Faculty of Health: Medicine, Dentistry and Human Sciences

School of Health Professions

2020-04-11

Footwear and insole design features for offloading the diabetic at risk foot - A Systematic Review and Meta-Analyses

Collings, R

http://hdl.handle.net/10026.1/15467

10.1002/edm2.132 Endocrinology, Diabetes and Metabolism BioScientifica

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Title: Footwear and insole design features for offloading the diabetic at risk foot - A Systematic Review and Meta-Analyses

Richard Collings, Jennifer Freeman, Jos M. Latour, Joanne Paton

Journal title: Endocrinology, Diabetes & Metabolism. Accepted: 17th March 2020 Running Title: Footwear and insole design features for offloading

Corresponding author: Richard Collings^{1,2}; NIHR Clinical Doctoral Researcher

Faculty of Health: Medicine, Dentistry and Human Sciences

University of Plymouth, PAHC, Derriford Road, Plymouth

richard.collings@plymouth.ac.uk

Co-Authors

Jennifer Freeman¹ Jos M. Latour³ Joanne Paton¹

¹ School of Health Professions, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, United Kingdom

² Department of Podiatry, Torbay and South Devon NHS Foundation Trust, United Kingdom

³ School of Nursing and Midwifery, Faculty of Health: Medicine, Dentistry and Human Sciences,

University of Plymouth, United Kingdom

Keywords - diabetic foot; prevention; offloading; footwear; insoles; systematic review

Word count abstract = 239

Word Count manuscript = 5443

Number of figures = 4

Number of tables = 1

Number of electronic supplementary material = 10

Number of references = 87

Abstract

Title: Footwear and insole design features for offloading the diabetic at risk foot - A Systematic Review and Meta-Analyses

The aim of this systematic review is to identify the best footwear and insole design features for offloading the plantar surface of the foot to prevent foot ulceration in people with diabetic peripheral neuropathy. We searched multiple databases for published and unpublished studies reporting offloading footwear and insoles for people with diabetic neuropathy and non-ulcerated feet. Primary outcome was foot ulcer incidence; other outcome measures considered were any standardised kinetic or kinematic measure indicating loading or offloading the plantar foot. Fiftyfour studies, including randomized controlled studies, cohort studies, case-series, and a casecontrolled and cross-sectional study were included. Three meta-analyses were conducted and random effects modelling found peak plantar pressure reduction of arch profile (37 kPa (MD, -37.5; 95% Cl, -72.29 to -3.61; p < 0.03), metatarsal addition (35.96 kPa (MD, -35.96; 95% Cl, -57.33 to -14.60; p < 0.001) and pressure informed design 75.4kPa (MD, -75.4kPa; 95% CI, -127.4kPa to -23.44 kPa; p < 0.004). The remaining data were presented in a narrative form due to heterogeneity. This review highlights the difficulty in differentiating the effect of different insole and footwear features in offloading the neuropathic diabetic foot. However, arch profiles, metatarsal additions and apertures are effective in reducing plantar pressure. The use of pressure analysis to enhance the effectiveness of the design of footwear and insoles, particularly through modification, is recommended.

INTRODUCTION

Foot ulceration is amongst the most serious complications of diabetes mellitus ¹. It is expected that 19-34% of people with diabetes will develop a foot ulcer at some point ². Foot ulceration is known to precede 80% of all diabetic lower limb amputations ^{3,4}. A longitudinal study of a diabetic community reported new ulcer incidence as an estimated 2% annually ⁵ whilst other studies have noted ulcer re-occurrence rates of 30-40% in the first year after an ulcer episode ^{2,6,7}. Prevention of foot ulceration occurrence and reoccurrence are now recognised as key strategies in reducing the concomitant burden to patients with diabetes and the healthcare system ⁸.

The cause of diabetic foot ulceration is multifactorial ⁹. However, reducing high plantar loads or foot pressures is one mechanism by which foot ulceration may be prevented ¹⁰. Elevated dynamic plantar pressures during locomotion contribute to the development of plantar diabetic foot ulcers when in the presence of neuropathy ^{11,12}. Guidelines recommended that people with diabetes wear appropriate 'diabetic footwear' designed to reduce repetitive stresses at all times ¹³. Systematic reviews have demonstrated the effectiveness of footwear and insoles in offloading the plantar load under the foot and preventing ulceration ¹⁴⁻¹⁸. However, these have not identified the best insole design or feature and footwear specification or modification for use when reducing plantar load for foot ulcer prevention in people with diabetes and neuropathy.

Therefore the purpose of this systematic literature review is to identify the best footwear and insole design features for offloading the plantar surface of the foot to prevent foot ulceration in people with diabetes. It is anticipated that this information will inform a standardised protocol for the clinical design of therapeutic insoles and footwear to offload the foot and reduce ulcer risk in people with diabetes and neuropathy.

More specifically, the objectives are to identify the key design features with regard to:

- profile/shape of the insole, shoe upper and shoe outsole
- material type and properties of the insole and shoe outsole
- modifications made to the insole and shoe outsole
- fabrication techniques used for the insole and shoe

METHODS

This systematic review was performed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidance ¹⁹. The systematic review was prospectively registered on the PROSPERO database for systematic reviews (CRD42017072816).

The population of interest was adults over 18 years of age with type 1 or 2 diabetes mellitus and peripheral neuropathy. The primary outcome was foot ulcer incidence; other outcome measures considered were any standardised kinetic or kinematic measure indicating loading or offloading the plantar foot (such as plantar pressure, pressure-time integral, total contact area, dynamic measures of centre of pressure trajectory or velocity) and any standardised clinical measure indicating loading/offloading of the plantar foot (such as callus/lesion reduction). Side effects/adverse events as a result of the design features were additional outcomes of interest. We excluded studies on people with active ulceration, major amputation of the foot or Charcot arthropathy because we considered that the unique patho-mechanics and gross deformity associated with the severity of these conditions would unduly influence the design features of the footwear and insoles.

This review included both experimental and epidemiological study designs including randomised controlled trials, non-randomised controlled trials, quasi-experimental, before and after studies, prospective and retrospective cohort studies and analytical cross-sectional studies. Studies were included if they made one of the following comparisons: Footwear and/or insole design feature compared to another therapeutic footwear and/or insole design feature; footwear and/or insole

design feature compared to no intervention. Qualitative studies, case reports and systematic reviews were excluded.

The initial literature search was performed on 27 July 2016 by one researcher (RC) and covered publications in English and was not restricted by date. The search was updated on 27 December 2017 and 30th October 2019. The following databases were searched: Excerpta Medica Database (EMBASE) via Ovid, Medline and Cochrane Database of Systematic Reviews, AMED (EBSCO), Cumulative Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, Joanna Briggs Institute Database of Systematic Reviews, and PROSPERO. A search for unpublished studies was undertaken in EThOS, Pearl, Web of Science, Google Scholar, SIGLE. The search strings were prepared with the help of an evidence synthesis specialist. An example of the search from one of the databases is provided in Electronic Supplement Material 1. Title and abstract of all papers retrieved by the literature search were screened independently by two researchers (RC and JP) to determine whether the paper met the inclusion criteria with disagreements resolved by discussion. Full text articles were then retrieved and further screened by two researchers (RC and JP) independently for inclusion in the review. In addition, a hand search was undertaken using the references from journal articles.

RESULTS

The initial electronic search generated 7384 articles of which 2094 were duplicates (figure 1). In the screening phase, 4750 were excluded based on their title and a further 466 excluded on title and abstract leaving 74 articles for full text assessment. We excluded 28 of these articles based on irrelevant study population (n=12), irrelevant study design (n=4), irrelevant outcome/ intervention (n=12) leaving 46 ²⁰⁻⁶⁵ included in the final review. As the initial search was undertaken in July 2016, updated searches were performed in December 2017 yielding 6918 articles, from which an additional three studies ⁶⁶⁻⁶⁸ were included and November 2019 yielding 7821 articles from which a further five studies ⁶⁹⁻⁷³ were included.

Data extraction

Data extraction of included studies was conducted using JBI Meta-Analysis of Statistics: Assessment and Review Instrument (JBI-MAStARI)⁷⁴. In this phase, the general and contextual data was extracted in relation to the population, study design, interventions (features, design, modifications and materials of footwear and insoles) and outcomes. In addition, relevant information was extracted in the results section. Data extraction was carried out by (RC) and checked by the second reviewer (JP).

Data analysis and synthesis

In this review, we summarised study findings quantitatively and pooled study effects in a metaanalysis when appropriate using JBI MAStARI ⁷⁴. Meta-analysis was performed using random-effects models for continuous variables, calculating mean differences using the inverse variance method. Meta-analysis was based on changes from baseline for peak pressure when the mean and SD were reported where any footwear or insole design feature, modification, material or method could be distinguished. Means and SD's of data was required to be included in the meta-analysis; we contacted four corresponding authors to request this data when not included in the article; two authors did not respond and one no longer had access to the data.

For all estimates, we computed the 95% confidence intervals (Cl's). We quantified statistical heterogeneity using the I-Squared statistic (I²) and considered heterogeneity as low (<25%), moderate (>25% to 50%), or high (>50%)⁷⁵, although we did not pre-specify any degree of heterogeneity that would preclude meta-analytic pooling.

Assessment of study quality

Two reviewers (RC and JP) independently assessed the methodological quality of the studies using the relevant JBI critical appraisal tools ⁷⁶. Disagreements were resolved through consensus meeting.

A study was considered low risk of bias if all criteria was included. Summaries of the appraisal of study quality are included in electronic supplementary material 2. All studies had some form of bias with standards of reporting variable across studies and by study design. From the quality assessment of the randomised controlled trials (RCT's, all of the RCT studies had some form of bias (mean percentage of 'yes' scores = $65\% \pm s.d.29\%$). All RCT studies reported inclusion criteria of participants, p values and participants lost to follow up. The most frequent omissions related to the blinding of the assessor and participants, concealing of treatment allocation and outcomes measurement. Within all of the cohort studies, some form of bias existed (mean percentage of 'yes' scores = $56\% (\pm s.d. 31\%)$. The most frequent omissions related to confounding factors, short follow up periods and incomplete follow up. Within the case-controlled studies mean percentage of 'yes' scores = $70\% (\pm s.d. 0\%)$. Omissions related to confounding factors, lack of sample size justification and different criteria used for the identification of cases and controls. For the case series study, percentage of 'yes' scores = 60%. Omissions related to inclusion criteria, reporting of demographics and participants' characteristics. For the non-randomised cross over study, percentage of 'yes' scores = 75% with omissions relating to confounding factors and selection bias.

Characteristics of included studies

Study characteristics are reported in table 1. Fifty-four studies met the inclusion criteria. Study designs included: n=13 RCT's 23,25,31,38,42,49,55,56,61,62,70,73,77 , n=37 cohort studies $^{20-22,24,26-30,32-37,39-41,43,45,47-49,51-54,57-60,64,66-68,71,72}$, n=2 case control studies 44,63 , n=1 non-intervention case series study 46 and n=1 non-randomised cross sectional over trial 65 . Four authors reported results of the same study in different papers 21,22,39,40,45,47,49,50 and therefore results from these studies were described, but only one set of each results was used within any meta-analysis. Studies were published between 1975 and 2019, undertaken in US (n=17) $^{20,24,33,35,37,42,45-48,51,54,55,58,59,62,65}$, UK (n=10) 23,30,32,49,50,67,68,71,73,77 , Netherlands (n=7) 21,22,26,27,36,52,64 , Germany (n=4) 28,29,44,57 , Italy (n=2) 56,61 , Australia (n=3) 25,31,53 , Taiwan (n=3) 39,40,43 , Spain (n=2) 34,70 , Thailand (n=2) 66,72 , Austria (n=1) 41 , Sweden (n=1) 38 , Hong Kong (n=1) 60 ,

India (n=1)⁶³. The number of participants recruited to treatment groups ranged from seven to 298. Twenty-seven studies (50%) recruited participants with diabetes mellitus and peripheral neuropathy whilst 19 studies (35%) recruited participants with diabetes mellitus, peripheral neuropathy and history of foot ulceration; a further two studies recruited participants with diabetes mellitus and peripheral arterial disease; three studies recruited participants with diabetes mellitus and classified at high risk of foot ulceration; two studies recruited participants with diabetes mellitus only; two studies recruited participants with diabetes mellitus, peripheral neuropathy and high forefoot pressures; one study recruited participants with diabetes mellitus, peripheral neuropathy and foot deformity; one study recruited participants with diabetes mellitus and foot callus; one study recruited participants with diabetes mellitus and taking insulin; one study recruited participants with diabetes mellitus and classified at low risk of foot ulceration. Follow up time periods ranged from no follow up to five years.

Description of outcome measures

Twenty percent (n=11) of studies ^{29,34,42,54-56,58,61,62,70,77} reported foot lesions and ulceration as the primary outcome measure. Measurement of this outcome varied across all of the studies, with only one study ⁵⁴ using a validated wound classification system; six studies ^{34,42,55,62,70,77} used a broad definition of 'lack of skin integrity through loss of the epidermis and dermis' and the remaining studies had no definition of an ulcer or lesion ^{29,56,58,61}. All of these studies used professional judgement to assess for the presence of ulceration, although two of the studies ^{55,62} used photographs as a means of blinded assessment. Four percent (n=2) studies ^{31,59} used the presence of callus as the primary outcome measure, one study ³¹ applied a non-validated grading system to assess callus condition, whilst the other ⁵⁹ measured diameter and thickness of callus lesion. One study ⁵⁷ reported ground reaction force (GRF) and electromyographic (EMG) activity of three muscles as outcome measures. One study ⁶⁵ used temperature (°C) as an outcome measure, inferring a rise in temperature with increased risk status when testing the shear reduction device. Seventy two

percent (n=39) of studies ^{20-27,30,32,33,35-41,43-53,57,60,63,64,66-68,71-73} used kinetic outcomes to evaluate the effectiveness of the footwear and insole intervention provided. However, there was considerable inconsistency in the measures amongst these studies, with mean peak pressure, maximum pressure, maximum mean pressure, mean total pressure, pressure time integral and force time integral all used.

Profile/shape of the insole, shoe upper and shoe outsole

Two features of insole profile were described in the majority of studies; arch profile and rocker profile. In total, 69% (n=37) of studies^{20-29,34,36-38,41,43-46,48-51,53-56,58-64,66,68,73} reported using an arch profile as a feature of an insole (electronic supplementary material 3) and 37% (n=20) of studies ^{26,28-30,34,35,38,40,48-50,52,54-56,61,64,65,67,70} reported rockers as an added feature of the shoe outsole (electronic supplementary material 4). One study ³⁹ lacked enough clarity in the description of the intervention to determine if a rocker feature was used in the diabetic footwear.

Only ten percent (n=5) repeated measure studies ^{21,24,36,43,60} measured the direct effect of an arch profile on mean peak pressure. According to the heterogeneity test, high heterogeneity existed (l^2 =81%, \aleph^2 =13.6, r^2 = 1160, p=0.009). Therefore, random effects modelling was applied to consolidate the effect value. Figure 2 shows that that out of 119 participants, the addition of an arch profile reduced peak pressure by a mean of 37 kPa (MD, -37.5; 95% Cl, -72.29 to -3.61; p < 0.03) when compared to a flat insole. For the remaining 31 studies ^{20,22,23,25-29,34,37,38,41,44-46,48-51,53-56,58,59,61-^{64,66,68} who reported using the arch profile as a feature of the insole, meta-analysis was not conducted due to an inability to isolate the effect of this feature from other features of the insole.}

Figure 2 – forest plot of arch profile versus no arch profile

	Ar	ch pro	file	No a	arch in	sole	Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight, IV, Random, 95% Cl
Lin 2013	135.6	31.9	26	149.9	34.8	26	
Arts 2015	239	53	26	258	50	26	22.51% -19.00 [-47.01, 9.01]
Guldemond 2007	190	61.6	20	210	58.4	20	20.19% -20.00 [-57.20, 17.20]
Tsung 2004	300	95	28	340	82	28	17.82% -40.00 [-86.48, 6.48]
Birke 1999	218	83	19	346	102	19	• 14.83% -128.00 [-187.13, -68.87]
Total (95% CI)			119			119	100.00% -37.95 [-72.29, -3.61]
Heterogeneity: $\tau^2 = 1160.01$, $\chi^2 = 13.6$, df	=4 (P=0	.009) I	² =81				
Test for overall effect: Z=-2.17 (P=0.03)							
							-200 -150 -100 -50 0 50

Favours [Arch profile] Favours [No arch insole]

Four studies reported the effect of a rocker profile. One study reported that in 71-81% of participants tested an optimum peak pressure target value of under 200kPa could be achieved with a combination of apex position at 52% of shoe length and rocker angle of 20° ⁶⁷. Another study reported no interaction effect when altering apex angle, apex position and rocker angle compared to the control shoe ³⁰. A third study reported decreases in peak pressures and pressure time integrals in the posterior and anterior, central lateral and central medial forefoot with a standardised rocker shoe with apex position (83mm on medial and 87mm on lateral from front of shoe), angle thickness (24mm maximum thickness at rocker with 11mm rocker height at front end) compared to shoe without rocker ⁴⁰. A fourth study reported ulcer re-occurrence to be 64% with a semi-rigid rocker sole compared to 23% with a rigid rocker sole ⁷⁰. There was an inability to distinguish the effect of the rocker profile feature from other features of the footwear and insole for those remaining studies ^{26,28,29,34,35,38,48-50,52,54-56,61,64,65}.

Modifications made to the insole and shoe outsole

Sixty-five percent (n=35) of studies ^{20-22,24,26,31,33,34,37,39,41,43,44,49,50,52-56,58,60-62,65,70} reported modification of footwear, although no separation of this feature from others would allow a pooled effect analysis to occur (electronic supplementary material 5). Fourteen studies ^{20-22,24,26,34,37,41,43,52,56,60-62} reported

using extra-depth shoes as a modification, five studies used diabetic footwear ^{31,39,43,49,50} and one study ⁶⁰ reported patient specific footwear, customised to the individual, but did not report the effect this had on any outcome measure.

Thirty-three percent (n=18) of studies ^{21-23,26,27,36-38,45-48,56,62,64,68,71,73} reported the use of metatarsal addition to the insole (supplementary material 6). Only three repeated measure studies ^{21,36,45} could distinguish the effect of a metatarsal addition independently from other insole and footwear features and were used for the meta-analysis. According to the heterogeneity test, high heterogeneity existed (I²=0%, \aleph^2 =0.34, τ^2 = 0, p=0.844). Therefore, random effects modelling was applied to consolidate the effect value. Figure 3 shows that out of 70 participants, the use of a metatarsal addition in an insole reduced mean peak pressure by a further 35.96 kPa (MD, -35.96; 95% Cl, -57.33 to -14.60; p < 0.001) when compared to an insole without metatarsal addition. There was a lack of description of the metatarsal addition and no clear indication of how or when to utilise it as a modification.

	metata	arsal a	ddition	In	sole o	nly								Mean Di	fference
Study	Mean	SD	Total	Mean	SD	Total							Weigl	nt, IV, Random	, 95% Cl
Lott 2007	98	51	20	140	62	20	-				-		36.87%	-42.00 [-77.1	8, -6.82]
Guldemond 2007	163	60.4	20	190	61.6	20		-				-	31.93%	-27.00 [-64.81	, 10.81]
Arts 2015	268	72	30	306	79	30	-						31.20%	-38.00 [-76.2	5, 0.25]
Total (95% CI)			70			70			-				100.00%	-35.96 [-57.33	8, -14.60]
Heterogeneity: $\tau^2=0$, $\chi^2=0.34$, df=2 (P=	0.844) l	² =0													
Test for overall effect: Z=-3.3 (P=0.001)															
									1		i				
							-80	-60	-40	-20	0	20			
							Favours [metatar	sal addi	tion] Fa	vours [l	nsole c	only]		

Figure 3 – forest plot of metatarsal addition compared to insole only

Twenty-two percent (n=12) of studies ^{21,22,26,27,34,43,48,53,64,68,70,73} modified insoles with the use of a cut out or aperture to target the site or lesion under the foot of clinical interest (electronic supplementary material 7). However, only two studies ^{21,43} reported the direct effect of this feature. Arts (2015) reported the reduction of in-shoe peak pressure of 21kPa from 253(48) kPa to 232(54) kPa with the removal of material in the insole for a variety of target locations ²¹; and Lin reported reductions of MPP at regions of interest (ROI) located in the forefoot by 72kPa from 221.4(50.3) kPa to 149.9(34.8) kPa with the removal of 1cmx1cm² plugs from underneath ROI ⁴³.

Thirteen per cent (n=7) of studies ^{27,31,33,36,42,73,77} used 'other' modifications. One study reported a 71% reduction on ulcer incidence when using 'intelligent' insoles with pressure detecting sensors compared to the control group ⁷⁷. One study reported a 9kPa reduction in mean peak pressure when adding a custom made five degree full length varus and valgus cork posts to the base of the insole for 20 participants with diabetic peripheral neuropathy and non-deformed feet ³⁶. The remaining studies did not report the effect of these modifications. One study reported balancing the ¾ length orthotic with the use of dental acrylic posts at the rearfoot ³¹ and another study used extra-density padding at the heel, forefoot and covering the toes as a modification ³³. Another study reported the use of wedge or medial skive on two occasions, prescribed at the discretion of an orthotist, but no rationale for use provided ⁷³. One study reported including elastic binders and two non-stick sheets placed between the upper and lower pad of the insole as part of their shear resistant insole ⁴² and one study used substantial heel cups in the design of their insole, although no specification was disclosed ²⁷.

Fabrication techniques used for the insole and shoe

Forty-three per cent (n=23) of studies ^{20-22,25-27,31,37,38,45,48-50,54-56,60,61,63,65,66,68,72,73} used casting techniques to fabricate the insole and shoe (electronic supplementary material 8) and 20% (n=11) of studies ^{21,26,27,34,36,43,48,54,56,64,73} used kinetic information to inform the fabrication of the insole or shoe (electronic supplementary material 9). One study used both a 'traditional' foam box casting technique and a weight bearing foot scan technique ⁷³. Another study ⁴⁴ used a pedorthist to prepare the insoles individually, although no further information was reported and one study ²⁹ reported the

manufacture of the shoe by a local shoemaker according to an algorithm, but did not disclose the technique of the insole fabrication. Three studies ^{23,49,50} used preformed insoles.

Only one repeated measures study ⁶⁰ reported effects of casting techniques to manufacture insoles under different loading conditions. Therefore, pooled analysis was not possible due to the diversity of techniques and lack of reported outcomes. Tsung et al ⁶⁰ reported decreases in MPP compared to shoe only condition of 13.4% when casted non-weight bearing, 13.8% when casted with a semiweight bearing insole, 8.1% when casted with a full weight bearing insole, and 2.4% with a flat insole.

Twenty per cent (n=11) of studies ^{21,26,27,34,36,43,48,54,56,64,71} used kinetic analysis to inform the design and modification of the insole (electronic supplementary material 9). Only one study ⁵⁶ used ulceration as an outcome measure, the remainder using kinetic measures. Four repeated measure studies ^{26,43,48,64} reported the direct effect of using plantar based pressure analysis as a fabrication technique to inform the design and modification of the insole and shoe in reducing mean peak pressure. According to the heterogeneity test, high heterogeneity existed (I²=93%, x² =63.98, t² = 2565.09, p=0). Therefore, random effects modelling was applied to consolidate the effect value. Figure 4 shows that in 189 participants, MPP in insoles fabricated with the use of an in-shoe system was reduced by 75.4kPa (MD, -75.4kPa; 95% CI, -127.4kPa to -23.44 kPa; p < 0.004) compared to those insoles fabricated using traditional techniques not involving pressure measurement systems.

	press	ure m	odific	traditi	traditional design		Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight, IV, Random, 95% CI
Waaijman 2012	220	61	123	227	67	123	-∎- 26.73% -7.00[-23.01, 9.01]
Owings 2008	168	53	22	246	63	22	 24.48% -78.00 [-112.40, -43.60]
Lin 2013	135.6	31.9	26	262.5	64.9	26	→ 25.43% -126.90 [-154.70, -99.10]
Bus 2011	208	46	18	303	77	18	23.36% -95.00 [-136.44, -53.56]
Total (95% Cl)		0	189			189	100.00% -75.43 [-127.41, -23.44]
Heterogeneity: $\tau^2 = 2565.09$, $\chi^2 = 63.98$, df=3 (P=0	0) 2=9	93				
Test for overall effect: Z=-2.84 (P=0.00	94)						
							-200 -150 -100 -50 0 50

Figure 4 – forest plot of insoles modified by pressure information versus traditional design insoles

Favours [pressure modific] Favours [traditional design]

Material type and properties of the insole and shoe outsole

Sixty-nine percent (n=37) of studies ^{21-23,25-30,34,36,41-44,46,48-50,52-56,58,60-66,68,70-73} used a combination of materials with diverse properties to manufacture the insoles or shoe outsole (electronic material supplementary 10). Thirty per cent (n=16) of studies ^{20,23,27,29,34,35,46,48-50,52,54,55,58,60-62,68} used dual density constructs, thirty-nine percent (n=21) of studies ^{21,22,25,26,28,30,36,41-44,52,53,56,63-66,70,72,73} used tri or multi-density/layers. Five studies examined the influence of material on reducing MPP. One RCT ³⁸ of 114 DPN participants directly examined the effectiveness of CMI's constructed of different materials. Comparisons of kinetic variables for a 35 shore Ethyl-Vinyl Acetate (EVA) CMI with a 55 shore hardness EVA CMI and a prefabricated insole (GloboTec, Comfort 312750501400) all within a standardised walking shoe were reported. The main pressure reduction between the CMI and the prefabricated insoles was achieved at the heel and in the overall peak pressure of 180kPa with the extra soft durometer 35 shore hardness EVA insoles as opposed to 189kPa for the soft 55 shore hardness EVA insole. The second study reported no statistical differences in reducing plantar pressures when comparing orthoses constructed of a single density material, Plastazote (Zotefoams Inc., Walton, KY) with a dual density material, Plastazote and Alliplast (Voltek, Brennia, VA)⁴⁶. The third repeated measures study reported a significant difference in MPP between different densities of poron in walking conditions (p<0.0001)²⁴ although another study found no difference between Poron 96 and Poron 4000 in reducing peak pressure ³². A fifth study reported the reduction of

maximum peak pressure at the forefoot with the addition of a multifoam top cover onto the dual density custom made insole of plastazote and microcellular rubber ⁷².

DISCUSSION

The aim of this review was to identify the best footwear and insoles design feature for offloading the plantar surface of the foot to prevent foot ulceration in people with diabetes. More specifically, the objectives were to identify the key design features of footwear and insoles with regard to profile and shape, material type and properties, modifications and fabrication techniques.

Heterogeneity was found amongst the profile, modifications, material and fabrication techniques used in insoles and footwear design. Footwear and insoles can be viewed as multifaceted interventions where several features are frequently incorporated into the design. The studies highlighted the lack of a systematic approach to combining these features which makes it difficult to distinguish the effectiveness of individual features in offloading plantar foot pressures.

Within the review, we revealed variations in outcome measures, study design and quality. Six different outcome measures were used amongst the studies which makes meaningful comparison difficult. Identification of specific design features of footwear and insoles related to the primary outcome measure of foot ulceration was not possible. This was because all of the studies using foot ulceration as the outcome measure employed a combination of footwear and insole design features. The follow up time-points at which outcomes were measured varied considerably across studies. The methodological quality of the studies was generally poor. Only four studies ^{21,38,50,73} reported adherence to the insoles and footwear with one study excluding participants from analysis where there was a lack of substantial wear ⁷³. The inclusion criteria contained participants with diabetes who were at different stages of disease progression, further adding to the difficulty in making meaningful comparisons between studies. Some studies included people with no sensory

neuropathy; some studies included those with sensory neuropathy and no previous foot ulceration and some studies included participants with sensory neuropathy and previous foot ulceration. Foot complication severity has been shown to be associated with increased plantar foot pressures ¹⁰. However, this did not appear to influence the footwear or insole feature used.

Profile/shape of the insole, shoe upper and shoe outsole

Two types of profile features were described in this review; an arch and a rocker. The use of an arch profile replicating the contour of the plantar surface of the foot has traditionally been the 'goldstandard' for insole design for reducing pressure in the diabetic neuropathic foot ⁷⁸. This review found that 98% of studies reported using an arch profile as part of the insole configuration, although inconsistency exists in the reporting of the specifications. Our meta-analysis provides evidence that an arch profile when added to an insole can enhance the offloading effect by a further 37kPa when compared to an insole without an arch profile. It is postulated that by increasing contact with the plantar surface of the foot, thereby allowing an increased distribution of force over a greater area of the foot, plantar foot pressure will be reduced ⁷⁹. Our review demonstrated that seven studies incorporating an insole with an arch profile reported that an increase in surface contact area values correlates with reduced forefoot pressures ^{20,23,46,49,50,53,60}. However, Paton et al. reported that the increase in total contact area observed at issue, reduced by 50% after six months of insole wear, whilst pressure reduction remained constant ^{49,50}. The authors suggest that this could be attributed to the dynamic nature of gait and associated pressure reduction may be associated with changes in foot function, such as the prevention of foot pronation ^{80,81}.

Nineteen studies modified the rocker profile of the shoe as a method of reducing peak pressure. The rigid sole added to the bottom of the shoe is designed to limit the movement at foot joints, particularly extension of the metatarsophalangeal joints at the propulsive phase of gait. This prevents movement of tissue across the plantar aspect of the foot and alters the forefoot loading

pattern, specifically reducing pressure under the metatarsal heads by 30% to 50% ^{82,83}. Our review demonstrates the multiplicity of design variables in terms of rocker angle, placement, height and material. Preece et al., suggested an optimum design of a rocker, but reported further adjustments of rocker angle and position reduced pressure on the forefoot across the participants ⁶⁷. Chapman et al ³⁰ reported high inter-subject variability for apex position in reducing pressure under the 1st MTPJ and hallux regions with no clear optimal position. Some consistency was achieved with reducing pressure under the 2nd to 4th MTPJ with an apex position of 50-60% of shoe length. The use of a rocker profile could be beneficial in reducing peak pressure under the diabetic neuropathic foot. However, the effectiveness of this feature may correlate with an individualised approach in the design of the rocker angle, placement, height and material, although no such design algorithm has yet been established.

Modifications

The purpose of modifications is to further adapt the footwear and insole by additional features. Three key modifications of insole and footwear design features were identified from this review; extra-depth footwear, metatarsal additions and sinks or apertures. However, the inability to distinguish the effect of individual modifications from other insole and design features for the majority of studies creates uncertainty on the effectiveness of their usage. Additionally, the assortment of each modification with variations in design, materials, placement and fabrication made direct comparison extremely difficult. Despite this heterogeneity meta-analyses verified the positive effect of metatarsal pad, cut-outs or apertures in reducing forefoot plantar pressures. However, the effectiveness in reducing plantar pressure varies considerably with placement of the modification. For example, Hastings et al., established a pattern of increases or decreases in MPP according to placement of the metatarsal pad proximal or distal to the metatarsal, although only an effect on the 2nd metatarsal head was observed ³⁷. A data driven approach using real time plantar pressure feedback, as utilised by 10 studies ^{21,26,27,34,36,43,48,54,56,64} intimates that the effectiveness of

some modifications could be enhanced by more accurate siting using appropriate technology, such as real time pressure analysis.

Fabrication techniques used for the insole and shoe

Two different fabrication techniques for insoles and footwear were identified in this review; casting, and kinetic informed. Casting is traditionally used to capture the geometric shape of the patient's' foot to 'customise' the insole. Only one study examined the role of three types of casting technique in reducing peak pressure ⁶⁰. The authors reported an insole formed from a semi-weight bearing foot shape offered the greatest peak pressure reduction compared to full weight bearing and non-weight bearing foot shapes, but was not statistically significant. The remaining studies using a casting approach were not able to report any difference in reducing pressure using this fabrication method. This method of fabrication is believed to create an arch profile, which has been demonstrated as altering pressures in the plantar foot as reported by four studies ^{21,24,36,60}. However, one author, Paton et al., 2011, demonstrated no difference in reducing MPP and PTI when using a prefabricated insole compared to a customised insole ⁵⁰. Therefore, potentially all insoles with an arch profile, regardless of the casting technique employed, are effective in reducing plantar pressure in people with diabetes. This view complements another finding of this review that suggests an arch profile may optimise the effect of insoles for diabetic feet.

Ten studies ^{21,26,27,34,36,43,48,54,56,64} reported the effect of using in-shoe pressure measurement analysis to guide the fabrication of the footwear and insole. The use of a data driven approach for insole and footwear design has been heralded as authenticating plantar foot pressure reduction on an individual basis. Identification of the vulnerable plantar areas with pressure mapping, guides the design and alteration of appropriate personalized footwear and insoles in terms of materials, geometry and modifications. In addition, it provides a quantitative assessment of clinical outcome such that clinicians can be certain of achieving the desired treatment objective. Our meta-analysis

supports this proposition although variations in methodology with this technique requires a more consistent approach to limit the inconsistency across clinical areas. Only one study ⁵⁴ used pressure data to inform the design of the insoles; the remainder used the kinetic data to inform the modification of the insoles by iteratively testing and retesting until optimisation was reached. A lack of standardisation existed across all of the studies for temporal-spatial measurements and gait parameters contributing to the analysis. The use of different pressure analysis systems with dissimilar technical specifications and resolution provides additional inconsistency. Furthermore it should be acknowledged that foot plantar pressure values are only considered a surrogate measure of foot ulceration risk, and that no threshold for foot ulceration has yet been established ⁸⁴.

Material type and properties of the insole and shoe outsole

Material choice is an important feature of any insole or footwear design. The material used, dependent on its mechanical and physical properties, will influence the insole or footwear's ability to redistribute or dampen forces effectively. This review found no consistency with individual materials used or thickness in the construction of footwear or insole. Only one study directly assessed the effect of material hardness in reducing peak plantar pressures ³⁸. Sixty-seven per cent of remaining studies used either dual or multi-density material constructions of footwear and insoles. Closed cell foam materials were most frequently sited at the interface between foot and insole and footwear as a top cover; denser materials constituted the base of the insole, EVA appearing the most popular material of choice for the base. A less popular material type was thermoplastics, potentially because these materials were traditionally used for functional devices aimed toward changing gait function and not reducing pressure. Combining materials of different properties is suggested as incorporating the desired properties from each material to best serve reduction in foot ulceration risk ⁸⁵⁻⁸⁷. However the literature does not provide a sufficiently robust evidence base to inform the selection approach regarding material combination or thickness for the best offloading. Therefore, selection

of materials is often influenced by the availability of materials locally and anecdotal evidence, rather than patient specific characteristics and effectiveness of offloading.

LIMITATIONS

The primary limitation of this review is the heterogeneity of study design and outcome measures of the studies included. Large variations in the description of footwear and insoles and uncertainty in the reliability and validity of the assessment and intervention methods exists. The diversity of features used limits the generalizability of the results, resulting in variation in the number of studies and participants included within the meta-analyses. This review was further limited by the inclusion of only English language studies, not including trial databases in the search database and exclusion of participants with charcot and foot amputation.

RECOMMENDATIONS

A consensus is required regarding how to report and measure the effectiveness of individual insole and footwear features in offloading the DPN foot. A core set of outcome measures and standardized time points would facilitate pooling of results in meta-analyses to enable more accurate conclusions to be drawn. Standardization of inclusion criteria is further required to ensure all participants enrolled in offloading trials of DPN have DPN. This would also include participants with charcot and foot ulceration. Improved consistency in the reporting of methodology, in line with the Consolidated Standards of Reporting Trials guidelines and International working group on the diabetic foot, is also recommended ⁸⁴.

CONCLUSION

This systematic review highlights the difficulty in differentiating insole and footwear features in offloading the neuropathic diabetic foot. The amalgamation of features in insole and footwear designs makes consolidation of the body of knowledge difficult for understanding which feature to use at which time point. However, on the basis of this review we conclude that metatarsal

additions, apertures and arch profiles are effective in reducing plantar pressure in this population, and therefore should be incorporated as footwear and insole features. Different casting techniques and materials also appear effective in reducing pressures, but we are unable to recommend any particular technique or type because of insufficient evidence. The use of pressure analysis to enhance the effectiveness of the design of footwear and insoles, particularly through modification, is recommended, specifically in patients with diabetes and peripheral neuropathy.

CONFLICTS OF INTEREST

Richard Collings is funded by a National Institute for Health Research (NIHR) Clinical Doctoral Fellowship for this research project. This publication presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

AUTHORS' CONTRIBUTION

RC, JF, JML and JP conceived and designed the study. RC designed the search string. RC and JP performed the literature search, assessed the literature, extracted data, and drew conclusions. RC wrote the manuscript. JF, JML and JP critically reviewed and edited the manuscript. All authors have read and approved the final manuscript.

ACKNOWLEDGEMENTS

I am grateful for the assistance of the University of Plymouth librarians for their assistance with the search strategy.

ETHICS APPROVAL

This review manuscript summarizes and informs of already published studies and thus does not require ethical approval.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

Figure 1. Flow diagram of study selection in July 2016 and updated in December 2017 and November 2019

Author/year	Study setting	Study	Participants	Age /	Gender	Comparator	Follow up	Outcomes
		design		years (s.d.)	Male:		period	
					Female			
Abbott et al,	UK	RCT	N=58 DPN	Control	51:7	No plantar	18	68% ulcer free in control
77			with history	group 67.1		pressure	months	group and 78% in
			of previous	(9.6);		feedback		intervention group
			foot	interventio		provided		
			ulceration	n group				
				59.1 (8.5)				
Albert &	US	Cohort	n=8 DPN	67 (10.1)	Unknown	Without	3 months	PPP \downarrow 30-40% under 1 st MTPJ
Rinoie 20		study				orthotic		& medial heel.
								5-10% 个Total contact area
Arts et al, 21	Netherlands	Cohort	n=85 DPN,	62.6 (10.2)	70:15	Pre-	15	PPP \downarrow 23% at target location;
		study	recently			modification	months	$ extsf{PPP}$ \downarrow 13.5-24% by adding
			healed					metatarsal bar or pad with
			plantar foot					replacement of top-cover
			ulcer					
Arts et al, 22	Netherlands	Cohort	n=171 DPN	62.8 (10.2)	140:31	Barefoot	Unknown	PPP↓ 50-76% (deformed
		study	with recently					feet), 14-66% (non-deformed
			healed ulcer					feet) 85% (previous ulcer
								location). 61% Successfully

Table 1 – characteristics of studies

								62% at previous ulcer site.
Barnett ²³	UK	RCT	n=102 DM	Orthoses	68:35	3mm cleron	6 months	With orthoses: (22% MPPP \downarrow ,
				group=56		flat insoles		16% Pressure time integral \downarrow
				(20-75)				& 11%个mean Contact area);
				Cleron				With insoles (16% \downarrow MPPP,
				group 62				10% Pressure time integral \downarrow
				(18-75)				& 2%个 mean Contact area)
Birke et al, ²⁴	US	Cohort	n=19 DM	60.2 (9.8)	11:8	Patients own	n/a	Mean PPP↓55% (wearing
		study	with history			CMI &		own CMI & shoe vs without
			of foot			footwear &		insoles). mean PPP \downarrow 36-39%
			ulceration			no orthosis		(standard shoe wearing ¼
								inch medium hardness poron
								vs shoe without orthoses)
Burns et al, 25	Australia	RCT	n=61 DM	Custom	37:24	Sham insole	8 weeks	Whole foot Mean PPP \downarrow (18%
			with PAD &	group =				CMI vs 8% sham); Rearfoot
			MSK pain.	67.6(8.4)				Mean PP↓(27% CMI vs 4%
				Sham				sham); Midfoot Mean PPP \downarrow
				group				(7% CMI vs 4% sham);
				=65.4(10.3)				Forefoot mean PPP↓(16%
				(13.3)				CMI vs 10% sham)

offloading below 200kPa &

Bus et al, 27	Netherlands	Cohort	n=20 DPN	64.4 (11.2)	13:7	0.95cm PPT	n/a	PPP \downarrow 16% & Force time
		study	with foot			flat insole		integral \downarrow with CMI vs 8%
			deformity					with flat insole at 1 st MTPJ
Bus et al, 26	Netherlands	Cohort	n=23 DPN	59.1 (12.6)	17:6	Pre & post		All 35 ROI's successfully
		study				modification		optimised with average of
								30% ↓ PPP
Busch &	Germany	Cohort	n=92 DPN	64	49:43	Without	19	45% Absolute ulcer risk
Chantelau ²⁸		study	with history			footwear	months	reduction for with shoes in 1^{st}
			of healed			provided	(shoes) vs	year
			ulceration				5 months	
							(without	
							shoes)	
Chanteleau	Germany	Cohort	n=50 DPN	59 (12)	31:19	With	25	Foot lesions =78% pre
et al, 29		study				therapeutic	months	intervention vs 41% post
						footwear		
Chapman et	UK/Germany	Cohort	n=24 healthy	57 (8)	31:17	Control	n/a	Variations in apex angle: 14%
al, ³⁰			& n=24					maximum pressure \downarrow (1 st
			people with					MTPJ) & pressure个(heel) vs
			DM					control. For variations in
								apex position: 39% maximum

								control.
								As rocker angle \uparrow there was
								\downarrow in PP (5 th MTPJ) & \uparrow in
								pressure (hallux).
Colagiuri et	Australia	RCT	n=20 DM &	Orthotic	5:15	Traditional	12	Callus grade improved in
al, ³¹			with callus	group		treatment of	months	16/22 callus sites (orthotic
				63(10);		callus		treatment group); remained
				podiatry				unchanged in 23/30 & 7
				group 69(6)				deteriorated (traditional
								treatment group).
Cumming &	UK	Cohort	n=20 DM	68	unknown	No insole	1 week	Mean total pressure: wearing
Bayliff, ³²		study	with vascular					insole (0.180kg/cm ² /s), no
			or					insoles (0.210kg/cm ² /s).
			neurological					Mean pressure redistribution
			impairment					Poron 96 (0.198kg/cm ² /s),
								Poron 4400
								(0.211 kg/cm ² /s); total
								difference (0.013 kg/cm ² /s).
Donaghue et	US	Cohort	n=50 DM at	57.6 (34-	32:18	Old footwear	3&6	Peak force at baseline: socks
al, ³³		study	high risk of	78)			months	only (6.15 kg cm ⁻²), own socks
								& shoes (4.46 kg cm ⁻²), new

pressure↓ at 2-4MTPJ vs

			foot					socks & shoes (3.98 kg cm ⁻²).
			ulceration					Mean PPP at 3 months with
								new socks & shoes (4.13 kg
								cm ⁻²) & 6 months (4.24 kg cm ⁻
								²)
Fernandez et	Spain	Cohort	n=117 DM	Unknown	93:24	2 years pre	Follow up	Pre orthotic 147 ulcerations;
al, ³⁴		study	with high risk			intervention	24	post orthotic 22 ulcerations.
			foot factors				months	Mean PPP with orthotic
			& history of					treatment ↓ 85.2kPa (left
			ulceration					foot) & \downarrow 87.6kPa (right foot)
Frykberg et	US	Cohort	n=25	37 (13.5)	13:12	Patients own	n/a	For DM subjects Mean PPP
al, ³⁵		study	subjects			tennis or		with: own shoe (4.46 kg/cm²),
			(10DM, 15			oxford shoe		Surgical boot (4.89kg/cm ²),
			healthy) with					Surgical boot & rocker insole
			various foot					(2.50kg/cm ²). For non-
			shapes					diabetic subjects Mean PPP
								with: own shoe(2.07 kg/cm²),
								surgical boot (2.13kg/cm ²),
								Surgical boot & rocker insole

(1.13kg/cm²)

Guldemond	Netherlands	Cohort	n=17 DPN	Median 64	unknown	11 varying	n/a	In central forefoot Mean
et al, ³⁶		study	non	(44-78)		insoles		PPP \downarrow with: metatarsal dome
			deformed					(32 kPa), standard arch
			feet					(17kPa), extra arch support
								(45kPa). At medial forefoot
								Mean PPP \downarrow with: varus
								wedge (9kPa), metatarsal
								dome (42kPa), standard arch
								(12 kPa), extra arch support
								(38kPa). At hallux Mean
								PPP \downarrow with extra arch & varus
								wedge (52kPa).
Hastings et	US	Cohort	n=20 DPN	57.3 (9.3)	12:8	3 insole	n/a	At 2 nd MTPJ: PPP↓ (32%)
al, ³⁷		study				conditions		when pad placed between
								6.1 & 10.6mm proximally;
								PPP \downarrow (16%) when pad
								located 1.8mm distal to
								6.1mm proximally; PPP \downarrow
								(57%) when distal part of
								met pad was 10.6mm
								proximal to met head; PPP个

								when pad was further than
								1.8mm distally or >16.8mm
								proximally.
Hsi et al, ³⁹	Taiwan	Cohort	n=14 DPN	61.4 (8.3)	6:8	Patients'	n/a	Diabetic footwear: Pressure
		study				own shoes		time integral (\downarrow heel),
								(\downarrow anterior to MTPJ), (\downarrow at
								toe regions) (个at the midfoot
								& posterior to MTPJ)
								PPP: (\downarrow heel), (\downarrow anterior to
								MTPJ), (\downarrow at toe regions),
								(个midfoot & posterior to
								MTPJ).
Hsi et al, ⁴⁰	Taiwan	Cohort	n=10 DPN	63(9)	3:7	Patients'		Rocker sole \downarrow PPP & pressure
		study				own shoes		time integrall in anterior
								lateral, central lateral &
								central medial forefoot &
								prolonged time to PPP in
								posterior forefoot but not
								anterior forefoot.
Kastenbauer	Austria	Cohort	n=13 DM	56(8)	5:8	Leather	n/a	At great toe PPP \downarrow with: cork
et al, 41		study				styled Oxford		insole & in-depth shoe (16%),
						shoe		Adidas shoe(32%); CMI & in-

								depth shoe (33%); At 1st
								MTPJ PPP \downarrow with: cork insole
								& in-depth shoe (27%),
								Adidas shoe(29%); CMI & in-
								depth shoe (50%); At 2/3rd
								MTPJ PPP \downarrow with: cork insole
								& in-depth shoe (19%),
								Adidas shoe(47%); CMI & in-
								depth shoe (48%);
								At heel PPP \downarrow with: cork
								insole & in-depth shoe (34%),
								Adidas shoe(34%); CMI & in-
								depth shoe (39%).
Lavery et al,	US	Single	n=299 DPN	Shear	202:97	Insoles for	18	3.5 times odds of developing
42		physicia	previous	group		standard	months	an ulcer;
		n	ulceration or	69.4(10.0);		treatment		3 ulcers developed in shear
		blinded	neuropathy	Standard				resistant insole group, 10
		RCT	& foot	group71.5(ulcers developed in standard
			deformity	7.9)				insole group
Lin et al, ⁴³	Taiwan	Cohort	n=26 DPN	68 (9)	10:16	Standard	n/a	For regions of interest: 15.7%
		study				shoe with		\downarrow Mean PPP (pre-plug
						insole		removal); 32.3% ↓Mean PPP

								(post vs post plug removal);
								14.3% ↓Mean PPP (arch
								addition to pre plug removal
								vs post plug removal). For
								Non-regions of interest 8.7%
								↓Mean PPP (pre-plug
								removal vs barefoot); 2.2%
								\uparrow Mean PPP with pre vs post
								plug removal); 2.5% ↓Mean
								PPP (arch addition to pre plug
								removal vs post plug
								removal).
Lobmann et	Germany	Case	n=81 type 2	Interventio	Unknown	Neutral	8 weeks	32.6% \downarrow Maximum PPP at
al, ⁴⁴		control	DM (n=18	n group		shoes	& 6 & 12	issue
			DPN & high	63(9);			months	28% \downarrow Maximum PPP at 6
			forefoot	control				months;
			pressures vs	group 66				13% \downarrow Maximum PPP at 12
			n= 63	(10)				months.
			control)					
Lopez-Moral	Spain	RCT	N=51DPN	Interventio	Intervention	Semi-rigid	6 months	Rigid rocker sole \downarrow re-
et al, ⁷⁰			and previous	n group 61	group 24:2;	rocker		ulceration risk by 64%
				(8.1);				

			foot	control	Control			
			ulceration	group 60	group 23:2			
				(8.6)				
Lott et al, 45	US	Cohort	n=20 DPN &	57.3 (9.3)	12:8	Barefoot	n/a	Mean applied pressure:
		study	history of					barefoot (272 kPa); shoe (173
			ulceration					kPa), shoe & CMI (140 kPa);
								CMI & metatarsal pad, (98
								kPa).
								Soft Tissue Strain at 2 nd MTPJ:
								barefoot (38.2%), shoe
								(31.6%); shoe & CMI (28.9%);
								shoe, CMI & Metatarsal Pad
								(24.1%).
Martinez-	UK	Cohort	n=60 DPN	67(13)	40:20	Flat insole	n/a	PPP \downarrow of 29KPa with
Santos et al,		study						metatarsal bar and
71								EVA/poron materials
Mohamed et	US	Case	n=16 DPN	Plastazote	8:8	No insole	1 month	With CMI at baseline:
al, ⁴⁶		series	Type 2 (n=8	group 68.4			& 3	decrease in PPP (12.0 N/cm ²);
		compari	Plastazote vs	(5.5);			months	Max Mean Pressure (4.9
		son	n=8	Plastazote/				N/cm ²); Pressure Time
			Plastazote/Al	Aliplast				Integral (5.6 N/cm ² /s) &
			iplast)					

				group				个Total Contact Area
				68.9(5.5)				(21.2cm²).
								At follow up: decrease in PPP
								(10.5 N/cm ²); Maximum
								mean pressure (5.2 N/cm ²) &
								Pressure Time Integral (5.9
								N/cm²/s) & 个 Total Contact
								Area (20.2cm²).
Mueller et al,	US	Cohort	n=20 DPN &	57(9)	12:8	Shoes with	n/a	19-24% PPP↓ (CMI), 15-20%
47		study	history of			standard		PPP \downarrow (CMI +metatarsal pad);
			forefoot			insoles		16-23% Pressure Time
			ulcer					Integral \downarrow (with CMI), 22-
								32% Pressure Time Integral \downarrow
								(CMI +metatarsal pad &
								shoe).
Nouman et	Thailand	Cohort	n=16 DPN	58(9)	9:7	Without CMI	n/a	$PPP\!\downarrow\!26\%$ at forefoot and
al, ⁶⁶		study						24% at toes with CMI
Nouman et	Thailand	Cohort	N=16 DPN	unknown	9:7	Addition of	n/a	forefoot maximum PPP
al, ⁷²		Study				multifoam		248.2kPa (61.92) with CMI;
						top cover		211.6k Pa (47.01) with CMI
								and multifoam

Owings et al,	US	
---------------	----	--

48

Cohort n=22 DPN &

pressures

(>750kPa) in

MTPJ region

high

study

63.7(10.7) 1

11:11

e shell with Korex

Polypropylen n/a

sponge or plastazote

cover; EVA

with procell

shore 45

or plastazote

cover.

168kPa PPP at regions ff interest (shape based & pressure informed CMI); 211kPa PP (CMI shape based & 45 Shore EVA base with Procell or Plastazote top cover); 246kPa PPP (CMI polypropylene shell with Korex, sponge or plastazote top cover); In rocker shoes: 127 kPa PPP at regions of interest (shape based & pressure informed CMI); 178kPa PPP (CMI shape based & 45 Shore EVA base with Procell or Plastazote top cover); 200kPa PP (CMI shape based & polypropylene shell with Korex, sponge or plastazote top cover).
Parker et al,	UK	RCT	n=57DPN	Traditional	45:7	Control	6 month	Compared with control insole
73				group 61.4		insole 3mm		PPP \downarrow 14.91% with traditional
				(10), digital		poron		insole and $\sqrt{24.43\%}$ with
				group 66.3				digital insole at baseline
				(10.5)				
Paton et al,	UK	RCT	n=119 DPN	custom	90:29	Pre-	6 months	With CMI (37% \downarrow PPP at
50				group		fabricated		baseline & 6 months); (27%
				71(10)		contoured		\downarrow Pressure Time Integral at
				prefab		shell		baseline & 30% at 6 months);
				group				(32% 个Total Contact Area
				70(10)				baseline & 15% at 6 months).
								With Prefabicated insole:
								(35% \downarrow PPP at baseline &
								31% at 6 months); (22%
								\downarrow Pressure Time Integral &
								24% at 6 months); (29%
								个Total Contact Area at
								baseline & 15% at 6 months);
								No difference between CMI &
								prefabricated insole in PPP &
								Total Contact Area

Paton et al,	UK	Observa	n=60 DPN	69	47:22	Pre-	3, 6,12	\downarrow PPP with CMI of 39% (0
49		tional				fabricated	months	months), 35% (6 months) &
		cohort				contoured		36% (12 months)
		study				shell		
Perry et a, I ⁵¹	US	Cohort	n=39 total:	DM group	33:6	Sock only	n/a	Oxford shoes vs socks:
		study	13 DM, 13	53.6(9.4);				18% \downarrow Mean PPP (2 nd MTPJ),
			DPN, 13 non	DPN group				2.3% ↓Mean PPP (MTPJ's &
			diabetic	52.8(7.3);				heel);
				Non				Running shoe vs socks 31%
				diabetic				\downarrow Mean PPP (forefoot & heel)
				group				
				54.2(9.7)				
Praet &	Netherlands	Cohort	n=10 DPN	63 (44-78)	0:10	Oxford shoe	n/a	3 Oxford type shoes show no
Louwerens 52		study				without		significant \downarrow in pressure vs
						insole		baseline;
								rocker bottom shoes showed
								~50% \downarrow PPP in central
								forefoot vs no rocker;
								mean 个Total Contact Insole
								with insole (3.4-7.3 cm ²)

Preece et al,	UK	Cohort	n=102 DM at	57(9)	52:50	8 shoe	n/a	Optimum location of 52%
67		study	low risk and			conditions		apex, 20°angle and apex 95°
			n=66 healthy					
			control					
Raspovic et	Australia	Cohort	n=8 DPN	61(48-68)	8:0	No insole	n/a	\downarrow PPP, Pressure Time
al, ⁵³		study	with past					Integrals & 个Total Contact
			ulceration					Area
Reiber et al,	US	Cohort	n=24 DPN no	66(9.3)	unknown	Preformed	Upto 6	0 breaks in skin at 6 months
54		study	history of			insole	months	
			ulceration					
Reiber et al,	US	RCT	n=400 DM	62	309:91	Usual	2 years	Number of feet ulcerated
55			with history			footwear		15% (shoes & cork insoles),
			of foot					14% (shoes & prefabs), 17%
			ulceration					(control group)
Rizzo et al, 56	Italy	RCT	n=298 DM at	Standard	unknown	Standard	12	Foot ulceration development:
			high risk	group 66.2		care	months, 3	At 12 months 13%
				(9.4)			& 5 years	(intervention) vs 38.6%
				interventio				(standard care).
				n group				At year 3, 18% (intervention)
				68.1(14.1)				vs 61% (standard care); At
								year 5, 24% (intervention) vs
								72% (standard care)

Sacco et al, 57	Germany	Cohort	n=45	DPN group	unknown	barefoot	n/a	1 st Ground Reaction Force
		study	participants	55.2(7.9)				peak > during shod
			(21 control,	Control				conditions & > propulsion
			24 DPN)	group 50.9				force in diabetic group but
				(7.3)				2nd Ground Reaction Force
								peak < in shod diabetic vs
								control group
Scherer 58	US	Cohort	n=7 insulin	38(28-59)	3:4	n/a	10 weeks	6 patients discontinued use
		study	taking DM					of footwear (5 plantar
			patients					irritation of heel & 1
								hypertrophic lesions under
								4/5th MTPJ's)
Soulier 59	US	Cohort	n=108 DM	55(19-55)	33:45	Own shoes	monthly	Significant change in callus
		study	Caucasian					size with running shoes
			non-smokers					
Tang et al, ³⁸	Sweden	RCT	n=114 DPN	58 (15)	62:52	Prefabricated	2 years at	PPP= 180kPa (35 EVA insole);
			& previous			insole	6 monthly	189kPa (55 EVA insole);
			ulceration					211kPa (prefab)
Telfer et al,	UK	Cohort	n=20 DPN	64.4(9.2)	15:5	Barefoot	n/a	Optimised milled lowered PP
68		study						by 41.3Kpa compared to CMI
								and optimised printed

								compared to CMI.
Tsung et al,	Hong Kong	Cohort	n=6 DPN vs	DPN group	unknown	Shoe-only	n/a	Mean PPP↓ 13.4% (Non
60		study	n= 8 control	56.2(6.2);				Weight Bearing insole),
				control				13.8 % (Semi Weight Bearing
				group				insole), 8.1% (Fully Weight
				46.5(11.7)				Bearing insole),
								2.4% (flat insole)
Uccioli et al,	Italy	RCT	n=69 high	Pod group	43:26	Non-	12	Ulcer relapse 58.3% (control)
61			risk/past	59.6(11);		therapeutic	months	vs 27.7% (intervention)
			ulcer	Control		shoes		
				60.2(8.2)				
Ulbrecht et	US	RCT	n=150 DPN	Experiment	104:46	Standard	15 month	Ulcer occurrence control>
al, ⁶²			recently	group		insoles		insole; no difference in non-
			healed ulcer	60.5(10.1);				ulcerated lesion.
				Control				
				group				
				58.5(10.7)				
Viswanathan	India	Case	n=241 DM	Gr1=59.1(8	156:85	Usual	9 months	PPP \downarrow 57% (MCR insole);
et al, ⁶³		control	previous foot	.2);		footwear		61% (Polyurethane); 58%
			ulceration	Gr2-				(moulded footwear) 39%
				54.5(9.1);				(own shoe)

lowered PPP by 40.5kPa

				Gr3=53.9(9				
				.3);				
				Gr4=59.1(1				
				1.7)				
Waajiman et	Netherlands	Cohort	n=117 DPN	63.3(10.1)	unknown	Pre & post	3 monthly	PPP \downarrow 23% (ulcer site) & 21%
al, ⁶⁴		study	(85			modification	until 1	(highest PPP site)
			experimental				year	
			vs 32					
			control)					
Wrobel et al,	US	Cross-	n=27 DPN	65.1	14:13	Standard	n/a	\downarrow Temperature of 64.1%
65		sectiona	pre-ulcer			control		(forefoot) & 48% (midfoot)
		I	callus/past			insoles		with DFO
		analysis	ulceration					

US-United States, UK –United Kingdom, DPN – diabetic peripheral neuropathy, DM – diabetes Mellitus, ↓-decrease, ↑increase, n/a – not applicable, CMI- Custom made insole, PPP-peak plantar pressure, MTPJ – metatarsal phalangeal joints

REFERENCES

- 1. Schaper NC, Van Netten JJ, Apelqvist J, Lipsky BA, Bakker K. Prevention and management of foot problems in diabetes: A Summary Guidance for Daily Practice 2015, based on the IWGDF guidance documents. *Diabetes Res Clin Pract.* 2017;124:84-92.
- 2. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. *The New England journal of medicine*. 2017;376(24):2367-2375.
- 3. Driver VR, Fabbi M, Lavery LA, Gibbons G. The costs of diabetic foot: the economic case for the limb salvage team. *J Vasc Surg.* 2010;52(3 Suppl):17s-22s.
- 4. Kerr M, Barron E, Chadwick P, et al. The cost of diabetic foot ulcers and amputations to the National Health Service in England. *Diabetic Medicine*. 2019.
- 5. Paisey RB, Abbott A, Paisey CF, Walker D. Diabetic foot ulcer incidence and survival with improved diabetic foot services: an 18-year study. *Diabetic medicine : a journal of the British Diabetic Association.* 2019.
- 6. Pound N, Chipchase S, Treece K, Game F, Jeffcoate W. Ulcer-free survival following management of foot ulcers in diabetes. *Diabetic medicine : a journal of the British Diabetic Association*. 2005;22(10):1306-1309.
- Bus SA, Waaijman R, Arts M, et al. Effect of custom-made footwear on foot ulcer recurrence in diabetes: a multicenter randomized controlled trial. *Diabetes care.* 2013;36(12):4109-4116.
- 8. Bus SA, van Netten JJ. A shift in priority in diabetic foot care and research: 75% of foot ulcers are preventable. *Diabetes Metab Res Rev.* 2016;32 Suppl 1:195-200.
- 9. Waaijman R, de Haart M, Arts ML, et al. Risk factors for plantar foot ulcer recurrence in neuropathic diabetic patients. *Diabetes care*. 2014;37(6):1697-1705.
- 10. Fernando ME, Crowther RG, Pappas E, et al. Plantar pressure in diabetic peripheral neuropathy patients with active foot ulceration, previous ulceration and no history of ulceration: a meta-analysis of observational studies. *PloS one*. 2014;9(6):e99050.
- 11. Fernando ME, Crowther RG, Lazzarini PA, et al. Plantar pressures are higher in cases with diabetic foot ulcers compared to controls despite a longer stance phase duration. *BMC Endocr Disord.* 2016;16(1):51.
- 12. Fernando ME, Crowther RG, Lazzarini PA, et al. Plantar pressures are elevated in people with longstanding diabetes-related foot ulcers during follow-up. *PloS one.* 2017;12(8):e0181916.
- 13. van Netten JJ, Lazzarini PA, Armstrong DG, et al. Diabetic Foot Australia guideline on footwear for people with diabetes. *Journal of Foot and Ankle Research*. 2018;11(1):2.
- 14. Bus S, Valk G, Van Deursen R, et al. The effectiveness of footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in diabetes: a systematic review. *Diabetes/metabolism research and reviews*. 2008;24(S1):S162-S180.
- 15. Bus SA, Deursen RW, Armstrong DG, et al. Footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in patients with diabetes: a systematic review. *Diabetes/Metabolism Research & Reviews*. 2016;32:99-118 120p.
- 16. Heuch L, Streak Gomersall J. Effectiveness of offloading methods in preventing primary diabetic foot ulcers in adults with diabetes: a systematic review. *JBI Database System Rev Implement Rep.* 2016;14(7):236-265.
- 17. Paton J, Bruce G, Jones R, Stenhouse E. Effectiveness of insoles used for the prevention of ulceration in the neuropathic diabetic foot: a systematic review. *Journal of Diabetes and its Complications.* 2011;25(1):52-62.
- 18. van Netten JJ, Price PE, Lavery LA, et al. Prevention of foot ulcers in the at-risk patient with diabetes: a systematic review. *Diabetes/Metabolism Research And Reviews*. 2016;32 Suppl 1:84-98.

- 19. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ (Clinical research ed).* 2009;339:b2700.
- 20. Albert S, Rinoie C. Effect of custom orthotics on plantar pressure distribution in the pronated diabetic foot. *The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons.* 1994;33(6):598-604.
- 21. Arts MLJ, Haart M, Waaijman R, et al. Data-driven directions for effective footwear provision for the high-risk diabetic foot. *Diabetic Medicine*. 2015;32(6):790-797 798p.
- 22. Arts MLJ, Waaijman R, de Haart M, Keukenkamp R, Nollet F, Bus SA. Offloading effect of therapeutic footwear in patients with diabetic neuropathy at high risk for plantar foot ulceration. *Diabetic Medicine*. 2012;29(12):1534-1541 1538p.
- 23. Barnett S. The clinical effectiveness of orthoses prescribed to control and reduce diabetic foot pathology. *University of the West of England at Bristol (United Kingdom)*. 2002;<u>http://hdl.handle.net/10068/598967</u>.
- 24. Birke JA, Foto JG, Pfiefer LA. Effect of orthosis material hardness on walking pressure in highrisk diabetes patients. *Journal of Prosthetics & Orthotics (JPO)*. 1999;11(2):43-46 44p.
- 25. Burns J, Wegener C, Begg L, Vicaretti M, Fletcher J. Randomized trial of custom orthoses and footwear on foot pain and plantar pressure in diabetic peripheral arterial disease. *Diabetic Medicine*. 2009;26(9):893-899 897p.
- 26. Bus SA, Haspels R, Busch-Westbroek TE. Evaluation and optimization of therapeutic footwear for neuropathic diabetic foot patients using in-shoe plantar pressure analysis. *Diabetes care*. 2011;34(7):1595-1600.
- 27. Bus SA, Ulbrecht JS, Cavanagh PR. Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity. *Clinical biomechanics* (*Bristol, Avon*). 2004;19(6):629-638.
- 28. Busch K, Chantelau E. Effectiveness of a new brand of stock 'diabetic'shoes to protect against diabetic foot ulcer relapse. A prospective cohort study. *Diabetic medicine*. 2003;20(8):665-669.
- 29. Chantelau E, Kushner T, Spraul M. How effective is cushioned therapeutic footwear in protecting diabetic feet? A clinical study. *Diabetic medicine : a journal of the British Diabetic Association*. 1990;7(4):355-359.
- 30. Chapman JD, Preece S, Braunstein B, et al. Effect of rocker shoe design features on forefoot plantar pressures in people with and without diabetes. *Clinical biomechanics (Bristol, Avon)*. 2013;28(6):679-685.
- 31. Colagiuri S, Marsden LL, Naidu V, Taylor L. The use of orthotic devices to correct plantar callus in people with diabetes. *Diabetes Research And Clinical Practice*. 1995;28(1):29-34.
- 32. Cumming A, Bayliff T. Plantar pressure: comparing two poron insoles. *Diabetic Foot Journal*. 2011;14(2):86-89 84p.
- 33. Donaghue VM, Sarnow MR, Giurini JM, Chrzan JS, Habershaw GM, Veves A. Longitudinal inshoe foot pressure relief achieved by specially designed footwear in high risk diabetic patients. *Diabetes research and clinical practice*. 1996;31(1):109-114.
- 34. Fernandez MLG, Lozano RM, Diaz MIG-Q, Jurado MAG, Hernandez DM, Montesinos JVB. How effective is orthotic treatment in patients with recurrent diabetic foot ulcers? *Journal of the American Podiatric Medical Association*. 2013;103(4):281-290.
- 35. Frykberg RG, Bailey LF, Matz A, Panthel LA, Ruesch G. Offloading properties of a rocker insole. A preliminary study. *Journal of the American Podiatric Medical Association*. 2002;92(1):48-53.
- 36. Guldemond NA, Leffers P, Schaper NC, et al. The effects of insole configurations on forefoot plantar pressure and walking convenience in diabetic patients with neuropathic feet. *Clinical Biomechanics*. 2007;22(1):81-87.

- 37. Hastings MK, Mueller MJ, Pilgram TK, Lott DJ, Commean PK, Johnson JE. Effect of Metatarsal Pad Placement on Plantar Pressure in People with Diabetes Mellitus and Peripheral Neuropathy. *FOOT AND ANKLE INTERNATIONAL*. 2007;28(1):84.
- 38. Hellstrand Tang U, Zugner R, Lisovskaja V, Karlsson J, Hagberg K, Tranberg R. Comparison of plantar pressure in three types of insole given to patients with diabetes at risk of developing foot ulcers A two-year, randomized trial. *Journal of Clinical and Translational Endocrinology*. 2014;1(4):121-132.
- 39. Hsi W, Chai H, Lai J. Comparison of pressure and time parameters in evaluating diabetic footwear. *American Journal of Physical Medicine & Rehabilitation*. 2002;81(11):822-829 828p.
- 40. Hsi W, Chai H, Lai J. Evaluation of rocker sole by pressure-time curves in insensate forefoot during gait. *American Journal of Physical Medicine & Rehabilitation*. 2004;83(7):500-506 507p.
- 41. Kastenbauer T, Sokol G, Auinger M, Irsigler K. Running shoes for relief of plantar pressure in diabetic patients. *Diabetic Medicine*. 1998;15(6):518-522.
- 42. Lavery LA, Lafontaine J, Higgins KR, Lanctot DR, Constantinides G. Shear-reducing insoles to prevent foot ulceration in high-risk diabetic patients. *Advances in Skin & Wound Care*. 2012;25(11):519-526.
- 43. Lin T-L, Sheen H-M, Chung C-T, et al. The effect of removing plugs and adding arch support to foam based insoles on plantar pressures in people with diabetic peripheral neuropathy. *Journal Of Foot And Ankle Research*. 2013;6(1):29-29.
- 44. Lobmann R, Kayser R, Kasten G, et al. Effects of preventative footwear on foot pressure as determined by pedobarography in diabetic patients: a prospective study. *Diabetic medicine*. 2001;18(4):314-319.
- 45. Lott DJ, Hastings MK, Commean PK, Smith KE, Mueller MJ. Effect of footwear and orthotic devices on stress reduction and soft tissue strain of the neuropathic foot. *Clinical biomechanics.* 2007;22(3):352-359.
- 46. Mohamed O, Cerny K, Rojek L, Herbert K, Turner R, Waistell S. The Effects of Plastazote(R) and Aliplast(R)/Plastazote(R) Orthoses on Plantar pressures in Elderly Persons With Diabetic Neuropathy. *JOURNAL OF PROSTHETICS AND ORTHOTICS*. 2004;16(2):55.
- 47. Mueller MJ, Lott DJ, Hastings MK, Commean PK, Smith KE, Pilgram TK. Efficacy and mechanism of orthotic devices to unload metatarsal heads in people with diabetes and a history of plantar ulcers. *Physical Therapy.* 2006;86(6):833-842.
- 48. Owings TM, Woerner JL, Frampton JD, Cavanagh PR, Botek G. Custom therapeutic insoles based on both foot shape and plantar pressure measurement provide enhanced pressure relief. *Diabetes care*. 2008;31(5):839-844.
- 49. Paton JS, Stenhouse E, Bruce G, Jones R. A longitudinal investigation into the functional and physical durability of insoles used for the preventive management of neuropathic diabetic feet. *Journal of the American Podiatric Medical Association.* 2014;104(1):50-57.
- 50. Paton JS, Stenhouse EA, Bruce G, Zahra D, Jones RB. A comparison of customised and prefabricated insoles to reduce risk factors for neuropathic diabetic foot ulceration: a participant-blinded randomised controlled trial. *Journal Of Foot And Ankle Research*. 2012;5(1):31-31.
- 51. Perry JE, Ulbrecth JS, Derr JA, Cavanagh PR. The use of running shoes to reduce plantar pressures in patients who have diabetes. *Journal of Bone and Joint Surgery Series A*. 1995;77(12):1819-1828.
- 52. Praet SFE, Louwerens JWK. The influence of shoe design on plantar pressures in neuropathic feet. *Diabetes care.* 2003;26(2):441-445.
- 53. Raspovic A, Newcombe L, Lloyd J, Dalton E. Effect of customized insoles on vertical plantar pressures in sites of previous neuropathic ulceration in the diabetic foot. *The Foot*. 2000;10(3):133-138.

- 54. Reiber GE, Smith DG, Boone DA, et al. Design and pilot testing of the DVA/Seattle Footwear System for diabetic patients with foot insensitivity. *JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT*. 1997;34(1):1.
- 55. Reiber GE, Smith DG, Wallace C, et al. Effect of therapeutic footwear on foot reulceration in patients with diabetes: a randomized controlled trial. *Jama.* 2002;287(19):2552-2558.
- 56. Rizzo L, Tedeschi A, Fallani E, et al. Custom-made orthesis and shoes in a structured followup program reduces the incidence of neuropathic ulcers in high-risk diabetic foot patients. *The international journal of lower extremity wounds.* 2012;11(1):59-64.
- 57. Sacco IC, Akashi PM, Hennig EM. A comparison of lower limb EMG and ground reaction forces between barefoot and shod gait in participants with diabetic neuropathic and healthy controls. *BMC musculoskeletal disorders*. 2010;11:24-24 21p.
- 58. Scherer PR. A clinical study to determine the effects of wearing Earth Shoes. *Journal Of The American Podiatry Association.* 1975;65(5):422-443.
- 59. Soulier SM. The use of running shoes in the prevention of plantar diabetic ulcers. *Journal of the American Podiatric Medical Association*. 1986;76(7):395-400.
- 60. Tsung BYS, Zhang M, Mak AFT, Wong MWN. Effectiveness of insoles on plantar pressure redistribution. *Journal Of Rehabilitation Research And Development*. 2004;41(6A):767-774.
- 61. Uccioli L, Faglia E, Monticone G, et al. Manufactured shoes in the prevention of diabetic foot ulcers. *Diabetes care.* 1995;18(10):1376-1378.
- 62. Ulbrecht JS, Hurley T, Mauger DT, Cavanagh PR. Prevention of recurrent foot ulcers with plantar pressure–based in-shoe orthoses: the CareFUL prevention multicenter randomized controlled trial. *Diabetes care*. 2014;37(7):1982-1989.
- 63. Viswanathan V, Madhavan S, Gnanasundaram S, et al. Effectiveness of Different Types of Footwear Insoles for the Diabetic Neuropathic Foot: A follow-up study. *Diabetes care*. 2004;27(2):474-477.
- 64. Waaijman R, Arts MLJ, Haspels R, Busch-Westbroek TE, Nollet F, Bus SA. Pressure-reduction and preservation in custom-made footwear of patients with diabetes and a history of plantar ulceration. *Diabetic Medicine*. 2012;29(12):1542-1549 1548p.
- 65. Wrobel J, Ammanath P, Le T, et al. A novel shear-reduction insole effect on thermal response to walking stress, balance, and gait. *Diabetes*. 2014;63:A57.
- 66. Nouman M, Leelasamran W, Chatpun S. Effectiveness of Total Contact Orthosis for Plantar Pressure Redistribution in Neuropathic Diabetic Patients During Different Walking Activities. Foot & ankle international / American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society. 2017;38(8):901-908.
- 67. Preece SJ, Chapman JD, Braunstein B, Bruggemann GP, Nester CJ. Optimisation of rocker sole footwear for prevention of first plantar ulcer: comparison of group-optimised and individually-selected footwear designs. *J Foot Ankle Res.* 2017;10:27.
- 68. Telfer S, Woodburn J, Collier A, Cavanagh PR. Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study. *J Biomech.* 2017;60:157-161.
- 69. Abbott CA, Chatwin KE, Hasan ANB, et al. Novel plantar pressure-sensing smart insoles reduce foot ulcer incidence in 'high-risk' diabetic patients: A longitudinal study. *Diabetologia*. 2018;61.
- 70. Lopez-Moral M, Lazaro-Martinez JL, Garcia-Morales E, Garcia-Alvarez Y, JavierAlvaro-Afonso F, Molines-Barroso RJ. Clinical efficacy of therapeutic footwear with a rigid rocker sole in the prevention of recurrence in patients with diabetes mellitus and diabetic polineuropathy: A randomized clinical trial. *PloS one.* 2019;14(7).
- 71. Martinez-Santos A, Preece S, Nester CJ. Evaluation of orthotic insoles for people with diabetes who are at-risk of first ulceration. *Journal of foot and ankle research*. 2019;12:35.
- 72. Nouman M, Dissaneewate T, Leelasamran W, Chatpun S. The insole materials influence the plantar pressure distributions in diabetic foot with neuropathy during different walking activities. *Gait & posture.* 2019;74:154-161.

- 73. Parker DJ, Martinez-Santos A, Nester C, et al. A randomised controlled trial and costconsequence analysis of traditional and digital foot orthoses supply chains in a National Health Service setting: application to feet at risk of diabetic plantar ulceration. *Journal of foot and ankle research.* 2019;12:2.
- 74. Institute TJB. Joanna Briggs Institute Reviewers' Manual: 2014 Edition. Joanna Briggs Institute Adelaide; 2014.
- 75. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ (Clinical research ed).* 2003;327(7414):557-560.
- 76. Institute JB. Joanna Briggs Institute reviewers' manual: 2017 edition [Internet]. Australia: Joanna Briggs Institute; 2017 [cited 2018 September 18].
- 77. Abbott CA, Chatwin KE, Foden P, et al. Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: a prospective, randomised, proof-of-concept study. *The Lancet Digital Health.* 2019;1(6):e308-e318.
- Bus SA, Ulbrecht JS, Cavanagh PR. Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity. *Clinical Biomechanics*. 2004;19(6):629-638.
- 79. San Tsung BY, Zhang M, Mak AFT, Wong MWN. Effectiveness of insoles on plantar pressure redistribution. *Journal of rehabilitation research and development.* 2004;41(6A):767.
- 80. Chen WP, Ju CW, Tang FT. Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. *Clinical biomechanics (Bristol, Avon)*. 2003;18(6):S17-24.
- 81. Patry J, Belley R, Cote M, Chateau-Degat ML. Plantar pressures, plantar forces, and their influence on the pathogenesis of diabetic foot ulcers: a review. *Journal of the American Podiatric Medical Association*. 2013;103(4):322-332.
- 82. Nawoczenski DA, Birke JA, Coleman WC. Effect of rocker sole design on plantar forefoot pressures. *Journal of the American Podiatric Medical Association.* 1988;78(9):455-460.
- 83. Schaff PS, Cavanagh PR. Shoes for the insensitive foot: the effect of a "rocker bottom" shoe modification on plantar pressure distribution. *Foot Ankle*. 1990;11(3):129-140.
- 84. Jeffcoate WJ, Bus SA, Game FL, et al. Reporting standards of studies and papers on the prevention and management of foot ulcers in diabetes: required details and markers of good quality. *The lancet Diabetes & endocrinology.* 2016;4(9):781-788.
- 85. Rome K. A study of the properties of materials used in podiatry. *Journal of the American Podiatric Medical Association.* 1991;81(2):73-83.
- 86. Brodsky JW, Pollo FE, Cheleuitte D, Baum BS. Physical properties, durability, and energydissipation function of dual-density orthotic materials used in insoles for diabetic patients. *Foot & ankle international / American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society*. 2007;28(8):880-889.
- 87. Paton J, Jones RB, Stenhouse E, Bruce G. The physical characteristics of materials used in the manufacture of orthoses for patients with diabetes. *Foot & ankle international / American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society.* 2007;28(10):1057-1063.

Electronic supplement material 1 – example of search string

"(((diabet*).ti,ab OR (diabetes mellitus).ti,ab) AND ((foot).ti,ab OR (feet).ti,ab OR (neuropath*).ti,ab OR (ulcer*).ti,ab OR (pressure).ti,ab OR (gait).ti,ab OR (walking).ti,ab)) AND ((time).ti,ab OR (offload*).ti,ab OR (off-load*).ti,ab OR (insole*).ti,ab OR (orthos*).ti,ab OR (orthotic devices).ti,ab OR (therapeutic footwear).ti,ab OR (shoes).ti,ab OR (shoe inserts).ti,ab OR (footwear).ti,ab OR (footwear).ti,ab OR (footwear).ti,ab OR (footwear).ti,ab OR (padding).ti,ab OR (plug*).ti,ab OR (ankle foot orthos*).ti,ab OR (offloading device*).ti,ab OR (rocker bottom).ti,ab OR (rocker sole*).ti,ab OR (flange*).ti,ab OR (arch profile).ti,ab OR (post*).ti,ab OR (skive).ti,ab OR (metatarsal bar).ti,ab OR (kinetic wedge).ti,ab OR (cut out).ti,ab)"

	Q1 Was true randomization used for assignment of participants to treatment groups?	Q2 Was allocation to treatment groups concealed?	Q3 Were treatment groups similar at the baseline?	Q4 Were participants blind to treatment assignment?	Q5 Were those delivering treatment blind to treatment assignment?	Q6 Were outcomes assessors blind to treatment assignment?	Q7 Were treatments groups treated identically other than the intervention of interest?	Q8 Was follow up complete and if not, were differences between groups in terms of their follow up adequately described and analyzed?	Q9 Were participants analysed in the groups to which they were randomized?	Q10 Were outcomes measured in the same way for treatment groups?	Q11 Were outcomes measured in a reliable way?	Q12 Was appropriate statistical analysis used?	Q13 Was the trial design appropriate, and any deviations from the standard RCT design (individual randomization, parallel groups)
Abbott et al, 2019 ⁷⁷	Y	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y
Barnett 2002 ²³	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Burns et al, 2009 25	Y	Y	Y	Y	N	U	Y	Y	Y	Y	Y	Y	Y
Colagiuri et al, 1995 ³¹	Y	N	Y	N	N	Y	Y	N	Y	Y	U	Y	U
Hellstra nd Tang et al, 2014 ³⁸	Y	U	Y	Y	U	U	Y	Y	Y	Y	Y	Y	Y

Quality appraisal of randomized controlled trials

Electronic supplementary material 2 -Quality appraisal of included studies

Lavery et al, 2012 42	U	Y	Y	N	N	U	Y	Y	Y	Y	U	Y	Y
Lopez- Morales et al, 2019 ⁷⁰	Y	N	N	N	N	N	Y	Y	Y	Y	U	Y	Y
Parker et al, 2019 ⁷³	Y	N	Y	N	N	N	Y	N	N	Y	Y	Y	Y
Paton et al, 2012 50	Y	N	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y
Reiber et al, 2002 ⁵⁵	Y	Y	Y	N	U	Y	N	U	Y	Y	Y	Y	Y
Rizzo et al, 2012 56	Y	N	Y	N	N	U	Y	N	Y	Y	N	N	Y
Uccioli et al, 1995 ⁶¹	U	U	Y	U	U	U	Y	Y	Y	Y	U	N	Y
Ulbrecht et al, 2014 ⁶²	Y	Y	Y	U	U	Y	Y	Y	Y	Y	Y	Y	Y
%	85	31	85	31	8	38	92	69	92	100	62	85	92

Quality appraisal of cohort studies

	Q1 Were the two groups similar and recruited from the same population?	Q2 Were the exposures measured similarly to assign people to both exposed and unexposed groups?	Q3 Was the exposure measured in a valid and reliable way?	Q4 Were confounding factors identified?	Q5 Were strategies to deal with confounding factors stated?	Q6 Were the groups/participants free of the outcome at the start of the study (or at the moment of exposure)?	Q7 Were the outcomes measured in a valid and reliable way?7	Q8 Was the follow up time reported and sufficient to be long enough for outcomes to occur?	Q9 Was follow-up complete, and if not, were the reasons to loss to follow- up described and explored?	Q10 Were strategies to address incomplete follow-up utilized?	Q11 Was appropriate statistical analysis used?
Albert & Rinoie 1994 ²⁰	Y	Y	N	N	N	Y	Y	N	Y	N/A	Y
Arts et al, 2012 ²²	Y	Y	Y	Y	Y	Y	Y	N	Y	N/A	Y
Arts et al, 2015 ²¹	Y	Y	Y	Y	U	Y	Y	Y	Y	N/A	N
Birke et al, 1999 ²⁴	Y	Y	Y	Y	Y	Y	Y	N	Y	N/A	Y
Bus et al, 2004 27	Y	Y	Y	Y	Y	U	Y	N/A	Y	N/A	Y
Bus et al, 2011 26	Y	Y	Y	N	N	Y	Y	N	Y	N/A	N
Busch & Chantelau, 2003 ²⁸	Y	Y	Y	U	U	Y	U	Y	Y	U	Y

Chantelau 1990 ²⁹	Y	Y	U	N	N	Y	Y	Y	N	U	N
Chapman et al, 2013 ³⁰	N	Y	Y	N	N	Y	Y	N	Y	N/A	N
Cumming et al, 2011 ³²	Y	Y	Y	N	N	Y	Y	N	Y	N/A	Y
Donaghue et al, 1996 ³³	U	Y	U	U	U	U	Y	N/A	Y	N/A	Y
Fernandez et al, 2013 ³⁴	N	Y	N	Y	Y	Y	N	Y	U	N	N
Frykberg et al, 2002 ³⁵	N	Y	Y	N	N	U	Y	N/A	Y	N/A	N
Guldemond et al, 2007 ³⁶	N	Y	Y	N	N	Y	Y	N	Y	N/A	N
Hastings et al, 2007 ³⁷	U	U	Y	N	N	Y	Y	N	Y	N/A	Y
Hsi et al, 2004 40	Y	Y	Y	Y	Y	Y	Y	N	Y	N/A	Y
Hsi et al, 2002 ³⁹	Y	Y	Y	Y	Y	Y	Y	N	Y	N/A	Y
Kastenbauer et al, 1998 ⁴¹	Y	Y	N	N	N	Y	Y	N	Y	N/A	Y
Lin et al, 2013 43	Y	Y	Y	U	U	Y	Y	N	Y	N/A	Y
Lott et al, 2007 45	Y	N	Y	Y	N	Y	Y	N	Y	N/A	N
Martinez- Santos et al, 2019 ⁷¹	Y	Y	Y	N	N/A	Y	Y	N/A	N/A	N/A	Y
Mueller et al, 2006 ⁴⁷	Y	Y	U	N	N	Y	Y	N	Y	N/A	Y
Nouman et al, 2017 ⁶⁶	Y	Y	Y	U	U	U	Y	N	Y	N/A	Y
Nouman et al, 2019 ⁷²	Y	Y	Y	N	N	Y	Y	N	N/A	N/A	Y
Owings et al, 2008 ⁴⁸	N	Y	Y	U	N	Y	Y	N	Y	N/A	N

Paton et al, 2014 ⁴⁹	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	N
Praet & Louwerens 2003 ⁵²	N	Y	Y	U	U	Y	Y	N	Y	N/A	N
Perry et al, 1995 ⁵¹	N	Y	Y	Y	Y	U	Y	N	Y	N/A	Y
Preece et al, 2017 ⁶⁷	Y	Y	Y	U	U	Y	Y	N	Y	N/A	Y
Raspovic et al, 2000 ⁵³	N	Y	Y	N	N	Y	Y	N	Y	N/A	N
Reiber et al, 1997 ⁵⁴	N	Y	Y	N	N	U	U	Y	N	N	N
Sacco et al, 2010 ⁵⁷	N	Y	Y	N	N	Y	Y	N	Y	N/A	Y
Scherer 1975 58	Y	N	N	N	N	U	N	Y	Y	N/A	N
Soulier. 1986 ⁵⁹	U	Y	N	N	N	Y	Y	Y	Y	N	Y
Telfer et al, 2017 ⁶⁸	Y	Y	Y	N	N	Y	Y	N	Y	N/A	Y
Tsung et al, 2004 ⁶⁰	N	Y	U	N	N	Y	Y	N	Y	N/A	N
Waaijman et al, 2012 ⁶⁴	Y	Y	Y	Y	Y	Y	Y	N	Y	N/A	Y
%	62	92	76	30	24	81	89	22	86	0	59

Quality appraisal of case controlled studies

	Q1 Were the groups comparable other than the presence of disease in cases or the absence of disease in controls?	Q2 Were cases and controls matched appropriately?	Q3 Were the same criteria used for identification of cases and controls?	Q4 Was exposure measured in a standard, valid and reliable way?	Q5 Was exposure measured in the same way for cases and controls?	Q6 Were confounding factors identified?	Q7 Were strategies to deal with confounding factors stated?	Q8 Were outcomes assessed in a standard, valid and reliable way for cases and controls?	Q9 Was the exposure period of interest long enough to be meaningful?	Q10 Was appropriate statistical analysis used?
Lobmann et al, 2001 ⁴⁴	Y	Y	N	Y	Y	U	N	Y	Y	Y
Viswanathan et al, 2004 ⁶³	Y	Y	Y	Y	Y	N	N	Y	Y	N
%	100	100	50	100	100	0	0.0	100	100	50

Quality appraisal of case series study

Mohamed et	 ✓ Q1 Were there clear criteria for inclusion in the case series? 	Q2 Was the condition measured in a standard, reliable way for all participants included in the case series?	Q3 Were valid methods used for identification of the < condition for all participants included in the case series?	${\bf Q4}$ Did the case series have consecutive inclusion of participants?	Q5 Did the case series have complete inclusion of C participants?5	Q6 Was there clear reporting of the demographics of the participants in the study?	Z Was there clear reporting of clinical information of the participants?	Q8 Were the outcomes or follow up results of cases < clearly reported?	Q9 Was there clear reporting of the presenting <site(s) clinic(s)="" demographic="" information?<="" th=""><th> Q10 Was statistical analysis appropriate? </th></site(s)>	 Q10 Was statistical analysis appropriate?
al, 2004 ⁴⁶										
%	100	100	100	0	0	0	0	100	100	100

Citation Citation Mrobel et	\prec Q1 Were the criteria for inclusion in the sample clearly defined?	\prec Q2 Were the study subjects and the setting described in detail?	\prec Q3 Was the exposure measured in a valid and reliable way?	< Q4 Were objective, standard criteria used for measurement of the condition?	$_{\sf C}$ Q5 Were confounding factors identified?	$_{\sf C}$ Q6 Were strategies to deal with confounding factors stated?	\prec Q7 Were the outcomes measured in a valid and reliable way?	< Q8 Was appropriate statistical analysis used?
%	100	100	100	100	0	0	100	100

Quality appraisal for analytical cross-sectional study

Electronic supplementary material 3 – profile of insole

Profile of	Studies (n=37)	Comparator	Comments
insole			
Flat insole	Birke et al, 1999 ²⁴	Non moulded	No specifications reported for
(non-moulded		insoles of different	non-moulded or CMI
insoles) and		density materials in	
medial		extra depth shoe	
longitudinal			
arch			
profile(CMI)			
Three types of	Tsung et al, 2004	Different casting	Standardised adjustment
CMI with	60	techniques to create	technique in manufacture
medial		digital image for	process, no specification of
longitudinal		CMI to individualise	profiles
arch profile		profile	
CMI with	Arts et al, 2015	Used as part of	Static/dynamic impressions in
medial	Arts et al,	custom made	foam box to individualise profile;
longitudinal	2012 ^{21,22}	feature to modify	modified using pressure data with
arch profile		footwear	additional arch support added at
			times
CMI with	Paton et al, 2014;	Prefabricated	CMI individualised with
medial	Paton et al, 2012	insoles with medial	prescription protocol for foot
longitudinal	49,50	longitudinal arch	deformity; prefabricated profile
arch profile		profile	based on shoe size
CMI with	Lott et al, 2007	Barefoot, shoe and	No insole prescription or
medial	45	CMI with metatarsal	manufacture reported, no
longitudinal		pad addition	specification of profile
arch profile		conditions	
CMI with	Fernandez et al,	Used as one	Foam box impression with
medial	2013 ³⁴	component of	pathology dependent prescription
longitudinal		custom made	profile - for bony prominences a
arch profile		footwear	poron longitudinal inner arch
			piece also embedded

CMI with	Reiber et al, 1997;	Usual footwear	Used as one component in
medial	Reiber et al,		conjunction with specialist shoe
longitudinal	2002 ^{54,55}		plantar foot scanned to create
arch profile			individual profile; fitted to patient
			with modifications, no other
			specification of profile
CMI with	Rizzo et al, 2012 ⁵⁶	Standard treatment	Foam box, static impression to
medial			individualise profile but no
longitudinal			specifications
arch profile			
CMI with	Uccioli et al,	Non-therapeutic	Shaped by cast but no
medial	1995 ⁶¹	shoes	specification of profile
longitudinal			
arch profile			
Insole	Scherer 1975 ⁵⁸	Used as one	Proximally located medial arch
containing		component of	within shoe to tip the heel into a
medial		custom made	varus position, location based on
longitudinal		footwear	generalisation of foot size
arch profile			
CMI with	Albert & Rinoie	Without orthotic	Rigid device from plaster of paris
medial	1994 ²⁰		casts, no specification of profile
longitudinal			
arch profile			
CMI with	Burns et al,	Flat insoles	Use of plaster casts to
medial	2009 ²⁵		individualise arch for CMI; no
longitudinal			specifications of profile
arch profile			
CMI with	Bus et al, 2011 ²⁶	Used as one	Moulded base to individualise
medial		component of	profile, modifications decided by
longitudinal		custom made	clinician; no specification of
arch profile		footwear	profile or location of rocker
CMI with	Bus et al, 2004 ²⁷	Flat insole	Cad-cam, tracings of feet and
medial			pressure data to individualise
			profile; medial longitudinal arch

	o direct
arch profile specifications) with othe	er
modifications	
Total contact Hastings et al, TCI distal metatarsal Foam box impression to)
insole (TCI) 2007 ³⁷ pad, TCI proximal individualise profile, no	other
with medial metatarsal pad specifications of profile	
longitudinal	
arch	
CMI withTang et al, 201438PrefabricatedMoulds to individualise	to profile,
medial insoles with medial no other specifications of	of profile
longitudinal longitudinal arch	
arch profile	
CMI with Kastenbauer et al, Barefoot, Oxford- Customised orthopaedie	c diabetic
medial 1998 ⁴¹ style shoe, original insole, no prescription,	
longitudinal cork insole manufacturing or speci	fications
arch profile reported	
CMI with Mohamed et al, Two CMI's No specification of man	ufacturing
medial 2004 ⁴⁶ constructed of process or profile report	ted
longitudinal different materials	
arch profile	
Total contact Nouman et al, Without total Foam box to individuali	se profile,
orthoses with 2017 ⁶⁶ contact insole modified according to a	static
medial blueprint, no other spec	cifications
longitudinal	
arch	
CMI with Owings et al, Conventionally Foam box to individualis	se profile
medial 2008 ⁴⁸ manufactured CMI's with plantar pressure da	ata
longitudinal	
arch profile	
CMI with Telfer et al, Shape based arch Foam box to individualis	se profile
medial 2017 ⁶⁸ profile but manufactured using	shape,
longitudinal pressure and ultrasound	d data
arch profile	

CMI with	Viswanathan et	No CMI	Positive mould cast to individuals
medial	al, 2004 ⁶³		profile, no other specifications
longitudinal			
arch profile			
CMI with	Waajiman et al,	Used as part of	Mould or cast of foot to
medial	2012 ⁶⁴	custom made	individualise profile, no other
longitudinal		feature to modify	specifications
arch profile		footwear	
Non-moulded	Busch &	Group not provided	Flat profile to fit inside
insole	Chantelau, 2011 ²⁸	with footwear and	therapeutic shoe
		insole	
Unsure	Perry et al, 1995 ⁵¹	Oxford style shoe	Reported insole inside running
		with no insole	shoe but no description of profile
Pre-fabricated	Barnett 2002 ²³	Flat insole	Non-bespoke standardised
insole			specification of arch dependent
			on shoe size
Arched insole	Chantelau et al,	n/a	Constructed according to shape of
	1990 ²⁹		the foot and corrected until
			satisfactory, but no specifications
			or manufacture technique
			reported
CMI with	Ulbrecht et al,	Standard care	Foam box and digital scan to
medial	2014 ⁶²	orthoses	individualise profile, with
longitudinal			intervention orthoses modified by
arch profile			plantar pressure data
CMI with	Parker et al, 2019	Flat insoles	Medial arch profile with 10mm
medial	73		heel cup formed by either foam
longitudinal			box or weight bearing scan.
arch profile			Weight bearing insoles templates
			were adjusted by an orthotist, but
			not disclosed if arch was adjusted
Unsure	Soulier 1986 ⁵⁹	n/a	Running shoe insole with generic
			reasonable structure shoe, no
			specifications of profile

Unsure	Lobmann et al,	No insole	No description or specification of
	200144		insole profile within shoe
CMI with	Guldemond et al,	Different insole	Casted foot to individualise profile
medial	2007 ³⁶	configurations	
longitudinal		including	
arch profile		modifications of	
		profile by reducing	
		arch profile by 5mm,	
		adding 5mm and	
		10mm arch supports	
Medial	Lin et al, 2013 ⁴³	Flat insole	Latex arch support, placed under
longitudinal			talus, navicular and base of 1 st
arched profile			metatarsal, added to insole with
			double sided tape; size chosen to
			ensure sub-talar joint neutral
			position
Medial	Raspovic et al,	Without insole	10 insoles of Non cast type –
longitudinal	2000 ⁵³		adhering pieces of D-shaped pad
arch profile			on flat base of medial longitudinal
reported as			arch area; two neutral shell
customized			insoles. No reporting of
insoles			specifications and positioning of
			pad.

CMI – custom moulded insole, TCO-total contact orthotic

Electronic supplementary material 4 rocker profile

Rocker	Studies (n=20)	Comparator	Comments
modification			
Stiff bottom	Rizzo et al,	Standard care	Generalised specifications used on
rocker with	2012 ⁵⁶	(no footwear)	participants with previous ulceration or
early pivot to			forefoot amputation, marked
shoe outsole			deformities, hallux amputation and
			hollow foot with claw toes
Urethane	Reiber et al,	Usual	No specifications of rocker profile
(Meramec	1997;	footwear	reported; specified treatment objective
Group, Sullivan,	Reiber et al,		to generate a smooth rolling motion from
MO) rocker	2002 ^{54,55}		heel to toe with normal gait to decrease
bottom to shoe			range of motion in tarso-metatarsal joints
outsole – men			and reduce gait induced plantar stress-
semi rocker			
forefoot made			
rigid with			
composite			
shank, women's			
shoes semi-			
rockered with			
non extended			
steel shank			
Semi rigid	Uccioli et al,	Non	Developed according to Towey
rocker to shoe	1995	therapeutic	guidelines; No further specifications
outsole		shoes	reported
Semi rigid	Wrobel et al,	Used in	No further specifications reported
rocker to shoe	2014 ^{61,65}	conjunction	
outsole		with different	
		types of	
		insoles	
Anteroposterior	Lopez-Moral	Semi-rigid	20 ° rocker angle between floor and sole
rigid rocker to	et al, 2019 70	rocker	under metatarsal heads with rigid
shoe outsole		sole(Wellwalk	(composite fibre) rocker

		technology	
		with Vibram	
		strips)	
Stiff convex	Busch &	Group not	No specifications reported but aims to
walking sole to	Chantelau,	provided with	decrease plantar pressure beneath
diabetic shoe	2011 ²⁸	footwear and	metatarsal heads and prolong pain free
		insole	walking
EVA micro	Paton et al,	Used in both	Rocker added to forefoot positioned
rubber sole on	2014;	intervention	posterior to the metatarsal phalangeal
therapeutic	Paton et al,	and control	joint line
footwear	2012	groups	
	49,50		
Rigid rocker	Owings et al,	Flexible shoe	Rocker angle 20°, located at 65% of the
constructed of	2008 ⁴⁸		sole length as measured from the heel
1/16 x 1-inch			
spring steel			
shank			
embedded			
under the			
outsole of shoe			
Rocker to outer	Chapman et	12 different	12 variations in apex angle (relative to
sole of shoe	al, 2013 ³⁰	rocker designs	metatarsal break), apex position
			(normalised to shoe length), rocker angle
EVA and 5mm	Preece et al,	Eight different	Eight variations in rocker angle (15° or
folex rocker	2017 ⁶⁷	rocker designs	20°) and apex position (52, 57, 62 and
addition to the			67% from the rearfoot)
outsole of a			
standard shoe			
(Duna, Italy)			
Either 1cm	Fernandez et	Used as one	Rocker feature prescribed when
forefoot rocker	al, 2013 ³⁴	component of	increased vertical pressure in push-off
(excessive		custom made	stage of walking gait (hallux rigidus,
pressure under		footwear	functional limitus, 1 st ray amputation or
1 st and- 5 th			

MTPJ) or 1cm			digit amputation) assessed by barefoot
ʻu' shaped			plantar pressure platform analysis.
rocker			
(excessive			
pressure under			
central			
metatarsals) to			
external sole of			
shoe			
Diabetic	Hsi et al, 2004	Patients own	Rocker sole addition comprised of 11mm
footwear with	40	shoes	height, 29mm thickness at the heel,
rocker outer			16mm at the front end and 24mm at the
soles			maximum of the rocker curve. The rocker
			started to curve up 83mm from the front
			end at the medial side and 87mm at the
			lateral side
Anterior wedge	Frykberg et al,	Surgical boot	Rocker modification of dense closed cell
rocker added to	35	without insole,	foam applied to the insole proximal to
insole		patients' own	the metatarsal heads contained within a
		Oxford or	surgical boot
		tennis style	
		shoes	
Rubber made	Chantelau et	n/a	No specifications of rocker
walking sole	al, 1990 ²⁹		
shaped to			
rocker			
Stiffened rubber	Bus et al,	Used as one	Pressure informed modification of adding
outsole and	2011 ²⁶	component of	earlier or more significant rocker or roller
roller		custom made	either in shoe or outside shoe
configuration to		footwear	
shoe			
Semi-rigid outer	Tang et al,	Used in both	No specifications reported
sole or stiff	2014 ³⁸	intervention	
rocker bottom			

		and control	
		group	
Longitudinal	Praet et al,	Variations in	Variations of rocking axis position (60%,
outsole	2003 ⁵²	shoe and	61.5%, 63%, 65%, 67.5%) and rocking
curvature		insole	angle (5°, 8°, 10°, 23°)
		modalities	
Stiffened rubber	Waajiman et	Used as one	Generalised construction with no
outsole and	al, 2012 ⁶⁴	component of	specifications reported
roller		custom made	
configuration to		footwear	
shoe			

Legend: MTPJ – Metatarsal phalangeal joint, EVA-Ethylene-vinyl acetate, n/a not applicable

Electronic supplementary material 5 - modifications to footwear

Extra depth	Studies	Comparator	Comments
modification	(n=35)		
Off the shelf footwear	1	I	
Diabetic footwear	Paton et al,	Used in both	Standardised footwear with more
(County Orthopaedic	2014;	intervention and	depth and width
Footwear Ltd, UK)	Paton et al,	control groups	
	2012		
	49,50		
Extra depth or DX2	Ulbrecht et	Used in both	Standardised footwear but could
footwear (p.w. Minor,	al, 2014 ⁶²	intervention and	be adjusted at fitting to include
Batavia, NY).		control groups	stretching
	Wrobel et al,	Used in both	Standardised off-the-shelf-
Extra depth footwear	2014 ⁶⁵	intervention and	footwear
(Dr Comfort, DJO, UK)		control groups	
Extra depth footwear	Albert &	Used in both	Not disclosed if patient specific
Sir Super Depth (p.w.	Rinoie	intervention and	
Minor, Batavia, NY) 55	1994 ²⁰	control groups	
Durometer, 18 iron.			
Extra depth	Rizzo et al.,	Standard care	Semi-orthopaedic footwear on
	2012 ⁵⁶		market with extra depth to fit
			Custom made insoles. Not clear if
			patient specific.
Extra width, depth	Reiber et al.,	Used in both	Prototype footwear Extra width
and height	1997;	intervention and	and height to toe box, increased
(DVA/Seattle	Reiber et al.,	control groups	depth to length of shoe. Not clear
Footwear, US).	2002 ^{54,55}		if patient specific.
Extra depth, width	Lopez-Moral	Used in both	Therapeutic shoes with high toe
and height(Podartis	et al, 2019 ⁷⁰	intervention and	box, enough width to
s.r.l. Unipersonale –		control groups	accommodate toe deformities,
Crocceta del			depth 14 or 16mm deeper than
Montello, Italy)			standard footwear.
Extra depth	Birke et al,	Used in all	Standardised off-shelf-shoe; not
(Thermomold, NY)	1999 ²⁴	interventions	patient specific

Extra depth(Sole Tech,	Hastings et	With and without	Advanced orthopaedic footwear
Advanced Orthopedic	al, 2007 ³⁷	insoles	prescribed according to shoe size
Footwear, style			
number E3010)			
Extra depth (Finn	Kastenbauer	Oxford style shoes	Standardised shoe. Unsure if
Comfort, Germany).	et al, 1998 ⁴¹		patient specific
Standard diabetic	Lin et al,	Used in all	Xtra depth leather shoes
shoes (Dr. Foot	2013 ⁴³	interventions	
Technology Co,			
Taiwan)			
Extra depth	Telfer et al,	Used in all	Only prescribed for use in trial
	2017 ⁶⁸	interventions	runs
Suitable depth	Raspovic et	Used in all	Footwear modified to be of
	al, 2000 ⁵³	interventions	'suitable' depth, but no
			specifications reported.
Extra deep diabetic	Tsung et al,	Used by all	Shoe selected to size, according to
shoes (Dr Kong	2004 ⁶⁰	participants	Tovey's principles. The first
Footcare Ltd. Taiwan)			metatarsophalangeal joint should
			be accommodated in the widest
			part of the shoe and the length
			should allow 1-1.25cm between
			the end of the shoe and the
			longest toe
Bespoke footwear		<u> </u>	
Ready-made diabetic	Hsi et al,	Patients' own shoes	Standardised diabetic footwear
footwear (Orthoaktiv,	2002 ³⁹		
F.W. Kraemer,			
Remscheid, Germany)			
Extra depth or fully	Arts et al,	Used by all	Either 'Extra-depth' off-the-shelf
customised footwear	2015	participants	footwear or custom footwear
	Arts et al,		made from last derived plaster
	2012 ^{21,22}		cast of foot

Extra depth footwear	Fernandez et	Used by all	Prescribed footwear according to
	al, 2013 ³⁴	participants	length and width of foot, using
			Dahmen's algorithm.
Extra depth shoes	Uccioli et al,	Ordinary shoes	Footwear designed according to
	1995 ⁶¹		Towey guidelines with super
			depth to fit insoles and toe
			deformities. Not clear if patient
			specific.
Extra width and depth	Scherer	Used by all	Manufactured according to shoe-
	1975 ⁵⁸	participants	size, foot width and length.
			Bespoke to patient.
Extra depth protective	Lobmann et	Used by all	Protective shoe manufactured
shoes(Thanner,	al, 2001 ⁴⁴	participants	according to Tovey's model.
Germany) with deep			Unsure if patient specific
soft uppers and no			
toe-caps with a firm			
heel counter			
Customised footwear	Bus et al,	Used by all	Participants received either 'Extra-
or extra depth	2011 ²⁶	participants	depth' off-the-shelf footwear or
			custom footwear made from last
			derived plaster cast of foot
Customised diabetic	Praet &	Standardised	Shoes fabricated by orthotist
footwear	Louwerens	footwear: rubber	
	2003 ⁵²	soled Oxford style	
		shoe (model 7143-A,	
		Vab der Hammen B.V.	
		Waalwijk, the	
		Netherlands), Xtra	
		depth Oxford shoe	
		(model 3116, Bimakon	
		Hederland BV,	
		Drunen, NL), Xtra-	
		depth Diabetic shoe	
		(Nimco Orthropedics,	

		Berg en Dal, the	
		Netherlands),	
		Xtra-stretched shoe	
		Nimco Orthropedics,	
		Berg en Dal, the	
		Netherlands)	
Retail footwear	1	1	
Running shoes (New	Soulier	Used by all	Retail-footwear not patient
Balance trainers 460,	1986 ⁵⁹	participants	specific
US) with			
accommodative			
padding added into			
insole, width sizing			
and smooth outsole			
pattern to reduce			
tripping indoors			
Extra width and depth	Donaghue et	Used by all	Retail footwear not patient
running shoes (SAS,	al, 1996 ³³	participants	specific
San Antonio, TX, US or			
New Balance, Boston,			
MA, US),			
1	1		

Electronic supplementary material 6 - metatarsal modifications

Metatarsal	Studies	comparator	Comments
modification	(n=18)		
Metatarsal pad or	Bus et al,	n/a	Option of use being incorporated into Total
metatarsal bar	2011 Bus et		Contact Insole chosen by orthopaedic shoe-
	al, 2004 26,27		maker to reduce Peak Pressure in Regions Of
			Interest based on PP data, tracings and static
			footprints in conjunction with other
			modifications
Metatarsal pad or	Arts et al,	n/a	No clear description of position, size, material,
metatarsal bar	2015		shape of pad or bar. Chosen as modifications by
	Arts et al,		shoe technicians and repositioned to reduce PP
	2012		in ROI >200kPa. Used in conjunction with arch
	21,22		support on occasion
Metatarsal pad	Ulbrecht et	n/a	No clear description of position, size, material,
and metatarsal	al, 2014 ⁶²		shape of pad or bar. Option of being
bars			incorporated into insole prescription for sub-
			metatarsal offloading Decision to use based on
			opinion of orthotist
Metatarsal pad	Hastings et al,	Three sizes of	Metatarsal pad applied to Total contact insole
	2007; Lott et	metatarsal pad	with adhesive backing. Orthotist/pedorthotist
	al, 2007;	made of cork,	drew line to determine metatarsal head location
	Mueller et al,	shore value	for placement 1cm proximal.
	2006 37,45,47	55°, selected	
		to cover three	
		central	
		metatarsal	
		heads,	
Pre-metatarsal	Rizzo et al,	n/a	No clear description of position, size, material or
bar	2012 ⁵⁶		shape of bar. Used in conjunction with a medial
			arch support. Used based on an individualised
			strategy based on consensus of three clinicians
			to lower high forefoot pressures.

Metatarsal pads	Mohamed et	n/a	No clear description of size, material or shape of
2 nd to 4 th MTPJ	al, 2004 ⁴⁶		bar. Added to six of 16 insoles after one month
			of use due to excessive wear or bottoming out in
			opinion of orthotist.
Metatarsal bar	Tang et al,	n/a	No clear description of material or shape of bar.
	2014 ³⁸		Standardised bar, fitted proximal to the 2 nd to 4 th
			metatarsal heads within the CMI and
			prefabricated insoles. Adjustments including
			raising or lowering bar height, but no
			specifications or rationale given.
Metatarsal bar	Owings et al,	n/a	No clear description of size, material or shape of
	200848		bar. Created within Total Contact Insole from
			automated design algorithm which identified
			pressure contour of MTPJ's.
Metatarsal dome	Guldemond	n/a	11mm high foam rubber (Shore A 28) dome,
	et al, 2007 ³⁶		positioned 5mm behind the 2nd to 4 th metatarsal
			heads on the insole. Positioned from dynamic
			pressure sheet footprint.
Metatarsal or	Fernandez et	n/a	No clear description of size, material or shape of
central head	al, 2013 ³⁴		bar. Used when elevated pressure over static
mounds			bony prominence when joints were mobile in
			forefoot zone.
Metatarsal bars	Telfer et al,	n/a	No clear description of position, size, material or
or pads	2017 ⁶⁸		shape of bar or pads. Manufacturer could use
			this if felt appropriate as per standard practice
			for CMI; met bar increased in height to reduce
			peak pressure in cad cam design
Metatarsal pad or	Parker et al,	n/a	Used on two of the insoles at discretion of
bar	2019 ⁷³		orthotist based on static pressure footprints. No
			clear description of position, size, material or
			shape of bar or pads
Metatarsal bar	Martinez-	n/a	Distal location and shape defined where plantar
	Santos et al,		pressure was 77% of the peak pressure. Used in
	2019 71		combination with different void conditions

Metatarsal	Barnett	n/a	Located at widest part of forefoot with material
aperture	2002 ²³		removed from insole and replaced by softer
			material into insole at metatarsal

PP=peak pressure; ROI=regions of interest; MTPJ=metatarsal phalangeal joint; n/a not applicable

Electronic supplementary material 7 - cut outs or aperture modifications

Feature	Studies (n=12)	Comparator	Comments
Removal of	Arts et al, 2015	n/a	Removal of material at high pressure areas
material	Arts et al, 2012		identified by pressure data, tracings and
	21,22		static blueprint
Removal of	Bus et al, 2011 ²⁶	n/a	Removal of material to reduce peak
material			pressure at regions of interest identified
			by in-shoe system
Removal of	Bus et al,	n/a	Removal of material at areas of high
material	2004 ²⁷		pressure identified by pressure data,
			tracings and static footprint
Removal of	Waajiman et al,	n/a	33% of insoles modified by removal of
material	2012 ⁶⁴		material at ROI identified by PP in-shoe
			system
Cut out	Lopez-Moral et	n/a	Cut out positioned at the previously
	al, 2019 ⁷⁰		ulcerated metatarsal head
Fenestrations	Fernandez et al,	n/a	6mm poron plug embedded in
	2013 ³⁴		fenestrations for areas of high pressure
			and bony prominence and joints which
			showed insufficient mobility for selective
			offloading
Removable	Lin et al, 2013 ⁴³	Pre-plug	Plugs 1cm x 1cm removed in forefoot area
square plugs		removal	for ROI (highest mean peak pressure)
Aperture	Owings et al,	n/a	3mm deep aperture for regions of
------------------	--------------------	----------------	---
	2008 ⁴⁸		excessive pressure >1000kPa
Aperture or u	Raspovic et al,	n/a	Sited under previous ulcerated site
shaped rubber	2000 ⁵³		
Removal of	Telfer et al,	n/a	Used to reduce regional MPP to under
material under	2017 ⁶⁸		200kPa informed by finite element
metatarsal head			modelling
Local removal of	Parker et al,	n/a	Utilised on seven of the insoles at
material or	2019 ⁷³		discretion of orthotist, informed by static
softening of			pressure footprints.
material			
3mm void	Martinez-	Different void	Distal border of void placed distal to area
conditions	Santos et al,	conditions	of peak pressure and used in conjunction
	2019 71	created with	with metatarsal bar;
		altering	
		material (no	
		material,	
		poron (20	
		Shore A), EVA	
		(20 Shore A)	
		alongside	
		different	
		metatarsal	
		bar	
		combinations	

n/a not applicable, ROI Region of Interest

Electronic supplementary material 8 - Casting technique

Casting technique	Studies n=23	Comparator	Comments
Plaster of Paris	Albert &	n/a	No technique disclosed
	Rinoie		
	1994 ²⁰		
Plaster of Paris	Burns et al,	n/a	Neutral suspension
	2009 ²⁵		technique
Plaster of Paris	Tang et al,	n/a	Positive mould based on
	2014 ³⁸		negative cast; patient
			prone positioned
Plaster of Paris or	Arts et al,	n/a	Positive cast with
foam box	2015		additional modifications
	Arts et al,		informed by shoe
	2012 ^{21,22}		technician
Plaster of Paris	Viswanathan	n/a	Positive mould, no other
	et al, 2004 ⁶³		specifications
Plaster of Paris	Coagiuri et	n/a	STJ neutral, mid-tarsal
	al, 1995 ³¹		maximally pronated.
Plaster of Paris or	Waajiman et	n/a	No technique disclosed
foam box	al, 2012 ⁶⁴		
Foam box	Rizzo et al,	n/a	Feet in neutral, knees
	2012 ⁵⁶		90°. Used with
			information from static
			footprint
Foam box	Nouman et	n/a	Sub talar joint in neutral,
	al, 2017 ⁶⁶		knees 90°. Modifications
			informed by information
			from static footprint
Foam box	Paton et al,	n/a	Cad-Cam technique to
	2014;		mill Custom Made Insole
	Paton et al,		
	2012		
	49,50		

Foam box	Hastings et	n/a	Design and modifications
	al, 2007 ³⁷		based on clinical decision
			by orthotists
Foam box	Owings et al,	n/a	No technique disclosed
	2008 ⁴⁸		
Foam box	Lott et al,	n/a	No technique disclosed
	2007 ^{45,47}		
Foam box	Nouman et	n/a	Cast obtained by a
	al, 2019 ⁷²		qualified orthotist; no
			other specifications
			disclosed
Foam box	Tsung et al,	Fully weight-bearing	
	2004 ⁶⁰	(standing on casting foot	
		only) compared with	
		semi-weight-bearing	
		(standing only) with non-	
		weight-bearing (sitting,	
		ankle neutral, knee 90°)	
Cad-cam	Bus et al,	n/a	Based on plantar
	2011 Bus et		pressure data, tracings
	al, 2004 ^{26,27}		and footprint
Laser digitizer	Reiber et al,	Standard preformed	Weight-bearing, static
	1997;	polyurethane insole	image of contours of foot
	Reiber et al,		uploaded into software
	2002 ^{54,55}		which creates 3D image
			of foot
Digital AMFIT (AMFIT	Wrobel et	Standard insoles	Image of foot digitized
Incorporated,	al, 2014 65		and used to manufacture
Vancouver, WA, USA)			insoles and Dynamic Foot
system			Orthoses
'Cast'	Uccioli et al,	n/a	No technique disclosed
	1995 ⁶¹		
Foam box, cad cam,	Telfer et al,	Shape date and milling	Individualised for each
finite element	2017 ⁶⁸	produced insole	patient with different

			techniques compared to
			inform manufacturing
			processes
Foam box and	Parker et al,	Flat 3mm poron insole	Foam box devices
weightbearing digital	2019 ⁷³		manufactured with
foot scan			plaster impression, heat
			moulded to cast and
			hand finished by blinded
			technicians. Digital scan
			from barefoot standing
			and modified by orthotist
			based on static pressure
			data.

n/a not applicable

Electronic supplementary material 9 - fabrication informed by kinetic parameters

	Studies	Comparator	Comments
	(n=11)		
Pedar-X (Novel, GmbH,	Bus et al,	Used for all	Identify regions of
Munich, Germany) in-	2011;	participants	interest>200kPa in the midfoot
shoe system	Waajiman		or forefoot; modified insoles
	et al, 2012;		using a set algorithm with up to
	Waajiman		three rounds of modifications to
	et al, 2012		achieve regions of interest
	21,26,64		optimisation (25% below MPP
			or <200kPa).
Pressure platform (Novel	Bus et al,	Standard insole	Used barefoot plantar pressure
EMED-SF, USA) for	2004 ²⁷		data to inform custom made
barefoot pressures			insole
Pedar X (Novel, GmbH,	Lin et al,	Used for all	Plugs were removed from the
Munich, Germany) in-	2013 ⁴³	participants	insole at the Region of
shoe system			interest=highest MPP

RScan (RScan	Fernandez	Used for all	Used barefoot plantar pressure
International	et al,	participants	data and radiophotopodogram
Lammerdries, Belgium)	2013 ³⁴		findings to inform for selective
platform for barefoot			offloading using insoles
Static footprint taken	Rizzo et al,	Standard treatment	Used in conjunction with foam
with the patient standing	2012 ⁵⁶		box impression of feet to
barefoot			identify problem areas requiring
			attention by three professionals
			in discussion.
Pedar (Novel, GmbH,	Reiber et	Standard insole	Data is used to create a 3D
Munich, Germany) in-	al, 1997 ⁵⁴		image template, from which the
shoe system for in-shoe			custom insole is milled from
plantar pressures			cork blanks, with modifications
			identified by physical
			landmarks, foot exam and foot
			pathology
EMED (Novel, GmbH,	Owings et	Insoles not designed	Data used in conjunction with
Munich, Germany)	al, 2008 ⁴⁸	by pressure data	foam box cast and computer
platform for barefoot			display to create insole with
dynamic testing			metatarsal bar and 3mm deep
			area aperture in areas
			>1000kPa;
Dynamic pressure sheet	Guldemond	n/a	Used in conjunction with foam
footprint to determine	et al, 2007		box casting
the locations of the	36		
metatarsals to position			
the metatarsal domes.			
Static pressure collected	Martinez-	Used for all	Used in conjunction with 3D
with platform (Emed	Santos et	participants	foot shape captured by scanner
platform, Novel, GmbH,	al, 2019 ⁷¹		(Inescop, Spain)
Munich, Germany)			

n/a not applicable

FIECTRONIC SUD	niementary	v material 10 – materials of insole and tootwear
Electronic sup	picification	

Materials	Studies (n=37)	Comparator	Comments
TL-2100 graphite with Naugahyde	Albert &	n/a	Dual density and
top cover (P.W. Minor and Sons,	Rinoie 1994 ²⁰		rigid device aimed
Batavia, NY)			at placing
			abnormal foot in
			an optimal
			functioning
			position; used only
			in pronated foot
			posture
			participants
10mm thick rubber-foam	Chantelau et	n/a	Dual density insole
(Zellkautschuk, Berkemann,	al, 1990 ²⁹		designated
Hamburg, Federal Republic			'cushioned';
Germany) and other plastics (PPT			thickness thought
and Platazote; Schein, Remscheid,			to attenuate
Federal Republic Germany) insole;			greater force
soft leather shoe			reduction
Shoes made from soft leather upper,	Chapman et al,	n/a	Materials selected
outersole of microcellular rubber,	2013 ³⁰		to prevent flexion
with 5mm folex for rocker (Duna,			of shoe
Falconara Marittima, Italy)			
Rohadur thermal plastic (Ozthotics,	Colagiuri et al,	n/a	Material choice for
Randwick, NSW, Australia	1995 ³¹		'control' of foot
			function to reduce
			plantar foot
			pressures
Thor Lo hosiery (Thor-Lo, Statesville,	Donaghue et	n/a	Unknown materials
NC)	al, 1996 ³³		of shoes or hosiery
For static pressures: heat moulded	Fernandez et	n/a	Different density
laminar EVA insole (25°-60° Shore)	al, 2013 ³⁴		materials used
base with a 3mm PPT layer			dependent on
			whether pressure

heat moulded laminar EVA (25°-60°			static or pressure
Shore) For pressure and boney			coincided with
prominence: EVA insole (25° -33°			bony prominence.
Shore) with maximum thickness of			Shock absorbing
1.5-2cms with high density EVA (60°			material used in
Shore) bottom layer. 6mm Poron			areas of bone
used to offload specific areas			protrusion or
			previous ulcer and
			wound sites.
Multi-layer orthosis EVA orthosis	Lopez-Moral et	n/a	No rationale for
(40°Shore) with poron top cover;	al, 2019 ⁷⁰		material choice
shoe material made of soft skin			
Alipast and plastazote (Voltek,	Mohamed et	Plastazote	Combination used
Brebbia, VA) insoles	al, 2004 ⁴⁶	(Zotefoams Inc.,	to theoretically
		Walton, KY)	increase longevity
			of insoles
Insole 1:thin polypropylene shell	Owings et al,	n/a	Dual density
with Korex, sponge or plasatazote	2008 ⁴⁸		insoles with
top cover; Insole 2: 45 Shore S EVA			materials selected
base with Procell or plastazote top			as commonly used
cover; Insole 3: 35 Shore A Microcel			in offloading.
Puff EVA base and a Poron or P-Cell			
top cover			
3mm medium density EVA base with	Paton et al,	n/a	Dual density for
6mm Poron top cover	2014;		both the
	Paton et al,		prefabricated and
	2012		customised insole
	49,50		aimed at reducing
			plantar pressure;
			durability also
			measured after 12
1			
			months

Medium density rubber cork inserts,	Reiber et al,	Standard study	Dual density insole;
1.5mm layer foam backed nylon	1997;	insole: closed cell	cork used for little
tricot top layer	Reiber et al,	polyurethane	set or deformation
Shoes made of high quality cowhide	2002 ^{54,55}	foam	and top cover aims
leather with urethane (Meramec			for 'cushioning
Group, Sullivan, MO) outersole			interface between
			foot and insole
Shoes made of Bottine, soft	Rizzo et al,	n/a	PPT to relieve local
thermformable leather; insoles	2012 ⁵⁶		pressure, Duoterm
made of PPT (Deer Park NY),			and Alcaform to
Duoterm (Mibor, Alcoy, Spain) and			absorb high
Alcaform (Zotefoams Plc, Croydon,			pressure points
UK)			
Natural leather skin upper,	Scherer 1975 ⁵⁸	n/a	No rationale
synthetic rubber sole			provided
Shoes made of soft thermformable	Uccioli et al,	n/a	Alcapy to relieve
leather; Insoles made of Alcapy	1995 ⁶¹		local high
(Deer Park, NY) and Alcaform			pressures and
			Alcaform to absorb
			high pressure
			points
8mm Polylux, 8mm Combilux,	Burns et al,	Flat 4mm EVA and	Mesh of materials
2.3mm Memorix, 3mm Remember	2009 ²⁵	0.7mm Calbino	combined; no
and 0.7mm Calbino topcover		topcover	rationale provided
(Thanner, GmgH, Hochstadt,		(Thanner, GmgH,	
Germany)		Hochstadt,	
		Germany)	
Diabetiker SY2 modular viscoelastic	Hsi & Lai, 2002;	n/a	to act as shock
insole of 2.5mm polyvinyl chloride	Hsi et al,		absorbers with24
(Kraemer, Remscheid, Germany)	2004 ^{39,40}		sensors embedded
			in insole
Shoe made from EVA and rubber	Busch &	n/a	Soft density upper
(Softgummi) sole, cloth, rubber foam	Chantelau,		to avoid toe
and leather uppers Insole made of:	2011 ²⁸		pressure strain,

Rear part containing 6mm lunasoft,			firmer density
42° Shore A hardness; anterior part			rocker sole to
6mm Lunaflex, 20° Shore A			decrease plantar
hardness; covered with 3mm thick			pressures beneath
PPT, 17° Shore A hardness)			metatarsal heads
			and prolong pain
			free walking; Tri-
			density, non-
			moulded insole
			aimed at
			cushioning
			forefoot area.
5mm Lunalastick and 8mm Lunasoft	Guldemond et	n/a	Higher stiffness
SL (NORA, Freudenberg, GmbH,	al, 2007 ³⁶		materials above
Weinheim, Germany) top and			Shore A 60° used
bottom and 1.1mm Rhenoflex 3208			to minimize the
(Rhenoflex, GmbH, Ludwigshafen,			influence of
Germany)			cushioning on
			plantar loading
3mm Shore A 35° EVA in the first	Lin et al, 2013 ⁴³	n/a	No rationale for
layer, 2mm Velcro and velvet in the			material choice
second layer and 6mm Shore A 50°			
Poron in the third layer			
14mm multi-combination insole	Lobmann et al,	n/a	Silicone with
EVA, polyethylene foam,	200144		special
elastomere, silicone			arrangement to
			achieve the
			required degree of
			hardness
Custom made insole open cell	Bus et al,	Flat insole 0.95cm	Dual density
urethane foam hardness 60-80	2004 ²⁷	thick PPT(Langer,	materials
(Langer, Inc, Deer Park, NY, USA)		Inc, Deer Park, NY,	frequently
with the addition of 2mm base and		USA)	prescribed in
0.7mm top cover			

			diabetic foot
			practice
Multifoam as the top layer,	Nouman et al,	n/a	No rationale for
Plastazote (Streifeneder ortho	2017 ⁶⁶		materials given
production GmbH, Emmering,			
Germany) as the second layer and			
microcellular rubber as the final			
stabilising layer			
5mm thick multifoam (30° Shore A	Nouman et al,	Dual density insole	Hypothesised that
hardness), 8mm thick Plastazote (25°	2019 ⁷²	of 8mm thick	different
Shore A Hardness) and 10mm thick		Plastazote (25°	combinations of
microcellular rubber (70° Shore A		Shore A Hardness)	materials would
hardness)		and 10mm thick	influence peak
		microcellular	pressure and
		rubber (70° Shore	contact area
		A hardness)	
Rohadur (Ozthotics, Randwick, NSW,	Coagiuri et al,	n/a	Rigid orthotic to
Australia) device with dual acrylic	1995 ³¹		provide functional
posts added to rearfoot to balance			control providing
foot			foot contact shock
			absorption phase
			during normal
			pronation,
			midtarsal stability
			and propulsive
			thrust
Insole made of closed-cell	Frykberg et al,	n/a	No rationale
polyurethane foam and soft insole	2013 ³⁵		provided
cover			
Dynamprene (neoprene based,	Kastenbauer et	Barefoot, cork	Aimed at shock-
Dupont) built into shoe sole of	al, 1998 ⁴¹	insole multilayer	absorbing but not
trainer;		insole and in-	specific to patient
		depth custom	
		insole made up of	

		10 different layers	
		(Schein	
		Orthopadie	
		Service,	
		Reinscheid,	
		Germany)	
1.27cm #2 plastizote (Shore 35°),	Hastings et al,	n/a	No rationale
5.0mm thick cross-linked	2007; Lott et		provided
polyethelene foam blended with	al, 2007;		
EVA insole and Cork (Shore 55°) met-	Mueller et al,		
pad	2006 37,45,47		
¼" thick Poron 14°Shore Hardness	Birke et al,	Seven (17°,22°,	Material selected
	1999 ²⁴	27°, 32°, 40°, 50°	as most popular
		Shore hardness)	non moulded
		densities of Poron	orthosis material
		tested in reducing	to reduce pressure
		mean peak	
		pressure	
Insole made of Poron 96 (Rogers	Cumming &	Insole made of	One left and one
Corporation, Woodstock, CT)	Bayliff 2011 ³²	Poron 4400	right insole of each
		(Rogers	material issued to
		Corporation,	participants; mean
		Woodstock, CT	total pressure
			measured after
			one week duration
35 durometer EVA base and added	Lavery et al,	Standard insole	Intervention insole
two non-stick sheets, held with	2012 ⁴²	made of 35	aimed at shear and
elastic binders, between the upper		durometer EVA	pressure reduction
pad and lower pad of 3mm thick 45		base, lower pad of	characteristics
durometer EVA. To this a 3mm thick		3mm thick 45	
20 durometer polyethylene foam		durometer EVA.	
top was added		To this a 3mm	
		thick 20	
		durometer	

		polyethylene foam	
		top was added	
4mm cushioned properties	Perry et al,	n/a	Insole within Nike
	1995 ⁵¹		Air Craft running
			shoe; no
			description of
			materials
Padded insoles	Soulier 1986 59	n/a	Insole within New
			Balance 460
			running shoe; no
			description of
			materials
Insole made of polyurethane, EVA,	Viswanathan et	Insole of hard	Materials selected
or 10mm microcellular rubber insole	al, 2004 ⁶³	leather board,	due to being
and 8mm rubber sole, 5mm			lightweight, shock
polyurethane foam insole, 5mm			absorbent, flexible
MCR midsole and 10mm EVA outer			and highly durable
sole or10mm EVA as outer sole,			
6mm cork as midsole and 6mm			
polyurethane			
Insoles made of Rubbatex neoprene	Wrobel et al,	Standard Insoles	Intervention
rubber top cover with 4-way stretch	2014 ⁶⁵	made of firm	materials selected
darlex (Richardson Products		density plastazote	to decrease
Incorporated, Frankfort, IL, USA),		and PPT bi-lam	compressive forces
silicone layer that was based on firm		(American Plastics	and reduce sliding
density EVA base lined with ballistic		Arlington, TX, USA)	friction
nylon			
Custom made insole of Nora	Tsung et al,	Flat insole made of	No rationale for
Lunasoft A50° hardness	2004 ⁶⁰	Nora Lunasoft	material choice
(Freudenberg, Germany) and 3mm		A50° hardness	provided
Poron top cover 3mm thickness		(Freudenberg,	
		Germany) and	
		3mm Poron top	

		cover 3mm	
		thickness	
Shoes mainly of leather with rubber	Bus et al, 2011;	n/a	Materials selected
outsole; insole of Mouldable cork or	Waajiman et		as they are
multifoam base, open or closed cell	al, 2012 ^{26,64}		commonly used in
material top cover			practice
EVA (A35°) with laminated fabric PPT	Ulbrecht et al,	n/a	No rationale
top cover	2014 ⁶²		provided
Shoes made of stiffened rubber	Arts et al, 2015	n/a	Materials selected
and/or polyethylene reinforced	Arts et al,		using own
outer sole with insole of Rhenoflex	2012 ^{21,22}		companies design
thermoplastic (Ludwigshafen-am-			and manufacturing
Rhein, Germany) with multifoam or			standards
cork base finished with plastazote			
(Zotefoams plc, Croydon, UK),			
leather or PPT (Langer Inc, Deer			
pArk, Ny, USA) top cover			
Insoles made of EVA Shore hardness	Tang et al,	Prefabricated	Materials selected
35° or 55°)	2014 ³⁸	insole of mixture	to assess ability to
		of thermoplastic,	reduce kinetic
		polyurethane,	variables
		polyester and	
		polycarbonate	
Rubber pad on unknown base for	Raspovic et al,	n/a	No rationale
most of insoles; one insole of	2000 ⁵³		provided
polyproprolene shell and one insole			
EVA shell			
EVA insole with 3mm PPT cover;	Praet &	PU-soled Xsensible	Different shoe and
rubber sole leather Oxford shoe;	Louwerens	Xflex shoe;	insole material
	2003 ⁵²	Polyurethane	combinations;
		soled shoe; soft	commonly used
		leather shoe with	materials
		insole made of	
		10mm EVA with	

		3mm PPT top	
		cover & 3mm	
		rocker; soft	
		leather shoe with	
		insole made of	
		10mm EVA with	
		3mm PPT top	
		cover & 3mm	
		rocker	
6mm Medium density EVA rearfoot	Parker et al,	3mm flat Poron	No rationale
(30-40 Shore A), 6mm poron (20	2019 ⁷³	insole	provided
Shore A) at forefoot with topcover			
of leather			
Insole made of medium density EVA	Martinez-	Flat insole made of	No rationale
(50° Shore A) with variety of	Santos et al,	3mm EVA 50°	provided
modifications using void conditions	2019 ⁷¹	Shore A	
(EVA 20° Shore A, Poron 20° Shore			
A) and			
Prefabricated insole (10mm EVA	Barnett 2002 ²³	Cleron (control	Modifications of
base Shore A35, upper layer 6mm		insole)	heel and
EVA Shore A 25) EVA and 1mm EVA			metatarsal with
shore A 25 top cover			non-cellular
			polyurethane
			elastomer
			incorporated into
			shell of insole

Legend: EVA-Ethyl-Vinyl Acetate, PPT – Professional Protective Technology, n/a not applicable