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Abstract

In our daily life we often make complex actions comprised of linked movements, such as

reaching for a cup of coffee and bringing it to our mouth to drink. Recent work has

highlighted the role of such linked movements in the formation of independent motor memo-

ries, affecting the learning rate and ability to learn opposing force fields. In these studies, dis-

tinct prior movements (lead-in movements) allow adaptation of opposing dynamics on the

following movement. Purely visual or purely passive lead-in movements exhibit different

angular generalization functions of this motor memory as the lead-in movements are modi-

fied, suggesting different neural representations. However, we currently have no under-

standing of how different movement kinematics (distance, speed or duration) affect this

recall process and the formation of independent motor memories. Here we investigate such

kinematic generalization for both passive and visual lead-in movements to probe their indi-

vidual characteristics. After participants adapted to opposing force fields using training lead-

in movements, the lead-in kinematics were modified on random trials to test generalization.

For both visual and passive modalities, recalled compensation was sensitive to lead-in dura-

tion and peak speed, falling off away from the training condition. However, little reduction in

force was found with increasing lead-in distance. Interestingly, asymmetric transfer between

lead-in movement modalities was also observed, with partial transfer from passive to visual,

but very little vice versa. Overall these tuning effects were stronger for passive compared to

visual lead-ins demonstrating the difference in these sensory inputs in regulating motor

memories. Our results suggest these effects are a consequence of state estimation, with dif-

ferences across modalities reflecting their different levels of sensory uncertainty arising as a

consequence of dissimilar feedback delays.
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Introduction

Recent studies have highlighted key aspects for neural rehabilitation using robotic systems [1].

However, continual progress in this area depends on understanding the mechanisms of

human sensorimotor learning in order to determine the optimal presentation of sensory infor-

mation to improve the rate, retention and generalization of adaptation. Although adaptation is

often studied on single movements in the laboratory, we rarely produce movements in isola-

tion in everyday life. Rather, one movement often directly leads into another. For example, to

catch a ball, we make use of visual motion information to estimate its state in order to plan and

execute an interception movement. Thus, natural movements often follow directly from previ-

ous movements, or from visual motion.

This scenario can be investigated in the laboratory by using two-part movements. Here, the

first part consists of a lead-in movement from a start location to an intermediate via point,

which is followed closely in time by a second movement to a final target location. Recent work

has shown that closely linking multiple movements together in time in this fashion reduces

interference in learning opposing tasks [2–5]. In particular, distinct past movements act like a

contextual cue, enabling adaptation to opposing viscous curl fields when the adaptation move-

ments are preceded by unique lead-in motions, each associated with one of the dynamics [2].

This shows that motor learning and recall depends not only on the current state of the arm

during a movement, but also on its preceding states. Interestingly, active, passive or visual

lead-in movements were all equally effective at reducing interference. This indicates that sen-

sory feedback relating to motion is sufficient to affect adaptation, even when no active move-

ment is involved. The contextual effect of this prior movement disappears as the time between

lead-in and adaptation movements exceeds about half a second, indicating that the representa-

tion of past state decays quickly over time. This suggests a strong link between the representa-

tion of state and the theory of neural population dynamics [6,7].

Dynamic adaptation to a single force field occurs locally; after training in a specific move-

ment, the recall of predictive compensation decreases as the movement angle [8–11] or dis-

tance [12–14] deviates from the training condition. The Gaussian-like angular generalization

observed in these studies has also be found for lead-in movements, with different lead-in

modalities exhibiting different characteristics, both in terms of their absolute level of influence,

but also in their sharpness of tuning. In particular both active [15] and passive lead-in move-

ments [10] show narrower and deeper tuning than visual lead-in movements [11].

Interference studies have been widely adopted to investigate contextual effects on motor

learning, and to examine if contextual cues can assist in the learning of opposing dynamics

[14,16–21]. Such interference paradigms are more sensitive to generalization effects of contex-

tual cues than single field paradigms, and have been used effectively to examine the angular

generalization characteristics of lead-in movements [10,11]. Using these paradigms it has been

possible to extract features of the neural basis functions underlying dynamical adaptation,

allowing for the development of simple computational models [4]. However, we still lack basic

information on the generalization features of lead-in movements for different kinematics such

as duration or distance.

Here, we first characterize the generalization of passive and visual lead-in movements

across different kinematics using an interference paradigm. In two separate experiments, we

examine generalization across distance and duration (and the dependent variable of speed) of

passive and visual lead-in movements. Second, in order to gain insight into any commonality

between the neural resources employed in passive and visual lead-in movements, we also

investigate how adaptation transfers between these two different lead-in modalities.

Spatiotemporal generalization of lead-in movements
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Methods

Experimental design

Subjects. Sixteen human participants were randomly allocated to two experimental

groups that each performed one experiment. Eight participants (7 female, aged 24.8 ± 5.0

years, mean ± sd) performed the passive lead-in experiment. Eight further participants (6

female; aged 27.4 ± 6.7 years) participated in the visual lead-in experiment. All participants

were right handed according to the Edinburgh handedness questionnaire [22], and naïve to

the aims of the study. All participants provided written informed consent to the protocol

before participating in the experiment, which had been approved by the University of Cam-

bridge Ethics Committee. The methods were carried out in accordance with the approved

guidelines. Some of the data (visual lead-in experiment) was previously presented in a confer-

ence paper [23].

Apparatus. Experiments were performed using a vBOT planar robotic manipulandum

and its associated virtual reality system [24]. Handle position is measured using optical encod-

ers sampled at 1000 Hz, and motors operating under torque control allow the application of

end-point forces. A force transducer (Nano 25; ATI), mounted under the handle, measures the

applied forces, and its output signals were low-pass filtered at 500 Hz using analogue 4th pole

Bessel filters prior to digitization. To reduce body movement, participants were seated in a

sturdy chair in front of the apparatus and firmly strapped against the backrest with a four-

point seatbelt. During an experiment, participants grasped the robot handle in their right hand

while their right forearm was supported by an air sled, constraining arm movement to the hor-

izontal plane. Participants could not view their hand directly. Instead veridical visual feedback

was used to overlay images of the starting location, via point, final target, (all 1.25 cm radius

disks) and a hand cursor (0.5 cm radius red disk) using the virtual reality system. This ensured

that the visual cursor appeared to the participant in the same plane and at the same location as

their hand. Data was collected at 1000 Hz and logged to disk for offline analysis using Matlab

(Matlab, The MathWorks Inc., Natick, MA, USA).

Force fields. In the adaptation movement, participants performed reaching movements

either in a null field condition, a velocity-dependent curl force field [14], or a mechanical chan-

nel [25]. The curl force field was implemented as:

Fx

Fy

" #

¼ k
0 � 1

1 0

" #
_x

_y

" #

ð1Þ

where the field constant k was set to a value of ±16 Nm-1s, and the sign determines the direc-

tion (CW or CCW) of the force-field. Each participant experienced both force field directions.

The direction of the force field was always associated with a specific direction of a prior contex-

tual movement. The relationship between the contextual movement direction and curl field

direction (CW/CCW) was counterbalanced across participants.

Mechanical channel trials were implemented using a spring constant of 6,000 Nm-1 and a

damping constant of 30 Nm-1s perpendicular to the direction of motion throughout the move-

ment between the central location and the final target. Channel trials were only produced on

the movements to the 0˚ target with corresponding lead-in movements starting at 135˚ or

225˚, and never presented on consecutive trials.

Protocol

Two separate experiments were performed to examine the generalization of the learning asso-

ciated with one contextual movement to other contextual movements with different kinematic
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profiles (within the same modality), as well as the transfer of learning between passive and

visual lead-in conditions (across the modalities).

After an initial pre-learning session in a null field, participants were exposed to the curl

force fields (learning phase). Channel trials were used to examine adaptation to the novel

dynamics, in which the lead-in movement duration, speed and distance were varied. In addi-

tion, the modality of the lead-in movement was occasionally changed to examine transfer. The

trial parameters for both experiments are shown in Table 1 and the kinematics of the lead-in

movements can be seen in Fig 1. On these trials, the lead-in movement was chosen from one

of 15 different movements with distances ranging from 3 cm to 20 cm and durations ranging

between 210 ms to 1400 ms.

Trial organization. All trials consisted of a two-part movement: An initial lead-in move-

ment followed directly by an adaptation movement. The first part was a contextual lead-in

movement from a starting location to a central via point. This contextual lead-in movement

was 10 cm in length during all null and force field training conditions. The second part was an

18 cm adaptation movement to the final target. The participants only experienced a force field

or channel trial during this adaptation part of the movement. Defining angular locations rela-

tive to the via point, in each experiment there were two target locations, at 0˚ and at 270˚

respectively. The 0˚ target location was associated with lead-in start locations at +135˚ and

225˚, and the 270˚ target location was associated with lead-in start locations at +45˚ and 135˚.

For each target location, the associated start locations were indicative of the direction of the

curl force field on the adaptation movement (clockwise or counter-clockwise). All in all, this

resulted in four possible distinct two-part movements (combinations of lead-in and adaptation

movement).

Table 1. Durations, distances and peak velocities of the lead-in movements for the training and generalization

conditions. Passive and visual lead-in movements are represented by P and V respectively. The P/V Training condi-

tion used a passive lead-in for experiment 1 and with a visual lead-in for experiment 2. In both experiments, test trials

with a passive lead-in and a visual lead-in were performed with the same kinematics as the training conditions. Simi-

larly, a P/V channels represents channel conditions used with a passive lead-in for experiment 1 and with a visual lead-

in for experiment 2. The Reverse V Channel was used with a visual lead-in in both experiments.

Condition Duration [ms] Distance [cm] Peak velocity
P/V Null/Training 700 ms 10 cm 26.8 cms-1
P Channel 700 ms 10 cm 26.8 cms-1
V Channel 700 ms 10 cm 26.8 cms-1
P/V Channel 1400 ms 20 cm 26.8 cms-1
P/V Channel 1050 ms 15 cm 26.8 cms-1
P/V Channel 420 ms 6 cm 26.8 cms-1
P/V Channel 210 ms 3 cm 26.8 cms-1
P/V Channel 1400 ms 10 cm 13.4 cms-1
P/V Channel 1050 ms 10 cm 17.9 cms-1
P/V Channel 420 ms 10 cm 44.6 cms-1
P/V Channel 350 ms 10 cm 53.6 cms-1
P/V Channel 700 ms 20 cm 53.6 cms-1
P/V Channel 700 ms 15 cm 40.2 cms-1
P/V Channel 700 ms 6 cm 16.1 cms-1
P/V Channel 700 ms 3 cm 8.0 cms-1
P/V Channel 1050 ms 20 cm 35.7 cms-1
P/V Channel 350 ms 3 cm 16.1 cms-1
Reverse V Channel 700 ms 10 cm -26.8 cms-1

https://doi.org/10.1371/journal.pone.0228083.t001
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Fig 1. Kinematics of lead-in movements used for testing generalization. A Profiles of movement distance versus

duration of lead-in probe conditions across all conditions. Thick black line indicates the training lead-in motion.

Colors indicate specific conditions that are matched across duration (red), peak speed (green), or duration (blue). B

Lead-in movement kinematics of peak speed as a function of duration.

https://doi.org/10.1371/journal.pone.0228083.g001
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Fig 2A–2C shows start and target locations only for the 0˚ target location case. When the

lead-in starts from the 225˚ location, the adaptation movement is associated with a CW field

(Fig 2A). When the lead-in starts from the 135˚ location, the adaptation movement is associ-

ated with a CCW field (Fig 2B). Fig 2C shows one of the two possible channel trials, in this

case with the lead-in starting from the 225˚ location (the other case is with a lead-in from the

Fig 2. Experimental design. A-C: Passive lead-in generalization experiment. A Participants first experienced an initial passive lead-in motion from a

starting position (grey circle, shown here at 225˚) to the central target (green circle) and then immediately made a second active movement to the target

(yellow circle shown here at 0˚) on which a curl force field (blue arrows) could be applied. B An initial movement from a different starting target

(shown here at 135˚) was associated with the opposite force field on the second movement. The direction of curl force field and lead-in movements

were counterbalanced across participants. C In order to examine learning rate and generalization, random trials in which the contextual movement

(shown here at 225˚) was followed by a mechanical channel on the second movement to the target were applied. D-F: Visual lead-in generalization

experiment. D Participants initially observed an initial visual cursor movement (red circle) from the grey starting circle to the central target (green

circle). Once the cursor entered the central target, participants immediately performed a second active movement to the target (yellow circle) on which

a curl force field (blue arrows) could be applied. E An initial cursor movement from a different starting target was associated with the opposite force

field on the second movement. F On random trials, after the visual lead-in motion, a mechanical channel was applied on the active movement to the

target to measure predictive compensation.

https://doi.org/10.1371/journal.pone.0228083.g002
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135˚ start location but is not shown here). This relationship between starting location and the

CW and CCW field directions shown here was switched for half of the participants, to coun-

terbalance the relationship of lead-in direction and field direction across the experiments.

Session design. As training an interference paradigm can take a significant number of tri-

als and a large number of channel trials were required to collect the generalization data and

enable low variance estimation of compensation to be made, each experiment was performed

in two separate sessions on different days. This procedure was adopted to limit fatigue effects

that might have been experienced from one single long experimental session. As some for-

getting may result between sessions, the second session commenced with another training

phase before proceeding with the generalization phase. In total, there were 1546 and 1580 trials

on days 1 and 2 respectively, leading to a total of 3126 trials overall. In particular there were

2248 training field exposure trials and 544 channel trials use to probe generalization

characteristics.

Probe trials. In order to probe the generalization characteristics there were 17 different

lead-in conditions for the channel trials (Table 1). Each lead-in was performed from the two

possible starting locations to probe recall of both the CW and CCW field contexts. This gave

rise to a total number of 34 distinct channel trial lead-ins (17 x 2 starting locations). Each of

these 34 distinct channel trials was repeated 16 times during the generalization phases of the

experiments. These generalization lead-in conditions were always followed by a channel trial

on the adaptation movement. Fifteen of these seventeen lead-in movements were chosen to

sample lead-in distances between 3–20 cm, peak speeds between 8.04–53.57 cms-1 and dura-

tions between 210–1400 ms (Fig 1). One of these 15, had the exact motion as the training

movements (Fig 1, black line). The sixteenth lead-in movement was designed to test transfer

between passive and visual lead-in movements. That is, in the passive lead-in experiment, this

lead-in was a visual lead-in with the same kinematics as the training movement. In the visual

lead-in experiment this was a passive lead-in movement. Finally, the seventeenth condition

was a reversed visual cursor condition. This “lead-away” condition was similar to a lead-in

movement between a start and via-position, except the cursor started at the central via-point

and moved to what was previously the start position. This condition examined if the reversal

of visual motion would still lead to a recall of dynamics during the second probe phase, or

whether the form of visual movement needed to be consistent with the lead-in movement used

during training to elicit an appropriate contextual effect or transfer. Both the trained lead-in

probe trial and the opposite modality lead-in probe trials were also repeated throughout the

pre-exposure and training phase of experiment, such that each was repeated a total of 38 times.

The trained lead-in probe trials provided a means to assess learned compensation as the exper-

iment progressed.

Trial block organization. The experiment was organized in blocks. These blocks con-

tained different numbers and types of trials in the pre-exposure, training and test phases of the

experiment. Within a block, trials were sorted pseudo-randomly, with the constraint that

channel trials were not allowed to be adjacent or the first trial in a block. Participants were

required to take short rest breaks approximately every 200 trials (195–205 trials) but could rest

at any time between trials. The blocks and trials were organized as follows:

Day 1

Pre-exposure. The pre-exposure phase started with 2 blocks of 40 trials. A block con-

sisted of 36 Null trials and 4 channel trials. The four channel trials were 2 channel trials in

the training condition (one for each lead-in direction) and 2 channel trials in the transfer

Spatiotemporal generalization of lead-in movements
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condition (that is, in the other modality, with one trial for each lead-in direction). The 36

null trials were evenly split between movements to the 0˚ direction target and the 270˚ direc-

tion target, with equal numbers of each lead-in direction for each target (9 repetitions of

each of the four trial types). Next, participants were provided with three repetitions of each

of the 17 generalization channel trials for each of the two possible lead-in directions (102

generalization condition channel trials) to ensure prior experience of all the generalization

trial conditions. Finally, 2 blocks of 40 trials were again performed as described above (36

null and 4 channel).

Field-exposure training. During the exposure phase, participants were exposed to the

curl force fields during the adaptation movement. This phase consisted of 12 blocks of 40 trials

(36 field trials and 4 channel trials in a block) arranged as in the pre-exposure phase. This was

a total of 480 trials (432 force field trials, 24 training condition channel trials and 24 transfer

condition channel trials).

Generalization testing. This phase examined generalization of the learned predictive

compensation by pseudo-randomly interspersing curl force field trials with trials in which

channel trials were preceded by the full range of contextual 34 movements (17 different gener-

alization trial types x 2 lead-in directions). The generalization phase consisted of 6 blocks of

134 trials. Each block consisted of one of each of the 34 channel trials and 100 curl force field

trials (25 of each of the four types). This provided 6 repetitions of each of the 34 generalization

channel trials. In this phase there was a total of 804 trials (600 curl field trials and 204 generali-

zation channel trials).

Day 2

Exposure training. At the beginning of the second session, training was briefly resumed.

The phase consisted of 6 blocks of 40 trial blocks (36 curl field trials + 4 channel trials) for a

total of 240 trials.

Generalization testing. Similar to the session of Day 1, participants performed 10 blocks

of 134 trials (Total 1340 trials: 1000 curl field trials and 340 generalization condition channel

trials), such that each of the 34 different probe trials (17 x 2 lead-in directions) was repeated 10

times.

Experiment 1. Passive lead-in movements

In experiment 1, the contextual lead-in movement was comprised of passive movement of the

participant’s hand. This passive movement was produced by the robotic manipulandum pas-

sively moving the participant’s hand while no cursor was presented. Each trial began by dis-

playing the start location for the lead-in movement, the central location and final target. The

vBOT then moved the participant’s hand to the lead-in start location. Once the handle was sta-

tionary within the start location for 300 ms, a beep was generated indicating the start of the

trial. At this time, the handle of the robotic system moved to the central via-point following a

minimum jerk trajectory. The training contextual movement was a 10 cm movement of dura-

tion 700 ms. Once the hand reached the central location, participants were required to produce

an active adaptation movement from the central location to the final target location. The dwell

time of the hand within the central via point was required to be between 0–250 ms, otherwise a

warning was provided. If dwell time exceeded 500 ms then the trial was aborted and repeated.

If the second movement (adaptation movement) duration was between 450 ms and 600 ms a

“Great” message was displayed; otherwise an appropriate “Too Fast” or “Too Slow” warning

was shown. Force fields and channel trials were only ever presented during this second

movement.

Spatiotemporal generalization of lead-in movements

PLOS ONE | https://doi.org/10.1371/journal.pone.0228083 January 29, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0228083


Experiment 2. Visual lead-in movements

Experiment 2 had a similar design to Experiment 1 and used the same block structure. The

only difference was that the contextual lead-in movements for both training and generalization

testing consisted of a visual movement of the cursor. This is illustrated in Fig 2D–2F for the 0˚

target location condition. The training contextual lead-in movement again followed a mini-

mum jerk trajectory of duration 700 ms from the start to the central location. During this

time, the participant’s hand remained stationary at the central location. Immediately after the

cursor reached the central location, the participant made an active reaching adaptation move-

ment from the central location to the final target. The same variations of generalization move-

ment trials were performed (but with visual instead of passive motion). In addition, a transfer

condition was used in which a passive movement lead-in was performed. Again, a reversed

visual cursor condition was also employed.

Participant instructions

Verbal instructions were used to instruct participants how to take part in the experiments. Par-

ticipants were first asked to read the ethics form and sign if they wished to proceed with the

experiment, which would last a few hours over two days.

Participants in the passive condition were informed that at the start of a trial that the robot

would pull them to the via point and they were required to immediately try to move to the tar-

get. They were told that this robot pulled movement could come from different directions or

with different lengths of movements, but that their task was the same–to make a movement

from this via-point to the target. They were asked to move briskly and that feedback on move-

ment speed and any start delay would be reported after each trial. Specifically, they were

informed that the movement should be a point-to-point goal directed reaching movement

completed in a single movement without overshooting or undershooting the target. They were

informed that they should go roughly straight to the target using a natural relaxed movement.

They were also told that at some point during the experiment some kind of disturbance would

occur in which the machine might push them to the left or the right of their movement and

disturb their trajectory. They were also informed that to complete the movement they need to

get the cursor to the target regardless of this disturbance. Finally, they were also informed that

approximately every 200 trials there would be a short break. They were also made aware that

they could take a break at any time if they released the handle switch on the robot. Instructions

for the visual condition were identical, except participants were informed that on commence-

ment of a trial the cursor would move to the center position while their hand was stationary at

a via point, and then they were required to try to move quickly to the target, as in the passive

experiment.

Data analysis

The experimental data was analyzed offline using Matlab R14. Statistics to examine differences

between the generalization from visual lead-in and passive lead-in movements were performed

in JASP 0.11.1 (JASP Team, 2019) using a repeated measure ANOVA. T-tests were performed

within Matlab. To examine learning, kinematic error on the adaptation movements and force

compensation on the channel trials were used.

Kinematic error. The kinematic error was calculated on the adaptation portion of the

movement, but only during the null and curl field trials. To be consistent with our previous

work, this was quantified as the maximum perpendicular error (MPE) for each trial, which is

the maximum deviation of the hand path to the straight line joining the movement starting

location to the target. It was necessary to have different experimental block sizes in various
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phases of the experiment to accommodate the training and generalization trials. Therefore, to

calculate a consistent averaged-across-trials of MPE, an analysis block size of 8 was chosen,

because this number of trials could be used consistently throughout the experiment. During

calculation of the analysis block MPE average, the sign of each trial MPE was flipped appropri-

ately so that results from CW and CCW field trials could be averaged together. The mean and

standard error (SE) of the averaged-across-trials MPE values was then computed across all

participants.

Force compensation. On each channel trial, during the adaptation movement between

the via point to the final target, velocity of the movement towards the target and the force

exerted by participants perpendicularly into the wall of the simulated channel were simulta-

neously recorded at 1000Hz, to enable the estimation of predictive feedforward adaptation

[25], which is an established technique in the analysis of dynamic learning in viscous curl fields

[26]. Using this paradigm, the channel clamps movement perpendicular to the direction of

movement to small values by resisting it using a high spring constant (6000 Nm-1) as well as

viscous damping (30 Nm-1s), thereby minimizing lateral movement error. As there is no lateral

error on these trials, there is no error-induced feedback component. Since channel trials occur

sparsely within blocks of curl fields trials, this means that any measured perpendicular force

exerted into the channel will be dominated by the predictive feedforward force that has been

learned to compensate the curl field.

To estimate the level of force field compensation of the participant, the measured perpen-

dicular channel force samples during movement along the channel were regressed against

their corresponding forward velocity samples scaled by curl field strength. This calculation

was performed for each movement over the period from leaving the via-point until entering

the target. This yielded an estimate of the level of force compensation present in each channel

trial [26]. For each participant, the force compensation values were averaged across 2 sign-cor-

rected sequential channel trials (since they corresponded to opposite curl field directions). The

mean and standard error (SE) of compensation was then computed across participants. This

method to assess adaptation to the novel dynamics is preferable to relying on a reduction in

kinematic error during force field learning, since the latter can also arise from muscle co-con-

traction [27–29].

Results

In the passive lead-in experiment, participants performed active reaching movements to a tar-

get after being passively moved from a start position to a central target. After initial move-

ments in a null field, participants were presented with a curl force field during the active

movement. The direction of the curl field depended on the angle between the passive move-

ment and active movement (Fig 2A and 2B). When presented with the curl force field, partici-

pants’ adaptation movements were disturbed, producing large errors that were gradually

reduced over the exposure phase (Fig 3A). Throughout the experiment channel trials were

introduced on random trials in order to measure the predictive force compensation through-

out adaptation (Fig 2C). Over a similar timescale as the reduction in kinematic error, force

compensation increased, reaching just over 62% compensation averaged over both force fields

(Fig 3B). A small but significant increase in the kinematic error can be seen between day 1 and

the start of day 2 (paired t-test between final block on day 1 and first block on day 2: t7 = 3.49;

p = 0.01), but the associated decrease in force compensation was not significant (t7 = 2.09;

p = 0.075). Compensation to each field direction separately is shown in Fig 3F. The final levels

of force compensation (mean of final 4 blocks) were not significantly different between the

two lead-in directions (paired t-test: t7 = 0.743; p = 0.48).
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Fig 3. Adaptation to two opposing force fields. A Mean and SE of MPE across over 8 participants for the passive

lead-in experiment as a function of blocks of 8 trials. B Mean and SE of percentage force compensation for pairs of

channel trials (one for each force field direction) throughout the passive lead-in experiment where the lead-in

movement was the same as the training trials. C Mean and SE of percentage force compensation as B but showing

compensation for each field direction separately. D Mean and SE of MPE for the visual lead-in experiment. E Mean

and SE of percentage force compensation for the visual lead-in experiment. F Mean and SE of percentage force

compensation as E but showing compensation for each field direction separately.

https://doi.org/10.1371/journal.pone.0228083.g003
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Participants in the visual lead-in experiment performed a similar protocol but where the

lead-in movements were purely visual in nature (Fig 2D–2F). Again, when presented with the

curl force field, participants’ adaptation movements were disturbed, producing large errors

that were gradually reduced over the exposure phase (Fig 3D). Again, a small but not signifi-

cant reduction in the force compensation (t7 = 1.67; p = 0.14) and a small but significant

increase in the kinematic error (t7 = 4.19; p = 0.004) can be seen between day 1 and the start of

day 2 (final block day one compared to first block day 2 with paired t-test). Over a similar

timescale, force compensation increased, reaching approximately 70% compensation averaged

over both force fields. Mean and SE of percentage force compensation showing compensation

for each field direction separately is shown in Fig 3F. The final levels of force compensation

(mean of final 4 blocks) were again not significantly different between the two lead-in direc-

tions (paired t-test: t7 = 0.402; p = 0.70).

On random trials late in the adaptation phase, channel trials were applied with a range of

different lead-in movement kinematics (Fig 1) in order to examine generalization. After learn-

ing the force fields with the passive lead-in movement, variations in the kinematics of this

lead-in movement produced a range of generalization levels (Fig 4A). As the testing lead-in

movements varied further away from the training kinematics the predictive force level

decreased. A repeated measures ANOVA with a within subject effect of lead-in kinematics (15

levels) demonstrated a significant main effect (F14,98 = 33.057; p<0.001). A similar finding is

shown for the generalization after learning a visual lead-in movement (Fig 4B). Although in

this condition only small decreases in the predictive force are seen over a wide range of

changes in the lead-in kinematics, the repeated measures ANOVA again showed a significant

main effect of lead-in kinematics (F14,98 = 23.397; p<0.001) demonstrating that the lead-in

kinematics affected the predictive force on these channel trials.

Across the different lead-in movement kinematics, several conditions had the same dura-

tion, peak velocity or distance as the learned training condition (dotted lines in Fig 4). We

examined the predictive force compensation values over these conditions in more detail along

iso-contours for lead-in distance, duration and speed (Fig 5). Significant differences for select

comparisons are reported from post-hoc tests following the significant main within subject

effect of the repeated measures ANOVA reported above (Holm corrected for multiple compar-

isons across all 15 levels). The results for the passive lead-in condition show strong variations

over changes in lead-in duration, distance and speed (Fig 5A–5C).

In panel A, lead-in distance is constant and the movement duration (shown on the x-axis)

and speed vary. In panel B, lead-in duration is constant and the movement distance (shown on

the x-axis) and speed vary. In panel C, lead-in speed is constant and the movement duration

(shown on the x-axis) and the distance vary. The dotted lines indicate the training values of

lead-in distance and lead-in duration. It can be seen that the recall of predictive compensation

was strongly affected by changes in the duration of the movement (shown for constant dis-

tance conditions in Fig 5A and constant speed conditions on Fig 5C). There was a strong tun-

ing effect centered around the movement duration used for training (Fig 5A). Specifically,

compared to the training value, the force compensation significantly decreased as movement

duration either increased to 1.4s (p = 0.016) or decreased to 0.35s (p = 0.033). Similar results

were seen for a constant peak speed (Fig 5C), but while compensation significantly decreased

as movement duration decreased to 0.21s (p = 0.01) this did not reach significance for the lon-

ger duration (p = 0.062). However, changing lead-in distance produced different effects. While

reducing lead-in distance to 3cm reduced compensation (p = 0.004), increasing movement

distance from the training value to 20cm had essentially no effect (p = 1.0) as shown in Fig 5B.

In the visual lead-in condition, we found a slightly less pronounced reduction in recalled

compensation as the some of the kinematics were varied while others remained constant
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(Fig 5D–5F). Again, it can be seen that compensation was affected by changes in the duration

of the movement, with compensation significantly falling off as movement duration decreased

to 0.35s (p<0.001). Although there was a tuning effect centered around the movement dura-

tion used for training, as duration deviated from the training value the fall off was appeared

Fig 4. Generalization surface plots for passive and visual lead-in movements. A Surface plot of generalization for

passive lead-in movements. The percentage force compensation is represented by color and plotted against lead-in

duration and lead-in distance. The black circle with a white center indicates the result at the training condition. The

solid black dots indicate points for which measurements were made on probe trials. The black dotted lines correspond

to conditions with the same training lead-in distance of 10 cm, same training lead-in duration of 0.7s or same training

lead-in speed of 26.8 cm/s. The legend shows the correspondence between color and percentage perfect force

compensation. B Surface plot of generalization for the visual lead-in condition.

https://doi.org/10.1371/journal.pone.0228083.g004
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less pronounced than in the passive lead-in condition (Fig 5D). Similar results were seen for a

constant peak speed (Fig 5F), with compensation significantly falling off as movement dura-

tion decreased to 0.21s (p<0.001). However, as the training distance varied but duration was

fixed (Fig 5E, we found no significant differences (all p>0.1).

Fig 5. Generalizations results for both passive and visual lead-in conditions plotted for fixed values of lead-in distance, lead-in

duration and lead-in speed. A-C Results of passive lead-in experiments. The dotted lines indicate the training values of lead-in

distance and lead-in duration. Error bars indicate standard error of the mean. Significant differences are indicated for post-hoc

comparisons (Holm corrected for multiple comparisons). A Effect of changing lead-in duration for fixed 10 cm lead-in distance. In

this panel, lead-in distance is held constant and the movement duration (shown on the x-axis) and speed vary. B Effect of changing

lead-in distance (and peak speed) across conditions with a fixed 700 ms lead-in duration. C Effect of changing lead-in duration (and

distance) across conditions with a fixed 26.8 cm/s lead-in speed. D-F Corresponding results for visual lead-in condition.

https://doi.org/10.1371/journal.pone.0228083.g005

Spatiotemporal generalization of lead-in movements

PLOS ONE | https://doi.org/10.1371/journal.pone.0228083 January 29, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0228083.g005
https://doi.org/10.1371/journal.pone.0228083


After adaptation in the two experiments, the asymptote of force compensation was slightly

higher in the visual lead-in (68.8 ± 5.3%) compared to the passive lead-in (62.7 ± 6.0%) condi-

tions (Students t-test, t7 = 2.191; p = 0.046). If we compare the generalization of the predictive

compensation across the two experiments, we can see one major finding; namely that the over-

all tuning effects were more pronounced for the passive lead-in condition compared to the

visual lead-in condition. Visual lead-in generalization showed less sensitivity to variations in

lead-in kinematics. Indeed, whereas passive lead-ins resulted in a 2D monotonic curved surface

in the dimensions of duration and distance (Fig 4A), the corresponding surface for visual lead-

ins (Fig 4B) exhibits a large region consisting of a flat planar surface. To test if this difference in

the generalization across kinematics between passive and visual lead-in movements is statisti-

cally significant, we performed ANOVAs on the force compensation results (with main effects

of kinematic condition (14 levels) and lead-in modality (2 levels: visual or passive). To do so,

the force compensation for each testing condition was normalized with respect to the value at

the trained condition for each participant. We then compared the generalization across kine-

matic conditions using a repeated measures ANOVA with a repeated measure factor of lead-in

condition (15 levels) and between subject factors of experimental condition (2 levels: passive

and visual lead-ins). We report the Greenhouse-Geisser sphericity corrected values. There was

both a significant main effect of lead-in condition (F5.127,71.782 = 56.627; p<0.001), experimen-

tal condition (F1,14 = 8.073; p = 0.013), and interaction between these two (F5.127,71.782 = 3.061;

p = 0.014). As the predicted force compensation level was normalized to 100% for the training

condition, the presence of a significant main effect of experimental condition demonstrates

that there were differences between the shape of this generalization between the passive and

visual lead-in movements. This highlights a clear difference between visual inputs and passive

inputs as a contextual signal for motor adaptation, extending our previous findings [10,11].

We also investigated how learning opposing force fields with contextual cues in one sensory

modality would transfer to the other sensory modality. To investigate this, occasional channel tri-

als were used with a lead-in in the other modality. It can be seen that there is asymmetric transfer

between passive lead-in and visual lead-in movements (Fig 6). Although there was partial transfer

from passive to visual lead-in movements (Fig 6A) with values reaching just above 20%, there

was much less transfer from visual to passive lead-in movements (Fig 6B) with values just under

10%. To compare the level of transfer between the two modalities, the transferred adaptation was

scaled according to the final level of adaptation in each experiment and compared using a t-test.

The transfer from passive to visual (35.2% ± 12.1%; mean ± std) was significantly larger (t14 =

3.966; p = 0.0014) than the transfer from visual to passive (13.0% ± 10.2%). Thus, there is a clear

asymmetry between the transfer of adaptation between these two sensory modalities.

Finally, we examined how learning the visual lead-in movement would transfer to a

completely reversed visual cursor (with the same duration and distance). To balance condi-

tions and the number of trials across experiments, this was also tested for the passive lead-ins.

To compare between the two experiments, the predictive compensation of the reversed visual

cursor was scaled by the predictive compensation on the training condition. There was no sig-

nificant difference in transfer to reverse visual movement between participants trained with

passive lead-in movements (22.7% ± 17.3; mean ± std) versus those trained with visual lead-in

movements (29.3% ± 23.0) using a t-test (t14 = 0.641; p = 0.53). This shows that the predictive

compensation is sensitive to the direction of the visual motion.

Discussion

We investigated the kinematic generalization characteristics of passive and visual lead-in

movements using a force field interference paradigm. Participants first experienced a lead-in
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movement and then immediately made an active movement in a curl force field where the

field direction was associated with the lead-in movement. Channel trials within the active

movement examined how predictive compensation varied as lead-in kinematics were varied.

In the first experiment lead-in movements were passive, whereas in the second experiment

they were visual. For both modalities, recall of predictive compensation decreased as the dura-

tion of the lead-in movements deviated from the training condition. Reducing lead-in distance

also reduced compensation but increasing lead-in distance had little effect on the force gener-

alization. Our results show that although passive and visual lead-in movements influence

memory formation and recall in subsequent movement, passive motion exhibits narrower

generalization characteristics, whereas visual motion is less sensitive to kinematic change.

These generalization results further characterize the neural tuning exhibited by lead-in

movements, extending beyond the directional tuning seen previously. The observation that

passive lead-ins were more sensitive to changes in kinematics than visual lead-ins is consistent

with the prior observations examining angular generalization [10,11,15]. Namely that active

and passive tuning was narrower than the wider tuning seen in the visual condition.
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Fig 6. Comparison of transfer across sensory modality or to reversed visual cursor. A Transfer from passive lead-in to visual lead-

in or reversed visual lead-in. For comparison the learned force compensation on passive movements is shown. Black circles indicate

the results of individual participants. Error bars indicate standard error of the mean. B Transfer from visual lead-in to passive lead-in

or reversed visual lead-in.

https://doi.org/10.1371/journal.pone.0228083.g006
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Here we describe this gradual change in the predictive force output on the adaptation

movement as the lead-in motion is changed as generalization. We suggest that this generaliza-

tion arises due to implicit learning mechanisms within the sensorimotor system. Although it

has been shown that explicit strategies can play a role in learning visuomotor rotations [30–

32], studies in force field learning have shown very little contribution of these explicit strategies

[33]. Could the participants somehow predict the presence of channel trials and therefore stop

to compensate for the force field? As the participants have no knowledge of the experiment,

including the existence of channel trials interspersed between the field trials, and never experi-

ence errors during these specific trials, we suggest that this would be extremely unlikely.

Moreover, we find no decrease in the force compensation between the very first block of gen-

eralization trials to the full results over the two-day experiment. Nevertheless, it is useful to

consider alternative explanations to our observations. For example, while the direction of the

force field depended on the lead-in direction, variations in the lead-in motion were never used

to produce changes in the forces arising from the force field. Thus, one simple cognitive strat-

egy could be that participants have simply learned a binary left-right mapping to the force

fields, in which case we would see a constant predictive compensation for all variations of the

lead-in kinematics. However, we discount this binary association hypothesis since it can be

seen that variations in the kinematics of the passive (and to a lesser extent visual) lead-in

movements produced clear variations in the predictive forces. This shows that the learning of

this mapping was at least partially local and associated with the specific kinematics of the lead-

in movement. The continuous nature of this effect, which exhibits a smooth transition in com-

pensation between training conditions, also agrees with what was seen previously for angular

generalization for both passive [10] and visual lead-in movements [11].

More recently it was shown that the tuning characteristics of different lead-in modalities

could explain why angular variability of active lead-in movements affects the learning rate in

two-part movement tasks, whereas no such effect exists for visual lead-in movements [4]. Our

current results suggest that variations in the speed or duration of lead-in movements could

provide similar decrements in learning rate, whereas an increase in movement distance would

not have much effect. This might have important implications for rehabilitation, suggesting

learning and recovery would be faster for training routines with consistent lead-in kinematics.

One caveat is that such routines might also produce less generalization across tasks, as the

adaptation is more likely to be learned specifically for the trained lead-in movement.

In both experiments, to examine transfer of adaptation across modality, a visual lead-in cur-

sor motion occasionally replaced the passive lead-in, and vice versa. Interestingly, there was an

asymmetric transfer between passive and visual lead-in movements, with partial transfer from

passive lead-in movements to visual lead-in movements, but almost no transfer from visual to

passive lead-in movements. Transfer could arise because passive lead-in movement partially

engages neural mechanisms shared by the visual observation of movement, but not the con-

verse. This result may be due to asymmetry in the connections between the neural substrates.

Alternatively, it could arise because the visual feedback pathway has a lower gain due to the

uncertainly introduced by the longer time delay associated with visual information [34]. The

current observation that passive lead-in are more strongly tuned in duration than visual lead-

ins, as well as the former results that the absolute level of influence of passive lead-ins [10] is

higher than for visual lead-in [11] supports the latter hypothesis.

The wide ranging results from studies examining contextual cues for learning opposing

dynamics have demonstrated that not all sensory signals are able to influence motor learning

[15,20,35–41]. For example, color has essentially no effect [20]. In addition to the strong effects

of prior movements, it has been shown that particularly effective contextual cues relate to

state; for example limb state and physical locations [42,43], or different visual locations of the
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cursor and targets [37]. Indeed, a location cue could constitute a complete physical shift of the

movement task, or just a shift of one of its two essential components; namely a change in the

location of the visual feedback, or a change in the physical location of the task with identical

visual feedback. Other experiments have shown that future state also effects motor learning

in an analogous way [3], with this effect depending on movement planning rather than execu-

tion [5].

On the face of it, it appears that there are multiple types of contextual cues that strongly

influence motor memory formation. Here we propose that a factor they all have in common is

that they are related to either past, current, or future state of the limb; or are signals used in the

estimation of such limb states. That is, setting up the sensorimotor system in a different state

before (or at the end of) a movement allows the formation and recall of different motor memo-

ries. This suggests that some contextual cues (such as visual lead-in movement or location in

the visual workspace) are simply effective because the motor system makes use of these signals

within a state estimation framework to determine the state of the arm. Such state estimation

can only be made on the basis of sensory feedback and efference copy. This hypothesis would

be consistent with the observation that visual or proprioceptive movements are as effective an

active movement. It would also explain why a visual change of state can be as effective as a

complete change in the physical state of the limb. Moreover, it can explain why vestibular

inputs could also be used to learn opposing dynamics [15] but why color cues have much less

effect on the adaptation system [20].

In order to reach with our arm to a specific location, our sensorimotor control system

needs to know the initial limb state, and then activate the appropriate muscles in a specific pat-

tern to generate forces that bring the arm into the final state to meet the task requirements. To

make this movement robust in the face of noise and disturbances, this process does not simply

rely on feedforward control, but makes use of sensory feedback of our arm’s state, enabling

online correction in any task-relevant deviation from the goal of our movement. Arm state can

be estimated through the combination of appropriate sensory feedback signals such as propri-

oception from the skin muscles and joints, visual information, and vestibular inputs. However

due to neural signal transmission and processing delays, motor responses to proprioceptive

and visual feedback only start producing force after delays of 50 ms and 140 ms respectively.

Such delays represent a challenge in the design of a feedback control systems, since using direct

feedback from delayed signals can lead to instability.

To deal with delays in sensory feedback, Smith proposed an architecture which involves

using immediate feedback from the output of a forward model of the plant, rather than the

actual output of the plant itself [44]. In this architecture, the forward model estimates plant

output without delay, thereby avoiding the instabilities that delay can introduce, Miall and

Wolpert suggested that the Smith predictor architecture could account for delays in the

human motor system [45,46]. In control engineering, forward models form part of observers,

which are systems used to estimate the full state of a plant, which often cannot be observed

directly. Such full state estimation can be used as the basis of full state feedback control of a

plant, which is more effective than only basing control on the observable plant output. As with

the Smith’s predictor, such observers can also be constructed to estimate plant state without

the delay, providing an elegant way to control plants that have inherent delay in their sensory

feedback paths.

To make an observer robust to inaccuracies in its forward model and to deal with unpre-

dictable disturbances, there is normally a state correction pathway term based on actual output

error calculated as the difference between the actual output of the plant, and an appropriately

delayed prediction of plant output. This results in the state prediction based on the efference

copy of the motor command being combined with a state prediction error correction term
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based on the delayed sensory feedback, which is something that has been shown to occur dur-

ing the control of human movement [47].

Within such an observer-based controller framework, the observer performs state estima-

tion for an active movement using efference copy, while improving the estimate using the

delayed feedback signals. In the case of a purely visual observation or passive movement of the

arm, the observer can still make a state estimate, but only based on the state corrections from

feedback. From the premise that state is the key issue in formation of separate motor memory,

such a framework would account for the observation that either active, passive or visual lead-

in movements would influence state estimation.

To conclude, we have shown the current and previous observations of lead-in phenomena

are consistent with the hypothesis that the human motor system operates as an observer-based

controller mechanism, that makes use of a forward model to estimate state. In particular, our

results support the proposal [34] that even though the variances of visual positional informa-

tion is known to be lower than that obtained from proprioception, its longer temporal delay

reduces its weighting in state estimation. As a consequence of this, visual information has less

effect on the motor system than proprioceptive information, an effect that we have extended to

the learning and generalization of opposing dynamics.
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