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Abstract 

Objective: Previous studies suggested that childhood prediabetes may develop prior to obesity and 

be associated with relative insulin deficiency. We proposed that the insulin deficient phenotype is 

genetically determined, and tested this hypothesis by longitudinal modelling of insulin and glucose 

traits with diabetes risk genotypes in the EarlyBird cohort. 

Research Design and Methods: EarlyBird is a non-intervention prospective cohort study that 

recruited 307 healthy UK children at age 5, and followed them throughout childhood. We 

genotyped 121 single nucleotide polymorphisms (SNPs) previously associated with diabetes risk, 

identified in the adult population. Association of SNPs with fasting insulin and glucose, HOMA-

IR and HOMA-B, available from ages 5 to 16 years were tested. Association analysis with 

hormones was performed on selected SNPs. 

Results: Several candidate loci influenced the course of glycemic and insulin traits, including 

rs780094 (GCKR), rs4457053 (ZBED3), rs11257655 (CDC123), rs12779790 (CDC123, 

CAMK1D), rs1111875 (HHEX), rs7178572 (HMG20A), rs9787485 (NRG3), and rs1535500 

(KCNK16). Some of these SNPs interacted with age, growth hormone-IGF-1 axis, adrenal and sex 

steroid activity. 

Conclusions: The findings that genetic markers influence both elevated and average courses of 

glycemic traits and -cell function in children during puberty independently of BMI is a significant 

step towards early identification of children at risk of diabetes. These findings build on our previous 

observations that pancreatic -cell defects predate insulin resistance in the onset of prediabetes. 

Understanding the mechanisms of interactions between genetic factors, puberty and weight gain 

would allow the development of new and earlier disease management strategies in children. 

Key words: -cell function, Children, Fasting glucose, Genetic susceptibility, Insulin resistance, 

Insulin secretion.  
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Introduction 

Diabetes is now one of the most common non-communicable diseases in the world. The World 

Health Organization (WHO) reports that diabetes affects over 422 million people, or 8.5% of the 

world’s adult population (1). It has been projected that one in every three individuals born in the 

US in the year 2000 will develop diabetes during their lifetime (2). However, the increasing burden 

of diabetes will be felt, according to WHO, most acutely in low and middle-income countries, with 

catastrophic economic consequences (1). Therefore, there is a pressing need to improve the 

prediction and early prevention of diabetes. 

 

Diabetes results from impaired insulin secretion, resistance to the action of insulin, or a combination 

of both factors. Failure of insulin secretion predominates in type 1 diabetes (T1D), whereas 

resistance to insulin (IR) and relative insulin deficiency characterize type 2 diabetes (T2D). As a 

result of the rising prevalence of obesity, T2D has become increasingly common in children and 

adolescents (3). Adolescence is a period of high vulnerability to the onset of diabetes in children, 

as a result of rapid endocrine changes, increasingly accompanied by obesity, and on a variable 

background of genetic risk (4). Yet, very little is known about the molecular pathways linking 

genetic risk factors, weight gain and puberty to the risk of developing diabetes in adolescents. 

Understanding these pathways is of fundamental importance to understanding disease progression 

in children and how prediabetes could be detected at an earlier stage to enable preventive measures 

to be taken to tackle the worldwide epidemic of diabetes (5). 

 

The EarlyBird study is a landmark prospective cohort study investigating the origins of T2D in 

children. This cohort of healthy children has been followed from ages 5 to 16 years with annual 

clinical, anthropometric and physiological measurements (6). We were amongst the first to report 

the occurrence of an early defect in -cell function among children who go on to develop 
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prediabetes (6). Some 17% of the nominally healthy children in the EarlyBird cohort showed 

impaired fasting glycemia (IFG) by the age of 15. Furthermore, children who developed IFG 

already exhibited higher fasting blood glucose levels at 5 years of age, compared with those who 

did not subsequently develop IFG, and this effect was independent of BMI (6). However, 

prediabetes did not appear until puberty when IR was at its highest. This is consistent with the US 

National Health and Nutrition Examination Survey (NHANES) 2005–2006, which also included 

children of normal-weight, and suggested that the prevalence of prediabetes in adolescence was 

strongly influenced by IR (7).  

 

Information from longitudinal studies of healthy weight children is required to determine how 

prediabetes results from the interaction of genetic risk factors, weight gain, changing levels of IR 

and other endocrine parameters during puberty, and other non-genetic risk factors. (8). Therefore, 

the present analysis of the EarlyBird cohort was designed to examine how genetic variants, puberty, 

and weight gain interact to influence insulin action and blood glucose levels, at an early age of high 

vulnerability to diabetes.  

 

We hypothesized that genes and SNPs known to be associated with increased risks of T2D, would 

be associated with trajectories of fasting glucose, insulin, and HOMA indices of insulin resistance 

(HOMA-IR) and -cell function (HOMA-B) in children. We also explored if insulin action may be 

influenced by genetic variations in the growth hormone-IGF-1 axis, adrenal and sex steroid activity. 

The aim of this study was to identify specific genes and SNPs associated with these glycemic traits 

independently of body weight that could identify young people at high risk of diabetes. The long 

term goal of this work is to develop risk-modifying interventions before adolescence. 

 

RESEARCH DESIGN AND METHODS  
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Study design and participants 

The study was conducted in accordance with the principles of the Declaration of Helsinki II. Ethical 

approval was granted by the Plymouth Local Research Ethics Committee (1999), and parents gave 

written consent and children verbal assent. The EarlyBird Diabetes Study incorporates a 1995/1996 

birth cohort recruited in 2000/2001 when the children were 5 years old (307 children, 170 boys) 

(9). Most of the children were white Caucasian and five children were of mixed race, reflecting the 

racial mix of the city of Plymouth. According to the paediatric thresholds for overweight and 

obesity proposed by the International Obesity Task Force (IOTF), 13% of the EarlyBird boys and 

26% of girls were overweight at the baseline, which included 4% and 5% respectively who were 

obese. The thresholds approximate to the 91st and 98th centiles of the 1990 BMI reference curves 

for the UK, and are deemed to correspond to equivalent thresholds in adulthood. At baseline, the 

number of children with family history of T2D were: mother (N=0), father (N=2), maternal 

grandmother (N=14), maternal grandfather (N=19), paternal grandmother (N=18), paternal 

grandfather (N=18). The collection of data from the EarlyBird cohort is composed of clinical and 

anthropometric variables measured on an annual basis from the age of 5 to 16.  

 

Anthropometrics 

BMI was derived from direct measurement of height (Leicester Height Measure; Child Growth 

Foundation, London, U.K.) and weight (Tanita Solar 1632 electronic scales), performed in duplicate 

and averaged. BMI SD scores were calculated from the British 1990 standards (10). 

 

Laboratory assessment  

The children were fasted overnight for 10 h before venesection. HOMA2IR and HOMA2B were 

determined each year from fasting glucose (Cobas Integra 700 analyzer; Roche Diagnostics) and 

insulin (DPC IMMULITE) (cross-reactivity with proinsulin,1%) using the homeostasis model 
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assessment program, which has been validated in children (11). Peripheral whole blood and serum 

was collected annually and stored at -80°C for analysis. Dehydroepiandrosterone sulfate (DHEAS), 

androstenedione, and testosterone were measured in serum by LC-MS/MS using the Waters 

Acquity Ultrahigh performance liquid chromatography system and Quattro Premier tandem 

quadrupole tandem mass spectrometry (Waters Corporation, MA). Free testosterone (FT) was 

calculated using the formula of Vermeulen (12). Serum sex hormone binding proteins (SHBG) was 

assayed using the Roche Cobas method on the E170 Modular Analytics system and IGF-1 was 

measured by chemiluminescence immunoassay (Nichols Institute Diagnostics, San Juan 

Capistrano, CA 92675, USA) using standards referenced to WHO 1st International Reference 

Reagent 1988 (Insulin‐Like Growth Factor‐1 87/518).  

 

Genotyping 

A total of 1793 associations with T2D are reported in the GWAS catalogue 

(https://www.ebi.ac.uk/gwas/) (13). Results from small studies (n<1000 subjects) were excluded. 

Only SNPs with genome-wide significance for T2D itself, HOMA-IR and response to metformin 

(but not T2D associated co-morbidities) and reported in European populations were selected. 

Excluding overlapping markers between those phenotypes the GWAS catalogue yields 116, 30 and 

1 association respectively (147 SNPs). We were able to design genotyping assays for 136 of these 

SNPs that were included in the analysis. Descriptive information on selected SNPS are reported in 

Supplementary Table 1. Genomic DNA was extracted from blood, using the QIAsymphony DSP 

DNA Midi Kit (96) on a QIAsymphony automation platform (Qiagen). The DNA concentration 

was measured with a fluorimetric method (Picogreen, Thermo Fisher). Genotyping was performed 

using the SNPtype assay (Fluidigm) which relies on allele-specific PCR reactions that use three 

primers and two universal probes to distinguish between two alleles. Genotyping was performed 

using microfluidic chips requiring two chips per batch of 96 samples. Each batch was actually made 

https://www.ebi.ac.uk/gwas/
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of 86 samples of interest, three non-template controls with pre-amplification, three non-template 

controls without pre-amplification, and two control samples of known genotype run in duplicate 

(Hapmap NA12891 and NA12892, obtained from the NIGMS Human Genetic Cell Repository at 

the Coriell Institute for Medical Research). DNA was normalized to 10 ng/uL, randomized, and 25 

ng DNA was pre-amplified for 14 cycles with a pool of all 136 assay primer pairs using the 

QIAGEN Multiplex PCR Kit, following Fluidigm’s recommendations. The amplification mixes 

were subsequently prepared from diluted pre-amplified products (1/100 in low TE buffer) and 

loaded together with the SNPtype assay mixes in 96.96 Dynamic Arrays IFC (Fluidigm). The final 

amplification and data collection were performed on a Biomark HD (Fluidigm). The analysis was 

performed with the Fluidigm SNP Genotyping Analysis software (version 4.1.2) which uses a 

cluster analysis method to automatically call genotypes (confidence threshold set at 65, SNPtype 

normalization, K-Means clustering method). Each SNPtype assay was manually quality controlled 

on each individual chip by evaluating the background fluorescence levels from non-template 

controls and the actual signal accuracy from the two positive controls. All genotypes were validated 

after manual inspection of each cluster, resulting in genetic data available for 121 SNPs. Quality 

control (QC) consisted in the exclusion of candidate SNPs with more than 5% missing values and 

subjects with more 10% missing values. The sample consisted of 318 children with clinical and 

genetic information for 121 SNPs after this QC. Pairwise linkage disequilibrium of SNPs was also 

calculated and reported in Supplementary Table 2. Comparison of minor allele frequencies using 

Earlybird genetic data, as well as 1000 Genome British in England and Scotland (GBR) population 

data, was conducted and reported in Supplementary Table 3.  

 

Statistical Analysis 

For insulin, glucose, HOMA-IR and HOMA-B parameters collected over the 12-years period (age 

5 to 16 years old), outlier detection filtering was based on inter-quartile range (IQR). Values below 
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the lower bound (Q1 - 4 * IQR) or above the upper bound (Q3 + 4 * IQR) were set as missing for 

each period of age, where Q1 and Q2 correspond to the value for the 1st and 3rd quartile, 

respectively. Assuming subsequent repeated measurements analysis, subjects with missing data for 

at least 4 visits were excluded, resulting in the selection of 224 children.  

Fasting insulin, HOMA-IR, HOMA-B and fasting glucose were the tested outcome variables. 

Gender and BMI were considered as confounders. Fasting insulin and HOMA-IR distributions were 

skewed because of numerous values below the limit of detection (LOD). This proportion was highly 

variable, from 5% at age 12 to 39% at age 5. Under such conditions, means and standard errors 

become unreliable, whereas the median remains an appropriate measure of the distribution of the 

variable. Therefore, data analysis based on quantile regression (QR) was employed. QR is a non-

parametric method based on linear regression that makes no assumptions on the underlying 

distribution and better suited to deal with data skewness (14). Assuming that the number of values 

below the LOD did not exceed 40% at any single visit, the median (i.e. 50th percentile) was 

considered as an analog to the mean of each trait. However, in genetic studies of metabolic traits, 

genetic variants may display quantile-specific effects (15-17). Quantile regression was thus 

performed on the 75th percentile for each trait to identify common genetic variants associated with 

high values of glycemic and insulin traits. Longitudinal association analysis testing association 

between candidate SNPs and traits trajectory was conducted using mixed-effect QR as implemented 

in lqmm R package (18). SNPs were encoded assuming an additive effect according to the risk allele 

definition available from PhenoScanner. In addition to the SNP main effect, the SNP x age 

interaction was also tested. For each trait, multiple testing was controlled by computing the false 

discovery rate (FDR). Since our analysis was based on candidate SNPs already identified for related 

glucose / insulin traits, we applied a relaxed 20% FDR significance cutoff. Additional Genetic risk 

Score were computed and reported in Supplementary materials and Supplementary Tables 4 to 9. 

Additional longitudinal analyses were performed using the same methodology and criteria to test 
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associations between SNPs with DHEAS, androstenedione, free testosterone, OHP-17, SHBG, and 

IGF-1. Association analysis with 50th and 75th percentiles of the hormone distributions was 

performed only for SNPs significantly associated to 50th and 75th percentile insulin / glucose 

related traits, respectively. 

 

Role of the funding source 

The genotyping and genetic analyses, data interpretation and the writing of the manuscript was 

funded and performed in collaboration with Nestlé Research. 

 

Results 

The population characteristics are reported for the 12-year period in Supplementary Table 10, and 

Figure 1. The glycemic and insulin traits followed the same trajectories in males and females. 

However, females had higher HOMA-B levels (p = 0.02 for a gender main effect, Figure 1). Fasting 

glucose increased from age 5 to reach a plateau between ages 13 and 15 years, and then tended to 

decrease. Trajectories were very similar for insulin and HOMA indices, with decreases from ages 

5 to 7, and increases until 12 years in females and 14 in males, after which a plateau was reached, 

followed by a fall.  

 

To examine how genetic variants, puberty, and weight gain interact to influence insulin action and 

blood glucose levels, the primary analysis studied the genetic associations with the 50th percentile 

traits for fasting glucose, fasting insulin, HOMA-IR and HOMA-B across the 12-year period (Table 

1, Supplementary Tables 11-14). Assuming a 20% FDR cutoff, 8 SNPs were associated with one 

or more traits (Table 1), and two of them interacted with age (Supplementary Table 15). 
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The SNPs rs780094 and rs4457053, two intronic genetic variants of GCKR and ZBED3 

respectively, showed a positive main effect on fasting glucose. The first variant showed an age-

dependent interaction with the glucose trait (interaction test p = 9.6e-4, adjusted p= 0.11). 

HOMA-B carried most of the replicated genetic signal with six negatively associated common 

variants: rs11257655 located within a DNase I hypersensitive sites in the regulatory region of 

CDC12; rs12779790 within the CDC123 – CAMK1D region; rs1111875 within the HHEX – IDE 

gene regions, rs7178572, an intronic SNP of HMG20A, rs9787485 within the promoter region of 

NRG3; and the intronic SNP rs1535500 of KCNK16. Three of these SNPs - rs9787485, rs11257655 

and rs12779790 - were also associated with fasting insulin, and rs9787485 SNP with HOMA-IR 

too. For rs9787485 SNP, homozygous carriers of the T allele tended to present a different time 

course for insulin and HOMA indices when compared to allele C carriers (Supplementary Figure 

1).  

 

Since elevated fasting glucose and insulin are associated with impaired fasting glucose or T2D, a 

secondary analysis was performed using quantile regression on the 75th percentile for each trait to 

identify common genetic variants associated with high values of glycemic and insulin traits (Table 

2, Supplementary Tables 16-19) . All but rs1535500 SNP replicated an association with one or more 

50th percentile for insulin or glucose traits (Table 2, Supplementary Table 20). Altogether, 

association signal was extracted for 50 SNPs in or close to 36 genes.  The analysis reveals an 

additional set of SNPs targeting 15 genes likely involved in regulation of high level fasting glucose. 

For insulin associated traits, no new SNPs were identified.  

 

Puberty is a time during which rapid and dynamic changes occur in hormonal regulations due to 

increase in sex hormones, that induce transient changes in insulin sensitivity and insulin secretion. 

As a secondary exploratory analysis, we explored if insulin action may be influenced by genetic 
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variations in the growth hormone-IGF-1 axis, adrenal and sex steroid activity. Genetic associations 

with 17-OHP, DHEAS, androstenedione, free testosterone, SHBG, and IGF-1were investigated 

over the 12-year period only for SNPs previously associated insulin / glucose related traits. The 

analysis was first conducted usingthe 50th percentile traits for each endocrine 

parameter(Supplementary Tables 21-26),. As previously, the analysis was performed as well on the 

75th percentile endocrine traits (Supplementary Tables 27-32). Of note is the association of the 

genetic variant rs1111875 within the HHEX – IDE genes region with concentrations of SHBG 

(main effect test p = 0.0059; FDR=0.047), IGF-1 (age interaction test p = 0.013; FDR=0.106) and 

17-OHP (main effect  test p = 0.0085; FDR=0.068; age interaction test p = 0.0081, FDR = 0.065), 

suggesting the genotype-related HOMA-B trajectory is associated with more profound 

physiological changes through pubertal development. 

 

Discussion  

This novel work on the EarlyBird cohort has demonstrated that some genetic risk markers 

associated with increased risks of T2D also influence the trajectory of insulin and glucose during 

childhood in children independently of BMI. We report how longitudinal interaction analysis of 

SNPs and metabolic phenotypes of children has the potential to shed further light on the molecular 

disturbances associated with insulin resistance in childhood. Some of these genetic risk markers 

may be particularly relevant for the early identification of children at risk of prediabetes, 

independently of obesity.  

 

Genome-wide association studies have identified SNPs that are associated with tissue-specific 

insulin resistance, β-cell dysfunction, or both, making individuals with these variants more prone 

to the adverse metabolic effects of obesity and type 2 diabetes (19; 20). Yet, due to the difficulty in 

recruiting large children’s cohorts, most genome-wide association studies have been undertaken in 
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adults. Information about the genetics of prediabetes in children and adolescents remains scarce 

and mainly limited to cross-sectional studies on children who were already obese (21; 22). 

The present analysis on children from the EarlyBird cohort is a significant advance because it sheds 

light upon changes in insulin secretion, insulin action and glycaemia over time. We found that SNPs 

associated with adult diabetes susceptibility, not only replicated their association with insulin and 

glycemic traits in these children independently of BMI, but also showed age-specific interactions 

with some of these traits (50th percentile traits analysis), including rs780094 (GCKR), rs4457053 

(ZBED3), rs11257655 (CDC123), rs12779790 (CDC123, CAMK1D), rs1111875 (HHEX), 

rs7178572 (HMG20A), rs9787485 (NRG3), and rs1535500 (KCNK16). A greater number of 

common genetic variants were associated with variation of high level of fasting glucose distribution 

(75th percentile). This observation is consistent with the understanding that elevated fasting plasma 

glucose is a risk factor for T2D, and previous evidence that selected SNPs were associated with 

T2D in adult populations (23).  

 

Two intronic genetic variants of GCKR and ZBED3 were associated with different trajectories of 

fasting glucose from an early age throughout childhood for both the median and higher (75th 

percentile) trait distributions. The SNP in ZEBD3 may contribute to the risk of T2D through 

elevated WNT activity (24). The WNT pathway plays involves pancreas cell genesis, GLP-1-

mediated proliferation, and synthesis of GLP-1 (24). Moreover, the activity of this pathway has 

been shown to be modulated by short chain fatty acid produced during digestion of dietary fibers, 

and thus partially mediating their anti-diabetogenic effects (24). Since the SNP in ZBED3 was 

shown previously to influence the effect of fiber intake on the incidence of T2D (24), it may be a 

relevant genetic marker for children who would benefit from optimized dietary fiber intake. 

Glucokinase regulatory protein (GCKR) regulates the activity of glucokinase in the liver and the 

pancreatic -cells, with a pivotal role in glucose-stimulated insulin release and systemic glucose 
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homeostasis (25). The intragenic SNP of GCKR contributes to the risk of T2D and dyslipidemia in 

different populations, and may be associated with lower fasting blood glucose levels in adults (25). 

We found that the GCKR genotype was negatively associated with an age-dependent course of 

glucose, yet showed a positive association with blood glucose at age 5. Glucose metabolism of β-

cells also regulates the adaptive response to fuel loads (26), and it has been shown that children 

exhibit increased carbohydrate oxidation during pubertal development (27). Therefore, 

understanding of the role of β-cells in regulating fuel homeostasis during growth and development 

in healthy children is likely to be relevant for diabetes risk management (26).  

 

Obese children and adolescents developing (pre-) diabetes generally have a higher genetic 

predisposition related to gene variants modulating the early, dynamic phase of insulin secretion 

(20). In contrast with previous studies, we identified that defects in -cell function distinguished 

children who developed prediabetes in the EarlyBird cohort, independently of BMI (6). Our 

analysis has found that among common variants associated with diabetes susceptibility, HOMA-B 

carried most of the replicated genetic associations, independently of BMI. Some of the replicated 

genetic variants, namely SNPs in the CDC123, HHEX-IDE and KCNK16 loci, showed a negative 

association with HOMA-B in the Earlybird cohort. Our observations are in agreement with reports 

in various populations of their associations with reduced -cell function and insulin secretion (20; 

28; 29), and the proposition that SNPs in the CDC123 loci may represent a proxy for -cell mass 

(28). Therefore, these genetic variants, previously identified as risk markers, also influence the 

normal course of -cell function during growth and development of healthy children.  

 

We explored whether genotypes also influence endocrine traits, and therefore the maturation of 

other biological processes in childhood. We found some evidence for this in the interactions of the 

SNP in HHEX-IDE loci with the trajectories of SHBG, IGF-1 and 17-OHP. These findings support 
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the biologically plausible idea that insulin action is also influenced by genetic variations in the 

growth hormone-IGF-1 axis, adrenal and sex steroid activity. Of particular note is the negative 

association with both HOMA-B and SHBG. SHBG is a glycoprotein that transports sex steroids in 

the circulation and regulates their access to target cells, and for which low levels have been linked 

to diabetes and early puberty (30). Since the HHEX-IDE SNP relates to insulin secretion capacity 

in early life (31), our observations suggest effects beyond fetal development into pubertal growth 

and development.  

 

 

This study has several limitations, including limited sample size and ethnic homogeneity of the 

EarlyBird cohort. However, the inclusion of healthy children who were of normal weight and 

insulin sensitivity reduces the variance of insulin and HOMA indices in the study population. A 

significant strength of the EarlyBird study is that it is a truly longitudinal study of a cohort of healthy 

children, with detailed annual phenotypic measurements from age 5 to 16 years. Importantly, the 

majority of the children were of normal weight and the insulin resistance observed was within the 

physiological range. Therefore, the EarlyBird study is not confounded by the effects of pre-existing 

obesity and insulin resistance, rather it provides insights into the beginnings of these conditions.  

 

In conclusion, we demonstrated that SNPs previously associated with diabetes in adults also 

influence the course of glycemic and insulin traits during childhood independently of BMI. Our 

study has potential clinical applications, since -cell dysfunction is an early event in the 

pathogenesis of diabetes. Further weight gain and demand for insulin will aggravate the progression 

from prediabetes to overt diabetes (32). Eight of these genetic risk markers may be particularly 

relevant for future studies aiming at early identification of children at risk of prediabetes, before 

puberty and prior to the development of obesity. Individuals at risk potentially could be offered an 
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early lifestyle modification program to reduce the risks of progression towards diabetes. An 

important aim for future research will be to understand mechanisms of how genetic factors, puberty 

and weight gain interact in the pathogenesis of pre-diabetes. This knowledge could allow the 

development of disease prevention strategies in children, using personalized lifestyle and dietary 

interventions. 
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Figure 1. Box-plot distributions of glycemic and insulin traits from 5 to 16 years old in males 

(red) and females (blue).  
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Table 1: Results from mixed-linear quantile regression for main effects of SNPs on 50th percentile distribution of insulin and glycemic traits 

trajectory from 5 to 16 years old.  

      Fasting glucose Fasting insulin HOMA-B HOMA-IR 

SNP Risk allele Freq Region Reported genea 

Initial GWAS 

phenotype Coef P Coef P Coef P Coef P 

rs11257655 T 0.26 10p13 CDC123 Type 2 diabetes 0.028 0.54 -1.26 0.0022* -16.5808 0.00043** -0.16 0.0055 

rs12779790 G 0.28 10p13 CDC123, CAMK1D Type 2 diabetes 0.031 0.51 -1.26 0.0027* -15.53 0.0011** -0.16 0.0083 

rs1111875 A 0.4 10q23.3 IDE Type 2 diabetes 0.062 0.093 -0.36 0.24 -8.75 0.0095* -0.048 0.2 

rs7178572 A 0.23 15q24.3 HMG20A Type 2 diabetes 0.026 0.46 -0.61 0.056 -9.22 0.0091* -0.077 0.091 

rs9787485 T 0.17 10q23.1 NRG3 HOMA-IR -0.018 0.62 -1.33 0.0029* -15.054 0.0027** -0.21 0.0015* 

rs780094 A 0.34 2p23.3 GCKR Type 2 diabetes 0.13 0.001* 0.25 0.46 -4.079 0.26 0.018 0.7 

rs4457053 G 0.32 5q13.3 ZBED3 Type 2 diabetes 0.13 0.0022* -0.07 0.85 -4.32 0.32 -0.0034 0.95 

rs1535500 G 0.43 6p21.2 KCNK16 Type 2 diabetes -0.013 0.72 -0.93 0.018 -14.001 0.0018** -0.13 0.016 

 

Note Bene: Results are provided for SNPs with significant (FDR cutoff set to 20%) main test with at least one of the four traits. Coef: Coefficient indicating the directions of the associations between the SNPs and the 

glycemic or insulin trait. Test pvalue with FDR cutoff set to * 20%; ** 10%; aGenes reported in GWAS catalog.  
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Table 2: Results from mixed-linear quantile regression for main effects of SNPs on 75th percentile distribution of insulin and glycemic traits 

trajectory from 5 to 16 years old.  

      Fasting glucose Fasting insulin HOMA-B HOMA-IR 

SNP 

Risk 

allele Freq Region 

Reported 

genea 

Initial GWAS phenotype 

Coef P Coef P Coef P Coef P 

rs702634 G 0.37 5q11.2 ARL15 Type 2 diabetes 0.092 0.02** -0.12 0.72 -2.51 0.50 -0.031 0.53 

rs243021 T 0.46 2p16.1 BCL11A Type 2 diabetes 0.12 0.0059*** 0.24 0.47 3.97 0.35 0.020 0.66 

rs243088 A 0.48 2p16.1 BCL11A Type 2 diabetes 0.087 0.038* 0.38 0.19 4.96 0.17 0.043 0.30 

rs2812533 T 0.12 10q22.1 C10orf35 Type 2 diabetes 0.14 0.0033*** 1.03 0.049 10.98 0.059 0.146 0.052 

rs11257655 T 0.26 10p13 CDC123 Type 2 diabetes 0.061 0.29 -1.19 0.0034 -14.96 0.000891* -0.16 0.0067 

rs12779790 G 0.28 10p13 CDC123 Type 2 diabetes 0.082 0.24 -1.18 0.0051 -13.93 0.002434* -0.16 0.011 

rs10440833 A 0.26 6p22.3 CDKAL1 Type 2 diabetes 0.099 0.018** 0.73 0.040 5.33 0.22 0.104 0.041 

rs4712523 G 0.33 6p22.3 CDKAL1 Type 2 diabetes 0.11 0.037* 0.66 0.081 5.56 0.22 0.086 0.11 

rs6931514 G 0.26 6p22.3 CDKAL1 Type 2 diabetes 0.099 0.018** 0.73 0.040 5.33 0.22 0.104 0.041 

rs7756992 G 0.27 6p22.3 CDKAL1 Type 2 diabetes 0.099 0.018** 0.73 0.040 5.33 0.22 0.104 0.041 

rs7766070 A 0.27 6p22.3 CDKAL1 Type 2 diabetes 0.15 0.001*** 0.75 0.046 5.49 0.23 0.105 0.056 

rs7018475 G 0.2 9p21.3 CDKN2B Type 2 diabetes 0.17 3.4e-05*** -0.42 0.35 -6.42 0.21 -0.056 0.37 

rs9841287 G 0.16 3p26.3 CHL1 HOMA-IR 0.15 0.010*** 0.47 0.40 4.99 0.42 0.045 0.58 

rs7607980 C 0.13 2q24.3 COBLL1 Type 2 diabetes 0.082 0.20 1.19 0.036 14.37 0.042 0.161 0.044 

rs2284219 A 0.34 7p14.3 CRHR2 Type 2 diabetes 0.093 0.0099*** -0.050 0.88 0.11 0.98 -0.009 0.85 

rs1153188 A 0.22 12q13.2 DCD Type 2 diabetes 0.085 0.087 1.05 0.014 8.90 0.088 0.127 0.035 

rs11642841 A 0.35 16q12.2 FTO Type 2 diabetes 0.14 0.0053*** -0.15 0.63 -1.47 0.64 -0.023 0.62 

rs8050136 A 0.4 16q12.2 FTO Type 2 diabetes 0.21 0.00021*** 0.035 0.91 -1.65 0.63 -0.0071 0.87 

rs9936385 C 0.4 16q12.2 FTO Type 2 diabetes 0.21 0.00021*** 0.035 0.91 -1.65 0.63 -0.0071 0.87 
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rs9939609 A 0.41 16q12.2 FTO Type 2 diabetes 0.10 0.01*** 0.045 0.89 -1.65 0.66 -0.0050 0.92 

rs780094 A 0.34 2p23.3 GCKR HOMA-IR 0.21 2.7e-05*** 0.37 0.22 -0.56 0.86 0.043 0.34 

rs3923113 G 0.35 2q24.3 GRB14 Type 2 diabetes 0.032 0.48 0.69 0.052 11.66 0.004609* 0.087 0.095 

rs1111875 A 0.4 10q23.33 HHEX, IDE Type 2 diabetes 0.17 0.00024*** -0.26 0.47 -5.78 0.14 -0.042 0.44 

rs5015480 T 0.4 10q23.33 HHEX, IDE Type 2 diabetes 0.11 0.0049*** -0.24 0.54 -5.61 0.19 -0.044 0.46 

rs7178572 A 0.23 15q24.3 HMG20A Type 2 diabetes 0.063 0.096 -0.50 0.061 -7.29 0.017 -0.070 0.075 

rs1531343 C 0.07 12q14.3 HMGA2 Type 2 diabetes 0.23 0.00043*** -0.63 0.38 -12.28 0.11 -0.095 0.36 

rs2261181 T 0.09 12q14.3 HMGA2 Type 2 diabetes 0.13 0.028* -0.12 0.86 -7.30 0.33 -0.025 0.81 

rs4430796 G 0.47 17q12 HNF1B Type 2 diabetes 0.11 0.0021*** 0.11 0.73 1.31 0.72 0.0018 0.97 

rs2943640 A 0.31 2q36.3 IRS1 Type 2 diabetes 0.051 0.25 0.50 0.17 5.23 0.19 0.060 0.25 

rs849134 G 0.5 7p15.1 JAZF1 Type 2 diabetes 0.091 0.031* 0.41 0.18 3.39 0.35 0.056 0.20 

rs849135 A 0.5 7p15.1 JAZF1 Type 2 diabetes 0.099 0.0087*** 0.42 0.18 3.60 0.33 0.058 0.20 

rs864745 G 0.5 7p15.1 JAZF1 Type 2 diabetes 0.080 0.036* 0.36 0.23 3.23 0.36 0.048 0.25 

rs5215 C 0.36 11p15.1 KCNJ11 Type 2 diabetes 0.091 0.032* 0.25 0.45 2.86 0.48 0.031 0.54 

rs972283 A 0.49 7q32.3 KLF14 Type 2 diabetes 0.095 0.0094*** 0.061 0.88 3.77 0.36 0.0030 0.96 

rs10842994 T 0.14 12p11.22 KLHDC5 Type 2 diabetes 0.19 0.0011*** 0.40 0.44 6.08 0.28 0.061 0.44 

rs2943641 T 0.31 2q36.3 IRS1 Type 2 diabetes 0.056 0.26 0.46 0.20 4.95 0.22 0.056 0.28 

rs9787485 T 0.17 10q23.1 NRG3 HOMA-IR -0.0037 0.93 -1.29 0.0027 -13.38 0.005688* -0.20 0.0012* 

rs12970134 A 0.19 18q21.32 MC4R Type 2 diabetes 0.10 0.035* 0.27 0.45 3.10 0.48 0.019 0.71 

rs1387153 T 0.32 11q14.3 MTNR1B Type 2 diabetes 0.093 0.0059*** 0.57 0.12 5.28 0.22 0.092 0.10 

rs8182584 T 0.39 19q13.11 PEPD Fasting Insulin 0.12 0.0032*** 0.16 0.61 0.84 0.80 0.012 0.78 

rs13081389 G 0.12 3p25.2 PPARG Type 2 diabetes 0.14 0.021** 0.99 0.15 7.18 0.39 0.138 0.15 

rs1801282 G 0.17 3p25.2 PPARG Type 2 diabetes 0.13 0.028* 0.80 0.12 8.99 0.17 0.107 0.13 

rs12899811 G 0.3 15q26.1 PRC1 Type 2 diabetes 0.078 0.057* 0.76 0.048 10.20 0.024 0.097 0.085 

rs8042680 A 0.29 15q26.1 PRC1 Type 2 diabetes 0.14 0.0026*** 0.63 0.12 10.38 0.023 0.079 0.19 
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rs1359790 T 0.23 13q31.1 SPRY2 Type 2 diabetes -0.11 0.0074*** -0.64 0.088 -3.78 0.37 -0.097 0.074 

rs13273088 G 0.23 8q13.2 SULF1 Fasting Insulin 0.11 0.024** -0.29 0.48 -4.92 0.18 -0.028 0.63 

rs17791513 G 0.09 9q21.31 TLE4 Type 2 diabetes 0.17 0.049* 0.84 0.12 7.64 0.23 0.143 0.068 

rs4760790 A 0.27 12q21.1 LGR5 Type 2 diabetes 0.087 0.016** 0.47 0.17 2.36 0.54 0.063 0.20 

rs4457053 G 0.32 5q13.3 ZBED3 Type 2 diabetes 0.17 0.00013*** -0.083 0.82 -2.28 0.56 0.029 0.57 

rs12571751 G 0.49 10q22.3 ZMIZ1 Type 2 diabetes 0.13 0.00024*** 0.039 0.90 -0.53 0.87 -0.0034 0.94 

Note Bene: Results are provided for SNPs with significant (FDR cutoff set to 20%) main test with at least one of the four traits. Coef: Coefficient indicating the directions of the associations between the SNPs and the 

glycemic or insulin trait. Test pvalue with FDR cutoff set to *20%; ** 10%; *** 5%; aGenes reported in GWAS catalog. 

 


