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Abstract
The aim of the current work was to illustrate the effect of the fibre area correction
factor on the results of modelling natural fibre-reinforced composites. A mesoscopic
approach is adopted to represent the stochastic heterogeneity of the composite,
i.e., a meso-structural numerical model was prototyped using the finite element
method including quasi-unidirectional discrete fibre elements embedded in a
matrix. The model was verified by the experimental results from previous work
on jute fibres but is extendable to every natural fibre with cross-sectional non-
uniformity. A correction factor was suggested to fine-tune both the analytical and
numerical models. Moreover, a model updating technique for considering the size-
effect of fibres is introduced and its implementation was automated by means
of FORTRAN subroutines and Python scripts. It was shown that correcting and
updating the fibre strength is critical to obtain accurate macroscopic response of
the composite when discrete modelling of fibres is intended. Based on the findings
of the current study, considering the effect of flaws on the strength of natural fibres
and the fibre area correction factor are crucial to obtain realistic results.

Keywords
Jute, computational mechanics, discrete embedded elements, element elimination
technique
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Introduction
From a structural point of view, natural fibres are available over a range of
acceptable mechanical properties. However, taking advantage of natural fibres as
structural elements requires embedding them in appropriate matrices. Although the
resulting natural fibre composites (NFCs) would have enhanced specific properties, the
variability of the fibre properties remains inherent. This argument is confirmed by the
wide range of reported values.1 Thus, in order to properly characterise NFCs, various
sources of variability must be taken into account.

Natural variation is not only source-dependent but also occurs within a single batch
of fibres, e.g., cross-section non-uniformity2, length-dependent strength3, moisture
content4, and void content5 among others affect the mechanical properties of fibres.
Moreover, such parameters can substantially interfere with the characterisation process
of some properties. Irrespective of the level of sophistication, providing a universal
model is not feasible, and thus one should be selective. In terms of the mentioned
parameters, the first two sources of variation are ‘structural’ ones, which are the
results of the growth period of natural fibres. The moisture content is affected by
the environment, and thus it is disregarded in the study. Finally, the void content
becomes more relevant when moisture is investigated. Therefore, the first two aspects
are revisited herein.

Of our particular interest is the morphology of the fibres that affect their cross-
sectional area (CSA) measurements, and thus the strength calculations. The cross-
sectional shape varies along the length and from one fibre to another.6 This shape
irregularity gives rise to two new concepts: the ‘true’ cross-sectional area and the
‘measured’ or ‘apparent’ one. Values of the former deviate from those of the latter.
This discrepancy is traced back to a simplistic assumption, which is clarified in the
sequel, during the CSA measurement.

The ‘apparent’ fibre CSA is often incorrectly measured and used. Apparent CSA is
calculated from an average of several linear measurements of fibre diameter (assuming
a circular cross-section). This method can result in significant variation in mechanical
properties due to the assumption that the “non-circular fibres have a characteristic
diameter”.7 More specifically, the measured CSA is an overestimation of the real
CSA. This discrepancy demands corrections in the analytical models as well as the
computational ones.

From the fracture mechanical point of view, the strength size effect of structural
elements should be considered in design processes.8 Natural fibres are not exceptions
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Javanbakht et al. 3

to this matter. Virk et al.3 experimentally measured the tensile properties of 500 jute
fibres from a single batch in five gauge lengths. Weibull theory and the weakest-link
model were used to capture the statistical size effect of the single fibre response under
tension. It was found that although the elastic modulus of fibres remains insensitive to
length, their ultimate tensile strength decreases by increasing the fibre length.

Using analytical models, such as various forms of rule of mixture (RoM), is an
elegant attempt to predict the mechanical properties of NFCs. The major drawback
of such models is that they do not often incorporate all the microstructural parameters
such as clustering of the fibres. Attempts have been made to relate the manufacturing
processes to the resulting microstructure, and thus the properties of the composite.9

Often such attempts include developing a statistical model to improve the predictions.
For instance, orientation distribution functions could be derived for a specific sample
(by means of methods like image processing) although the cumbersome process lacks
generality. In any case, analytical models provide a good range for the expected values
in general. Nevertheless, various correction factors have been suggested to compensate
for the lack of microstructural considerations and further refine the limits provided by
the analytical estimates.10

In the next level, computational models can be set up in a way that—after validation
and verification—extension to arbitrary (or even physically-impossible) cases would be
possible. The accuracy of such models depends on the precision of the input data (e.g.,
material properties of the components and the geometry of constituents) as well as the
intricacy of the modelling strategies and techniques (e.g., multi-scale and average-field
methods). In addition, the trade-off between computational resources and accuracy is
always present. For instance, instead of modelling the actual structure, a representative
volume element (RVE) might be used. Nevertheless, real-size computational models
with adequate refinements are expected to be the closest representation of the their
physical counterparts. Herein, the finite element (FE) analysis11,12 is used for its
widespread availability.

The aim of the current study is to provide a computational framework for modelling
discrete embedded fibre elements in NFCs considering the aforementioned parameters:
correction of the CSA and size-dependency of fibre strength. In the following
sections, some analytical models are introduced that are followed by a computational
model. The details of the FE prototype is explained and its response is validated
against experimental data. The accuracy of the results generated by two algorithms
is compared against analytical boundaries. Finally, further suggestions are made for
future developments.

Enhanced Rule of Mixture
The classic homogenisation formulas for unidirectional composites, i.e., the RoM
and the inverse rule of mixture (IRoM), are based on the iso-strain and iso-stress
assumptions, respectively:

E‖ =VfEf + VmEm, (1a)
1

E⊥
=
Vf

Ef
+
Vm

Em
, (1b)
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where V is the volume fraction andE is the elastic modulus. The subscripts ‘f’ and ‘m’
are used to denote the properties related to the fibres and the matrix, respectively. The
elastic moduli E‖ and E⊥ are estimates in the longitudinal and transverse directions,
respectively. Several theories modified these formulas, specially the RoM, by fine-
tuning the contribution of fibres via an efficiency parameter. Inspired from the enhanced
version of the generalised RoM, the fibre efficiency parameter13 (F ) is reintroduced as:

F = κηdηlηo, (2)

where κ is the fibre area correction factor (FACF), ηd is the fibre diameter distribution
factor (FDDF), ηl is the fibre length distribution factor (FLDF), and ηo is the fibre
orientation distribution factor (FODF), respectively.

The FLDF can be obtained from the traditional Shear-Lag model14 or the generalised
version.15 The FODF is calculated by16

ηo =
∑
n

an cos4 θ, (3)

where an is the fraction of fibres making a θ angle with the direction of the applied
load. If the angle distribution follows a probability distribution function (PDF), an can
be calculated directly. For instance in the case of a normal distribution, the FODF reads

ηo =

∫ 90

−90

1

σN
√

2π
exp

(
− (θ − µN)2

2σ2
N

)
cos4 θ dθ, (4)

where µN and σN are the mean and standard deviation of the normal distribution,
respectively. Alternatively, the overall fibre orientation can be captured by even-order
orientation tensors from which the PDF of the orientation can be estimated.17–19

Finally, the enhanced rule of mixture (En-RoM) is

E = FVfEf + VmEm, (5)

where E is the elastic modulus of the composite along the applied load—since
FODF is calculated by Eq. (3). Moreover, a homogeneous behaviour is assumed to
be dominant, i.e., other local variabilities such as resin-rich areas, porosities, or fibre
clustering are neglected implying a smeared response. Note that the overall effect of
the aforementioned correction factors reduces to unity under specific conditions, i.e.,
for continuous fibres FLDF, and for well-characterised circular cross-section fibres the
FDDF and FACF become unity. Namely, RoM can be considered as a special case of
the En-RoM.

The FACF is suggested by Virk et al.20 to compensate for the deviation between
the apparent and true fibre CSAs. A typical value of 1.42 was initially suggested for
the specific batch of tested jutes fibres. Similarly, extending the Kelly-Tyson model21

enables calculating the strength of a unidirectional composite σ′ by means of an
enhanced Kelly-Tyson model (En-KT):

σ′ = κVfσ
′
f + Vmσ

∗
m, (6)

where σ′f is the strength of fibre, and σ∗m is the stress in the matrix at composite failure.
Note that this equation is only applicable to matrices with a higher failure strain than
that of the used fibres.
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Weibull Distribution
In order to capture a better image of a random variable, a statistical evaluation is
used to obtain its distribution. Weibull distribution is a generalisation to exponential
distribution, and thus the normal distribution can also be considered as a special case
thereof. The three-parameter Weibull distribution is the most general case for which
the probability distribution function (PDF) of a random variable x is stated as

P (x) =
β

α
(
x− γ
α

)β−1e−(
x−γ
α )β , (7)

where α is the scaling (characteristic) parameter, β is the shape parameter, and γ is the
location parameter. The mean value of the Weibull distribution (x̄) is obtained from:

x̄ = γ + αΓ(
1

β
+ 1), (8)

where the gamma function Γ(z) =
∫ inf

0
xz−1e−xdx is the generalisation of the

factorial from the domain of integers to real numbers.
Increasing the scaling parameter stretches the distribution horizontally. For a

monotonic decrease in distribution, the shape parameter is set between 0 and 1 whereas
values more than one indicate an increase followed by a decrease in the PDF. The
location parameter just shifts the distribution to the right-hand side, i.e., it acts as a
‘threshold’ below which no random variable x could exist.22 Thus, in most practical
cases where only positive values are admissible, e.g., strength calculations, γ is set to
zero; this results in the two-parameter Weibull PDF:

P (x) =
β

α
(
x

α
)β−1e−(

x
α )β . (9)

The obtained strength distribution from3 is based on the average apparent CSA of 785
fibres. For each fibre, three measurements were carried out to capture the CSA variation
along the length. Since the measurements overestimated the CSA, they underestimate
the material properties, e.g., elastic modulus and strength of the fibre material. This
artefact is present in the measurements, and thus propagates to the statistical model.
Therefore, to compensate for the CSA miscalculations, Eq. (8) is modified to

x̄mod = καΓ(
1

β
+ 1). (10)

Furthermore, the same correction factor must be applied to the measured elastic
modulus.

Computational Model
A probabilistic FE prototype has been developed to reproduce the mechanical
behaviour of jute-epoxy NFCs. A variety of tools were used along with the semi-open
MARC/MENTAT 2019 FE package to avoid developing a programming code from
scratch.23 The FE model was prototyped by means of a Python script that automated
the process of parametric model generation and controlled the job submissions.24
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The interaction of the Python script and FORTRAN subroutines is illustrated in
Fig. 1. The pre-process was done by means of a Python script that interacted with
the MENTAT pre/post processor and later submitted the job to the MARC solver
for analysis. Although the FE package was responsible for obtaining the solution,
controlling the fibre and matrix failure was carried out by means of several FORTRAN
subroutines. Namely, at the end of every increment, the stress of each present fibre
was obtained from its integration point and compared with the average strength of
the Weibull distribution from Eq. (10). A failure is predicted for stresses above the
mean strength and the respective element is removed. Depending on the location of the
element, new fibres may be created or the length of the parent fibre decreases. Two
approaches are adopted: either update the strength of the fibres or inherit the strength
from the parent fibre. Either approach follows the flowchart in Fig. 1 but in the latter
approach, the ‘update the strength of fibres’ step is dropped. For the failure of the
matrix element, the maximum stress failure criterion was used to be compared against
the average of the stresses obtained from the integration points of the element. The
load increments continues until the failure of the sample; convergence failure would
flag this state.

A uniform mesh density was used throughout the model to facilitate the mesh
sensitivity analyses. More specifically, the mesh density25 is defined as

λ =
1

Lmesh
, (11)

and controlled to obtain convergence while a single mesh length (Lmesh) is used for
both fibre and matrix elements in the FE prototype. The number of elements used to
represent each fibre depended on the fibre length, i.e., longer fibres consisted of more
elements than shorter fibres in order to comply with a uniform mesh density. To this
end, different length fibres were discretised into truss elements of the same size. A
typical jute-epoxy FE model is shown in Fig. 2 in which the localised fibre/matrix
failure region is enlarged.

Modelling Fibres
The jute fibres and epoxy matrix were discretely modelled. Each fibre was represented
using several simple truss elements (type 9) whilst 3D solid elements (type 7) were used
to represent the matrix. The type 9 truss elements were two-node, single integration
point elements with three translational degrees of freedom. The solid elements used in
the matrix were eight-node isoparametric elements that utilised trilinear interpolation
functions equipped with a full integration scheme.

The jute fibres were modelled as straight fibres with a constant CSA. Namely,
technical fibres were modelled as a whole without considering individual elemental
fibres, voids, resin impregnated volumes, or other internal structures. However the true
shape of the cross-section was taken into consideration by means of the FACF. Since
the elements are basically 1D, the Poisson’s effect is also ignored.

The distribution of the fibres satisfied material periodicity in order to avoid any
wall effects.26 Although the distribution of fibres was quasi-unidirectional, they were
allowed to penetrate through the walls of the matrix (sometimes called a soft boundary).
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Figure 1. Flowchart of the model creation, analysis, and post-process

Once a fibre penetrated the edge of the specimen, it was cut from the intersection point
and the remaining segment is used to create a new fibre starting from the opposite edge.
This arrangement was due to the fact that the tensile specimens were cut from a larger
plate during manufacturing, and thus by following the explained procedure, the created
samples better represent the parent material.

Note that a quarter of the tensile specimen was considered instead of the whole
specimen to reduce numerical load. Moreover, choosing an RVE was not considered
since removing elements has a damage-like effect that results in softening of the
response. An RVE—according to the ergodic hypothesis—must represent the whole
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1

1

Figure 2. Finite element model of a jute-epoxy composite sample upon failure (top view)

structure over time. When very localised effects are present, e.g., softening in the
form of degradation of elasticity, the RVE cannot present the whole structure that is
showing a holistic behaviour. Namely, considering the whole structure is inevitable
when various localised effects are present. In the current context, resin-rich areas and
fibre clustering could make the unit cell approach not a good representation of the
whole structure unless such imperfections are ignored. Finding an appropriate RVE by
increasing the size of the realisations encounters convergence problems under softening
behaviour and is still under investigation.27 This issue is closely related to the size
effect issue that is mentioned in the introduction.

The CSA for each fibre was selected from a log-normal distribution of the ‘true’
fibre area.6 The ‘location’ and ‘scale’ parameters of 7.55 and 0.52 were used to
characterise the true fibre CSA distribution, respectively. This log-normal distribution
offers a realistic fit to the true cross-sectional area measurements of 106 jute fibres
that were extracted from the same batch and were used to manufacture the jute-epoxy
composite samples. Figure 3 illustrates the possible discrepancy if the apparent CSA is
used. These measurements were overlaid with the apparent and true log-normal CSA
distribution for the jute fibres.

The mechanical properties of the jute fibres, represented in the model, are influenced
by fibre length.7,20,28 Whilst the elastic modulus for the batch of jute fibres is relatively
insensitive to fibre length, fracture strength and strain significantly reduce as fibre
length increases.3,20 Thus, to account for fibre length variations (and the interrelated
mechanical properties), a log-normal distribution of fibre lengths was included with
the location and scale parameters of 4.183 and 0.976, respectively. This log-normal
distribution is representative of the fibre distribution resulting from 700 jute fibre
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Figure 3. Fibre cross-sectional area distribution with FACF = 1.42 (reproduced from 7)

measurements.20 A comparison of the jute fibre length measurements and the log-
normal fit (obtained using these location and scale parameters) is shown in Fig. 4.
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Figure 4. Fibre length distribution (reproduced from 20)

The elastic modulus of the jute fibres was taken (for each fibre) to be the mean
of the 785 jute samples tested. This mean value (27.9 GPa) is sensibly independent
of fibre length7. In contrast, the failure strengths of the fibres were calculated based
on fibre length and included in the FE models. The natural logarithmic interpolation
model reported in28 was used to calculate the fracture strengths for each fibre based on
its length. The work of7,28 assumes a circular fibre cross-section. The elastic modulus
and fracture strengths were therefore based on the apparent CSA. Thus, the FACF
needed to be applied to both elastic modulus and failure strength of the fibres. A FACF
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of 1.426 is included in the FE model for the elastic modulus and failure strength of
the fibres as per Eqs. (5) and (10), respectively. Finally, the orientation of the fibres
follows a Gaussian distribution, see Table 1. In this table, the mechanical properties
and geometrical dimensions of five jute fibre reinforced composite samples (cases A–E)
are summarised; they correspond to the experimental results in7 (see the ‘Experimental
Data’ section for more details).

Table 1. Measured mechanical properties of jute-epoxy composite (Plate values are the
average values of the samples). Adapted from 7.

Property Sample Plate

A B C D E Mean SD
Width (mm) 25.14 25.02 25.06 24.87 25.03 25.05 0.09
Thickness (mm) 3.15 3.61 3.67 3.59 3.67 3.52 0.18

Volume fraction (%) Mean 17.50 20.30 20.90 18.00 18.50 18.88 1.483
SD 3.20 3.80 6.10 3.10 5.40 3.95 n/a

Fibre angle (◦) Mean 5.72 10.52 7.90 6.19 6.59 7.36 1.932
SD 15.32 18.44 15.05 16.09 15.59 17.95 n/a

ηo 0.86 0.77 0.85 0.85 0.85 0.81 0.06
κ 1.42 1.42 1.42 1.42 1.42 1.42 0.00
ηd or ηl 1.00 1.00 1.00 1.00 1.00 1.00 0.00

Modelling the Matrix
The fibres are modelled by means of two-node rod elements with linear shape
functions. They are inserted into the matrix elements in a way that the degrees of
freedom (DoFs) of the embedded elements take their values from those of the host
(matrix) elements. The DoF values are interpolated based on the isoparametric location
of the embedded node within the host. The mesh density of the matrix elements
followed that of the fibres to facilitate the fibre embedding process (λ = 1).

Since the volume of the fibre elements is overlapped with that of the matrix elements,
the volume of the matrix is artificially increased. Thus, a ‘virtual’ thickness must be
used instead of the real (original) thickness of the matrix:

tm,v = (1− Vf)tm, (12)

where tm is the original matrix thickness and tm,v is the virtually decreased matrix
thickness. Note that the volume fraction calculation is done with respect to the original
thickness. A summary of the used properties is listed in Table 2.

Experimental Data
Experimental results in7 were used as benchmark values. Five samples from a single
jute fibre reinforced composite plate were cut, measured and prepared (five cases
A–E). Micrographs (6–8 per sample) were taken to characterise the micro-structure
of the samples, i.e., to estimate their volume fraction and the fibre orientation PDF
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by means of an image processing procedure. The statistical results were used to
calculate the FODF and FACF for each sample. Since the diameter of the fibres were
characterised accurately, a unit value was assigned to the fibre diameter distribution
factor. In addition, the fibre length distribution factor was assumed to be equal to 1.
The experimental results are summarised in Table 3.

To account for the stochastic variations in fibre CSA, length and mechanical
properties, as well as to accommodate the possible deviations in fibre orientation for
the jute-epoxy composite samples, five pseudo-random realisations of the prototype
were developed per case. In each realisation, quasi-unidirectional fibres with variable
length and CSAs were dispersed in a 3D matrix as per the distributions of Tables 1
and 2. Moreover, each realisation was analysed twice: with updating the strength of the
fibres and without strength updating. The simulations were carried out for jute fibre-
reinforced composite samples with low fibre volume fractions (in the range 17.5–20.9
vol%). A total of 50 probabilistic FE models were therefore considered. The stress-
strain curve for one of the realisations of Case D is depicted in Fig. 5.

In summary, in order to have a model that statistically represent the real specimens,
the computer-generated prototype provides the following capabilities:

• discrete modelling of embedded fibres;
• generating arbitrary volume fractions;
• controlling various statistical features, e.g., the length, CSA, strength, and the

orientation distribution of the fibres;
• generating and updating length-dependent strength according to the Weibull

distribution;

Table 2. Summary of material properties

Material Parameter Value
Jute fibre Constitutive law Linear elastic, isotropic

Axial elastic modulus 27.9 GPa 7

Axial-radial Poisson’s ratio 0.35 29

Failure criterion Maximum normal stress
Failure strength distribution Logarithmic interpolated Weibull distribution 28

Characteristic strength αlog = −111.656 ln(Lfibre) + 801.63 MPa
Shape parameter βlog = −0.152 ln(Lfibre) + 3.487
Average axial fibre strength† 298.13MPa
Fibre length distribution Log-normal (mean = 4.183, SD = 0.976)
CSA distribution Log-normal (mean = 7.55, SD = 0.52)
Orientation distribution Gaussian (mean = 5, SD = 10)
Mean fibre orientation factor 0.81± 0.06

Epoxy Constitutive law Linear elastic, isotropic
Elastic modulus 2.65GPa 7

Poisson’s ratio 0.35 29

Failure criterion Maximum normal stress
Failure strength 61MPa 7

Failure strain (%) 4.1 7

† The average axial strength corresponds to a fibre with average length in the distribution.
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Figure 5. Stress-strain response for a single realisation of Case D with Vf = 18% (the +
and − symbols denote the ‘with strength updating’ and ‘without strength updating’
algorithms, respectively)

• applying the relevant correction factors to the material properties, e.g., FACF to
natural fibres;

• applying the volumetric correction factor (by means of a virtual thickness) to
compensate for the volume of the embedded fibres in the matrix; and

• applying element elimination technique to both matrix and fibre elements based
on the maximum stress failure criterion (implementing other criteria is also
possible).

Results and Discussion
A total of 25 realisations were analysed; first with updating the strength of fibres,
and then without this consideration. The simulations were carried out according to
the statistical results obtained from experiments, i.e., the same volume fractions, fibre
angle orientation distributions, fibre CSA distributions, and fibre length distributions
were used. Elastic modulus, tensile strength, and failure strain of the simulations were
calculated and illustrated in Fig. 6. The values and their corresponding percentage
relative differences are available in Table 3. Obviously, the obtained values are bound
to the limitations of pseudo-random model generation. Nevertheless, some useful
derivations are obtained by analysing them.

Elastic modulus. The experimental values for the elastic moduli were outside the
range predicted by the classic IRoM and RoM, see the lightly shaded region in Fig. 6a.
The estimated upper value by RoM is extended by means of the En-RoM according
to Eq. (5); the extended region is shaded slightly darker in the figure. Moreover the
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averaged value of the specimens—the black horizontal line that corresponds to the
plate value—resides mostly in the area that is extended by the En-RoM. The elastic
moduli obtained from the numerical analyses were insensitive to updating the strength
of the fibres as both computational values overlap. Similar to the experimental results,
the computational values are mostly in the extended region. If the plate value is taken
as the representative of the material, the computational approach seems to slightly
underestimate the stiffness (average relative difference of−4.53%) whereas the classic
analytical estimates barely meet the experimental values (average relative difference of
−9.72%). On the other hand, the En-RoM estimates the elastic modulus very closely
with an average relative difference of 0.26%.

Tensile strength. The experimental values for ultimate strength lie between
the estimated analytical values: the classic Kelly-Tyson underestimates the failure
strength of the tensile specimens whereas its extended version provides much better
estimations (average relative difference of 7.85%). This improvement is mainly due
to incorporating the FACF into the classical version, see Eq. (6). The numerical
models with strength updating provide the best approximation with an average
relative difference of −3.39%. This result is a substantial improvement to the
−14.51% relative difference of the numerical models that discard strength updating.
Considering the average experimental value (the black horizontal line in Fig. 6b),
the computational models still underestimate the overall behaviour whereas the En-
KT model overestimates the strength. This overestimation was expected since the
microstructural defects present in the experimental material is not considered in En-
KT. It is worth mentioning that most of the numerical results with strength updating
exhibit only small deviations from the mean value.

Failure strain. The experimental values show an average of 1.30% for the failure
strain. The numerical models without strength updating underestimate the experimental

Table 3. Experimental, numerical and analytical results for elastic modulus (E, in GPa),
tensile strength (σ′, in MPa) , and failure strain (ε′, in percentage).

Property Case Plate

A B C D E Mean SD (%)

EExp 8.98 8.28 7.79 7.33 8.70 8.19 8.16
E+/− 7.615 [−15.20] 7.616 [−8.01] 8.367 [+7.40] 7.665 [+4.57] 7.957 [−8.54] 7.844 [−4.53] 4.14
ERoM 7.068 [−21.28] 7.776 [−6.09] 7.927 [+1.76] 7.195 [−1.84] 7.321 [−15.85] 7.417 [−9.72] 5.05
EEn-RoM 8.149 [−10.20] 8.305 [+0.30] 9.134 [+14.72] 8.235 [+10.98] 8.390 [−3.70] 8.208 [+0.26] 4.83
EIRoM 3.148 3.246 3.268 3.165 3.182 3.196 1.63

σ′Exp 104.90 99.60 106.80 94.80 94.20 100.06 8.26

σ′+ 92.652 [−11.68] 95.381 [−4.24] 101.768 [−4.71] 96.870 [+2.18] 96.686 [+2.64] 96.671 [−3.39] 3.42

σ′− 83.401 [−20.49] 83.810 [−15.85] 90.258 [−15.49] 85.214 [−10.11] 85.039 [−9.73] 85.545 [−14.51] 3.21

σ′KT 71.572 [−31.77] 79.707 [−19.97] 82.976 [−22.31] 75.240 [−20.63] 72.645 [−22.88] 75.997 [−24.05] 6.34
σ′En-KT 101.632 [−3.12] 113.184 [+13.64] 117.825 [+10.32] 106.841 [+12.70] 103.156 [+9.51] 107.916 [+7.85] 6.34

ε′Exp 1.2600 1.2900 1.4000 1.4100 1.1500 1.3020 0.85

ε′+ 1.3120 [+4.13] 1.3944 [+8.10] 1.3101 [−6.42] 1.3558 [+0.48] 1.3558 [+17.90] 1.3578 [+4.29] 0.37

ε′− 1.1162 [−11.42] 1.1363 [−11.91] 1.1207 [−19.95] 1.0953 [−19.24] 1.0953 [−4.76] 1.1214 [−13.87] 0.02

Note 1. The + and− subscripts denote the ‘with strength updating’ and ‘without strength updating’ algorithms, respectively.
Note 2. Values in brackets denote the percentage relative difference with respect to the corresponding experimental value.
Note 3. The ‘SD (%)’ is the SD normalised with respect to the mean value—it is also called percent deviation from mean Value.
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Figure 6. Results of experimental, computational, and analytical models (the + and −
symbols denote the ‘with strength updating’ and ‘without strength updating’ algorithms,
respectively).
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value of the failure strain (average relative difference−13.87%) whereas for the case of
the strength updating models, a slight overestimation of about 4.29% average relative
difference is obtained. The rather brittle response of the models without fibre strength
updating is due to the sudden removal of several elements in a single increment.
By removing the strength updating, all elements of a fibre inherit the same strength
irrespective of their updated length. Thus, most of the elements of a failing fibre are
removed, concurrently. On the other hand, strengthening of the subdivided fibres result
in a more ductile response and allows the stress field to grow more smoothly within the
composite and engage more fibres before failure. This also justifies the higher strength
values of the updating models.

Consistency of results. In the last column of Table 3, the percent deviation from the
mean value is presented for the results. It is evident that the strength updating approach
provides pretty consistent results in terms of estimating elastic modulus (4.14%),
failure strength (3.42%), and failure strain (0.37%). These values are greater than
their corresponding experimental values, i.e., 8.16%, 8.26%, and 0.85%, respectively.
These results emphasises that the numerical algorithm could produce consistent
results according to the input statistical distributions. The same statement is valid for
the algorithm without strength updating, albeit those results show a higher relative
difference with respect to the experimental findings. Finally, among the estimated
values, the failure strain has received the most consistent results (0.37% and 0.02%).
Obviously, increasing the number of realisations renders the average of the results a
better representation of the physical specimens.

Conclusion
The current work aimed to illustrate the importance of incorporating FACF in both
analytical and numerical models. Moreover, a methodology for creating embedded
natural fibres within a composite and mimicking the damage evolution is described.
The proposed algorithm is novel for implementing the following innovations:

• computational incorporation of length-dependent strength response of fibres (in
the spirit of fracture mechanics), by updating the strength of fibre elements upon
failure during the FE analyses,

• implicit modelling of damage by element elimination techniques without
requiring specific characterisation of damage parameters,

• using a virtual thickness for the specimens to adjust the volumetric discrepancy
of the matrix due to embedding discrete fibres, and

• numerical implementation of fibre cross-section non-uniformity using a
correction factor to fine-tune the apparent fibre CSA.

Cross-sectional area measurement of non-circular natural fibres—while assuming a
perfect circular cross-section—overestimates the true values. Thus, calculation of
strength and stiffness of technical fibres would be an underestimation of the real values.
This subtle point should be reflected in both analytical and numerical models. To
this end, the classic Kelly-Tyson model and RoM were extended to their enhanced
versions and an algorithm for discrete modelling of natural fibres was provided. All the
suggested amendments improved the original results that ignored the FACF.
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Considering that linear material models were used, the non-linear response of the
NFC is implicitly allowed. Namely, the discrete modelling of fibres and the technique
of removing the failed elements during the analysis were the means for including the
gradual material deterioration during the loading. However, updating the strength of
the fibres according to their length after failure showed a substantial improvement
in estimating the tensile strength and failure stress. When the strength updating is
dropped, the response of embedded fibres become more brittle and the strength of the
composite is underestimated since a more localised failure is induced. On the other
hand, the elastic modulus remained insensitive to fibre updating.

The introduced method can be used in multi-scale modelling to set up a simple
representative volume element with embedded fibres in the meso-scale. In addition,
the computational models can be further improved by considering non-local continua
formulation for the composite to smooth the damage propagation and alleviate the
artificial stress concentration due to sudden fibre removal.
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