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ABSTRACT

The effect of two different types and particle sizes (micronized cryo-ground 74 lm or ambient-ground 400 lm) of

recycled rubber powder (RRP) was studied during fatigue crack growth (FCG) in an NR/BR compound using a fracture

mechanics approach. Absolute and relative hysteresis losses using single-edge notch tensile specimens were determined with

a displacement-controlled strain compensating for the permanent set of the samples throughout the FCG experiments.

Differences in relative hysteresis loss showed that additional energy dissipation, due to multiple new crack surfaces at the

crack tip, contributes to the FCG of the RRP compounds. At higher tearing energy, beside other factors affecting the FCG

performance of the RRP compounds, both higher absolute and relative hysteresis loss are slightly detrimental to the crack

growth rates. At lower tearing energy, the larger RRP-filled compound showed slower, but not significant, different crack

growth rates than the NR/BR control compound. Fracture morphologies for NR/BR and RRP-filled compound were

associated with different fracture surface topographies at various tearing energies, which revealed the dependency of the

crack growth microstructure on the tearing energies. [doi:10.5254/rct.20.80440]

INTRODUCTION

Quasi-static properties such as tensile strength, abrasion, and tear resistance give simple and

quick information, which is often used for quality control of rubber compound. However, these

tests do not describe the rubber performance in dynamic conditions. Wear loss in tires or cracking

in rubber mountings is usually associated with crack growth due to repeated cyclic stress. These

types of failure under cyclic/repeated conditions are known as fatigue failure and occur well

below the ultimate strength of the material.1 Suitable parameters for assessing material properties

and their relation to lifetime performance in specific applications are required. The most practical

approach is fracture mechanics, in which the crack growth rate is influenced by the tearing energy

of the rubber material and is independent of the shape of the test piece. The energy balance theory

was first used in rubber tearing under static loading by Rivlin and Thomas,2 who derived their

model from Griffith’s criterion.3 The tearing energy, also well known as the ‘‘energy release rate,’’

can be applied for cyclic loading1 and is widely used as a criterion for fatigue crack growth (FCG)

rate in elastomers.

In many studies of recycled rubber materials, using untreated or treated powder, only quasi-

static mechanical properties are reported.4–7 Generally, few works have examined the fatigue

properties and fracture morphology. In a fatigue life evaluation, both Han and Han8 and

Bandyopadhyay et al.9 used DeMattia flex cracking (DMFC) for crack growth rate measurements.

Roche and Perier10 evaluated the effect of filler dispersion and rubber formulation on the FCG

behavior of styrene–butadiene rubber (SBR). Those authors reported that fracture mechanics based

on the energetic approach provides more precise information than the conventional standard fatigue

methods (DMFC) or fatigue-to-failure tests (FTFT). Other authors11–13 highlighted the

contradictory performance of rubber compounds at different tearing energies. This energetic

approach to crack growth analysis could provide new information for recycled rubber powder–
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filled compound evaluation. Recently, Yaagoubi et al.14 showed that crack growth behavior

together with the J-integral concept of Rice15 allow for reasonable predictions of FCG, even for

complex-shaped test specimens.

The fatigue fracture surface morphology and the mechanism of FCG for NR compounds have

been comprehensively studied.16–19 Tee et al.20 showed that from year 2004 until present, 49% of

studies on rubber fatigue focused on NR, 21% on SBR, 25% on other rubber types, and only 5% on

rubber blend. In the present work, the FCG in NR/BR blend (70/30 compound) with cryogenic-

ground micronized rubber powder (at ,74 lm, denoted MRP074) is compared with ambient-

ground crumb rubber powder (at ,400 lm, denoted CRP400) using a fracture mechanics approach.

Recycled rubber powder (RRP) refers to either MRP074 or CRP400 filler. The effect of both RRP at

10 pphr (parts per hundred of rubber) on the damage to the microstructure of NR/BR (70/30) and

fatigue fracture surface morphology dependence on the FCG under different strain amplitudes are

also studied. The FCG performance of RRP-filled NR/BR compound at different strain amplitudes

is important, as materials behave differently under different tearing energies.12

EXPERIMENTAL

MATERIALS

The rubber matrix was an NR/BR blend system (70/30 ratio). The blend ratio of 70/30 was

selected21 to balance properties such as abrasion, strength, fatigue, and crack growth resistance for

tire tread formulation. Driven by their targeted properties, other authors have used NR/BR ratios of

50/5022,23 or 60/40.24 The NR was standard Malaysian rubber 10. BR was cis-1,4 polybutadiene

rubber (Europrene Neo cis-BR-40). The CRP400 and MRP074 recycled materials were from

different batches of truck tires. Crumb rubber powder (CRP400) at 40 mesh (~400 lm) particle size

was supplied by Crumb Rubber Ltd. (Plymouth, UK). Micronized rubber powder (MRP-Polydyne

200) at 200 mesh (74 lm) was supplied by Lehigh Technologies (Tucker, GA, USA). The

characterization of those materials is published elsewhere.25 Other chemical ingredients used were

of commercial grade (Table I). The curatives, 1.2 pphr sulfur and 1 pphr N-tert-butyl-2-

benzothiazole sulfenamide, were added during final mixing. All rubber and chemical ingredients

were supplied by Tun Abdul Razak Research Centre (Brickendonbury, UK).

TABLE I

RUBBER FORMULATIONS (IN PPHR)

Master batch

NR/BR 100 100

Zinc oxide 3.5 3.5

Stearic acid 2.5 2.5

Antilux 654 wax 1 1

6PPD antioxonant 2.5 2.5

Flectol TMQ antioxidant 1 1

N234, carbon black 30 30

MRP074/CRP400 0 10

6PPD: N-1,3-dimethylbutyl-N0 phenyl-p-phenylenediamine

TMQ: 2,2,4-trimethyl-1,2-dihydroquinoline
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MIXING PROCESS AND COMPOUND PREPARATION

NR was masticated to reduce the viscosity to a nominal 60 Mooney units (ML[1þ4] at 100 8C)

using a Bridge cracker mill (406 mm Ø3508 mm length) and then a two-roll mill (Francis Shaw, 50

kg capacity). Three master batches of NR/BR compound were prepared using a Polylab 2000E

internal mixer (390 cm3 and fill factor of 0.72). The raw NR and BR were mixed simultaneously

before addition of carbon black (CB), RRP, and other compounding ingredients. The master batch

mixing was carried out with a starting temperature of 40 8C and a rotor speed of 60 rpm. Total

mixing time was about 6.5 min. The master batches were allowed to cool overnight before the

curatives were added separately using a two-roll mill. A band of rubber was formed as a continuous

sheet on the mill. Once the curatives had all been added, the banded rubber was cut and rolled three

times from each side of the mill, alternating from the left and from the right. After that, the entire

compound was removed as a roll and passed through a tight nip for three passes, not allowing the

rubber to band but taking off as a roll. The number of cuts and passes is kept low to minimize

degradation of the rubber matrix while ensuring good dispersion of the curatives. Each mix was

then sheeted out at approximately 4–5 mm thickness.

The optimum curing times, t95 (time at 95% of the maximum torque rise), of all samples were

obtained at 160 8C for 30 min, using a Monsanto MDR 2000 rheometer with 0.58 arc in accordance

with the BS ISO 6502:2016 standard. Compression molding of test specimens from each mix used a

Bradley and Turton Ltd. (Kidderminster, UK) steam press at 160 8C with 8 MPa pressure. The 229

mm square by 2 mm thick sheets were molded using their respective optimum cure times.

FCG TEST

FCG tests were conducted on an Instron Electropuls 3000 with a 250 N load cell, at ambient

conditions, using displacement control mode with a superimposed minimum load control. FCG

tests were carried out on NR/BR CB-filled compound (control) and with 10 pphr of either MRP074

or CRP400 filler. Single-edge notched tensile (SENT) dumbbell-shaped specimens had a

rectangular cross section of 1532 mm with 40 mm distance between grips from the total specimen

length of 100 mm. Several authors used a precrack size of 1 mm.26,27 This precrack size is not

appropriate for this study because at this length, the critical size has already been exceeded and there

is no stable crack propagation, especially at higher dynamic strains. An initial crack of

approximately 0.65 6 0.15 mm was cut into the narrow edge of each rubber specimen using a sharp

razor blade. The specimens were quasi-statically stretched to 18 mm (~107% strain) maximum

displacement to introduce a natural crack shape prior to dynamic testing. Three specimens per

amplitude were then individually subjected to a sinusoidal excitation at a frequency of 5 Hz and 6, 9,

11, or 15 mm strain amplitude, which corresponds, respectively, to 40%, 59%, 71%, or 96%

dynamic strain. Because of cyclic stress relaxation, and to avoid buckling of the rubber material, the

targeted minimum load was fixed to 1 N (~0.04 MPa) with constant peak displacement using

trimodal control of the Instron WaveMatrixe test software. The specimens were illuminated from

both the front and the back with light-emitting diodes to achieve a greater image contrast. The tests

were periodically stopped at a specific number of cycles, and the image of the crack was captured by

a camera (computart, MLH-10X). The posttreatment measurement of the crack length was

conducted using ImageJ software28 with semiautomatic ABSnake plugins.29 The half-crack

contour lengths were measured at a specific number of cycles. For the first 5000 cycles at lower, or

3000 cycles at higher, dynamic strain, respectively, the measurements were not used for the dc/dn

because of the unstable crack growth at the beginning of the FCG test. In this condition, after 5000

cycles of FCG, the value of the precrack size does not matter. The crack growth rate (dc/dn) from the
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stable crack growth region was obtained within the linear slope of the crack length (c) plotted

against the number of elapsed fatigue cycles.

Fracture behavior is characterized by a relationship between crack growth rate, dc/dn, and

tearing energy, T, which is recognized as a fundamental property of crack propagation in

elastomers.30 The tearing energy or strain energy release rate for SENT specimens under cyclic

loading can be calculated using Eqs. 1 and 2:

T ¼ 2kWc ð1Þ

k ¼ p
ffiffiffi

k
p ð2Þ

where W is the strain energy density or stored energy at some distance from the crack (i.e., the

integral area under the retraction load-displacement curves was divided by the volume of the

specimen between the grips), c is the crack length, k is the extension ratio (i.e., k¼1þstrain), and k
is a constant, depending on the strain (Eq. 2). Energy at the minimum strain level (Wmin) was taken

into account for W because the test was conducted under nonrelaxing conditions (minimum load .

0). W was measured using an unnotched specimen, which was cycled under the same conditions as

in the FCG test for each of the strain amplitudes tested. Using the power-law relation (dc/dn¼
B(T)F)1, (Eqs. 1 and 2), the cyclic crack growth rate with tearing energy, T, can be expressed as

dc=dn ¼ Bð2p�1=2WcÞF ð3Þ

where B and F are material specific constants.

HYSTERESIS LOSS

The hysteresis loss/energy dissipated is defined as the difference between total work done for

cyclic loading (Ua) and cyclic unloading/retraction (Us) obtained from the integral area under the

cyclic force displacement curve. Total energy density, Wa, and strain energy density, Ws, were

determined by dividing the Ua and Us by the volume of the specimen between specimen grips

during cyclic loading. As the test was conducted under nonrelaxing conditions (minimum load .

0), the energy at the minimum strain level (Umin) is included in both the total and strain energy.

Measurement of the hysteresis loss from the energy densities (total and strain energy) was then

acquired using the same SENT specimen during the FCG test. All of the energy measurements were

obtained from a representative stress–strain hysteresis loop at the number of fatigue cycles closest to

50% of the service life for each specimen. The value of 50% was chosen as it best describes the

average mechanical properties (mechanical properties change with each and every cycle) during the

entire lifetime of the specimen.31 The percentage of relative hysteresis Hr [%]¼ (Wa�Ws)/Wa) 3

100 and absolute hysteresis density Hab¼ (Wa�Ws) were then determined using an average of the

three measurements. The averages and the standard deviations of the total and strain energy density

and hysteresis loss as the absolute value and percentage of relative hysteresis of the total energy for

the three rubber compounds for each level of strain amplitudes tested were reported.

MORPHOLOGY OF FRACTURE SURFACES FROM THE FCG TEST

Fracture surface specimens were cut about 5 mm from the fracture surface, and all specimens

were gold coated to minimize electrical charging prior to analysis. The morphology of each crack

fracture surface after FCG test was viewed using a JEOL JSM-6610 LV scanning electron

microscope (SEM), operating at 15 kV accelerating voltage.
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RESULTS AND DISCUSSION

HYSTERESIS LOSS UNDER CYCLIC LOADING

The breakup and reformation of the filler network within the rubber chain during cyclic

deformation involves energy dissipation, often considered as being part of the mechanical

hysteresis.32 Reduction in crack growth rates in CB-filled compound, relative to unfilled rubber

compound, is partially due to increase in hysteresis and other factors such as CB reinforcement and

strain-induced crystallization.33,34 In this article, unfilled rubber refers to a rubber compound with

no added filler (CB, RRP, or both). The fatigue life improvement is strongly dependent on the type

and optimal loading of the CB.35 Hence, hysteresis is an important characteristic when evaluating

fatigue properties in terms of deformation and crack growth behavior.36 The relationship between

fatigue properties, critical J-integral value, and hysteresis was studied by Kim and Jeong37 on

different types of CB in NR compound. The fatigue life of the compound increases with the increase

in the critical J-integral value and hysteresis. CB (N650)–filled NR containing larger aggregates or

structures has lower hysteresis compared with a compound with smaller particle size and a higher

surface area CB (N330). The hysteresis is also dependent on the temperature,38 preconditioning,

dynamic strain, and frequency/strain rate.39 The result can vary according to these factors because

of the viscoelastic properties of rubber. Other reinforcement factors such as strain-induced

crystallization (SIC), strength anisotropy, crack deviation, and crack tip blunting have also been

reported40,41 in fracture evaluation.

The trimodal function of the Instron WaveMatrix dynamic testing software allows a minimum

load (in this case, set to 1 N–0.04 MPa) to be applied with a displacement controlled strain

superimposed, taking account of the permanent set of the samples throughout the cyclic loadings.

Measurements of the hysteresis loss from the energy densities (total and strain energy) were then

obtained using the same SENT specimen during the FCG test. The comparison between tearing

energy calculated from W of notched or unnotched specimens at different dynamic strains for NR/

BR blend control compound is demonstrated in Figure 1. Virtually no differences in the tearing

FIG. 1. — Comparison of stable propagation crack length versus tearing energy, where W is taken from an notched or

unnotched specimen at different dynamic strains for NR/BR control compound.
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energy are observed between unnotched and notched specimens. The total energy densities

decrease as the cycles continue, because of cyclic stress softening of the material.42 Hence, the

strain energy densities from the notched specimens during FCG are more representative of the

hysteresis data of the samples tested.

FCG OF NR/BR COMPOUND AND EFFECT OF CRP400 OR MRP074 FILLER

The effect of MRP074 or CRP400 at 10 pphr loadings on FCG characteristics of the NR/BR

blend compound is shown in Figure 2. Scatter in FCG results is commonly observed because

fatigue is sensitive to material structure and inhomogeneities/different flaw sizes, which are difficult

to control.43 In addition, the FCG rate using crack contour length shows more scatter compared with

crack depth but is more closely related to the increases in the crack surfaces and tearing energy.44

Although the experimental data are scattered considerably, the R2 of the fitting according Eq. 3

appear adequate (.80%); therefore, it is reasonable to predict the dependent variables. An R2 value

as low as about 70% has been reported45 for unfilled or filled NR due to the nature of the crack in

rubber matrix. Both dynamic strain energy density27,31 and hysteresis loss46 parameters could be

used to evaluate the crack growth resistance of rubber compounds. The FCG results related to these

parameters are discussed in the following.

At the lower tearing energy (40% dynamic strain), the crack growth rate of CRP400-filled (10

pphr) NR/BR compound was slightly lower, but not significantly different, from the control

compound because of the relatively high scatter in the results. However, both CRP400 and NR/BR

compounds exhibited lower crack growth than MRP074-filled compound. Table II and Figure 3

FIG. 2. — Fatigue crack growth comparison with control NR/BR compound and different RRP at 10 pphr.
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show the total and strain energy densities for control and MRP074- or CRP400-filled NR/BR

compounds under various strains. By examining the plots, considering the data scattering, there are

virtually no differences between energy values for all compounds, but Table II shows that at 40% or

59% dynamic strain amplitudes, CRP400 compound exhibits lower strain energy densities

compared with the control and MRP074-filled compound within the experimental error. The lower

strain energy density corresponds to a reduced energy available for crack propagation, which would

partially explain the lower crack growth of CRP400-filled NR/BR compound at 40% or 59%

dynamic strain.

The addition of filler has been shown to increase hysteresis47 in the rubber matrix, with the

extent depending on the type and amount of filler. Higher hysteresis could reduce the energy

available for crack propagation35 and is important for rubber reinforcement. This indicates that the

fracture resistance of rubber is not only dependent on the strain energy density (crack driving force)

but also on the energy dissipated around the crack tip.48 Figure 4 shows the absolute and relative

hysteresis loss for NR/BR- or RRP-filled compound at each of the dynamic strain levels tested. The

increase in dynamic strain increases the absolute hysteresis of the rubber network (Figure 4a). At

40% dynamic strain, there was no significant influence on the absolute value of hysteresis loss of

NR/BR control or either RRP-filled NR/BR compounds. However, the relative hysteresis loss

TABLE II

TOTAL AND STRAIN ENERGY DENSITY OF NR/BR BLEND COMPOUND (CONTROL AND CRP400- OR MRP074-FILLED

COMPOUND) AT EACH LEVEL OF DYNAMIC STRAINS TESTED

Dynamic strain, % NR/BR NR/BR–CRP400 NR/BR–MRP074

Total energy density, Wa, N/mm2

40 0.142 6 0.003 0.137 6 0.001 0.141 6 0.001

59 0.265 6 0.002 0.257 6 0.002 0.246 6 0.022

71 0.348 6 0.002 0.341 6 0.005 0.345 6 0.006

96 0.542 6 0.009 0.534 6 0.010 0.535 6 0.005

Strain energy density, Ws, N/mm2

40 0.123 6 0.002 0.118 6 0.0002 0.121 6 0.0011

59 0.225 6 0.001 0.218 6 0.001 0.232 6 0.024

71 0.298 6 0.002 0.292 6 0.005 0.295 6 0.005

96 0.479 6 0.008 0.465 6 0.008 0.469 6 0.005

FIG. 3. — Total and strain energy densities of NR/BR blend compound (control and CRP400- or MRP074-filled compound)

at each level of dynamic strains tested.
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showed different trends. The possible explanation might be the multiple energy dissipative

mechanisms35 that occur around the crack tip. As expected, both RRP-filled compounds have

increased relative hysteresis loss because of the additional filler in the NR/BR compound (Figure

4b). The cure characteristics of NR/BR-, CRP400-, or MRP074-filled compounds were previously

studied.25 NR/BR control compound had higher relative crosslink density than the NR/BR phase of

the RRP compounds, as migration of curatives from the virgin to the RRP compound caused

reduction in the crosslinking in both the CRP400- and MRP074-filled matrix. The higher

crosslinking could reduce the ability of the rubber to dissipate energy through hysteresis.

Another possible explanation is that the CRP400 compound showed higher relative hysteresis

loss compared with the MRP074 compound because of the irregular (convoluted) surface of

CRP400, as reported in an earlier study.25 The irregular surface of CRP400-filled compound

provides greater surface area and a stronger interface between the particles and the rubber matrix. A

stronger interface interaction/bonding in this work was defined as the interaction level between the

rubber and filler that could restrict the mobility of the rubber molecules on the filler surfaces. Thus,

more contact with CB and hysteresis within the CRP400 fillers creates more internal friction,

contributing to higher relative hysteresis. Combined effects of additional hysteresis for the CRP400

compound could reduce the crack growth rate.

At 71% dynamic strain, the FCG of NR/BR is lower compared with the CRP400- or MRP074-

filled compounds. The weak bonding between the matrix and RRP can lead to a weak interface for

failure initiation. The migration of sulphur25 apart from the weak bonding has also been suggested

as a cause for this reduction in mechanical and FCG test of the RRP-filled compound. RRP might

also increase the stress concentration and reduced strength at the crack tip, consequently resulting in

the reduction of the SIC effect.

The increase in absolute hysteresis loss due to introduction of RRP is expected when part of the

strain energy density is dissipated as heat while the other parts act as a crack/fracture driving force.49

Also, the relative hysteresis loss passes through a maximum then decreases with increasing

dynamic strain amplitudes. At 50% or 71% dynamic strain, there is no significant difference

between MRP074, CRP400, or control NR/BR values. The overlapping trends of the relative

hysteresis loss for all compounds is not yet fully understood but could be attributed to the multiple

dissipative processes occurring at the crack tip.35 Additional dissipation may be attributed to the

SIC effect.33 The SIC effect is believed to be higher at 71% compared with 40% dynamic strain, as

deviation from the straight trend line. SIC increases with increasing strain amplitude and causes

FIG. 4. — (a) Absolute hysteresis loss and (b) relative hysteresis loss of NR/BR blend with 10 pphr of CRP400 or MRP074 at

each level of dynamic strains tested.
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increased anisotropy of the material strength.19 At higher dynamic strain during cyclic loading,

strain-induced crystallization of NR will create an area at the crack tip that will prevent the crack

growth in that direction. Higher SIC at the crack tip enhances crack tip blunting and branching.32

The splitting into two or more smaller shared crack tips reduces the total tearing energy available for

each individual crack.50,51

At 96% dynamic strain, a lower relative hysteresis loss was observed for all tested samples

compared with lower dynamic strain (40%). During this stage, the molecular chain (filler–filler

bonds and weak rubber–filler bonds) was broken down and the mobility reduced.39 As cycles

continued, less energy was required for the breakdown of the filler–filler and rubber–filler network,

leading to reduced energy dissipation compared with lower dynamic strain. Another possible

reason is that the relative hysteresis is dependent on the degree of crystallinity during cyclic loading

and unloading.52 The reduction of the SIC at 96% dynamic strain reduces the relative hysteresis

loss.

At higher tearing energy levels (96% dynamic strain), the crack growth rates changed to be

ranked CRP400 . MRP074 . control NR/BR compound. There could be a competition between

SIC and the crack growth. Higher crack growth rate reduces both the threshold tearing energy and

the ability to crystallize53 at the crack tip. By increasing the amplitude, it is suggested that the

ultimate properties of the CRP400 decrease faster than in MRP074, which increases the crack

growth rates of CRP400. This supports the strength dependence on the crack growth rate at higher

tearing energy53 found for CRP400. In addition, weak bonding between the RRP filler and rubber

matrix creates more microvoid sites, which initiate fatigue failure. These microvoids are believed54

to increase in size with increasing dynamic strain amplitudes and contribute to the higher crack

growth of the RRP-filled matrix.

The CRP400-filled NR/BR showed significant absolute hysteresis loss at 96% dynamic strain.

Similarly, the CRP400-filled compound exhibited higher relative hysteresis loss compared with

MRP074-filled or control NR/BR. Higher hysteresis dissipates heat and increases the neighboring

network temperature, which can accelerate molecular chain rupture and suppress the SIC effect55 at

the crack tip. A lower relative hysteresis loss for NR/BR or with MRP074 filler probably reflects a

better transmission of the stress from matrix to the neighboring particles. Further investigation is

needed to confirm this assumption.

MORPHOLOGY OF FRACTURE SURFACES FROM FCG TEST AT DIFFERENT TEARING ENERGIES

Evaluation of the fracture surface on the microscopic scale after fatigue failure is important for

identification of crack growth regime, location of crack initiation, or possible flaw information.

Crack growth mechanisms and microscopic examination of the fracture surfaces from the fatigue

test have been reported for NR.17,19,49,50,56 The sample formulations, method of testing, and focus

of interest were different in each case. Nevertheless, some observations or similar fracture

mechanisms occurring on the fracture morphology were also seen to take place in the NR/BR blend

due to the dominant factor of NR and its unique properties of SIC. Le Cam et al.16 described the

rough ‘‘twisted knots’’ at the stable crack propagation zone as ‘‘wrenching’’ due to stretched

ligaments, which break and retract. For unfilled NR, at low and higher tearing energy, Weng et al.49

used the terms surface peeling and buckling and ligaments breakage, respectively, to describe the

cracking morphology. The microstructure of the fatigue damage changes at different strain

amplitudes19 and is also dependent on factors such as velocity of crack growth,19,57 strain rates,58

strain crystallization59 (polymer type), environmental factors (oxygen, ozone, ultraviolet-light,

etc.), and mechanical (stretching, triaxial stresses)59 conditions.

The crack roughness is a characteristic of the crack growth rate.50 The higher ratio of the

macroscopic rough to smooth fracture surface indicates stronger resistance to crack growth. It is
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reported49 that the microscopic smooth surfaces reflected less energy dissipation compared with

microscopically rough crack surfaces. Quantitative measurement of roughness is not currently a

simple task because of variation of fracture depths and irregular cracking structures. Hence, in this

work, qualitative observation was made at different tearing energies to understand the relation of the

roughness and crack resistance mechanism in the NR/BR blend and the effect of CRP400 or

MRP074.

In an earlier study60 on the morphology of fracture samples from FTFT, it was shown that the

two distinct features (rough and macroscopically smooth textures) are present in unfilled NR or NR/

BR blend compound. The difference is that the proportion of ‘‘microscopically rough surfaces’’

largely dominates the surface failure of NR/BR but is less dominant in the NR compound. This

section discusses some energy density– as well as material-related phenomena of crack propagation

at the crack tip until failure, where the location of the crack initiation is unknown in the FTFT. All

SEM pictures of fatigue fracture surfaces shown are representative for their testing condition and

depict the corresponding crack morphology pattern in the clearest form.

Lower Tearing Energy (FCG Test). — At lower dynamic strain amplitude (40%) or tearing

energy, the crack fracture morphology during the FCG test shows different crack propagation

regions: (a) stable crack propagation, (b) unstable crack propagation, and (c) catastrophic

propagation zone (Figure 5). The V shape near the crack tip features a shallow valley, which

consists of a striation of overlapping microscopic rough ‘‘twisted knots.’’ This V shape reflects the

diagonal direction of the crack path, and ‘‘A’’ corresponds to the crack tip area where the main

breakage of chains/ligaments would take place. A higher magnification of the fracture morphology

under lower tearing energy is depicted in Figure 6. Beurrot et al.56 attributed the fracture’s ‘‘leaves’’

shape to the short deviated cracks developed from the main crack path, known as the ‘‘crack-

branching phenomena,’’ during fatigue crack propagation for CB-filled NR. The microscopically

rough structure reflects the breaking and retraction of the ligaments.17,61 The chain-breaking

process ahead of the crack tip is governed by the bond strengths and the alignment or crosslink of the

molecular chains.53 Under constant strain amplitude, depending on the threshold energy of the

rubber, the repeated deformation process probably contributes to the buildup/overlapping layered

structure when the cycles continue. This could explain why the striation morphology (zig-zag

striation or up-and-down pattern cracks proposed by Flamm et al.19 and Hamed et al.41) is not

apparent at lower tearing energy. This twisted knots layered structure contributes to the roughness at

the crack tip. This microstructure corresponds to the stable crack propagation of the FCG testing.

Between these layers, distinct cracking lines were observed, which probably indicates breaking of

some molecular chains. Weng et al.49 proposed coalescence of microvoids to form crazes for

unfilled NR at lower tearing energy. This partially explains the cracking line. In this study, two types

of roughness are proposed.

In the first type, at lower tearing energy, the microscopic roughness was attributed to the

layered structure’s ‘‘twisted knots’’ before the molecular chains/ligaments ruptured at the crack tip.

The second type of microscopic roughness was attributed to the crack branching or splitting after

the rupture of molecular/ligaments at the crack tip. As the crack length increases, the crack splitting

or branching becomes more obvious with a widened crack opening (highlighted with a dotted line),

as shown in Figure 5b,c.

Depending on the characteristic of the flaws, temperature, strain amplitude, or strength

anisotropy under cyclic loading conditions, the transformation from stable crack propagation to the

unstable region occurs once the ligaments or main molecular chains were fractured. Once the

dynamic catastrophic tearing energy has been exceeded, for the CB-filled compound, catastrophic

failure was delayed compared with unfilled rubber compound. The presence of CB filler provides

additional reattachment sites for the broken network ligaments/chains.32 In the unstable crack
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propagation (II), the crack growth is much faster and crack lines appear to be much broader and

rougher on the macroscopic scale.

Before the final fracture (F), the transition from a rough to smooth surface was observed. The

‘‘fracture leaves’’ structure can still be observed before the final fracture. There is also a small area of

striation morphology, which probably indicates relatively higher crack growth rates before the final

fracture. This type of microstructure is more obvious at higher tearing energy.17,57

Higher Tearing Energy (FCG Test). — Figure 7 shows the representative SEM images of

fracture samples for NR/BR blend compound after FCG with stable crack propagation (I),

transition (unstable region) (II), and catastrophic crack propagation region (III) under the strain

amplitude of 15 mm (96% dynamic strain). At higher tearing energy, crack growth and ligament

break up are much faster than at lower amplitude. Thus, shortly after the ligament breakup (area of

‘‘V’’ shape), the roughening crack tip is reduced, resulting in much broader fracture leaves. This

FIG. 5. — Fracture morphology at 40% dynamic strain amplitude for NR/BR blend compound showing different crack

propagation regions: (a) stable crack propagation, (b) unstable crack propagation, and (c) catastrophic propagation zone.
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FIG. 6. — A higher magnification of Figure 5. (i ) Stable crack propagation zone (A), (ii ) unstable crack propagation, (iii )

striation before final fracture (B) (A and B are located in Figure 5a and c). The horizontal arrow indicates the crack

propagation direction.
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corresponds to a competition between higher crack growth rate and the effect of SIC as discussed

earlier.

Crack diversion or splitting is observed and increases with the number of cycles. Deeper

cracking lines behind the fracture leaves are visible compared with the preceding crack growth

(Figure 7b compared with Figure 7a). Crack diversion, highlighted by the red dotted line, is

observed at stage II and before the striation morphology (Figure 7c). Microcracks/voids are more

obvious at higher strain amplitude and in agreement with Flamm et al.19

FIG. 7. — Fracture morphology at 96% strain amplitude for the NR/BR blend compound showing different crack

propagation regions: (a) stable crack propagation, (b) transition. Fracture morphology at 96% dynamic strain for the NR/BR

blend compound showing different crack propagation regions: (c, d) catastrophic propagation zone.
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In the catastrophic region (Figure 7c,d), an area with considerable striation morphology and

highly elongated lamellar features before the final fracture was observed. Several areas of striation

patches were also visible. The increasing tearing energy appears to increase the crack growth rate

and the striation sizes. The distance d between the two striations increases from approximately 20–

40 lm to 50–60 lm it approaches the failure region (Figure 7d), which follows a similar trend of

striation morphologies as reported by Ruellan et al.18 This type of fracture morphology has also

been observed in NR under severe loading by other authors.17,19 The characteristics of striation

morphology are still unclear, but a full discussion of these characteristics is beyond the scope of this

study.

CRP400- or MRP074-Filled NR/BR Compound. — It is recognized32,50 that the inclusion of

particulate fillers, such as CB, promotes tear deviation and crack splitting and thus increases fracture

surface roughness in comparison with gum/unfilled rubber compound.58 Figures 8 and 9 show the

effect of CRP400 and MRP074 at 10 pphr loading on the fracture morphology of FCG for NR/BR

blend compound at 6 mm strain amplitude (40% strain). The addition of RRP increases the

roughness of the fracture surface relative to that of the CB-filled NR/BR compound without RRP

filler, which is in apparent contrast to Figure 5.

In the earlier discussion, it was shown that CRP400-filled compound has lower crack growth

rates at a lower tearing energy. From a microscopic viewpoint, more rough fracture surfaces are

observed with CRP400 compound, which can be seen in Figure 8b,c compared with Figures 5 and 9

FIG. 8. — Fracture morphology at 40% strain amplitude for the CRP400-filled NR/BR blend compound showing different

crack propagation regions: (a) stable crack propagation, (b) transition, and (c) catastrophic propagation zone.
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for the control and MRP074-filled compound. The microscopic rougher surfaces correspond to

more crack splitting, which is in agreement with the study by Asare.51 The crack splitting and

diversion are reflected on the fracture surfaces as an uneven, rough, ‘‘hilly’’ structure. More hilly

structures and greater cracking depths are observed for CRP400- than for MRP074-filled

compound. The creation of rough crack surfaces/additional surface area around the irregular larger

particles of CRP400, as shown in Figure 10a,b25 in contrast to MRP074 (Figure 10c,d), will require

additional energy, resulting in slower crack growth rates, and the longer crack path contributes to

higher relative hysteresis, as discussed in the ‘‘FCG’’ section. Figure 11 shows the macroscopic

profiles of fracture surfaces for CRP400-filled compound at 40% and 96% dynamic strain

amplitudes, which demonstrate more crack path deviations in comparison with MRP074 and

control compound.

More microvoids are visible for both RRP fillers (Figure 12) than in the control NR/BR

compound (Figure 5). The embedded CRP400 particles and layers around the particles, compared

with clear ‘‘voids’’ for MRP074, supports the previous assumption of stronger bonding between the

CRP400 particles and rubber matrices than for MRP074 filler.

FIG. 9. — Fracture morphology at 40% strain amplitude for the MRP074-filled NR/BR blend compound showing different

crack propagation regions: (a) stable crack propagation, (b) transition, and (c) catastrophic propagation zone.
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FIG. 10. — Transmission electron microscopy (TEM) network visualization micrographs from a previous publication25 of

stained (a) NRþ10 pphr CRP400, (b) BRþ10 pphr CRP400, (c) NRþ10 pphr MRP074, and (d) BRþ10 pphr MRP074

sectioned from unfilled rubber vulcanizates.

FIG. 11. — Macroscopic profiles of fracture surfaces at 40% and 96% dynamic strain for NR/BR- and RRP-filled NR/BR

compounds showing crack path deviations. The horizontal arrow indicates the crack propagation direction.
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The fracture surfaces at higher strain amplitude (96% dynamic strain) for CRP400 or MRP074

are shown in Figures 13 and 14, respectively. There is no obvious V shape at the crack tip fracture

surfaces, which corresponds to the lateral crack pathway. The crack growth was much faster, as

indicated by the broader ‘‘fracture leaves,’’ in contrast to Figures 8a and 9a, after the molecular

chains at the crack tip were fractured. As stated earlier, weak bonding between the RRP filler and

rubber matrix likely creates more microvoid sites that increase in size with increasing dynamic

strain amplitudes19 for RRP (MRP074 or CRP400)–filled compound. This could increase the stress

concentration and hence reduce the strength at the crack tip, resulting in the indistinct V shape.

Before the final fracture, the striation morphology observed for the control compound was also

visible in RRP-filled compounds.

The striation morphology patterns were distorted, and some were detached. The detachment

and distortion were substantial in the CRP400-filled compound. This is probably due to extensive

crack splitting and diversion around the CRP400 particles. Severe crack splitting was expected with

the larger particle size of CRP400 and stronger interface compared with MRP074. When crack

splitting occurs, one crack exhibits a higher energy release rate and will advance or become part of a

larger crack. Cracks that have a lower energy release rate will stop growing.51,62 This will leave

several crack lines as its ‘‘footprint’’ in the fracture morphology. Fracture images of crack splitting

before the final fracture corresponding to several crack lines behind the fracture leaves can be seen

in Figure 15, which confirms the previous explanation.

CONCLUSION

By using the trimodal function of Instron WaveMatrix dynamic testing software, a minimum

load is applied to avoid sample buckling. A displacement controlled strain is superimposed,

FIG. 12. — Microvoids in the (a,b) CRP400 NR/BR and (c,d) MRP074 NR/BR compounds at 40% strain amplitude at

different magnifications (the horizontal arrow indicates the crack propagation).
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compensating for the permanent set of the samples throughout the experiments. Hence, both

relative and absolute hysteresis loss measurements using strain energy density from the SENT

specimen during the FCG test are possible and produce more representative hysteresis data for the

samples tested.

At lower tearing energy (40% dynamic strain), CRP400-filled compound showed slower, but

not significantly different, crack growth rates, than in the NR/BR control compound. The

compound exhibited lower strain energy density compared with MRP074 or control NR/BR

compound. The fracture resistance of rubber is not only dependent on the strain energy density

(crack-driving force) but also energy dissipated around the crack tip. The possible combined effects

FIG. 13. — Fatigue fracture morphology of 10 pphr CRP400-filled NR/BR blend at 96% dynamic strain: (a) stable crack

propagation, (b) transition, and (c) catastrophic region.
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include differences in crosslink density and the relative hysteresis loss. The irregular surface of

CRP400 provides greater surface area for bonding and a stronger interface between the particles and

rubber matrix. There is a longer crack path around CRP400 particles and hence more new surface

energy compared with either smaller, microscopically smooth MRP074-filled or control NR/BR

compound.

The FCG rate of NR/BR is slightly lower compared with CRP400- or MRP074-filled

compound (71% and 96% dynamic strain). Weak bonding between the RRP filler and rubber matrix

creates more microvoid sites, which initiate fatigue failure. These microvoids are believed to

increase in size with increasing dynamic strain amplitudes and probably contribute to higher crack

FIG. 14. —Fatigue fracture morphology of 10 pphr MRP074-filled NR/BR blend at 96% dynamic strain: (a) stable crack

propagation, (b) transition, and (c,d) catastrophic region.
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growth of the RRP-filled matrix. SIC effect reduction could be another factor, whereby the RRP

increases the stress concentration and reduces the strength at the crack tip.

The crack fracture morphology at different tearing energies provides valuable insight into the

FCG mechanisms of NR/BR blend control and CRP400- or MRP074-filled compound. Crack tip

blunting as well as crack splitting or deviation at the crack tip are clearly important aspects of the

resistance to the crack propagation. However, they cannot explain the overall performance of the

total fatigue life. Total fatigue life comprises of (1) fatigue initiation from various sources of flaws,

(2) crack propagation within the bulk materials, and (3) catastrophic crack growth. Differences in

the microstructure at varied tearing energies also showed a dependency of the crack growth

microstructure on the tearing energies.

Overall, although the average CRP400 particle diameter is about a factor five larger in one

dimension than MRP074, the CRP400 compound exhibits a lower crack growth rate in the

technically important low strains/tearing energy region. The ‘‘rougher’’/irregular surface of

CRP400 appears to be a more important factor than the particle size of MRP074 for the FCG

performance, especially at lower strains. Nevertheless, at higher strain (96%), higher absolute and

relative hysteresis is slightly detrimental to the FCG rate of CRP400-filled compound. The

performance of MRP074-filled compound possibly could be improved by using optimal CB

loading and adjusting the curing systems and will be considered for future study.
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