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Abstract: Thin-walled channel beams are easily punched with circular holes on the web to 13 

allow the access for services such as plumbing pipes and electric wires. The presence of the 14 

holes can alter the stress distribution in the member and reduce the cross-sectional property. 15 

Consequently, it changes its buckling mode. Since perforated cold-formed steel beams are 16 

usually placed between main structural frame and corrugated roof, the most common loading 17 

case is the uniformly distributed transverse load. Recent work by Chen and Li has given the 18 

solution for distortional buckling of channel-, zed- and sigma- sections subject to the uniformly 19 

distributed transverse load. This paper is an extension of Chen and Li’s research to explore the 20 

distortional buckling behaviour of perforated cold-formed steel beams with holes. The effect 21 

of perforations on the critical stress is evaluated. A new model is deduced to predict the critical 22 

stress of distortional buckling by reducing the stiffness of the vertical spring. The Rayleigh-23 

Ritz method is used to solve eigenvalue problems. In order to validate the analytical model, 24 

finite element analyses have been performed by using ANSYS. When the beam is longer than 25 

3500 mm, the critical stress computed from the analytical model matches well with the critical 26 

stress acquired from the finite element analyses. 27 

Keywords: Distortional buckling; cold-formed steel; perforations; finite element analysis; 28 

stress gradient. 29 

 30 

1. Introduction 31 

Cold-formed steel (CFS) members are considered as the important load carrying members in 32 

building industries due to their unique material properties. The yield strength of CFS can be as 33 

high as 550 MPa and its thickness can be less than 2 mm. Unlike hot-rolled steel sections, a 34 

CFS section has low lateral and torsional stiffness due to its thin and open geometry. For this 35 

reason, it is susceptible for CFS sections to buckle. To release the space of a structure, 36 

perforated cold-formed steel (PCFS) beams tend to be used as secondary load carrying 37 

members in buildings to let the plumbing pipes and electric wires pass through. However, the 38 

restraint of the web to the compressed flange is reduced owing to the perforation patterns in 39 

the web. This leads to PCFS beams being sensitive to distortional buckling. 40 

Lau and Hancock [1-2] firstly presented the concept of distortional buckling, which can be 41 

described as the buckling of compressed flange-lip component with respect to the web-flange 42 
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junction, meanwhile the web undergoes bending . In Lau and Hancock’s model, the flange-lip 43 

system can be isolated and considered alone, the influence of the web on the compressed flange 44 

and lip was represented by the rotational and lateral spring. Since then, great efforts have been 45 

made on developing analytical models to determine the critical stress of distortional buckling 46 

of CFS members. Teng et al. [3] extended Lau and Hancock’s approach for the CFS sections 47 

subject to combined axial compression and biaxial bending. In Eurocode 3, the stiffener was 48 

assumed to be supported at the elastic foundation with continuous spring along the length [4]. 49 

Later, Li and Chen [5] considered the bending behaviour of the stiffener by using the vertical 50 

spring to replace the rotational spring. More recently, Zhu et al. [6-8] utilised a plate model 51 

with an angle stiffener to replace the flange-lip system, the energy method was used to obtain 52 

the critical stress. In addition, the numerical methods such as finite strip method (FSM), finite 53 

element analysis (FEA) and generalised beam theory (GBT) [9] have also been regarded as the 54 

suitable approaches to calculate the distortional buckling stress of CFS members. 55 

Similar to CFS sections, the PCFS members may suffer three types of buckling, such as local 56 

buckling, distortional buckling and lateral-torsional buckling. However, the presence of the 57 

holes will not only alter the stress distribution in the member but also reduce the cross-sectional 58 

property, and consequently change the buckling modes. The reductions of the critical buckling 59 

stress and ultimate strength are mainly depending on the shape, arrangement and size of the 60 

holes. Miller and Peköz [10] assumed that the web was idealised as two unstiffened element 61 

and modify the unified effective width method for the perforated studs. Moen and Schafer [11] 62 

presented simplified expressions for critical elastic buckling stress of perforated thin plates, for 63 

both stiffened and unstiffened elements. Subsequently, they proposed analytical approaches for 64 

calculating the global, distortional and local buckling stress of CFS members with holes [12]. 65 

Yu et al. [13-14] modified the EN 1993-1-3 model and Lau and Hancock’s model to determine 66 

the critical distortional buckling stress of PCFS beams subject to pure bending. They found 67 

that the critical stress obtained from the modified Hancock’s model is more accurate. 68 

FSM was regarded as an effective approach for predicting the elastic buckling stress of PCFS 69 

members by some researchers. For instance, Tovar and Sputo [15-16] presented some 70 

perforated web models to represent the influence of the holes by using FSM. Smith and Moen 71 

[17] introduced the approximate FSM for elastic buckling analysis of PCFS columns, in which 72 

the principle of reduced thickness was considered. Pham [18] provided the solutions to find out 73 

the shear buckling loads of perforated thin plates and PCFS sections using spline FSM.  74 

For the elastic buckling controlled failure, the direct strength method (DSM) can predict the 75 

ultimate strength of the CFS members accurately [19]. It is worth noting that some 76 

experimental work has been conducted to extend the existing DSM for PCFS members. Moen 77 

and Schafer [20] observed the relation between buckling behaviour and tested load-78 

displacement response of PCFS columns with slotted holes. Zhao et al. [21] presented 79 

experimental investigations on PCFS beams with square holes subject to four-point bending, 80 

from which the modified DSM formulas were proposed. Wang and Young [22-23] preformed 81 

the beam tests of built-up PCFS sections, from which the relative extended DSM was carried 82 

out. 83 

PCFS beams are usually placed between the main structure and roof as the secondary load 84 

carrying members. Thus, the most common loading case of the PCFS members is the uniformly 85 

distributed transverse load rather than pure bending. If the member is subject to the uniformly 86 
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distributed transverse load, the stress distribution along the longitudinal direction will be 87 

different. Most existing analytical approaches were developed for the beams with pure bending 88 

or pure compression, which cannot be applied to the beams with stress gradient. Little 89 

information about the buckling behaviour of PCFS sections under the uniformly distributed 90 

transverse load can be discovered in the literature. Li [24] investigated the lateral-torsional 91 

buckling behaviour of CFS zed-purlins under both down and uplift load and presented an 92 

analytical model to predict the critical load. Chu et al. [25-26] utilised the semi-analytical FSM 93 

to study the local and distortional buckling of CFS zed- and channel-sections under the 94 

uniformly distributed transverse load, from which the influence of stress gradient on the 95 

buckling behaviour of the members was highlighted. Chen and Li [27] evaluated the effect of 96 

stress gradient on the distortional buckling of CFS beams. However, the sections they 97 

investigated are plain sections with no holes. 98 

This paper aims to develop a solution for the distortional buckling stress of PCFS beams under 99 

a uniformly distributed transverse load. The analytical model for computing the distortional 100 

critical stress is derived which is based on Chen and Li’s work [27]. The effect of holes on the 101 

critical stress of distortional buckling is reckoned. The Rayleigh-Ritz method is used to solve 102 

the eigenvalue problem. In order to validate the analytical results, FEA is performed by using 103 

commercial software ANSYS. Comparisons between the theoretical result and the FEA data 104 

are presented in this paper.  105 

2. Analytical model 106 

The cross section of a PCFS beam is shown in Fig.1a, which is the same as that in the literature 107 

[13] and [14]. The notations of the web height, flange width, lip length and section thickness 108 

are defined as h, b, c and t, respectively. The circular holes are punched in the centreline of the 109 

web evenly, with a diameter defined as d. The shaded part represents the solid area in the 110 

perforated strip. To simplify the calculation, the opening area is assumed to be same as the 111 

solid area in the perforated strip of the plate. Therefore, the length of the beam is expressed as 112 

nhπd/2, where nh is a random constant, representing the total number of the holes, as shown in 113 

Fig.1b. 114 

Fig.2 shows Li and Chen’s method [5], the difference with the model developed by Lau and 115 

Hancock [1] is that the vertical spring at the centroid of the compressed flange-lip component 116 

is used to replace the rotational spring at the flange-web corner. It is very similar to the one 117 

used in Eurocode 3 [4], which represents the restraint of web to the compressed flange-lip 118 

component, however it considers the flexural behaviour of the flange-lip component itself. To 119 

apply the Li and Chen’s model for PCFS beams, the stiffness of the vertical spring should be 120 

reduced to take account the influence of the web openings.  121 

It is clear that the spring stiffness can be determined by means of the flexural stiffness of the 122 

web and flange of the section. The unit load F at the centroid of the compressed flange and lip 123 

is used to determine the modified stiffness of the vertical spring, see Fig. 3. Then, the strain 124 

energy of the compressed flange and web due to bending can be determined by the following 125 

formula,   126 
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     (1) 127 

where y0 is the horizontal distance between the shear centre and centroid, E is the Young’s 128 

modulus, I1 and I2 are the moment of inertia of the area with and without holes, respectively. 129 

The deflection of the vertical spring is  130 
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The modified stiffness of the vertical spring can be obtained according to Eq. (1) and Eq. (2), 132 

which is given as, 133 
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      (3) 134 

where D is the flexural rigidity of the stiffened element and the web strip without holes, Dd is 135 

the flexural rigidity of the web strip with holes. In this case, Dd =0.5D due to the concept of 136 

equal width. If there are no holes in the web (d = 0), Eq. (3) could be expressed as follows, 137 

0 3 2

0 0

1

( ) ( )

33

zk
b y b y

DD

h


 



            (4) 138 

where 3D/h represents the unmodified rotational spring stiffness at the web-flange corner. 139 

It should be pointed out herein that the stiffness of rotational stiffness in Hancock’s model [2] 140 

is modified and multiplying the reduction factor which is obtained as follows, 141 
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(5) 142 

where λcr is the half-wavelength and σod  is the compressive stress of the web. Eq. (5) can be 143 

solved by the iterative procedure which could be found in Literature [14]. In the following 144 

calculation, Eq. (5) is used to replace 3D/h in Eq. (4).  145 
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The vertical spring stiffness of modified Li and Chen’s model for PCFS beams is 148 
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(7) 149 

Fig. 4 shows that the moment curve is parabolic when the beam is subject to uniformly 150 

distributed transverse loads and the moment curve is straight when the beam is subject to pure 151 

bending. For this reason, the wave lengths of the distortional buckling mode under pure 152 

bending are equal, but the wave lengths of the distortional buckling mode under uniformly 153 

distributed transverse loads are unequal due to the moment gradient effect. Hence, the buckling 154 

modes of the PCFS beam not only depend on the cross-section dimension but also the length 155 

of the beam, as well as the perforations. For simplicity, the uniformly distributed transverse 156 

load is supposed to be applied at the shear centre so that the member will not twist. 157 

If the PCFS beam is simply supported and subject to a uniformly distributed transverse load, 158 

the internal bending moment can be described as follows, 159 
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Hence, the external force in the flange-lip component is 161 
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           (9) 162 

However, when the simply supported beam is subject to the pure bending, the relative external 163 

force in the flange-lip component is 164 

0crP A
                        

(10) 165 

where qz is the uniformly distributed transverse load, Mcr = qzl
2/8 is the largest internal moment, 166 

σcr is corresponding critical stress when it is subject to uniformly distributed transverse loads, 167 

A=(b+c)t is the cross-section area of the compressed flange and lip component, σcr0 is critical 168 

stress when it is subject to pure bending. 169 

When the beam occurs a distortional buckling, the buckled flange-lip system will have 170 

translational and rotational displacements. The strain energy due to the buckling displacements 171 

stored in the flange-lip system and the loss of potential energy can be evaluated. According to 172 

Chen and Li’s model [27], they can be defined as follows, 173 
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where l is length of the beam, Iw is the warping constant which is equal to zero in present study,  176 

Iy is the second moment of the section area about the y axis, Փ is the rotation of the section 177 

about the shear centre, G is the shear modulus, J is the St. Venant torsional constant, kz is the 178 
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stiffness of the vertical spring, z0 is the vertical distance between the centroid and the shear 179 

centre and rc is the polar radius of gyration of the cross section about the centroid. Some of the 180 

above parameters can be obtained as follows,  181 
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where 𝜇 is the Poisson’s ratio, a1, a2, … , an are arbitrary constants, n is not equal to m and the 190 

sum (m+n) is even. 191 

The critical stress of torsional and flexural-torsional buckling of the flange-lip system with 192 

spring support can be determined by using energy method, that is, 193 

2 2

0( ) 0pU W                            (21) 194 

Substituting Eq. (9), Eq. (11) and Eq. (12) into Eq. (21) yields, 195 
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Eq. (22) can be used to predict the critical stress of distortional buckling of CFS beams without 197 

holes subject to uniform distributed transverse loads. However, to determine the critical stress 198 

of distortional buckling of PCFS beams, the stiffness of the vertical spring kz must be modified.  199 

Therefore, Eq. (7) should be applied into Eq. (22). Based on the Rayleigh-Ritz method, deriving 200 

with respect to a1, a2, … , an is equal to zero. The following type of linear equations in a1, a2, … , 201 

an can be acquired. 202 
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in which, 204 
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(24e) 209 

Eq. (23) is a matrix with infinite dimensions which represents an eigenvalue problem, the 210 

eigenvalues are computed by software MATLAB. Among all the eigenvalues, the smallest one 211 

is the critical stress of distortional buckling. It is well known that the half-wave length of 212 

distortional buckling of the CFS beam is about 500 mm although the exact length depends on 213 

the section dimensions. Table 1 shows the exact distortional half-wave lengths obtained using 214 

the free software package CUFSM [28] for the CFS channel-sections produced by Albion 215 

Section. Therefore the largest value of n can be evaluated by the beam length, e.g. for the 3000 216 

mm beam if its half-wave length is 500 mm, n should be at least taken as 6. 217 

When the beams are subject to pure bending, Substituting Eq. (10), Eq. (11) and Eq. (12) into 218 

Eq. (21) yields, 219 

 

2 2 2 2

0

0 22 2

0 0

( )( ) ( ) ( )

( )

w y z

cr

c

n l
EI EI b GJ k b y

l n

A z b y r




   


                      

(25) 220 

It should be mentioned that the rotational stiffness of spring also needs to be modified to 221 

calculate the critical stress of distortional buckling of PCFS beams which had been derived in 222 

Ref. [13]. 223 

Fig.5 shows the critical stresses of the distortional buckling of PCFS beams under uniformly 224 

distributed transverse loads and pure bending, which are calculated from Eq. (23) and Eq. (25). 225 

It can be observed that the critical stress curve for uniformly distributed transverse loads is 226 

highly depending on the beam length. It decreases dramatically with the increase of the length 227 

when the beam length is less than 3000 mm. The decrease diminishes when the beam length is 228 

longer than 4500 mm. The dash line is for the case subject to pure bending which is obtained 229 

from Eq. (25). As shown in Fig. 5, the critical stress of uniformly distributed transverse loads 230 

is continually higher than that of pure bending and when the beam is long enough these two 231 



8 
 

critical stresses tend to be the close. In most practical cases, these differences should be taken 232 

into account.  233 

3. Finite Element Analysis and Validation                                                                                                                                                                                                                                                                                                                              234 

In order to verify the proposed analytical approach, finite element analysis was performed by 235 

using a commercial software program ANSYS. The cross-sectional dimension of the beam was 236 

the same as C20625 (h=200 mm, b=65 mm, c= 20 mm and t=2.5 mm) which was chosen from 237 

Albion sections. Various lengths and hole sizes of the PCFS beam were analysed in which the 238 

PCFS beams were modelled by using four-node shell 181. The fine element sizes were 239 

controlled not to exceed 10 mm, Fig.6 shows a typical element mesh used in the analysis. The 240 

material properties of the beam analysed are assumed to have Young’s modulus of 205 GPa 241 

and Poisson’s ratio of 0.3. 242 

The boundary conditions were considered to have zero lateral and transverse displacements 243 

(UX=UY=0) and zero rotation about the longitudinal axis (ROTZ=0) for the web, flange and 244 

lip lines at the two ends. To avoid the rigid movement, one node located in the middle of the 245 

web at one end was set as zero longitudinal displacement (UZ=0). It should be noted that when 246 

the length of the beam increases, the distortional buckling mode will be gradually coupled with 247 

lateral-torsional mode, and hence the relevant critical stress will reduce. In this present study, 248 

only the distortional buckling mode was examined. Hence, the two corner line between the web 249 

and flange were both restrained laterally (UX=0) to prevent the lateral-torsional buckling 250 

occurred. 251 

The uniformly distributed transverse load qz was assumed to be applied at the shear centre of 252 

the beam, so that it can undergo bending without twist. There are two ways to simulate this 253 

situation. One is to apply the distributed transverse load on the plate which has infinite rigidity. 254 

The length of the plate is equal to the beam length and its width is same as the distance between 255 

the web line and the shear centre, as shown in Fig.7 (a). The other way is to apply distributed 256 

transverse loads at the web directly combined with an equivalent distributed twist moment. The 257 

value of the twist moment is equal to the value of transverse load times the distance between 258 

the web and the shear centre (see Fig.7 (b)). For simplicity, the second loading condition (Fig.7 259 

(b)) was utilised in this FEA. 260 

Fig.8 shows the typical distortional buckling modes of PCFS beams with different hole sizes 261 

under a uniformly distributed transverse load. As can be seen in the Fig.8, the CFS channel 262 

beams with and without holes have the analogous distortional buckling modes which were 263 

controlled by the rotation of the compressive flange-lip component with respect to the web-264 

flange corner. Moreover, it is interesting to observe that the half-wave lengths were different 265 

along the beam length. This is because when the beam is subject to uniformly distributed 266 

transverse load, the longitudinal stresses vary parabolically along the beam length. The highest 267 

compressive stress appears in the central region, which leads to the shortest half-wave length; 268 

whereas the half-wave lengths near the two beam ends are the largest because the stresses are 269 

the lowest there. The varied compressive stresses produce the distortional buckling modes with 270 

several buckling waves, each has different half-wave lengths. 271 

To validate the proposed analytical approach, Fig.9 compares the critical stress of PCFS beams 272 

with different hole sizes obtained from Eq. (23) and those obtained from FEA, where σcr is the 273 

critical stress and σy is the yield stress (σy = 450MPa, obtained from Albion sections). It can be 274 
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observed from the comparison that the tendency of the critical stress curves was similar. As the 275 

size of holes increased, the relative critical stress of the beam decreased. It is mainly because 276 

the restraint of the compressed flange and lip from the web is weaker for the PCFS beam with 277 

larger holes. 278 

The results given in Fig.9 shows that when the beam length is longer than 3500 mm, the present 279 

analytical solution matches very well with the data obtained from FEA. However, for the short 280 

beams, the results calculated from Eq. (23) are much higher than that obtained from FEA, as 281 

detailed in the red box in Fig.9. This is because when the beams are subject to the uniformly 282 

distributed transverse load, the shear stress near the support in the short beam is much severer 283 

than corresponding bending stress. Consequently, short PCFS beams may buckle due to the 284 

shear stress rather than the bending stress. In addition, stress concentration exists near the web 285 

opening which may induce a local buckling. All of these buckling modes are included in the 286 

FEA but not in the present analytical solution. This is why the present critical stress is higher 287 

than that FEA predicted ones for short beams. Nevertheless, with the increase of the beam 288 

length, the present solution becomes very close to the FEA predicted results.  289 

It should be mentioned that, the stress gradient affects not only the distortional buckling 290 

behavior but also the behavior of other buckling types of PCFS beams, such as the shear 291 

buckling and the lateral-torsional buckling. This is generally owing to the variation of pre-292 

buckling stresses along the longitudinal direction. However, the effect mechanisms of the stress 293 

gradient on different types of buckling may be also different. In the present paper, only 294 

distortional buckling of PCFS beams has been investigated. The other buckling types of PCFS 295 

will be investigated as our future work. 296 

4. Conclusions   297 

This paper has presented an analytical and numerical study on the distortional buckling 298 

behaviour of the PCFS beams subject to uniformly distributed transverse loads. The equations 299 

for predicting the distortional buckling stress of PCFS beams have been derived using the 300 

energy method. The model has been compared against the results obtained from the FEA. From 301 

the analytical and numerical results obtained in this research, the conclusions can be made as 302 

follows: 303 

 The distortional buckling stress of PCFS beams decreases with the increase of the 304 

diameter of the perforation. The influence of circular holes can be evaluated by 305 

reducing the vertical spring stiffness of the compressed flange-lip component adopted 306 

in the buckling model. 307 

 The critical stress of distortional buckling of a PCFS beam subject to uniformly 308 

distributed transverse load is larger than the same beam subject to pure bending. 309 

However, the difference between their two critical stresses decreases with the increase 310 

of their beam lengths. 311 

 The effect of stress gradient on the distortional buckling is highly depending on the 312 

length of the beam, it reduces with the length increases. 313 

 The half-wave lengths of the distortional buckling mode of the PCFS beams are 314 

different along the beam length when it is subject to uniformly distributed transverse 315 

loads and the largest deflection occurred at the mid-span. 316 
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 393 

(a) Cross section 394 

 395 

(b) Longitudinal direction   396 

Fig.1 Notation and geometry used for PCFS beams (dimensions are defined based on the 397 

middle line of the section). 398 

 399 

 400 

  401 

Fig.2 Analytical model proposed by Li and Chen [5]. 402 

 403 

 404 
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 405 

Fig.3 Model used for determining the stiffness of the vertical spring of the PCFS beam. 406 

 407 

 408 

 409 

Fig.4 Bending moment diagram for uniformly distributed transverse loads (left) and pure 410 

bending (right). 411 

 412 
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 413 

Fig.5 Comparison of the critical stress of PCFS beams between uniformly distributed 414 

transverse loads (continuous line) and pure bending (dashed line) (h=200 mm, b=65 mm, 415 

c=20 mm, t=2 mm, d=100 mm, σy=450 MPa). 416 

 417 

 418 

 419 

 420 

Fig.6 Typical finite element mesh of the PCFS beam (h=200 mm, b=65 mm, c=20 mm, t=2.5 421 

mm, d=100 mm). 422 
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 423 

                                                         (a)                               (b) 424 

Fig.7 Loading conditions of PCFS beams. 425 

 426 

 427 

(a) d/h=0; l=3900 mm 428 

 429 
(b) d/h=0.25; l=4028 mm 430 

 431 
(c) d/h=0.5; l=4239 mm 432 

Fig.8 Typical distortional buckling mode shapes of PCFS beams. 433 
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 434 

Fig.9 Comparison between analytical model and FEA of PCFS beams subjected to uniformly 435 

distributed transverse loads. 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 
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 447 

 448 

 449 
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Table 1 Distortional half-wave lengths of CFS channel-sections from Albion Section 451 

Section Web depth 

(mm) 

Flange width 

(mm) 

Lip length 

(mm) 

Thickness 

(mm) 

Half-wave 

length (mm) 

C12515 120 50 15 1.5 450 

C12516 120 50 15 1.6 450 

C14614 145 62.5 20 1.4 700 

C14515 145 62.5 20 1.5 650 

C14616 145 62.5 20 1.6 650 

C14618 145 62.5 20 1.8 600 

C14620 145 62.5 20 2 550 

C17616 175 62.5 20 1.6 650 

C17618 175 62.5 20 1.8 600 

C17620 175 62.5 20 2 600 

C17623 175 62.5 20 2.3 550 

C17625 175 62.5 20 2.5 500 

C20168 200 65 20 1.8 650 

C20620 200 65 20 2 600 

C20623 200 65 20 2.3 550 

C20625 200 65 20 2.5 550 

C22620 225 65 20 2 600 

C22623 225 65 20 2.3 600 

C22625 225 65 20 2.5 550 

C24623 240 65 20 2.3 600 

C24625 240 65 20 2.5 550 

C24630 240 65 20 3 500 

C26625 265 65 20 2.5 550 

C26630 265 65 20 3 500 

C30725 300 75 20 2.5 650 

C30730 300 75 20 3 600 
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