra lines are from triplicate measure-

ment on two batches.
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in the p-MWCNTs-HTAB, which was 49% less than the p-

MWCNTS-PVA composite. The maximum compressive

strength was also observed from the composite made of

p-MWCNTs-PVA, which was significantly higher than the

other composites. This was an increase of 100% compared

to the pure HA composite. Unlike tensile strength, no

significant difference in compressive strength was

observed between the composites containing HTAB sur-

factant, but they were significantly lower compared to the

composites containing PVA.

Morphology And Health Of Cultured Cells
Light microscopy was used to visually monitor cell health

during the experiment. The cultured wells after 24 hrs

showed no evidence of cell debris, no detachment of cells

from the substrate or gross changes in morphology. Routine

light microscopy during the rest of the experiment showed

cells with normal morphology and with intact cell mem-

branes. The pH of the cell culture media also remained

circumneutral, with only a slight acidity (pH 6.8) in the

first 24 hrs in the HA and p-MWCNTs-PVA treatments

that was quickly corrected at the first media change and

remained neutral thereafter. The average pH of the media

over the seven days were: media (no cells), 7.7 ± 0.02; blank

(cells in DMEM), 7.80 ± 0.03; HA, 7.20 ± 0.05;

p-MWCNTs-PVA, 7.12 ± 0.13; f-MWCNTs-PVA, 7.34 ±

0.06; p-MWCNTs-HTAB, 7.41 ± 0.03; f-MWCNTs-HTAB,

7.34 ± 0.03. At the end of the experiments, cells were

observed in more detail by SEM (Figure 4). After seven

days, the cells displayed a typical osteoblast morphology

with regular cell structures in the controls and the treat-

ments. No obvious morphological differences were

observed between the cells maintained on the various treat-

ments (Figure 4). The cells had intact homogenous

cytoplasm and were attached and flattened on the substrate

surface. In all the treatments, the cells spread to cover

essentially all available regions of the dish. Since the treat-

ments were on uneven surfaces, the cells were often seen to

form bridges between the gaps, as expected for healthy

osteoblasts.

Cell health was also confirmed biochemically by the

absence of progressive LDH leak into the external media,

with LDH in the media remaining at a background level

(<0.1 µmol/min/L, Figure 5). The LDH activity in the cell

homogenates was also modest, and although there were some

statistical differences between treatments (Figure 5), the LDH

activity remained <1 µmol/min/mg protein with no evidence

of induction of anaerobic metabolism by the cells. There was

also no evidence of osmotic disturbances in the cells with no

differences amongst the treatments in the bulk electrolytes

(Na+, K+) within the cells (Table 3). The presence of alkaline

phosphatase activity in the cell homogenate was used as a

measure of metabolically active osteoblast cells (Figure 5). At

the end of the experiment, all treatments showed the presence

of alkaline phosphatase activity, and although there were some

differences between treatments, the activity remained below

0.1 µmol/min/mg protein (Figure 5).

Discussion
This study reports the synthesis ofMWCNTs reinforced HA

composites and the effect of MWCNTs and surfactants on

the overall biocompatibility and mechanical properties of

the composites. Overall, the data confirm that reinforcing

HAwith MWCNTs improves the mechanical properties of

the composites significantly; the addition of surfactants

plays a major role in the formation of HA crystals, and the

subsequent strength of the HA–MWCNTs composites has

at least doubled, compared to the control. The biocompat-

ibility study demonstrated cells with healthy morphology,

with no evidence of LDH leak and the capability to produce

ALP activity.

HA Crystal Nucleation And Growth In

The Presence Of MWCNTs
The TEM images (Figure 1) demonstrate that HA-MWCNTs

nanocomposite was successfully synthesized. However, a dif-

ference in the growth of HA on the sidewalls of pristine and

functionalized MWCNTs was observed. Relatively higher

amount of HA interaction was observed with functionalised

MWCNTs compared to pristine MWCNTs. This is due to the

fact that functionalising CNTs with nitric acid creates negative

Table 2 Comparison Of The Tensile And Compressive Strength

Of The Final Composites**

Material Tensile Strength

(MPa)

Compressive

Strength (MPa)

HA (Control) 2.6±0.12 a 15.1 ± 0.47 a

p-MWCNTs-PVA 8.2±0.16 * b 30.3±0.20 *b

f-MWCNTs-PVA 6.3±0.13 *c 25.7±3.38 *c

p-MWCNTs-HTAB 5.5±0.38 *d 21.4±1.68 *c

f-MWCNTs-HTAB 6.7±0.23 *c 22.2±3.38 *c

Notes: **Mechanical strength of the composites after curing for 48 hrs. The data

represent mean ± S.E.M (n= 5 per composite for each test). *Statistically different

from the control (pure HA composite). Within each test, different letters a, b, c

represent statistical difference between the composites (ANOVA, P <0.05).
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charge (–COO−) on the sidewalls of the CNTs which acts as

nucleation sites for HA. The Ca2+ ions get attracted to the

negative charge allowing the growth of HA on functionalised

CNTs. Similarly, the presence of surfactants (PVA and HTAB)

also influences the nucleation and growth of HA.

Preliminary trials on the synthesis of HA in the presence of

MWCNTs without surfactants were not successful at produ-

cing HA at all (not reported here); but the procedure was

achieved with the additions of either PVA or HTAB

(Figure 1). The synthesis is, therefore, best achieved in the

Figure 4 Scanning electron microscopy images of the osteoblasts in various magnifications. (A) Control cells grown on the plastic plate; (B) cells grown on pure HA as a

control. It can be seen that the cells have infiltrated into the pores; (C) shows cells grown on p-MWCNTs-PVA; (D) shows cells on f-MWCNTs-PVA, note that the cells are

flat and extending to cover large surfaces of the substratum; (E) shows cells on p-MWCNTs-HTAB; (F) shows cells on f-MWCNTs-HTAB. The arrows show the presence

of the cells on the composites.
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presence of dispersing agent. Of these surfactants, PVA is the

preferred choice as only HA synthesised in the presence of

PVA produced nano-HA crystals that were the expected nee-

dle shaped. Critically, the needle-like morphology of the HA

(Figure 1) is consistent with the HA crystals in human bone.37

The needle-like morphology of HA in the presence of PVA

could be explained by ligand chemistry. The Ca2+ ions from

the additions of calcium acetate likely electrostatically bind to

the OH− groups on the PVA polymer forming a –OH-Ca+

moiety (ie, a net positive charge on the surface of the PVA)

which is then capable of attracting PO4
3− ions from the sub-

sequent additions of ammonium phosphate. Thus, the PVA

regulates the growth of the HA crystals along the c-axis of the

polymer giving the crystals the needle structure.38,39 In the

present study, the biocompatibility of the dispersants was also

a consideration and a low concentration of PVA was chosen

for the study (0.05 wt%). This low concentration of PVA

enabled nucleation of the HA to occur with the expected

needle-like morphology. Interestingly, Rajkumar et al, have

reported that if the concentration of PVA in the solution is

increased by 2.5 wt%, it results in the formation of crystals

with irregular structures combined with a reduction of the

crystal size.38

In contrast to PVA, HTAB being an organic cationic

surfactant does aid the dispersion of the MWCNTs in the

mixture; but does not promote nucleation. This is because

HTAB is positively charged like the Ca2+ involved in the

nucleating HA, and will therefore cause a coulombic

repulsion.40 Hence, the interaction of the surfactant and

HA is weaker compared to that of PVA. However, the

absorption density of HTAB on HA is higher compared to

anionic surfactants due to the lateral mobility of HTAB.

Owing to the higher absorption density of HTAB and the

presence of coulombic repulsion, small HA particles are

more stable in aqueous solution as observed. However, the

presence of PVA or HTAB in the HA-MWCNTs powders

cannot be verified using XRD and FTIR due to the minus-

cule amount being used during the synthesis process.

Factors Contributing To The Mechanical

Properties
The main purpose of synthesizing the HA-MWCNTs com-

posites is to improve the mechanical properties of syn-

thetic HA. Significant increase in both tensile and

compressive strength of the composites containing

MWCNTs was observed compared to control (pure HA)

(Table 2). This is due to the interfacial bonding between

the HA and the MWCNTs. However, variation in both

tensile and compressive strength can be observed between

the composites containing MWCNTs. Although literature

suggests that functionalisation of MWCNTs improves their

wettability which in turn enables the interaction with the

HA particles,20 composites containing f-MWCNTs have

not exhibited the maximum tensile or compressive

strength. This could be explained by the fact that the acidic

Figure 5 LDH and ALP activity release from osteoblast cells after 7 days of growth

in DMEM on culture plate. (A) LDH activity released into the media, and the cell

homogenate LDH activity for all the treatments and the control. (B) Alkaline

phosphatase (ALP) activity from cell homogenates. Data are mean ± S.E.M (n = 6),

bars with “*” indicate statistical significance and the different letter a, b, c, d

indicates statistical difference from each other (one-way ANOVA, P <0.05).
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oxidative treatment causes major alteration to the struc-

tural properties of the CNTs. Garg et al, developed a

simulation model to predict the effect of acid treatment

on the mechanical properties of CNTs. They have showed

that acid treatment introduces carbon defects that degrade

the mechanical strength of CNTs by an average value of

15%.41 Composites made of p-MWCNTs-PVA have

shown the maximum tensile and compressive strength

(Table 2). There are two factors contributing toward the

higher mechanical properties with pristine MWCNTs. The

absence of defective sites in the sidewalls of the MWCNTs

contributes to the overall strength of the final composite.

The HA particles are significantly longer with a needle

shape which contributes to the improved mechanical prop-

erties of p-MWCNTs-PVA composites. However, while

comparing the interaction of HA particles with

MWCNTs (Figure 1) to the mechanical strength of the

composites (Table 2), it appears that there is no direct

correlation between the two, since, composites containing

f–MWCNTs show high degree of interaction with HA

particles.

Effects Of Composites On DMEM Media

And Cell Health
The pH and electrolyte concentrations were measured in

the external media for several reasons. Firstly it is to

confirm that the presence of the composite had not com-

promised the osmotic status of the DMEM in relation to

cell health, but also to recognise that synthetic HA con-

tains high concentrations of calcium phosphate that could

be released from the material into the external media (e.g.,

by degradation of the material and/or dissolution). Table 3

shows that the concentration of calcium in the media was

significantly lower than the negative control, confirming

that there was no dissolution of the composite; but in fact,

calcium and phosphorus have been adsorbed from the

DMEM, most likely for apatite nucleation. Kokubo et al,

have shown apatite nucleation and growth of HA in

Simulated Body Fluid (SBF) at physiologic temperature

and pH.42 However, the decreasing concentration of cal-

cium in the DMEM observed here was modest and the

total Ca concentrations remained in the sub-mmol/L range

(Table 3). It was not limiting cell growth or health as

confirmed by the normal cell morphology (Figure 3), as

well as the presence of expected enzyme activities (ALP

and LDH activity, Figure 4). Indeed, leaky cells would be

vulnerable to Ca-overload and cell death from a massive

inward Ca gradient (the intracellular free Ca2+ concentra-

tion is around 0.1 µmol/L in osteoblast43), but this was not

observed. However, compared to the HA alone treatment,

some of the cell homogenates from the composites showed

a higher total Ca concentration (Table 3). This can be

interpreted as physiological, where the cells are storing

more total intracellular Ca consistent with their role in

mineralisation of bone. Similar to calcium, significantly

higher quantities of phosphorus were observed in the cell

homogenate of the composites suggesting that the osteo-

blasts were reserving calcium and phosphorus for the

mineralization process. The observations on cell homoge-

nates are also corroborated by the reduction of phosphorus

in the external media (Table 3).

The concentrations of sodium and potassium in the

external media were in the normal range (Table 3). Since

sodium makes most of the osmotic content of the media,

any changes in the cell homogenates are not likely to be

explained by osmotic stress such as loss of volume control

(cell swelling not observed), and in any case, the data are

normalised to cell protein. Homogenate sodium and potas-

sium concentrations are rarely measured from osteoblasts,

but they are broadly similar to homogenates of mammalian

cells with nanomaterials (e.g.,34). Interestingly, the HA

alone treatment did have a lower total sodium concentra-

tion in the homogenate compared to all other treatments

(Table 3). This is not likely due to Ca/Na exchange activity

on the cell membrane causing Na efflux from the cells,44

because the homogenate Ca was unchanged in this treat-

ment. The homogenate potassium concentration also did

not change in this treatment. The effect of the coatings on

electrolyte homeostasis needs further investigation.

In addition to normal cell morphology (Figure 4) and the

electrolyte concentrations in the cell homogenates, the bio-

compatibility of the composites was also assessed by measur-

ing the LDH and ALP activity of the cells (Figure 5). Cell

viability was confirmed by the absence of LDH leak into the

external media. This is a well-established viability marker34

and the absence of leak of this cytosolic enzyme into external

media shows that cell membranes are intact (i.e., not leaking).

The absence of cumulative increases in LDH activity in the

media also would indicate that there are no dead cells releasing

their contents (i.e., that cell are alive and healthy). The cumu-

lative LDH leak into the external media was small

(<0.1 µmol/L, Figure 5) and a typical background for cell

culture (e.g.,34); suggesting the cells were healthy without

membrane damage. A modest LDH activity was detected

inside the cells (the cell homogenates, Figure 5), as would be
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expected,45 but the absence of an elevated LDH activity in the

homogenates also indicated that the cells were not under

metabolic stress (i.e., not using anaerobic metabolism).

Alkaline phosphatase activity was also measured (Figure 5B)

and the values for the controls (about 60 nmol/mg protein/min)

are broadly similar to those reported for osteoblasts (e.g.,46).

However, the ALP activity showed some small, but statisti-

cally significant decreases in the presence of the composites

(Figure 5B) which suggests that, although the cells were

proliferated, the expression of ALP was not keeping up; and

so some growth dilution of ALP activity may have occurred.

The absence of large increases in ALP activity is not surprising

in the seven-day duration of the current experiment as the cells

were still relatively immature, and ALP induction occurs later

on in the cell differentiation process.47 Nevertheless, the pre-

sence of ALP activity in the cell homogenate confirms that the

cells were functional.

Conclusions And Clinical
Perspective
This study successfully synthesised HA-MWCNTs com-

posites and then demonstrated that healthy cells with

normal morphology, electrolyte composition and enzyme

activities could be grown on the materials over seven

Table 3 The Total Concentration Of The Electrolytes, Na+, K+, Ca2+, P And Mg2+ In The Media After Exposing The Osteoblasts To

The Composites For 7 Days And From The Cell Homogenates***

Electrolyte Concentration

(mmol/L)

Treatment Exposure Time (Days) Cell Homogenate

(µmol/mg Cell Protein)
Day 1 Day 4 Day 7

Sodium Blank 113 ± 0.1a 191 ± 0.2a 172 ± 0.1a 141 ± 7a

HA 180 ± 0.2b 177 ± 0.3a 124 ± 0.2ab 77 ± 12.0b

p-MWCNTs-PVA 103 ± 0.2a 138 ± 0.3ab 103 ± 0.2b 181 ± 24ac

f-MWCNTs-PVA 122 ± 0.1a 105 ± 0.05b 130 ± 0.1ab 168 ± 30a

p-MWCNTs-HTAB 110 ± 0.3a 170 ± 0.1ab 121 ± 0.3ab 231 ± 18c

f-MWCNTs-HTAB 103 ± 0.2a 142 ± 0.1ab 135 ± 0.2ab 200 ± 26ac

Potassium Blank 7.5 ± 0.6a 12.5 ± 1.3a 8.4 ± 1.4a 45 ± 1a

HA 7.1 ± 1a 9.8 ± 1.2ab 5.6 ± 0.5b 61 ± 11ab

p-MWCNTs-PVA 6.5 ± 0.2a 9.2 ± 2ab 5.1 ± 0.7b 88 ± 15b

f-MWCNTs-PVA 7.5 ± 0.2a 7 ± 1b 6.5 ± 0.7ab 53 ± 10a

p-MWCNTs-HTAB 6.5 ± 0.3a 11.1 ± 1.6a 6 ± 0.6ab 61 ± 10ab

f-MWCNTs-HTAB 6.7 ± 0.4a 9.1 ± 0.8ab 6.7 ± 0.8ab 52 ± 6a

Calcium Blank 1 ± 0.08a 1.69 ± 0.18a 1.33 ± 0.23a 17 ± 1a

HA 0.8 ± 0.1abc 0.85 ± 0.12b 0.13 ± 0.05bd 17 ± 1a

p-MWCNTs-PVA 0.5 ± 0.1bc 0.16 ± 0.06c 0.32 ± 0.16bcd 21 ± 5b

f-MWCNTs-PVA 1 ± 0.18ac 0.23 ± 0.07c 0.33 ± 0.07bcd 25 ± 3bc

p-MWCNTs-HTAB 0.57 ± 0.14bc 0.25 ± 0.04c 0.61 ± 0.16c 30 ± 4c

f-MWCNTs-HTAB 0.74 ± 0.11abc 0.08 ± 0.03c 0.06 ± 0.01bd 17 ± 1a

Phosphorus Blank 1.29 ± 0.11a 1.89 ± 0.22a 1.29 ± 0.11a 6.3 ± 1a

HA 2.14 ± 0.21b 2 ± 0.34ac 2.14 ± 0.21b 32 ± 4b

p-MWCNTs-PVA 1.32 ± 0.24a 1.27 ± 0.30bd 1.32 ± 0.24ab 45.1 ± 8c

f-MWCNTs-PVA 1 ± 0.17a 0.5 ± 0.05bd 1 ± 0.17abc 27.2 ± 5b

p-MWCNTs-HTAB 1.13 ± 0.36a 0.53 ± 0.10bd 1.13 ± 0.36cb 33.6 ± 7b

f-MWCNTs-HTAB 1.26 ± 0.21a 0.77 ± 0.10b 1.26 ± 0.21abc 26.6 ± 3 b

Magnesium Blank 1 ± 0.08a 1.56 ± 0.17a 1.26 ± 0.22a 0.86 ± 0.08a

HA 0.05 ± 0.01b 0.05 ± 0.01b 0.02 ± 0.004b 0.85 ± 0.06a

p-MWCNTs-PVA 0.05 ± 0.004b 0.04 ± 0.01b 0.04 ± 0.01b 1.26 ± 0.1a

f-MWCNTs-PVA 0.06 ± 0.01b 0.03 ± 0.01b 0.03 ± 0.01b 1.87 ± 0.2b

p-MWCNTs-HTAB 0.05 ± 0.01b 0.06 ± 0.01b 0.03 ± 0.003b 1.71 ± 0.1b

f-MWCNTs-HTAB 0.08 ± 0.01b 0.02 ± 0.002b 0.02 ± 0.003b 1.2 ± 0.1a

Notes: ***Data are expressed as mean ± S.E.M (n = 6 for each treatment). Different letters a, b, c, d are statistically different from each other within the column and within

electrolyte (one-way ANOVA or Kruskal–Wallis test, P <0.05).
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days. The study also shows that surfactants play a cru-

cial role in determining the structure of the HA crystals

and that the presence of MWCNTs had at least doubled

the strength of the composites, with PVA surfactant

proving the best coverage of HA over the composite

material and the p-MWCNTs PVA composite the stron-

gest material. All of the composites showed biocompat-

ibility in that overt toxicity to osteoblast cells was not

observed. However, of the composites examined, the f-

MWCNTs HTAB was considered the most biocompati-

ble with osteoblast cells as they had comparatively

lower LDH activity release in the media and higher

ALP activity in cell homogenate. These in vitro studies

are a first step towards meeting the criteria for an

acceptable nanomedicine or nanomaterial-containing

implant for clinical use.48,49 This study shows the f-

MWCNTs HTAB composite to be stronger than HA

alone (i.e., better than the implant materials used now)

and biocompatible, suggesting that it may at least be

safe for bone cells in the short term. In terms of

mechanical strengths, it is in line with callous bones

with a compressive strength above 20 MPa and tensile

strength 6–7 MPa. Therefore, this material can poten-

tially be used as dental or small bone graft. It will need

further improvement in mechanical strength to be used

as a load-bearing cortical bone replacement. Further

research also is needed to demonstrate the biocompat-

ibility of the composites over longer time scales (e.g.,

several weeks) and then in vivo with an animal model

before trials can begin with patients.
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