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  Abstract
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Knickpoints have long been recognised as key geomorphic features that can be used to reveal the landscape evolution of a region.
In particular, mobile knickpoints resulting from relative base-level fall record a landscape in the process of change and can encode
information about the timing and rate of landscape response.  Here, digital elevation model analysis is undertaken to; a) identify
topographic lineaments related to active faulting, and b) extract geomorphic metrics and document associated knickpoints for
rivers on Guadalcanal and Makira (San Cristobal) part of the Solomon Island chain.  These islands have been experiencing uplift of up
to 2 mm/yr since at least the mid Holocene on the upper (Pacific) plate of the San Cristobal Trench of the Solomon Island Forearc.
 For Guadalcanal, 23 out of 53 studied rivers exhibit slope-break knickpoints, characteristic of base-level fall, and 27 new
topographic lineaments with ~E-W orientation are identified.  By contrast, on Makira 14 of 41 studied rivers have slope-break
knickpoints, where the rivers are steeper below the knickpoint than above. In addition, 76 new lineaments are inferred, trending
NE-SW and likely to be extensional faults.  For both Guadalcanal and Makira there is a good correlation between knickpoint
elevation/catchment area and distance upstream from the sea, and a weak correlation between relief and knickpoint elevation.
There are no clear relationships between the knickpoints and the new topographic lineaments.  These data indicate that both
islands are undergoing active river incision caused by regional tectonic uplift along an active subduction zone. On Makira, river
steepness (ksn) scales with uplift, and K, coefficient of erosion, is in the range 1 x 10-5 – 7 x 10-6 m0.1yr-1, while K can be
estimated as 1 x 10-5 – 5 x 10-8 m0.1yr-1 for Guadalcanal.  Calculation of K for steady-state rivers demonstrates a rock strength
control on the fluvial response and highlights the importance of lithology on river evolution. Furthermore, the distinct landscape
response of the two islands supports the hypothesis that there are different arc segments present along the Solomon Arc and
suggests that the Holocene uplift rates for Guadalcanal may not be representative of long-term uplift.
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River profile analysis to investigate active tectonics has become a commonly applied method in the last two decades. However, the
majority of studies focus on mountain ranges often in arid/semi-arid/Mediterranean climates. Fewer studies have investigated
the landscape response to uplift in tropical climates. Here, this research gap is addressed using the islands of Guadacanal and
Makira, as they have a well defined uplift field and known seismic risk, to investigate the fluvial geomorphology of transient river
systems under tropical climates.
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Abstract 12 

Knickpoints have long been recognised as key geomorphic features that can be used to reveal the 13 

landscape evolution of a region. In particular, mobile knickpoints resulting from relative base-level 14 

fall record a landscape in the process of change and can encode information about the timing and rate 15 

of landscape response.  Here, digital elevation model analysis is undertaken to; a) identify 16 

topographic lineaments related to active faulting, and b) extract geomorphic metrics and document 17 

associated knickpoints for rivers on Guadalcanal and Makira (San Cristobal) part of the Solomon 18 

Island chain.  These islands have been experiencing uplift of up to 2 mm/yr since at least the mid 19 

Holocene on the upper (Pacific) plate of the San Cristobal Trench of the Solomon Island Forearc.  20 

For Guadalcanal, 23 out of 53 studied rivers exhibit slope-break knickpoints, characteristic of base-21 

level fall, and 27 new topographic lineaments with ~E-W orientation are identified.  By contrast, on 22 

Makira 14 of 41 studied rivers have slope-break knickpoints, where the rivers are steeper below the 23 

knickpoint than above. In addition, 76 new lineaments are inferred, trending NE-SW and likely to be 24 

extensional faults.  For both Guadalcanal and Makira there is a good correlation between knickpoint 25 

elevation/catchment area and distance upstream from the sea, and a weak correlation between relief 26 
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and knickpoint elevation. There are no clear relationships between the knickpoints and the new 27 

topographic lineaments.  These data indicate that both islands are undergoing active river incision 28 

caused by regional tectonic uplift along an active subduction zone. On Makira, river steepness (ksn) 29 

scales with uplift, and K, coefficient of erosion, is in the range 1 x 10-5 – 7 x 10-6 m0.1yr-1, while K 30 

can be estimated as 1 x 10-5 – 5 x 10-8 m0.1yr-1 for Guadalcanal.  Calculation of K for steady-state 31 

rivers demonstrates a rock strength control on the fluvial response and highlights the importance of 32 

lithology on river evolution. Furthermore, the distinct landscape response of the two islands supports 33 

the hypothesis that there are different arc segments present along the Solomon Arc and suggests that 34 

the Holocene uplift rates for Guadalcanal may not be representative of long-term uplift.   35 

 36 

1 Introduction 37 

Research into quantitative landscape evolution has undergone a revolution over the last 40 years, 38 

with the advent of high-quality global digital elevation models (DEMs) (Finnegan et al., 2005; 39 

Pipaud et al., 2015; Harel et al., 2016;), the development of sophisticated computer models of 40 

landscape evolution (van der Beek et al., 2002; Whipple and Tucker, 2002; Sklar and Dietrich, 2006; 41 

DiBiase et al., 2010) and advances in geochronology (Gosse and Phillips 2001; Balco et al., 2008).  42 

In particular, the study of fluvial geomorphology has been a major focus of the landscape evolution 43 

community because bedrock rivers transmit base-level changes to the entire watershed and set the 44 

hillslope angle; controlling erosion and sediment deposition (e.g., Snyder et al., 2000; Whipple 2004;  45 

DiBiase et al., 2010).   46 

One application of fluvial geomorphic analysis has been the study of regional uplift and faulting, 47 

where the location and slip rate of individual active faults can even be determined, through the 48 

recognition of features indicative of rivers responding to changing boundary conditions, for example 49 

an increase in uplift rate or a fall in relative base-level (e.g., Kirby and Whipple, 2001; Boulton and 50 

Whittaker, 2009; Kent et al., 2017).  Changing boundary conditions cause a characteristic transient 51 

landscape response that has been widely recognised across a range of tectonic and climatic regimes, 52 

typified by the formation of incised bedrock channels with a knickpoint at the upstream extent of 53 

steepened channels (Wobus et al., 2003; Bishop et al., 2005; Harkins et al., 2007; Boulton and 54 

Whittaker, 2009; Haviv et al., 2010; Miller et al., 2012; Kirby and Whipple, 2012; Ortega et al, 2013; 55 

Regalla et al., 2013; Ferrier et al., 2013; Miller, 2013; Boulton et al., 2014; Castillo et al., 2017; Kent 56 
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et al., 2017).  The identification, quantification and analysis of rivers and knickpoints, and other 57 

features linked to landscape rejuvenation, routinely utilizes global DEM datasets to investigate 58 

regional trends in fluvial geomorphology. Therefore, this remote approach to landscape analysis is 59 

especially useful in areas that were previously lacking data owing to either accessibility issues or the 60 

subtlety of landscape expression (e.g., Oguchi et al., 2003; Ganas et al., 2005; Marliyani et al., 2016; 61 

Menier et al., 2017).   62 

In this study, the tropical islands of Guadalcanal and Makira/San Cristobal, part of the Solomon 63 

Islands, are investigated.  These islands face considerable hazard and risk from significant seismic 64 

activity along the adjacent Australia-Pacific plate boundary.  Not only are the islands susceptible to 65 

the effects of earthquakes and tsunamis but increased landslide hazard is also common in regions 66 

experiencing landscape rejuvenation, because tectonic uplift and river incision causes steepening of 67 

hillslopes and increased erosion and mass wasting (Malamud et al., 2004; Ouimet et al., 2007; Gallen 68 

et al., 2011; Parker et al., 2015; Bennett et al., 2016; Rao et al., 2017). However, limited research into 69 

the geology or geomorphology of the islands has been undertaken in recent years.  As a result there is 70 

little information available on the potential impact of a range of geological hazards that could affect 71 

these islands.  As populations in the Global South are some of the most vulnerable to geohazards, the 72 

lack of recent research presents a significant research gap. 73 

Furthermore, Holocene uplift data (Chen et al., 2011) exist for the two islands allowing a range of 74 

fluvial metrics to be compared to the regional uplift field in a tropical island setting with contrasting 75 

bedrock lithology.  The availability of independently-determined uplift data allow relationships 76 

between river steepness and uplift to be assessed and the coefficient of erosion, K, potentially to be 77 

determined.  K is one of the most difficult of the landscape metrics to calculate and remains 78 

unconstrained in many field studies leading to uncertainties the parametrization of this variable in 79 

landscape evolution models (Roy et al., 2016; Forte et al., 2016; Yanites et al., 2017).  Therefore, 80 

determining the natural variation of K is an important challenge for the landscape evolution 81 

community. 82 

Therefore, in this study DEMs are used to undertake landscape analysis for Guadalcanal and Makira 83 

in the Solomon Island chain that have well-constrained uplift and subsidence rates (Chen et al., 84 

2011). The landscape analysis is used to: a) identify previously unrecognised active faults; b) 85 

determine the controls on fluvial network development; c) investigate the relationship between river 86 

steepness and uplift, and d) assess the potential implications for geohazards on the islands.  87 
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 88 

2 Geological Background 89 

The Solomon Island forearc occupies an 800 km long segment of the Australia-Pacific plate 90 

boundary in the southwest Pacific Ocean (Mann et al., 1998; Cowley et al., 2004; Kuo et al., 2016).  91 

Formed of a collage of crustal units, the islands are surrounded by deep ocean floor and sit on an 92 

uplifted tectonic block (Figure 1). The block is bound by two trench systems: the New Britain–San 93 

Cristobal trench (or South Solomon trench system) to the SW and the North Solomon trench to the 94 

NE.  Today most active subduction occurs along the New Britain-San Cristobal trench with only 95 

slight convergence along the North Solomon trench (Mann et al., 1998; Miura et al., 2004; Chen et 96 

al., 2011).   As with other subduction zones, the Solomon Islands forearc can be divided into 97 

segments, with three major tectonic regimes or ‘super-segments’ determined through differences in 98 

plate motion, seismic activity and uplift/subsidence rates (Chen et al., 2011).  Guadalcanal – Makira 99 

is the southernmost of the three segments (the others being the New Georgia Islands and 100 

Bougainville Island) and has been further subdivided into five sub-segments by Chen et al. (2011), 101 

based primarily upon different histories of vertical tectonic motions across the region.  The 102 

convergence direction along this segment is oblique, with the Australian Plate subducting along the 103 

San Cristobal Trench at 93 mm/yr (Figure 1). As a consequence, the Guadalcanal – Makira segment 104 

can be effected by large megathrust earthquakes along the trench and has experienced a number of 105 

Mw > 7.0 earthquakes, including an Mw 7.9 earthquake on the 30th April 1939 (Thirumalai et al., 106 

2015; Kuo et al., 2016).  In addition, the region experiences frequent lower magnitude seismicity 107 

along the subduction zone interface and in the upper plate (Figure 1). 108 

 109 

2.1 Geology of Guadalcanal 110 

Guadalcanal is the largest island in the Solomon Island chain (Figure 2A), ~ 150 km in length and 45 111 

km wide, with the highest topography located along the southern half of the island reaching a 112 

maximum of 2335 m above sea level at Mount Popomanaseu.  The drainage and topographic divides 113 

of the island are offset to the south along much of the island, although in western Guadalcanal the 114 

divides are centrally located in the volcanic zone (Petterson et al., 1999; Chen et al., 2011).   115 

In review



Running Title 

 
5 

Basement rocks are exposed in the south and west of Guadalcanal forming part of the South Solomon 116 

MORB (Mid Ocean Ridge Basalt) Terrain (Petterson et al., 1997, 1999). The basement lithology of 117 

the terrain is mainly composed of basaltic lavas with interbedded pelagic sediments and cross-cut by 118 

a range of intrusive sills and dykes (Hackman, 1980; Ridgway, 1987). Overlying is a cover sequence 119 

dating from the Oligocene to the Pleistocene, dominantly composed of basaltic or andesitic lavas and 120 

volcaniclastic sediments (Hackman, 1980; Cowley et al., 2004).  Pliocene deposits consist of 121 

siltstones, mudstones and shales, inter-bedded with sandstones and conglomerates (Petterson et al., 122 

1999).  Published maps (D.o.S, 1969) indicate that faulting is predominantly located in the basement 123 

rocks with ENE-SWS to NE-SE-trending faults dominant (Figure 2A). 124 

Quaternary to Recent sediments are composed of alluvial deposits, located along the central-north 125 

sector of the island, which has raised Pleistocene coralline reef terraces up to 800 m above sea level 126 

(Hackman, 1980; Petterson et al., 1999).  Estimates of Holocene uplift rates come from the work of 127 

Chen et al. (2011), who identified two different sub-segments or uplift zones on Guadalcanal.  Coral 128 

reefs are submerged at the eastern end of the island, indicating that the area is subsiding.  However, 129 

to the west Holocene reefs are found at increasing elevations reaching a maximum of 15 m above 130 

sea-level suggesting uplift rates of up to 2 mm/yr (Chen et al., 2011)(Figure 2A).  Interestingly Chen 131 

et al. (2011) postulate the presence of an unidentified offshore active fault owing to the presence of 132 

adjacent regions of uplift and subsidence along the southern coast.  By contrast, in the western part of 133 

the island reefs on the north coast indicate maximum uplift rates of 0.8-0.9 mm/yr (Figure 2A) while 134 

much of the southern coast appears to be stable or subsiding at the present time (Chen et al., 2011). 135 

 136 

2.2 Geology of Makira 137 

The island of Makira (previously known as San Cristobal) is located to the east of Guadalcanal 138 

(Figure 1), and is ~ 140 km long and ~ 40 km wide.  The topography is lower than Guadalcanal with 139 

a maximum elevation of 1056 m.  The highest topography lies in the centre and west of the island, 140 

yet the drainage divide is offset to towards the south, whereas the topographic divide is located 141 

centrally along island (Chen et al., 2011). 142 

The basement sequence forms the Makira Terrain, a composite Cretaceous-Oligocene MORB with 143 

plateau basalts (Petterson, 1999) comprising a sequence of basaltic, doleritic and gabbroic intrusions 144 

(Figure 2B). The cover sequence comprises Upper Miocene - Lower Pliocene deposits formed of 145 
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various breccias, calcareous sandstones and siltstones with interbedded basaltic sheets and a 146 

Quaternary-recent sequence of alluvium, raised reef, beach, and mangrove sediments (Tejada et al., 147 

1996; Tejada, 2002).   148 

Makira is also structurally complex and dominated by block faulting (Petterson et al., 1999).  To the 149 

east faults mainly strike NNE-SSW; whereas, towards the west, faults strike ESE to NNE (Figure 150 

2B). Petterson et al., (1997) explained these structures as the result of the oblique collision between 151 

the Australian and Pacific plates causing transpressive sinistral strike-slip deformation.  152 

Chen et al. (2011) also determined that Makira is composed of two arc sub-segments based upon 153 

uplift trends.  A significant part of the island is characterised by an uplifting northern coast with 154 

uplift rates of ~ 0.3 mm/y (Figure 2B) and a stable or subsiding southern coast.  The westernmost 155 

part of the island experiences similar rates of uplift but the presence of extensive reefs combined with 156 

the gross geomorphology led Chen et al. (2011) to assign this region a different Quaternary uplift 157 

history. 158 

 159 

2.3 Climate 160 

The Solomon Islands have a warm, humid tropical climate with an annual temperature of ~ 26°C and 161 

two seasons; the dry season from May to October and the rainy season from November to April. The 162 

average annual rainfall is 2000 - 5000 mm but varies owing to the relative influence of the El Niño-163 

Southern Oscillation (ENSO), the Asian-Australian Monsoon and the Indian Ocean Dipole (e.g., 164 

Abram et al., 2009).  Palaeoclimate records suggest that the ENSO was active throughout the 165 

Holocene but that overall Holocene climates were cooler and dryer than today and ENSO oscillations 166 

weaker (Tudhope et al., 2001; Abram et al., 2009). 167 

 168 

3 Methods 169 

3.1 Mapping of morphostructural lineaments 170 

Topographic or physiographic lineaments have long been recognised as aligned landforms that can be 171 

observed at a range of scales and related to underlying crustal structures such as faults and folds 172 

(O’Leary et al., 1976).  As availability of low cost and free DEMs have revolutionized the extraction 173 
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of fluvial geomorphology, so too have they become ubiquitous in the mapping of landforms at a 174 

range of scales (e.g., Onorati et al., 1992; Smith et al., 2001; Smith and Clark, 2005).  Here, the 175 

ALOS World 3D 30 m DEM was used to manually map topographic lineaments on both islands as 176 

this dataset has a higher apparent resolution than the SRTM DEM (Boulton and Stokes, 2018). 177 

Smith and Clark (2005) recommend using a range of visualization methods when developing 178 

geomorphic maps, to avoid problems in relief-shading causing directional bias in the resulting 179 

dataset.  They found that no one visualization technique surpassed the advantages of using two or 180 

more complementary methods to delimit lineaments, especially where landforms are subdued.  In this 181 

study, a combination of relief-shaded DEMs (four layers were used, produced with the Hillshade tool 182 

in ArcGIS 10.6 with sun azimuth set at 045°, 135°, 225° and 315°), curvature and slope visualization 183 

methods were used to identify natural topographic lineaments.  In addition, tectonic geomorphic 184 

features such as truncated spurs, triangular facets, offset valleys etc., were identified to focus only on 185 

the lineaments that are likely to be caused by active faults.  However, based upon the available data, 186 

active from inactive faults cannot be conclusively separated and all lineaments would need ground 187 

truthing in order to fully identify the type of causative structure and determine the sense of motion 188 

and activity level.  Infrastructure maps were used to cross-check results and avoid mapping any 189 

anthropogenic features. 190 

 191 

3.2 River profile analysis 192 

Three broad models describing fluvial erosion have been developed: detachment-limited; transport-193 

limited and hybrid models (e.g., Tucker and Whipple, 2002; Whipple and Tucker, 2002).  In 194 

detachment-limited systems the steady-state (where erosion equals uplift) river gradient is controlled 195 

by the strength of the channel substrate and relative base-level fall; these rivers are characteristically 196 

bedrock rivers.   197 

These models of river behaviour predict the relationship between slope, S, and upstream drainage 198 

area, A, in the form:            199 

             (1)   200 

   201 

where Θ is the concavity index and ks the steepness index.   202 
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Where ks = (uplift/erosion coefficient)1/n     (2) 203 

As eq [1] subsumes within ks the uplift rate of a given area (Eq. 2) this term should vary 204 

systematically with uplift at steady state (Whipple and Tucker, 1999; 2002), a conclusion that has 205 

been supported by a range of empirical studies (i.e., Snyder et al., 2000; Kirby and Whipple, 2001; 206 

Safran et al., 2005; DiBiase et al., 2009; Cyr et al., 2010).  The erosion coefficient, K, encompasses 207 

several factors including rock strength, channel width and runoff, yet despite recent modelling and 208 

empirical studies this variable remains poorly constrained (Snyder et al., 2000; Stock and 209 

Montgomery, 1999; Roy et al., 2016; Bernard et al., 2019). 210 

In addition, the stream power model predicts that the shape of the river will be concave-up under 211 

presumed steady-state conditions (Figure 3A)(Whipple and Tucker, 2002; Kirby et al., 2003).  212 

However, where uplift ≠ erosion, the river is no longer in steady-state and non-equilibium 213 

geomorphic features (i.e., knickpoints) may develop (Figures 3C and E).  Knickpoints are recognised 214 

in the field as steeper channel reaches through to waterfalls and have been classified into two end 215 

member morphologies: vertical-step and slope-break (Figures 3D and F), based upon their form on 216 

slope-area graphs (Haviv et al., 2010). 217 

Slope-break knickpoints (Haviv et al., 2010; Kirby and Whipple, 2012) develop in response to a 218 

change in the base-level of the system, forcing the fluvial system from one steady state to another.  219 

For example, changes in boundary conditions can result from an increase in rock uplift as a result of 220 

the initiation of new faults, the increase in slip rate on existing faults, or permanent eustatic sea-level 221 

fall (Wobus et al., 2003, 2006; Goldrick and Bishop, 2007; Harkins et al., 2007; Marliyani et al., 222 

2016).  The slope-break knickpoint transmits the new base-level to the catchment as a migrating 223 

wave through the river system.  The horizontal celerity is a function of drainage area, so as the 224 

knickpoint travels through the drainage system the celerity decreases as catchment area decreases 225 

(Whipple and Tucker, 1999; Crosby & Whipple, 2006).  Therefore, within a single catchment the 226 

knickpoints will migrate at a rate proportional to drainage area and at any given time will occur at a 227 

constant elevation within the landscape assuming that prior to perturbation the landscape was in 228 

equilibrium (Crosby & Whipple, 2006).  However, differences in knickpoint elevation can be 229 

observed as a result of spatial variation in uplift rates along a fault, climatic variations across a study 230 

area or where the pre-existing landscape was not in steady-state (Bishop et al., 2005).  Where 231 

knickpoint dispersal is the result of variations in uplift rate along normal fault arrays, the height of 232 
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the knickpoint has been shown to correlate with the slip rate on faults (Boulton and Whittaker 2009; 233 

Whittaker and Boulton 2012; Gallen and Wegmann 2017; Kent et al. 2017).  This observation means 234 

that in regions without independent means to determine uplift rates the transient river profile provides 235 

a mechanism by which fault activity can be evaluated.  236 

By contrast vertical-step knickpoints are generally stationary, anchored in space as a result of a 237 

discrete change in channel conditions, such as a more resistant bedrock lithology, a debris flow or 238 

landslide causing the deviation away from steady state conditions (Phillips and Lutz, 2008; Haviv et 239 

al., 2010; Kirby & Whipple, 2012).  Vertical-step knickpoints can also mark the position of faults in 240 

the landscape where there is marked lithological change across the structure (Whipple 2004; Wobus 241 

et al. 2006; Kirby and Whipple 2012; Liu et al., 2019). In general, the significance of vertical-step 242 

knickpoints is more relevant to smaller channel-scale heterogeneities rather than regional-scale trends 243 

in uplift or sea-level fall. 244 

Longitudinal river profiles were extracted from the SRTM 30 m DEM (Farr et al., 2007; USGS, 245 

2019) using a combination of the Matlab stream profiler tool and the ArcGIS suite of programmes 246 

using the ArcHydrology toolbox (Tarboton et al., 1991) to create a hydrologically sound DEM and to 247 

extract the river network. Major river systems were extracted that drain the islands of Guadalcanal 248 

and Makira where drainage area exceeds 105 m2 (cf. Kirby and Whipple, 2001, 2012).   The SRTM 249 

DEM is of higher quality than the ASTER DEM for the region, this is in line with observations 250 

elsewhere (e.g., Boulton and Stokes, 2018). This analysis was completed before the ALOS World 251 

dataset was released, and previous research shows that DEM choice has little effect on the results of 252 

river profile analysis (e.g., Wobus et al., 2006; Boulton and Stokes, 2018).  Channel slope, S, and 253 

upstream drainage area, A, were plotted on SA log-log plots and used to calculate the channel 254 

concavity, Θ, and the steepness index, ks, through slope regression (Figure 3).  As the concavity 255 

determines ks, a reference concavity Θref (Wobus et al., 2006) is used to calculate the normalized 256 

steepness index, ksn.  A standard Θref = 0.45 is used to be consistent with other studies (e.g., Wobus et 257 

al., 2003; 2006; Ouimet et al., 2009; DiBiase et al., 2010; Miller et al., 2012; Cyr et al., 2014) 258 

allowing for inter-study comparison.  259 

Knickpoints were identified based upon observed breaks in scaling on the SA plots (Figure 3).  On 260 

rivers where knickpoints were identified, Θ and ksn were calculated separately for channel reaches 261 

above and below the knickpoint(s).  Knickpoints were also mapped onto the DEM so that any spatial 262 
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relationships between knickpoint locations and lithological boundaries based upon the published map 263 

(D.o.S, 1969) or inferred faults from DEM analysis could be identified.   264 

 265 

3.3 Uplift rates 266 

Uplift values were interpolated across the two islands using the dated Holocene coral database of 267 

Chen et al., (2011).  This was achieved in ArcMap using a spline with barriers tool.  The spline 268 

interpolation technique was chosen as this technique honours the original datapoints (i.e., the output 269 

surface passes through the input points) and the barriers to take into account possible discontinuities 270 

in the uplift field across proposed arc segments. A disadvantage of this method is that the resultant 271 

uplift field is restricted to the x, y extent of the input points. 272 

 273 

4 Results 274 

4.1 Guadalcanal lineaments 275 

There are limited structural data available for Guadalcanal, although the published geological map 276 

(D.o.S, 1969) includes 69 faults mapped primarily in the igneous basement but also deforming the 277 

Pliocene sediments (Figure 4A).  The dominant trend of these mapped faults is NE-SW, with 278 

secondary fault trends in the SE-NW quadrant.  Interestingly, the SE-NW orientated structures have 279 

longer mapped traces (up to 50 km) but are less common than the shorter NE-SW trending faults.  280 

Both sets of faults can be found across the whole island and there are no clear patterns of cross-281 

cutting relationships suggesting that these two sets of structures could be a conjugate fault system 282 

(Figure 4). 283 

Interestingly, many of these previously mapped faults do not have a clear topographic expression.  284 

Only 27 lineaments were identified through the topographic analysis of the DEM.  The majority of 285 

these structures are oriented ESE-WNW, with few lineaments striking NE-SW. In some cases, the 286 

traces of the new faults are located close to mapped structures suggesting that these could be the 287 

same fault but that errors in location could have resulted in slight mismatches between datasets. For 288 

example in the south of the island (Figure 4B and C), a topographic lineament was identified based 289 

upon truncated spurs and aligned valleys, with transverse and offset streams. This new lineament is 290 
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located in between two previously identified subparallel structures trending ESE-WNW, which have 291 

limited topographic expression. These ESE-WNW striking structures appear to be truncated by a 292 

cross-cutting N-S lineament with triangular facets forming the western-side of a river valley (Figures 293 

4B and C). Other mapped lineaments are present in this area but do not have clear topographic 294 

expression.  295 

 296 

4.2 Guadalcanal Rivers 297 

On the island of Guadalcanal, 57 river profiles that drain radially from the central high topography to 298 

the coast were extracted from the SRTM 30 m DEM (Figure 5; Table 1).  Twenty-five rivers flow to 299 

the north, these are in general longer (average length 48.7 km; longest river 13 at 69.95 km) than the 300 

32 rivers that flow southwards (average 16.7 km, longest rivers are rivers 33 and 40 both 33 km 301 

long).  Of the 57 river profiles extracted, 24 contain one or more knickpoints, while the remaining 33 302 

rivers have river long profiles without any marked discontinuities.   303 

Rivers without knickpoints more commonly flow to the south coast of the island (18 rivers), than to 304 

the north (11 rivers).  The average concavity (θ) for all rivers across the island is 0.49, with little 305 

variation between the southerly flowing rivers (θ = 0.46) and the northerly flowing ones (θ = 0.54).  306 

Whereas the steepness index does vary significantly between the south and north from 111.1 to 59.2 307 

m0.9, respectively. 308 

By contrast, rivers flowing northwards contain the majority of the knickpoints, where 14 rivers have 309 

a single prominent knickpoint, and rivers 1 and 20 have two clear knickpoints.  Above the knickpoint 310 

(in the river headwaters) the average θ = 0.62 and the steepness index (ksn) = 58.9 m0.9; while 311 

downstream of the knickpoint, θ = 1.4 and ksn = 87.9 m0.9.  A similar pattern is seen in the 10 rivers 312 

containing knickpoints that drain to the south, upstream of the knickpoint θ = 0.5 and ksn = 71.5 m0.9, 313 

while downstream θ = 0.8 and ksn = 130.7 m0.9.  Therefore, there is a consistent pattern of over-314 

steepened (θ > 0.8) rivers downstream of the knickpoint in both the northern and southern rivers, 315 

although in general the southern rivers are steeper and shorter than in the north.  These rivers show 316 

the typical geometry of slope-break knickpoints and the location of mapped knickpoints does not 317 

clearly correlate with either mapped geological boundaries or faults. 318 

Where there are two knickpoints observed in the river profiles this observation holds true for the 319 

higher knickpoint; whereas, for the lower elevation knickpoint there is a decrease in ksn downstream 320 
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across the knickpoint.  This knickpoint morphology is more characteristic of vertical-step 321 

knickpoints, with spike in the values on the SA plot. These knickpoints will not be considered further 322 

as it is likely that such knickpoints are the result of lithological discontinuities. 323 

When analyzing slope-break knickpoint formation and behaviour, the vertical and horizontal 324 

components of knickpoint retreat need to be considered.  The horizontal knickpoint retreat distance 325 

was measured from the coast; in the absence of a clear causative fault, this datum provides a constant 326 

reference elevation with which to compare rivers within and across islands.  When the upstream 327 

distance of the knickpoint is compared to the total drainage area (Figure 6A) of the catchment there is 328 

a good (r2 = 0.8) correlation between the two variables with a power law relationship (L ~ A0.56), 329 

demonstrating that in larger river catchments the knickpoints have migrated further upstream, for 330 

example in river 13 with a drainage area of 650 km2 the knickpoint is 67 km upstream, whereas along 331 

river 8 with a catchment area of 45 km2 this knickpoint is ~ 16 km upstream.  This observation is 332 

consistent with observations from numerous other studies (e.g., Crosby and Whipple, 2006; Harkins 333 

et al., 2007; Miller et al., 2012; Whittaker and Boulton, 2012; Kent et al., 2017) and with theoretical 334 

predictions from simple stream power models (L = A0.5).  A similar scaling relationship is observed 335 

between the downstream distance from the drainage divide and the catchment area upstream of the 336 

knickpoint (Figure 6B).  It is important to note that knickpoints from northwards and southwards 337 

flowing rivers plot together and that there is no difference in the scaling relationships of the two 338 

groups. 339 

When the relationship between the elevation of the slope-break knickpoints and the catchment areas 340 

of their rivers is examined (Figure 6C), to investigate the vertical component of knickpoint migration, 341 

there is a weak correlation (r2 = 0.3) between higher elevation knickpoints occurring in larger 342 

catchments across the whole island.  Similarly, there is a weak relationship (r2 = 0.3) between the 343 

knickpoint elevation and the upstream distance of the knickpoint from the mouth of the river at sea-344 

level (Figure 6D).  When the upstream distance of knickpoints is compared between the rivers 345 

draining to the north and the south, this relationship is slightly strengthened (r2 = 0.37 and 0.44, 346 

respectively). 347 

Yet, when the elevation of the knickpoints is considered along the strike of the island there is no clear 348 

distinction between the two sets of the knickpoints, with the majority of knickpoints falling in the 349 

200 – 600 m above sea-level range with only six knickpoints found at higher elevations, present in 350 
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rivers on both sides of the island (Figure 7).  The majority of knickpoints appear to plot close to the 351 

average elevation along the island.  When the ksn above and below the knickpoint is plotted along the 352 

strike of island both sides of the island show a general increase in steepness from the NW to the SE 353 

(Figure 8A) from 72 to 180 m0.9.  While there is a clear separation in ksn values above and below 354 

identified knickpoints.  It is interesting to note that ksn values from rivers without knickpoints span 355 

the whole range of the observed values.  In addition, the ratio of ksn change from above to below the 356 

knickpoint is fairly constant along the length of the island and there is no clear trend in behaviour 357 

(Figure 8B). 358 

When knickpoint elevation and ksn values are compared to the geomorphic relief of the topography it 359 

is apparent the both knickpoint height and ksn are higher where the topographic relief is greater 360 

(Figure 8C), although there is only a weak correlation (r2 = 0.28) between ksn downstream of 361 

knickpoints than between upstream values or overall knickpoint elevation (Figures 8D). 362 

 363 

4.3 Makira Lineaments 364 

 365 

In comparison to Guadalcanal there are fewer mapped structures on the published map of Makira 366 

(D.o.S, 1969), 52 faults (Figure 9A) are shown with almost all located in the basement geology that 367 

dominates the island.  The published faults are mainly NW-SE and E-W striking structures with 368 

minor ~ N-S striking faults. 369 

A significant number of topographic lineaments were identified for Makira, with a total of 76 370 

potential faults identified from the DEM (Figure 9).  Many, such as those in the NW of the island 371 

(Figures 9 B and C) have strong topographic expression, with changes in elevation, offset 372 

topographic features and aligned river systems along the strike of the features.  The majority of these 373 

topographic lineaments strike NE-SW across the whole island, although structures striking E-W/NW-374 

SE are more common in the western part of the island and could be conjugate structures to the 375 

dominant NE-SW striking features.  As for Guadalcanal, some lineaments with topographic 376 

expression are coincident with previously mapped faults but many are newly recognized here. 377 

  378 

4.4 Makira Rivers 379 
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The island of Makira is a similar size to Guadalcanal, although fewer large rivers are present on this 380 

island.  In total 41 rivers were analysed with 26 draining to the north coast and 15 flowing to the 381 

south (Figure 10; Table 3).  The average length of the rivers is greater for northward than for 382 

southward flowing rivers, at 35.7 and 15.3 km, respectively.  Nineteen rivers show clear knickpoints 383 

along their profile, with 10 draining northwards and only 5 rivers draining to the south exhibiting 384 

knickpoints.   385 

The average concavity (θ) for all rivers across the island that do not have knickpoints is 0.57, with 386 

some variation between the southerly flowing rivers (θ = 0.64) and the northerly flowing ones (θ = 387 

0.5).  Similarly, the steepness index varies between the south and north from 60.2 to 35.7 m0.9, 388 

respectively, consistent with the southern rivers being steeper than northern rivers.  This relationship 389 

was also observed on Guadalcanal to the north. 390 

Rivers flowing northwards contain the majority of the knickpoints, where most rivers have a single 391 

prominent knickpoint, and rivers 5 and 23 have two clear knickpoints.  Above the knickpoint (in the 392 

river headwaters) the average θ = 0.78 and ksn = 28.9 m0.9 and downstream of the knickpoint, θ = 1.1 393 

and ksn = 50.8 m0.9.  A similar pattern is seen in the five rivers containing knickpoints that drain to the 394 

south, upstream of the knickpoint θ = 0.79 and ksn = 26.1 m0.9, while downstream θ = 0.8 and ksn = 395 

54.8 m0.9.  Therefore, there is a consistent pattern of steeper rivers downstream of the knickpoint in 396 

both the northern and southern rivers, although in general the concavity of the rivers above and below 397 

knickpoints is similar but overall higher than in the rivers without knickpoints.  In addition, the 398 

location of these knickpoints does not clearly correlate with mapped geological boundaries with the 399 

majority of knickpoints falling within the older igneous and volcanic complex.  Although some 400 

knickpoints do appear to fall close to faults, overall these characteristics are typical of slope-break 401 

knickpoints.  402 

When the upstream distance of the knickpoint is compared to the total drainage area (Figure 11A) of 403 

the catchment there is a good (r2 = 0.7) correlation between the two variables with a power law 404 

relationship (L ~ A0.57), demonstrating that in larger river catchments the knickpoints have migrated 405 

further upstream.  Rivers flowing to the north and south plot in the same field demonstrating a 406 

similarity in behaviour across the island.  Interestingly this relationship is virtually the same as for 407 

Guadalcanal (Figure 6A), although for the Makira the correlation is not quite so strong.  The scaling 408 

relationship between knickpoint distance from divide and the catchment area above the knickpoint 409 
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also shows a strong correlation (r2 = 0.96) consistent with theoretical models of stream power (Figure 410 

11B). 411 

In contrast to Guadalcanal there is no clear relationship between catchment area and ksn (Figure 11C), 412 

although in general knickpoint elevation does increase as the distance from the river mouth increases 413 

(Figure 11D).  This pattern becomes stronger when the knickpoint elevation is considered along the 414 

strike of the island (Figure 12). In the northern 60 km of the island, the maximum elevation of the 415 

topography is ~ 600 m, while mean elevation is ~ 200 m.  The elevations of knickpoints reflect the 416 

overall topography ranging from 160 – 380 m in elevation, the majority of the knickpoints fall 417 

around the mean elevation of the topography with few sitting high up in the catchments.  Whereas, in 418 

the central part of the island maximum and mean elevations increase, with maximum elevations 419 

reaching > 1000 m.  Here knickpoints are mostly high in elevation located near the maximum 420 

elevation.  Interestingly for the island of Makira there is a clear relationship between the topography 421 

and the interpolated uplift rates, with the lower topography found in the north and south of the island 422 

correlating with zones of subsidence or low rates of uplift.  The inflection points between areas of 423 

subsidence and uplift closely correspond to the margins of the topographically higher central part of 424 

the island, where uplift rates reach > 0.6 mm/yr (Chen et al., 2011). 425 

When the ksn values are considered along the strike of the island (Figure 13A) a similar pattern is 426 

observed, with values above and below the knickpoint generally lower in the north and extreme 427 

south, while they are up to two times higher in the south central part of the island.  This trend is not 428 

as clear in the ratio between steepness index above and below the knickpoint but interestingly ksn 429 

ratios are higher in southern catchments than in northern ones (Figure 13B).  However, when 430 

topographic relief is considered there is only a weak positive trend with knickpoint elevation (Figure 431 

13C).  No trend is apparent with relief is compared to ksn, with ksn being rather invariant with respect 432 

to relief (Figure 13D).  433 

 434 

5 Discussion 435 

5.1 Origin and implications of knickpoints 436 

Slope-break knickpoints have been identified along river systems on both Guadalcanal and Makira.  437 

These geomorphic features typically form along bedrock rivers responding to a relative base-level 438 
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fall, which causes a transient wave of incision to propagate up through the catchments as the river 439 

adjusts to the new boundary conditions.  However, what caused the formation of the knickpoints 440 

observed on Guadalcanal and Makira?  Were knickpoints triggered by eustatic sea-level fall, 441 

localized faulting or regional tectonic uplift? 442 

In the Pacific, eustatic sea-level has experienced two periods of significant sea-level fall in the last 443 

140 kyrs.  Firstly, at 140 ka the sea-level was ~135 m lower than present, and at the climax of the last 444 

glacial (20 Ka; Woodroffe & Horton, 2005).  This eustatic fall in base-level has been implicated in 445 

the formation of knickpoints described on the Pacific islands of Tahiti (Ye et al., 2013) and Hawaii 446 

(Seidl et al., 1994).  However, the knickpoints described on these islands are morphologically 447 

waterfalls rather than steep fluvial reaches, the majority of rivers are typically < 10 km in length and 448 

many have linear river profiles.  Furthermore, the knickpoints typically occur near the coast as 449 

hanging-valleys.  Neither Ye et al. (2013) nor Seidl et al. (1994) classified the observed waterfalls as 450 

vertical-step or slope-break but they may be vertical-step in nature.  Therefore, the morphology of the 451 

eustatic sea-fall generated waterfalls previously recorded on other Pacific Islands is dissimilar to 452 

those recognised on Guadalcanal and Makira. 453 

In addition, knickpoints developed as the result of sea-level fall would be expected to have the 454 

following characteristics.  Firstly, knickpoints would be expected to occur in all rivers, except those 455 

that are short so that in the response time of the system the knickpoints would have migrated through 456 

the catchment (or the knickpoints would be trapped at a threshold drainage area [c.f., Crosby and 457 

Whipple, 2006]). Secondly, knickpoints would have formed at the same time and thus show 458 

consistent scaling, and knickpoint elevation within and across catchments should be in a narrow 459 

band. Finally, where lithology and climate are similar there should be no variations in ksn or ksn ratio 460 

across the island.  By contrast, knickpoints forming as a result of a change in the rate of uplift, or 461 

potentially a switch from subsidence to uplift, would show along strike variations in the ksn values, as 462 

ksn is known to positively scale with uplift (e.g., Snyder et al., 2001). In this scenario, if the uplift 463 

affected an entire island or arc segment, all rivers would also be affected.  Therefore, the key 464 

discriminating factor to determine the likely mechanism of knickpoint formation is the ksn of the river 465 

systems. 466 

For the island of Makira, ksn values (Figure 13) show an increase towards the south, with a peak in 467 

values at 110 km along strike.  This pattern correlates with the inferred uplift rates across the island 468 
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(Figure 12), where uplift rates reach a maximum ~ 0.7 mm/yr at 110 km along strike, and is also 469 

reflected in the elevation of the knickpoints also reaching maximum heights in the southern half of 470 

the island (c.f. Boulton and Whittaker, 2009). When the inferred uplift rate at the mouth of the rivers 471 

is plotted against ksn values for steady-state rivers there is a positive, although weak, linear 472 

relationship (Figure 14) reflecting these previous observations.   473 

By contrast on the island of Guadalcanal, ksn values along strike are fairly constant (average ksn = 474 

67 m0.9) from 0 – 50 km (Figure 7), with an increase in ksn to an average of 100 m0.9 in the southern 475 

two thirds on the island.  Yet, when the uplift values are interpolated from available data the uplift 476 

field of the island is also fairly constant at ~ 1 – 0.4 mm/yr but showing an overall decrease to the 477 

south. Although, ksn and relief are positively correlated, the topography appears decoupled from the 478 

uplift data available and the correlation between ksn and uplift rates is invariant (Figure 14). 479 

There is no clear pattern of knickpoint location upstream of potentially active faults, as would be 480 

expected if knickpoints were generated because of changes in motion along individual structures. 481 

Indeed, on both islands knickpoints are present along rivers that apparently do not cross faults (either 482 

previously published or inferred from DEM analysis carried out in this study).  In addition, on both 483 

islands knickpoints are more common in the longer northwards flowing rivers than on the southwards 484 

flowing rivers, which also tend to be steeper than those flowing to the north.  These observations 485 

suggest; a) a regional rather than local control on knickpoint formation, and b) that knickpoints may 486 

have already completely migrated through the short steep southern rivers implying that the timing of 487 

knickpoint formation was longer ago than the response times of the rivers.  Some rivers have 488 

response times of millions of years, albeit in drier climates (e.g., Italy ~1-2 x 106 Myr [Whittaker et 489 

al., 2017]), but even in tropical climates response times are likely > 25 Ka (Whipple, 2001). 490 

In summary, although the evidence for Guadalcanal is somewhat equivocal, the patterns of 491 

knickpoints and the correlation between ksn and uplift rates for Makira demonstrate that the landscape 492 

is transiently responding to regional uplift along the subduction zone as opposed to eustatic sea-level 493 

fall.  Therefore, this is likely also to be the cause of knickpoints on the nearby island of Guadalcanal.  494 

Uplift, and the associated base-level fall can only trigger knickpoint formation and propagation when 495 

there is an increase in the uplift rate.  A question remains over when and why this increase in uplift 496 

might have taken place, but uplift could be linked to variable rates of strain accumulation that has 497 

been evidenced elsewhere in the Solomon Arc (Thirumalai et al., 2015). 498 
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 499 

5.2 Uplift dependent channel steepness  500 

It is of note that the fluvial geomorphic responses are distinct given that rates of uplift and climate are 501 

similar for the two islands. There is a positive, albeit weak, correlation (R2 = 0.4) between uplift and 502 

ksn for rivers without knickpoints for Makira. Whereas, there is no correlation between these variables 503 

along river reaches upstream or downstream of knickpoints (Figure 14). On Guadalcanal, there is no 504 

clear correlation between inferred uplift and ksn for any river reaches (Figure 14). This dichotomy 505 

could be the result of a recording bias, for example the rates derived from uplifted coral reefs of 506 

Makira are more representative of long-term uplift rates but on Guadalcanal the uplift recorded by the 507 

coral reefs could be representative only of short interseismic strain and are not equal to the longer 508 

term rates to which the rivers are responding.  This explanation is also consistent with Guadalcanal 509 

and Makira being located on two different arc segments and having different uplift histories (Chen et 510 

al., 2011). 511 

However, the contrast in fluvial response equally could be a result of the more complex bedrock 512 

geology of Guadalcanal, compared to Makira that is dominated by basement MORB (Figure 2).  The 513 

assumption that channel gradient varies linearly with tectonic forcing is only true where K 514 

(erodibility coefficient) is uniform across the region (Whipple and Tucker, 1999; Snyder et al., 2000).  515 

As K embeds rock strength, regional lithological variability can result in K scaling over several 516 

orders of magnitude (Stock and Montgomery, 1999).  Therefore, different bedrock geology can 517 

explain the contrasting landscape response and the lack of scaling between ksn and uplift (U) on 518 

Guadalcanal. 519 

Cyr et al. (2010) state that the channel longitudinal profile must be in steady-state so that U as well as 520 

K is uniform along the channel to determine K. This condition therefore appears likely to be satisfied 521 

for the concave-up rivers on Makira (although the relationship is weak) and explains why there is no 522 

correlation between the variables where knickpoints are present, as these rivers are not in steady-523 

state.  Furthermore, the linear ksn to U scaling implies that the n exponent in Eq. (2) is ~ 1, which is 524 

consistent with a range of other studies across a range of climatic zones (i.e., Burbank and Anderson, 525 

2001; Wobus et al., 2006; D’Arcy and Whittaker, 2014).  Therefore, assuming that U = E in the 526 

concave-up rivers, one can derive values of K in the range 1 x 10-5 – 7 x 10-6 m0.1yr-1 for Makira 527 

where uplift is positive using the results of the stream profile analysis and the interpolated uplift field 528 
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[eq. 2].  K can also be estimated for Guadalcanal using ksn for the rivers without knickpoints, 529 

assuming U = E and n = 1, deriving values of K in the range 1 x 10-5 – 5 x 10-8 m0.1yr-1.  The spread 530 

of values likely reflect a combination of factors that are difficult to quantify given existing data, such 531 

as precipitation gradients across the island, variability in channel morphology or local rock strength 532 

variations not captured by regional scale mapping.  These values are consistent with values reported 533 

elsewhere; for example, Stock and Montgomery (1999) reported values in the range of 10-2 to10-7 534 

m0.2yr-1 for a range of rock types across a number of climatic zones.  Similarly, Brocard and Van der 535 

Beek (2006) determined that for bedrock rivers in the French Alps K = 1.1 - 4.7 x 10-5 m0.4 yr-1 and 536 

van der Beek and Bishop (2003) determined that K = 7 x 10-7 m0.4 yr-1 for a river crossing crystalline 537 

basement rocks in SE Australia.  Therefore, it is likely that the larger range of K parameter values 538 

estimated for Guadalcanal reflect the greater variation in bedrock lithologies present on this island 539 

compared to Makira, especially the presence of presumably weaker sedimentary rocks (sandstones, 540 

siltstones) in addition to the stronger basement lithologies found on both islands (Katz et al., 2000).  541 

These data support the hypothesis that rock strength is a key control on landscape evolution in the 542 

Solomon Islands.   543 

 544 

5.3 Geohazard Implications 545 

As demonstrated above the fluvial geomorphology on the islands of Guadalcanal and Makira is 546 

transiently responding to a base-level fall that is interpreted as the result of regional uplift modulated 547 

by rock strength along this segment of the Solomon Islands Forearc.  Although it is well known that 548 

this region can be affected by strong (> 7.0 Mw) megathrust earthquakes, this research highlights the 549 

landscape vulnerability to the tectonic activity along the subduction zone.   550 

Firstly, it is probable that at least some of the mapped faults pose a hitherto unquantified earthquake 551 

hazard and warrant further investigation.  Although, many of the mapped faults on the islands of 552 

Guadalcanal and Makira have no clear expression in the landscape that is identifiable through DEM 553 

analysis, it is not clear if these faults are inactive or if high erosion rates and/or vegetation cover 554 

obscure activity on these faults.  The DEM (Figure 9) also shows that the many of the major river 555 

systems have developed parallel to the NE-SW faults on Makira and the current mapping of the 556 

structures may underestimate the faulting as a result of fluvial erosion obscuring fault traces.   557 
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Furthermore, the topographic lineament analysis undertaken here has revealed new lineaments on 558 

both islands that have previously not been recognised (Figures 2, 4 and 9), although a greater number 559 

have been identified on Makira than on Guadalcanal.  On Guadalcanal, previously mapped faults are 560 

consistent with the new lineament analysis (Figure 4). These faults are described as high-angle 561 

structures with vertical slip and a minor strike-slip component of motion, which are mainly confined 562 

to the underlying basement (Coleman, 1960).  Therefore, it is likely that the new lineaments mapped 563 

here for Guadalcanal are the surface expression of the NW-SE-striking vertical (normal?) slip faults.  564 

By contrast, many more potential faults have been identified on Makira through lineament analysis 565 

than are present on the DoS (1969) map (Figure 9).  These lineaments show a dominant NE-SW 566 

trend, previously determined as the ‘master’ faults set by Petterson et al. (2009) and are consistent 567 

with their partial mapping of the eastern part of the island.  Petterson et al. (2009) state that these 568 

faults are also normal faults similar to those on Guadalcanal.  The normal faults are indicative of 569 

upper plate extension, which has been described in subduction zones worldwide particularly where 570 

plate motion is oblique to the trench (e.g., Whittaker et al., 1992; Upton et al., 2003). While the 571 

normal faults described here are not responsible for the > 7.0 Mw megathrust earthquakes, active 572 

normal faults > 12 km in length could still generate earthquakes of 5.0 - 6.0 Mw (Wells and 573 

Coppersmith, 1994). 574 

Secondly, there is a weak relationship on Makira between uplift and various landscape metrics, 575 

including relief and channel steepness.  While ksn values are not directly convertible into rock uplift 576 

rates, river profile analysis can be used to identify steeper channels and thus regions more likely to be 577 

experiencing relatively higher erosion and uplift rates.  There is a well-documented linkage between 578 

landscape transience, river incision and landsliding especially where bedrock lithologies are similar 579 

(Ouimet et al., 2007; Gallen et al., 2011; Bennett et al., 2016).  As the knickpoint migrates through 580 

the system, the downstream portion of the river steepens and incises to the new base-level.  581 

Consequently, gorge formation and development of hillslopes with angles > 45° are typical.  582 

Landslides have been shown to be common downstream of knickpoints and are a key process in the 583 

erosion of landscapes (e.g., Gallen et al., 2011; Bennett et al., 2016). Therefore, in river reaches 584 

downstream of the knickpoints on Guadalcanal and Makira, the incidence of landslides will likely be 585 

higher than upstream of the knickpoints.   586 

In addition to landslides triggered by incision, earthquakes induce many landslides (Keefer, 1984); 587 

where the density of landsliding increases with earthquake magnitude (Keefer, 2000; Meunier et al., 588 
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2008). Furthermore, earthquakes likely ‘prime’ landscapes increasing the likelihood of further 589 

landsliding; a concept referred to as preconditioning (Parker et al., 2015). Therefore, in the Solomon 590 

Islands landslides may be triggered co-seismically or by rainfall but present a clear hazard along 591 

steep catchments.   592 

 593 

6 Conclusions 594 

Topographic lineament and river profile analyses, using DEMs, were undertaken on the islands of 595 

Guadalcanal and Makira that form the southernmost part of the Solomon Island chain and have well 596 

defined uplift fields.  Situated on two different arc segments the bedrock geology and fluvial 597 

geomorphology shows marked similarities and differences between the two islands.  Lineament 598 

analysis is consistent with existing mapping, showing that both islands have previously unrecognised 599 

NE-SW and ESE-WNW striking faults, likely to be extensional in nature. Fifty-seven rivers for 600 

Guadalcanal and forty-one rivers for Makira were selected for river profile analysis.  On both islands, 601 

rivers flowing to the north were overall less steep and longer than the rivers flowing to the south 602 

coast and northern rivers were more likely to contain slope-break knickpoints. There is a weak 603 

correlation between knickpoint elevation and topographic relief for both Makira and Guadalcanal, but 604 

for Makira there is no clear correlation between relief and ksn, while the rivers of Guadalcanal do 605 

have a weak correlation between these parameters. By contrast, there is a weak positive linear 606 

relationship between river steepness index and interpolated uplift rates for Makira, as predicted by 607 

stream-power erosion laws, which allows K, the erosion coefficient, to be calculated.  The origin of 608 

these knickpoints is likely to be the result of tectonic uplift along the arc, and reinforces that these 609 

islands are subject to not only high-magnitude earthquakes, but that river incision and knickpoint 610 

migration are also likely to result in hillslope instabilities and landsliding.  The differences between 611 

the geomorphic response of the two islands, given climatic similarities, is probably the result of the 612 

more complex bedrock geology of Guadalcanal in comparison to Makira, highlighting the 613 

importance not only of tectonic but lithological control on landscape evolution.  The differences in 614 

the bedrock geology, structural grain and geomorphology also support the hypothesis that these 615 

islands are located on different segments of the Solomon Arc. 616 
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Bathymetric chart of the Oceans (GEBCO) downloaded from https://www.gebco.net/. 884 

 885 

Figure Captions  886 

Figure 1. Plate tectonic setting of the Solomon Island Arc with the islands of Guadalcanal and 887 

Makira forming the southernmost major islands with Mw > 6 earthquakes for the period 1980 to 888 

present shown (USGS, 2019).  Bathymetric data is the GEBCO_2019 Grid (GEBCO Compilation 889 

Group 2019).   Plate velocities from Chen et al. (2011). 890 

 891 

Figure 2. Geological maps (simplified from D.o.S, 1969) of A. Guadalcanal and B. Makira showing 892 

mapped faults and uplifted coral reef locations used to interpolate the uplift field (Chen et al., 2011).   893 

 894 

Figure 3. Conceptual diagram showing the river long profile and slope-area graphs for rivers in 895 

steady state (A and B), rivers with a vertical step knickpoint (C and D) and rivers with a slope-break 896 

knickpoint (E and F) (adapted from Wobus et al., 2006, Kirby and Whipple, 2012). Note that the 897 

steepeness index (the intercept - ks) increases downstream across a slope-break knickpoint but not 898 

across a vertical step knickpoint. G and H show an example of a river profile and slope-area plot, 899 

respectively, from the study area. Note: this is river 21 from the island of Makira, the green line is the 900 

raw DEM river profile and the purple is the smoothed profile. 901 

 902 

Figure 4A. ALOS World 3D 30 m DEM (©JAXA) of Guadalcanal showing existing faults from the 903 

published mapping data (D.o.S, 1969) and inferred topographic lineaments, rose diagrams showing 904 

the orientations of both datasets are shown in the top right corner. B and C) Raw and interpreted 905 

DEM for the area shown in the blue box on part A. 906 

 907 

Figure 5. Hillshade map derived from the 30 m SRTM DEM (USGS, 2019) for the island of 908 

Guadalcanal showing the rivers extracted for analysis shaded by ksn, identified slope-break 909 

knickpoints (black circles), major faults identified from analysis of the DEM and based upon existing 910 

mapping data (D.o.S, 1969) and the interpolated uplifted field. 911 
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 912 

Figure 6. Graphs showing a range of knickpoint variables for Guadalcanal where black circles are 913 

knickpoints on north flowing rivers and grey are on south flowing rivers, similarly regression lines 914 

are black and grey for north and south rivers, respectively and the blue lines are for all data points. A) 915 

Distance from mouth against total catchment area, B) Distance from divide against catchment area 916 

above the knickpoint, C) Knickpoint elevation (above sea-level) against total catchment area and D) 917 

distance from mouth against knickpoint elevation. 918 

 919 

Figure 7. Graph showing the distance along the strike of the island axis from NW – SE against mean 920 

(blue) and maximum (grey) elevation, knickpoint elevation (blue north/ orange south) and 921 

interpolated uplift field for the island of Guadalcanal.  Note that the maximum elevation value are 922 

affected by errors in the DEM. 923 

 924 

Figure 8) Ksn against distance along strike of Guadalcanal showing the difference in value for the 925 

river above and below the knickpoints (where present) and ksn for the whole river (where knickpoints 926 

are absent). B) Ksn ratio (below knickpoint/above knickpoint) of rivers with knickpoints along the 927 

island of Guadalcanal. C) Knickpoint elevation and D) Ksn against topographic relief for 928 

Guadalcanal. 929 

 930 

Figure 9A. ALOS World 3D 30 m DEM (©JAXA) of Makira showing existing faults from the 931 

published mapping data (D.o.S, 1969) and inferred topographic lineaments, rose diagrams showing 932 

the orientations of both datasets are shown in the top right corner. B and C) Raw and interpreted 933 

DEM for the area shown in the blue box on part A. 934 

 935 

Figure 10. Hillshade map derived from the 30 m SRTM DEM (USGS, 2019) for the island of Makira 936 

showing the rivers extracted for analysis shaded by ksn, identified slope-break knickpoints (black 937 

circles) and major faults identified from analysis of the DEM and based upon existing mapping data 938 

(D.o.S, 1969). 939 

 940 

Figure 11. Graphs showing a range of knickpoint variables for Makira where black circles are 941 

knickpoints on north flowing rivers and grey are on south flowing rivers. A) Distance from mouth 942 

against total catchment area, B) Distance from divide against catchment area above the knickpoint, 943 
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C) Knickpoint elevation (above sea-level) against total catchment area and D) distance from mouth 944 

against knickpoint elevation. 945 

 946 

Figure 12. Graph showing the distance along the strike of the island axis from NW – SE against 947 

mean (blue) and maximum (grey) elevation, knickpoint elevation (blue north/ orange south) and 948 

interpolated uplift field for the island of Makira.  Note that the maximum elevation values are 949 

affected by errors in the DEM. 950 

 951 

Figure 13. A) Ksn against distance along strike of Makira showing the difference in values for rivers 952 

above and below the knickpoints (where present) and ksn for the whole river (where knickpoints are 953 

absent). B) Ksn ratio (below knickpoint/above knickpoint) of rivers along the island of Makira. Figure 954 

8. C) Knickpoint elevation and D) Ksn against topographic relief for Makira. 955 

 956 

Figure 14. A) and B) plots of ksn against interpolated uplift rates of the islands of Guadalcanal and 957 

Makira, respectively. 958 
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 959 

Tables 960 

 Below knickpoint Above knickpoint  

Rive
r No 

Distance 
along strike 

Length 
(km) 

Catchmen
t area 
(km2) 

Topographi
c Relief (m) 

KP1 
elevatio
n (m) 

CA Above 
KP (km2) 

DFM 
(km) 

DFD 
(km) Ksn θ ± Ksn θ ± 

Ksn 
rati
o 

Guadacanal (rivers with knickpoints) 

1 14.2 11.6 25.4 60.0 443 0.40 10.5 1.0 49.8 0.7 0.3 
115.

1 1.0 0.4 0.4 

2 14.6 13.5 29.1 72.6 526 0.88 12.2 1.2 79.2 0.7 0.2 50.1 0.4 0.2 1.6 

4 24.8 13.0 81.6 49.9 612 0.24 12.2 0.8 51.3 0.8 0.2 40.0 0.6 0.3 1.3 

5 24.7 26.6 81.6 49.9 476 2.35 23.1 3.5 52.6 0.6 0.2 14.0 0.3 0.3 3.7 

7 30.7 28.4 70.0 55.3 243 24.44 17.8 10.6 70.9 1.8 2.1 44.5 0.4 0.2 1.6 

8 34.6 19.2 45.8 51.0 355 4.73 15.8 3.4 44.6 2.0 0.6 80.7 0.7 0.3 0.6 

9 36.4 12.5 18.7 45.6 341 7.81 5.0 7.5 159.8 0.5 1.4 33.9 0.5 0.2 4.7 

11 52.3 68.4 396.1 56.7 391 35.78 52.8 15.6 54.3 0.6 0.4 22.9 0.2 0.3 2.4 

12 56 33.1 147.3 37.6 531 13.03 28.5 4.6 116.7 0.8 1.1 42.0 0.8 0.4 2.8 

13 59 70.0 650.8 63.5 1519 3.08 67.1 2.9 117.9 0.8 0.1 47.6 0.9 0.5 2.5 

17 99.4 25.2 94.1 44.3 269 15.59 16.3 8.9 175.8 5.9 3.4 
110.

0 0.5 0.1 1.6 

18 104.4 36.0 104.1 65.0 406 34.64 22.5 13.5 102.7 2.5 1.8 74.9 0.6 0.1 1.4 

20 115.1 30.5 62.1 80.5 1318 0.36 29.6 1.0 118.5 1.1 0.2 69.9 1.2 0.2 1.7 

     

825 2.63 27.0 3.6 

   

82.8 1.1 0.3 

 22 122 20.8 169.9 81.8 543 2.72 18.7 2.1 89.6 0.9 0.6 30.8 0.6 0.2 2.9 
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26 136.7 9.4 29.4 69.7 466 1.07 7.9 1.5 80.3 0.7 0.3 58.1 0.4 0.1 1.4 

27 140.1 8.3 13.3 84.7 265 4.80 5.2 3.1 164.0 6.0 3.8 90.5 0.5 0.1 1.8 

29 137.4 12.4 23.3 106.9 541 4.52 9.4 3.0 180.7 0.5 1.4 
145.

1 0.5 0.1 1.2 

33 116.5 11.4 20.8 125.6 847 0.38 10.6 0.8 119.9 0.8 0.2 74.7 0.3 0.2 1.6 

34 107.3 15.1 29.8 113.3 826 5.99 11.6 3.4 192.2 2.3 0.5 81.3 0.5 0.1 2.4 

38 87.2 12.0 33.1 110.2 678 4.06 8.6 3.3 132.5 1.4 0.7 48.1 0.4 0.1 2.8 

44 46.8 33.3 339.0 79.9 1055 7.94 28.5 4.8 252.0 2.7 0.7 
101.

2 0.6 0.1 2.5 

50 7.8 15.0 42.0 55.3 322 6.21 10.3 4.7 60.4 2.5 0.9 34.6 0.5 0.3 1.7 

52 1.8 16.3 35.7 52.4 402 2.87 11.8 4.5 72.5 1.2 0.9 33.2 0.7 0.2 2.2 

53 2 13.4 15.2 50.6 334 4.78 9.1 4.4 52.3 0.4 1.6 48.1 0.5 0.1 1.1 

               
  

Guadacanal (rivers without knickpoints) 

3 19.5 12.0 21.1 36.8 

    

47.0 0.6 0.2 

    6 27.8 22.5 45.9 45.4 

    

33.6 0.4 0.1 

    10 43.2 20.0 57.7 46.2 

    

42.3 0.4 0.1 

    14 72.8 22.0 244.9 85.9 

    

53.1 0.6 0.1 

    15 86 47.5 346.3 56.0 

    

59.6 0.8 0.3 

    16 96 22.0 199.6 62.5 

    

65.6 0.5 0.2 

    19 112.9 40.0 109.5 67.0 

    

70.5 0.5 0.1 

    21 121.4 35.0 105.5 84.1 

    

83.1 0.4 0.1 

    23 125.1 10.0 15.7 66.8 

    

65.9 0.6 0.3 
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24 128.7 22.0 69.8 80.1 

    

60.2 0.6 0.1 

    25 132.2 21.0 41.8 52.8 

    

70.5 0.4 0.1 

    

28 137.5 9.0 13.6 90.0 

    

112.
8 0.7 0.1 

    

30 133.9 33.0 46.4 103.6 

    

126.
3 0.9 0.1 

    

31 121.7 15.0 33.3 101.3 

    

113.
9 0.5 0.1 

    

32 117.9 20.0 48.5 117.6 

    

128.
9 0.5 0.1 

    

35 103.7 15.0 71.3 107.0 

    

168.
9 0.4 0.1 

    36 96.5 12.0 44.2 109.2 

    

70.1 0.5 0.1 

    37 88.8 11.5 27.8 111.0 

    

58.9 0.4 0.1 

    39 83.5 8.5 21.8 71.5 

    

92.9 0.2 0.1 

    

40 79.4 14.0 47.2 131.1 

    

145.
5 0.3 0.1 

    

41 73 9.5 18.1 140.6 

    

181.
4 0.1 0.1 

    

42 70.8 18.0 54.2 104.6 

    

193.
1 0.2 0.1 

    

43 62.6 16.0 30.7 142.4 

    

185.
6 0.4 0.1 

    45 40.1 14.0 30.0 67.0 

    

68.0 0.4 0.2 

    46 36.5 17.0 55.6 68.7 

    

83.4 0.9 0.2 

    47 28.4 8.0 26.6 67.6 

    

81.7 0.7 0.1 

    48 21.1 21.0 105.1 64.5 

    

82.4 0.5 0.2 
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49 15.8 20.5 80.2 57.0 

    

64.8 0.3 0.2 

    51 3.9 19.5 78.4 50.2 

   

 40.5 0.4 0.2 

    Makira (rivers with knickpoints) 

1 4.7 16.6 46.3 293.0 163.0 10.22 11.3 5.3 46.4 -0.5 3.0 17.2 2.4 
15.
8 0.4 

2 16.7 9.7 27.0 258.0 377.0 0.12 9.0 0.3 40.9 1.1 0.3 20.0 0.2 1.1 0.5 

5 27.0 11.3 15.4 154.0 161.0 7.47 5.9 5.4 60.0 0.3 3.5 48.2 1.3 3.4 0.8 

         252.0 3.22 8.0 3.3       9.8 0.6 0.3 4.9 

6 33.0 8.0 13.6 270.0 216.0 2.73 4.6 3.3 55.5 2.4 1.9 26.6 0.8 0.4 0.5 

12 53.3 17.3 63.5 189.0 336.0 0.54 16.4 0.9 34.9 1.3 0.3 45.8 1.5 0.4 1.3 

13 55.3 29.2 226.2 269.0 193.0 0.15 28.6 0.6 25.2 0.8 0.2 6.1 0.4 1.8 0.2 

14 59.6 14.8 54.0 337.0 244.0 2.56 12.5 2.4 33.2 1.0 0.5 24.9 0.5 0.3 0.7 

17 69.9 30.3 82.5 312.0 722.0 1.54 28.3 2.1 63.4 0.1 0.4 6.8 0.9 0.3 0.1 

19 88.2 35.8 237.3 326.0 722.0 58.65 21.5 14.3 69.5 1.7 3.8 22.6 0.3 0.2 0.3 

20 96.0 7.9 9.5 155.0 298.0 5.43 3.6 4.3 
132.

4 2.6 1.3 53.4 0.0 0.4 2.5 

23 115.8 13.1 21.1 237.0 390.0 1.42 11.1 1.9 49.3 1.0 0.3 31.3 1.4 0.9 1.6 

         512.0 0.17 12.3 0.7       20.8 0.4 0.4 1.5 

24 117.5 32.7 158.7 266.0 485.0 5.24 29.6 3.1 46.6 0.9 0.3 55.5 0.6 0.2 0.8 

25 117.9 11.8 21.0 137.0 193.0 1.18 10.2 1.7 31.0 0.7 0.7 32.0 0.5 0.3 1.0 

26 126.0 1 15.4 156.0 184.0 1.16 8.3 1.7 22.1 1.7 0.8 41.8 0.7 0.2 0.5 

30 96.9 6.8 10.9 240.0 518.0 0.15 6.4 0.6 
104.

4 0.8 0.1 29.9 0.2 0.4 3.5 

36 70.9 18.0 30.4 235.0 807.0 1.15 35.0 1.4 59.4 0.8 0.1 30.5 0.9 0.4 1.9 

38 51.0 8.9 20.0 269.0 260.0 0.39 7.9 1.0 33.5 0.9 0.4 26.4 1.2 0.3 1.3 
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40 28.9 6.1 18.6 257.0 163.0 2.76 4.0 2.0 49.7 0.8 2.3 29.7 0.8 0.1 1.7 

41 18.0 8.0 22.6 148.0 190.0 0.08 7.5 0.5 27.2 0.6 0.2 14.3 0.7 0.5 1.9 

Makira (rivers without knickpoints) 

3 21.6 15.0 37.8 299.0 3    38.0 0.5 0.1     

4 25.0 12.0 22.0 361.0 4    58.7         

7 34.2 14.0 22.7 164.0 7    9.5 0.7 0.2     

8 36.3 19.0 50.6 238.0 8    15.1 1.0 0.4     

9 37.1 25.0 80.4 165.0 9    17.8 0.7 0.1     

10 44.0 26.0 18.4 191.0 10    11.0 0.6 0.3     

11 45.7 14.0 88.7 182.0 11    48.1 0.5 0.1     

15 67.1 27.0 94.7 310.0 15    45.6 0.4 0.1     

16 68.4 38.0 118.7 362.0 16    23.2 0.4 0.2     

18 82.5 31.0 246.6 315.0 18    29.7 0.1 0.3     

21 102.0 26.0 16.8 274.0 21    67.4 0.3 0.1     

22 108.0 25.0 108.9 236.0 22    64.2 0.4 0.1     

27 118.0 9.5 65.9 288.0 27    34.3 0.6 0.1     

28 106.0 8.2 33.7 194.0 28    
109.

4 0.7 0.2     

29 100.0 5.1 10.2 355.0 29    97.3 0.3 0.2     

31 94.5 11.2 29.5 335.0 31    71.9 0.5 0.1     

32 91.2 8.3 11.3 288.0 32    65.3 0.4 0.1     

33 89.5 8.9 28.3 266.0 33    48.4 1.2 0.3     

34 76.3 14.8 44.4 248.0 34    45.7 0.8 0.1     

35 75.5 8.0 17.0 284.0 35    95.5 0.6 0.1     

37 48.7 9.8 36.5 246.0 37    24.7 0.6 0.2     
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39 30.7 6.5 12.3 137.0 39    10.0 0.7 0.2     
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