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Performance Metrics for Network Intrusion Systems 

Christopher John Tucker MSc 

Intrusion systems have been the subject of considerable research during the 
past 33 years, since the original work of Anderson. Much has been published 
attempting to improve their performance using advanced data processing 
techniques including neural nets, statistical pattern recognition and genetic 
algorithms. Whilst some significant improvements have been achieved they are 
often the result of assumptions that are difficult to justify and comparing 
performance between different research groups is difficult. The thesis develops 
a new approach to defining performance focussed on comparing intrusion 
systems and technologies. 

A new taxonomy is proposed in which the type of output and the data scale 
over which an intrusion system operates is used for classification. The 
inconsistencies and inadequacies of existing definitions of detection are 
examined and five new intrusion levels are proposed from analogy with other 
detection-based technologies. These levels are known as detection, recognition, 
identification, confirmation and prosecution, each representing an increase in 
the information output from, and functionality of, the intrusion system. These 
levels are contrasted over four physical data scales, from application/host 
through to enterprise networks, introducing and developing the concept of a 
footprint as a pictorial representation of the scope of an intrusion system. An 
intrusion is now defined as “an activity that leads to the violation of the security 
policy of a computer system”. Five different intrusion technologies are 
illustrated using the footprint with current challenges also shown to stimulate 
further research. Integrity in the presence of mixed trust data streams at the 
highest intrusion level is identified as particularly challenging. 

Two metrics new to intrusion systems are defined to quantify performance and 
further aid comparison. Sensitivity is introduced to define basic detectability of 
an attack in terms of a single parameter, rather than the usual four currently in 
use. Selectivity is used to describe the ability of an intrusion system to 
discriminate between attack types. These metrics are quantified experimentally 
for network intrusion using the DARPA 1999 dataset and SNORT. Only nine of 
the 58 attack types present were detected with sensitivities in excess of 12dB 
indicating that detection performance of the attack types present in this dataset 
remains a challenge. The measured selectivity was also poor indicting that only 
three of the attack types could be confidently distinguished.  The highest value 
of selectivity was 3.52, significantly lower than the theoretical limit of 5.83 for 
the evaluated system. Options for improving selectivity and sensitivity through 
additional measurements are examined.  





       

 

 

List of Contents 
 

1. INTRODUCTION ................................................................................................. 2 

1.1. THE NEED FOR EFFECTIVE INTRUSION SYSTEMS ............................................................ 3 

1.2. AIMS AND OBJECTIVES OF THE THESIS......................................................................... 9 

1.3. THESIS STRUCTURE ............................................................................................... 11 

2. LITERATURE REVIEW ....................................................................................... 14 

2.1. FRAMEWORKS FOR INTRUSION DETECTION ................................................................ 14 

2.2. DATA PROCESSING ............................................................................................... 16 

2.2.1. Basic Techniques ..................................................................................... 17 

2.2.2. Support Vector Machines (SVM) ............................................................. 18 

2.2.3. Agents ..................................................................................................... 22 

2.2.4. Data Mining ............................................................................................ 25 

2.2.5. Artificial Neural Networks ....................................................................... 26 

2.2.6. Fuzzy Systems .......................................................................................... 27 

2.2.7. Genetic Algorithms .................................................................................. 29 

2.2.8. Expert Systems and Probabilistic Reasoning ........................................... 30 

2.2.9. Digital Signal Processing (DSP) ................................................................ 31 

2.2.10. Miscellaneous Techniques ....................................................................... 33 

2.3. POST INTRUSION PROCESSING................................................................................. 35 

2.3.1. Correlating Logs ...................................................................................... 36 

2.3.2. Visualisation ............................................................................................ 38 

2.3.3. SIEM......................................................................................................... 40 

2.4. INTRUSION SYSTEMS ............................................................................................. 41 

2.4.1. Research Systems .................................................................................... 43 

2.4.2. Commercial Systems ............................................................................... 44 

2.4.3. Systems Approaches to False Alarm Control ........................................... 45 

2.4.4. Intrusion System Limitations ................................................................... 47 

2.5. INTRUSION EVASION ............................................................................................. 48 

2.6. EVALUATION OF INTRUSION DETECTION SYSTEMS ....................................................... 50 

2.6.1. Security Metrics ....................................................................................... 52 

2.6.2. Performance Metrics ............................................................................... 53 

2.6.3. Activity Databases ................................................................................... 57 

2.6.4. Network Traffic Generation .................................................................... 63 

2.6.5. Comparison Studies ................................................................................. 63 

2.7. CONCLUSIONS ...................................................................................................... 64 

3. A NEW TAXONOMY FOR INTRUSION SYSTEMS ................................................. 68 

3.1. BACKGROUND...................................................................................................... 68 

3.2. A NEW INTRUSION TAXONOMY ............................................................................... 70 



  

 

 

3.3. THE APPLICATION OF THE TAXONOMY ...................................................................... 75 

3.3.1. Intrusion Matrix ...................................................................................... 75 

3.3.2. Intrusion System Footprint ...................................................................... 76 

3.3.3. Comparison of Intrusion Systems ............................................................ 80 

3.4. RELATIONSHIP WITH OTHER DEFINITIONS OF INTRUSION .............................................. 82 

3.5. CONCLUSIONS ..................................................................................................... 84 

4. SYSTEMS CONSIDERATIONS .............................................................................88 

4.1. PRINCIPLES OF NETWORK INTRUSION SYSTEMS .......................................................... 88 

4.2. REASONS TO DEPLOY A NETWORK INTRUSION SYSTEM ................................................ 93 

4.3. THE IDEAL NETWORK INTRUSION SYSTEM ................................................................. 95 

4.4. A MODEL OF AN IDEAL NIS .................................................................................. 101 

4.5. CURRENT CHALLENGES IN NIS .............................................................................. 105 

4.6. NIS PERFORMANCE METRICS ............................................................................... 109 

4.6.1. The Problem of Defining Performance .................................................. 110 

4.6.2. Sensitivity .............................................................................................. 112 

4.6.3. Selectivity .............................................................................................. 119 

4.7. METRICS FOR HIGH LEVEL DEFINITIONS OF INTRUSION .............................................. 125 

4.8. CONCLUSIONS ................................................................................................... 126 

5. EXPERIMENTAL EVALUATION ......................................................................... 130 

5.1. OBJECTIVES OF THE EXPERIMENTAL PROGRAMME ..................................................... 130 

5.2. OVERVIEW OF THE EXPERIMENTAL CONFIGURATION .................................................. 131 

5.3. EXPERIMENTAL SETUP ......................................................................................... 132 

5.3.1. Database Selection ................................................................................ 132 

5.3.2. Intrusion Truth Data .............................................................................. 135 

5.3.3. SNORT Configuration and Signature Files ............................................. 138 

5.3.4. Truth Data and Performance Analysis .................................................. 139 

5.4. RESULTS ........................................................................................................... 143 

5.4.1. Alert Statistics ....................................................................................... 143 

5.4.2. False Alarm Assessment ........................................................................ 145 

5.4.3. Detectability of Attack Types ................................................................ 151 

5.4.4. Sensitivity Measurements ..................................................................... 155 

5.4.5. Selectivity Measurements ..................................................................... 158 

5.5. DISCUSSION ...................................................................................................... 168 

5.6. SUMMARY AND CONCLUSIONS .............................................................................. 169 

6. SUMMARY AND CONCLUSIONS ...................................................................... 172 

6.1. SUMMARY OF RESEARCH ACTIVITIES ...................................................................... 173 



       

 

 

6.2. RESEARCH ACHIEVEMENTS ................................................................................... 174 

6.3. RESEARCH LIMITATIONS ....................................................................................... 177 

6.4. FURTHER WORK ................................................................................................. 178 

6.5. THE FUTURE FOR NETWORK INTRUSION SYSTEMS ..................................................... 179 

LIST OF REFERENCES ............................................................................................. 181 

APPENDIX A. THE DARPA 1999 DATASET .......................................................... 204 

A.1. INTRODUCTION .................................................................................................. 204 

A.2. DESCRIPTION OF THE SIMULATED NETWORK ............................................................ 205 

A.3. NETWORK STATISTICS .......................................................................................... 207 

APPENDIX B. CLOCK DRIFT IN THE DARPA 1999 DATASET ................................. 212 

B.1. INITIAL ANALYSIS ................................................................................................ 212 

B.2. FURTHER ANALYSIS ............................................................................................. 213 

B.3. CLOCK DRIFT MEASUREMENT ............................................................................... 216 

B.4. CONCLUSIONS .................................................................................................... 219 

APPENDIX C. WIRESHARK FOR ATTACK TRUTH DETERMINATION ..................... 222 

C.1. INTRODUCTION .................................................................................................. 222 

C.2. INITIAL INVESTIGATION ........................................................................................ 222 

C.3. NTINFOSCAN ANALYSIS ....................................................................................... 224 

C.4. CONCLUSIONS .................................................................................................... 226 

APPENDIX D. PERFORMANCE IMPROVEMENT .................................................. 228 

D.1. AGGRESSIVE DETECTION ...................................................................................... 229 

D.1.1. AGGRESSIVE NETWORK INTRUSION SYSTEMS ....................................................... 231 

D.1.2. ACTIVE ELEMENT PROBES ................................................................................ 233 

D.2. ARCHITECTURES FOR AGGRESSIVE DETECTION .......................................................... 235 

D.2.1. ILC ARCHITECTURE ......................................................................................... 237 

D.2.2. ITC ARCHITECTURE ......................................................................................... 240 

D.2.3. DLC ARCHITECTURE ........................................................................................ 243 

D.2.4. DTC ARCHITECTURE ....................................................................................... 245 

D.2.5. HYBRID ARCHITECTURES .................................................................................. 248 

D.3. AGNIS CONSIDERATIONS ..................................................................................... 250 

D.3.1. BATCH PROCESSING ........................................................................................ 251 

D.3.2. NETWORK SECURITY AND AGNIS PROTECTION .................................................... 251 

D.3.3. PERSONAL FIREWALLS ..................................................................................... 252 



  

 

 

D.3.4. EFFICIENCY .................................................................................................... 253 

D.4. SUMMARY AND CONCLUSIONS .............................................................................. 254 

APPENDIX E. SNORT CONFIGURATION ............................................................. 258 

APPENDIX F. PROFESSIONAL REVIEW ............................................................... 264 

APPENDIX G. RESEARCH PAPERS ...................................................................... 268 

 
 



       

 

 

List of Figures 
 

Figure 1-1 Annual Increase in the Number of New Virus Signatures ..................... 4 

Figure 1-2 Annual Increase in New Vulnerabilities Discovered ............................... 5 

Figure 1-3 Results of a UK Security Survey (PricewaterhouseCoopers 2012) ...... 6 

Figure 1-4 Increasing Attack Sophistication (Hansman and Hunt 2005) ............... 7 

Figure 2-1 Intrusion System Performance (Lippmann and Cunningham 2000) . 56 

Figure 2-2 ROC Curves (Estevez-Tapiador, Garcia-Teodoro et al. 2004) ............ 57 

Figure 3-1 Intrusion System Hierarchy...................................................................... 72 

Figure 3-2 Intrusion Taxonomy .................................................................................. 76 

Figure 3-3 Intrusion Footprints ................................................................................... 77 

Figure 4-1 A Functional View of an Ideal NIS ........................................................ 102 

Figure 4-2 Graphical Interpretation of    and     ............................................. 114 

Figure 4-3 Relationship Between     and SNR ..................................................... 118 

Figure 4-4 Geometric Interpretation of Sensitivity and Selectivity ..................... 120 

Figure 5-1 Experimental Configuration .................................................................... 132 

Figure 5-2 Time Synchronisation Error in DARPA 1999 ........................................ 134 

Figure 5-3 Histogram of Attack Durations for Week 2 of DARPA 1999 ............. 136 

Figure 5-4 The Duration of Attacks in DARPA 1999 .............................................. 143 

Figure 5-5 Sensitivities of Different Attack Types.................................................. 159 

Figure A-1 DARPA 1999 Network, based on (MIT Lincoln Laboratory 2012b) . 205 

Figure B-1 Clock Drift Between the Inside and Outside Network Sniffers ......... 213 

Figure B-2 NTP Hierarchy within the DARPA 1999 Simulation ............................ 215 

Figure B-3 Clock Drift between the Inside and Outside Network – Week 2 ..... 217 

Figure B-4 Clock Drift between the Inside and Outside Network - Week 4 ...... 217 

Figure B-5 Clock Drift between the Inside and Outside Network - Week 5 ...... 218 

Figure D-1 A Simple AgNIS Functional Description ............................................... 232 

Figure D-2 Integrated, Loosely Coupled AgNIS ..................................................... 238 



  

 

 

Figure D-3 Integrated, Tightly Coupled AgNIS ...................................................... 240 

Figure D-4 Distributed, Loosely Coupled AgNIS .................................................... 244 

Figure D-5 Distributed, Tightly Coupled AgNIS ..................................................... 246 

 

 



       

 

 

List of Tables 
 

Table 2-1 The DARPA 1998 Attacks, based on  (Lippmann, Fried et al. 2000) .. 59 

Table 4-1 The Assertion Matrix ................................................................................. 106 

Table 5-1 Testing Truth Data for DARPA 1999 ...................................................... 138 

Table 5-2 Software Versions Used in the Experimental Work ............................. 139 

Table 5-3 SNORT Intrusions Detected .................................................................... 144 

Table 5-4 SNORT False Positive Performance ........................................................ 144 

Table 5-5 DARPA 1999 Networking Statistics ........................................................ 145 

Table 5-6 False Positive Alert Types ........................................................................ 147 

Table 5-7 Analysis of Signatures Triggered by DARPA 1999 ............................... 150 

Table 5-8 Detectability of Different Attack Types .................................................. 154 

Table 5-9 SNORT Signatures for FTPWrite and Xterm ......................................... 156 

Table 5-10    and     for the Attack Type FTPWrite and Xterm ..................... 157 

Table 5-11 Attack Type vs SNORT Signature ......................................................... 160 

Table 5-12 Probability of Individual Signatures vs Attack Type .......................... 162 

Table 5-13 Selectivity Heatmap for Different Attack Types ................................. 164 

Table 5-14 Examples of the Use of Selectivity ....................................................... 166 

Table A-1 Attack Types in the DARPA 1999 Dataset ............................................ 207 

Table A-2 DARPA 1999 Start and Stop Times ........................................................ 209 

Table A-3 Statistics for the DARPA 1999 Inside Dataset ...................................... 210 

Table B-1 Linear Regression Parameters for Clock Drift ...................................... 219 

Table C-1 NTInfoscan Data for W2D1 Inside Network ......................................... 226 

Table D-1 The Advantages and Disadvantages of AgNIS Architectures ............ 250 

 
 

  





       

 

 

List of Equations 
 

Equation 2-1 Definition of Precision ........................................................................... 55 

Equation 2-2 Definition of Accuracy........................................................................... 55 

Equation 4-1 Fundamental Assumption of NIS ........................................................ 90 

Equation 4-2 The Problem of NIS .............................................................................. 91 

Equation 4-3 An Ideal NIS ........................................................................................... 92 

Equation 4-4 Number of Frames in an Attack ........................................................ 110 

Equation 4-5 Detection Probability - Frame-Based View ...................................... 111 

Equation 4-6 Definition of    and     .................................................................. 113 

Equation 4-7     and      for Signals in Gaussian Noise................................... 113 

Equation 4-8 Definition of Detection Sensitivity .................................................... 115 

Equation 4-9 Calculation of Selectivity Metric between Two Event Types ........ 123 

Equation 5-1 Estimation of the A Priori Statistics for Each SNORT Signature .. 151 

Equation 5-2 Estimation of    and     for an Attack type ................................ 156 

 





       

 

 

List of Symbols 
 

Symbol Definition 

Ac Accuracy 

     Distance in parameter space 

FP False Positive 

FN False Negative 

   |           Probability density function conditioned on an intrusion present 

   |         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   Probability density function conditioned on no intrusion present 

i Summation, product and vector element index 

M Number of intrusion event types 

N 
The number of dimensions in parameter space, number of 
signatures 

       Number of frames alerted 

        The number of frames in an attack 

  Probability 

   Probability of Confirmation 

   Probability of Detection 

 ̂  Probability of Detection for an attack type 

    Probability of False Alarm 

 ̂   Probability of False Alarm for an attack type 

   Probability of Identification 

   Probability of Recognition 

Pr Precision 

   
The set of frames that can violate the security policy of a 
network 

   
The set of frames consistent with the security policy of a 
network 

     
The set of frames that will be detected by a given set of 

signatures 

  Decision threshold 



  

 

 

TN True Negative 

TP True Positive 

  The universe of frames present on a network segment 

X( ) Probability vector for the triggering of a signature 

  The output variable from a NIS 

  Mean of probability density function 

  Standard deviation of probability density function 

 
  



       

 

 

List of Terms 
 

Item Definition 

AAFID Autonomous Agents for Intrusion Detection 

Ac Accuracy 

AgNIS Aggressive Network Intrusion System 

AIDE Advanced Intrusion Detection Environment 

AMSEC Attack Modelling and Security Evaluation Component 

ANN Artificial Neural Network 

APT Advanced Persistent Threat 

ATC Air Traffic Control 

AVS Anti-Virus Software 

BERR Department for Business, Enterprise and Regulatory Reform 

BGP Boundary Gateway Protocol 

BSM Basic Security Module 

BST British Summer Time 

CAIDA Cooperative Association for Internet Data Analysis 

CFAR Constant False Alarm Rate 

CIDF Common Intrusion Detection Framework 

CMD Command 

COAST Computer Operations, Audit and Security Technology 

CPU Central Processor Unit 

CSV Comma Separated Variable 

DARPA Defense Advanced Research Projects Agency 

DDoS Distributed Denial of Service 



  

 

 

Item Definition 

DLC Distributed Loosely Coupled 

DNS Domain Name Service 

DoS Denial of Service 

D-S Dempster Schafer 

DSP Digital Signal Processing 

DTC Distributed Tightly Coupled 

DTI Department of Trade and Industry 

EST Eastern Standard Time 

FIN Network packet type indicating completion of a connection 

FIRE Fuzzy Intrusion Recognition Engine 

FN False Negative 

FP False Positive 

FTP File Transfer Protocol 

GA Genetic Algorithm 

GB Gigabyte 

GrIDS Graph-Based Intrusion Detection System 

HIDS Host Intrusion Detection Systems 

HMM Hidden Markov Model 

HTTP Hyper-Text Transfer Protocol 

IAP Intrusion Alert Protocol 

ICMP Internet Control Message protocol 

IDES Intrusion Detection Expert System 

IDMEF Intrusion Detection Message Exchange Format 

IDS Intrusion Detection System 



       

 

 

Item Definition 

IETF Internet Engineering Task Force 

IIDS Intelligent Intrusion Detection System 

ILC Integrated Loosely Coupled 

IP Internet Protocol 

IPS Intrusion Prevention System 

IPSec Internet Protocol Security 

IPv4 Internet Protocol Version 4 

IPv6 Internet Protocol Version 6 

IRC Internet Relay Chat 

ISBS Information Security Breaches Survey 

ITC Integrated Tightly Coupled 

KDD Knowledge Discovery and Data Mining – A conference 

KPMG A global consultancy 

LGP Linear Genetic Program 

MA Mobile Agent 

MAC Media Access Control 

MANETS Mobile Ad hoc Networks 

MARS Multivariate Adaptive Regression Splines 

MIB Management Information Block 

MIT Massachusetts Institute of Technology 

MLP Multi-Layer Perceptron 

MOAT Measurement and Operation Analysis Team 

MTU Maximum Transmission Unit 

NADIR Network Anomaly Detection and Intrusion Reporter 



  

 

 

Item Definition 

NATO North Atlantic Treaty Organisation 

NIC Network Interface Card 

NIDES Next-generation Intrusion Detection Expert System 

NIDS Network Intrusion Detection System  

NIS Network Intrusion System 

NIST National Institute of Standards and Technology 

NLANR National Laboratory for Applied Network Research 

NTP Network Time Protocol 

OS Operating System 

PBA Polymorphic Blending Attack 

P-BEST Production-Based Expert System Toolset 

PCA Principal Components Analysis 

PCI Payment Card Industry 

PCI-DSS Payment Card Industry Data Security Standard 

Pd Probability of Detection 

Pfa Probability of False Alarm 

PhD Doctor of Philosophy 

Pr Precision 

R2L Remote to Local 

RAID Recent Advances in Intrusion Detection 

RBF Radial Basis Function 

RFC Request For Comment 

ROC Receiver Operating Characteristic 

RIPE Réseaux IP Européens 



       

 

 

Item Definition 

RPC Remote Procedure Call 

RST Reset – Network packet type 

RSVM Robust Support Vector Machine 

SIEM Security Information and Event Management 

SMB Server Management Block 

SNMP Simple Network Management Protocol 

SOM Self-Organising Map 

SSE-
CMM 

System Security Engineering Capability Maturity Model 

SSH Secure Shell 

SVM Support Vector Machine 

SYN Synchronise – Network packet type 

TB Terabyte 

TCP Transport Control Protocol 

TN True Negative 

TP True Positive 

U2R User to Root 

UDP User Datagram Protocol 

UK United Kingdom 

UTC Coordinated Universal Time 

VLAN Virtual Local Area Network 

VoIP Voice Over Internet Protocol 

VPN Virtual Private Network 

W3 What Where and When 



  

 

 

Item Definition 

WAND A network research group based in New Zealand 

WITS Waikato Internet Traffic Storage 

 
 



       

 

 

 
Acknowledgements 
 
The research described in this thesis is all the work of the author. Although 
nobody else has contributed to its content it could not have been completed 
without the support, encouragement and understanding of many others. First, I 
would like to acknowledge the invaluable support of my Director of Studies, 
Professor Steven Furnell. He continued to believe in the value of this research 
and my ability to complete it. His enthusiasm, professionalism and positive 
attitude have been inspirational. 
 
Next, my supervisory team, Dr Bogdan Ghita and Dr Phil Brooke have provided 
that essential insight to the academic requirements necessary for completion of 
the research, guiding me towards successful submission of this thesis. Their 
contribution in proof reading the research papers and thesis drafts has been 
invaluable. 
 
Finally, I would like to thank my family and friends for their encouragement 
over the seven years of study. In particular, without the tireless support of my 
wife throughout this period it is unlikely that it would have been finished.  As 
we tackled the usual family challenges she never once complained at the time I 
spent, nor doubted that this thesis would be completed. In view of their 
unfailing support, this thesis is dedicated to my family; Yvonne, Rebecca, 
Edward and Rachel. 
 
As I strived to complete this work I was inspired by an unexpected source. 
During my secondary education, at each morning assembly I faced a large 
wooden notice board on which our school motto was engraved as follows: 
"More men fail through lack of perseverance than through lack of ability". Good 
words indeed and essential advice for anyone contemplating part-time 
academic study. 
 
 
 

 

  





       

 

 

AUTHOR'S DECLARATION 

At no time during the registration for the degree of Doctor of Philosophy has 
the author been registered for any other University award without prior 
agreement of the Graduate Committee. 
 
This study was privately financed, with the aid of Stochastic Systems Ltd.  
 
A part-time programme of advanced research was undertaken, which included 
the theoretical assessment and practical measurement of metrics for network 
intrusion.  Relevant conferences were attended at which work was presented; 
external institutions were visited for consultation purposes and several papers 
prepared for publication. 
 
Word count of main body of thesis, excluding appendices: 42,545 
 
 

 

    Signed:   ............................................... 

 

    Date:       ............................................... 





       

 

 

 

 

 

 

 

 

 

CHAPTER 1 

 

 

INTRODUCTION 



Chapter 1 Introduction   

 

 2 

1. Introduction 

At the outset of this research there was a perceived performance shortfall in 

practical systems, in particular that the number of false alarms was 

unacceptably high. Over thirty years of research into new data processing 

techniques and systems approaches has failed to identify a method or collection 

of techniques for correct declaration of all intrusions, with an arbitrary low false 

alarm rate. A key aspect of understanding the applicability of a new technique 

is the ability to compare it with the performance of others. The motivation for 

this thesis was based in the observation that detection theory, as a framework 

for performance assessment, had been applied successfully to many 

technologies, including radar and sonar, but had only limited application to 

computer intrusion systems. The desire was to use analogy from these other 

technologies to identify how performance could be better measured, specifically 

addressing the research question of how can performance of an intrusion 

system be defined more clearly to aid comparison of differing approaches and 

focus new research. 

This research has defined a new taxonomy for intrusion systems, specifically 

aimed at comparing the performance of differing approaches. Five levels of 

intrusion performance have been defined from “Detection”, which is the ability 

of a system to declare that an intrusion is underway but provide no further 

information, through to “Prosecution”, where evidential quality information is 

gathered on the attacker and the methods and targets they have exploited. 

These five levels are examined over four data scales from application to 
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enterprise to create a footprint for each intrusion system type. Meaningful 

comparison of intrusion systems can only be undertaken where they overlap on 

this footprint. 

In addition, this research has defined two new performance metrics, designated 

as sensitivity and selectivity, using analogy from other technologies in which 

detection is an important element. Sensitivity is concerned with the ability to 

detect a given attack, at a known detection probability and false alarm rate. It 

replaces the usual four metrics of false positive, false negative, true positive 

and true negative rates with a single number, making comparison easier. 

Selectivity is concerned with the ability of an intrusion system to differentiate 

different attack types. This is important when considering the higher levels of 

intrusion performance in the new taxonomy. Selectivity consists of a square 

matrix, the dimension of which is the number of different attack types that are 

to be differentiated.  

This first section of this chapter commences by describing the need for effective 

intrusion systems in terms of the quantity, type and growth of network attacks. 

The aims and objectives of the research are then described more fully before 

an overview of the layout of the thesis is presented.  

1.1. The Need for Effective Intrusion Systems 

The growing availability of Internet access has increased the variety of online 

services offered to business and private users. The number of online financial 

transactions is continuing to increase to the point that Internet purchases and 

the management of personal finances online are commonplace. Businesses 
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have also identified significant benefits in interconnecting their company 

networks over the Internet or private networks, either to reduce infrastructure 

costs, improve employee-work flexibility or to collaborate with partners. 

However, as these opportunities have been identified and exploited, there has 

been an expansion of the number and sophistication of attacks on online users.  

 

Figure 1-1 Annual Increase in the Number of New Virus Signatures 

One indication of the growing threat is the number of new virus signatures 

created each year to combat malware. This is shown in Figure 1-1, as reported 

by Symantec (Rossi 2010), where the almost exponential annual increase in 

new virus signatures is shown. Despite publishing numerous statistics in their 

regular security reports, 2010 was the last time annual increases in virus 

signatures statistics were reported by Symantec. However, in a press release in 

2011 (Symantec 2011), Symantec did report: 
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“The sheer volume of sophisticated attacks targeting organizations of all sizes 

poses a daunting challenge for traditional signature-based security solutions 

that can't keep up”.  

Also the number of new vulnerabilities discovered within security related 

software, as recorded in the US National Vulnerability Database (National 

Vulnerability Database 2011), is shown in Figure 1-2. The exponential growth in 

their discovery to 2006 seems to be abated, with a steady decline in the 

number since then. However in 2010 there were still over 4500 new 

vulnerabilities discovered, with each one presenting a potential attack vector for 

an intruder.  

 

Figure 1-2 Annual Increase in New Vulnerabilities Discovered 

The results of the latest UK bi-annual information security breaches survey are 

shown in Figure 1-3 (PricewaterhouseCoopers 2012).  This survey shows that 
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the incidence of UK companies experiencing premeditated or malicious security 

incidents has increased from 18% overall in 1998 to 91% in 2012 for large 

companies.  Interestingly, the 2006 incidents are lower than in 2004 where 

they reached 68% overall.  The reduction is believed to be due to the increased 

awareness of security issues within UK companies and the deployment of 

improved security controls. However the reduction in incidents was abated in 

2010, with 2012 representing the highest recorded level from this series of 

surveys. 

 

Figure 1-3 Results of a UK Security Survey (PricewaterhouseCoopers 2012) 

Figure 1-4 shows a much more insidious problem in which the sophistication of 

attacks is increasing, but the technical skills required by would-be attackers is 

decreasing (Hansman and Hunt 2005). This is mainly due to the proliferation of 

scripts on the Internet that allow the automation of attacks. If these trends 
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continue, the importance of effective intrusion systems will also grow. Of 

particular relevance to the proposed research is the growth in the performance 

required from an intrusion system, to meet the growing threat and remain 

effective. Using Figure 1-4 as an example, an intrusion system in 1980 would 

have needed to detect password guessing attacks, whilst in 2000 it would need 

to detect sophisticated command and control attacks, as well as all the attack 

techniques developed since 1980.  

More recently advanced persistent threat (APT) attacks have appeared, 

originally targeted at military and political targets, but now being used 

increasingly against large enterprises (Giura and Wei 2012). APTs are 

sophisticated attacks undertaken by highly skilled and resourced individuals, 

potentially attacking over many years for a given target. 

 

Figure 1-4 Increasing Attack Sophistication (Hansman and Hunt 2005)  

As attack sophistication has increased so has the development of technologies 

aimed at defending network systems. Routers, which have formed the central 
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element of the Internet, have been enhanced to include packet filtering, 

stateful-inspection and authentication technologies. Specialist security devices 

have been developed, such as firewalls and intrusion systems and prevention 

systems, to thwart the would-be attacker. The deployment of such devices has 

made it increasingly difficult to penetrate protected networks, but not 

impossible. Configuration errors, technology weaknesses or security policy 

limitations can still result in networks being penetrated and information being 

stolen or otherwise compromised. In many cases legitimate system users 

access information that they are not authorised to see, either because no 

controls are in-place for “insiders” or through the use of simple hacking tools 

available on the Internet.  

Clearly, the threat to computer networks is real, sophisticated and growing. 

New technologies may exacerbate the threat by providing opportunities for 

more configuration errors, new inherent weaknesses, or to reveal policy 

limitations. A key requirement in defending against intruder attacks is to know 

when they are underway. Intrusion systems are one way of providing this 

information, along with analysis of operating system, application and network 

device logs.  

Despite this clear need for intrusion systems their deployment has not been 

universal. The 2008 BERR (PricewaterhouseCoopers 2008) survey1 reported 

that only 46% of the UK companies surveyed had deployed an intrusion 

detection system, up from 43% in 2006. Yet 98% of companies use anti-virus 

                                        

1 This was the last survey in this series to record deployment statistics for intrusion detection 

systems. 



      Chapter 1 Introduction 

 

9 

software on email and web downloads, up from 95% in 2006. Given that there 

are quality open source intrusion systems available (for example SNORT or 

BRO), it is difficult to understand why a wider deployment of intrusion systems 

has not occurred. 

One reason may be the perception that intrusion systems produce a large 

number of false alarms. An analysis by Tjhai (Tjhai, Papadaki et al. 2008) 

confirms that recent versions of SNORT (Roesch 1999) can still produce a large 

number of false positives. Also in the corporate environment Gartner (Young 

and Pescatore 2010) reports: 

“False positive (false alarm) rates remain low in most deployments because 

most use cases deploy high confidence signatures only.” 

In the same study Gartner reports that 25% of intrusion prevention system 

(IPS) deployments have their blocking capabilities disabled until “businesses are 

confident that there will be no business interruption”.  This suggests that false 

alarm rates continue to remain a concern.  

1.2. Aims and Objectives of the Thesis 

The aim of this thesis is to identify better ways of measuring the performance 

of intrusion systems, so that meaningful comparison can be undertaken to 

focus future research on performance improvement.  

In order to achieve this the programme of work wasdivided into four distinct 

objectives, namely to: 

a) Review the techniques and performance measures that have been 

applied to intrusion systems, to identify the most promising techniques 
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for further evaluation; 

b) Re-evaluate the meaning of “detection” in the context of Network 

Intrusion Systems (NIS2); 

c) Assess the application of detection theory to NIS and propose metrics 

that can be used to characterise their performance; and 

d) Demonstrate experimentally the use of the performance metrics and 

the potential for false alarm rejection using a representative NIS and 

practical data. 

A programme of research has been undertaken to achieve these objectives and 

is reported fully in this thesis. A literature review was undertaken to determine 

the state of the art in intrusion systems, with emphasis on the detection of 

network intrusions, achieving the first objective of this research. The outcome 

from this review identified specific limitations of intrusion systems and their 

performance comparison, which were used to examine more closely the 

definition of “detection”. From this research the new taxonomy was created and 

the need for specific performance metrics was identified, achieving the second 

research objective. These metrics were defined in a systems analysis based on 

detection theory, achieving the third research goal. The final research goal was 

achieved by designing and implementing a practical assessment in which these 

metrics were measured for the SNORT intrusion system on one specific dataset, 

namely DARPA 1999. Although this dataset is now somewhat dated it does 

                                        

2 The usual acronym of NIDS, Network Intrusion Detection System, has been replaced with NIS, 
Network Intrusion System, to indicate a more general applicability to other intrusion levels such 

as recognition and identification, as discussed in Chapter 3. In this thesis, detection is only used 
to describe the lowest level of intrusion, or when referencing the work of others which use it to 

describe their work. 
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demonstrate the application of these metrics and the resulting information that 

can be inferred. The proposed metrics are applicable to more modern intrusion 

threats and systems other than NIS. 

1.3. Thesis Structure 

The structure of this thesis mirrors the objectives of the research as defined in 

the previous section. Chapter 2 provides the literature review focusing on data 

processing techniques, as this is a focus of considerable interest in the research 

community. A short description of research and commercial systems is 

provided, before some security issues are described. The chapter ends with a 

description of the current methods for evaluating performance of intrusion 

systems. It is concluded that although there has been considerable data 

processing research it is difficult to compare intrusion systems directly in 

meaningful ways. 

Chapter 3 uses the results of the literature review to develop in detail the new 

taxonomy that focusses on performance comparison of intrusion systems. It is 

not limited to network deployment, but covers scales of protection from files, to 

hosts, to networks and ultimately to the enterprise.  The taxonomy also focuses 

on the use of the output from the intrusion system, defining five different levels 

of performance. When these levels are combined with the protection scale, a 

two-dimensional map is created, and the capabilities of different approaches to 

intrusion can be plotted. This represents a qualitative comparison of intrusion 

systems.  
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Chapter 4 describes a systems view of network intrusion using results based on 

detection theory. Some fundamental results are derived in terms of set theory, 

before the properties of an ideal NIS are defined. The two new performance 

metrics of sensitivity and selectivity are developed to quantify the ability of an 

NIS to detect intrusion events and to classify them by type of attack. This 

chapter builds on the qualitative comparison made possible by the taxonomy 

described in chapter 3, to provide a quantitative determination of performance. 

Chapter 5 describes an experimental study that quantifies the performance of 

SNORT against the DARPA 1999 dataset, using the two new performance 

metrics. Poor performance was measured and used to indicate potential 

improvements to NIS processing. 

Finally, Chapter 6 provides a summary of the research and conclusions, stating 

the contribution that this research has made to the corpus of intrusion systems. 

The potential for further work is also described.   
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2. Literature Review 

This chapter describes the current research in intrusion systems.  During the 

last 33 years, since the original work of Anderson (Anderson 1980), there has 

been considerable research undertaken and therefore it is not possible to cover 

all aspects in such a short review.  As a result this chapter concentrates on 

network intrusion research, relevant to the research objectives described in 

section 1.2. It is divided into five major sections, as follows: 

 Frameworks for intrusion detection - in which basic types of intrusion 

systems are established; 

 Data processing -  describing the focus on algorithms that has occurred 

in trying to improve the discrimination performance; 

 Intrusion systems - in which a systems level approach rather than a data 

processing centric view is undertaken; 

 Intrusion evasion - describing the security problems introduced by 

deployment of an intrusion system and the techniques used by intruders 

to avoid detection of their activities; and 

 Evaluating intrusion detection systems – in which the techniques and 

data available for quantifying intrusion system performance are 

described. 

2.1. Frameworks for Intrusion Detection 

The classification of different intrusion detection methodologies can be 

considered as frameworks from which their basic properties can be compared. 

There have been a number of attempts to define a generic architecture for 
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intrusion systems. DARPA initiated the Common Intrusion Detection Framework 

(CIDF) (Ning, Wang et al. 2000). In this framework, they are described in terms 

of event generators, event analysers, event databases and response units. The 

Common Intrusion Specification Language was created to operate with the 

CIDF so that event records, results and countermeasures could be shared 

(Tung 2000).  

The Internet Engineering Task Force defined the Intrusion Alert Protocol (IAP) 

to allow the exchange of alert information between intrusion system elements. 

This was later improved in the Intrusion Detection Exchange Protocol 

(Buchheim, Erlinger et al. 2001) and published as a Request For Comments 

(RFC) (Debar, Curry et al. 2007). 

NATO proposed a generic architecture for intrusion systems connecting trusted 

and untrusted network systems (North Atlantic Treaty Organization. Research 

and Technology Organization. 2002). This architecture included a similar 

number of elements as the CIDF, however they included visualisation and 

deception units.  

For this thesis we have chosen to use an algorithmic framework. As such there 

are four generic models of intrusion systems, namely: 

 Misuse Detection – where signatures are used to examine the available 

data. For host-based intrusion systems the signature can identify a 

specific virus or attack method, whilst for network-based systems they 

can detect the exploitation of application or operating system 

vulnerabilities; 
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 Anomaly Detection – in which resources are monitored to establish a 

norm for the systems under surveillance and the deviation from this 

norm is used to indicate an intrusion; 

 Specification-based detection – where key processes or network 

protocols are monitored and specifications for correct behaviour of these 

processes are developed. For example in host-based intrusion systems, 

system call sequences could be monitored and any deviation from 

previously seen sequences is flagged as an intrusion; and 

 User-based detection – In which normal user behaviour is determined 

and deviation from this behaviour is flagged as an intrusion. The 

behaviours that could be monitored include keystroke characteristics, 

application use and website access. 

Specification-based and user-based detection can be considered as specific 

cases of anomaly detection. However they present different issues for algorithm 

designers and hence they have been separated here. 

2.2. Data Processing 

The focus of much academic research into improving intrusion system 

performance has been aimed at the selection of data processing algorithms. 

This section describes the most important data processing techniques that have 

been designed to improve discrimination between intrusion-like and non-

intrusion-like activities. 
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2.2.1. Basic Techniques 

A number of data processing techniques have been applied to the problem of 

detecting intrusions. They each attempt to address some of the fundamental 

issues, which include: 

 Achieving high system confidence – to detect most (all) intrusions, with 

an acceptably low false alarm rate; 

 Allowing performance optimisation – to select an arbitrarily high 

detection rate or an arbitrarily low false alarm rate, depending on the 

business impact of compromise of the information being protected or the 

ability to investigate false alarms; 

 Adapting to changing system operating environments – to evolve in the 

presence of new, potentially uncharacterized intrusions, and in changing 

authorized user behaviour so as to maintain system assurance levels; 

and 

 Surviving direct attack or evasion techniques – to maintain system 

assurance in the presence of attacks directed at the intrusion system or 

countermeasures aimed at evasion. 

Intrusion systems operate as part of a set of system security tools whose aim is 

to achieve a defined level of assurance for the protection of the information 

assets accessed by the authorised system users. At one level, if each security 

element of a system were to operate correctly and effectively, then the need for 

high performance intrusion systems would be significantly reduced. For 

example, if network authentication systems were completely effective and not 
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subject to buffer overrun attacks, then the problem of intrusion detection would 

reduce to automated log analysis.  

There are also network design approaches that can improve the ability of an 

intrusion system to operate effectively. For example in networks that 

incorporate darknet techniques (Qin, Dagon et al. 2004), in which IP addresses 

remain unassigned, it is trivial to detect intrusions that are attempting to access 

these addresses. Confident alarms can be generated with a detection 

probability of 1 for certain types of attack such as port or IP scanning. 

However, false negative performance can be poor if the intruder does not 

undertake reconnaissance or attacks on the darknet IP addresses. Intruders 

with detailed system knowledge, such as network support staff, could easily 

avoid these addresses. Also an intruder that has been passively monitoring 

network traffic using a network sniffer would not see activity on these 

addresses and therefore may not choose to attack using them.  

From the preceding argument it is clear that intrusion system techniques should 

be able to alert to intrusion-like behaviours in the presence of normal 

behaviour, whilst making effective use of a priori network, user and threat 

information. It is in this context that the review of basic intrusion system 

techniques should be considered. 

2.2.2. Support Vector Machines (SVM) 

Support Vector Machines (SVM) have gained popularity as effective classifiers in 

a range of pattern recognition problems (Burges 1998; Muller, Mika et al. 

2001). They are a generalised linear classifier, in which the input dataset is 
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partitioned into two classes using supervised training.  They can be applied to 

N-class problems by combining SVMs in one of two ways. In one approach each 

SVM is trained to detect a particular class and reject all other classes.  Such 

implementations are known as one-against-all SVMs.  An alternative approach 

has SVMs trained to distinguish pairs of classes, where the total number of 

SVMs is the number of possible pairs of classes or N(N-1)/2. This is known as 

the one-versus-one approach and clearly the number of SVM classifiers can 

become very large for a large number N of classes. 

SVMs have been applied to the problem of intrusion detection by a number of 

researchers (Burges 1998; Mukkamala, Janoski et al. 2002a; Quang, Zhang et 

al. 2002; Ambwani 2003; Fugate and Gattiker 2003; Hu and Heywood 2003; 

Hu, Liao et al. 2003; Ma and Perkins 2003; Mukkamala and Sung 2003d; 

Mukkamala and Sung 2003a; Mukkamala and Sung 2003c; Mukkamala and 

Sung 2003b; Quang, Zhang et al. 2003; Sung and Mukkamala 2003; Kim, 

Nguyen et al. 2005). Ambwani studied the use of one-versus-one method for 

multi-class SVMs applied to the KDD ’99 dataset and to both problems of 

anomalous and misuse detection (Ambwani 2003). The detection performance 

was considered comparable to the winners of the KDD ’99 competition. 

Mukkamala (Mukkamala and Sung 2002; Mukkamala and Sung 2003d; Sung 

and Mukkamala 2003) systematically assessed the significance of the input 

features from the KDD ’99 dataset, both for SVM and neural network based 

intrusion systems.  They implemented a 5-class SVM using the one-against-all 

approach to classify the data into one of Normal; Denial of service; Remote 
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Access; Privilege Elevation; and Probing. High detection probabilities (>99.7%) 

were achieved for some classifications when the number of input features had 

been reduced to six from the original 41.  Interestingly, Ambwani (Ambwani 

2003) claims that the one-versus-one approach should provide better class 

discrimination that the one-against-all approach.  

Chan studied the application of a hybrid SVM and rule-based approach to the 

detection of denial-of-service network attacks (Chan, Ng et al. 2004).  An SVM 

was used to select important features within the data and to generate the rules.  

The rule-based sub-system was used to detect the denial-of-service attack.  

This work built on the work of Mukkamala (Mukkamala and Sung 2003c) and 

was able to demonstrate improved performance over systems where human 

experts had selected the ruleset, when applied to the KDD ’99 dataset.  

Nguyen used one-class SVMs as anomaly intrusion detectors (Nguyen 2002).  

One-class SVMs are unsupervised classifiers in which outliers (that is, 

anomalies) can be extracted. Connection-based features were extracted using 

TCPTRACE and applied to one-class SVMs trained to respond to each network 

service.  High detection rate were achieved (100%) with false positive rates in 

the range 0.018-2.02% when trained and applied against the DARPA 1999 

TCPDUMP dataset. Fugate (Fugate and Gattiker 2003) studied one-class SVMs 

as anomaly detectors, using the KDD ’99 dataset. 

Tran (Tran 2004) also studied one-class SVMs applied to the 1999 DARPA 

dataset. TCPSTAT was used to extract network statistics (features) over a 

defined time period, for input to the one-class SVM classifier.  Only five of the 
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TCPSTAT parameters were used in this study.  Despite this, detection rates of 

71% were achieved with 20 false alarms per day.  

Mill (Mill and Inoue 2004) extended the SVM architecture to include two new 

implementations. The training datasets were partitioned and used to train 

SVMs. In the TreeSVM implementation the results of the training on the first 

subset are used to train the next subset. A single set of SVMs result from this 

partitioning. In the ArraySVM implementation the SVMs that were trained on 

each partition were not combined, but instead placed in an array and applied to 

all the input data. The SVM which produced the greatest response to the input 

data-point was used to classify it. 

Hu (Hu, Liao et al. 2003) applied SVM techniques to the detection of anomalies 

in host system calls and recognised that SVM performance is sensitive to the 

noise in the training data. Since it can be difficult to extract perfectly labelled 

data he proposed the use of Robust SVMs (RSVM) to overcome this limitation. 

Experimental results using the 1998 DARPA database demonstrated an 

improvement in detection performance compared with SVMs or K-nearest 

neighbour algorithms. 

Kim (Kim and Cha 2004) applied SVMs to the difficult problem of masquerade 

detection in a host-based intrusion detection system. Sequences of user 

commands were used as the feature set and the results were compared with a 

naïve Bayes method. Detection rates of up to 87% were achieved with false 

alarm rates of 6.4%. Despite this poor performance the authors concluded that 

“SVM is the most effective masquerade detection method available to date”. 
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Kim has applied this same approach to network masquerade detection in a web 

environment (Kim, Cho et al. 2004). 

Kim (Kim, Nguyen et al. 2005) has used a genetic algorithm (GA) to improve 

further the performance of SVM intrusion classifiers.  The GA subsystem was 

used to search for the optimal detection model, which was then evaluated by 

the SVM classifier. Results better than the KDD ’99 competition winner were 

achieved. 

SVM techniques remain a current topic of research due to their discrimination 

performance. Recent efforts have focussed on addressing implementation 

issues, such as the coarse-to-refined grid search techniques used during 

training SVMs by Lei (Lei and Zhou 2012). 

2.2.3. Agents 

The use of mobile agents to gather, process and take action using data 

distributed within a network has been extensively studied.  Mobile agents (MA) 

would appear to offer many advantages over centralised models (Jansen, Mell 

et al. 1999) including: 

 Reducing network load by processing data locally; 

 Overcoming network latency by taking action at the infected host; 

 Autonomous operation allows the intrusion system to continue operation 

as other parts of its implementation are attacked or destroyed; 

 Platform independence, by allowing agents to interface to a variety of 

operating systems; 
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 Dynamic adaptation, using the mobility of agents to reconfigure an 

intrusion system in response to intruder activity; 

 Static adaptation, by adding more agents as new threats or a priori data 

becomes available; and 

 Scalability, as the computational load is spread rather than centralised. 

Jansen (Jansen, Mell et al. 1999) also identified some limitations of mobile 

agents, including: 

 Security – there are a large number of security concerns, including 

malicious MAs, attack by the MA host and eavesdropping attacks in 

transit; 

 Performance – MA runtime environments are slow and can hinder the 

ability of intrusion systems to process events and detect attacks; 

 Code size – The complexity of intrusion system tasks and the need to 

integrate with many different operating systems is likely to make the size 

of MAs large. This will increase the use of network resources; 

 Lack of a priori knowledge – in large networks it is difficult to provide the 

MA with sufficient a priori knowledge of the network and its operating 

policies as to enable it to make accurate decisions; 

 Limited exposure – MAs are not encountered frequently in operational 

networks and therefore there is a limited understanding of the issues 

posed; and 

 Coding and deployment difficulties – there is a lack of design, 

development and management tools necessary to create and deploy 
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secure MAs. 

Despite these limitations the mobile agent approach remains compelling as it 

has the ability to address the host and network intrusion domains 

simultaneously within a single paradigm. 

A number of distributed intrusion system architectures have been studied, 

including GrIDS (Staniford-Chen, Cheung et al. 1996), NADIR (Hochberg, 

Jackson et al. 1993) and EMERALD (Neuman and Porras 1999). An early 

implementation of autonomous agents was studied by Balasubramaniyan 

(Balasubramaniyan, Garcia-Fernandez et al. 1998). Their approach, known as 

AAFID, uses agents as the lowest level of data collection and analysis and also 

includes a hierarchical structure to allow scalability.  

Jansen studied the use of agents both for intrusion detection and response, 

recommending that further research is undertaken in three areas, namely: 

 Intrusion system performance enhancement, through exploitation of the 

mobility of agents; 

 New intrusion system design improvements, such as simultaneous 

detection; and 

 Response improvements. 

Mobile agents have been studied in mobile ad hoc networks (MANETS), in 

particular wireless networks (Hijazi and Nasser 2005; Xiao, Li et al. 2005; 

Sasikumar and Manjula 2012).  

A recent survey by Kolias (Kolias, Kambourakis et al. 2011) on the application of 

swarm intelligence to intrusion detection evaluated 14 algorithms, 
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demonstrating detection performance comparable with the KDD ‘99 winner (see 

section 2.6.3.3).    

2.2.4. Data Mining 

Data mining has been defined as the process for the automatic extraction of 

models from large stores of data (Fayyad, Piatetsky-Shapiro et al. 1996). Lee 

(Lee and Stolfo 1998) studied its application to intrusion detection. SENDMAIL 

call sequences were mined to investigate host-based intrusion and network 

frames were mined for network intrusion application. An architecture for real-

time model generation was developed demonstrating promising results. 

Manganaris (Manganaris, Christensen et al. 2000) investigated the mining of 

alarms generated from real-time intrusion detection sensors embedded in 

different networks. They were able to develop algorithms to associate false 

alarms and reject them depending on the underlying context of the alert 

characteristics of the network originating the alarm. 

Julisch (Julisch and Dacier 2002) built on the mining of alarms, to develop 

insights into their root causes. In prior work he was able to show that alarm 

clustering was effective, demonstrating significant false alarm reduction when 

applied to alarms from real networks. Xiang (Xiang, Dong et al. 2005) have also 

developed algorithms to cluster alarms. 

Data mining has also been used to augment the performance of discrimination 

systems. Lui (Lui, Fu et al. 2005) used three data mining techniques to provide 

features to an adaptive NIS consisting of five detection engines operating in an 

integrated manner. Jin (Jin, Sun et al. 2004) applied fuzzy data mining 
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techniques to network data, building on the work of Bridges (Bridges and 

Vaughn 2000). 

In his recent review, Moorthy (Moorthy and Sathiyabama 2012) ascribes the 

principal application of data mining to anomaly rather than misuse detection. 

This was based on the inability of misuse detection to detect new, previously 

unseen attacks. Moorthy assessed the applicability of nine different 

classification techniques. Kaur has also surveyed data mining applied to 

intrusion detection (Kaur 2013) contrasting the relative merits of different 

techniques. 

2.2.5. Artificial Neural Networks 

The application of artificial neural networks (ANN) to intrusion detection is 

compelling and has been extensively studied. A recent review by Shah (Shah 

and Trivedi 2012) has compared five different network types applied to network 

anomaly detection. ANNs offer the ability to learn patterns in both a supervised 

and unsupervised manner, as well as to generalise from the exemplar patterns 

used during training. 

Early research was based on their application within the IDEA intrusion system 

(Fox, Henning et al. 1990; Lunt 1990). Debar (Debar, Becker et al. 1992) used 

ANNs to model user behaviour from audit data. He linked a recurrent network 

with an expert system and was able to detect changes in user behaviour. 

A number of ANN paradigms have been assessed in this application, including 

multi-layer perceptron  (MLP) (Pan, Chen et al. 2003; Botha and Solms 2004; 

Cha, Vaidya et al. 2005) , radial basis functions (RBF) (Horeis 2003; Zhang and 
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Zhu 2004), self-organising maps (SOM) (Lei and Ghorbani 2004) and adaptive 

resonance theory (Di, Ji et al. 2005).  Liu (Liu, Florez et al. 2002) studied the 

input representations for UNIX call sequence data, applied to back propagation, 

RBF and SOM networks. 

Of particular interest is the work of Zhang (Zhang and Manikopoulos 2003) 

using the HIDE NIS (Zhang, Li et al. 2001). They have directly compared five 

ANN paradigms concluding that for denial of service attacks, the back 

propagation-hybrid and the back propagation networks outperform the others. 

ANNs continue to be the subject of intense research for intrusion systems. 

Jahanbani has proposed the use of ANNs based on principal component 

analysis (PCA) as an anomaly intrusion system (Jahanbani and Karimi 2012). 

Gaikwad et al have combined fuzzy clustering with ANN using feed-forward 

networks (Gaikwad, Jagtap et al. 2012). Mamood et al have studied the 

application of ANN to cloud-based intrusion systems (Mahmood, Agrawal et al. 

2012), using the back propagation algorithm and PCA pre-processing. 

2.2.6. Fuzzy Systems 

Intrusion systems are inherently quantitative, often relying on measurements of 

user, process, host or network activity. However the exact value of the 

measurements is often not important and this observation has stimulated the 

application of Zadeh’s work (Zadeh 1988) on fuzzy systems, in this application. 

The application of fuzzy techniques to data mining for intrusion detection has 

been the subject of considerable work with a number of researchers. Bridges 

(Bridges and Vaughn 2000) developed a prototype Intelligent Intrusion 
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Detection System (IIDS) to investigate the combination of fuzzy and genetic 

techniques. Fuzzy data mining was used to create membership functions for an 

anomaly detection system. Later Florez (Florez, Bridges et al. 2002), in 

collaboration with Bridges, extended this work to the creation of fuzzy 

association rules to compare recent audit data with previously mined “normal” 

behaviour. Tian (Tian, Fu et al. 2005) used fuzzy systems theory to combine 

decision trees applied to sub-sets of the complete mined database. They were 

able to show that this approach was superior to mining the complete database. 

Dickerson (Dickerson and Dickerson 2000; Dickerson, Juslin et al. 2001) 

developed the Fuzzy Intrusion Recognition Engine (FIRE) to investigate the 

application of fuzzy systems to intrusion systems. Multiple agents were used 

independently to assess the situation and their outputs were combined via a 

fuzzy fusion algorithm. Each agent also applied fuzzy techniques to their input 

sources. 

Gomez (Gomez and Dasgupta 2002) studied the use of fuzzy rule-sets to 

classify intrusions. The KDD ‘99 dataset was used to evaluate rules generated 

from a genetic algorithm. The results obtained were comparable to other 

techniques reported in the literature. Yao (Yao, Zhao et al. 2005) has 

investigated the use of fuzzy systems in the placing of decision boundaries, 

using an SVM as a classifier, also applied to the KDD ’99 dataset. 

Recent research has concentrated on the use of fuzzy methods in conjunction 

with other data processing techniques. Lei (Lei and Ke-nan 2011) investigated 

the application of fuzzy techniques in conjunction with SVMs and rough sets. 
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Experimental evaluation using a reduced set of parameters from the KDD ‘99 

dataset indicated improved performance over the use of SVM alone. Ghadiri 

(Ghadiri and Ghadiri 2011) contrasted an improved version of fuzzy C-means 

with GK clustering as an input to radial basis function ANNs, again using the 

KDD ’99 dataset. Ming-Yang (Ming-Yang, Chun-Yuen et al. 2011) studied the 

application of fuzzy association rules to anomaly-based network intrusion 

detection. Genetic optimisation of membership functions, yielded good 

detection performance for DoS attacks in synthetically generated network data. 

2.2.7. Genetic Algorithms 

The application of genetic algorithms to intrusion detection can be traced to 

Crosbie (Crosbie and Spafford 1995). They studied their use to create 

autonomous agents monitoring connections with a host. Me (Me 1998) 

extended this work applying genetic algorithms to misuse detection in host 

audit trails. Although good detection performance was achieved the technique 

was not able to locate the intrusion within the audit log. Gong (Gong, 

Zulkernine et al. 2005) studied the application of genetic algorithms using the 

1998 DARPA dataset. He used only seven features of the network data to 

achieve effective discrimination. 

Song (Song, Heywood et al. 2003) applied genetic algorithms to the KDD ‘99 

dataset to create an anomaly based intrusion detector. He was able to show 

that the discriminator created after the evolution of the genetic algorithm was 

better than could be achieved when experts hand coded solutions.  In later 

work (Song, Heywood et al. 2005) he showed that the approach was able to 



Chapter 2 Literature Review 

 

30 

create successful discrimination when the 41 parameters within the dataset 

were reduced to only eight. 

Lu (Lu and Traore 2004) used genetic algorithms to adapt the discrimination 

rules for a network intrusion detection system. The DARPA dataset was used to 

evaluate the resulting performance. High detection probability and low false 

alarm rates were achieved even against attacks unseen in the training data. 

Genetic algorithms continue to be an active research area for intrusion 

detection. Andhare has studied their use in denial of service detection (Andhare 

and Patil 2012). Boughaci uses genetic algorithms to update fuzzy “if-then” 

rules to enhance intrusion performance (Boughaci, Herkat et al. 2012). 

2.2.8. Expert Systems and Probabilistic Reasoning 

The application of expert systems to intrusion detection has a long history. The 

work of Denning (Denning 1987) created the Intrusion Detection Expert System 

(IDES) to process host audit files for anomalies. Later Anderson (Anderson, 

Frivold et al. 1995) extended this work to hybrid anomaly-misuse detection in 

the Next-generation Intrusion Detection Expert System (NIDES). EMERALD also 

used a hybrid detector, this time to process host and network data (Neuman 

and Porras 1999). Lindqvist (Lindqvist and Porras 1999) developed the expert 

system engine known as P-BEST, a key component of the EMERALD system. 

Many researchers have taken a probabilistic approach to intrusion detection. 

Seleznyov (Seleznyov, Terziyan et al. 2000) used probabilistic trees to encode 

the temporal behaviour of users and then detect anomalies. Ye (Ye, Li et al. 

2001) studied the probabilistic properties of audit host data, concluding that 
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multiple events were necessary before intrusion could be declared with 

confidence. Leckie (Leckie and Kotagiri 2002) studied the application of 

probabilistic techniques to the processing of network data to detect port scans. 

Gowandia (Gowadia, Farkas et al. 2005) has studied the application of 

probability theory to agents, developing a means for them to share their beliefs.  

The majority of workers have taken a Bayesian approach to the application of 

probability theory. Alternatives based on the theory of evidence have been 

applied by Chen (Chen and Venkataramanan 2005) who studied the application 

of Dempster-Schafer (D-S) theory to intrusion detection. D-S theory appears to 

offer the advantage of combining data from sources with differing levels of 

trust. This is particularly important when the sensors providing data to the 

intrusion system are distributed within the network and may have been 

compromised by an intruder. Interestingly the application of possibility theory 

(see (Borotschnig, Paletta et al. 1999), for example) does not appear to have 

been applied to problems in intrusion detection, except within the context of 

fuzzy systems.  

2.2.9. Digital Signal Processing (DSP) 

The application of DSP techniques to network intrusion systems has been 

extensively studied. Whilst the frame data on networks is asynchronous, it is 

easy to generate time-series data by, for example, deriving statistics over fixed 

time periods. Thottan (Thottan and Ji 2003) used MIB data accessed via SNMP, 

and applied time-series processing. They were able to predict network 

equipment failure before complete failure had occurred. The use of non-uniform 
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sampling algorithms from DSP does not seem to have been applied to intrusion 

systems. 

Axelsson (Axelsson 2000b) attempted to apply classical detection theory to 

intrusions. He was able to assert that different attack methods mapped on to 

different classes of problems from classical detection theory. For example, 

masquerading was thought to be equivalent to “detection of random signals in 

random noise”. Unfortunately, he was unable to apply this observation to aid 

the detection of intruders. 

Barford (Barford, Kline et al. 2002a) generated time-series data from SNMP and 

from IP flow data. He applied a number of time-frequency analysis techniques 

and found that wavelets were able to isolate both short and long duration 

traffic anomalies. Zhou (Zhou and Lang 2003) created time-series data from the 

number of frames arriving in unit time and then studied the use of frequency 

based techniques using the discrete fourier transform.  

AsSadhan created time series data by aggregating data over selected time 

periods (AsSadhan 2009). He aggregated frames, bytes, distinct addresses and 

distinct ports and was able to show that by analysing the control and data 

planes for TCP-IP connections anomalous behaviour could be detected. The 

cross-correlation function was used to measure the similarity between these 

planes and low similarity was used to indicate malicious behaviour. In addition 

he was able to detect period characteristics using frequency domain techniques, 

which could be related to botnet command and control communications. 

Digital signal processing techniques remain an open area for research into 
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intrusion detection. 

2.2.10. Miscellaneous Techniques 

Game theory has been applied to the problem of detecting intrusions by a 

number or workers. Alpcan (Alpcan and Basar 2003) assessed the activities of 

intruders and intrusion system control strategies as a two-person non-zero sum, 

non-cooperative game. Kodialam (Kodialam and Lakshman 2003) studied the 

use of game theory to detect intruders in sampled network data. Agah (Agah, 

Das et al. 2004) also used two-person, nonzero-sum, non-cooperative game 

between the intrusion system network and the attacker. They showed this 

approach significantly improved the chances of intrusion detection. Patcha 

(Patcha and Park 2004) extended Alpcan’s work to MANETS defended by host 

intrusion systems. Rafsanjani has studied the application of game theory to 

intrusion systems for MANETS (Rafsanjani, Aliahmadipour et al. 2012). 

Aickelin (Aickelin, Bentley et al. 2003) studied the application of danger theory 

to immunological intrusion system. Danger theory is emerging as an alternative 

to self– non-self determination as a model of the human immune system. 

Aickelin proposed the use of danger theory to associate low-level detection as 

an alternative to probabilistic or expert system correlation. Lu et al studied the 

application of danger theory to mobile virus detection (Lu, Zheng et al. 2012). 

He (He and Leung 2004) studied the application of chaotic stochastic resonance 

to intrusion detection. A simplistic approach to intrusion was taken in which an 

anomaly was declared when the difference between the predicted and the 

actual frame size exceeded a threshold. Of particular interest was the setting of 
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the threshold, in which a constant false alarm (CFAR) method was used. This 

was the first application of CFAR techniques to intrusion detection. However, 

the assumption of stationary noise statistics resulted in a fixed threshold, 

limiting the usefulness of this research. 

Hidden Markov Models (HMM) have been successfully applied to many pattern 

recognition problems. Gao (Gao, Ma et al. 2002; Gao, Sun et al. 2003) studied 

the application of HMMs to anomaly detection in UNIX process call sequences, 

with good results. Zhang (Zhang and Zhu 2004) combined HMMs with ANNs 

claiming improvements over HMM techniques used alone. These improvements 

were mainly in terms of storage and processing requirements. The effect on 

detection performance of this combination was unclear.  More recently HMMs 

have been used to extract the interaction between intruders and network 

devices, to predict multi-stage attacks and prevent further damage (Shameli 

Sendi, Dagenais et al. 2012) 

Petri nets have also been applied to the problem of intrusion detection. Ali (Ali 

2001) modelled the monitoring function of the CIDF using Petri nets. Helmer 

(Helmer, Wong et al. 2001) continued the theme and used Petri nets to model 

the specification for an agent-based intrusion systems. Gao (Gao and Zhou 

2003) used Petri nets as part of the discrimination function, by using them to 

encode fuzzy rules and to make the intrusion/non-intrusion decision.  

Intrusion systems based on user behaviour has been extensively investigated 

(Kakuru 2011; Razo-Zapata, Mex-Perera et al. 2012). Users can be 

authenticated based on the frequency with which they use console commands 
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or applications, in host-based intrusion systems, and the websites accessed in 

both a host and network-based intrusion system. Feher (Feher, Elovici et al. 

2012) investigated mouse movements to authenticate users. Despite issues 

with user characteristics depending on the location of the user and specifically 

the input devices available, excellent results were obtained.  

2.3. Post Intrusion Processing 

An intrusion system generates alerts information that can be further processing 

in a number of ways: 

 Local logs, in which the alerts are stored within the intrusion system and 

are not integrated with other log sources within the enterprise. For 

distributed approaches, such as NIS, the alerts can be integrated from 

several intrusion sensors centralised into a single store; and 

 Enterprise logs, in which the alerts are combined with logs from other, 

heterogeneous devices to provide a centralised view of the security of 

the complete infrastructure. Such approaches are known as Security 

Information and Event Management (SIEM) and can provide a further 

level of intrusion detection based on the events seen at other non-

intrusion devices in the enterprise. 

The simplest form of local logs occurs when a single intrusion sensor is 

monitoring a resource, such as a network intrusion system monitoring the 

Internet gateway, or anti-virus software monitoring a single operating system. 

Analysis of the logs is usually undertaken by system administration staff 

accessing the log files directly, or undertaking an automated analysis using 

bespoke scripts designed to assess specific concerns. Tools such as SGUIL are 
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available to assist in these tasks (Visscher 2007) for network intrusion systems. 

Enterprise log handling presents different issues from local logs, as summarised 

in the guide to computer security log management (kent and souppaya 2006) 

produced by the National Institute of Standards and Technology (NIST). They 

identified the fundamental problem of log handling to be the matching of the 

limited log management resources with a continuous supply of log data. They 

identified additional challenges including: 

a) Large number of log sources within an enterprise; 

b) Inconsistent log content, formats and timestamps; and 

c) Protecting large quantities of log data, whilst allowing access to system 

administrators. 

In an attempt to standardise on the communications between intrusion systems 

the Internet Engineering Task Force (IETF) proposed the Intrusion Detection 

Message Exchange Format (IDMEF) in RFC4765 (Debar, Curry et al. 2007).  

Two approaches to the remaining issues have been extensively studied, namely 

methods for correlating logs and visualisation techniques.  

2.3.1. Correlating Logs 

Abad et al undertook early work assessing the ability to correlate intrusion logs 

(Abad, Taylor et al. 2003). There were able to demonstrate improved accuracy 

of intrusion detection by correlating system calls and network logs using a 

sliding window. Valeur defined a comprehensive approach to alert correlation 

(Valeur, Vigna et al. 2004) proposing a nine stage process rather than limiting it 

to just a few stages. Although depicted as a serial process with each stage 
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applied sequentially, Valeur allowed some of the stages to occur in parallel, also 

including feedback between stages. 

Elshoush has surveyed alert correlation applied to an intrusion system 

consisting of cooperative misuse and anomaly approaches (Elshoush and 

Osman 2011). She used the five correlation techniques assessed by Xu (Xu 

2006), to process the output from discrete intrusion systems communicating via 

IDMEF data format, specifically: 

 Similarity between alerts; 

 Pre-defined attack scenarios; 

 Prerequisites and consequences;  

 Multiple sources; and 

 Filtering. 

Feng et al used state machines to correlate security events (Feng, Wang et al. 

2010). Attack scenarios were reconstructed using state machines combining 

clustering and causal analysis to output to a comprehensive description of the 

attack.  

Jing has evaluated the use of rough sets as a data reduction technique for 

event correlation (Jing, Lize et al. 2012). A pattern mining algorithm was then 

applied to generate the correlation rule without using prior knowledge. 

Although there is a reduction in data rate using rough sets the false alarm rate 

increased. 

More recently Salah et al have undertaken a survey of alert correlation 

techniques (Salah, Macia-Fernandez et al. 2013). This approach described the 
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state-of-the-art in alert correlation, not limited to computer systems but also 

industrial control. A taxonomy for correlation was proposed, based on number 

of data sources, type of application, correlation method and type of 

architecture. A review of commercial solutions was also given where they 

identify the problem of no clear agreement between researchers and vendors 

about the performance metrics. They note that there are no standard 

benchmarks for evaluating and comparing such systems. 

2.3.2. Visualisation 

One of the problems facing network security staff is the quantity of information 

contained in network scans and logs. For example, a single 100Mb link may well 

transmit 1010 bits during a single day. Some researchers have proposed the use 

of visualisation techniques to aid intrusion detection by network staff. Teoh 

(Teoh, Ma et al. 2002; Teoh, Ma et al. 2003; Teoh, Ma et al. 2004) investigated 

the use of visualisation for Border Gate Protocol (BGP) routing anomaly 

detection. They have also applied their techniques to intrusion systems (Teoh, 

Ma et al. 2004) with the result that have exceeded the performance achieved 

by the winners of the KDD ’99 competition. 

Conti (Conti and Abdullah 2004) investigated the visual signatures produced by 

network attack tools and was able to demonstrate that a number of 

visualisation techniques could be effective. The port-to-port plots were 

particularly good at fingerprinting tools such as NMAP and NIKTO. Conti 

recognised that the availability of source code for many of these tools would 

allow an attacker to modify the signature and potentially evade detection using 

visualisation techniques. 
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Koike visualised the output from SNORT using the SnortView tool (Koike and 

Ohno 2004). Visualisation was proposed as an alternative to optimising the 

signature database, as SnortView was able to highlight both true and false 

alarms, based on a time series view of the intrusions. 

Axelsson (Axelsson 2005) analysed four different visualisation techniques 

applied to web server logs.  He investigated both the visualisation of network 

data and the visualisation of the internal status of intrusion detection systems. 

He concluded that the topic was immature and lacking effective user studies. 

Livnat (Livnat, Agutter et al. 2005) investigated visualisation for associating 

data from disparate system logs, defining an alert in terms of what he called 

the W3 paradigm, meaning What, Where and When. Efficient ways of 

presenting data in terms of these parameters were developed, which are 

scalable to large networks. Interestingly, they did not investigate the pre-

processing of the data into intrusion system relevant parameters, but chose to 

present the basic log data. 

Yang developed a visualisation approach for network alerts (Li, Gasior et al. 

2010). Visualisation of the network topology was combined with visual 

clustering of alerts to alert users. A third stage was included to view multistage 

attacks by temporally profiling user and attacker behaviour. 

More recent research into visualisation has concentrated on SIEM, which 

integrates additional information from other network devices and servers. 

Novikova has proposed a visualisation framework based on a service-orientated 

approach (Novikova and Kotenko 2013) demonstrating the concept applied to 
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the attack modelling and security evaluation component of an SIEM (Kotenko 

and Chechulin 2012).  Xiaojin has developed a tool known as VisSRA to 

visualise both the rules and the alerts from SNORT using treemaps (Xiaojin, 

Changzhen et al. 2012). 

2.3.3. SIEM 

Within an enterprise network it is common for the output of intrusion systems 

to be sent to an SIEM application, for integration with logs from other systems, 

such as firewall, routers and security devices. At their simplest level SIEMs 

collate enterprise wide logs, providing support tools to aid the interpretation 

and management of events. Many of these tools use visualisation or log 

correlation techniques to assist users in understanding the status of their 

networks. Gartner has produced a “magic quadrant” analysis (Nicolette and 

kavanagh 2011). This analysis considers 25 commercial systems and describes 

the market as “mature and competitive”. This is in contrast to previous studies, 

such as Shipley, (Shipley 2008) which identified short-comings in the usability, 

reporting and event correlation aspects. Interestingly, Shipley reported that 

over 6,000 SNORT alerts were rejected by the Q1 Labs QRadar SIEM, which 

chose only to display one alert as valid. The same SIEM reported a 500,000:1 

data reduction for logs as a result of the analysis and correlation of events. 

SIEM systems are becoming of interest to academic research.  Gabriel used 

data mining to detect hidden patterns in malware data within an SIEM (Gabriel, 

Hoppe et al. 2009). Kotenko has proposed a common framework for the Attack 

Modelling and Security Evaluation Component (AMSEC) of a SIEM (Kotenko and 
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Chechulin 2012). Their approach integrates open source vulnerability 

databases, such as CVE, with near real-time attack modelling to predict the 

future actions of an attacker. Kotenko has also studied the issues surrounding 

the data repository of an SIEM, proposing an ontological approach (Kotenko, 

Polubelova et al. 2012). An ontological data model of vulnerabilities was 

discussed for an AMSEC. Granadillo et al have also used an ontological 

approach to SIEM modelling, applied to botnets (Granadillo, Mustapha et al. 

2012). 

Afzaal has assessed some of the systems aspects of the use of SIEM, proposing 

a resilient architecture for forensic storage of data (Afzaal, Di Sarno et al. 

2012). 

2.4. Intrusion Systems 

The techniques discussed in section 2.2 form the discrimination or decision 

function within an intrusion system. Other functions necessary to form a 

complete system can include: 

 Data pre-processing, in which the raw information is transformed such 

that the discrimination function sees a consistent dataset. De-

fragmenting frames is an example of pre-processing, in which a number 

of frames are combined to create (usually) larger frames; 

 Alert logging, which enables the details of an alert to be stored and 

retrieved in meaningful ways. A simplistic approach to logging can be 

taken, in which the raw data is stored along with some information from 

the discriminator, in a simple file structure. An alternative, more complex 
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approach can be taken in which the alerts are inserted into a database 

for retrieval and analysis offline, by other tools; 

 Configuration Management – An intrusion system can be tuned to 

respond to different threats, via the selection of discrimination 

techniques, decision thresholds or rule-sets. It is necessary to provide 

tools to manage the editing, display and logging of the configuration of 

the intrusion system; 

 Threat Analysis – A single alert from an intrusion system can sometimes 

be definitive on the presence and nature of an intrusion. However, 

usually a single alert cannot provide the confidence to declare an 

intrusion without the presence (or absence) of other alerts or 

information. To this end, intrusion systems need to provide tools which 

allow the context of an alert to be assessed. Frequently, these analysis 

systems involve data visualisation techniques, as described in the 

previous section; 

 Response Systems, in which the presence of an alert triggers an action 

from the intrusion system. Actions can include dropping frames, updating 

firewall rule-sets or blocking specific IP addresses; and 

 Protection tools – The extent of the security functionality that can be 

provided by intrusion system is such that they can become a prime 

target for intruders. It is therefore necessary to provide a suite of 

protection tools to ensure that the intrusion system cannot be 

compromised. Such tools can include encryption mechanisms to hide the 

details of the communications with a centralised controller, data rate 
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throttling mechanisms to deal with denial of service attacks or interface 

modification to prevent the transmission of data from the intrusion 

system interface. 

Although the functionality listed above is necessary to create a complete 

intrusion system there appears to be a lack of systematic study of the 

interaction of this functionality with the discrimination function. There are 

instances where the discrimination function is highly dependent on the 

additional functionality. For example the use of visualisation techniques applied 

to the raw network or host data is closely related to the threat analysis 

functionality. 

Despite this lack of systematic study a number of research organisations have 

constructed complete systems and evaluated their performance. There have 

been extensive published reviews of research on such intrusion systems (Allen, 

Christie et al. 1999; Axelsson 1999b; North Atlantic Treaty Organization. 

Research and Technology Organization. 2002) and therefore this section will 

only indicate some of the key issues.  

2.4.1. Research Systems 

Axelsson (Axelsson 1999b) reviewed twenty research systems in terms of key 

parameters such as: 

 Detection principle; 

 Real-time or non-real-time operation; 

 Continuous or batch operation; 

 Network or host data sources; 
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 Passive or active response; 

 Centralised or distributed processing; 

 Centralised or distributed data collection; 

 Security; and 

 Interoperability. 

This survey provides significant insight into the modes of operation of complete 

systems, although it is now becoming dated with respect to the systems 

assessed. 

One of the most popular signature-based NIS is SNORT (Roesch 1999), 

developed as an Open Source project. SNORT is able to detect misuse through 

the application of user-defined rules. Pre-processors are included to normalise 

the captured frames and to extend the intrusion criteria over more than one 

frame (Caswell, Beale et al. 2003). Although originally thought to be a 

lightweight intrusion detection system, it is part of commercial products and has 

been a core component of many research systems. 

2.4.2. Commercial Systems 

There are a number of commercial network intrusion systems. Several are 

based on the SNORT detection engine augmented with network 

characterisation techniques to reduce initial deployment false alarm issues or 

additional tools to improve operator productivity. It is difficult to review these 

systems due to the commercial sensitivities, however some researchers have 

attempted this problem (Allen, Christie et al. 1999; Kvarnstrom 1999). Debar 

(Debar and Morin 2002) evaluated some commercial systems without 
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identifying their type. Evaluations of more modern commercial NIS appear to be 

lacking. 

2.4.3. Systems Approaches to False Alarm Control 

Although the research emphasis for reducing false alarms has been on data 

processing techniques, a number of systems approaches have also been 

proposed.  Shimamura (Shimamura and Kono 2006) proposed that false alarms 

can be reduced from NIS if alerts that have no effect on the system are 

ignored. For example if a particular attack is launched against a specific OS and 

that OS is not present in the system then the attack cannot damage the system 

and the alert can be suppressed. During an evaluation of 15 days of real 

network traffic the system, known as TrueAlarm, reduced the number of false 

alarms from 125 for a conventional NIS to zero. Whilst this result appears to be 

good it does suffer from a number of issues: 

 The assertion that an attack that cannot damage a system is of no 

interest to administrators is flawed. Such attacks can occur, for example, 

during the reconnaissance phase when an attacker is learning about the 

services provided by a network. Although some reconnaissance probes 

may not affect the system the presence of persistent attempts to 

enumerate, penetrate or damage a system is an important indicator to 

administrators and may allow measures such as IP blocking to be 

deployed before the damaging attack occurs; 

 The analysis does not address the impact on detection probability. For 

TrueAlarm this is problematic as non-damaging attacks should be 
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prohibited by the network security policy and therefore be flagged as 

network intrusions. Whilst it is conceivable that the network security 

policy could be relaxed to maintain the detection probability, the principle 

of relaxations in security to overcome system performance issues is 

flawed; and 

 Since the alert occurs after the attack frame has delivered its payload to 

the server, this approach cannot be used in-line or in intrusion 

prevention systems 

Bolzoni (Bolzoni and Etalle 2006) proposed a novel approach to reducing false 

positives in a system known as Aphrodite. His approach was to correlate the 

output of a NIS placed on the incoming network stream with anomalous 

responses from the attacked system. A separate anomaly detection system was 

placed on the output from the attacked system and an alert is declared when 

both the NIS and anomaly detection alert. False positive reductions of between 

50-100% without affecting detection rate were reported. Although this 

performance improvement is significant the attack must have to be successful 

to be detected, that is the system must be adversely affected and an 

anomalous output produced. This is unsatisfactory and limits the applicability of 

Aphrodite in IPS scenarios. 

In host-based intrusion a systems approach has been particularly successful. 

Kim (Kim and Spafford 1994) described a file integrity based approach known 

as Tripwire. An alert is issued when any of the key system files are changed on 

a host. This approach is highly successfully and is included in a number of 

commercial and Open Source systems. 
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Hofmeyr (Hofmeyr, Forrest et al. 1998) investigated the use of short sequences 

of system calls to discriminate between normal and abnormal conditions for 

common UNIX programs. This idea was successfully extended to Microsoft 

Windows environments by looking for unusual registry accesses (Apap, Honig et 

al. 2002; Topallar, Depren et al. 2004). Host intrusion detection for mobile 

devices has also examined the feasibility of correlating abnormal battery 

behaviour with intrusion events (Buennemeyer, Munshi et al. 2007). 

More recently a systematic attempt to quantify false alarms has been published 

(Cheng-Yuan, Ying-Dar et al. 2012; Cheng-Yuan, Yuan-Cheng et al. 2012). In 

this study over 2,000 instances of false positive and negatives were identified in 

real network data taken over a 16 month period. Given that the volume of 

network traffic is quoted as 100GB/hour this rate of false alarms seems 

remarkably low. Nearly 93% of the false alarms were classified as false 

positives, with the majority of those, in their view, not being the result of 

security issues but the result of security policy violations. From their published 

methodology it is difficult to determine that all the false alarms have been 

counted, in particular the false negatives. As the quantity of network data is so 

large manual confirmation of missed detections by inspection of individual 

frames is not possible. However they do not seem to have chosen to inject 

known intrusions to confirm their measurements. 

2.4.4. Intrusion System Limitations 

Axelsson (Axelsson 1999a) highlighted an important limitation of intrusion 

systems. He correctly recognised the problem posed by the very small (~10-6) a 
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priori probability of an intrusion event in large datasets. Under such conditions 

false positives can be eliminated by labelling every frame as not resulting from 

an intrusion. Clearly this is unhelpful in detecting intrusion events, but the rate 

of false negatives is small due to the small a priori probability. 

2.5. Intrusion Evasion 

As the deployment of intrusion systems has increased so has the interest in 

evading them. Both the academic and the intruder communities have developed 

tools and techniques to evade detection by intrusion systems. The principal 

academic work was undertaken by Ptacek (Ptacek and Newsham 1998). As well 

as describing denial-of-service attacks on intrusion systems, this widely cited 

paper described two techniques to avoid detection through confusion of the 

sensors, namely: 

 Insertion – In which frames destined for the target host are seen by the 

intrusion system but not seen by the target host (for example they could 

be rejected by the host due to checksum errors); and 

 Evasion – In which the intrusion system is fooled into rejecting some of 

the frames that the target host correctly processes. 

Both these techniques rely on the intrusion system processing the frames in a 

different way to the target host. One way to overcome this problem is to 

include a traffic normaliser within the network, as proposed by Handley 

(Handley, Paxson et al. 2001) and used in SNORT (Caswell, Beale et al. 2003). 

A number of Open Source tools have been created using these techniques. 

NESSUS, the well-known vulnerability scanner, has intrusion system evasion 
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techniques included within its architecture. SNOT is an arbitrary frame 

generator that uses the SNORT rules files as a source of frame information. It 

has been used in intrusion system testing, as an evasion tool and to overload IT 

security staff with false alerts. STICK is a NIS stress tool designed to generate a 

large number of alerts and cause the intrusion system to crash. WHISKER is 

also aware of evasion techniques. 

Other techniques to avoid intrusion systems include: 

 Encrypting the data, which can hide signature information from misuse 

detection systems; 

 Slow probing, in which the network probes are send with a large delay 

between them. The aim is to get the intrusion system to timeout; 

 Fragmentation, to hide the signature of the attacking frames; and 

 False-alarm attack, in which the intrusion system is tricked into 

generating a large number of alarms, so as to hide the real intrusion 

alarms (Patton, Yurcik et al. 2001). 

Fogla has studied the evasion of anomaly network intrusion systems (Fogla and 

Lee 2006). He proposed that such systems could be evaded by a Polymorphic 

Blending Attack (PBA), in which the statistics of an attack match those of 

normal network traffic. He demonstrated that PBA attacks could be generated 

automatically for arbitrary code execution and showed that anomaly intrusion 

systems could be evaded.  

Pastrana et al have proposed a functional framework for evading network 

intrusion systems (Pastrana, Orfila et al. 2011). They used genetic 
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programming techniques to derive a model of the intrusion system, from which 

evasion strategies were derived. Evasion of SYN flooding and port scanning 

attacks was demonstrated. 

Tran et al have studied the evasion of SNORT by exploiting flowbits (Tran, Aib 

et al. 2012). They parse the active signature set running on SNORT to generate 

all possible frame sequences that can evade it. They also show that additional 

signatures can be added to overcome the evasion. 

More recently Cheng et al have evaluated evasion techniques against intrusion 

systems (Cheng, Lin et al. 2012). They compared five common evasion 

techniques against three different signature based network intrusion systems, 

including SNORT. All three systems could be evaded using IP fragmentation and 

TCP segmentation.  

2.6.  Evaluation of Intrusion Detection Systems 

There has been considerable research into the experimental evaluation of 

intrusion systems. A number of approaches have been used, including: 

 Evaluation on live networks or hosts; 

 Evaluation against standard databases of network, host and intruder 

activity; 

 Generation of synthetic network or host data; and 

 Development of performance metrics. 

The aim of any evaluation must be to allow accurate comparison of systems or 

intrusion classification techniques in such a way that further research can be 

focused. Live networks can generate qualitative data but it is difficult to 
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compare systems directly without their operation in parallel. Performance 

metrics offer a quantitative approach and can be particularly effective at 

comparing systems. It is important however that the basis for calculation is 

common and that the metrics are calculated in a way that allows comparison. 

This usually requires the use of a standard labelled database of normal and 

intrusion behaviour.     

It is possible to consider the collection of network frames or host data from real 

networks and disseminate the resulting database to researchers for evaluation 

using common data. This approach has two problems: 

a) It would be difficult to label the intrusions in such a way that learning 

algorithms could be trained using noise free data. It would be possible to 

launch attacks on the network elements and generate correctly labelled 

attack data. However, at the times in which deliberate attacks are not 

being undertaken it would be difficult to guarantee that malicious activity 

was not being undertaken by system users or by real intruders that had 

penetrated the system; and 

b) Data from a real network will have sensitive information contained 

within its frames. The presence of personal information may restrict the 

data that could be released and the detailed network information, such 

as server addresses, may assist a future intruder to penetrate the 

network. Whilst there are techniques for changing the data such that 

these issues could be overcome, these changes may adversely affect the 

training or evaluation of intrusion systems.  
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As a result, the assessment of intrusion systems is dominated by the use of 

data generated from synthetic networks (the DARPA datasets), despite its 

known limitations. 

2.6.1. Security Metrics 

The application of security metrics to quantify the state of a computer system 

has been extensively studied. Almasizadeh assessed a state-based stochastic 

model of the attack process to represent the security of a system, from which 

quantitative metrics could be derived (Almasizadeh and Azgomi 2013). Two 

specific metrics were assessed namely the mean time to a security failure and 

the steady state solution describing the long-term state of the system, that is, 

the likelihood that the system is in each state. 

Ouedraogo et al have studied the application of security assurance metrics to 

operational systems, rather than the development process as in Common 

Criteria (Ouedraogo, Khadraoui et al. 2012). The security of a system is 

assessed into one of five levels using probes, based on the Systems Security 

Engineering Capability Maturity Model (SSE-CMM). 

Bayuk has reviewed the evolution of security metrics from the technical and 

historical perspective (Bayuk and Mostashari 2013). She concludes that metrics 

are sufficient for verification of a system, that is, it is built and operated to a 

specified level, but that validation metrics are less mature. Bayuk used cloud 

security as an example of the application of her metrics (Bayuk 2011). 

Chrun studied the use of an intrusion prevention system to derive security 

metrics (Chrun, Cukier et al. 2008). He proposed and measured ten metrics 
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equally split between outside and inside threats, using live data from a system 

with 40,000 users. The metrics were produced as time-series data, using a 

sliding window for their measurement. Despite the known limitations of 

signature-based intrusion system a major security incident was detected using 

these metrics, which had failed to be detected via the normal operational 

security techniques in place within the organisation. 

Lippmann et al have recently proposed four metrics for network security threats 

(Lippmann, Riordan et al. 2012).  Using the twenty critical controls for effective 

cyber defence defined by SANS (SANS 2013), fifteen are able to be 

continuously measured.  

2.6.2. Performance Metrics 

There are many parameters of intrusion systems that could be measured so as 

to characterise performance. These include: 

 CPU load; 

 Memory requirements; 

 Latency of detection declaration; 

 Maximum network data rate; and 

 Protocols that can be assessed. 

Whilst such metrics can be useful it is the ability of an intrusion system to 

detect intrusions whilst giving an acceptably low false alarm rate that is the 

most important, and the most challenging issue. 

A review of some of the detection metrics is provided by Abouzakhar 

(Abouzakhar and Manson 2004). The ability of an intrusion system to detect 
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intrusions is often characterised by its detection probability,    defined as the 

ratio of the detected intrusion events divided by the total number of intrusion 

events. Sometimes detection rate rather than    is used, in which the ratio is 

expressed as a percentage. 

The false alarm performance is often characterised by the probability of false 

alarm,    , which is the ratio of the number of false alarms declared divided by 

the total number of possible false alarm events that could be declared. Again 

false alarm rate is often used, which is     expressed as a percentage.  

It should be noted that     measures the false positive instances and therefore 

does not represent the full characteristics of false alarms. It does not include 

false negatives, in which a real intrusion event is missed. Therefore some 

researchers use confusion matrices to fully record the true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) statistics of an 

intrusion system. 

A frequently used assessment method is to plot    versus     (or detection rate 

against false alarm rate).  The resulting graph is known as a Receiver Operating 

Characteristic (ROC) curve.  ROC curves allow an intrusion to be assessed at 

different sensitivity settings (Fawcett 2003). Some researchers use a modified 

ROC curve, known as a lift curve, which has similar properties to a ROC curve 

(Abouzakhar and Manson 2004). 

Another measure frequently used is precision (Pr), which is defined as 
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%100)/(Pr  FPTPTP  

Equation 2-1 Definition of Precision 

Precision is often calculated with another parameter known as accuracy (Ac) 

which is defined as: 

%100)/()(  FNFPTNTPTNTPAc  

Equation 2-2 Definition of Accuracy 

The aim is to get both precision and accuracy to approach 100%, which can be 

achieved by zero false positives and zero false negatives. 

It is important to undertake the comparison of intrusion systems using the 

same basic assumptions. For example, whilst ROC curves for different systems 

can be compared directly this should not be done without detailed consideration 

of their methods of calculation. Consider the following situation. An intruder has 

found a way into a network that is monitored by a NIS. The intruder sends ten 

frames to another host in order to penetrate further into the network. The NIS 

detects one of the frames and initiates an alert. What is the    for the NIS in 

this situation? Since only one frame in ten was detected the    could be 

characterised as 0.1 (the per-frame view). Alternatively, since the activities of 

the intruder in attempting to penetrate the next host were detected the    

could be considered to be 1 (the per-connection view). If some of the frames 

used by the intruder were legitimate, for example a ping, then they could not 

be expected to be detected and the resulting    could therefore be somewhere 

between 0.1 and 1.0 (the per-malicious frame view). Thus, depending on the 

underlying assumptions, significantly different ROC curves can be created under 
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identical intrusion conditions.  This is discussed again in section 4.6.  

The problem of comparison of different systems can be seen by examining 

Figures 2-1 and 2-2. Figure 2-1 was taken from Lippmann (Lippmann and 

Cunningham 2000) and shows the comparison of three different intrusion 

systems. It is easy to see that the “Neural Net” approach is better than either 

the new or old keyword count methods as at any given false alarm per day the 

attacks detected are greater.  

 

Figure 2-1 Intrusion System Performance (Lippmann and Cunningham 2000) 

Consider now figure 2-2 taken from Estevez-Tapiador (Estevez-Tapiador, 

Garcia-Teodoro et al. 2004). Is the intrusion system produced by Estevez-

Tiador better than any of the systems investigated by Lippmann? Both research 

teams label these diagrams as ROC curves but direct comparison is extremely 

difficult. 
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During the literature research phase of this thesis 62 ROC curves were collected 

from the published research of 22 teams. From this it was clear that direct 

comparison between research groups was extremely difficult, but within groups 

it was frequently straightforward. The lack of an agreed and uniform way of 

publishing quantitative performance measurements does not help identify 

research opportunities. 

 

Figure 2-2 ROC Curves (Estevez-Tapiador, Garcia-Teodoro et al. 2004) 

Alternative ways of defining and measuring performance are discussed further 

in Chapters 3 and 4 of this thesis. 

2.6.3. Activity Databases 

A number of databases have been produced to assist in the evaluation and 

comparison of intrusion systems. These databases are important as they 
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potentially allow direct comparison of the techniques used by different 

researchers. They are in widespread use. 

2.6.3.1. The 1998 DARPA Dataset 

In 1998 DARPA, in conjunction with MIT Lincoln Laboratory conducted an 

evaluation of intrusion systems. An evaluation test bed was developed which 

simulated a government network of 100’s of users on 1000’s of hosts. More 

than 300 attacks of 38 different types were launched against UNIX hosts during 

seven weeks of training and two weeks of testing (see Table 2-1 adapted from 

(Lippmann, Fried et al. 2000)).  

 

 Solaris SunOS Linux Cisco Router 

Denial of Service (DoS) apache2 apache2 apache2  
 back back back  

 mailbomb land mailbomb  
 neptune mailbomb neptune  
 process table neptune process table  
 ping of death ping of death ping of death  
 smurf process table smurf  
 syslogd smurf teardrop  
 udp-storm udp-storm udp-storm  

Remote to Local (R2L) dictionary dictionary dictionary snmp-get 
 ftp-write ftp-write ftp-write  
 guest guest guest  
 http-tunnel phf imap  

 phf xlock named  

 xlock xsnoop phf  
 xsnoop  sendmail  
   xlock  
   xsnoop  

User to Root (U2R) at loadmodule perl  
 eject  term  
 ffbconfig    
 fdformat    
 ps    
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Surveillance/Probing ip sweep ip sweep ip sweep ip sweep 

 mscan mscan mscan mscan 

 nmap nmap nmap nmap 

 saint saint saint saint 

 satan satan satan satan 

 

Table 2-1 The DARPA 1998 Attacks, based on  (Lippmann, Fried et al. 2000) 

Network frames were recorded using TCPDUMP, along with host audit data 

from the BSM module. Eight different intrusion systems were evaluated as part 

of the data gathering exercise. All eight performed well when tested using 

attacks present in the training data. When tested against unseen attacks their 

performance was poor. 

2.6.3.2. The 1999 DARPA Dataset 

The 1999 DARPA intrusion system evaluation extended their 1998 work 

(Lippmann, Haines et al. 2000a). More than 200 instances of 58 different attack 

types were recorded, with Windows NT hosts now included. Three weeks of 

training data and two weeks of test data were captured, again with new attacks 

present in the test data that were not present in the training data.  TCPDUMP 

data was captured both internal to the network as well as external. 

Eighteen different intrusion detection systems were evaluated during the trial 

period. Most systems had false alarm rates below ten per day, but this is 

usually taken to be a result of the low background traffic. Network-based 

intrusion system performed well against probe and DoS attacks whilst host-

based ones were effective at detecting privilege elevation (R2L and U2R). 
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The importance of the DARPA datasets to the intrusion system research 

community cannot be understated. However there has been considerable 

criticism of their methodology and the resulting data (McHugh 2000). McHugh 

was concerned that the false alarms generated by the background traffic were 

not validated experimentally or analytically. He observed that a number of 

researchers had reported background data types (such as storms of FIN and 

RST frames) which were not present in the synthetic DARPA data. The limited 

addition of fragmented frames in the 1999 dataset did not address this issue. 

The use of ROC curves to determine the best intrusion system was also 

criticised due to their reliance on the realism of the false alarms.  

Also the attacks used within the simulation were representative of the time, 

which were dominated by Unix with only a few HTTP and Microsoft exploits. 

Attacks from advanced persistent threats were not included, nor were attacks 

against peer-to-peer or social media protocols.  

Mahoney (Mahoney and Chan 2003) assessed the DARPA data for its 

applicability to anomaly detection and found simulation artefacts affected the 

evaluation. They proposed the mixing of the DARPA data with real network data 

to overcome this limitation. 

2.6.3.3. The KDD ’99 Dataset 

The 1998 DARPA dataset was cleaned for the KDD ’99 Cup, a competition 

associated with the Knowledge Discovery and Data Mining Conference. 

Connections within the DARPA dataset were used to extract 41 potential 

intrusion features (Mukkamala, Janoski et al. 2002b). Each connection was 
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labelled as being from one of five classes namely normal, denial of service, 

probe, user-to-root and remote-to-local.  

2.6.3.4. Other Datasets 

In addition to the DARPA and KDD datasets others have been used in intrusion 

studies. Schonlau (Schonlau, DuMouchel et al. 2001) collected command data 

from 50 UNIX users, including masqueraders, and made the data available for 

host-based intrusion research. Greenberg (Greenberg 1988) also collected data 

from UNIX users.  

Moore (Moore and Zuev 2005) have released their hand-labelled dataset that 

they have been using for the development of Bayesian classifiers. This database 

is flow orientated and although it has not been collected with intrusion 

detection in mind it does include attack data. 

The Measurements and Operational Analysis Team (MOAT) of the National 

Laboratory for Applied Network Research (NLANR) maintained a website which 

contains a large amount of experimental data taken from operational networks 

in the USA (Wand Network Research Group 2012). This data is larger than the 

DARPA dataset and more recent. It does not appear to contain any labelling of 

intrusions but it may become of value in future NIS studies. The NLANR website 

also hosts the network files taken from the University of Auckland, another 

valuable resource. In 2006 the NLANR funding was terminated and the 

Cooperative Association for Internet Data Analysis, CAIDA (The Cooperative 

Association for Internet Data Analysis 2012) assumed operational stewardship 

of the NLANR data.  
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CAIDA have also been collecting and distributing anonymised Internet traffic 

since 2008, from two high-speed monitors on a commercial backbone link. A 

considerable amount of TCPDUMP readable frame data is available. They 

routinely capture an hour of network data every month, at a peak data rate in 

excess of 8Gbits/second. Whilst this data has been collected using network 

interface cards with nanosecond precision, there is a significant amount of 

frame loss. Despite the anonymisation of the data CAIDA place a significant 

number of restrictions on its use. 

The University of Brescia has made available anonymised traces collected on 

the edge router of their university campus on three consecutive days in 2009 

(Brescia 2009). 27GB of TCPDUMP data was recorded containing web (12.5%), 

mail (0.2%), peer-to-peer (86.1%) and VoIP (1%) protocols. Frame loss was 

measured as below 1%. 

The WAND research group at the University of Waikato Computer Science 

Department collects and distributes very long trace sets (Group 2013). The 

Waikato Internet Traffic Storage (WITS) project aims to collect and document 

all internet traces available at WAND. Over 30 separate trace sets have been 

captured dating back to July 1999, including wireless network traffic. Fourteen 

datasets are available for download for networking research. 

The WITS data is also available at the RIPE Data Repository. This is a very 

large data store consisting of approximately 100TB of data, which also hosts 

some of the NLANR datasets. As well as passive network traces this database 

includes routing, TRACEROUTE and PING, as well as IPv6 data.   



      Chapter 2 Literature Review 

 

 63 

2.6.4. Network Traffic Generation 

As an alternative to using recorded network traffic synthetic traffic generators 

can be used to control the parameters of an evaluation. Specifically, they 

remove the doubt about whether or not the alert is a false positive or the 

missed alert is a false negative, allowing repeatable experiments to be 

undertaken.  

HARPOON was an attempt to generate flow-level network traffic for this 

purpose (sommers and Barford 2004; Sommers, Kim et al. 2004). BRUTE was 

another software approach to network generation (Bonelli, Giordano et al. 

2005), producing IPv4 and IPv6 frames.  

Botta et al have reviewed the limitation of modern software network traffic 

generators (Botta, Dainotti et al. 2010). More recently they have compared 

software approaches for realistic network workload simulation, proposing a new 

tool to meet the requirements (Botta, Dainotti et al. 2012). This new tool is 

based on the D-ITG tool (Avallone, Emma et al. 2004). 

In an attempt to generate network traffic at 10GBits/s traffic Bonelli studied the 

use of multi-core processors (Bonelli, Di Pietro et al. 2012). Non-software based 

solutions for network traffic generation have also been proposed. Tockhorn et 

al have developed an FPGA-based generator with the aim to achieve Gigabit 

link performance (Tockhorn, Danielis et al. 2011). 

2.6.5. Comparison Studies  

Comparison studies have been limited mainly due to the difficulties of making 

direct comparison of disparate systems. The DARPA evaluations and the KDD 
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’99 competition remain the most comprehensive undertaken to date. In addition 

a number of researchers have used their resulting databases to publish further 

performance figures.                

Mukkamala (Mukkamala and Sung 2003b) compared linear genetic programs ( 

LGP), ANNs, multivariate adaptive regression splines (MARS) and SVMs using 

five classes and the 1998 DARPA dataset. LGPs were a clear winner in terms of 

detection performance at the expense of processing time. The performance of 

the SVMs exceeded that of ANNs and the MARS implementations, and was close 

to the performance of the LGPs. In previous work Mukkamala and Sung had 

compared SVMs and ANNs, also concluding the SVMs provide the better 

detection performance. 

2.7. Conclusions 

There has been considerable research into the design and operation of intrusion 

detection systems since the original paper by Anderson in 1980. Much of the 

published work has focussed on data processing techniques with a wide range 

of algorithms from pattern recognition and other disciplines applied to this 

problem, in both isolation and combination. The focus on data processing 

algorithms has been driven by the perceived shortfall in detection performance, 

most notably the unacceptably large number of false alarms that can occur.  

Strategies for post processing of intrusion alerts, through event correlation or 

visualisation techniques have attempted to overcome the inherent limitations of 

intrusion systems and address the increasing workload they can place on 

system administration staff. 
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In parallel with the investigation of data processing algorithms there has been 

significant research into quantifying performance of intrusion detection systems 

through defining performance metrics, standard intrusion databases and 

synthetic data generators. Most notable in this was the work of the MIT Lincoln 

Labs under DARPA funding. This work was initiated over 14 years ago, and 

many research and commercial intrusion systems have been evaluated, but 

there still remains no absolute measure of the performance of real systems. 

Potential users of intrusion systems cannot get definitive statements on the 

performance of different systems and researchers are unable to say by how 

much their latest approach is better or worse. There has been no further 

attempt to extend on the Lincoln Labs work and make it more relevant to 

current security research or to the needs of intrusion users. 

In addition to data processing research, system-level intrusion approaches have 

also been attempted. In host intrusion systems these have been particularly 

successful, most notably with anti-virus software. However in network intrusion 

system applications, whilst they have been successful at reducing false alarms 

this has been at the expense of unsatisfactory or limiting assumptions. 

Despite this extensive body of research into both techniques and systems, there 

is still no solution to the general problem of confident detection of intrusions 

with an arbitrary low false alarm rate. It is the assertion of this thesis that one 

reason for this is the lack of a clear way to compare different approaches from 

different research groups, in an easily quantifiable way. This inability to quantify 

and compare systems was most recently observed by Salah (Salah, Macia-
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Fernandez et al. 2013) and is a fundamental problem which is addressed 

directly in this thesis, by proposing a taxonomy designed specifically for 

comparing systems along with new performance metrics.  

In the next chapter the definition of intrusion detection will be examined more 

closely, to address this difficulty in comparing intrusion systems directly, from 

which a new taxonomy will be derived. 
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3. A New Taxonomy for Intrusion Systems 

The literature review described in the previous chapter has identified the 

difficulty in comparing alternative approaches to declaring the presence of 

intrusions. This chapter describes a new taxonomy that aims to improve the 

comparison of intrusion systems (Tucker, Furnell et al. 2006; Tucker, Furnell et 

al. 2007).  Taxonomies are an important aspect of the analysis of systems as 

they can act as a formal description, providing order to the subject. More 

importantly, they can provide insights through the identification of gaps. Such 

insights often identify new areas of research and this was the motivation for 

developing the taxonomy described in this chapter.  

The proposed taxonomy considers the different type of outputs that can be 

produced by intrusion systems, along with the type of information used to 

determine the intrusion, as the basis for their comparison. A graphical 

combination of these parameters is described against which intrusion systems 

can be qualitatively and quantitatively compared.   

3.1. Background 

A number of taxonomies for intrusion detection have already been proposed. 

One of the earliest was undertaken by Debar and classified intrusion systems 

according to their detection method, behaviour on detection, audit source 

location, or usage frequency (Debar, Dacier et al. 1999). This was later 

extended to include the detection paradigm, as either state- or transition-based, 

where the state of the network or host was determined by the intrusion system 

(Debar, Dacier et al. 2000). Axelsson offered an alternative taxonomy in terms 
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of the detection principle and operational aspects, such as whether operation is 

continuous or in batch mode (Axelsson 2000a). Other taxonomies have been 

developed that classify intrusion systems according to the attack stage they can 

declare intrusions, such as pre-attack, real-time or post attack (Lukatsky 2002). 

Most recently Liao et al have undertaken a comprehensive review of intrusion 

detection (Liao, Lin et al. 2013) proposing a new taxonomy covering host, 

network, wireless and behaviour-based intrusion systems. Patel et al have also 

provided a systematic review of intrusion system applied to cloud computing 

(Patel, Taghavi et al. 2013), as have Modi et al (Modi, Patel et al. 2013). 

Each of these taxonomies provides insight into the operation of intrusion 

systems and is a useful framework for identifying new research opportunities.  

However, they are not a good basis for intrusion system comparison as they 

use the internal properties of such systems for classification. A taxonomy based 

on the applicability of intrusion systems is a more fundamental comparison 

approach as it describes their use, rather than the details of their 

implementation. 

Consider, for example, two network intrusion systems. System A is misuse-

based whilst System B is anomaly-based. During a series of intrusion events 

both these systems will indicate the intrusion state of the network segment 

they are monitoring, possibly to different degrees of accuracy (that is, their 

detection and false alarm rates may differ). Much work has been published on 

the quantitative comparison of such systems (for example (Abouzakhar and 

Manson 2004)), using analysis techniques such as ROC or lift curves. However, 
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in addition to the presence of an intrusion, System A can indicate the type of 

attack and the exploit being used, on the basis of the specific signatures that 

are triggered. Comparing System A with System B via a ROC curve or confusion 

matrix will not include this important property of System A and thus is not a fair 

comparison method.  

Consider also the use of the output from these two systems. If both systems 

are providing alerts to network support staff, the actions that are likely to be 

taken are different. System A will identify the network peers involved in the 

suspected intrusion behaviour as well as the nature of the attack, allowing 

support staff to take specific action quickly. Support staff using System B may 

need to undertake further investigations before the information necessary to 

stop the intrusion behaviour is derived. In summary, each of these approaches 

to intrusion detection makes differing demands on the systems that use the 

information they provide and therefore comparison techniques should include 

this in their assessment.    

3.2. A New Intrusion Taxonomy 

A new taxonomy was developed which was inspired by the work of Johnson in 

the interpretation of pictures (Johnson 1958). He studied the ability of human 

operators to find and correctly classify objects within complex images. The 

objects were relatively small and thus the a priori probability that a specific area 

of the image contained an object was very low, a situation analogous to 

intrusion events within a background of normal network or host activity 
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(Axelsson 1999a). Johnson defined the following types of operator tasks, 

amongst others: 

 Detection – the ability to say that something of interest is present in an 

image; 

 Recognition – the ability to determine the class of object present, such 

as a car or aircraft; and 

 Identification – the ability to determine the type of object present, such 

as the make of car or the type of aircraft. 

The most important aspect of Johnson’s work was the definition of minimum 

criteria necessary for successful completion of the above tasks. Using similar 

task definitions as a starting point, the new taxonomy divides the output of 

intrusion systems into one of five categories, with the first three loosely in line 

with Johnson, as follows: 

 Detection – in which the system outputs an indication of a state change 

within a network or host. There is no determination of the nature of the 

change, apart for the assumption that this indicates the occurrence of a 

possible intrusion. The principal use of such systems is for data rate 

reduction so that other systems (either automated or manual) can 

investigate further; 

 Recognition – in which the intrusion systems are capable of declaring the 

type of attack, such as Distributed Denial of Service (DDoS), 

reconnaissance, or User to Root (U2R); 
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 Identification – in which the system is capable of declaring the exploits 

used to achieve the intrusion, such as buffer overflow or an application-

specific vulnerability;  

 Confirmation – in which the attack plan is deduced, allowing attack-

specific countermeasures to be deployed rather than coarse measures, 

such as disconnection of the internet access or isolation of key business 

servers; and 

 Prosecution – in which evidential quality data is generated identifying the 

originator of the intrusion. 

This hierarchy is shown in Figure 3-1. 
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Figure 3-1 Intrusion System Hierarchy 

As an example of the use of this taxonomy consider a simple anomaly intrusion 
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system comparing the utilised network bandwidth with historical values. An 

alert could be issued when the measured utilisation exceeded the historical 

levels by a set threshold. Such a system would be categorised as an intrusion 

“detection” system. It would be able to declare that something unusual is 

happening within the network but declaring with any confidence that the 

anomaly was caused by an intruder is not likely to be achievable to an 

arbitrarily high accuracy.  

As another example consider a SNORT intrusion system operating on a single 

network segment (Roesch 1999). When a rule is triggered and an alert 

declared, there is considerable attack-related information available. Often, rules 

are created to alert when the signatures of specific attacks are present. Thus, 

when such a rule has been triggered, the intrusion system can identify the 

exploit being used, as well as the network peers involved. Within SNORT, single 

frames can trigger multiple signatures, allowing detailed attack information to 

be accumulated downstream of the intrusion system. Within the taxonomy 

proposed here SNORT is acting as an intrusion “identification” system.   

In addition to considering the output from an intrusion system, further insight 

can be achieved from an analysis of the data scale over which the system is 

operating. In this context the data scale means whether or not the data is local 

to the host or application, or more widespread data, such as local area network 

frames are available. In modern computer systems four data scales can be 

considered: 
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 File – monitoring the status of individual files for unauthorised access or 

change; 

 Host – monitoring the applications running on and the behaviour of an 

individual host or user; 

 Network – monitoring the frames exchanged between hosts, servers and 

other network devices to assert the presence of an intrusion; and 

 Enterprise – monitoring traffic originating from trusted sources of an 

organisation that operate in the presence of other, less trusted, data 

sources. 

The File, Host and Network data scales have been used in other studies (for 

example, (Bace and Mell 2001)). However, the separation of the Network data 

scale into two sections is believed to be a novel concept. The principal 

difference between the Network and Enterprise data scales is the mixing of 

trusted and untrusted data streams within the same network segment. This is 

most often encountered in virtual private networks (VPN) between an office 

location of an organisation and its remote staff or trusted partners, via the 

Internet. VPNs are separated from the untrusted data streams using encryption 

schemes and well-known protocols. However, this separation may become 

subject to the same technology, policy or configuration vulnerabilities as other 

parts of the information processing system. Therefore, it is likely that security 

staff will want to know when their VPN communications are subject to intrusion 

attempts, irrespective of whether or not the attempts are successful. Intrusion 

systems therefore need to extend their data scale applicability to include the 

Enterprise. This is a technically challenging problem. 
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There is an alternative to the File and Host scales that could be applied in 

specific analyses, if needed. These are Application and Operating System. It is 

becoming increasingly common for enterprise applications to include data 

gathering for intrusion declaration sub-systems, independent of other security 

features of their host. Such applications are only concerned with intruder 

behaviours associated with their own files and are therefore more limited that 

the File scale used previously. This limitation is countered by the Operating 

System scale, which addresses more general issues of file-based intruder 

activity. In essence this alternative scale moves the separation of the lower two 

scales nearer to the first.  For the remainder of this thesis the use of the File 

and Host scales will be used to describe this taxonomy. 

3.3. The Application of the Taxonomy 

This taxonomy can be applied in a number of ways. The remainder of this 

chapter will examine its use to create an intrusion footprint on a grid or matrix 

formed from the output type and data scale elements of the taxonomy. The use 

of this footprint for comparison of systems will then be shown. 

3.3.1. Intrusion Matrix 

The combination of intrusion output type and data scale can be shown as an 

intrusion matrix, as in Figure 3-2. Also shown are some of the techniques that 

can be applied within a particular output type and data scale. For example, 

malware signatures or resource anomalies can be used in intrusion recognition 

systems operating at the Host data scale. Much of this matrix is covered with 

techniques that have been extensively studied. Of particular note is the 



Chapter 3 A New Taxonomy for Intrusion Systems  

 

76 

difficulty of practical techniques at the Enterprise data scale, when applied 

outside a managed cloud. 
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Figure 3-2 Intrusion Taxonomy 

3.3.2. Intrusion System Footprint 

The intrusion matrix can be used to plot a footprint for different intrusion 

systems. The footprints are determined from an analysis of the intrusion system 

outputs to determine which of the five output categories the system is capable 

of producing and what data scale is used to create the output.  For example, 

Figure 3-3 shows the footprints of a number of different intrusion paradigms.  

Figure 3-3a shows the footprint of representative anti-virus software (AVS) 

package. They typically include both virus-specific signatures and heuristics that 

respond to anomalous behaviours. This means they operate from the Detection 

to the Identification output types. Since the attack plan can often be 
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determined by reverse engineering of the virus, AVS packages can also be 

considered to operate at the Confirmation output type. 

 

Figure 3-3 Intrusion Footprints 

A footprint of a host-based intrusion system is shown in Figure 3-3b. To create 

this footprint it was assumed that anomaly techniques are applied and therefore 

the intrusion system is only capable of Detection or Recognition. Confirmation, 

or the determination of the specific exploit or vulnerability used (Identification), 

are unlikely to be achievable with confidence when using an anomaly-based 
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system. Host-based intrusion systems using signature techniques would be 

expected to operate at the Identification and Confirmation levels, depending on 

the discrimination capabilities of the signatures. 

Figures 3-3c and 3-3d show network-based intrusion systems using signature 

and anomaly detection respectively. These figures highlight the principal 

differences to be at the higher output types of Identification and Confirmation. 

SNORT is a typical example of a signature based intrusion system. On its own it 

is unable to perform the plan determination required for full Confirmation. 

However, when multiple SNORT sensors are deployed at strategic parts of a 

network, it may be possible to determine an attack plan from the patterns of 

signatures that are triggered. An additional module would be required to 

integrate the information and determine the plan. Hence, the Confirmation 

output type is shown partially covered by the footprint. 

Figure 3-3e is the most interesting, and shows the extensive footprint that 

could be achieved by intrusion systems based on mobile agents (see section 

2.3.3 for a review of mobile agents applied to intrusion detection). On the 

assumption that mobile agents could be created to examine the status of files, 

applications running on a host, and frames on local network segments, they 

offer the widest range of data scales of any other technique. Also, their payload 

could include integrated anomaly and signature-based techniques, and when 

combined with a communications capability this could give them the potential 

to provide output types up to Confirmation. It may even be possible that 
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techniques for Enterprise data scales and Prosecution could be integrated as 

they become available. 

Finally, Figure 3-3f shows some of the current challenges faced by intrusion 

systems. The Prosecution output type requires high integrity information to be 

gathered and secured from change. Whilst this is a common requirement in 

secure systems it must be achieved to the levels necessary to allow criminal 

prosecution, within a system that has intruders present (Sommer 1999). For the 

Enterprise data scale, the technology challenge appears to be the development 

of discriminants that will separate intrusion and non-intrusion events in mixed-

trust data flows. Such data flows will often be occurring on equipment not 

owned by the enterprise and therefore the ability to provide local monitoring of 

the network will be limited.   

It is useful to consider how Security Information and Event Management (SIEM) 

fit within this footprint. An SIEM can aggregate data from all the data scales at 

all intrusion levels, assuming the Enterprise level is restricted to procured cloud 

services only. This would mean that they could cover the intrusion footprint 

completely, providing all security information is sent to the SIEM. However an 

SIEM does not undertake the measurements on the system directly, but uses 

measurements made by other system elements, such as applications, operating 

systems, network devices and intrusion systems. Although the taxonomy 

described here, as well as the metrics described in the next chapter, could be 

applied to SIEM, this lack of inherent measurement means that they will not be 

considered further.    
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3.3.3. Comparison of Intrusion Systems 

The intrusion matrix can be used to provide a comparison between systems. A 

qualitative comparison can be made by examining the footprint of each system. 

Large footprints are likely to represent systems that provide a broader range of 

applicability and a wider range of output information during an intrusion. Small 

footprints would be typical for systems that are very specific in their application.   

A more quantitative comparison can be made by examining the performance of 

systems where their footprints overlap. Each element of the intrusion matrix is 

accompanied by a set of performance metrics relevant to the output data type. 

These performance metrics could include false alarm rates, intrusion 

probabilities, or confusion matrices measured in such a way as to be 

appropriate to the position within the intrusion matrix. As an example consider 

a single element within the intrusion matrix, say the (Network, Identification) 

element. If the footprints of two intrusion systems overlap on this element, 

performance metrics relevant to Identification should be calculated for the two 

systems. The probability of identification could be determined as a function of 

the false alarm rate, to produce Identification ROC curves. Examination of the 

ROC curves at this overlap point within the intrusion matrix would allow 

comparison of the systems in the role of intrusion identification.  A fair 

comparison would require the examination of performance metrics at all points 

of overlap on the intrusion matrix as well as a recognition of the additional 

capabilities offered at points where they do not overlap. 

Some of the elements of the intrusion matrix presented have been extensively 
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studied and can be considered commercial successes. For example, AVS 

packages are very good at providing confident alerts at the Files and Host data 

scales (Post and Kagan 1998). Such software can be very specific, identifying 

the virus and hence, by implication the “plan” of the originator of the virus. 

Heuristic algorithms can provide a degree of detection capability in which the 

AVS indicates that there is a virus present but is not specific about its type. AVS 

packages are also well known to provide a high alert probability with a low false 

alarm rate. Thus a large area of this matrix can be achieved with very high 

performance. 

Meanwhile, some of the elements of the intrusion matrix are poorly understood 

at this time. Effective techniques at the Enterprise data scale are rare and of 

limited applicability. This applies to any of the intrusion output capabilities. The 

enterprise data stream may be present with untrusted streams and on 

untrusted network equipment (for example, Internet backbone routers). 

Current intrusion systems are not able to operate outside of the trusted 

systems of the enterprise, except in limited circumstances, leaving Enterprise 

scale intrusion systems to rely on remote diagnosis of intrusion behaviour. 

However some aspects of the trust issues are addressed in cloud computing 

where the provider of the cloud can be subject to contractual and service level 

agreements for security, in which intrusion declaration could form a part. In this 

context the cloud is equivalent to leased infrastructure, rather than the general 

purpose Internet infrastructure that would be difficult for a single organisation 

to monitor.   
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It can therefore be seen that there are three aspects of the intrusion matrix 

that provide insight to the performance of an intrusion system and should be 

considered when comparing systems, namely: 

 The number of elements of the matrix that an individual system footprint 

covers as this can indicate its applicability; 

 The position of the elements of the footprint within the intrusion matrix, 

as some element positions present a significant challenge to the 

achievement of high performance; and 

 Only the elements that overlap are of any significance in the direct 

quantitative comparison of intrusion systems. 

3.4. Relationship with Other Definitions of Intrusion 

One of the earliest definitions of intrusion was from Amoroso. He defined 

intrusion detection as “the process of identifying and responding to malicious 

activity targeted at computing and networking resources” (Amoroso 1998). In 

the same year Ptacek defined intrusion as “unauthorized usage of or misuse of 

a computer system” (Ptacek and Newsham 1998) whilst Alessandri defined 

intrusion as “a malicious activity threatening the security policy that leads to a 

security failure, that is to a security policy violation” (Alessandri, Cachin et al. 

2001). More recently many researchers have used the definition of Bace in 

which intrusion is defined as “attempts to compromise the confidentiality, 

integrity, availability, or to bypass the security mechanisms of a computer or 

network” (Bace and Mell 2001).  
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For the remainder of this thesis we will use a simple definition based on 

Alessandri, without the restriction of malicious intent. Therefore we consider 

intrusion to be defined as “an activity that leads to the violation of the security 

policy of a computer system”.  Further insight can be gained by considering the 

relationship of this definition with the definitions of detection, recognition and 

identification presented earlier.  

In this context, an intrusion detection can be seen as the declaration that the 

security policy has been violated, but the specific clause that has been violated 

is not identified. Intrusion recognition systems are able to declare which clauses 

or subsets of clauses have been violated. Intrusion identification systems are 

able to declare which clauses or subsets have been violated, as well as 

declaring the way in which they have been violated.    

The above discussion can be used as the basis of a mathematical model of the 

intrusion declaration process, potentially allowing the theoretical limits to be 

determined in the same manner as Johnson’s work for imaging systems. Also 

the inclusion of AVS within this taxonomy opens the challenging and interesting 

option of building on the theoretical work already published in this area. The 

work of Cohen (Cohen 1987) has already established theoretical limits on the 

detectability of viruses, proving that no algorithm can perfectly detect all 

possible viruses. More recently Li et al have proposed a theoretical basis for 

intrusion, but this work has yet to reveal any useful conclusions (Li, Das et al. 

2005). It is hoped that this taxonomy will build on this theoretical basis and 
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lead to a better understanding of the limits of performance for intrusion 

systems, as well as providing an improved framework for their comparison. 

3.5. Conclusions 

Published research literature in intrusion detection has failed to define precisely 

and consistently the meaning of “detection” and therefore comparison of 

detection systems is problematic. Indeed, it is common for some researchers to 

refer to intrusion detection, whilst others to intrusion recognition within the 

same context.  

In this chapter a new taxonomy for intrusion systems has been defined in terms 

of five levels of intrusion operating over four data scales, producing an intrusion 

system footprint. The footprints for different types of intrusion system have 

been examined with the qualitative observation that the larger the footprint of a 

system the larger its applicability to intrusion problems. Intrusion systems can 

only be compared quantitatively in a meaningful way when they have 

overlapping areas on their footprint.  

Existing definitions of intrusion detection have been examined. The relationship 

between the new levels of intrusion functionality has been defined in terms of 

breaches of the security policy of a system with intrusion “detection” being 

defined as “an activity that leads to the violation of the security policy of a 

computer system”. This chapter has shown that intrusion systems can only be 

meaningfully compared when they are attempting to do the same task, over the 

same scale.  

The following chapters will concentrate on the detection, recognition and 
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identification scales only with the next chapter providing a systems-level 

discussion of intrusion, focusing on the Network scale. 
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4. Systems Considerations 

The previous chapter has established an alternative view of intrusion systems, 

in terms of the different types of outputs that can be produced. This chapter 

examines the systems implications of these different output types. Although 

many of these implications can apply across different scales, for this chapter 

and for the remainder of this thesis the emphasis will be on network intrusion 

systems (NIS) and, in particular, signature-based NIS. The acronym NIS is 

proposed to mean network intrusion systems operating at the detection, 

recognition and identification scales, to avoid confusion with the more widely 

used NIDS (network intrusion detection system) acronym. It is introduced to 

clarify that the systems considerations apply more broadly than to detection 

alone. 

The chapter commences by establishing a common terminology and 

understanding about the nature of signature-based NIS. This is followed by a 

discussion of the reasons for deployment and the characteristics of an ideal 

NIS. These characteristics are illustrated in terms of a model of an ideal NIS 

and a discussion of the current challenges facing NIS. Finally, two performance 

metrics are proposed to assist in the use of the new taxonomy. 

4.1. Principles of Network Intrusion Systems 

Currently there is no complete theoretical treatment of NIS. There has been 

considerable modelling of network traffic (Barford, Kline et al. 2002b; Allen and 

Marin 2003; Estevez-Tapiador, Garcia-Teodoro et al. 2003; Jun, Jiahai et al. 

2005; D'Apice, Khokhlov et al. 2010; Bahaa-Eldin 2011) and attempts to 
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establish a full theoretical model (Patcha and Park 2004; Li, Das et al. 2005; 

Beghdad 2009). However it is difficult to use these results to further the design 

of better NIS. In this section some basic theoretical results will be stated as a 

pre-cursor to establishing performance metrics later in the chapter.  

In order to establish the important issues associated with a signature-based NIS 

it is useful to view it from a set theory perspective of intrusion alerting, as 

follows. Signature-based NIS generally operate by comparing each network 

frame individually against a set of frame-based signatures that represent 

malicious behaviour of interest. This is a simplified view as intrusion systems 

can contain pre- and post-processors which can extend their operation beyond 

a single frame. The frag3 pre-processor in SNORT is an example, re-assembling 

multiple fragments of a frame, therefore extending the application of the 

signatures over several network frames. The stream4 pre-processor, also in 

SNORT, gives it the capability to alert on frames according to where they are in 

a connection, that is, according to connection state. Post-processors can be 

used to limit the output from an intrusion system, suppressing previously 

alerted conditions for example, extending the decision process of the NIS over 

many frames or connections. 

Although this single frame view is a simplification it does offer some insight into 

NIS operation. Consider intrusion alerting from the perspective of the universe 

of network frames,    collectable on a network segment. This is a very large 

set. For a maximum transmission unit (MTU) of 1500 bytes, the number of 

potential frames at the full MTU is 21500x8 which is approximately 103612 or 
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considerably larger than the baryon number of the observable universe (~1080).  

Included in this set are frames that meet the defined network protocols and 

their options for payloads, as well as those that violate all current protocols. 

Despite the large number of set members some simple results can be derived. 

There exists a subset of   that consists of the frames that may be used by 

intruders to violate the security policy of a network.  These could include, for 

example, frames in which there are protocol violations, to defeat the TCP/IP 

stack of the target machine, or frames that comply with the network protocols 

but deliver malicious payloads. This subset is designated,    , is considered to 

be a proper subset to ensure that there is the possibility of separating intrusion-

like from non-intrusion-like frames, that is 

     

Equation 4-1 Fundamental Assumption of NIS 

Equation 4-1 illustrates a fundamental assumption of signature-based network 

intrusion, that    is a proper subset of  . This means that there are some 

frames, and hopefully many, that can only be the result of behaviours 

consistent with the network security policy and therefore can be discriminated 

by a NIS on a per-frame assessment. An important consideration is that    is 

not dependent on the specific implementation of a signature-based NIS, but is a 

fundamental property of a network and specifically its security policy, network 

architecture, protocols and vulnerabilities.  The size of    is not fixed as the 

discovery of new vulnerabilities and attack methods, or the deployment of 

devices using new protocols, will affect the number of frames that comprise this 

set.  
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In the universe of frames there also exists a subset that consists of frames that 

can be generated as a result of actions consistent with the network security 

policy. This subset, designated    is not necessarily a proper subset, hence it 

can be defined as     . It is also independent of the design of a signature-

based NIS.  

A problem faced by signature-based NIS is that: 

        

Equation 4-2 The Problem of NIS 

This is a fundamental limitation of signature-based NIS. It is not possible to 

uniquely map each network frame into either    or    and therefore error free 

classification of all frames as either intrusion-like or non-intrusion-like is not 

possible. Some frames are consistent with normal user and intruder behaviour 

simultaneously. Therefore perfect declaration of an intrusion cannot occur by 

considering only single frames and matching them to known intrusion 

signatures. 

Equation 4-2 can be proven by construction. Consider for example the use of 

ICMP PING. Some applications use PING to verify connectivity to remote 

servers. However an intruder can also use PING to locate potential hosts to 

attack. The presence of a PING frame on a network segment therefore does not 

necessarily indicate that an intruder is present yet it is common for alerting on 

PING frames to be included in a signature set for a NIS.  

No published research could be identified that has quantified the overlap 

between    and   . Practical experience suggests that the overlap could be 
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large, mainly due to the frames present in techniques used legitimately by 

support staff, which would be considered malicious when used by unauthorised 

individuals.  

Although    is not dependent on the signatures used within a NIS, it is highly 

dependent on the network security policy. Re-considering the PING argument 

given above highlights this relationship. If the network security policy forbids 

the use of PING by users and support staff and also forbids the deployment of 

applications or operating systems that use it autonomously, then alerting on a 

PING on a network is a valid intrusion declaration as the policy has been 

violated. The PING frames would exist only in the set    and not in   . 

Forbidding PING is not a practical solution to the limitations of signature-based 

NIS. However it demonstrates an important point that making the network 

security policy more specific reduces the size of    and hence the overlap with 

  . 

Consider next the subset of   that comprises the frames on which a given set 

of NIS signatures will produce an alert, designated     . For the perfect NIS the 

following equations hold true: 

         

          

Equation 4-3 An Ideal NIS 

This is unlikely to be achievable for practical systems due to the implications of 

the limitations highlighted in Equation 4.2. Also the size of    is unknown, due 
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to as yet undiscovered exploit methods. In essence the first part of Equation 4-

3 is concerned with the achieving high detection probability and low false 

negative rates, whilst the second part is concerned with achieving low false 

positive rates. 

In this simplified situation of decisions made on single frames, the goal of the 

misuse NIS designer would be to select signatures to get as close to this ideal 

relationship as possible. This could be done in two distinct ways: 

 Increasing the number of exploit-specific signatures; and 

 Decreasing the specificity of the signatures. 

Increasing the number of signatures could provide increasing coverage for new 

attack methods as they are discovered. Highly specific signatures are less likely 

to be triggered by legitimate user actions. However as the number of signatures 

is increased there would be practical difficulties in applying them to network 

frames in real-time, particularly as network speeds increase.  

Decreasing the specificity of signatures would increase the coverage of    even 

for as yet undiscovered attacks, but increase the likelihood that frames that are 

not intrusion-like would cause alerts, that is         would increase. 

4.2. Reasons to Deploy a Network Intrusion System 

 It is instructive to consider the reasons for the deployment of a NIS, to assist 

with the development of a better understanding of false alarms. A NIS could be 

deployed for a number of reasons, including to: 

 Comply with industry standards – Standards, such as the Payment Card 

Industry Data Security Standard (PCI-DSS) (PCI Security Standards 
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Council 2010), often require that intrusion systems are deployed. 

Compliance is often mandatory and confirmed by independent audit; 

 Demonstrate secure operation and corporate governance – Organisations 

teaming with industrial partners or seeking business with new clients are 

often required to demonstrate that information assurance processes are 

effective. Pre-bid questionnaires are frequently used by Government and 

large organisations to screen potential bidders for major contracts. If the 

contract involves access to sensitive information the questionnaire is 

likely to request network security information as well as security 

standards compliance; 

 Gather forensic information to enable a criminal prosecution – A NIS in 

which the logs are correctly managed could be used to initiate 

disciplinary procedures or criminal action against employees, or others 

accessing or using data assets inappropriately and against the network 

security policy; 

 Block an on-going attack, limiting further compromise – Determination of 

an intrusion in real-time, or early in the attack, can enable action to be 

taken to limit compromise of systems or information assets. Intrusion 

Prevention Systems (IPS) can drop frames, slow connections or 

terminate sessions to deter, limit or stop the actions of an attacker 

(Papadaki 2004); 

 Undertake post-intrusion damage assessment – After an attack it can be 

essential to understand what information assets or systems have been 

compromised, for example for compliance with regulations governing 
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management of personal data. The owners of the information assets 

may need to be informed, so that they can take appropriate action. A 

NIS is potentially one source of data, along with server, firewall and 

other network device logs; and 

 Discover attack methods – An NIS is just one component of a defence in 

depth strategy for network security. As new attack methods are 

developed it is essential that the network remains secure. Analysis of 

attacks alerted by a NIS can be used to confirm that the security controls 

in the other layers of the defence remain effective. 

4.3. The Ideal Network Intrusion System  

Analysing the concept of an ideal NIS is a useful way to understand the 

limitations of current systems. An early attempt to document the properties of 

an ideal NIS was undertaken by Cramer, who identified the characteristics as 

timeliness of response; high probability of detection; low false alarm rate; 

specificity of attack; scalability to large networks and low a priori information 

requirements (Cramer 1995).  Later, Lin was concerned about implementation 

issues (Lin, Tseng et al. 2001) and defined the properties of an ideal intrusion 

detection system as “an efficient detection mechanism and provide good 

representation of expert knowledge for intrusion patterns, which should be 

easily understood and maintained”.  Behera extended Cramer’s list to include 

the limited use of host and network system resources, flexibility in detecting 

new attacks and the ability to correlate data from different machines to detect 

coordinated attacks (Behera 2001). Chinchani additionally recognised as 

important the ability to be deployed in a heterogeneous and distributed 
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environment (Chinchani, Upadhyaya et al. 2002). The most recent set of ideal 

characteristics is on the COAST website which provides the following list 

(COAST 2012):  

“an ideal NIDS should run continuously; be fault tolerant; be resistant to 

subversion; have minimal overhead on the network and hosts; observe 

deviations from normal behaviour; be easily tailored to the system being 

monitored; be able to cope with changing system behaviour; and must be 

difficult to fool”. 

In this section a more general view of the set of ideal characteristics for a NIS 

is taken, derived from the viewpoint of the individuals responsible for network 

management.  The properties identified above fail to capture all of the desirable 

characteristics of an ideal NIS from this viewpoint and do not allow their inter-

relationships to be clearly seen. A recent information security breaches survey 

(PricewaterhouseCoopers 2012), indicates a shift from information security 

being an expenditure, towards being an investment. In the UK 20% of 

companies require a return on investment (ROI) calculation to support 

expenditure on information security. The ROI calculation would need to take 

into account, for example, the financial impact of reputational damage or loss 

of new product design details, if the information assets of the organisation were 

to be compromised. To provide such detailed justification, network managers 

require a clear understanding of the benefits of NIS, the achievable 

performance and the total cost.  Therefore, from the perspective of individuals 

responsible for managing computer networks, an ideal NIS should: 

 Improve the security of the network; 

 Achieve high sensitivity, in which high probability of intrusion alerts are 
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achieved with low false alarm rates; 

 Achieve high selectivity, in which the different intrusion mechanisms can 

be differentiated so as to allow a response specific to the intrusion; 

 Be appropriate to meet the threat; and 

 Have low cost of ownership. 

It may seem unusual to include the requirement to improve the security of the 

network in the above list, but it is the raison d’être for intrusion systems and 

therefore it is essential that it be explicitly evaluated. Each new device or 

protocol stack added to a network has the capability to introduce new 

vulnerabilities through technology weaknesses, configuration errors, or security 

policy inadequacies. The net result does not automatically mean that network 

security is increased, as the work of Ptacek showed (Ptacek and Newsham 

1998). Additional security concerns that need to be explicitly evaluated include: 

 The ability to operate and survive during a direct attack on the NIS; 

 Ensuring that the logs are handled in a forensically secure manner to 

enable criminal prosecutions to be sought; 

 The tolerance to equipment failure is appropriate, with the most secure 

networks requiring a fail-secure approach; 

 Both previously seen and unseen intrusion mechanisms must be 

detectable; and 

 The NIS must not be vulnerable to evasion and insertion attacks, as well 

as other defeat techniques (Ptacek and Newsham 1998). 

The need for high sensitivity encapsulates the requirement for detection, 

recognition and identification probabilities to be high, simultaneously with an 
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acceptably low false alarm rate. From a detection theory viewpoint, this 

requires a large signal to noise ratio, where the signal is considered to be a 

measurement in which an intrusion is present and the noise is considered to be 

a measurement in which an intrusion is not present (Schwartz and Shaw 1975). 

The close relationship between false alarms and the detection of real intrusion 

events is most often shown by ROC curves, as described in (Abouzakhar and 

Manson 2004). High sensitivity implies a sharply rising ROC curve achieving 

high alert probabilities under low false alarm rates. It is important that high 

sensitivity is maintained across the complete set of intrusion measurements, 

including unseen attacks, intrusion events during direct attack of the NIS and 

under conditions of multiple intrusion events from many attackers. 

High selectivity is concerned with the ability to discriminate between different 

intrusion mechanisms and is linked with the need to determine the cause of the 

intrusion, to be able to select or recommend the most appropriate response. 

The previous chapter discussed the characteristics of intrusion detection 

systems with differing intrusion recognition and identification capabilities 

(Tucker, Furnell et al. 2007). As in the need for high sensitivity, it is important 

that high selectivity is maintained across the complete set of intrusion 

measurements, including unseen attacks, intrusion events whilst the NIS is 

under direct attack and under conditions of multiple intrusion events from many 

attackers. 

The appropriateness of the NIS covers a wide range of properties. It is most 

directly related to the “timeliness of response” parameter described by Cramer. 
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However the importance here is that the NIS must be capable of meeting the 

security requirements stated within the network security policy, rather than be 

able to respond rapidly. For example, in a school network the Governors may 

be concerned with the need to protect the integrity of individual student 

grades. An offline intrusion system analysing log files in batch mode could 

easily be capable of meeting their security policy requirements. However, in a 

commercial organisation generating revenue solely from web transactions, real-

time response would be essential to block attacker activities before customer 

details had been compromised and the company reputation permanently 

damaged.  

Other appropriateness-related issues include: 

 Network coverage – in which the NIS is required to meet differing threat 

protection levels in different parts of a network, throughout the 

enterprise; 

 Temporal coverage – in which the NIS is required to meet continuous or 

batch processing requirements; 

 Adaptive performance - based on changing threat, network conditions or 

availability of resources such as network staff; and 

 The ability to gather evidential quality information to assist prosecution 

of intruders. 

The final characteristic of an ideal NIS is low cost of ownership, which 

generates a number of additional considerations, including: 
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 Ease of deployment – centralised deployment and management of a NIS 

will reduce ownership costs significantly; 

 Sensitivity to deployment constraints – When the performance of a NIS is 

sensitive to constraints such as the location of network sensors, the cost 

of ownership can increase. Space in data-centres is often charged at a 

premium and therefore NIS that can be deployed flexibly, without loss of 

performance, will be more attractive from the cost of ownership 

viewpoint. An additional but important consideration is the constraints 

placed on other systems that can be deployed after the selection and 

deployment of a NIS; 

 Support requirements – should be minimised by reducing the need for a 

priori information, routine maintenance including signature updates and 

specialists to investigate alerts. The achievement of high sensitivity and 

selectivity are key to reducing the support costs as time will not be 

wasted investigating false positives; 

 Resource usage – increasing the use of network resources, such as 

bandwidth, storage and processing power, increases the cost of 

ownership by requiring upgrades to the network infrastructure earlier 

than would otherwise be needed; 

 Scalability – As organisations grow it is important that the NIS solution 

can scale and that complete replacement is not essential when a 

threshold network size is reached; and 

 Heterogeneous and distributed networks – should not be a constraint. 

Networks are rarely homogeneous, often containing legacy protocols and 
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equipment. A NIS that requires significant network upgrades or 

standardisation is likely to need a large initial investment. 

4.4. A Model of an Ideal NIS  

Network intrusion systems generally sense the network traffic on key network 

segments and look for the presence of intrusion signatures or anomalous 

behaviour. The declaration of an intrusion is then made via the examination of 

the properties of individual frames, or on the statistical parameters of complete 

connections.  NIS generally do not interact with the network and often their 

ability to transmit frames onto the monitored network is disabled by hardware, 

via modifications to the network interface card or cable. This is due to the need 

to hide the presence of the intrusion system from would-be attackers. Figure 4-

1 shows a simple model of a passive NIS. 

In this model the Extract Measurements block processes network frames to 

determine fundamental features of the received data. Such features could 

include session indicators, frame size, protocol types, or client and server 

information. The selection of features is one of the most important aspects in 

the design of NIS. Frequently, more than one measurement is made, allowing 

an assessment of network activity to be created from many viewpoints 

(Mukkamala and Sung 2003d). The Extract Measurements block can contain 

local storage, to allow the extraction of measurement over many network 

frames. However, when measurements are required over an extended time 

period it is more likely that partial measurements will be passed to the 

Associate Measurements block for storage in the Potential Intrusions store.  
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Figure 4-1 A Functional View of an Ideal NIS 

The Associate Measurements block takes the latest measurements, partial 

measurements or inputs from other NIS, and attempts to assign this data to 

individual records in the Potential Intrusions store. Bass discusses the 

importance of association techniques in the fusion of multiple sensors (Bass 

2000). Each record in this store contains the set of measurements on which an 
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intrusion/ non-intrusion decision can be made. It is important to realise that 

these sets will be in error due to uncertainties in the measurement process, 

incomplete data, an intruder deploying deliberate measures to deceive the NIS 

or to association errors. 

The Intrusion Decision block takes the tentative records from the Potential 

Intrusion store and, using the supporting information in the A Priori Data store, 

classifies each record as intrusion-like or non-intrusion-like. It may also 

separate intrusion events into individual intrusion attack types, to enable the 

selection of the most appropriate response, reducing the network support 

requirements. The Potential Intrusion store is updated with the result from the 

Intrusion Decision block and if an intrusion is declared then an alert is output 

from the NIS for further action.  This block may make its decision in a simple 

way, for example by checking for the presence of protocol errors, or in a more 

complex way, such as utilising neural networks or support vector machines to 

transform the measurements before a threshold or decision measure is applied.  

Also shown in Figure 4-1 is an Adaption block taking measurements from the 

Extract Measurements block and updating the A Prior Data store. This block, if 

present, can extract information to support models of normal behaviour on 

which many anomaly-based NIS depend.  Often the A Prior Data block is not 

dynamically updated from network measurements, but is derived from offline 

analysis of network vulnerabilities or specific attack mechanisms.  

Not all of the blocks and stores shown in Figure 4-1 need to be explicitly 

present. Consider for example SNORT. In its simplest form, that is a single 
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network sensor with no pre-processors, the Extract Measurements block 

becomes the capture of a complete network frame. There is no Potential 

Intrusions store and therefore the Associate Measurements block only passes 

the frame to the Intrusion Decision block where it is parsed to look for the 

presence of intrusion signatures taken from the A Prior Data store. The 

presence of a signature generates an alert.  

The discussion above represents a simplified view of network intrusion systems 

and is not thought to have been presented elsewhere. In this respect it can be 

considered as a model of a first generation NIS, with modern implementations 

extending the intrusion assessment over many frames, as described in section 

4.1. One motivation for its inclusion here is that other technologies use a similar 

model, and therefore this can be thought of as a design pattern. The most 

notable example of its use is in air traffic control (ATC) radar, as described 

below.  

ATC radar makes regular measurement of the position and velocity of aircraft 

and associates each new set of measurements with the tracks of previously 

seen aircraft, to update their position and velocity. If the measurements cannot 

be associated with an existing aircraft then a new aircraft is declared and a 

track file is initiated. When track files have not been updated for a set period 

the file is deleted, on the assumption that the aircraft is no longer in the ATC 

radar control space.  In this design pattern, the position and velocity 

measurements assume the same significance as the measurement of network 

frames. The Associate Measurements block assigns new position and velocity 



Chapter 4 Systems Considerations                                     

 

 105 

measurements with the existing aircraft tracks, in much the same way as it 

performs the association of measurements in a NIS.  

For radar however the problem of how best to associate new measurements 

with previously seen events has been studied extensively, with techniques 

based on probabilistic data association, Kalman filtering, interacting multiple 

models and multiple hypothesis tracking being routinely applied (Kirubarajan 

and Bar-Shalom 2004). The use of these techniques in NIS is still to be studied 

in depth, despite their well-known performance in radar.  

4.5. Current Challenges in NIS 

The passive approach to network intrusion has a number of difficulties in 

achieving the ideal NIS characteristics described in the section 4.3. Surprisingly, 

one of the biggest challenges is with the need to improve security. When NIS 

have a high false alarm rate the network support staff are likely to disbelieve 

alerts, often taking no action when they occur. Even when low false alarm rates 

are achieved, low intrusion alerting probabilities can generate a false sense of 

security in the network support staff. This can occur, for example, when 

previously unseen intrusions are present and the lack of alerts may result in the 

support staff believing that the network is secure. 

This last point is important and reveals a significant limitation of current NIS.  

The assumption that a NIS is correctly asserting the status of a network or 

network device as in one of two states, that is intrusion-free or not intrusion-

free, is flawed. The measurements taken by a NIS to make this assertion are 
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generally not capable of confirming which state a network is actually in, without 

further assumptions.  

For example, consider a simple signature-matching NIS, such as SNORT. A 

frame is captured from the network (measured) and checked against the known 

signatures of intrusion-like frames. If the frame is not in the set of known 

intrusions the NIS does nothing, awaiting the next frame to check. However, if 

the frame is in the set of known intrusions an alert is issued. The presence of a 

frame that does not show intrusion characteristics cannot be used to assert that 

the network is free of intruders. It is supporting evidence for this assertion, but 

it is not sufficient. An intruder could be using new, previously unseen 

techniques to compromise the security of the network. The combinations of 

alert or no alert, along with the presence or absence of evidence of hacking can 

be seen in Table 4.1. Only one condition is capable of correctly asserting the 

security status of the network, which is the correct processing of an intrusion-

like frame to declare an alert. 

 

Table 4-1 The Assertion Matrix 

Consider further the “Correct Assertion” entry in this table. Equation 4-2 shows 

that even when an intrusion-like frame is present and the NIS outputs an alert, 

it does not necessarily mean that an intrusion is present in the network.  
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This limitation reveals more concerns regarding the operation of NIS, when 

combined with the work of Axelsson (Axelsson 1999a). He realised that 

intrusion-like behaviour is rare compared with non-intrusion-like behaviour, 

suggesting a ratio of 1:50,000 for audit records. For frames within a correctly 

configured and secured network, using a defence-in-depth strategy, this ratio 

could be significantly larger. However, using this ratio a NIS will spend 

99.998% of the time processing frames that are either not capable of asserting 

the security status of the network, or will make the wrong assertion of its 

security status.  In this respect, such a NIS could be considered to be only 

0.002% efficient. 

The efficiency of a NIS is important when the practical problems of 

discriminating intrusion from non-intrusion measurements are considered. 

Signature-matching NIS are able to complete their classification of frames 

quickly, often in real-time. However when more sophisticated and processor 

intensive techniques are deployed, such as support vector machines, the 

inefficiency in the NIS approach can result in substantial increases in the size 

and cost of the hardware necessary for real-time operation.  This will continue 

to be a problem as the bandwidths increase beyond the 1GB/s networks that 

are currently widely deployed.  

Additional problem areas for passive NIS include (Allen, Christie et al. 1999; 

Bace and Mell 2001): 

 Low-observable intrusion events – A number of intrusion methods are 

difficult to detect from their network signatures alone. Indeed, the 
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measurement capability of passive NIS does not guarantee that all 

network properties can be observed, as described by Monticelli 

(Monticelli and Wu 1985). A particularly difficult problem is the remote 

detection of packet sniffers using passive sensing alone. Packet sniffers 

have only a small effect on the network, due to their passive operation. 

Very high sensitivity discrimination techniques are required to classify 

correctly the NIS measurements for detection of packet sniffers; 

 The speed and volume of data on the network – As businesses deploy 

new services onto their networks the difficulties of passive detection 

become exacerbated. Data intensive applications, such as video 

streaming or VoIP, will require NIS hardware capable of dealing with the 

increased data rates. NIS efficiency will worsen as the intrusion-like 

frames become further diluted within the large number of frames from 

such applications;     

 Separation of data into individual attack streams when multiple intrusions 

are in progress. This requires discrimination techniques with high 

selectivity; 

 Initialisation of the intrusion system when first deployed in an 

operational network. When a NIS is first deployed there is likely to be 

many alerts indicated, causing issues of confidence in the NIS with staff 

responsible for its maintenance. These alerts are often due to miss-

configuration of network devices, applications using non-standard 

communications techniques and even non-optimal setup of the NIS itself. 

Although support staff soon learn to recognise the characteristic alerts in 
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their network that result from these mechanisms, a determined intruder 

could use these same mechanisms to penetrate further into the network, 

hiding their activities within perceived normal NIS behaviour; 

 Detection of a network interface card (NIC) in promiscuous mode. Many 

techniques have been identified that are capable of asserting that a NIC 

is in promiscuous mode by sending special frames (Verwoerd 1999), 

however detection from passive sensing of network frames alone is 

problematic; 

 Low bandwidth attacks, where a conventional passive NIS could have 

difficulty in maintaining sufficient state information when the attack 

occurs slowly, over many days or weeks; and 

 Encrypted attacks, in which the intruder encrypts communications, 

making the extraction of information via passive sensing particularly 

difficult or almost impossible. Inspection within the payload of an 

encrypted frame cannot be achieved without access to the encryption 

keys. 

The preceding discussion shows that confidently determining whether a 

network is under attack can be difficult with a passive NIS just sensing the 

frames on a network segment.  In contrast, active probing deliberately allows 

the intrusion system to create and transmit special frames over the monitored 

network, to gain additional information other than that available from passive 

network sensing. This is discussed further in Appendix D. 

4.6. NIS Performance Metrics 

In order to develop a deeper understanding of the performance of NISs the 
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remainder of this thesis will concentrate on performance in terms of sensitivity 

and selectivity only.  

4.6.1. The Problem of Defining Performance 

It is not a simple problem to quantify the performance of a NIS. Consider the 

following example. An intruder launches a network attack on an organisation. 

The attack consists of         frames directed at a single network server. A NIS 

alerted to        frames in the attack, that is multiple signatures were triggered 

during the attack, where 

                  

Equation 4-4 Number of Frames in an Attack 

What is the probability of detection     that should be ascribed to the NIS for 

the given attack? One answer might be        as the attack was detected by 

the NIS. This is a connection-based view of detection, where the detection of 

an intrusion frame within any of the connection frames classifies the connection 

as malicious. Alerting against multiple intrusion frames within a single 

connection is not significant for detection, but could improve attack recognition 

or identification.   

Correlation of the source and destination addresses could allow the other 

frames in the attack to be identified in subsequent analysis, if full network 

recording is available (not usually so).  Alternatively network recording could 

have been triggered after the first alert, on the specific source and destination 

pair of addresses, to allow analysis of frames after the first detection that has 

occurred. Intrusion Prevention System (IPS) techniques can also be initiated to 
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prevent further attacks from the same source.   

A deeper assessment however, shows this approach to be unsatisfactory. If an 

alert occurred late in the attack, the post-intrusion damage assessment would 

be seriously compromised if full network recording was unavailable. Also late 

detection limits the ability of a NIS to halt the damage caused by an attack. IPS 

techniques may well stop further intruder activity between the source and 

destination addresses, but if the attacker has already achieved most of their 

goals this limitation may not have a significant impact on the attacker. 

Detections late in a connection are to be expected when malicious payloads are 

delivered with the intent of causing damage rather than stealing information. 

This is a limitation of the connection-based view of detection. 

An alternative approach to quantifying performance might use the fact that not 

all of the intrusion frames have been detected, that is: 

   
      

       
 

Equation 4-5 Detection Probability - Frame-Based View 

This approach can be considered to be a frame-based performance measure. It 

is complicated by determining whether or not specific frames were intended as 

malicious. For example, consider an authorised user logging onto an FTP 

server, deliberately uploading a malicious payload and then logging off the 

server. The whole exchange may be over in a small number of frames. The log-

on and log-off frames are not malicious as the user is authorised. The upload 

may use several frames with only one containing malicious data. In this 
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example it would become difficult to decide which frames should be considered 

part of the attack. The logon, although by an authorised user was for malicious 

intent. The frames that did not contain the malicious part of the payload were 

nevertheless necessary to the attack.  

The moment there is a violation of network policy an intrusion event has 

occurred. The frames involved in the attack prior to the policy violation are of 

no consequence therefore the simplest definition of    has been adopted for 

the remainder of this thesis.  

4.6.2. Sensitivity 

Sensitivity represents the ability of a NIS to alert when a specific attack is 

underway. Its selection as a performance measure was motivated by radio 

systems, where the noise in a receiver and the environment can limit the 

reception of a signal. At its simplest level, when the background hiss within the 

radio exceeds the amplitude of signal being received, it can be difficult to 

perceive the signal.  

The same concept applies in computer networks, where the presence of frames 

can mask or overwhelm an intrusion system. A simple example of this is 

alerting on PING. This can be very effective if the network being monitored 

does not use PING, but ineffective when swamped by the “noise” of normal 

application-generated or support personal use of PING.   

4.6.2.1. Definition of Sensitivity 

In detection theory, see for example (Van Trees 2001), the ability of an 

algorithm to detect the presence of a specific event is cast in terms of two 

conditional probability density functions that relate to the output from the 



Chapter 4 Systems Considerations                                     

 

 113 

algorithm. The first is the probability density function for achieving a given 

output,   on condition that a valid event, that is an intrusion, is not present, 

given by    |         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . The second probability density function is predicated 

on the condition that an intrusion is present, given by    |          . Within 

many detection systems there is an explicit threshold,  , which can be applied to 

make the intrusion/no intrusion decision. Under these circumstances and for 

continuous decision processes in one dimension:  

   ∫    |             
 

 

 

    ∫    |         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

 

    

Equation 4-6 Definition of    and     

Where    is the probability of declaring that an intrusion is present, on 

condition that an intrusion is actually present and     is the probability of 

declaring an intrusion to be present when an intrusion is not present. 

It is common to represent the probability density functions as Gaussian with 

standard deviation   and to represent the conditionality as a difference in the 

mean,  . Under these circumstances the equations for    and     become: 
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Equation 4-7     and      for Signals in Gaussian Noise 
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These equations are combined and shown graphically in Figure 4-2. This figure 

offers a geometric interpretation of detection in terms of the parameters of 

Equation 4-7. The blue curve shows the probability density function when an 

intrusion is present whilst the red curve shows it when no intrusion is present. 

For fixed   and   the effect of varying the threshold t can be seen. When t 

increases both    and     decrease, with    decreasing more rapidly than    . 

 

Figure 4-2 Graphical Interpretation of    and     

There is no value of the threshold, t, that separates out the two conditional 

probability density functions, unless the conditionality parameter,  , is made 

arbitrarily large. Indeed the separation of the two conditional probability density 

functions as a ratio of the width of each density function expresses the degree 
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of difficulty of detection as a single number. This is the method used in other 

engineering disciplines to express detection sensitivity, as shown in Equation 4-

8 where SNR stands for signal-to-noise ratio measured in decibels (dB): 

            
 

 
 ) 

Equation 4-8 Definition of Detection Sensitivity 

4.6.2.2. Interpretation of Sensitivity 

Equation 4-8 defines the detection performance of a NIS in terms of a single 

parameter, the SNR. Previous measures have required the specification of four 

parameters namely the false negative, false positive, true negative and true 

positive rates. With four parameters it is difficult to compare directly differing 

implementations whilst the use of SNR simplifies comparison; higher values of 

SNR indicating better detection performance.  

In applying Equation 4-8 to network intrusion systems three problems are 

immediately obvious, that are addressed in the following discussion: 

 Conditional probability density functions may not be Gaussian; 

 There is no explicit threshold present in a signature-based NIS; and 

   and   are not normally measured in the evaluation of a NIS. 

It is unlikely that the conditional probability density functions will be Gaussian. 

Although arguments based on the central limit theorem could be applied to 

imply that they may be Gaussian-like it is better to view the Gaussian 

assumption as a further parameterisation of the detection model. Alternative 

parameterisations are possible, for example using a Poisson probability density 

function. It is also possible to apply this method without knowing the exact 
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form of the conditional probability density function. The Tchebycheff inequality 

(Papoulis 1991) can be used to set limits on the detection performance based 

on   and   measurements irrespective of the form of the probability density 

functions. Therefore the effect of a deviation from a Gaussian probability 

density function could be assessed, in terms of the minimum detection 

performance implied by the Tchebycheff inequality.  

Although there is no specific threshold within signature-based NIS there is an 

implied threshold setting in the selection of the individual signatures. Consider 

for example the case when there is just a single signature which is designed to 

trigger on all possible frames. This is equivalent to setting the threshold, t, at -

∞ as both the detection and false alarm probabilities would be 1.0. If the single 

signature was set to trigger only on improbable frames, such as a frame of only 

one bit, then this would be equivalent to setting the threshold, t, at +∞ as both 

the detection and false alarm probabilities would be 0.0. The selection of a 

given set of real signatures moves the implied setting of the threshold between 

these extreme values.  

More subtly the set of signatures in combination with the network security 

policy controls the SNR for a given NIS. This can be seen by considering limiting 

cases of network security policies. If the policy consisted of a single 

requirement not to use PING within the network then signatures could easily be 

constructed to trigger only on PING and on every instance. Thus, the    would 

be 1.0 and the     would be 0.0, implying a large SNR for the NIS for attacks 

using PING. If however the network security policy had a single requirement 
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that passive network sensing, that is packet sniffing, must not be used, it is 

much more difficult to design signatures to achieve this requirement. Although 

techniques for the detection of network interface cards in promiscuous mode do 

exist, achieving this at high SNR is difficult. Missed instances of passive 

detection are likely (    < 1.0) and false alarms are likely to occur (   > 0.0). It 

can be seen therefore that if the security policy clause is difficult to measure 

with signatures, then that intrusion system will have a low SNR for the 

corresponding attack method.  

Although   and   are not normally measured in the evaluation of a NIS their 

ratio can be determined from measurements of    and    . This can be 

undertaken using the following algorithm: 

1. Set the value of   to one and determine what threshold setting, t 

produces the measured     ; 

2. With   set to zero and   to one calculate the value of the threshold 

setting t that produces the measured    ; and 

3. Determine what value   must be set to align the thresholds from the first 

two stages. This is the required ratio to be applied in Equation 4-8. 

The required absolute value of sensitivity can be interpreted by considering 

typical network and intrusion statistics. From the data presented in Appendix A 

for the DARPA 1999 dataset it can be seen that typically, in the network 

modelled in the DARPA simulation, there were 5x104 connections per day. 

Given that a reasonable goal might be one false alarm per attack type per day, 

this would imply a value of     of 2x10-5. A high probability of detection is 
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desirable (say       ) in which case the required sensitivity would need to be 

14.6dB. Higher values of sensitivity would be required if the desire was to 

increase    or decrease    , as shown in Figure 4-3.  

The curves shown in Figure 4-3 were created using a program written in the 

Mathcad environment rather than using the polynomial relationships for 

calculating the area under a Gaussian curve (Abramowitz and Stegun 1964). 

From Figure 4-3 it can be seen that sensitivities greater than 12dB are required 

for confident detection to occur. Higher values are necessary when the volume 

of network traffic is greater or when a lower     is required. 

 

Figure 4-3 Relationship Between     and SNR 
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4.6.3. Selectivity 

The use of selectivity as a NIS performance measure was also motivated by its 

use in radio systems. In such systems, selectivity measures the ability of a 

receiver to separate adjacent radio channels into distinct signals and not merge 

them into a single unintelligible one. This is important when the separation of 

radio channels is small.  

Similarly, in NIS selectivity is concerned with the separation of individual attack 

types. When the number of attacks types is small, equivalent to large channel 

separation in the radio analogy, distinguishing different attack types may be 

straight forward. However when the number of attack types is large, this can 

become more difficult. Selectivity in NIS is concerned with the accurate 

determination that a given attack type is underway, whilst sensitivity is 

concerned with determining, in general, that an attack is underway.   

4.6.3.1. Definition of Selectivity 

Sensitivity is concerned with the detectability of intrusions of interest within the 

totality of frames present on a network segment. This single measure is useful 

in quantifying the performance of a NIS in terms of its detection and false alarm 

statistics. To undertake functions other than detection, such as recognition and 

identification as discussed in Chapter 3, achieving high sensitivity alone is 

insufficient. In these cases it is essential to be able to distinguish between 

different types of attack accurately, so that the correct inferences can be made. 

This is known as selectivity and it is shown diagrammatically in Figure 4-4 using 

a pattern recognition paradigm. In this figure clusters for intrusion and non-

intrusions are shown plotted on a simplified two-parameter feature space.  
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Figure 4-4 Geometric Interpretation of Sensitivity and Selectivity 
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In the sensitivity column the clusters for different intrusion types are grouped 

into a single cluster and the difference between low and high sensitivity can be 

easily seen. In low sensitivity cases the overlap between intrusion and non-

intrusion parameters (analogous to    and    in Equation 4-2) is high, making 

the correct assertion between intrusion and non-intrusion difficult. 

In the column that illustrates selectivity the clusters for different intrusion 

attacks (events) are shown separately. In conditions of low selectivity there is 

significant overlap between the individual intrusion clusters making it difficult to 

confidently assign an event to a specific intrusion attack type. Under conditions 

of high selectivity it is possible easily to distinguish individual intrusion types. Of 

particular interest is the “typical situation” graph which shows overlap between 

some intrusion event types and the non-intrusion events cluster. 

In order to develop the measurement of selectivity further it is necessary to 

consider the set of intrusion event types that need to be discriminated. There 

are a number of possible sets that could be used: 

 Attack types, in which the set members constitute different attack 

vectors into a network. Clearly distinguishing between set members 

would identify likely countermeasures; 

 Network Policy Requirements, in which each set member is a single or 

group of requirements. Using this approach compliance issues, as 

discussed in section 4.2 can be assessed directly; and 

 Standardised event types, which would allow direct comparison or 

benchmarking of different NIS. 
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Any one of these three types could be used, depending on the application. 

The most convenient way of visualising selectivity is as a matrix with the 

horizontal and vertical axes consisting of the set of intrusion event types to be 

discriminated. There are a number of different calculations that can be used to 

quantify the individual entries in the matrix including those based on: 

 Confusion matrix values (Provost and Kohavi 1998), in which the number 

of times the predicted and actual intrusion event types coincide;  

 Covariance values (Papoulis 1991), in which the joint probability density 

function between pairs of intrusion event types is evaluated; and 

 Distance values (Duda, Hart et al. 2001), in which each entry quantifies 

the separation between the two pairs of intrusion events in some 

parameter space. 

In anticipation of the use of the DARPA 1999 dataset for experimental 

evaluation the distance values approach was selected along with the individual 

DARPA attack types as the set of intrusion events. The DARPA dataset allows a 

probability of a given signature being triggered during specific attacks to be 

determined from their extensive truth data. Therefore a distance measure 

based in N-dimensional probability space is proposed as follows. 

Each intrusion event type (DARPA attack type) has a vector associated with it, 

the elements of which represent the probability that a given signature will 

trigger during an attack of that type. Consequently the parameter space is an 

N-dimensional unity hypercube, where N is the number of signatures used by 

the NIS, with each intrusion event type represented as a point in this space.  
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The distance         between two event types A1 and A2 in this space is 

given the following equation in which        is the probability that the ith 

signature is triggered during an attack of type A1: 

          √∑                 
   

   
 

Equation 4-9 Calculation of Selectivity Metric between Two Event Types 

This is just the Euclidean distance metric in N-dimensional space. Using 

Equation 4-9,           defines selectivity of the two attack types    and   . 

4.6.3.2. Interpretation of Selectivity 

The larger the distance          the easier it is to discriminate the two event 

types    and   . As an example consider the following two limiting cases when 

N is set to 4.  

In the first case the signatures that are triggered do not overlap, that is, 

different signatures are triggered for the two different event types. This can be 

achieved, for example, by letting XA1={1,1,0,0} and XA2={0,0,1,1}. Under these 

conditions           has a value of 2. This represents the perfect 

discrimination between these two event types. 

In the second case the signatures that are triggered overlap perfectly, that is, 

the same signatures are triggered for both event types, with the same 

probability level. This can be achieved, for example, by letting XA1={1,1,1,1} 

and XA2={1,1,1,1}. Under these conditions          has a value of 0. This 

represents indistinguishable events. 

The theoretical maximum value of   is √ . However, there are only (N-1) pairs 
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of intrusion event types that can simultaneously take on the maximum value. 

As there are        ⁄  pairs of significance in the selectivity matrix it can be 

seen that when individual pairs take on the maximum theoretical value it is at 

the expense of selectivity for other pairs of intrusion event types. 

Consider the following situation in which there are 100 signatures and 10 

different intrusion event types. If one of the event types has a probability 

vector whose elements are all unity and all the other vectors have elements of 

zero, then this event type will have the maximum selectivity of 10 with all the 

other event types. However, the selectivity between the other event types will 

be zero and no discrimination between them can occur.  

A better approach is to consider the selection of signatures such that the 

probability vector of each intrusion event type has an equal share of non-

overlapping unity values with the vectors of other intrusion event types. That is, 

each vector has   ⁄  unity values, where M is the number of intrusion event 

types. In the example above each vector would ideally have 10 elements in 

their probability vector with a value of unity. Under these conditions the 

maximum selectivity is √   and this maximum is achievable by all significant 

pairs in the selectivity matrix.  

Thus rather than the theoretical maximum of √  it is better to consider the 

maximum to be √  ⁄ , on the assumption that the discrimination of all pairs of 

significant intrusion event types are equally important. When this assumption is 

not valid the number of unity values in the probability matrix for high priority 

pairs can be increased, to improve selectivity still further. 
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Finally, in the preceding discussion the emphasis has been on the unity 

elements of the probability vector for each intrusion event type. This has been 

done to illustrate the limiting cases and hence the theoretical maximum values 

of selectivity. In real situations the vectors will contain the full range of 

probability values, but the goal remains to maximise selectivity and this is best 

achieved with unity values, that is, signatures should be designed always to 

trigger when specific intrusion event types occur.   

4.7. Metrics for High Level Definitions of Intrusion 

The discussion so far has concentrated on the definition of metrics for the 

“detection” aspect of the taxonomy presented in Chapter 3. It is possible to 

consider calculating probabilities for recognition (  ), identification (  ) and 

confirmation (  ).  

Sensitivity addresses detection directly whilst selectivity is more concerned with 

the discrimination between intrusion event types. Sensitivity can be considered 

as a measure of detection performance, when the number of different attack 

types is small or even unity, that is there is no attempt to detect specific attack 

types. However, when sensitivity is applied to a large number of individual 

attack types, as in the previous discussion, it is more like a performance 

measure for recognition or identification performance rather than purely 

detection. Thus sensitivity can apply at higher levels of intrusion functionality 

depending on the selected attack types. 

Clearly, good sensitivity and selectively are a pre-cursor to achieving confident 

recognition, identification and confirmation. However as algorithms for 

achieving these goals have not been defined, performance metrics for them will 
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not be considered further, with the remainder of this thesis concentrating on 

sensitivity and selectivity without differentiating their application for detection, 

recognition or identification. 

4.8. Conclusions 

This chapter has addressed the systems considerations of the operation of a 

Network Intrusion System (NIS). It started with the development of a 

mathematical view of NIS operation from the perspective of simple set theory. 

Currently there is no complete mathematical view of NIS however this chapter 

has been able to define the properties of an ideal system, in terms of the type 

of frames present on a network segment. The fundamental problem of 

signature-based NIS is that some frames can be both intrusion-like and non-

intrusion-like simultaneously, making the perfect signature-based NIS 

unachievable. 

Despite this limitation, the properties of an ideal NIS have been discussed after 

the reasons for deployment were described. From this a functional model of an 

ideal NIS was developed and current challenges to real systems defined.  

Two performance measurements have been identified in terms of a detection 

model in which intrusion and non-intrusion statistics are parameterised as 

Gaussian distributions with differing means. These are called as sensitivity and 

selectivity. The options for alternative parameterisations have been discussed 

and the potential for lower performance levels described. 

Sensitivity defines the performance of an NIS in terms of its ability to alert only 

when a valid intrusion event is present. To achieve good performance 
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sensitivities in excess of 12dB are required, depending on the network data 

rate, required detection probability and acceptable false alarm rate. The use of 

selectivity applies to detection, recognition and identification performance, 

depending on the attack types selected for the measurement. 

Selectivity defines the ability of a NIS to discriminate between different 

intrusion event types. It is defined as a distance function between points in a 

parameter space. The parameter space is spanned by vectors whose elements 

represent the probability that a specific signature would be triggered, for a 

given attack type. Theoretical performance properties of selectivity have been 

derived and the implications for the assignment of signatures to individual 

clauses of the system security policy have been discussed. 

In the following chapter the practical application of sensitivity and selectivity 

will be described. 
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5. Experimental Evaluation 

This chapter describes an experimental evaluation of the performance of a 

modern signature-based NIS, in terms of the two performance metrics 

described in the previous chapter. It begins with a discussion of the objectives 

of the evaluation. Then a description of the experimental configuration is 

provided, followed by a detailed rational for each of the elements of the 

configuration. The measured performance of the NIS is then described in detail, 

first in terms of more conventional metrics and finally in terms of sensitivity and 

selectivity. 

5.1. Objectives of the Experimental Programme 

The objectives of the experimental stage of this research were to: 

 Provide quantitative performance data on a modern NIS that can be 

used to highlight areas where improvements are necessary and can be 

undertaken; and 

 Demonstrate the use and value of sensitivity and selectivity in 

quantifying performance. 

It is important to realise that it is not an objective to optimise the performance 

of the selected NIS. Therefore, although areas of improvement are identified 

where relevant, the reported performance is not the best that could have been 

achieved using conventional techniques. No tuning of the NIS has been 

undertaken beyond identifying the local network segments. Specifically, the 

standard default set of signatures was deployed in full without any attempt to 
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remove signatures with high false alarm performance or add ones to detect 

missed intrusions. 

5.2. Overview of the Experimental Configuration 

SNORT was selected as the NIS principally due to its maturity. It has been in 

continual development for over 14 years and during this time has become the 

core detection engine of many commercial intrusion systems (Sourcefire 2012). 

There is considerable published material on its performance, optimisation and 

deployment. Finally, as an Open Source project it is freely available in source 

code and binary form, allowing modification if required. 

A key feature of SNORT is its ability to process previously recorded network 

frames as well as live frames arriving at a selected network interface card. The 

use of recorded frames has many distinct advantages over live data for the 

current research including: 

 Repeatability – The measured performance can be confirmed by other 

researchers; 

 Explanation – Unexpected results can be further analysed by examining 

the recorded frames with tools such as WIRESHARK (Wireshark 

Foundation 2012); and 

 Automation of Results Analysis – With a pre-recorded sequence of 

network frames it is possible to label specific attacks and therefore 

automate the collection of performance statistics. 

With these advantages in mind the configuration shown in Figure 5-1 was used 

to gather the results reported in this chapter. As can be seen in this figure, 
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SNORT uses a set of intrusion signatures and a configuration file to process the 

recorded network frames. The output from SNORT is written to file and 

processed offline to extract alerts, which are then compared with a table of 

truth data containing details on all the real intrusions within the set of recorded 

network frames. A statistical analysis of the results is then performed from 

which the performance of the NIS is determined. 

SNORT

SNORT Signatures

Performance 
Analysis

Intrusion Truth Data

Recorded 
Network Frames

NIS Performance

SNORT 
Configuration File

 

Figure 5-1 Experimental Configuration 

5.3. Experimental Setup 

5.3.1. Database Selection 

There are a number of options available for the database of frames to use with 

SNORT, as described previously in section 2.6.3. The DARPA 1998-2000 series 

is of interest as they have been used extensively by other researchers and 

therefore there is a lot of results which could be contrasted. Also the large 

TCPDUMP datasets available at CAIDA, RIPE and the WITS project are of 
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relevance due to the quantity of data and their more modern protocols. 

However, the DARPA 1999 database was selected, for the following reasons: 

 Volume of data – Five weeks of frame data are available covering at 

least 12 hours each day of a simulated network, totalling over 22GB of 

data;  

 Controlled Environment – As the network traffic is simulated, rather than 

recorded from a live network, the presence of specific protocols and 

events is deliberate, rather than accidental. Specifically, two of the five 

weeks contained no intrusion events, which is particularly useful in 

determining false positive performance of a NIS. Specific attacks have 

been introduced at defined instances during weeks 2, 4 and 5; and 

 Research Corpus- There is a considerable body of research published 

using the DARPA 1999 data allowing the comparison of the techniques 

developed here with that of other researchers. 

Although there are compelling reasons to select the DARPA 1999 dataset there 

are limitations of this data which restrict the conclusions that can be drawn 

from its use. These were documented in section 2.6.3.2. However, despite 

these limitations, the lack of modern protocols such as peer-to-peer, VoIP and 

IM, and the predominance of Unix attacks this database is sufficient to illustrate 

the use of sensitivity and selectivity as performance metrics. 

The DARPA 1999 dataset contains, amongst other things, TCPDUMP files from 

the inside of the network, that is, inside the simulated network gateway, as well 
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as separately from outside the gateway. As this increased the volume of data as 

well as allowing external attacks directed at the network servers to be detected, 

it was initially intended that both the inside and outside datasets would be 

used.  However during the initial usage of the DARPA data as part of this 

research it was discovered that the inside and outside data capture machines 

were not time-synchronised. Figure 5-2 shows the difference between 

timestamps on identical frames within the inside and outside datasets. These 

offsets were measured at the beginning of each day of simulation, and do not 

represent the drift during the day (see Appendix A for a description of the x-

axis nomenclature). Appendix B describes the process used to determine the 

time offset and provides quantitative data on the intra-day clock drift. 

 

Figure 5-2 Time Synchronisation Error in DARPA 1999 
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Figure 5-2 shows that time offsets as large as 46 seconds could exist between 

these two datasets. In order to overcome this problem it would have been 

necessary to create two sets of truth data, as some of the attacks had durations 

shorter than the time offsets. Rather than add this additional complexity to the 

experimental work it was decided to limit the assessment of performance to 

that achieved against the DARPA TCPDUMP data taken inside the network only. 

5.3.2. Intrusion Truth Data 

The DARPA 1999 dataset includes a set of intrusion truth data from which 

correct intrusion alerting could be determined. There are two types of truth 

data, one each for the training and testing datasets.  

5.3.2.1. Training Dataset Truth Data 

During Week 2 of the DARPA 1999 simulation 43 deliberate intrusion events 

were included. It was intended that this data, along with the intrusion event 

free weeks 1 and 3, would be used as training data for intrusion systems that 

required it.   

The truth data for this week consists of the date and time of the start of the 

attack, the DNS name of the target of the attack and the type of attack, 

including a description of the way the attack was implemented. The IPv4 

address of the source of the attack and the attack duration were not recorded.  

The lack of information on the attack duration is a serious limitation of this 

data. The matching of intrusion alerts with attacks requires accurate time and 

duration of these events, however no additional data other than that published 

on the Lincoln Labs website was available (Lippmann 2008). Some researchers 
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have assumed that the duration of the attacks was one second (Mahoney 

2012).  

During this research the original DARPA truth data was supplemented with 

measurements taken using WIRESHARK (see Appendix C). Of the 43 attacks 

during week 2 evidence for six of them could not be located from inspection of 

the recorded network frames and were therefore excluded from this research. A 

histogram of the attack durations for those that could be detected is shown in 

Figure 5-3. As can be seen the one second assumption is inaccurate with 13 

attacks having durations of over 200 seconds. 

 

Figure 5-3 Histogram of Attack Durations for Week 2 of DARPA 1999 
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5.3.2.2. Testing Dataset Truth Data 

The testing truth data was more comprehensive than the training dataset truth. 

Table 5.1 shows the parameters recorded for each attack, along with a 

description of their interpretation. As the DARPA data was collated for 

evaluation of both host-based and network intrusion systems, an additional 

column is shown to indicate if the truth data parameter applies to NIS 

evaluation. Despite this comprehensive list of data, the IPv4 address of the 

source of the attack was not recorded. 

Parameter Description For NIS 

IDum Identity number for a given attack instance. Yes 

Date Date of the attack. Yes 

StartTime Start of the attack. Yes 

Duration Duration of the attack. Yes 

Destination IPv4 address of the victim of the attack. Yes 

Attackname The common name of the attack type. Yes 

Insider Indicating if the attack originated from a host inside 
or outside the DARPA network. 

Yes 

Man Indicating if the attack was manually initiated at a 
console or automated through a script. 

Yes 

Console Indicating if the attack was carried out on the 
console of the target machine or undertaken 
remotely. 

Yes 

Success Indicating if the attack was successful or not. Yes 

aDump Indicating if there was a host dump file of the attack. No 

oDump Indicating that there was evidence of the attack in 
the outside TCPDUMP files. 

Yes  

iDump Indicating that there was evidence of the attack in 
the inside TCPDUMP files. 

Yes 

BSM Indicating if there is evidence of the attack in the 
solaris BSM log. 

No 

Syslogs Indicating if there is evidence of the attack in the 
system logs.  

No 
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Parameter Description For NIS 

FSListing Indicating if there is evidence of the attack in the file 
system data. 

No 

Stealthy Indicating if the attack is considered stealthy or not. Yes 

New If the attack was new to the DARPA 1999 evaluation, 
that is, it was not in the DARPA 1998 simulation. 

Yes 

Category Indicating the category of the attack. Yes 

OS Indicating the operating system of the attack victim. Yes 

Table 5-1 Testing Truth Data for DARPA 1999 

5.3.3. SNORT Configuration and Signature Files 

The actions of SNORT are controlled via a configuration file. Appendix E shows 

the configuration file used for all the results published in this thesis. In this 

Appendix, the comments have been deleted to reduce the size of the final text. 

The configuration file was modified from the standard one supplied with 

SNORT, in the following ways: 

 The home network was set to the internal network and server subnet of 

the DARPA dataset (inside); 

 Directory paths were selected to allow SNORT to import signatures and 

additional standard data files from specified locations; 

 The output format for alerts was selected as comma separated variable 

(CSV) with full logging of intrusion data; and 

 All standard intrusion signatures were enabled. 

It is usual for SNORT to undergo an optimisation process when first deployed 

within a network, by selecting and enabling a subset of the available intrusion 

signatures. The aim of this optimisation is to eliminate non-intrusion alerts that 

can arise from normal network activity, rather than from intruder activity. This 
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was not undertaken for the experimental work reported here so that the raw 

performance of SNORT could be determined. Also the elimination of common 

alert types on a network is an unsatisfactory approach to poor false alarm 

performance as it opens an attack vector for an intruder.  

Table 5.2 shows the version types for SNORT and the supporting software that 

was used during this experimental programme.  

Software Version 

SNORT 2.8.6 Dated 26th April 2010 

SNORT Rules 2860, Dated 13th May 2010 

LIBPCAP 1.1.1 

PCRE 8.02 

Linux OS Fedora 13 

Table 5-2 Software Versions Used in the Experimental Work 

SNORT, LIBPCAP and PCRE were downloaded as source from their primary 

websites and compiled to run on the Linux workstation on which all the 

experimental work was undertaken. 

5.3.4. Truth Data and Performance Analysis 

Shell scripts were written to automate the running of SNORT against each of 

the inside TCPDUMP files, extracting the results from each and collating them 

into single files for the whole of the five weeks of simulated data.  Three 

consolidated sets of results were produced covering: 

 A count of the number of each signature type that was triggered; 
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 A summary of the number of frames and sessions processed, along with 

the number of signatures triggered for each of the DARPA data files 

(simulation days); and 

 A single file combining all the data associated with every signature 

triggered, including time, source and destination IPv4 addresses and 

ports used, in CSV format.  

The next stage was to match each alert produced by SNORT against an event 

in the truth table, labelling the detection as a true or false positive, depending 

on whether or not a match occurred. At first the solution to this problem 

seemed straight forward. All that was necessary was to create a program to 

check the dates and times of alerts, as well as target IP address, network 

protocol and target port against the published truth data.  

A PERL script was created to achieve this goal but the number of matched 

detections was unexpectedly low. The truth table events did not match many 

with the signatures that had been triggered. The matching criteria were 

reduced to date, time and target IP address, but the number of alerts matching 

events in the truth data was still low. The PERL script was further modified to 

allow a fuzzy match for the time of the event, as all other parameters in the 

matching algorithm were precise. The low number of matches persisted.  

In an attempt to confirm that the poor performance was real the individual 

TCPDUMP files were examined frame by frame using WIRESHARK, for evidence 

of individual attacks. This was a major task as can be seen from the summary 

data presented in Appendix A. The inside dataset consists of over 50 million 
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frames across 26 files, with many of the files too large to be loaded into 

WIRESHARK.  

In order to address these problems, WIRESHARK filters were developed to 

extract relevant frames from the TCPDUMP files, which were relevant to specific 

attacks. The use of WIRESHARK in this way is described in Appendix C, along 

with the definition of the filters necessary to highlight one specific attack, 

namely NTinfoscan. This approach reduced the number of frames viewed within 

the WIRESHARK frame window, simplifying the process of visually identifying 

the frames within an intrusion event. One outcome from this process was the 

revelation of the time synchronisation problem shown in Figure 5-2. 

This process identified a number of differences between the official truth data 

and that revealed by the examination of the individual attack frames. The most 

significant difference concerned the start time and duration of each attack. 

Many of these were incorrectly recorded in the original truth data, with errors 

exceeding the duration of many attacks. A new truth table was produced using 

the WIRESHARK analysis, combining the attacks in the training and testing 

datasets. This table differed from the original truth data in a number of ways: 

 All events are now recorded in UTC. The original truth data recorded 

events in EST and was further complicated by two changes to daylight 

saving time during the five weeks of simulated network activity. The UK 

changed to BST on 28th March affecting events in weeks 4 and 5, whilst 

the US changed on 4th April, affecting only week 5.  As SNORT processes 

individual frames it converts the TCPDUMP timestamp stored with each 
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frame to the local time standard by default. SNORT detection events are 

then recorded in the local time standard which can include the effects of 

the change to daylight saving time on the computer on which it is 

running. As time was used to correlate alerts with the truth data it was 

necessary to take steps to avoid the potential for timing errors due to the 

one or two hour time slips. SNORT was forced to record all events in 

UTC via a command line option and the truth data was presented in the 

same time system; and 

 A complete set of data was not always present in the original truth data, 

as described in section 5.3.2 for Week 2. The enhanced truth dataset 

was supplemented with missing data, such as the source IPv4 address of 

the attacker and attack duration. 

Although the move to UTC was compelling and simplified the matching process 

it did introduce an additional complication that each day in the original DARPA 

simulation is now spread across two days. Therefore date and time of intrusion 

events were now required to match with the appropriate truth data entries.  

Figure 5-4 shows an analysis of this final truth data showing the distribution of 

attack durations. It can be seen that although the majority of attacks are over 

in less than one minute, nearly 10% of attacks last more than 20 minutes.  

With the truth data and the SNORT alerts both recorded in UTC, the alerts can 

be split into those that match attacks, that is true positives, and those that do 

not. Although scripts had been created originally to automate the matching 

process, as described above, the final split was made manually. This unusual 
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step was taken as the split was to be undertaken once and the time taken was 

shorter than the time to finalise and test the scripts using the new truth data. 

As correct classification of alerts is key to this research, a manual assignment 

removed any uncertainty in this process. In view of the difficulties that had 

been experienced with automating scripts this seemed the most prudent 

approach. 

 

Figure 5-4 The Duration of Attacks in DARPA 1999 

5.4. Results 

5.4.1. Alert Statistics 

Using the configuration file shown in Appendix E SNORT was run against the 

DARPA 1999 TCPDUMP files that were collected from inside the simulated 

network. In all five weeks, 67,384 alerts were produced as shown in Table 5.3 

below. 
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Week No of Alerts Intrusions Present 

1     9404 No 

2     25138 Yes 

3     12248 No 

4     8518 Yes 

5     12076 Yes 

Table 5-3 SNORT Intrusions Detected 

The results from Weeks 1 and 3 can be used to estimate the false positive rate 

for SNORT processing the DARPA 1999 dataset, as shown in Table 5.4 below, 

using frame statistics derived from Appendix A and those shown in Table 5.5. 

False alarms per frame, per connection and per second are shown as the 

original DARPA 1999 data is simulated and therefore these measures can be 

used to gauge the size of the simulation. 

Week 
False Alarms 
Per Frame (-) 

False Alarms Per 
Connection (-) 

False Alarms Per 
Second (-) 

1 1.19x10-3 3.52x10-2 2.37x10-2 

3 9.56x10-4 3.46x10-2 2.32x10-2 

Average 1.05x10-3 3.48x10-2 2.35x10-2 

Table 5-4 SNORT False Positive Performance 

Table 5.4 highlights the poor performance of SNORT when it is not optimised 

for a given network. On average one in every thousand frames is incorrectly 

declared as an intrusion alert. Given the number of frames per second this 

means a false positive is declared every 42 seconds, or 85 false positives per 
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hour. Performance this poor means that manual assessment of the alerts would 

be impractical and automated post alert assessment would be required. 

 

Week No of Frames 
(-) 

No of Connections 
(-) 

No of Seconds 
(-) 

1 7,887,003 267,141 395,991 

3 12,814,738 354,272 527,024 

Total 20,701,741 621,413 923,015 

Table 5-5 DARPA 1999 Networking Statistics 

5.4.2. False Alarm Assessment 

By matching the alerts with intrusions in the truth data they can be classified as 

a false or true positive.  Table 5.6 shows the total count of each of the SNORT 

signatures that did not match with an intrusion event, across all five weeks of 

the DARPA simulation. This table shows some interesting results. First, as there 

were a total of 67,384 alerts produced, over 73% did not match any intrusion 

event in the DARPA attack simulations. The false positives are dominated by 

ICMP signature events. By removing these signatures from SNORT the number 

of false alarms would reduce from 49,458 to 21,380. However, the IP and port 

sweeps which use ICMP pings would not be detectable.  

Secondly, only 36 different signatures were triggered as false positives. During 

the analysis SNORT was using 3,321 different signatures to search for 

intrusions therefore such a small number of different signatures producing false 

positives is surprising. Across all 67,384 alerts, including the true positives, only 

52 different signatures were triggered.  

At first sight the small number of different signatures might be thought to be 
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due to the age difference between the signatures and the TCPDUMP data. In 

the 11 years between the DARPA simulation and the signatures used by SNORT 

there has been considerable expansion of the number and type of protocols 

used in modern networks. However, other researchers have reported similar 

results processing real data captured from a network in over 40 days in 2008 

(Tjhai, Papadaki et al. 2008). 

SNORT Detection Signature 
Total False 

Alerts 

ICMP Destination Unreachable Port Unreachable 17656 

(ftp_telnet) FTP command parameters were malformed 16328 

ICMP Echo Reply 5088 

ICMP PING 5036 

CHAT IRC message 1655 

TELNET login incorrect 740 

ATTACK-RESPONSES directory listing 617 

(spp_ssh) Protocol mismatch 469 

ICMP PING BSDtype 298 

ICMP PING *NIX 298 

(ftp_telnet) Invalid FTP Command 281 

SHELLCODE x86 NOOP 201 

CHAT IRC nick change 193 

CHAT IRC channel join 182 

ICMP Destination Unreachable Host Unreachable 85 

SHELLCODE x86 inc ebx NOOP 81 

SHELLCODE x86 inc ecx NOOP 55 
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SNORT Detection Signature 
Total False 

Alerts 

ICMP Time-To-Live Exceeded in Transit 51 

(ftp_telnet) FTP traffic encrypted 39 

FTP Bad login 27 

WEB-CLIENT Portable Executable binary file transfer 13 

(http_inspect) NON-RFC DEFINED CHAR 12 

WEB-CLIENT Microsoft emf metafile access 11 

(ftp_telnet) Evasive (incomplete) TELNET CMD on FTP 
Command Channel 

9 

FTP PORT bounce attempt 8 

SHELLCODE x86 setuid 0 5 

FTP passwd retrieval attempt 4 

(ftp_telnet) Telnet Subnegotiation Begin Command without 
Subnegotiation  

3 

NETBIOS SMB C$ unicode share access 2 

NETBIOS SMB D$ unicode share access 2 

X11 xopen 2 

(ftp_telnet) Telnet traffic encrypted 2 

NETBIOS SMB ADMIN$ unicode share access 2 

SQL ping attempt 1 

SQL version overflow attempt 1 

WEB-MISC cat%20 access 1 

Grand Total    49,458 

Table 5-6 False Positive Alert Types 
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Table 5.7 shows the complete set of detection signatures, along with the 

number of times the signature created true and false positives. In this context a 

true positive is when a signature was triggered during a valid attack, and with 

the same source and destination IP addresses as in the simulated attack. A 

false positive was declared when an alert was triggered outside the duration of 

a simulated attack, or during an attack with one or other of the source and 

destination IP addresses not corresponding with that used in the simulated 

attack. 

Detection Signature 
No. False 

Alerts 
No. True 

Alerts 
P(correct 

alert) 
P(false 
alert) 

WEB-MISC cat%20 access 1 5 0.833 0.167 

X11 xopen 2 8 0.800 0.200 

ATTACK-RESPONSES directory 
listing 

617 133 0.177 0.823 

SHELLCODE x86 inc ebx NOOP 81 0 0.000 1.000 

SHELLCODE x86 inc ecx NOOP 55 27 0.329 0.671 

SNMP request tcp 0 87 1.000 0.000 

SNMP trap udp 0 3 1.000 0.000 

SNMP trap tcp 0 87 1.000 0.000 

SNMP AgentX/tcp request 0 86 1.000 0.000 

CHAT IRC message 1655 0 0.000 1.000 

WEB-CLIENT Portable Executable 
binary file 

13 0 0.000 1.000 

POLICY potentially executable file 
upload 

0 13 1.000 0.000 

CHAT IRC channel join 182 0 0.000 1.000 
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Detection Signature 
No. False 

Alerts 
No. True 

Alerts 
P(correct 

alert) 
P(false 
alert) 

IMAP login buffer overflow attempt 0 2 1.000 0.000 

SQL ping attempt 1 0 0.000 1.000 

SQL version overflow attempt 1 0 0.000 1.000 

WEB-CLIENT Microsoft emf metafile 
access  

11 0 0.000 1.000 

NETBIOS SMB D$ unicode share 
access 

2 3 0.600 0.400 

NETBIOS SMB C$ unicode share 
access 

2 3 0.600 0.400 

NETBIOS SMB ADMIN$ unicode 
share access 

2 3 0.600 0.400 

FINGER / execution attempt 0 24 1.000 0.000 

FINGER root query 0 4 1.000 0.000 

FINGER redirection attempt 0 4 1.000 0.000 

FINGER 0 query 0 4 1.000 0.000 

FTP .rhosts 0 4 1.000 0.000 

FTP PORT bounce attempt 8 6 0.429 0.571 

FTP passwd retrieval attempt 4 0 0.000 1.000 

FTP satan scan 0 3 1.000 0.000 

ICMP PING *NIX 298 2 0.007 0.993 

ICMP PING BSDtype 298 2 0.007 0.993 

ICMP PING 5036 7076 0.584 0.416 

ICMP Destination Unreachable Host 
Unreachable  

85 0 0.000 1.000 

ICMP Destination Unreachable Port 
Unreachable  

17656 2816 0.138 0.862 
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Detection Signature 
No. False 

Alerts 
No. True 

Alerts 
P(correct 

alert) 
P(false 
alert) 

ICMP Echo Reply 5088 2 0.000 1.000 

ICMP Time-To-Live Exceeded in 
Transit 

51 0 0.000 1.000 

ICMP PING NMAP 0 7000 1.000 0.000 

FTP Bad login 27 80 0.748 0.252 

CHAT IRC nick change 193 0 0.000 1.000 

RPC portmap listing TCP 111 0 199 1.000 0.000 

RSERVICES rlogin login failure 0 1 1.000 0.000 

SHELLCODE x86 NOOP 201 23 0.103 0.897 

SHELLCODE x86 setuid 0 5 0 0.000 1.000 

SHELLCODE Linux shellcode 0 2 1.000 0.000 

TELNET login incorrect [**] 740 156 0.174 0.826 

(http_inspect) NON-RFC DEFINED 
CHAR 

12 0 0.000 1.000 

(ftp_telnet) Invalid FTP Command 281 4 0.014 0.986 

(ftp_telnet) FTP command 
parameters were malformed 

16328 54 0.003 0.997 

(ftp_telnet) FTP traffic encrypted 39 0 0.000 1.000 

(ftp_telnet) Evasive (incomplete) 
TELNET CMD  

9 0 0.000 1.000 

(ftp_telnet) Telnet traffic encrypted 2 0 0.000 1.000 

(ftp_telnet) Telnet Subnegotiation 
Begin Comm 

3 0 0.000 1.000 

(spp_ssh) Protocol mismatch 469 0 0.000 1.000 

Table 5-7 Analysis of Signatures Triggered by DARPA 1999 

It can clearly be seen that a number of signatures, such as “SHELLCODE x86 
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inc ebx NOOP” only triggered during non-intrusion events. However other 

signatures, such as “ATTACK-RESPONSES directory listing” produce both real 

and false positives. Some signatures, such as all those related to SNMP, only 

produced true positives.  

Also shown in Table 5.7 are estimates of the a priori probabilities of correct and 

false alerts being generated by each SNORT signature. These were derived 

from the simple relations 

                 
              

                                     
 

               
               

                                
 

Equation 5-1 Estimation of the A Priori Statistics for Each SNORT Signature 

5.4.3. Detectability of Attack Types 

Table 5-7 shows the detection performance from the perspective of different 

SNORT signatures. Of more direct interest for the current research is detection 

performance in terms of the different attack types simulated in the DARPA 1999 

dataset. This is shown in Table 5-8. 

 

Type Attack Type 
No. of 

Attacks 
No. 

Detected 
Pd 

D
e
n
ia

l 
o
f 

se
rv

ic
e
 Apache2 3 0 0.000 

Arppoison 4 0 0.000 

Back 6 0 0.000 

Crashiis 10 0 0.000 

Dosnuke 4 0 0.000 
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Type Attack Type 
No. of 

Attacks 
No. 

Detected 
Pd 

Land 4 0 0.000 

Mailbomb 6 0 0.000 

SYN Flood 6 4 0.667 

Ping of Death 6 4 0.667 

ProcessTable 2 0 0.000 

Selfping 3 0 0.000 

Smurf 5 0 0.000 

Sshprocesstable 1 0 0.000 

Syslogd 4 0 0.000 

Tcpreset 3 0 0.000 

Teardrop 3 0 0.000 

Udpstorm 2 0 0.000 

Warezclient 4 4 1.000 

U
se

r 
to

 R
o
o
t 

(U
2
R
) 

Anypw 1 0 0.000 

Casesen 3 3 1.000 

Eject 5 2 0.400 

Ffbconfig 3 0 0.000 

Fdformat 2 1 1.000 

Loadmodule 5 1 0.200 

Ntfsdos 3 0 0.000 

Perl 8 1 0.125 

Ps 2 0 0.000 

Sechole 2 2 1.000 

Xterm 3 3 1.000 
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Type Attack Type 
No. of 

Attacks 
No. 

Detected 
Pd 

Yaga 4 4 1.000 

R
e
m

o
te

 t
o
 L

o
ca

l 
(R

2
L
) 

Dictionary 1 1 1.000 

Framespoofer 1 1 1.000 

FTPwrite 4 4 1.000 

GuessFTP 2 2 1.000 

GuessPOP 1 0 0.000 

GuessTELNET 4 3 0.750 

Guest 3 3 1.000 

HTTPTunnel 5 0 0.000 

IMAP 2 2 1.000 

Named 3 3 1.000 

NCFTP 5 5 1.000 

Netbus 4 3 0.750 

Netcat 4 4 1.000 

Phf 5 5 1.000 

Ppmacro 3 3 1.000 

Sendmail 2 2 1.000 

SNMPget 4 0 0.000 

SQLAttack 2 0 0.000 

SSHTrojan 3 0 0.000 

Xlock 3 3 1.000 

Xsnoop 3 3 1.000 

P
ro

b
e
s Insidesniffer 2 0 0.000 

IPSweep 10 9 0.900 
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Type Attack Type 
No. of 

Attacks 
No. 

Detected 
Pd 

LSDomain 2 0 0.000 

Mscan 1 1 1.000 

NTinfoscan 4 4 1.000 

Portscan 18 5 0.278 

Questo 4 0 0.000 

Resetscan 1 0 0.000 

Satan 4 4 1.000 

D
a
ta

 

Secret 8 2 0.250 

Table 5-8 Detectability of Different Attack Types 

The different attack types are defined in Appendix A. The “No. of Attacks” 

column shows the number of different attacks present in the enhanced truth 

data for the DARPA simulation, that is, the number of unique attack labels that 

pertain to the specific attack type. The “No. Detected” column shows the 

number of distinct attacks for which there was a SNORT alert issued within the 

duration of the attack, and with the same source and destination IP addresses. 

There was no correlation of the signature that was triggered with the attack 

mechanism in use and therefore the potential for accidental detection is present 

due to signatures being triggered that were not related to the attack. Indeed, 

some alerts occurred due to the presence of ICMP PINGs rather than attack 

specific signatures. 

Table 5-8 shows some interesting results. There are many attack types that are 

not detected at all whilst others are easily detected. Only two attack types (Perl 
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and Portscan) are marginally detected, that is with    near to zero. Examination 

of the Perl result in detail suggests that the single detection was due to a noisy 

SNORT signature (“(ftp_telnet) FTP command parameters were malformed” of 

which there were 16,382 instances during the simulation). Only 36 different 

SNORT signatures account for all of the detections in Table 5-8. 

5.4.4. Sensitivity Measurements 

The measurement of sensitivity can be illustrated by examining two specific 

attacks, for example FTPWrite and Xterm. Table 5-8 shows that both are easily 

detectable with a    of 1.0. However, the sensitivity approach yields a different 

result, showing that SNORT is not sensitive enough to detect Xterm with any 

confidence. 

Consider Table 5-9 in which the individual signatures that are triggered for each 

of these attacks are shown. As can be seen there are only two different 

signature types that are responsible for detecting these two attacks. In each 

attack simulation each of the attack types is consistently detected by the same 

signatures, giving some confidence that both attack types are being detected 

properly. However there were 16,328 instances where the “(ftp telnet) FTP 

command parameters were malformed” triggered when there was no attack 

underway. Therefore the presence of this alert conveys less useful information 

than the “FTP .rhosts” signature which only occurred during real attacks.  

Attack 
Type 

Attack 
Label 

Triggered SNORT Signatures 

FTPWrite 31.000000 
(ftp_telnet) FTP command parameters were malformed 

FTP .rhosts 
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43.000000 
(ftp_telnet) FTP command parameters were malformed 

FTP .rhosts 

41.135830 
(ftp_telnet) FTP command parameters were malformed 

FTP .rhosts 

52.101901 
(ftp_telnet) FTP command parameters were malformed 

FTP .rhosts 

Xterm 

52.100738 (ftp_telnet) FTP command parameters were malformed 

55.091529 (ftp_telnet) FTP command parameters were malformed 

55.174733 (ftp_telnet) FTP command parameters were malformed 

Table 5-9 SNORT Signatures for FTPWrite and Xterm 

This qualitative argument can be quantified by the following. Consider an attack 

type consisting of M individual attacks within the DARPA dataset. For each 

attack let there be N signatures triggered, including multiple triggers of the 

same signature. Let              be the probability of an individual signature, 

   , in a given attack,     taken from Table 5-7 being triggered. The probability 

of false alarm of an attack type  ̂   and probability of detection,  ̂  for the attack 

type is given by: 

 ̂   ∏ ∏    

 

     

 

     

          

 ̂      ̂   

Equation 5-2 Estimation of  ̂  and  ̂   for an Attack type 

In deriving Equation 5-2 it was assumed that an alert is declared for a given 

attack type when any one of the signatures is triggered. In this respect it can 
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be considered as an OR logic rather than an AND logic in which all the signature 

types must trigger to declare an attack type to be present. 

For the FTPWrite and Xterm attack types, this results in Table 5-10. The values 

of  ̂  and  ̂   from this table can be placed into the algorithm discussed in 

section 4.6.2 to yield a SNR for the FTPWrite attack type of 18.6dB and for the 

Xterm attack type of 0dB. Thus this SNORT implementation is more sensitive to 

detecting FTPWrite attack types than detecting Xterm attacks, in contradiction 

of the results implied by Table 5-8. 

Attack Type M N Pfa(1,atk) Pfa(2,atk)  ̂   ̂   

FTPWrite 4 2 0.997 0 1 0 

Xterm 3 1 0.997 - 0.008 0.992 

Table 5-10  ̂  and  ̂   for the Attack Type FTPWrite and Xterm 

To automate this process a Microsoft Excel spreadsheet was created to take the 

results from the analysis of SNORT against each attack type and calculate the 

corresponding  ̂  and  ̂   values. This spreadsheet did not use the individual 

signature    and     values from Table 5-7. Instead modified values were used 

in which the “number of true alerts” was reduced only to those that applied to a 

given attack type. Consequently the  ̂   values were worse than used in the 

method outlined above for FTPWrite and Xterm with a corresponding reduction 

in sensitivity.  

The calculation of SNR from   ̂  and  ̂   values was undertaken by creating a 

Mathcad program. This was necessary to calculate the appropriate areas under 
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Gaussian functions. In order to do this, values of 1 and 0 were replaced with 

0.99999 and 1x10-5 respectively, due to the accuracy of numerical integration.  

When this method is applied to all the attack types in the DARPA dataset the 

result is shown in Figure 5-5. This figure shows that there are still many attack 

types that are not detectable and some, such are Dictionary, that are easily 

detectable. Only nine of the attack types achieve the 12dB level described in 

the previous chapter. 

5.4.5. Selectivity Measurements 

The measurement of selectivity is concerned with discriminating between 

different attack types. The raw data for each signature triggered in the SNORT 

simulation is shown in Table 5-11 as a function of the different attack types. In 

this table blank entries indicate that the specific signature did not trigger for the 

corresponding attack type. Signatures that did not trigger during any of the 

attacks are not shown, as are attack types in which no signatures were 

triggered. This was done to reduce the size of the table and therefore present 

only relevant combinations of signature and attack type. 
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Figure 5-5 Sensitivities of Different Attack Types 
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Table 5-11 Attack Type vs SNORT Signature 
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By examining Table 5-11 a number of conclusions can be drawn. First, the 

interaction between signatures and attack types is sparse, with only a small 

number of non-zero values present. Tantalisingly the number of signatures (34) 

is comparable with the number of detected attack types (33). However since 

there is not a one-to-one mapping, the perfect association between signature 

and attack type is clearly not present. Secondly, some signatures are triggered 

in multiple attack types, most notably the “(ftp telnet) FTP command 

parameters were malformed” signature. This implies that the presence of these 

signatures is not as good at discriminating attack types as other signatures. 

Thirdly, some attack types trigger multiple signatures and signature types, 

improving the discrimination between them. 

Table 5-12 shows an alternative way of presenting the information from Table 

5-11, where the probability of a given signature triggering when an attack type 

is underway is shown. The non-zero probabilities are highlighted in green to 

make them easier to locate. Of particular interest in this table is the large 

number of probability values of 1.0. This may be a factor of the small number 

of attacks present in each attack type in the DARPA data. Typically there are 

less than five instances of each attack type and if a given signature is triggered 

during each attack, then a probability of 1.0 is recorded. 

Table 5-13 shows a heat map of the selectivity of the given set of SNORT 

signatures applied to the attack types present in the DARPA dataset. The colour 

coding that is applied highlights challenging discriminations in red and shows 

easier discriminations in green. The leading diagonal is shown in red with a 
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Table 5-12 Probability of Individual Signatures vs Attack Type 
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number of off-diagonal values also presenting discrimination difficulties. There 

are a number of cells where discrimination is easier (green) most notably the 

Satan, Sechole and Casesen attack types.  

The largest value in Table 5-13 is 3.52, between the Satan-IMAP attack types. 

Theoretically, the largest value could be 57.6 if all 3,321 signatures are 

considered although a maximum of 5.83 would apply if the non-triggering 

signatures are excluded. This indicates that although there is discrimination 

highlighted on this heat map, it is significantly lower that the theoretical limit.  

To illustrate the use of the selectivity matrix consider again the two attack types 

of FTPWrite and Xterm, along with the signatures that were triggered during 

these attacks, as shown in Table 5-9. The probability vector has component 

entries that are zero except for the “(ftp_telnet) FTP command parameters 

were malformed” signature (both FTPWrite and Xterm) and “FTP .rhosts” 

signature (FTPWrite only) which are at unity. Consider three cases for the 

signatures triggered for a specific connection between two network devices: 

 Case 1 - only the “(ftp_telnet) FTP command parameters were 

malformed” signature is triggered; 

 Case 2 – both the “(ftp_telnet) FTP command parameters were 

malformed” and “FTP .rhosts” signatures are triggered; and 

 Case 3 - both the “(ftp_telnet) FTP command parameters were 

malformed” and “FTP .rhosts” signatures are triggered, along with a third 

signature, for example “WEB-MISC cat%20 access”. 
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Table 5-13 Selectivity Heatmap for Different Attack Types 
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For each case, the distance, as defined in Equation 4-9, between the measured 

probability vector and the row vectors representing each attack type shown in 

Table 5-12 is calculated and shown in Table 5-14 below. 

Attack Type Distance Case 1 Distance Case 2 Distance Case 3 

Casesen 1.414 1.732 2 

Dictionary 1.414 1.732 2 

Eject 0.632 1.183 1.549 

Fdformat 0.5 1.118 1.5 

Framespoofer 1.414 1.732 2 

FTPwrite 1 0 1 

GuessFTP 1.414 1.732 2 

GuessTELNET 1.25 1.601 1.887 

Guest 1.414 1.732 2 

IMAP 2 2.236 2.449 

IPSweep 1.353 1.682 1.957 

Loadmodule 0.8 1.281 1.625 

Mscan 1.732 2 2.236 

Named 1.414 1.732 2 

NCFTP 0 1 1.414 

SYN Flood 1.532 1.829 2.085 

Netbus 1.458 1.768 2.031 

Netcat 1.25 1.601 1.887 

NTinfoscan 1.521 1.82 2.077 

Perl 0.875 1.329 1.663 

Phf 1.414 1.732 1.414 

Ping of Death 1.202 1.564 1.856 

Portscan 1.077 1.47 1.778 

Ppmacro 1.732 2 2.236 

Satan 2.979 3.142 3.298 

Sechole 1.732 2 2.236 
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Attack Type Distance Case 1 Distance Case 2 Distance Case 3 

Secret 0.75 1.25 1.601 

Sendmail 1.414 1.732 2 

Warezclient 0 1 1.414 

Xlock 1.414 1.732 2 

Xsnoop 1.414 1.732 2 

Xterm 0 1 1.414 

Yaga 1.436 1.75 2.016 

Table 5-14 Examples of the Use of Selectivity 

The smaller the distance the nearer the measured probability vector is to a 

given attack type. For Case 1 there are three attacks that make a perfect 

match, that is, NCFTP, Warezclient and Xterm. It is not possible to discriminate 

between these attack types given the probability vector measured for Case 1. 

For Case 2, there is only one perfect match, namely FTPWrite. All other attack 

types are at least a distance of 1.0 away and therefore this represents a 

confident selection of the FTPWrite attack for the measured probability vector. 

The nearest alternative attack types are still NCFTP, Warezclient and Xterm, but 

the presence of an additional measurement in the Case 2 probability vector 

improves the discrimination over Case 1. 

For Case 3, the smallest distance is still the FTPWrite attack type. However the 

distance is not zero indicating that this is not a perfect match. Alternative 

attacks are now only a distance of 0.414 away and there are now four nearest 

neighbours, namely NCFTP, Warezclient, Xterm and Phf.  

These cases illustrate some important points about the use of selectivity. There 

is significance to the measured distance, with zero indicating perfect match, but 
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not necessarily perfect discrimination. Additional measurements can improve 

the discrimination but also may no longer achieve perfect matching to an attack 

type. Also, not all additional measurements will improve discrimination, but they 

may reduce the distance to alternative attack types. 

In order to apply this approach, after measuring the distance a further level of 

processing is necessary to either declare a specific intrusion event is underway 

or to provide information to other security devices on the network. Two obvious 

processing approaches are: 

 Intrusion Declaration – in which decision thresholds are applied to the 

shortest distance and to the separation between the shortest distance 

and the distance to alternative attack types, in order to declare an 

intrusion. The shortest distance would need to be below the first 

threshold and the separation of alternative attacks above the second 

threshold to declare an intrusion; and 

 Probabilistic or Fuzzy Approach – in which no decision is made by the 

NIS. Instead a vector of the distance to all attack types is output to 

combine with information from other security devices in a hierarchical 

approach. In some implementations it may be better to output the vector 

as a measure of probability rather than distance, for inclusion in expert 

systems or evidential reasoning.  

The investigation and optimisation of this additional processing will be the 

subject of further research. 
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5.5. Discussion 

The results shown in the previous section illustrate the use of sensitivity and 

selectivity in the performance assessment of NIS. The results show that 

sensitivity is poor, with only 15 of the 58 attack types present showing a non-

zero value, despite 33 attacks containing SNORT alerts. The selectivity of the 

evaluated set of SNORT signatures is also poor indicating that accurate 

discrimination between the different attack types is difficult. 

Although these results are poor they could be improved through tuning the 

selection of SNORT signatures so that only those with the most advantageous 

impact on sensitivity and selectivity are included. Whilst this appears to be the 

right approach, particularly with the observation that only 34 of the 3,321 

SNORT signatures were triggered for valid intrusions, the process of achieving 

this optimisation is not straight forward. It is proposed that this is achieved in 

the following way: 

 Security Policy Mapping – with each individual requirement in the 

network security policy represented by at least one signature, but ideally 

more. This will enable policy violations to be the focus of signature 

selection rather than intrusion mechanisms; 

 Standardised Policy Violations – in which a standard set of intrusions are 

defined to highlight all known ways in which individual policy violations 

can be achieved. The use of standards will allow comparison between 

NIS operating on different live networks; and 

 Automated Analysis – in which the set of standardised attacks are 

applied over a live network with automated sensitivity and selectivity 
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measurements produced. 

It is likely that such an approach will take considerable time to build up false 

alarm statistics, as well and sensitivity and selectivity measurements. This will 

be the topic of future research. 

5.6. Summary and Conclusions 

This chapter has demonstrated the application of the performance metrics 

sensitivity and selectivity to the simulated attacks present in the DARPA 1999 

dataset, using SNORT as an exemplar signature-based NIS. The achieved 

performance for both metrics was poor with an inability to detect many of the 

attacks, as well as discriminating between individual attacks. 

The utility of sensitivity as a performance measure has been demonstrated. In 

particular sensitivity can be used to distinguish between fortuitous detection by 

noisy signatures which produce a high false alarm rate, and detection by 

signatures responding to the attack specifics. At best noisy signatures would be 

given a lower priority by network support staff and at worse noisy signatures 

would be disabled. The use of sensitivity provides an alternative approach in 

which the significance of a given alert is determined based on the other 

signatures triggered for the same connection.  

The sensitivity metric replaces the usual four measures of true positive, true 

negative, false positive and false negative rates with a single number. It 

represents the fundamental performance of a NIS as without detection of an 

attack type the discrimination implied by the selectivity metric cannot occur. 

Only nine of the intrusion event types present in the DARPA dataset were 
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detected with a sensitivity greater than 12dB. 

Selectivity measurements have shown that it is possible to distinguish between 

a small number of attack types. However the highest value of selectivity was 

3.52, which is significantly lower than the theoretical limit of 5.83, indicating 

that there is significant room for improvement. 

In order to use the taxonomy described in Chapter 3 improvements in 

performance is necessary. Sensitivity will need to be improved to ensure that 

more attack types are detected with a high confidence. Selectivity will be 

needed for recognition, identification and confirmation to be successful.  

A summary of the conclusions of this thesis will now be presented. 
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6. Summary and Conclusions 

This chapter provides a summary of the research activities that have been 

undertaken along with their principal conclusions. All the objectives of this 

research have been achieved in full, as follows: 

a) Objective 1 - Review the techniques and performance measures that 

have been applied to intrusion systems, to identify the most promising 

techniques for further evaluation; – A literature review has been 

conducted and is reported in Chapter 2; 

b) Objective 2 – Re-evaluate the meaning of “detection” in the context of 

NIS – Detection has been defined in Chapter 3, along with other high-

level intrusion system functions; 

c) Objective 3 - Assess the application of detection theory to NIS and 

propose metrics that can be used to characterise their performance – 

Chapter 4 describes a systems engineering approach to NIS and defines 

two performance metrics new to intrusion systems, namely sensitivity 

and selectivity; and 

d) Objective 4 - Demonstrate experimentally the use of the performance 

metrics and the potential for false alarm rejection using a representative 

NIS and practical data – Chapter 5 describes the use of SNORT against 

the DARPA 1999 inside network dataset, with practical sensitivity and 

selectivity measurements being undertaken. 
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6.1. Summary of Research Activities 

A programme of research has been undertaken to determine improved metrics 

for comparing intrusion systems, using techniques developed from other 

detection-based technologies, such as used in radar or sonar.  

The research commenced with a literature review. As intrusion detection has 

been an active research topic for over 30 years considerable published work is 

available. A detailed systems and techniques assessment of other research was 

made with particular emphasis given to performance evaluation metrics and 

their limitations. The survey identified that a wide range of data processing 

techniques had been assessed and a large number of different intrusion 

systems developed for research and commercial purposes. However the 

problem of poor performance persists and the difficulty of comparing intrusion 

techniques and systems was highlighted. 

A taxonomy of intrusion systems was then developed as a basis for a more 

precise definition of “detection”. Key NIS discrimination technologies identified 

in the literature were mapped onto a graphical representation of the taxonomy 

to illustrate how meaningful comparison could and could not be made. The link 

between an intrusion event and the network security policy was established. 

A systems-level assessment of the issues facing NIS was undertaken to identify 

key considerations in defining performance. The reasons for deployment and 

the characteristics of an ideal system were developed and current challenges 

defined. Two metrics known as sensitivity and selectivity were proposed to 

measure the detection and discrimination performance respectively. These 
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metrics were defined mathematically and guidance on their interpretation in 

intrusion detection was developed. 

Finally, an experimental evaluation of NIS was undertaken using SNORT and 

the DARPA 1999 dataset of network frames recorded on the inside of the 

simulated network. A new set of truth data was developed to enable the 

correlation of SNORT intrusion alerts with DARPA attack simulations. A manual 

assignment of SNORT alerts to specific attacks or to false alarms was made. 

From this assignment measurements of sensitivity and selectivity were 

undertaken illustrating the application of these metrics. The results indicated 

that SNORT, with a baseline set of signatures from 2010 has poor sensitivity 

and selectivity for attacks in the DARPA 1999 dataset. 

6.2. Research Achievements 

As well as achieving the research objectives a number of original contributions 

to the corpus of knowledge regarding network intrusion systems has been 

made including: 

 The literature survey identified inconsistencies in the terminology used 

for intrusion systems with researchers rarely defining what is meant by 

“detection” with some describing the process as “intrusion recognition”. 

Difficulties in comparing practical measured performances were also 

identified, in particular the inconsistent use of receiver operating 

characteristic curves between different research groups; 

 A novel taxonomy has been developed based of the output of an 

intrusion system and the data scale over which it operates. It has been 

demonstrated that this taxonomy is ideally suited to comparing intrusion 
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systems on an equitable basis. High-level functions have been defined 

for intrusion systems, based on their required outputs. The acronym NIS 

has been proposed to generalise intrusion from detection to recognition 

and identification; 

 A new relationship between network security policy and the definition of 

an intrusion has been developed. An intrusion has been defined as an 

event that breaches the network security policy. It is proposed that each 

clause or group of clauses in the policy are used to select at least one 

signature for misuse-based intrusion systems. The interrelation between 

network security policy and implied threshold setting in a classical 

detection system has been described; 

 The reasons for the deployment of an intrusion system have been 

developed along with the characteristics of an ideal system. A model of 

an first generation ideal passive system has been described and the 

connection to other design patterns has been established; 

 The basic properties of a misuse-based intrusion system have been 

developed and a fundamental problem identified, namely the non-unique 

mapping to intrusion-like or non-intrusion-like for some network frames. 

This problem limits the achievable performance for practical misuse-

based intrusion systems; 

 The observation that current passive intrusion systems are inefficient has 

been made. Intrusion systems spend much of their processing effort 

processing non-intrusion data. The implications of this for the 

development of advanced data processing techniques is described;  
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 Two performance metrics, sensitivity and selectivity, new to intrusion 

systems have been defined mathematically and their properties 

developed. Their application to intrusion systems has been described; 

 Sensitivity and selectivity has been measured for the SNORT intrusion 

system processing data from the DARPA 1999 network simulation. The 

utility of sensitivity to describe performance in terms of a single 

parameter rather than the four performance measures has been 

established. The use of selectivity in undertaking high-level intrusion 

functions, as described in the novel taxonomy described above, has been 

described; and 

 New limitations of the DARPA 1999 database for intrusion system 

evaluation have been identified. Poor time synchronisation between the 

inside and outside datasets limit their simultaneous use without different 

truth data for each. 

The use and definition of sensitivity and selectivity was based on detection 

theory as used within other technologies, such as radar and sonar. During the 

course of this research it was observed that other analogies could be made with 

these technologies, specifically allowing the NIS to stimulate deliberately the 

network to gather further information to improve performance. This is reported 

in Appendix D and is given the term Aggressive Network Intrusion System 

(AgNIS) to differentiate the approach from Active Intrusion Detection. Although 

this approach is not new to NIS, a systematic evaluation of the methods for 

integration did not appear to have been addressed by other researchers. 
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6.3. Research Limitations 

As with all research the depth with which individual topics could be investigated 

is limited by the available effort and the need to achieve all the objectives of 

the work. In this research three significant limitations have been identified, as 

follows: 

 Performance Metrics – The impact of the assumption of a Gaussian 

probability density function has not been established precisely. 

Alternative parameterisations should be investigated, including using 

measured density functions, to quantify the impact. In addition, the 

sensitivity and selectivity metrics should be extended to high-level 

intrusion functions, such as recognition and identification; 

 Use of the DARPA 1999 Dataset – This dataset has a number of well-

known issues with new limitations being identified in this research. It is 

now 14 years old and not representative of modern networks. The goal 

of the practical phase was not to optimise performance, if this were not 

the case the DARPA dataset would have been unsuitable. The 

demonstration of the use of the new taxonomy as well as the sensitivity 

and selectivity metrics on a live network is required; and 

 Exploitation of the new metrics – The retrospective measurement of 

sensitivity and selectivity from the published results of other research 

teams has not been attempted, mainly due to the difficulty of mapping 

their results to this new measurement framework. Although a ROC curve 

can be used to estimate sensitivity, through curve fitting, the differences 

between the measurement methodologies used by different research 
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groups would still make this a difficult task.  

In order to evaluate further the limitations of this work it was decided to gauge 

the view of other professionals by obtaining independent review of the body of 

this thesis. This is reported fully in Appendix F. No further limitations were 

identified and the taxonomy and new metrics were thought to be of value by a 

consulting security architect.   

6.4. Further Work 
Further work can be considered for both the experimental and systems aspects 

of this research. Throughout this thesis opportunities for further research have 

already been described. In this chapter a new research topic is proposed based 

on addressing the limitations of the current research, as described in the 

previous section. 

It is proposed that an NIS demonstrator is constructed and operated over a live 

network to establish the practical use of these metrics in real-time systems. The 

calculation of performance metrics should be automated. In order for this to 

occur a standardised set of attack types will need to be developed along with 

methods for automatically assigning signature alerts to simulated attacks. Full 

network recording at the NIS will be needed to confirm that any false alarms 

that are due to system limitations and not genuine, unapproved intrusion 

behaviour against the intrusion system. It is anticipated that real-time 

performance could be achieved by assuming that no genuine intrusion 

behaviour is present, with offline correction as this assumption is verified. This 

demonstrator would enable benchmarking of intrusion systems. 
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The demonstrator should record all statistics so that the practical implications of 

the Gaussian probability density function assumption can be assessed. This 

should be supplemented by a theoretical assessment using both alternative 

density functions and the Tchebycheff inequality.  

Strategies for the selection of signatures will need to be developed and 

evaluated using the performance metrics. The practicality of mapping 

signatures to different network security policies will be determined. The 

relationship between a given set of signatures and the achievable sensitivity 

and sensitivity should be examined and quantified.   

Finally, the range of performance metrics should be extended to cover high-

level intrusion functionality identified by the taxonomy described in Chapter 3. 

Such an experimental programme as proposed in this chapter could be the 

basis for developing high-level intrusion functionality, becoming a component of 

a new form of distributed intelligent security paradigm. New architectures or 

data processing techniques, such as AgNIS, could be evaluated in real-time and 

their performance contrasted with alternative approaches.  

6.5.  The Future for Network Intrusion Systems 

Despite over 30 years of active research, the performance achieved by network 

intrusion systems remains inadequate. False alarms, both positive and negative 

are at unacceptable levels. False positives require significant system 

administrator effort to investigate whilst false negatives are more insidious 

giving administrators the false perception that their networks are secure. 
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The programme of research described here has created a more precise 

definition of detection and high-level intrusion functions such that performance 

comparison between systems and data processing algorithms can confidently 

be made. The use of sensitivity and selectivity as basic performance metrics, 

along with the future development of standardised attacks, should highlight the 

most promising data processing techniques and systems approaches. The goal 

should be for future research to be published in terms of these standard metrics 

on live data, rather than the current trend of using synthesised datasets.  

Alternative systems approaches to intruion will be required, such as AgNIS, to 

address improved sensitivity for attacks which have only a minor impact on 

network traffic. Techniques to improve selectivity will also be required, as the 

functionality with NIS moves towards recognition and identification systems.  

Finally, the demand for high performance intrusion systems is unlikely to 

diminish. Although a defence in depth strategy for security architectures, 

coupled with improving performance in other network security elements will 

limit the potential for damage from intruders, it is likely to remain a key 

requirement that the status of a network as intrusion-free will need to be 

confirmed continuously. In order for this to be an overall benefit rather than a 

resource burden, high sensitivity and selectivity is required across the complete 

range of attack types implied by the organisations network security policy. 
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Appendix A. The DARPA 1999 Dataset 

A.1. Introduction 

The DARPA 1999 dataset is one of the most widely used sources of network 

and host intrusion data. It has been used by many research teams to evaluate 

both data processing algorithms and complete intrusion systems. The 

documentation for the dataset can be downloaded from the Lincoln Laboratory 

website (MIT Lincoln Laboratory 2012b) and comprehensive descriptions of the 

data collection methodology have been provided by Lippmann (Lippmann, 

Haines et al. 2000b; Lippmann, Haines et al. 2000a) and Kendall (Kendall 

1999). 

As considerable published research exists already on the use of the DARPA 

1999 dataset, only aspects relevant to the main body of this thesis will be 

described here. An outline description has already been provided in section 

2.6.3. 

For this research a data labelling scheme has been adopted to identify which of 

the many files present in the dataset have been used. A four digit code 

identifies the week and day number of the recorded files, thus W3D5 

corresponds with a TCPDUMP recording taken on Week 3 Day 5. This code was 

augmented with two additional identifiers to indicate whether the data was 

recorded on the inside or outside network segment and whether the data was 

recorded for training or testing purposes. Finally the data label has a prefix of 

1999, to differentiate it from the 1998 and 2000 datasets. Thus a file can be 

identified by a label such as “1999_W2D1_inside_training”, which is a DARPA 
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1999, Week 2, Day 1 recording on the inside network, captured for training 

purposes. 

A single file label identifies the complete frame recording for a given day, on 

the specified network segment. When it is not necessary to identify the 

segment or the purpose of the recording, just the initial four digit code is used. 

A.2. Description of the Simulated Network 

This research is concerned with network intrusion systems and therefore only 

the TCPDUMP files recorded on the inside and outside of the simulated network 

were of relevance. Host intrusion data was not used.  

Figure A-1 provides an overview of the simulated network. 

Outside Network Inside NetworkCisco 2514 Router

192.168.1.0 172.16.0.0

Sniffer and Inside

 Timeserver

Inside GatewaySniffer

Victims

Attackers and 

Virtualised Hosts

Attackers and 

Virtualised Hosts

Outside Gateway 

and Timeserver

 

Figure A-1 DARPA 1999 Network, based on (MIT Lincoln Laboratory 2012b) 

It can be seen that there are two network segments separated by a router. 

Both the inside and outside network segments are populated with a variety of 

operating systems. Separate packet sniffers are present on the two network 

segments. These sniffers recorded simultaneously the frames present on both 
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network segments using TCPDUMP. Full frames were recorded including the 

payload. As the network was simulated the usual privacy concerns did not 

apply.  

A number of attacks were simulated throughout the five weeks of data 

gathering. These are summarised in Table A-1. It is important to realise that 

not all of these specific attacks leave a detectable trace in the recorded 

TCPDUMP files as the experimental setup was also to investigate host based 

attacks. Further information on each attack can be found at the MIT Lincoln 

Labs website (MIT Lincoln Laboratory 2012c) and the research of Kendall 

(Kendall 1999). 

Attack 

Type 

(No of 

Attacks) 

OS Specific Attacks 

Solaris SunOS NT Linux Cisco 

Probe 

(37) 

Queso Queso NTinfoscan Queso - 

Illegal-sniffer Illegal-sniffer 
Illegal-
sniffer 

Mscan - 

IPsweep IPsweep IPsweep LSdomain - 

Portsweep Portsweep Portsweep Satan - 

DoS (65) 

Neptune Arppoison Arppoison Apache2 - 

Pod Land Crashiis Arppoison - 

Processtable Mailbomb Dosnuke Back - 

Selfping Neptune Smurf Mailbomb - 

Smurf Pod TCPreset Neptune - 

Syslogd Processtable - Pod - 

TCPreset - - Processtable - 

Warezclient - - Smurf - 

- - - TCPreset - 

- - - Teardrop - 

- - - UDPstorm - 
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Attack 

Type 

(No of 

Attacks) 

OS Specific Attacks 

Solaris SunOS NT Linux Cisco 

R2L (56) 

Dict Dict Dict Dict SNMPget 

FTPwrite Xsnoop Framespoof Imap - 

Guest - Netbus Named - 

HTTPtunnel - Netcat Ncftp - 

Xlock - Ppmacro Phf - 

Xsnoop - - Sendmail - 

- - - SSHtrojan - 

- - - Xlock - 

- - - Xsnoop - 

U2R (37) 

Eject  Loadmodule Casesen - - 

FDformat - NTFSdos - - 

Ffbconfig - Makepw - - 

Ps - Sechole - - 

- - Xsnoop - - 

Data (13) Secret - NTFSdos Secret - 

- - Ppmacro - - 

Table A-1 Attack Types in the DARPA 1999 Dataset 

A.3. Network Statistics 

The start and stop dates and times for the TCPDUMP data files are shown in 

Table A-2. The original documentation provided by the Lincoln Laboratory 

shows times measured in Eastern Standard Time (EST). Each recorded set of 

data started early in the morning (typically 8:00am) and finished on the same 

day, typically 6:00pm. However, EST caused some difficulties in handling the 

files using GMT or BST as a local time, due to daylight savings time differences. 

Consequently the information was converted to UTC. 

The data in Table A-2 was derived from the outside dataset rather than the 

inside dataset that was used during this research. This was done as there was 
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additional data available outside, specifically W3D8. It is important to remember 

that there is a minor time offset between the inside and outside datasets, as 

discussed in the next appendix. 

Label 
Start 

Date 

Start 

Time 

(UTC) 

End 

Date 

End Time 

(UTC) 
Comments 

W1D1 Mar 1 01:00:02 pm Mar 2 11:00:02 am Attack free, for training 

W1D2 Mar 2 01:00:02 pm Mar 3 11:00:01 am Attack free, for training 

W1D3 Mar 3 01:00:03 pm Mar 4 11:00:01 am Attack free, for training 

W1D4 Mar 4 01:00:03 pm Mar 5 11:00:02 am Attack free, for training 

W1D5 Mar 5 01:00:02 pm Mar 6 11:00:02 am Attack free, for training 

W2D1 Mar 8 01:00:01 pm Mar 9 11:00:49 am Labelled attacks, for training 

W2D2 Mar 9 01:00:01 pm Mar 10 07:59:59 am Labelled attacks, for training 

W2D3 Mar 10 01:00:03 pm Mar 11 11:00:01 am Labelled attacks, for training 

W2D4 Mar 11 01:00:03 pm Mar 12 11:00:00 am Labelled attacks, for training 

W2D5 Mar 12 01:00:02 pm Mar 13 11:00:00 am Labelled attacks, for training 

W3D1 Mar 15 01:00:02 pm Mar 16 11:00:00 am Attack free, for training 

W3D2 Mar 16 01:00:01 pm Mar 17 11:00:00 am Attack free, for training 

W3D3 Mar 17 01:00:03 pm Mar 18 11:00:00 am Attack free, for training 

W3D4 Mar 18 01:00:02 pm Mar 19 09:11:44 am Attack free, for training 

W3D5 Mar 19 01:00:03 pm Mar 20 06:02:46 am Attack free, for training 

W3D6 Mar 22 01:00:04 pm Mar 23 10:14:14 am Attack free, for training 

W3D7 Mar 23 01:00:00 pm Mar 24 10:59:58 am Attack free, for training 

W3D8 Mar 24 01:00:01 pm Mar 25 11:00:00 am Attack free, for training 

W4D1 Mar 29 01:00:02 pm Mar 30 10:59:57 am Embedded attacks, for testing 

W4D2 - - - - No data is available 

W4D3 Mar 31 01:00:09 pm Apr 1 10:59:57 am Embedded attacks, for testing 

W4D4 Apr 1 01:00:01 pm Apr 2 10:59:49 am Embedded attacks, for testing 

W4D5 Apr 2 01:00:00 pm Apr 3 10:59:53 am Embedded attacks, for testing 

W5D1 Apr 5 12:00:02 pm Apr 6 09:59:56 am Embedded attacks, for testing 

W5D2 Apr 6 12:00:00 
Noon 

Apr 7 09:59:58 am Embedded attacks, for testing 

W5D3 Apr 7 12:00:00 
Noon 

Apr 8 09:59:52 am Embedded attacks, for testing 

W5D4 Apr 8 12:00:00 

Noon 

Apr 9 09:59:53 am Embedded attacks, for testing 
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Label 
Start 

Date 

Start 

Time 

(UTC) 

End 

Date 

End Time 

(UTC) 
Comments 

W5D5 Apr 9 12:00:04 pm Apr 10 09:59:58 am Embedded attacks, for testing 

Table A-2 DARPA 1999 Start and Stop Times 

Table A-3 provides some basic statistics for each of the inside dataset files. 

These statistics were produced by a command line utility include with 

WIRESHARK, known as CAPINFOS. 

Label 

No 

Frames 

(-) 

No TCP 

Conversations 

(-) 

No UDP 

Conversations 

(-) 

Total No 

Conversations 

(-) 

Duration 

(s) 

W1D1 1,492,331 39,637 11,363 51,000 79,210 

W1D2 1,237,119 46,053 9,559 55,612 79,196 

W1D3 1,726,319 46,141 10,339 56,480 79,197 

W1D4 1,947,815 41,709 11,590 53,299 79,191 

W1D5 1,483,419 37,446 13,304 50,750 79,197 

W2D1 1,753,377 44,406 10,974 55,380 79,194 

W2D2 1,585,120 56,324 18,699 75,023 68,600 

W2D3 1,011,149 26,207 20,364 46,571 79,195 

W2D4 1,563,069 68,051 14,092 82,143 79,191 

W2D5 1,362,422 49,939 10,639 60,578 79,191 

W3D1 2,106,744 43,900 9,374 53,274 79,197 

W3D2 1,831,648 50,028 10,246 60,274 79,195 

W3D3 1,849,753 48,515 9,666 58,181 79,197 

W3D4 1,559,156 19,767 10,979 30,746 72,700 

W3D5 1,635,425 61,319 8,092 69,411 61,339 

W3D6 1,679,048 12,598 10,931 23,529 76,396 

W3D7 2,152,964 49,007 9,850 58,857 79,000 

W3D8 No Data No Data No Data No Data No Data 

W4D1 1,647,573 16,790 10,304 27,094 79,195 

W4D2 No Data No Data No Data No Data No Data 

W4D3 1,766,074 45,943 14,850 60,793 79,189 

W4D4 2,356,503 52,349 14,535 66,884 79,188 

W4D5 1,945,538 32,288 17,111 49,399 79,192 

W5D1 2,291,319 52,365 9,006 61,371 79,193 

W5D2 3,404,824 81,554 10,996 92,550 79,199 
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Label 

No 

Frames 

(-) 

No TCP 

Conversations 

(-) 

No UDP 

Conversations 

(-) 

Total No 

Conversations 

(-) 

Duration 

(s) 

W5D3 2,087,942 46,198 14,621 60,819 79,192 

W5D4 3,201,381 106,690 18,007 124,697 79,192 

W5D5 3,393,918 59,581 11,671 71,252 79,193 

Table A-3 Statistics for the DARPA 1999 Inside Dataset 

The data in Table A-3 was used to calculate the false alarm statistics reported 

in section 5.4. 
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Appendix B. Clock Drift in the DARPA 1999 Dataset 

During this research, initial attempts to match SNORT intrusion alerts with 

attacks within the TCPDUMP network recording taken from both the inside and 

outside of the DARPA 1999 simulation network were unsuccessful. It was 

expected that the truth data provided on the Lincoln Laboratory website (MIT 

Lincoln Laboratory 2012a) would be definitive and precise, however surprisingly 

few SNORT alerts matched events in this data. The most likely reasons were 

that either the matching algorithm was in error, or that SNORT was not 

detecting the intrusions in the first instance. Testing of the matching software 

revealed no issues however there did appear to be a time shift between the 

intrusions that were detected by SNORT and the corresponding truth data 

entries. This appendix describes the activities undertaken to determine the root 

cause of the problem and consequently document the magnitude of the effect. 

B.1. Initial Analysis 

The use of time within the DARPA simulation was examined in detail. An initial 

attempt to match identical frames in the inside and outside datasets revealed 

large time differences between the network recordings. The source and 

destination IP addresses, as well as the absolute TCP sequence numbers were 

matched for frames near the beginning of each pair of network recordings. As 

the sequence numbers are unique for a given client or server (IETF 1981; 

Stevens 1994) matches using these criteria should have indicated 

corresponding frames precisely. Using this matching technique all the pairs of 

network recordings for each day of the simulation showed time offsets. Whilst 
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most of the offsets were only a few seconds, some were much larger with the 

W2D1 data showing an offset of over 46 seconds.  

B.2. Further Analysis 

The presence of an offset in time between the simultaneous network recording 

taken on the inside and outside of the simulated network was surprising and 

therefore warranted further investigation. WIRESHARK was used to view a 

limited number of frames in corresponding inside and outside datasets. This 

showed that there was occasional protocol violations (IETF 1981) when TCP 

absolute sequence numbers were re-used within a few seconds by a host. 

Therefore it was necessary to extend the frame matching criteria to include 

source and destination ports to ensure that false matches did not occur. When 

this was undertaken the time offsets shown in Figure B-1 were obtained.  

 

Figure B-1 Clock Drift Between the Inside and Outside Network Sniffers 
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Further analysis of the network recordings revealed that Network Time Protocol 

(NTP) (IETF 1992) was configured and running in the DARPA 1999 simulation. 

Therefore it should be expected that there would be very little or no time offset 

between the networks. In the outside network, host 192.168.1.10 was 

configured as the time server and the outside sniffer (192.168.1.90) was in 

general correctly synchronised to it. No other outside hosts were time 

synchronised to this NTP server. In the inside network, the NTP server was set 

as 172.16.112.10, which was also used as the network sniffer. Five other hosts 

on the inside regularly time synchronised with the inside sniffer. These hosts 

were the “victim” machines for the simulated network attacks.  

The outside network NTP server regularly attempted time synchronisation with 

the inside NTP server. NTP synchronisation requests were made using 

“symmetric active” mode, but no corresponding “symmetric passive” frames 

were sent in response and hence no synchronisation between the inside and 

outside networks occurred. On the first day of the simulation (W1D1) the inside 

NTP server also made regular NTP Client Mode requests to the outside NTP 

server, which responded correctly in NTP Server Mode, allowing time 

synchronisation to occur between the networks. No further Client Mode 

requests from the inside NTP server to the outside NTP server are present in 

the simulation after the first day.  

By examining the NTP exchanges between the network time servers the 

anticipated mode of operation can be determined. This is shown in Figure B-2. 

It can be seen that the time server and network sniffer are separate physical 
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servers in the outside network, but combined in the inside network. No 

evidence of connections to Stratum 0 NTP servers could be located within the 

frames recorded in either the inside or outside datasets. 

The design requirement would have been to synchronise time across all servers 

and hosts in both the inside and outside networks. This would enable the 

alignment of events recorded in network sniffer files with host logs, also stored 

during the simulation. For the current research the most important requirement 

is the synchronisation between the inside and outside network sniffers, shaded 

red in Figure B-2.  

NTP Stratum 2

NTP Stratum 1

Inside Time Server & Sniffer
172.16.112.10

Outside Network

Inside Network

Outside Time Server 
192.168.1.10

Outside Sniffer
192.168.1.90

 

Figure B-2 NTP Hierarchy within the DARPA 1999 Simulation 
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During the first day of the simulation the network appears to be operating as 

designed. However, after the first day the inside and outside network sniffers 

were de-coupled and their clocks drifting with respect to each other. The 

outside sniffer was synchronised with the outside NTP server, but the inside 

and outside NTP servers were not synchronised.  

In summary, it appears that for the first day of the DARPA 1999 simulation the 

inside and outside network were correctly synchronised. After the first day, 

however, they were time synchronised, but not to each other, hence the offset 

in their times at the start of each days simulation, as highlighted in Figure B-1.  

B.3. Clock Drift Measurement 

Further work was undertaken to quantify the clock drift between the inside and 

outside networks during each day of the simulation for which full 

synchronisation was not operating. TCPDUMP was used to extract specific 

frames from each of the network files. Only frames from weeks 2, 4 and 5 of 

the simulation were used as weeks 1 and 3 contained no intrusion events and 

therefore were not of interest. Connection initiation frames (i.e. with the SYN 

flag set) were extracted for connections to the principal “victim” hosts, 

recording the absolute TCP sequence numbers as well as the usual TCPDUMP 

text output. Microsoft Excel was used to match corresponding frames between 

the inside and outside network recordings. A single match was taken every hour 

as representative of the time error and plotted in Figures B-2 to B-4. The initial 

large timing error for W2D1 persisted for about 36 minutes. It occurred due to 

a failure of the first seven NTP synchronisations between the outsider sniffer 

and NTP server. One simulated attack occurred during this period. 
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Figure B-3 Clock Drift between the Inside and Outside Network – Week 2 

 

 

Figure B-4 Clock Drift between the Inside and Outside Network - Week 4 

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

In
si

d
e

 a
n

d
 O

u
ts

id
e

 S
n

if
fe

r 
C

lo
ck

 
O

ff
se

t 
(s

) 

Time Since Start of Simulation (hours) 

W2D1

W2D2

W2D3

W2D4

W2D5

0.00

2.00

4.00

6.00

8.00

10.00

12.00

In
si

d
e

 a
n

d
 O

u
ts

id
e

 S
n

if
fe

r 
C

lo
ck

 
O

ff
se

t 
(s

) 

Time Since Start of Simulation (hours) 

W4D1

W4D3

W4D4

W4D5



Appendix B Clock Drift in the DARPA 1999 Dataset 

 

218 

 

Figure B-5 Clock Drift between the Inside and Outside Network - Week 5 

It can be seen that the clock drift is consistent throughout the duration of the 

simulations. Regression analysis was undertaken with the results shown in 

Table B-1. This table shows that linear regression appears to be a good 

representation of the data (i.e. the standard error is low) and the drift in the 

clocks between the inside and outside networks is approximately 0.73 seconds 

per hour. 
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Simulation 
Day 

Slope 
(s hr-1) 

Intercept 
(s hr-1) 

Standard Error 
(s hr-1) 

W4D2 No Data Available No Data Available No Data Available 

W4D3 0.7203 1.640 0.00201 

W4D4 0.7210 1.794 0.00128 

W4D5 0.7229 1.182 0.00625 

W5D1 0.7232 1.784 0.03423 

W5D2 0.7231 1.844 0.01201 

W5D3 0.7253 2.211 0.02636 

W5D4 0.7259 2.078 0.02383 

W5D5 0.7254 1.721 0.00534 

Table B-1 Linear Regression Parameters for Clock Drift 

B.4. Conclusions 

The lack of time synchronisation between the inside and outside networks in 

the DARPA 1999 simulation makes matching SNORT alerts with intrusion events 

in the truth data, across both the inside and outside datasets, problematic. 

Three obvious approaches to overcome the limitations in the recorded data are:  

 Multiple Truth sets, one for each of the inside and outside networks; 

 Truth correction, in which the truth data is configured for one of the 

networks and a correction applied to estimate the truth for the other 

network. The repeatability of the clock drift as shown in Figures B-3 to B-

5 suggests that this approach could be designed to be sufficiently 

accurate, after the NTP initial synchronisation problems for W2D1 ; and 

 Fuzzy time matching, in which precise time is not used as a match 

criterion. Instead a time window would be used, corresponding to the 

clock uncertainty. 
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Although any of these methods could have been made to work it was decided 

for the research reported in this thesis to limit the analysis to only one of the 

datasets, eliminating the need to correct for clock drift between the networks.   
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Appendix C. WIRESHARK for Attack Truth 

Determination 

C.1. Introduction 

During this research difficulties were experienced in matching SNORT alerts 

with specific intrusion events in the DARPA 1999 attack truth data.  At first it 

was thought to be either the result of poor matching software or that the 

SNORT signatures were not able to respond to the attack types present in the 

dataset. Further analysis has identified issues with the DARPA 1999 dataset and 

its truth data. The previous appendix has addressed the clock drift between the 

inside and outside network segments. This appendix describes the analysis that 

was undertaken to improve the DARPA 1999 truth data using WIRESHARK 

measurements. 

C.2. Initial Investigation 

The initial investigation concentrated on the correctness of the matching 

software. No issues were identified with the software so effort was directed to 

the SNORT signatures. Although some attacks produced no alerts from SNORT 

others produced alerts with minor time discrepancies. Therefore it was decided 

to examine the recorded frames to see if the attacks could be detected and 

confirmed manually.  

As each days recordings for a given network segment typically contained over 

one million frames (see Table A-3) a totally manual process was impractical. A 

frequently used approach to extracting relevant frames from large datasets is to 

use the filtering functionality of TCPDUMP to pipe frames through additional 
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processing software. Although this approach could have worked it lacked the 

ability to visualise attacks, without writing new software. Instead WIRESHARK 

was used to analysis the datasets for traces of the synthesised attacks. 

WIRESHARK has a number of advantages for this task including: 

 It is able to load the TCPDUMP files from the DARPA dataset without the 

need for pre-processing or file conversion software; 

 The colour-coded visual display of individual frames was useful in 

identifying attack elements; 

 As WIRESHARK processed the complete frame it was easy to examine in 

detail the characteristics and bit-settings of frames of interest; 

 Included within WIRSHARK is an advanced filtering engine compatible 

with TCPDUMP, that can be used to display only frames of interest; and 

 The frames associated with individual connections could be extracted 

automatically. 

These advantages meant that WIRESHARK was particularly suited to extracting 

the frames relevant to a given attack. However, its use was not without 

problems. Versions of WIRESHARK used during early analyses were unable to 

load a complete set of frames for a whole day without memory errors. Although 

this was inconvenient, command line software provided with WIRESHARK or 

filter parameters invoked at start-up were able to limit the number of frames 

loaded so that memory errors did not occur. More recent versions of 

WIRESHARK do not appear to have this problem. 

WIRESHARK was therefore used to load segments of a recording for a given 
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network segment and attack frames were located using the existing truth data 

as a starting point. This was done for all the attack types present in the 

simulation, and the truth data was updated with measurements derived from 

the located frames. 

C.3. NTinfoscan Analysis  

There are a large number of different attack types and instances within the 

DARPA 1999 dataset. As an illustration of the method and the results that can 

be obtained this section will describe the analysis for just one attack type, 

namely NTinfoscan. 

The DARPA 1999 intrusion detection attacks database  (MIT Lincoln Laboratory 

2012c) describes the NTinfoscan as: 

“… a NetBIOS based security scanner. It scans the NT victim to obtain share 

information, the names of all the users, services running, and other 

information. The results are saved in an html file named .html where victim is 

the victim's hostname.” 

 
This database also gives the attack signature information as follows: 

“Sniffing reveals that the attack FTPs to the victim as user anonymous with 

password guestaccnt@compuserve.com and makes numerous HTML GET 

requests to files in such directories as /cgi-bin and /scripts. Originally, the ntis 

ftp'd to the victim with the password, ntinfoscan. 

The security audit log can also be used to detect the attack. A login by IUSR via 

Advapi, followed by the execution of newdsn.exe by SYSTEM indicates a web 

scan. A login via KsecDD followed by multiple SAM_USER accesses by SYSTEM 

indicates a netbios scan.” 
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There are four instances of the NTInfoscan attack, one in the training dataset 

and three in the testing dataset (attack labels 44.08000, 54.110416 and 

54.183002). Examining the first instance in detail, this occurred during W2D1. 

The truth data provided the following information about this specific attack: 

 Start time – 08:01:01 EST (13:01:01 UTC) ; 

 End time – Not provided; 

 Destination IP – hume.eyrie.af.mil (172.16.112.100);  

 Ports Used – Not provided; and 

 Source IP – Not provided; 

Using WIRESHARK the three phases of the attack could be seen easily. The 

source of the attack was 206.48.44.18 and using this information the frames 

associated with each phase could be extracted and the data show in Table C-1. 

Attack 
Phase 

Wireshark Filter No of 
Frames 

(-) 

Start 
Time 
(UTC) 

End Time 
(UTC) 

FTP/Telnet 

ip.addr==206.48.44.18 and 

ip.addr==172.16.112.100 

and (tcp.port == 20 or 

tcp.port == 21 or tcp.port 

== 23) 

42 13:00:58.1 13:02:02.4 

HTTP 

ip.addr==206.48.44.18 and 

ip.addr==172.16.112.100 

and tcp.port == 80 

90 13:01:59.7 13:17:02.0 

Netbios ip.addr==206.48.44.18 and 1250 13:16:59.9 13:17:01.3 



Appendix C WIRESHARK for Attack Truth Determination 

 

226 

ip.addr==172.16.112.100 

and tcp.port==139 

Table C-1 NTInfoscan Data for W2D1 Inside Network  

Table C-1 shows approximately three second time difference between the 

official DARPA 1999 truth data and that recorded using this method. It can also 

be seen that the attack duration was over 16 minutes. This approach also 

identifies the three separate phases of the attack, offering the potential for 

further insights to SNORT operation against this attack type. 

The same filters were applied to the outside dataset, revealing the same 

number of frames. However the times of events were different, as would be 

expected from the analysis presented in Appendix B. For example the start of 

the FTP/Telnet attack occurred at 13:00:11.7, that is 46.4 seconds earlier than 

the inside dataset. 

C.4. Conclusions 

WIRESHARK can be used to locate the frames associated with attacks in the 

DARPA 1999 dataset. Exact timing information can be derived, as well as 

parameters not within the formal truth data, such as the attack source. Within a 

given attack the parameters of individual phases can also be extracted if 

applicable. 

WIRESHARK was used during this research to update the formal truth data for 

the DARPA 1999 dataset which was used to derive the results provided in 

section 5.4.   
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Appendix D. Performance Improvement 
The dominant paradigm for network intrusion systems (NIS) is based on the 

passive sensing of network traffic, in which the NIS does not interact with other 

devices on the monitored network.  Passive NIS monitor the network sessions 

between devices, and the frames broadcast throughout the network, from 

which a determination of an intrusion or non-intrusion event can be made on 

the basis of known intrusion signatures or anomalous behaviour. This appendix 

examines one specific method of improving this process further by integrating 

active probing along with passive sensing, to support the correct assignment 

between intrusion and non-intrusion events.  

Active probing deliberately stimulates network devices into providing more 

information about their state than can be derived from passive techniques 

alone. In this aggressive detection process, detection is based on the network 

or node response to specially designed frame sequences, augmenting the 

passive interpretation of network activity. This appendix will show that 

aggressive3 techniques allow the declaration of intrusion events that are difficult 

or impossible using data derived solely from passive sensing of a network 

segment. In this context it offers improvements to the sensitivity of a NIS over 

conventional passive techniques. Improvements to selectivity are also 

highlighted.  

Given the opportunities for performance improvement it will be necessary to 

                                        

3 The term aggressive is proposed as an alternative to the more correct term active, as active 

intrusion detection already has an accepted alternative meaning. 
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consider aggressive architectures as an essential part of future high 

performance network intrusion systems. 

D.1. Aggressive Detection 

The active paradigm, in which signals with specially designed characteristics are 

transmitted and the properties of the reflected signal are measured, is well 

known in other disciplines.  In sonar, for example (Urick 1967), military systems 

often operate in a passive listening mode, sensing the environmental noise and 

attempting to extract potential target signatures. Passive techniques are 

preferred as targets are not alerted to the presence of a sonar system, which 

can then be used to gain a tactical advantage. However, many sonar systems 

also include an active element in which a sound wave is transmitted and the 

reflected energy is sensed and processed to confirm the presence of a target. 

This confirmation is inherently easier from its reflected energy than from its 

passive signature, but the target can be alerted to the presence of the sonar by 

its transmitted energy.  

Active sonar systems generally have higher sensitivity and selectivity compared 

with their passive counterparts, at the expense of reduced security, through 

revealing their presence and location. By optimising the combined use of active 

and passive techniques many of the security disadvantages of active techniques 

can be reduced or even overcome, providing significant overall advantage 

compared with the use of passive techniques alone.   

The active paradigm is also used in radar systems (Skolnik 1980), where the 

improved sensitivity over passive-only radars allows long range detection of 
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targets of interest.  Perhaps less well-known is the application of the active 

paradigm to television systems, where time gating of the signal from the active 

element, usually a laser, can achieve the rejection of unwanted signals in the 

camera (Moore, Jaffe et al. 2000), significantly improving system sensitivity.   

The motivation for this research is the extension of these principles to network 

intrusion systems, by combining active and passive network sensing techniques, 

to improve sensitivity and selectivity compared to NIS using passive-only 

techniques.  This integration of passive and active detection techniques we call 

aggressive detection, to differentiate it from purely active or passive systems. 

NISs are faced with issues similar to sonar or radar systems. They extract 

potential intrusion signatures from network measurements that are often 

gathered passively, to hide the presence of the intrusion system. However, it 

can be difficult to infer the existence of some intrusions from the passive 

sensing of network traffic alone. For example, it is hard to determine that a 

network host has unapproved packet sniffing software installed by an 

authorised user. This type of intrusion occurs without any unusual frames being 

transferred over the monitored network and post-installation the user could 

remove the sensed data using local media without transmitting it over the 

network. In the experimental work reported in the chapter 5 the “Insidesniffer” 

attack type could not be detected by SNORT. 

The potential of active probing techniques in network security has been 

recognised by others. Verwoerd noted that a number of active network tools 

were valuable in the examination of network state (Verwoerd 1999). He 
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identified some active probing techniques that could be used to assist 

networking staff in interpreting the alerts produced by an intrusion system. 

Later Lindqvist (Lindqvist 2001) identified the potential for including active 

techniques within the discrimination part of an intrusion system. He considered 

the application of active probing techniques to support the EMERALD intrusion 

detection system (Neuman and Porras 1999), both in the host and network 

modules. However, neither of these researchers examined the issues associated 

with the integration of the active and passive parts of an intrusion engine, 

which is the subject of this appendix.  

D.1.1. Aggressive Network Intrusion Systems 

A functional model of an aggressive network intrusion system (AgNIS) is shown 

in Figure D-1 below. The principle of operation is as follows. The Passive 

Element senses the frames present on the network making its intrusion/non-

intrusion determination in much the same way as in the passive NIS shown in 

Figure 4-1. Instances of intrusion-like frames however, do not trigger the 

output of an alert but instead data is transferred to the Active Element, via the 

Control Channel, so that an active network probe can be selected and 

transmitted onto the network. The Passive Element continues to acquire frames 

from the network, receiving the response to the active probe as well as further 

network activity. If this response confirms that an intrusion event is underway, 

the Passive Element will output an alert through the Management Channel. If 

the response confirms that an intrusion event is not underway, the Passive 

Element will maintain a record in its Potential Intrusion store, so that future 

probes are not requested, unless there is a further change in state. If the 
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response neither confirms nor rejects the presence of an intrusion event the 

Passive Element can take a number of actions, depending on selected strategy 

including: 

 Output an alert, to allow network support staff to investigate further; 

 Request additional probes from the Active Element; or 

 Wait for further confirmatory network measurements before an alert is 

output. 

 

Network

AgNIS

Active Element Passive Element

Probes Responses Activity

Control Channel
Management 

Channel

AlertsControlControl

 

Figure D-1 A Simple AgNIS Functional Description 
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D.1.2. Active Element Probes 

The design and selection of active probes is key to the performance of an 

AgNIS and should be based the following considerations. First, most networks 

include management and diagnostic capabilities to assist the support staff deal 

with network incidents. Such capabilities could provide significant information to 

a NIS when intrusions are suspected. An obvious approach is for the active 

element to access SNMP management blocks on suspect devices (Mauro and 

Schmidt 2001), but an AgNIS could also make information requests to the 

network management tools directly. 

Secondly, the network devices are accessible by the support staff and therefore 

software could be installed on them, designed to respond to specific, 

authenticated probes that reveal their security status. This is in many ways 

similar to the SNMP approach discussed above. However, it offers the potential 

for more specific information to be passed to the NIS, such as personal firewall 

logs. This approach will only be effective when the network security policy 

forbids the connection of personally owned devices, as is frequently the case. 

Thirdly, other network devices may be capable of acting as a source of active 

probes. For example, network vulnerability tools, such as NESSUS, interrogate 

network devices to confirm their configuration. Vulnerability checks could be 

monitored by the passive element of an AgNIS to derive additional intrusion 

information. The infrequent nature of vulnerability checks is unlikely to make 

this a practical approach and a better way may be to allow the AgNIS to initiate 

a vulnerability scan on demand. Alternatively, a study of the probes used in 

vulnerability scanning could reveal useful techniques for direct integration into 
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the active element of an AgNIS. 

Fourthly, probes could be designed to change the behaviour of network devices 

to improve their data gathering capability during a suspected intrusion event. 

For example, network sniffers could be turned on and commanded to send data 

to the passive element when specific frames or sequences of frames occur.  

Fifthly, the network tomography techniques developed by Coates (Coates, Hero 

et al. 2002) may be useful to extract information from traffic measurements 

made at a small number of network nodes. These techniques are 

computationally demanding and the probes are network resource intensive, but 

they may be useful for an AgNIS protecting large-scale networks, such as 

deployed by Government Agencies or some global enterprises. Further research 

is necessary to evaluate their potential in the current application; however their 

ability to extract low-observable measurements is attractive.  

Finally, the techniques used by intruders in the reconnaissance stage of an 

intrusion are designed to reveal detailed information about the target network. 

Whilst much of this information could be provided a priori to the AgNIS, many 

of these techniques are sophisticated and potential sources of useful 

measurements, including:  

 Port scanning, to determine a change in state of a network device (Lee, 

Roedel et al. 2003); 

 UDP probes to elicit status information from network devices (Arkin 

1999); 

 Operating system (OS) finger printing, to confirm that it has not changed 
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(Taleck 2003); 

 MAC / IP address mismatches, to sense a NIC in promiscuous mode 

(Spangler 2003); 

 Decoy services, to tempt intruders into declaring their presence; 

 Latency testing, to determine the presence of a denial of service attack, 

or a NIC in promiscuous mode (Spangler 2003); 

 Messages to fictitious hosts, to trigger reverse DNS lookups (Wu and 

Wong 1998); and 

 SMB probes to examine configuration of the host (Hertel 2004). 

Clearly there is a wide range of active probes that could be integrated into 

future network intrusion systems. The next section describes architectures for 

achieving this integration. 

D.2. Architectures for Aggressive Detection 

There are many ways that passive and active systems can be integrated to 

produce an aggressive detection system. In this appendix two characteristics of 

the integration have been chosen, namely the physical separation and the 

quantity of information that needs to be transferred between the active and 

passive elements. The motivation for the selection of these two characteristics 

stems from the military use of the active paradigm, as discussed earlier. In 

many military applications the active and passive elements are not co-located. 

Such systems are generically called bi-static, and offer an improved survivability 

compared with mono-static or co-located active and passive elements.  

Examining the properties of mono-static and bi-static geometries in the current 
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application provides useful insights, as described later in this appendix, but it is 

not immediately obvious that this application will deliver all of the usual 

advantages of bi-static geometries. Specifically the detection of the 

communications between the active and passive elements could reveal their 

presence and location to an intruder, if the network that is being protected is 

used for this communication. As a consequence, the quantity of information 

was selected as a characteristic for study, as the probability that the passive 

element will be detected by an intruder will increase with increasing 

communications between the elements. 

When physical separation and quantity of information are combined, four 

generic architectures result for including active probing within intrusion 

systems, namely: 

 Integrated, Loosely Coupled (ILC) – in which the active element of the 

intrusion system is combined with the passive intrusion engine, within 

the same host. The active and passive elements operate independently 

of each other. However the passive element combines the response of 

the network to the probes with the passively sensed normal traffic, to 

make the intrusion/non-intrusion decision. The limited communications 

between the active and passive elements will not be detectable by an 

intruder due to their co-location on a single host; 

 Integrated, Tightly Coupled (ITC) – in which the active element initiates 

probes under specific requests from the passive element in response to 

the detection of potential intrusions. The passive element then combines 
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the alert data derived from passive-only sensing with the response from 

the active probes, to amend its intrusion/non-intrusion decision. Both the 

passive and active elements reside on the same host and therefore the 

communications between them will not be detectable by an intruder;   

 Distributed, Loosely Coupled (DLC) – in which the active element is on a 

different network node from the passive element of the intrusion engine 

and operates independently, in the same way as the ILC architecture 

described above. The separation of the elements will mean that the 

limited communications between them will be detectable if it occurs over 

the network that is being monitored; and   

 Distributed, Tightly Coupled (DTC) – in which the active and passive 

elements are on separate nodes within the network but the active probes 

are sent in response to requests from the passive element. Again, the 

separation of the elements will mean that the communications between 

them will be detectable if it occurs over the network that is being 

monitored. 

Each of these approaches has different system-level implications, which will be 

discussed next. 

D.2.1. ILC Architecture 

In this architecture the active and passive elements of the intrusion engine are 

contained on the same host and operate independently of each other. This is 

illustrated in Figure D-2, where an AgNIS is shown protecting the servers on 

network segment 1, from unauthorised activity from users on network segment 
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2. 

The passive element senses the frames present on network segment 1. This 

network segment contains frames from authorised users as well as the probe 

and response frames from the active element. Whilst the two elements could 

use the same NIC, they are likely to be present on separate NICs to reduce the 

vulnerability of the intrusion system. Multiple NICs allow the IP address of the 

passive element to be disabled, hiding its presence and reducing opportunities 

for denial of service attacks.   
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Figure D-2 Integrated, Loosely Coupled AgNIS 

The active element sends probes in a pre-set sequence, at selected timings 

according to a predetermined plan that is shared with the passive element. The 
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properties of the sequence, such as probe type and frequency, are determined 

by the support staff in response to their concerns regarding the security of the 

network. Network devices at higher risk or requiring increased assurance will be 

probed more frequently and with a wider variety of probes. The selection of the 

timing interval between probes will be from a consideration of: 

 The number of network devices that are being monitored; 

 The impact on network bandwidth; and  

 The need for randomisation to reduce the vulnerability of the intrusion 

system to predictive attacks using the probe sequence to penetrate 

further into the network.  

It is not necessary for an intrusion to be detectable by the passive element 

before active probes are transmitted. This means that ILC systems have the 

potential to allow detection of low-observable intrusions that are less likely to 

be detected using passive sensing techniques alone. This is expected to 

improve the detection rate and as well as reduce the false alarm rate compared 

with an intrusion system operating solely using passive sensing. The result 

would be an improvement in sensitivity compared with a passive-only NIS. 

The effect of using this architecture on the selectivity of a NIS is unclear at this 

time. The selectivity associated with low-observable events will have improved, 

due to their improved detection. However as the probes are not selected to 

improve discrimination on events detected by the passive element, instead 

being determined by the pre-agreed plan, it is unlikely that selectivity will 

generally be improved. More research is required to evaluate this further.  
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ILC architectures are considered of little interest as they are at significant risk of 

attack. The active probes alert an attacker to the presence of an intrusion 

system and identify the host on which it is operating. Penetration or denial of 

service attacks on the host would be expected. Also, they use network 

bandwidth for the probes and responses, even during non-intrusion times. 

D.2.2. ITC Architecture 

In the ITC architecture the active probing element is under the direct control of 

the passive element, as shown in Figure D-3. The passive element determines 

potential intrusion events from its sensing of the frames on the network 

segment 1, which are then passed to the active element for further 

interrogation.  
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Figure D-3 Integrated, Tightly Coupled AgNIS 
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The AgNIS combines the results of the passive classifiers with the additional 

information derived from the active probing to improve the intrusion/non-

intrusion discrimination. Again, separate NICs are likely to be needed for the 

active and passive elements, in order to reduce the vulnerability of the intrusion 

system.   

When operating with this architecture, the active probes provide information to 

confirm or reject of the presence of an intrusion, initially detected using passive 

techniques. Therefore it is unable to detect low-observable intrusions directly, 

but is able to provide the method for a reduction in false alarms.  

The sensitivity of the AgNIS can be increased over the use of passive 

techniques, in the following way. The passive element would operate at a low 

decision threshold level, equivalent to moving to the right hand side of a ROC 

curve. This will produce a high detection rate for intrusion events, but also a 

large false alarm rate. In a NIS using passive techniques alone this false alarm 

rate is likely to be too high for support staff to investigate effectively. However, 

the active element of the AgNIS is automated and would therefore be capable 

of rapid interrogation of each of these passively detected alerts. Only detections 

confirmed by the response to the active element are output as alerts. In this 

way the sensitivity of the AgNIS is increased, by moving the operating point on 

the passive element ROC curve to the right and using two-stage detection to 

reduce the overall false alarm rate to an acceptable level. 

The selectivity of the AgNIS can be increased over the use of passive 

techniques, by choosing active probes specifically in response to the signatures 
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triggered in the passive element. For example consider the situation in which a 

set of signatures have been triggered for a given connection between network 

devices. The probability vector with unity entries for the triggered signatures 

could be used calculate the distance to specific intrusion event types in the 

selectivity matrix. If there is uncertainty about which intrusion event type 

should be declared, for example by the distances being closer than a threshold 

value, specific active probes could be dispatched to improve the discrimination. 

Further probes could also be used if the initial selection failed to provide 

sufficient discrimination between the possible intrusion event types. 

As a specific example of selectivity improvements consider the situation where 

the passive element detects activity from a specific host that could be 

interpreted as attempts to force a network switch into hub mode. The active 

element could be instructed to use probes to determine if the host NIC was in 

promiscuous mode. If this is confirmed, it is logical to deduce that network 

sniffing is being attempted and issue a specific alert for action by the network 

support team. If the host is not in promiscuous mode, further probes may be 

sent to other hosts on the segment to see if a coordinated attack is underway, 

involving multiple attackers.  Other probes could be considered to provide more 

selective information on the type of attack underway.  

The principal advantage of the ITC architecture is its simplicity. Once the 

passive part has detected a potential intrusion, the type and parameters of 

active probes can be selected and initiated against the suspect network device. 

As the responses from the initial probes are received and interpreted, further 
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probes can be sent to address any remaining uncertainty. No communication 

difficulties are present between the active and passive elements due to their co-

location on the same host. Thus tight integration of the active and passive parts 

can be achieved. Additional advantages include: 

 Fast response – the tight coupling minimises the communications delays 

and allows the active element to be responsive to the threat. Alerts are 

likely to be declared more quickly with a tightly coupled architecture; and 

 Resource Efficient - Network resources are used only when the network 

threat level has increased due to potential intrusions being found by the 

passive element. 

The principal disadvantage of this approach is the vulnerability of the intrusion 

system to attack. Again, the active probes will identify the host running the 

intrusion system providing valuable information to an intruder. 

D.2.3. DLC Architecture 

In the DLC architecture the active and passive elements operate independently 

on different hosts, as shown in Figure D-4. In this figure the probes are 

initiated from a host within the same network segment as the suspected 

compromised host. In general this is not necessary, however the active element 

must spoof its IP address to direct probe responses to the network segment 

where the passive element is present.  

Many of the features of the ILC architecture apply including: 

 Sensitivity is improved; 
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 The active element would follow a pre-set sequence of probes at set 

timings, defined by the pre-shared plan; 

 The potential to detect low-observable intrusion events is present; and 

 There is inefficient use of network resources. 
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Figure D-4 Distributed, Loosely Coupled AgNIS 

There is an important difference however, in terms of the vulnerability of the 

intrusion system. If the active element is attacked and disabled, the integrity of 

the intrusion system is not completely lost. The passive element can continue to 

operate, albeit at reduced performance. The active probes no longer identify 

the hosts for the intrusion system and therefore attacks against it would be 

more challenging to initiate. 
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At first sight the need to spoof the addresses of the active element could reveal 

the network segment on which the passive element resides. This would be a 

serious issue, as the passive element provides the executive control of the 

AgNIS, determining when alerts are issued to support staff. There are a number 

of ways of overcoming this, including: 

 The active element could spoof its addresses to multiple network 

segments, in sequence, thereby hiding the actual segment on which the 

passive element resides; 

 Honeynet devices could be placed within the network segment being 

spoofed by the active element. These devices could broadcast alerts 

when subject to penetration attempts or other NIS defeat techniques, as 

this would be confirmation of an on-going attack within the network; 

 Multiple active and passive elements could be deployed, increasing the 

survivability of the AgNIS; and 

 Active element decoys could be deployed, with honeynet features. These 

decoys could generate probes with spoofed addresses that do not 

contain passive elements 

The principal disadvantages of the DLC are its inefficient use of network 

resources, due to its use of network probes when no intruder is present, and 

reduced responsiveness compared with tightly coupled architectures. 

D.2.4. DTC Architecture 

In the DTC architecture the active and passive elements are also separated 

within the network, as shown in Figure D-5.  The control of the active element 
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is determined by messages from the passive element, in much the same way as 

the ITC architecture. Many of the features of the DLC and ITC architectures are 

inherited: 

 The active system responds only to alerts detected by the passive 

element, making the principal benefit that of improved sensitivity and 

selectivity; 

 Multiple active elements can be deployed, directing the responses to 

their probes to the same passive element; 

 Reduced vulnerability and increased survivability compared with 

integrated architectures, due to the redundancy within the AgNIS; and 

 Efficient use of network resources, as probes are only initiated in 

response to a perceived attack. 
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Figure D-5 Distributed, Tightly Coupled AgNIS 
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The key issue in the DTC architecture is the mechanism for achieving 

communications. The simplest method is to allow the passive element to 

communicate with the active element via the monitored network. However, this 

approach would identify the passive element to a potential attacker and is 

therefore not considered appropriate.  It is common practice for a dedicated 

VLAN to be used for network management tasks; however such connections are 

subject to the same security concerns.  IPSec tunnels, whilst securing the 

payload contents, reveal the tunnel end points where the passive and active 

elements reside. 

An alternative communication method could use out-of-band connections, 

effectively a separate network to that which is being monitored by the AgNIS.  

Direct peer-to-peer connections between the active and passive elements can 

be easily achieved. Close physical separation is usually required and likely to be 

available, even within a large global network, mainly from network 

administration considerations. 

In systems where the out-of-band communication is impractical it would be 

necessary to consider special techniques to hide the presence of the 

communication channels on the monitored network. It is proposed to use covert 

channels to convey the selection of an active probe and its parameters (Ahsan 

2002). Such channels are difficult to detect, hiding their presence from 

intruders sniffing the monitored network. Usually the potential for covert 

channels to be present is a significant security concern. However, it is believed 

their use to hide the presence of AgNIS communications to be novel and an 
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appropriate use of this intruder technique.  Covert timing channels are likely to 

be more applicable than covert storage, providing the channel bandwidth can 

be sufficiently high to convey the full message without excessive delay.  

D.2.5. Hybrid Architectures 

Hybrid architectures could also be deployed, in which the active element 

initiates probes according to a pre-agreed plan controlling the sequence and 

timing, unless otherwise directed by the passive system. This approach would 

inherit many of the advantages of the loosely coupled systems as well as 

maintaining the advantages of the tightly coupled systems. It would be able to 

detect low-observable intrusion events, during its loosely coupled operation and 

become highly responsive with a low false alarm rate when operated within its 

tightly coupled mode. In addition, in systems where multiple active elements 

have been deployed, some could be tightly coupled whilst others are loosely 

coupled, achieving the same performance simultaneously. 

Hybrid architectures are versatile, offering many options to the network security 

staff. In loosely coupled mode the active element could be commanded into 

one of many pre-set plans according to the threat perceived by the passive 

element. The threat could be determined by the number of alerts being 

detected by the passive element, the presence of anomalies such as network 

load or even time of day. Network resource intensive techniques could be 

deployed in some plans, when the threat was determined to be high or the 

impact on users could be tolerated. In tightly coupled mode the passive 

element could command multiple active elements to initiate the probes 

necessary for discrimination of intrusion packages. This would give redundancy, 
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improving the survivability of the AgNIS, but it could also be used to obscure 

the presence of the active elements.     

It is likely that hybrid, distributed architectures will offer the most potential for 

future active network intrusion systems. Their potential for attack resilience as 

well as their capacity for detecting low-observable intrusions will be important 

in practical systems. 

In Table D-1 below the advantages and disadvantages of the different 

architectures are summarised and contrasted with a NIS using passive 

techniques only. 

Architecture Advantages Disadvantages 

Passive Only 

 Simple 

 Minimal hardware 

requirements 

 Difficult to detect the 

deployment of NIS 

 Limited sensitivity  

 Poor false alarm rate 

 Unable to detect low-

observable intrusion events 

 Poor NIS survivability 

Integrated, Loosely 

Coupled (ILC) 

 Simple 

 Minimal hardware 

requirements 

 Detection of low-observable 

intrusion events 

 Improved sensitivity 

 Vulnerable to direct attack 

 Inefficient use of network 

resources 

 Poor response time (need to 

wait for discriminating probe) 

 Poor NIS survivability 

Integrated, Tightly 

Coupled (ILC) 

 Simple communications 

 Improved sensitivity 

 Improved selectivity 

 Efficient use of network 

resources 

 Fast response 

 Detection of low-observable 

intrusion events is not 

improved 

 Host is vulnerable to attack 

 Poor NIS survivability 

Distributed, Loosely 

Coupled (DLC) 

 Detection of low-observable 

intrusion events 

 Improved sensitivity 

 More hardware required 

 Inefficient use of network 

resources 
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 Reduced vulnerability to 

direct attack 

 Increased NIS survivability 

 Multiple active elements can 

be used with a single passive 

element 

 Poor response time (need to 

wait for discriminating probe) 

Distributed, Tightly 

Coupled (DTC) 

 Efficient use of network 

resources 

 Improved sensitivity 

 Improved selectivity 

 Fast response 

 Reduced vulnerability to 

direct attack 

 Increased NIS survivability 

 Multiple active elements can 

be used with a single passive 

element 

 Covert communications 

required 

 More hardware required 

 Detection of low-observable 

intrusion events is not 

improved 

Hybrid 

 Efficient use of network 

resources 

 Detection of low-observable 

events 

 Fast response 

 Improved sensitivity 

 Improved selectivity 

 Reduced vulnerability to 

direct attack 

 Increased NIS survivability 

 Multiple active elements can 

be used with a single passive 

element 

 More hardware required 

 Covert communications 

required 

Table D-1 The Advantages and Disadvantages of AgNIS Architectures 

D.3. AgNIS Considerations 

There are some important issues associated with active probing that need to be 

considered before inclusion within deployed intrusion systems. This section 

describes many of these considerations. 
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D.3.1. Batch Processing 

Lindqvist considered the integration of active probes into EMERALD and he 

concluded that the intrusion engine must operate in real-time rather than batch 

mode (Lindqvist 2001).  This is true for an intrusion system with tightly coupled 

active and passive elements, including hybrid approaches. However this is not 

generally true as architectures can be proposed in which batch processing can 

also be a potential operating mode. Both the ILC and DLC architectures 

discussed above can be operated in batch mode. Such architectures may 

therefore become important in networks where forensic analysis of events is 

essential. 

D.3.2. Network Security and AgNIS Protection 

Intrusio systems are generally vulnerable to attack or evasion techniques and it 

is therefore important that the integration of active probing does not degrade 

this situation further. Specific techniques will need to be included to protect the 

NIS against existing and specially developed attacks against AgNIS. For 

example, in the loosely coupled architectures, the intrusion system could be 

vulnerable to an attacker injecting a background of false probe responses. This 

could be addressed by time synchronising the active and passive elements. The 

passive element would then only include probe responses within a narrow time 

window. Time synchronisation could be achieved by a covert channel from the 

active to the passive elements, at the cost of increasing the coupling between 

them.  

Of particular concern is the potential for an attacker to initiate a large number 

of alerts within the passive part of an AgNIS using tight coupling, using tools 
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such as STICK (Patton, Yurcik et al. 2001). The resulting number of probes that 

could be generated would overload the network resources, creating a self-

induced denial of service. It is therefore necessary to include features to limit 

the resources consumed by the active probes. Although this will offer the 

potential for an attacker to overload the intrusion system with spoofed attacks 

before initiating an attack on the real target, the presence of an intruder within 

the network would be obvious. This discussion indicates that care in the 

selection of security measures and countermeasures is required. It is hoped 

that this will be subject of future research. 

The location of the active elements relative to the passive elements needs 

careful consideration. It is not necessary for the active element to be on the 

same subnet as the passive element, nor on the subnet that includes the 

monitored devices. The active element could spoof its addresses to direct 

responses at individual passive elements. This is a useful capability and offers 

the potential for cooperation between multiple passive elements, further 

improving the survivability of the intrusion system when under attack.  

D.3.3. Personal Firewalls 

Many organisations deploy personal firewalls on network hosts, either as part of 

the operating system or as a dedicated security tool. These have the ability to 

limit the information that can be gathered from network probes and can 

potentially increase the workload of support staff as they respond to queries 

raised by network users. At first sight this might appear to limit the applicability 

of active techniques; however the following approach can be taken: 
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 Active probes can be used to monitor changes to the open ports and 

available services on protected hosts, to confirm that such changes are 

in line with the network security policy; 

 Not all the network devices have personal firewalls. Routers, switches, 

firewalls (low security connections) and servers generally do not. Probes 

will need to be able to extract the maximum of available information 

from such devices; 

 The personal firewalls are authorised by the network security staff and 

subject to policy settings. The security team could allow the personal 

firewalls to respond to specific probes, so as to confirm the status of the 

host; and 

 Many probe types are designed to illicit a response from the IP stack of 

the host rather than to penetrate it. Application layer firewalls should not 

affect the responses from lower levels in the stack. 

D.3.4. Efficiency 

Aggressive NIS have a much improved efficiency compared with passive 

systems alone. In passive NIS the ratio of frames that are capable of correctly 

asserting the status of a network or network device may be greater than 

1:50,000, as discussed in section 4.5. However, probe responses are designed 

specifically for this task and by increasing their frequency this ratio can be 

significantly reduced. The exact reduction depends on the design parameters of 

the AgNIS, but for a design goal of no more than one active response frame for 

every 100 normal user frames, to minimise the impact on network bandwidth, 

this ratio could reduce to 1:100.  
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The two-stage alerting process, that is inherent in AgNIS architectures that 

exploit tight coupling, changes the design requirements for the passive 

element. The goal of the passive element is now to make sure that intrusions 

are alerted in the first stage, not to reduce the false alarms through the use of 

sophisticated discrimination techniques. Discrimination is now undertaken in the 

second stage, where the responses to specific probes provide data that simplify 

this process. The first stage, passive processing may be achieved with less 

computationally demanding techniques than in conventional NIS. This further 

improves efficiency of a NIS as the majority of the NIS measurements are 

undertaken with simplified processing. 

D.4. Summary and Conclusions 

Four discrete architectures for integrating active probes with a passive NIS have 

been investigated and their properties determined. It is clear that an AgNIS 

approach can offer both sensitivity and selectivity improvements compared with 

a passive only approach, depending on the implemented architecture. The 

selection of a particular architecture depends on the detailed requirements 

including the need for real-time operation, the implications on the network 

bandwidth and the security concerns of the network owner. 

The most attractive approach for real-time operation is a hybrid architecture 

consisting of multiple distributed active and passive elements communicating is 

a discreet way. This approach appears to offer the potential to achieve all the 

benefits of AgNIS architectures whilst minimising their disadvantages.  



 Appendix D Performance Improvement       

  

255 

The security implications of deploying an AgNIS have been reviewed, with the 

potential for communications between the active and passive elements to 

reveal their locations identified as a prime concern for distributed systems. 

Ideally this issue can be resolved with out-of-band connections but when this is 

not possible the novel approach of using covert channels to achieve discreet 

communications between the AgNIS elements has been proposed.  

The application of AgNIS requires more research to establish how far sensitivity 

and selectivity can be improved. In particular the discrimination offered by 

different active probe types needs to be established. 
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Appendix E. SNORT Configuration 

The following SNORT configuration file was used to produce the results 

reported in Chapter 5. The comments have been removed to reduce the size of 

this appendix. 

var HOME_NET [192.168.1.0/24,172.16.0.0/16] 
var EXTERNAL_NET any 
var DNS_SERVERS $HOME_NET 
var SMTP_SERVERS $HOME_NET 
var HTTP_SERVERS $HOME_NET  
var SQL_SERVERS $HOME_NET 
var TELNET_SERVERS $HOME_NET 
 
portvar HTTP_PORTS  
[80,2301,3128,7777,7779,8000,8008,8028,8080,8180,8888,9999] 
portvar SHELLCODE_PORTS !80 
portvar ORACLE_PORTS 1521 
 
var AIM_SERVERS 
[64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,2
05.188.3.0/24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/2
4,205.188.179.0/24,205.188.248.0/24] 
 
var RULE_PATH /home/christ/Desktop/PhD/rules 
var SO_RULE_PATH /home/christ/Desktop/PhD/rules/so_rules 
var PREPROC_RULE_PATH /home/christ/Desktop/PhD/rules/preproc_rules 
 
config disable_decode_alerts 
config disable_tcpopt_experimental_alerts 
config disable_tcpopt_obsolete_alerts 
config disable_tcpopt_ttcp_alerts 
config disable_tcpopt_alerts 
config disable_ipopt_alerts 
config checksum_mode: all 
 
config pcre_match_limit: 1500 
config pcre_match_limit_recursion: 1500 
config detection: search-method ac-bnfa max_queue_events 5 
config event_queue: max_queue 8 log 3 order_events content_length 
 
dynamicpreprocessor directory /usr/local/lib/snort_dynamicpreprocessor/ 
dynamicengine /usr/local/lib/snort_dynamicengine/libsf_engine.so 
dynamicdetection directory /usr/local/lib/snort_dynamicrules 
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preprocessor frag3_global: max_frags 65536 
preprocessor frag3_engine: policy windows timeout 180 
 
preprocessor stream5_global: max_tcp 8192, track_tcp yes, track_udp no 
preprocessor stream5_tcp: policy windows, use_static_footprint_sizes, ports 
client 21 22 23 25 42 53 79 80 109 110 111 113 119 135 136 137 139 143 110 
111 161 445 513 514 691 1433 1521 2100 2301 3128 3306 6665 6666 6667 
6668 6669 7000 8000 8080 8180 8888 32770 32771 32772 32773 32774 32775 
32776 32777 32778 32779, ports both 443 465 563 636 989 992 993 994 995 
7801 7702 7900 7901 7902 7903 7904 7905 7906 6907 7908 7909 7910 7911 
7912 7913 7914 7915 7916 7917 7918 7919 7920 
preprocessor perfmonitor: time 300 file /home/christ/Desktop/PhD/snort.stats 
pktcnt 10000 
preprocessor http_inspect: global iis_unicode_map unicode.map 1252  
preprocessor http_inspect_server: server default \ 
    apache_whitespace no \ 
    ascii no \ 
 bare_byte no \ 
 chunk_length 500000 \ 
 flow_depth 1460 \ 
 directory no \ 
 double_decode no \ 
 iis_backslash no \ 
 iis_delimiter no \ 
 iis_unicode no \ 
 multi_slash no \ 
 non_strict \ 
 oversize_dir_length 500 \ 
 ports { 80 2301 3128 7777 7779 8000 8008 8028 8080 8180 8888 9999 
} \ 
 u_encode yes \ 
 non_rfc_char { 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \ 
 webroot no 
 
preprocessor rpc_decode: 111 32770 32771 32772 32773 32774 32775 32776 
32777 32778 32779 no_alert_multiple_requests no_alert_large_fragments 
no_alert_incomplete 
 
preprocessor bo 
 
preprocessor ftp_telnet: global encrypted_traffic yes check_encrypted  
inspection_type stateful  
preprocessor ftp_telnet_protocol: telnet \ 
    ayt_attack_thresh 20 \ 
    normalize ports { 23 } \ 
    detect_anomalies 
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preprocessor ftp_telnet_protocol: ftp server default \ 
    def_max_param_len 100 \ 
    ports { 21 2100 } \ 
    ftp_cmds { USER PASS ACCT CWD SDUP SMNT QUIT REIN PORT PASV TYPE 
STRU MODE } \ 
    ftp_cmds { RETR STOR STOU APPE ALLO REST RNFR RNTO ABOR DELE 
RMD MKD PWD } \ 
    ftp_cmds { LIST NLST SITE SYST STAT HELP NOOP } \ 
    ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC } \ 
    ftp_cmds { FEAT OPTS CEL CMD MACB } \ 
    ftp_cmds { MDTM REST SIZE MLST MLSD } \ 
    ftp_cmds { XPWD XCWD XCUP XMKD XRMD TEST CLNT } \ 
    alt_max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST 
NOOP } \ 
    alt_max_param_len 100 { MDTM CEL XCWD SITE USER PASS REST DELE 
RMD SYST TEST STAT MACB EPSV CLNT LPRT } \ 
    alt_max_param_len 200 { XMKD NLST ALLO STOU APPE RETR STOR CMD 
RNFR HELP } \ 
    alt_max_param_len 256 { RNTO CWD } \  
    alt_max_param_len 400 (Portokalidis and Bos) \ 
    alt_max_param_len 512 { SIZE } \ 
    chk_str_fmt { USER PASS ACCT CWD SDUP SMNT PORT TYPE STRU MODE } 
\ 
    chk_str_fmt { RETR STOR STOU APPE ALLO REST RNFR RNTO DELE RMD 
MKD } \ 
    chk_str_fmt { LIST NLST SITE SYST STAT HELP } \ 
    chk_str_fmt { AUTH ADAT PROT PBSZ CONF ENC } \ 
    chk_str_fmt { FEAT OPTS CEL CMD } \ 
    chk_str_fmt { MDTM REST SIZE MLST MLSD } \ 
    chk_str_fmt { XPWD XCWD XCUP XMKD XRMD TEST CLNT } \ 
    cmd_validity MODE < char ASBCZ > \ 
    cmd_validity STRU < char FRP > \ 
    cmd_validity ALLO < int [ char R int ] > \ 
    cmd_validity TYPE < { char AE [ char NTC ] | char I | char L [ number ] } > 
\ 
    cmd_validity MDTM < [ date nnnnnnnnnnnnnn[.n[n[n]]] ] string > \ 
    cmd_validity PORT < host_port > 
preprocessor ftp_telnet_protocol: ftp client default \ 
    max_resp_len 256 \ 
    bounce yes \ 
    telnet_cmds no 
 
preprocessor smtp: ports { 25 587 691 } \ 
  inspection_type stateful \ 
  normalize cmds \ 
  normalize_cmds { EXPN VRFY RCPT } \ 
  alt_max_command_line_len 260 (Esmaili, Safavi-Naini et al.) \ 
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  alt_max_command_line_len 300 { RCPT } \ 
  alt_max_command_line_len 500 { HELP HELO ETRN } \ 
  alt_max_command_line_len 255 { EXPN VRFY } 
 
preprocessor ssh: server_ports { 22 } \ 
                  max_client_bytes 19600 \ 
                  max_encrypted_packets 20 \ 
                  enable_respoverflow enable_ssh1crc32 \ 
                  enable_srvoverflow enable_protomismatch 
 
preprocessor dcerpc2: memcap 102400, events [co ] 
preprocessor dcerpc2_server: default, policy WinXP, \ 
    detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \ 
    autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \ 
    smb_max_chain 3 
 
preprocessor dns: ports { 53 } enable_rdata_overflow 
 
preprocessor ssl: ports { 443 465 563 636 989 992 993 994 995 7801 7702 
7900 7901 7902 7903 7904 7905 7906 6907 7908 7909 7910 7911 7912 7913 
7914 7915 7916 7917 7918 7919 7920 }, trustservers, noinspect_encrypted 
 
output alert_csv: /home/christ/Desktop/alerts.csv default 
output alert_full: alert 
 
include /home/christ/Desktop/PhD/config/classification.config 
include /home/christ/Desktop/PhD/config/reference.config 
 
include $RULE_PATH/local.rules 
 
include $RULE_PATH/exploit.rules 
include $RULE_PATH/ftp.rules 
include $RULE_PATH/telnet.rules 
include $RULE_PATH/rpc.rules 
include $RULE_PATH/rservices.rules 
include $RULE_PATH/dos.rules 
include $RULE_PATH/ddos.rules 
include $RULE_PATH/dns.rules 
 
include $RULE_PATH/web-cgi.rules 
include $RULE_PATH/web-coldfusion.rules 
include $RULE_PATH/web-iis.rules 
include $RULE_PATH/web-frontpage.rules 
include $RULE_PATH/web-misc.rules 
include $RULE_PATH/web-client.rules 
include $RULE_PATH/web-php.rules 
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include $RULE_PATH/sql.rules 
include $RULE_PATH/x11.rules 
include $RULE_PATH/netbios.rules 
include $RULE_PATH/misc.rules 
include $RULE_PATH/attack-responses.rules 
include $RULE_PATH/oracle.rules 
include $RULE_PATH/mysql.rules 
 
include $RULE_PATH/smtp.rules 
include $RULE_PATH/imap.rules 
include $RULE_PATH/pop2.rules 
include $RULE_PATH/pop3.rules 
 
include $RULE_PATH/nntp.rules 
include $RULE_PATH/backdoor.rules 
include $RULE_PATH/snmp.rules 
include $RULE_PATH/icmp.rules 
include $RULE_PATH/tftp.rules 
include $RULE_PATH/scan.rules 
include $RULE_PATH/finger.rules 
include $RULE_PATH/web-attacks.rules 
include $RULE_PATH/shellcode.rules 
include $RULE_PATH/policy.rules 
include $RULE_PATH/info.rules 
include $RULE_PATH/icmp-info.rules 
include $RULE_PATH/virus.rules 
include $RULE_PATH/chat.rules 
include $RULE_PATH/multimedia.rules 
include $RULE_PATH/p2p.rules 
include $RULE_PATH/spyware-put.rules 
include $RULE_PATH/specific-threats.rules 
include $RULE_PATH/voip.rules 
include $RULE_PATH/other-ids.rules 
include $RULE_PATH/bad-traffic.rules 
 
include /home/christ/Desktop/PhD/config/threshold.conf 
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Appendix F. Professional Review 
 
In order to gauge the view of other professionals it was decided to obtain 

independent review of the body of this thesis. Chapters 3, 4 and 5 were 

supplied to two consulting security architects to gain their views on the 

practicality of the proposed taxonomy and metrics. Specifically four questions 

were posed, as follows: 

1) Do you agree with the premise that comparison of intrusion systems is 

difficult? 

2) Does the taxonomy go some way towards addressing this difficulty? 

3) Does the two new metrics help compare intrusion systems? and 

4) Has the experimental program shown that the metrics are useful for 

comparing intrusion systems? 

Unfortunately only one security architect could respond in time (Prowse 2013), 

the full content of which is repeated below: 

“After reviewing the paper of Mr Chris Tucker and having worked as a 

professional security consultant and technical security architect with successful 

delivery of IDS and IPS systems for various clients my view of the paper is that 

it describes very well the issues that we see in day to day use and 

implementation of IDS and IPS systems and the difficulty that is often placed 

on the security professional when assisting clients with the choices for intrusion 

systems.  Allied with the current crop of advanced persistent threats the paper 

demonstrates very clearly that the current approach to the way in which these 

system types are compared is not straight forward and requires to be 
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updated.  The new taxonomy takes that step forward and brings with it known 

and demonstrable approaches and metrics for the measurement of these 

systems utilising techniques that have been widely used and are well 

understood from the radio and telegraphy sphere. 

The proposed taxonomy allows for a greater comparison of systems and clearly 

demonstrates the difficulty in selection and use of the systems in a real world 

environment through the testing that was carried out in support of the 

paper.  Given that the approach to security is never static and that in the 

current climate where customers and clients are expecting the “maximum bang 

for buck” taking this approach allows for the threat to be married more closely 

to the appropriate device type when the suggested new taxonomy model is 

used. 

The adoption of the two new metrics should be seriously considered by 

suppliers of detection systems (used in the context of the paper to also include 

anti-virus systems) as a way of not only assisting in product improvement but 

one that also will allow for a client to make a more informed choice over the 

potential product or products that they may choose to apply to their 

environments.  As stated previously experience has shown that clients typically 

now only rely on one type of IDS or IPS system within their environment so 

choice and demonstrable evidence in threat capture and analysis based on the 

updated matrix would allow for a more informed decision to be made. 

The experimental program used in the paper would be useful for the 

comparison of intrusion systems and could be used in a wider context within 

the industry to compare product (possibly by SANs or similar), which would 
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allow for independent testing using the program to adopt and continue to 

expand the use of the new taxonomy and metrics. 

Overall, the paper is well laid out and easy to read and understand for a 

professional in the information security field which a background in detection 

systems and poses some new and additional research options for the 

future.  From a personal perspective the adoption of the updated taxonomy by 

the security industry should be seriously considered as it allows for a greater 

match to a wider threat profile and could if adopted allow a greater and more 

accurate choice of product and implementation of intrusion systems.”
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Appendix G. Research Papers 
The following papers have been produced as part of the PhD research 

activities: 

C. J. Tucker, S. M. Furnell, B. V. Ghita, and P. J. Brooke, "A new taxonomy for 

intrusion detection," in International Networking Conference INC'06. Plymouth, 

2006 (Attached to this thesis); 

C. J. Tucker, S. M. Furnell, B. V. Ghita, and P. J. Brooke, "A new taxonomy for 

comparing intrusion detection systems," Internet Research, vol. 17, pp. 88-98, 

2007; (Attached to this thesis); and 

C. J. Tucker, S. M. Furnell, B. V. Ghita, and P. J. Brooke, "The aggressive 

detection of network intrusions”, submitted to Computers & Security. 
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