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Abstract 22 

Many species advertise their unique identity to conspecifics using dedicated individuality 23 

signals: one familiar example is human faces. But how unique in the global population do 24 

these signals need to be? While human faces are highly variable, each person interacts with 25 

many fewer individuals than are found in the total population. This raises the question of 26 

how evolutionary mechanisms drive up population-wide diversity when selection occurs at 27 

such a local level. We use an individual-based model in which individuals broadcast their 28 

identity and quality in separate, genetically-coded signals. Mimicking, for example, scent 29 

marking mammal species, females in the model assess males using the quality signal, then 30 

attempt to relocate the highest quality male using his identity signal. We ask how 31 

population fragmentation affects genetic diversity in the individual identity-signalling region 32 

under sexual selection, predicting one of two opposing outcomes: (1) divided populations 33 

evolve fewer signal variants globally, since repetition of signals is not costly when individuals 34 

interact only with local conspecifics, or (2) stochasticity in mutation and selection cause 35 

divergence among subpopulations, increasing the global number of signal variants. We 36 

show that local selection drives up global genetic diversity substantially in fragmented 37 

populations, even with extremely low rates of dispersal. Because new signal variants arise 38 

by mutation and then sweep through their subpopulation, a fragmented population has 39 

more global signal variation. This result furthers our understanding of how high levels of 40 

diversity in individuality signals are maintained.  41 

  42 



Introduction 43 

Individual recognition – the ability to identify conspecifics to the level of the individual – 44 

appears to be a widespread ability in species from a broad range of taxonomic groups (e.g. 45 

humans: (Sheehan and Nachman 2014), wasps: (Sheehan and Tibbetts 2010), mice: (Hurst 46 

et al. 2001), lobsters: (Karavanich and Atema 1998), birds: (Medvin et al. 1993)). Across 47 

these groups, individuals benefit from being recognized because accurate recognition 48 

carries fitness benefits: these include the maintenance of complex social hierarchies 49 

(Tibbetts 2002), facilitating mate choice (Aquiloni and Gherardi 2010, Cheetham et al. 2007), 50 

ensuring accurate provision of parental care (Jouventin and Aubin 2002) and recognition of 51 

neighbouring territory holders (Hurst et al. 2005) or colony mates (Sheehan and Tibbetts 52 

2009). Where benefits to the signaller exist, we expect selection to drive the evolution of 53 

individuality signals (Johnstone 1997, Tibbetts and Dale 2007) through negative frequency-54 

dependent selection on rare signal types (Dale et al. 2001). Human faces are a probable 55 

example of individuality signalling diversity that has arisen under selection for rarity 56 

(Sheehan and Nachman 2014).  57 

While there is evidence that complex social interactions can drive the evolution of diversity 58 

in identity signals (Tibbetts and Dale 2007), little is known about how much variability 59 

evolves in different systems. There are good reasons to expect that not every individual in a 60 

population needs to have a unique identifier. While human faces, for example, appear to 61 

offer an almost unlimited number of unique variants, and show little overlap within 62 

populations (Sheehan and Nachman 2014), individual recognition may still be beneficial 63 

even when there is some overlap among individuals’ identity signals (Dale et al. 2001). Some 64 

identification errors might be acceptable, and, even in humans, receivers are often confused 65 



by similar-looking faces (Tibbetts and Dale 2007). Curiously, Tibbetts and Dale (2007) 66 

inadvertently emphasize this point by making just such an error, mislabelling two of the five 67 

pictured human faces in their figure legend. So, acceptability of occasional identification 68 

errors means that not every individual needs to be globally unique. Second, we might also 69 

find shared signals in the population as a consequence of limits to the combinatorial 70 

diversity available in the signalling system (e.g. because it is coded by a single locus). Finally, 71 

some degree of signal sharing might be expected to evolve because in most cases an 72 

individual interacts with only a small proportion of the total population. For instance, there 73 

appear to be vastly more human faces than are required for day-to-day human interactions, 74 

meaning combinatorial diversity in faces far exceeds what is needed to maintain social 75 

processes.  76 

While there are several reasons to expect some degree of signal sharing, we predict a 77 

relationship between the number of interacting individuals and the number of signals that 78 

evolve. Where dispersal is high, or populations are large, more signal variants will be 79 

required to ensure misidentification is rare. Indeed, positive correlations between group 80 

size and signal diversity have been reported in bats (Luo et al. 2017) and chickadees 81 

(Freeberg 2006), and there is evidence that species-level signal variability is linked with 82 

coloniality in swallows (Medvin et al. 1993). There may be a threshold population size 83 

beyond which individual identity signals do not evolve, either because of the difficulties of 84 

recognizing large numbers of individuals, or because of group instability (Rohwer 1982). 85 

However, beyond these few studies, there is little theoretical analysis of how group size 86 

might affect the evolution of signal diversity. In particular, the relationship between the 87 

number of signals found within each interacting group and the total signal diversity in the 88 



population, has not been explored. Understanding the dynamics of this relationship should 89 

help explain why, for example, most humans interact regularly with only ~150 individuals 90 

(Dunbar 1992) and yet there are billions of apparently unique human faces on the planet. 91 

Here we explore the effect of interacting group size on the evolution of individuality signals 92 

using an agent-based model of a population subject to different levels of fragmentation. We 93 

previously used this technique to show that variation in individual identity signals can arise 94 

as a consequence of even very weak sexual selection on male attractiveness (Thom and 95 

Dytham 2012). The model simulates a species in which females encounter male quality and 96 

identity information in two separately encoded signals that are temporally separated from 97 

the signaller. Females subsequently encounter the males and can correctly identify and 98 

mate with the highest quality individual only if his identity signal is unique – if it is not, they 99 

choose randomly from the males that share the signal. This temporal separation between 100 

assessment and mating mimics the mate choice mechanisms found in species that leave 101 

scent marks in the environment (Cheetham et al. 2007), broadcast auditory signals (Seddon 102 

and Tobias 2010), or in which females observe male contests and subsequently mate with 103 

the winner (Aquiloni and Gherardi 2010). Similarly, physical displays of attractiveness in 104 

humans – such as ritual jumping by Maasai men (Fink et al. 2019) – are often temporally 105 

distinct from subsequent mate choice events in which the chooser recognizes the ‘best’ 106 

male from the earlier display. 107 

We predicted that either of two opposing outcomes could emerge from subdivision of the 108 

population into patches. First, because the benefits of signal uniqueness are related 109 

primarily to local diversity in a fragmented population, signal overlap between patches 110 

might not be strongly selected against and each individual signal might be repeated 111 



numerous times at the global scale, thereby reducing global signal variation. Alternatively, 112 

because the evolutionary trajectory of each patch is largely determined by the local effects 113 

of drift and mutation, global signal diversity might exceed that found in a well-mixed 114 

population. We find that sexual selection can maintain local (within-patch) diversity in 115 

signalling loci even when the population is highly fragmented. Significantly, summing the 116 

signal variants across all patches reveals that population fragmentation increases the global 117 

signal diversity by 10 – 15% above that found in non-fragmented populations, revealing a 118 

substantial genetic diversity dividend to population subdivision.  119 

 120 

  121 



Methods 122 

We use an individual-based model of a sexual population with discrete events following 123 

Allen & Dytham’s (2009) adaptation of the Gillespie (1977) algorithm for simulating 124 

continuous time models. Extending the single, well-mixed population approach of Thom & 125 

Dytham (2012), we model a one dimensional ring of discrete patches connected by 126 

dispersal. An event can be either a birth (with possible dispersal to an adjacent population) 127 

or a death, and time advances after each event. The probability of a death event is density 128 

dependent and the population size will show stochastic logistic growth. We use an 129 

equilibrium density of 10,000 individuals divided equally across identical patches. The 130 

number of patches varies from 1 to 50, so the population ranges from 1 patch with 10,000 131 

equilibrium density, to 2 patches with 5,000 through to 50 patches with an equilibrium 132 

density of 200.  133 

Each individual carries a diploid attractiveness locus with alleles that can take any value, and 134 

six unlinked, diploid loci with four possible alleles at each locus. We consider the loci in two 135 

groups of three. One group controls signalling and the other evolves neutrally under 136 

mutation and drift only. There are 1000 possible unique combinations in each group (10 137 

unique combinations at each locus, because genotype AB is phenotypically equivalent to 138 

BA), and thus 103 (1000) possible individuality signals. 139 

A random individual is chosen from the global population of N individuals and an event type 140 

(either birth or death) is chosen at random. Time moves on an average of 1/2N of a time 141 

step after each event. If birth is selected and the chosen individual is female, she chooses a 142 

mate from a random selection of 10 individuals from within the same patch. The focal 143 

female either selects a male on attractiveness criteria (see below) or is assigned one at 144 



random, with a probability of 0.5 for each. If no males are encountered there is no birth, but 145 

if a male is encountered then the female produces a single offspring. At birth, the new 146 

individual is randomly assigned a sex (even sex ratio), inherits one allele for each of the six 147 

marker loci from each parent, and one attractiveness allele from each parent. There is no 148 

linkage. There is an independent chance of mutation for marker and attractiveness alleles. 149 

For signalling or neutral region mutations, there is a 1:1000 chance that one allele of 12 will 150 

mutate to one of the three different states. This represents a 1:6000 mutation rate per 151 

locus, which is of the order used in other simulation models (Roff 1998). Our mutation rate 152 

of 1:500 per locus for attractiveness is substantially higher because we assume that 153 

attractiveness is the product of numerous alleles across the genome, and thus that the 154 

mutational target is relatively large (Hunt et al. 2004). When an attractiveness allele 155 

mutates, a random number from a normal distribution with a mean of -0.02 and standard 156 

deviation of 0.02 is added to the existing allele with the result that the majority of mutations 157 

have negative effects on attractiveness. Following Thom & Dytham (2012), there is no upper 158 

limit on attractiveness. After birth the individual has a probability, set by the dispersal rate, 159 

of moving to an adjacent patch. Patches are arranged in a ring, and dispersal in a clockwise 160 

or anti-clockwise direction is equally likely. We use dispersal rates of 0, 0.0001, 0.001, 0.01, 161 

0.1 and 0.5. Individuals have no more than one dispersal event during their lifetime.  162 

We used a discrimination rate of 50% for simulations here, based on previous simulations of 163 

this system (Thom and Dytham 2012) — females choose the best male in half their mating 164 

opportunities; the rest of the time, they select randomly from males they have 165 

encountered. When discriminating, a female chooses a mate based on male attractiveness 166 

using the sum of the two attractiveness alleles. The female rejects all males that have 167 



signalling loci different from those of the most attractive male, and then chooses a mate at 168 

random from those remaining. There is no other effect of attractiveness or signalling on 169 

fecundity, dispersal or mortality, and females assess male attractiveness without error. 170 

Populations are initiated with the number of individuals equal to the equilibrium density 171 

(10,000) spread randomly across patches. At initiation, each individual has an equal chance 172 

of being male or female. All markers are set to the same value (i.e., there is initially no 173 

variation in signalling or neutral loci) and each attractiveness allele is assigned a random 174 

value drawn from a uniform distribution between 0 and 1. We describe a “time step” as the 175 

period when the number of possible events is twice the population size. We used 100 176 

realisations for each parameter set tested (the ‘neutral’ model, with female discrimination 177 

rate set to 0, was replicated 40 times). Simulations ran for 50,000 time steps, by which time 178 

population dynamics had settled into an equilibrium state. 179 

Statistical models were performed using data from the end of the model run. We collected 180 

data on signal diversity at two scales – global and local. Global signal diversity is the total 181 

number of signal variants found in the entire population, and local signal diversity is the 182 

mean number of signal variants in each patch. Effect sizes for local signal diversity are thus 183 

the mean of means, as we used each model replicate as a statistical replicate in analyses. To 184 

test the effect of increasing levels of fragmentation on signal variability, we conducted linear 185 

models with signal number (either global or local) as the response variable and the number 186 

of patches in the system as a factor – these analyses were performed pairwise, with each 187 

level of fragmentation compared to both (a) the panmictic one-patch system and (b) the 188 

next level of fragmentation to identify any threshold where increasing population 189 

subdivision ceased to have any effect. To assess whether the sexual selection mechanism 190 



was specifically driving up variation in the identity signalling system we compared the 191 

number of signal and neutral variants at the end of the model run using paired T tests. All 192 

analyses were performed in R version 3.3.2 (R Core Team 2017). 193 

Results 194 

Because the number of signals within a patch is limited by the number of individuals 195 

available to carry them, within-patch signal number is lower than in the panmictic system 196 

(across dispersal rates; all F1,198 > 19.2, all p <<0.001), as it is in the non-signalling regions 197 

invisible to selection (all F1,198 > 5.0, all p < 0.027 except 2 patches vs 1 patch at dispersal of 198 

0.1 [F1,198 = 2.0, p = 0.154] and 0.5 [F1,198 = 2.9, p = 0.093]; Figure 1). However, signalling loci, 199 

which are under selection through female choice, retained higher levels of variation than 200 

non-signalling loci at all levels of fragmentation and dispersal (paired t-tests, all t99 > 15.2, all 201 

p <<0.001), even in the most conservative case of the 50-patch system and no dispersal 202 

(mean ± SE signalling variants per patch = 3.1 ± 0.04; non-signalling variants per patch = 2.0 203 

± 0.02; paired t-test t99 = 26.2, p << 0.001). Thus, sexual selection maintains positive 204 

selection on male signal rarity even when local population size is small and dispersal is 205 

extremely rare (see also Figure S1). We confirmed the expected isolation-by-distance in FST 206 

values between pairs of patches (Figure S2). Tracking the spread of signals in a single 207 

replicate confirmed that genetic diversity was maintained by negative frequency 208 

dependence, ensuring that the number of signals present in the population remains diverse 209 

over time (Figure S3). By contrast, in the non-signalling region of the genome invisible to 210 

selection, drift leads to rapid changes in the frequency of the most abundant genotype, and 211 

in relatively small numbers of genotypes dominate in the population at any time. 212 



The effects of fragmentation on evolutionary diversity across a species can be understood 213 

by investigating the global (population-wide) number of signal variants under different 214 

regimes. Global diversity in the signalling region remained significantly higher than genetic 215 

diversity of the neutral region across all dispersal and fragmentation levels (all t99>14.3, all p 216 

<<0.001), demonstrating that population fragmentation does not break down the 217 

mechanism of sexual selection maintaining signal diversity at a global scale. Even more 218 

strikingly, at low to intermediate dispersal rates, the number of global signal variants 219 

significantly increased at intermediate levels of fragmentation compared to the levels of 220 

diversity seen in the single-patch system (Figure 1, hollow arrowheads). At the lowest non-221 

zero dispersal rate of 0.0001, the global number of signal variants peaked at a value 10% 222 

higher than that found in the single patch system. At 0.001, 0.01 and 0.1 dispersal rates the 223 

peak was 13-15% higher than in a single patch system (all F1,198>13.8, all p < 0.001). 224 

Population fragmentation was associated with lower global signal variation only in the 225 

absence of dispersal (Figure 1, top axis rug). 226 

  227 



Discussion 228 

Even when populations become highly fragmented and subpopulation size is small, female 229 

choice of males they individually recognize can drive the evolution of genetic diversity in the 230 

signalling region. Indeed, fragmentation drives genetic variation in the population 231 

substantially above that of unfragmented populations, suggesting a potentially important 232 

role for population subdivision in maintaining evolutionary diversity. 233 

In subpopulations as small as 200 individuals, sexual selection on male quality drives 234 

genetically-coded signal diversity higher than that found in an equivalent neutral genome 235 

region. Although the mechanism of selection modelled here is relatively weak – in only 50% 236 

of matings do females even attempt to discriminate the best male, and they investigate only 237 

10 individuals before choosing – it was sufficiently effective to counteract the loss of allelic 238 

diversity through drift and to increase signal diversity across a range of demographic 239 

conditions (dispersal and local population size). We conclude that the evolution of individual 240 

variation, at least under this mechanism, does not appear to be prevented by small local 241 

population sizes. In small populations we find that the absolute number of signal variants is 242 

low: in the case with no dispersal and 50 patches there were only 3.1 signal variants per 243 

patch, meaning 65 individuals in each patch shared the same signal on average. Even at this 244 

high level of signal sharing, the mechanism of selection we describe here drives the 245 

evolution of greater signal diversity in signalling than non-signalling regions. In more 246 

biologically-plausible, intermediate parameter sets we see much lower rates of signal 247 

sharing (e.g. at 50 patches and dispersal of 0.1, there are 90 signal variants and just 2.2 248 

individuals on average with each signal variant). While the number of signals in any 249 

population is constrained by either the number of carriers or the total combinatorial 250 



diversity available from the signalling system, we have shown that selection can maintain 251 

variation in both local and global signal numbers across a large range of population 252 

fragmentation levels. Sexual selection is thus a robust mechanism for the evolution of 253 

individuality signals. 254 

More importantly, we find that global signal diversity is dramatically enhanced when the 255 

population is subdivided. This contradicts our expectation that the rescue of rare alleles by 256 

negative frequency dependence would be most effective in a panmictic population. Instead, 257 

global signal diversity is elevated by population fragmentation by three mechanisms. First, 258 

in a subdivided population there are many ‘best’ males (as many as there are patches), and 259 

that the absolute quality required to be the local best is lower when the population is more 260 

subdivided. Second, with many ‘best’ males the likelihood of a high-quality male also 261 

carrying a rare signal variant is improved (since 1000 signal variants are possible in our 262 

system, but in the most subdivided population there are only 200 individuals), giving more 263 

opportunities for the selection mechanism to gain traction. Finally, in a subdivided 264 

population any relatively high-quality individual that disperses will be more likely to possess 265 

a rare signal variant in the destination population, increasing its chances of spreading 266 

through selection on rarity and quality. 267 

There are a number of examples of signal characteristics varying with geography, including 268 

in chimpanzee calls (Mitani et al. 1999), in major urinary protein expression among 269 

subspecies of house mice (Hurst et al. 2017, Sheehan et al. 2019), in human faces (Guo et al. 270 

2014), and in intraspecific bird song dialects (Baker and Cunningham 1985). While this 271 

geographic diversity can develop under a number of processes, our model predicts such 272 

variation in fragmented populations of species in which there is temporal separation of 273 



mate assessment and mating. One such system in which this hypothesis might be tested in 274 

the future is in birds, where our data suggest that lekking species might avoid the negative 275 

genetic diversity effects of fragmentation: there is indeed some evidence that lekking 276 

grouse do not always suffer the expected decline in genetic diversity with population 277 

fragmentation (Bush et al. 2011, Segelbacher et al. 2008). Thus our model describes a 278 

mechanism for understanding of the paradox in which lek mating species maintain higher 279 

than expected genetic diversity in the face of sexual selection (Kotiaho et al. 2007). 280 

Counterintuitively, our result suggests that fragmentation may in fact elevate genetic 281 

diversity in such a system, at least in signalling regions and among linked loci.  282 

The rate of dispersal has substantial effects on patterns of genetic diversity in our model, as 283 

it does in fragmented wild populations (Riginos et al. 2014). With no dispersal we see the 284 

effects of drift vs. mutation and frequency dependence, and global signal diversity is not 285 

enhanced by population fragmentation. With a high dispersal rate the system behaves as a 286 

single, panmictic population. At intermediate dispersal, signals that are attached to high 287 

quality males increase in frequency, and thus increase their probability of spilling over into 288 

adjacent populations where the strength of positive selection will increase. Interestingly, 289 

there were quite striking effects of both dispersal and fragmentation on mean population 290 

quality (which was uncapped): the lowest rates of quality evolution were in the most 291 

fragmented populations with low dispersal, the highest rates in relatively unfragmented 292 

populations with high dispersal (approaching a panmictic system). This matches the 293 

prediction that selection should operate more effectively in larger populations where the 294 

impact of drift is reduced.  295 



One counteracting pressure that we expect to see is “impersonation”, where an individual 296 

with low attractiveness, but whose individuality signal matches that of a high-quality male, 297 

gains ‘unearned’ reproductive output. Because females choose at random from within the 298 

pool of males that carries the best male’s signal, unattractive males are only likely to obtain 299 

matings from discriminating females if they are in this pool. This kind of identification error 300 

did happen in our system, although ‘unearned’ reproductive success was rare (< 10% of 301 

matings) except in very fragmented populations with very low dispersal rates (Figure S4). 302 

This type of mimicry might be particularly likely to occur in systems that allow some signal 303 

plasticity (e.g. vocalizations: Hile et al. 2000). In our model, the most likely cost of 304 

inadvertent signal copying is that when an impersonated signal spills out into neighbouring 305 

patches the mean quality of the dispersers will be lower because of the imposter, and the 306 

spread will thus be weaker than it would be in the absence of impersonation. Of course, the 307 

risk of impersonation would be reduced with a larger signal set – we allowed 1000 signal 308 

variants, but this may be rather conservative compared to the number available with more 309 

loci or alleles contributing to the signal, or if there is variation not only in genotype but also 310 

in relative expression (e.g. Sheehan et al. 2016). 311 

While our model simulates the type of social environment described by Sheehan & Bergman 312 

(2016), where an animal moves from one social group to another, the system described 313 

here does not require the accumulation of specific information about individuals following 314 

repeated encounters, since the female assesses quality and ‘memorizes’ matching 315 

individuality information simultaneously. The model operates purely through a series of 316 

instantaneous mate choice decisions by females. Much more complex mechanisms than this 317 

undoubtedly occur in species with complex social systems where repeated encounters and 318 



memorization of individual-specific traits are an alternative mechanism explaining the 319 

evolution of individual recognition (Tibbetts and Dale 2007).  320 

Previous studies of individual recognition have identified this process as an 321 

underappreciated mechanism for maintaining polymorphism (Sheehan and Tibbetts 2010). 322 

However, there has been little exploration – or even reporting – of the effects of individual 323 

recognition on species-wide genetic variation. Here we show that population fragmentation 324 

drives up global variation in signalling regions by between 10 and 15% above that expected 325 

in a non-fragmented system even when only half of the females are discriminating. This 326 

finding contrasts with the many examples in which habitat fragmentation is bad for diversity 327 

(Hanski 2015). Although the idea that physically isolated populations undergo separate 328 

evolutionary trajectories is not in itself surprising, the strength of the effect we demonstrate 329 

here, and the degree to which selection has an effect even in very small subpopulations, are 330 

potentially significant for conservation. This would particularly be the case if genetic 331 

diversity in non-signalling regions piggybacked on this increased diversity through, for 332 

example, linkage. Our result thus adds to the evidence for positive effects of habitat 333 

fragmentation on biodiversity (Fahrig 2003, Fahrig 2017, Fahrig et al. 2019).  334 

 335 

 336 
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Figure 1. 442 

Global number of genotypes (red symbols) and mean genotypes per patch (blue symbols) 443 

across a range of levels of population fragmentation (x-axis) at the end of the model run. 444 

Large symbols: genotypes visible to females and evolving under sexual selection; small 445 

symbols: genotypes invisible to females and evolving only under neutral processes. Data are 446 

means from 100 replicate model runs with standard deviations. The number of patches in 447 

the global population is shown on the x-axis, with six rates of dispersal between patches on 448 

separate panels. Both globally and locally, genotypes visible to selection had significantly 449 

higher numbers of variants than genotypes invisible to selection at all levels of 450 

fragmentation and dispersal. Note that for the single-patch system, global and local 451 

genotype variability are necessarily identical. The top axis rug (red ticks) marks levels of 452 

fragmentation at which global signal diversity is significantly different from signal diversity in 453 

the single-patch system; maximum global signal diversity for each dispersal rate is marked 454 

with an arrow. Because local signal diversity at all levels of fragmentation was significantly 455 

different from signal diversity in the single-patch system, the x-axis rug (blue ticks) instead 456 

marks points at which local signal diversity is significantly different (p < 0.05) from local 457 

signal diversity at the immediately preceding level of fragmentation. Rugs were calculated 458 

using linear models with number of genotypes as the response variable and number of 459 

patches (restricted to the two levels of interest) as a factor.  460 
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