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Abstract 
 

The effect of environmental factors on the physiology, 

Yield and oil composition of safflower (Carthamus tinctorius L.) 

This study investigated the effects of drought, nitrogen fertilizer and elevated 

CO2 and its interaction with nitrogen fertilizer on the physiology, growth, and 

production of the oil crop safflower (Carthamus tinctorius L.) in a semi-controlled 

glasshouse environment. 

Three levels of water stress were imposed: rosette (mid-season drought), stem 

elongation (terminal drought) and rosette to maturity (mid-season + terminal 

drought). Results indicated that all drought treatments imposed reduced 

stomatal conductance, but after the relief of mid-season drought plants 

recovered and as a result there were no significant differences from control in 

terms of yield components (branch and capital number) and seed number. 

Terminal drought and mid–season + terminal drought induced significant 

reductions in branch number (48% and 50%), in capitula number (33% and 

67%), in seed number (89% and 92%), in above ground dry weight (30% and 

54%) and in individual fresh seed weight (90% and 94%) respectively. However, 

water stress treatments had no significant effect on the maximum quantum 

efficiency of PSII (Fv/Fm) in dark adapted leaves compared with the control. 

Levels nitrogen fertilizer was studied equivalent to 0, 25, 50, 75, 100, 125, 150, 

175 kg N ha-1 were evaluated. Safflower responded incrementally to increasing 

nitrogen applied in a curvilinear asymptotic fashion. Assimilation rate (42%), 

transpiration rate (32%), stomatal conductance (52%) and LAI (42%) increased  
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up to 100 kg N ha-1 compared with the control. The above ground dry weight 

and seed yield associated with WUE continued to increase with each increment 

in nitrogen rate and above ground dry weight (42%), individual seed fresh 

weight (76%) and WUE (41%) increased up to 175 kg N ha-1 compared with the 

control.  

The effect of elevated CO2, (1000 µmol mol-1) significantly increased 

assimilation rate (27%) reduced stomatal conductance (29%) and transpiration 

rate (18%), increased LAI (28%) and above ground dry weight (51%) when 

measured at anthesis compared with ambient (400 µmol mol-1). At the same 

time plant organ N content was reduced. At harvest, elevated CO2 increased 

above ground dry weight (42%) and individual fresh seed weight (49%). 

The interaction effect of elevated CO2 with nitrogen input was investigated using 

four nitrogen levels equivalent to 25, 75,125 and 175 kg ha-1. The nitrogen 

response rate was raised by elevated CO2 equally at each nitrogen application 

rate so that there was no significant interaction effect between the two for most 

parameters measured. In this way both CO2 and nitrogen were acting as 

“fertilizers”. 

Overall the results showed that despite being put forward as a drought resistant 

crop for low input agricultural systems safflower is capable of responding 

positively to well irrigate and well fertilized conditions. Furthermore under 

conditions of elevated CO2 it can be expected to increase its yield potential but 

to achieve this will require a higher degree of nitrogen fertilization.  CO2 is 

capable of substituting for up to 100 kg N ha-1 without a decline in yield and this 

shows that CO2 is the primary limiting factor in safflower assimilation. 
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Seed oil content and its fatty acid profile appeared to be relatively stable and 

were not affected drastically by either nitrogen fertilization or elevated CO2.This 

demonstrated the integrity of the oil filling process during seed fill and 

emphasized that this is primarily under genetic control with relatively little 

influence from environmental parameters.  
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2 
 

Over the last century, atmospheric carbon dioxide has increased due to the 

anthropogenic activities and will continue to increase and this rise may 

contribute to a change in other environmental factors such as temperature and 

rainfall pattern (Change, 2007). Therefore, in this study the C3 plant safflower 

(Carthamus tinctorius L.) physiology and growth response was investigated 

under the effect of drought, nitrogen and elevated CO2. The following section 

gives a summary of reviewing literature on the impact of these factors on C3 

plant species. 

1.1. Introduction 

 

According to the scenarios report on emissions scenarios (SRES) in The Fourth 

Assessment of the Intergovernmental panel on climate change (IPCC) working 

group III ‟ Mitigation of Climate Change” in 2007, the concentration of CO2 

could reach 850 ppm by the year 2090 a 3 fold rise pre industrial revolution 

times (Change, 2007). Such increases in the atmospheric CO2 levels are likely 

to contribute in a direct and indirect global climate changes and have profound 

effects on agriculture and crop production worldwide (Reddy et al., 2010). This 

increase in CO2 concentration and other gases in trace concentration (methane 

CH4, nitrous oxide N2O, halocarbons, ozone O3, water vapour and aerosols) is 

released to the atmosphere due to anthropogenic activities involved in the 

burning of fossil fuel sources and absorb and reflex infrared radiation (so called 

long wave radiation) released from the earth’s surface. The increased transit 

time of these radiation frequencies in the atmosphere leads to greater 

observance of their energy by atmospheric gases and a consequent rise in 

temperature which eventually will result in an increase in global temperature. 
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Many models of global climate change predict a rise in the mean global 

temperature of up to 0.07 0C per decade (Caporn and Bridget, 2009; Shi et al., 

2010) leading to a rise of over 2 0C by 2050. As a result of rising temperature 

atmospheric water vapour carrying capacity of air increases and changes in 

annual precipitation patterns have been projected. Patterns of precipitation in 

eastern parts of North and South America, northern Europe and northern Asia 

have already been recorded over the period from 1900 to 2005 (Change, 2007). 

Since the 1970s wide areas, particularly in the tropics and sub-tropics, have 

been faced with extreme drought. Furthermore in many regions like the 

Mediterranean, southern Africa and parts of southern Asia long term drought 

has been observed (Change, 2007). 

 Climate change prediction and its impact on agriculture have stimulated many 

research studies involving scientists, economists and ecologists. Some have 

concluded that global food security is extremely threatened because they 

predict the negative impact of climate change on agriculture (Nelson, 2009) 

However, Mall et al., (2006) reported the positive impact of climate change on 

agriculture in some agro climatic regions such as India. Also Olesen and Bindi, 

(2002) stated that a positive effect of climate change might be through the 

introduction of new crops in northern European. 

Over the past decade many system tools have been used to assess how 

terrestrial plants will respond or adjust to climate change for example, Free-air 

CO2 (FACE) and enclosure technology have been used for studying the effect of 

elevated CO2 on crop vegetation and natural ecosystem involving many C3 and 

C4 species (Ainsworth et al., 2002; Kimball et al., 2002; Poorter, 1993). It has 

been reported in particular that future crops will be affected by elevated CO2, 
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generally in a positive way in a phenomenon referred to as carbon fertilization. 

Present research challenges are quantifying the magnitude of crop yield 

response to increasing CO2 (Ainsworth and McGrath, 2010). 

Most of the long term experiments on the climate change effect under controlled 

environmental conditions have been performed on temperate plant species 

(Garcia et al., 1998; Vu et al., 1989; Vu et al., 2001). Few studies have 

investigated the impacts of elevated CO2 and its interaction with other climatic 

factors on the subtropical and tropical crops especially oil crops such as peanut 

(Arachis hypogaea L.) (Vu, 2005). 

The following section describes in more detail the effect of elevated CO2, water 

stress, nitrogen fertilizer, and the interaction effect of CO2 in conjunction with 

these other factors on plant physiology, growth and productivity. 

 1.2. The effect of CO2 on plant growth, productivity and quality 

 

CO2 is a fundamental input to photosynthesis giving rise to the term carbon 

assimilation. Plants take up CO2 through their stomata into the leaves (Simpson 

and Ogorzaly, 2001) and CO2 enters the leaves of plants due to a steep 

gradient of CO2 between the atmosphere and the leaf interior. Inside the leaves 

by using light with water and the photosynthetic apparatus in the chloroplasts 

plants convert CO2 into five carbon sugars (pentose) and polymerized and 

accumulated as hoaxes or carbohydrate (glucose) which is considered the most 

abundant mono-saccharides in nature (Eichhorn, 1999; Taiz and Zeiger, 2002). 

The primary enzyme in fixing CO2 in C3 plants is ribulose 1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) which has two distinct functions: 
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carboxylation and oxidation. The state of the active binding site of Rubisco (i.e. 

whether CO2 or O2 is bound) depends on the relative abundance of CO2 and O2 

and the ratio between CO2:O2 can favour either photosynthesis or 

photorespiration (Taiz and Zeiger, 2002). Therefore, it is often reported that CO2 

enrichment increased CO2 at the carboxylation binding site of Rubisco and 

hence an inhibited photorespiration occurs (Andrews et al., 1995; Leakey et al., 

2009). Reduced stomatal conductance due to either partial stomatal closure 

(Ainsworth and Rogers, 2007; Drake and Leadley, 1991; Wheeler et al., 1999) 

or developmentally, from decreases in stomatal density (Shaw et al., 2005) is a 

secondary response of the plant to elevated CO2. This is in turn leads to 

reduced transpiration and enhanced  water use efficiency (WUE) (Bowes, 2004) 

the ratio of the  amount of biomass produced to the total amount of water 

consumed through transpiration (Hsiao and Jackson, 1999a; Hsiao and 

Jackson, 1999b). As a result of these biochemical and physiological changes in 

plant growth is expected in almost all cases to increase, but the magnitude of 

this response differs between different crops (Ainsworth and Long, 2005; 

Poorter, 1993). 

A meta-analysis of free-air CO2 experimental (FACE) results concluded that 

elevated CO2 enhanced light-saturated photosynthesis (in C3 plants increased 

by an average of 31% and reduced stomatal conductance by 22% (Ainsworth 

and Rogers, 2007). As an example, Garcia et al., (1998) reported that for spring 

wheat grown from emergence to grain maturity under elevated CO2 using FACE. 

Elevated CO2 increased the seasonal midday photosynthesis by an average of 

28%, and the seasonal average of the daily essential photosynthesis by 21% 

compared to ambient CO2 and reduced stomatal conductance by 36% at 
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midday and throughout the growth period. Also little evidence of acclimatory 

loss of leaf photosynthesis was observed with elevated CO2. 

Among the agricultural crops, C4 crop species show less response to changes 

in atmospheric CO2 than C3 crop species (Kimball et al., 2002) because with the 

C4 pathway of photosynthesis the CO2  initially combines phosphoenol pyruvate 

to form malate or aspartic acid (4-carbon acid) which are translocated to bundle 

sheath cells, where carboxylation occurs again. As a consequence low 

concentrations of CO2 saturate photosynthesis in C4 plants (Allen Jr, 1990). 

Furthermore C4 species have developed a mechanism that lead to a higher CO2 

concentration at the carboxylation site of Rubisco and overcomes 

photorespiration (Ehleringer, 2005). Kimball et al., (2002) by using the reports 

from experiments on several C3 and C4 crops concluded that elevated CO2 

increased the photosynthesis and consequently, increased the plant biomass 

and economic yield significantly in C3 plants but little in C4 plants. In both 

species however stomatal conductance increased with elevated CO2 and as a 

result water use efficiency (WUE) markedly improved in all the crops they 

studied. 

In addition, among the C3 species herbaceous dicotyledons show a larger 

response than monocotyledons (Poorter, 1993) and inherently fast growing 

species are generally more responsive than slow growing species (Poorter and 

Perez-Soba, 2002). Furthermore, plants with strong sink capacity such us crop 

and competitive non-crop species have the greatest response to CO2 

enrichment with average 30-40% biomass stimulation (Bowes, 1996). 
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In addition, reduced transpiration at the canopy results from reduced stomatal 

closure under elevated CO2 and leads to an increase in leaf internal CO2 

concentration on one hand, and under long term exposure higher root biomass 

is possible, and this contributes to higher water availability and by these 

mechanisms the plant water status and leaf water potential under elevated CO2 

improves and leads to higher rate of net assimilation rate and leaf growth 

(Grossman-Clarke et al., 2001). Moreover, the decrease in leaf level stomatal 

conductance in response to elevated CO2 allows plants to maintain (WUE). 

Recently, Prior et al., (2010) reported that the long term exposure to 750 µmol 

mol-1 CO2 increased photosynthesis in soybean (Glycine max) by 50% and in 

sorghum by 15% as a result of increasing water use efficiency due to reduced 

transpiration rate. 

In contrast, although there is a reduction in transpiration rate resulting from 

partial stomatal closure in response to doubling CO2 it also leads to a rise in leaf 

temperature and ultimately leads to an increase in transpiration rate offsetting 

the effects of stomatal closure (Allen, 1998). 

Whole plant photosynthetic rate is strongly related to LAI, as LAI determines the 

amount of light intercepted (Gastal and Lemaire, 2002) and both leaf area and 

specific leaf area ratios change with rising CO2.  Many recent studies suggest 

that canopy photosynthesis shows a significant increase with increasing LAI 

under elevated CO2 (Campbell et al., 2001; Rodriguez et al., 2001). However, in 

some cases elevated CO2 decreased leaf area (Ainsworth and long, 2005) or 

there was no difference in leaf area and LAI between ambient and elevated CO2 

(Yoon et al, 2009). An increase in LAI at the canopy level at elevated CO2 also 

provides a greater surface for transpiration and increased LAI should lead to 
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increased assimilation rate but at the expense of transpired water i.e. 

decreased water use efficiency (Allen Jr, 1999) However, it has been frequently 

reported that elevated CO2 increased both LAI and water use efficiency (WUE) 

and led to an increase in photosynthesis rate as a consequence biomass and 

productivity increased  (Carlson and Bazzaz,1980; Lawlor and Mitchell, 1991) 

Pooter and Perez-Soba (2002) and Warrick (1988) reported that plant dry 

matter production dramatically increased due to enhancing photosynthetic rate 

and reducing transpiration. Ultimately, as result of increased crop growth and 

biomass allocated towards the sink the grain yield increased at elevated CO2 

(Hogy and Fangmeir, 2008; Wu et al., 2004). Jablonski et al., (2002) 

synthesized data from 79 crop and wild species reports and found across all 

species at elevated CO2 (from 500-800 µmol mol-1) CO2 resulted in producing 

more flowers (+19%), fruits (+18%) more seeds (+16%) greater individual seed 

weight (+4%) and greater total seed yield (+25%). 

Alongside increasing crop growth and yield at elevated CO2, it has been often 

reported that elevated CO2 reduced N: C ratio in vegetative tissues and as a 

result crop grain quality was altered (Hogy and Fangmeir, 2008; Högy et al., 

2011; Lieffering et al., 2004). Due to drop in nitrogen concentration protein 

concentration decreased (Wu et al., 2004) and non-structural carbohydrate 

(Hogy et al., 2009) and lipid increased in cereal crops (Sator, 1999). However, 

the seed oil content was not affected in oilseed rape at elevated CO2 

(Franzaring et al., 2008) but Hogy et al., (2010) reported that fatty acid 

composition slightly changed in the same species at elevated CO2. Taub et al., 

(2008) used meta-analysis techniques to investigate the effect of elevated CO2 

on protein concentration of major food crops from data from 228 experimental 
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data recorded on wheat, barley, rice, soybean and potato and concluded that 

each crop had lower protein concentration when exposed to elevated CO2 (540-

958 µmol mol-1) compared with ambient (315-400 µmol mol-1). Also Jablonski et 

al., (2002) conducted a meta-analysis on 79 crops and wild species observation 

and reported that elevated CO2 ( 500-800 µmol mol-1) led to significant  

reduction in seed nitrogen concentration by 19% in most non-legumes but the 

seed nitrogen was not affected by doubling CO2 as seed yield also increased. 

According to Long (1991) and Stit and Karpp (1999) the photosynthetic rate in 

response to elevated CO2 increased when there was sufficient sink strength for 

additional photo assimilates. In support of this hypothesis, most long term 

exposure to elevated CO2 demonstrated photosynthesis down regulation known 

as acclimation in C3 species attributed to, the source to sink imbalance. The 

magnitude of acclimation depends on the functional groups and other 

environmental factors (Ainsworth and Long, 2005). Where some other factor is 

severely limiting, such as low nitrogen availability (Kanemoto et al., 2009; Le 

Roux et al., 2001) low temperature (Long, 1991), high temperature (Fageria et 

al., 2010) or growing plant in pots where both root growth and nutrient 

availability are limited (Ainsworth et al., 2002; Arp, 1991) in these situations the 

imbalances within the photosynthetic system occurred and led to accumulation 

of non-structural carbohydrate which may act as the feedback mechanism of 

the  photosynthetic process. 

1.3. The effect of nitrogen on plant growth, productivity and quality 

 

Nitrogen is one of the most important mineral nutrients for plant growth and 

yield and plants need nitrogen in larger quantities compared with other mineral 
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nutrients (Forde et al., 1999). However what determines a plant’s demand for 

nitrogen and the amount of nitrogen they need for optimum growth and yield 

needs to be determined empirically. Knowledge of the factors concerning 

nitrogen demand is essential in order to anticipate the needs of crops under a 

wide range of conditions (Abrol and Raghuram, 2007; Grindlay, 1997). This is 

important both for economic reasons and because of the risks to the 

environment and human health that might arise from an over application of 

nitrogen fertilizer (Addiscott, 2005; Hatfield and Follett, 2008). 

The optimization of nitrogen supply is strongly related to the plant’s nitrogen use 

efficiency (NUE) (Lawlor et al., 2001) which is the product of seed dry weight 

per unit of nitrogen accumulated. NUE is used as an indicator of the amount of 

nitrogen required for each crop to produce an optimum yield. Some plants are 

characterized by low NUE and they need high amounts of nitrogen to produce 

an economic seed yield (Rathke et al., 2006). NUE is based on; 1) Root 

nitrogen uptake efficiency; 2) Shoot incorporation efficiency; 3) Utilization 

efficiency dependent on nitrogen remobilization from the root to the shoot and 

other parts of plants; 4)  Adequate levels of nitrogen in soil  (Abrol and 

Raghuram, 2007).     

For example, comparison studies on the response between safflower 

(Carthamus tinctorius L.) and sunflower (Helianthus annus L.) growth to 

nitrogen fertilizer in the form of ammonium nitrate concluded that the growth 

and yield increased for safflower with nitrogen supplied up to 1.0 g pot -1 while 

2.0 g pot -1 was optimum for sunflower growth and yield because safflower was 

more efficient than sunflower in concentrating nitrogen in their shoots (Abbadi et 

al., 2008). Safflower therefore can be considered a more nitrogen use efficient 
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crop compared to sunflower (Abbadi and Gerendás, 2009). A positive 

correlation between seed yield and nitrogen use efficiency in safflower and a 

negative correlation with stem and leaf nitrogen accumulation at maturity was 

also observed by (Koutroubas et al., 2008) and most nitrogen in the early 

vegetative growth stage was found in stem and leaves but as the plant 

physiologically matured nitrogen shifted towards the seed (Abdurahman et al., 

1999) typical of most seed crop plants. 

Another widely used approach to determine nitrogen demand is to express 

nitrogen content on a plant dry matter basis. It has been shown that the 

instantaneous rate of nitrogen taken up can be calculated by multiplying the 

plant material’s nitrogen concentration by the growth, that is represent it as the 

percentage of nitrogen in the biomass (Gastal and Lemair, 2002). This nitrogen 

rate calculation is dependent on dry matter weight and requires a chemical 

analysis to estimate the nitrogen concentration in the plant tissues (Greenwood 

et al., 1991), and it is complicated because the nitrogen concentration basis on 

biomass varies with the age of plant, the leaf position in the canopy, the 

photosynthetic photon flux density (PFD) under which the plant is grown, 

nitrogen supply and the time of nitrogen application (Gregory et al., 1981). The 

critical nitrogen concentration is defined as the minimum nitrogen concentration 

which allows maximum growth rate. The relationship between critical nitrogen 

concentration and dry matter accumulation is similar within most C3 and C4 

cultivated species over the growing period. This parameter is widely used in 

agronomy as the basis of crop nitrogen status diagnoses (Gastal and Lemair, 

2002).  
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A key determinant of plant nitrogen demand has also been established on the 

growth of leaves since photosynthetic function of leaves requires a large 

nitrogen concentration compared to other tissues of the plant because of the 

high protein content of leaves (Novoa and Loomis, 1981). All of the 

photochemical and biochemical processes of photosynthesis require nitrogen 

(Givnish 1986). In particular the photosynthesis capacity of C3 plants is limited 

by nitrogen per unit leaf area because proteins of the Calvin cycle (Rubisco) 

and thylakoids are related to leaf nitrogen content (Evans, 1989). The structures 

involved in the light harvesting in photosynthesis which capture the photon 

energy are chlorophyll: protein complex (Lawlor et al., 2001).   

Another indicator of nitrogen demand has been based on leaf chlorophyll 

content which tends to vary with variation in leaf nitrogen content and is hence 

correlated with the rate of leaf photosynthesis (Cabrera-Bosquet et al., 2009) 

but Evans (1989) suggested that the increased chlorophyll content effect on 

capturing energy is very small, except under extreme shade. For example, a 

two year field study on two safflower hybrids ( CW9048 and CW9050) at three 

levels of nitrogen (0, 100 and 200 kg N ha-1 ) was conducted to determine the 

effect of nitrogen on yield, yield components, chlorophyll content, photosynthetic 

characteristics and water use efficiency under rain fed conditions. The results 

concluded that the nitrogen fertilizer increased the photosynthetic rate by an 

average of 51%, stomatal conductance by 27%, water use efficiency by 60%, 

seed yield by 19%, seed weight per plant by 60%, seed weight per head by 

18%, the number of heads per plant by 32% and the number of seeds per plant 

by 41% compared with the control (Dordas and Sioulas, 2007; Dordas and 

Sioulas, 2008; Dordas, 2009). In addition, a field experiment concluded that 
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from seven levels of nitrogen (0, 30, 60, 80, 120, 150, and 180 kg ha -1 ) tested 

on safflower growth and yield component, 120 kg ha -1 prolonged the time to 

maturity (172 days) and significantly increased number of branches, seed 

weight index and seed yield. Further increases in N up to 180 kg ha -1 produced 

the same yield and thus, 120 kg ha -1 was considered the most economic rate 

for safflower (Siddiqui and Oad, 2006). 

The above experiments also showed, unsurprisingly, that leaf area index (LAI) 

increased through increasing the number of cells and their size by doubling 

nitrogen supply (Lea et al., 2001). As a result the amount of light intercepted, 

radiation use efficiency and leaf nitrogen content increased and photosynthetic 

efficiency was maintained in plants (Gastal and Lemair, 2002). Moreover, 

increases in photosynthetic rate was attributed to increases in chlorophyll 

content and maximization of Rubisco of both canopy and individual leaves due 

to increased leaf area (Cabrera-Bosquet et al., (2009). Consequently, plant 

growth increased as  total plant  dry matter accumulation and grain yield 

increased as did the harvest index (the ratio of grain weight to total above 

ground biomass) under nitrogen fertilizer (Sinclair, 1998).  

Some researchers have been interested in investigating the effect of nitrogen 

fertilizer on seed oil content and fatty acid composition because among the oil 

crops in addition to the crop productivity parameters, the oil quantity and quality 

is also important. For example, the oil content of safflower was improved by 

nitrogen application up to the recommended rate (40 N + 30 P2O2 kg ha-1) 

(Eksilinge et al., 1993). However, Bassil et al., (2002) indicated that safflower 

seed oil content was not affected by nitrogen fertilizer but Zaman (1988) found 
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that nitrogen fertilizer up to 60 kg N ha -1did increase seed oil content in 

safflower.  

A study of field grown oilseed rape (canola) concluded that none of the levels of 

nitrogen fertilizer (50, 100, 150 and 200 kg N ha-1 ) had significant effects on 

seed oil content and fatty acid composition (Starner et al., 1999). By contrast, 

Rathke et al., (2006) found a positive effect of nitrogen fertilizer on the seed 

yield of winter oilseed rape. The oil content tended to reduce as nitrogen rate 

increased and this inverse correlation might be due to reduction in carbohydrate 

availability for generating oil at high nitrogen supply. Steer and Seiler, (1990) 

using four glasshouse and two field experiments and five cultivars of sunflower 

( Helianthus annuus L.) found variable composition in individual fatty acids with 

time of nitrogen application. The percentage of palmitic (16:0) and linoleic (18:2) 

acids increased significantly when nitrogen was applied before floret initiation 

while the stearic (18:0) and oleic (18:1) acids decreased and only stearic acid 

responded when the nitrogen applied between floret initiation and anthesis. 

After anthesis nitrogen application increased the ratio of oleic/linoleic acid. Also 

the results differed between the glasshouse and the field but the same result 

was recorded in both environment for fatty acid composition when was nitrogen 

supplied after anthesis. Recently, many researchers drew the conclusion from 

the chemical analysis of seed from different oil crops including safflower, 

sunflower, oilseed rape and soybean that the effects of genotype, environment 

condition (location) and planting date were more important on seed quality 

rather than nitrogen fertiliser (Izquierdo et al., 2006; Kumar et al., 1994; Omidi 

et al., 2010; Samancı and Özkaynak, 2003). 
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Many studies have been carried out in an attempt to explain how plants respond 

to nitrogen fertilizer under different interacting conditions, for instance, varying 

light intensity, temperature, irrigation and other different stresses. Work to date 

has established that light intensity changes the crop response depending on the 

nitrogen applied. Three Brassica species were hydroponically grown in a 

greenhouse at three levels of nitrogen fertilizer (100% NH4, 100% NO3, 50% 

NO3 + 50% NH4) with three levels of photosynthetically active radiation (PAR) 

(low 50 µmol m-2 s-1, medium 680 µmol m-2 s-1 and high 900 µmol m-2 s-1) and it 

was concluded that leaf area index was similar with all forms of nitrogen 

supplied. The lowest value of leaf area and leaf number was recorded in plants 

under 100% NH4 at low and medium level of radiation. No interaction effect 

between light and nitrogen type was found (Fallovo et al., 2009).  

Plant response to nitrogen at both warm and cool temperature was studied, for 

example, the impact of nitrogen on radiation use efficiency and photosynthesis 

in peanut (Arachis hypogaea L.) canopy grown at warm and cool environments 

was examined by (Wright  and Hammer, 1996) and concluded that the radiation 

use efficiency was higher by 33% in warm condition than cool condition. 

1.4. The effect of drought on plant growth, productivity and quality 

 

At the whole plant level, water stress impacts on crop yield mainly by reducing 

rate, duration and number of leaves produced. As a result of reducing leaf 

expansion the rate of radiant energy interception is reduced. Drought also 

reduces light conversion into dry matter and partitioning of assimilate (Jefferies, 

1995; Prasad et al., 2008). Physiologically, water stress is considered to be a 

limiting factor for a wide range of physiological processes in plants (McDonald 
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and Davies, 1996) and Abscisic Acid (ABA) is now considered to be one of the 

first signalling chemicals for sensing drought (Prieto et al., 2009). Lowered 

relative water content (RWC) of leaves gradually reduces stomatal conductance 

and inhibits Rubisco due to the inhibition of ATP (Lawlor, 2002). In general, 

stomatal closure induced by drought reduced transpiration rate, limits CO2 

uptake (Comstock, 2002) and increases in Rubisco oxygenase activity (Cornic 

and Massacci, 2004; Flexas and Medrano, 2002a). As a consequence the main 

sink (acceptor) for photosynthetic electrons and O2 uptake via photorespiratory 

activity entirely replaces CO2 as an acceptor, thereby, the photosystem II (PS II) 

are protected during dehydration (Cornic and Fresneau, 2002b). However, it 

has been reported that the excess light energy absorbed is dissipated as heat 

and was superior in energy that had been used to drive photosynthetic 

metabolism under conditions of drought (Chaves et al., 2002). The light energy 

absorbed by chlorophyll can undergo one of three outcomes: it can be used to 

drive photosynthetic metabolism, it can create excess energy which can then be 

dissipated as heat or it can be re-emitted as light (chlorophyll fluorescence). 

Therefore, any increase in the efficiency of one will result in a decrease in the 

yield of the other two (Maxwell and Johnson, 2000). During moderate to severe 

drought, thermal dissipation is estimated to be increased by up to 70-90 % of 

the total absorbed light in C3 plants (Flexas and Medrano, 2002b). As a 

consequence, the damage of the PSII centre has been revealed and this can be 

indicated by a drop in the Fv/Fm ratio under drought (Prieto et al., 2009). For 

instance, three experiments were carried out on cowpea (Vigna unguiculata) 

grown in 2.8 L pots filled with silica: vermiculite 1:2 inside a glass house where 

plants  were watered with 250 mL of Hoagland solution twice a week and after 
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28- 38 days three water stress treatments were imposed by withholding water. It 

was reported that during the initial stage of drought photochemical activity of 

PSII was not affected and the decrease in assimilation rate was strongly related 

to stomatal closure which restricted transpiration rate and intercellular CO2 

concentration, but with prolonged water stress a down-regulation in the 

maximum yield of PSII was observed (Souza et al., 2004). 

Water stress however had no significant effect on the variable to maximum 

fluorescence ratio (Fv/Fm) in sunflower cultivar indicating that water stress had 

no effect on primary photochemistry of PSII in a tolerant cultivar whilst this ratio 

decreased in a vulnerable cultivar (Subrahmanyam et al., 2006). Also these 

parameters showed no change under water deficit in other experiments (Cornic 

and Fresneau, 2002a; Pankovic et al., 1999). For example, two sunflower 

hybrids were exposed to drought from bud formation up to full flowering in the 

field under full sunlight (1500-2000 µmol m-2 s-1), the results concluded that 

assimilation rate and stomatal conductance significantly decreased, but 

maximum quantum yield did not show significant change in severely droughted 

leaves. Also results revealed that Rubisco content under prolonged stress 

increased and a higher amount was found in the drought tolerant cultivar 

(Pankovic et al., 1999). 

The effect of drought in combination with high temperature was more 

pronounced on physiological parameters either stresses alone (Shah and 

Paulsen, 2003) such that both stomatal conductance and variable fluorescence 

to maximum fluorescence ratio (Fv/Fm) decreased (Xu and Zhou, 2006). 

Conversely the combination between drought and high light showed results on 

photosynthetic parameters for example, a study of Arabidopsis thaliana grown 
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under a 6 h UV-B radiation each day and 12 days water stress, indicated that 

plants grown under UV-B radiation were more tolerant to drought than plants 

grown without UV-B radiation, as plants under both stress showed two times  

higher assimilation rate with a 12% increase in relative water content (RWC), 

smaller reduction in the quantum yield of PSII compared to plants grown under 

water stress alone, and results suggested that higher tolerance to drought 

under UV-B radiation was related to higher content of proline content and 

decreased stomatal conductance (Poulson et al., 2006). 

In addition to the above, the mineral nutrient uptake by plant root and 

metabolism (Sardans et al., 2008) and chlorophyll a, b, total chlorophyll and 

carotenoid reduced under drought (Manivannan et al., 2007). Taken all together, 

drought led to a down regulation in CO2 assimilation rate in C3 plant species 

(Jaleel et al., 2009; Medrano et al., 2002). Eventually, this leads to a change in 

plant morphology and a decrease in dry matter accumulation, total leaf area, 

growth and development (Manivannan et al., 2007) grain yield and harvest 

index (Kang et al., 2002a). For example, ten genotypes of cowpea (Vigna 

unguiculata L.) were exposed to drought from flower bud formation until maturity 

(10 days), using growth chambers and reductions in biomass was related to 

reduce WUE and leaf photosynthesis rate and leaf area. In tolerant genotypes, 

drought improved WUE and induced stomatal closure and led to maintenance 

of relative water content but still reduction in leaf area (Anyia and Herzog, 2004) 

and an effect on seed composition for example, seed oil content in sunflower 

(Helianthus annus L.) (Reddy et al., 2001), peanut (Arachis hypogea L.), 

soybean (Glycine max L.) (Dwivedi et al., 1996) and canola (Brassica napus L.) 

reduced while the protein content increased (Aslam et al., 2009). The degree of 
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drought (intensity), its duration, and the plant growth stage at which it is 

imposed (Aiken and Lamm, 2006) and the sensitivity of crop cultivars are all 

found to be determinants of yield reduction (Mafakheri et al., 2010).  

In general, long term drought during vegetative growth and anthesis (flowering) 

are considered to be the worst for crops. The first because it leads to the crop 

failing to establish properly and the second partly because it occurs when the 

reproductive organs are formed from resources either recently acquired or 

previously stored by vegetative parts. Therefore, any environment stress that 

affects vegetative parts finally affects reproductive yield and partly because 

pollen and ovule fertility can be affected by acute drought during their critical 

development phases (Chiariello and Gulmon, 1991). The plant biomass and 

productivity of a wide range of crops has been shown to be reduced under 

drought and sunflower (Nezami et al., 2008; Schittenhelm, 2010), peanut 

(Chapman et al., 1993) and wheat (Kang et al., 2002) are affected most when 

drought is imposed during the critical stages of growth. Also this has been 

demonstrated in cotton during flowering and boll formation, during the 

vegetative stage in soybean, the yielding stage in sugar beet and sunflower, 

during flowering and grain filling in soybean (Kirda, 2002) and in the flowering 

stage in oil seed rape (Istanbulluoglu et al., 2010) and beans (Acosta Gallegos 

and Kohashi Shibata, 1989; Boutraa and Sanders, 2001). Moreover, the highest 

seed yield in field grown safflower was obtained in fully irrigated control at three 

stages (vegetative, flowering and yield formation) and was higher for winter 

sowing than summer sowing  (Istanbulluoglu et al., 2009). 
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1.5. Effect of elevated CO2 in conjunction with other factors  

1.5.1. The interaction of CO2 with some of other anthropogenic, 
greenhouse gases and global warming 
 

In climate change scenarios, temperature and other greenhouse gases (CH4, 

N2O, SO2, O3, etc.) have been predicted to rise in conjunction with CO2 (Caporn 

and Bridget, 2009). 

Many impact assessment studies show how elevated CO2 interacts with other 

environment factors and may influence plant growth. The response of many 

crop species to increased atmospheric carbon dioxide and various temperature 

regimes have been studied and reported that plant growth response to 

increased CO2 was higher at optimum temperatures. While negative or no effect 

of both supra-optimum and suboptimal temperature interaction with elevated 

CO2 have been found (Baker and Boote, 1996; Long, 1991). One explanation is 

that under an increase in air temperature above optimum the growing cycle of 

crops may be shortened and ageing may be accelerated in which case the 

advantages of increasing CO2 may be offset (Streck, 2005). For example, Baker 

et al., (1989) reported soybean yield response to elevated CO2 under three 

temperature regimes (26/19, 31/24 and 36/29 0C) with elevated CO2 to 660 

µmol mol-1 and seed yield decreased because the warmer temperature either at 

ambient or elevated CO2 reduce the duration of grain filling and reduced the 

seed weight. Moreover, high temperature shortened the crop life cycle and in 

this way reduced the yield component (sink) which led to reduced grain yield 

(Fageria et al., 2010). In another study Wheeler et al., (1996) indicated that an 

increase in mean seasonal temperature of 1.0 - 1.8 0C in the UK may offset the 
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beneficial effect of elevated CO2 in winter wheat (Triticum aestivum L.) grain 

yield. 

Temperature has been shown to control seed set in many crops, and its effect 

could not be ameliorated by elevated CO2. For example, in a study with peanut 

seed yield response to elevated CO2 at four temperature regimes (32/22, 36/26, 

40/30 and 44/34 0C) concluded that seed yield decreased by 14%, 59% and 

90% and harvest index from 0.41 to 0.05 as temperature increased from 32/22 

to 44/34 0C at either normal or 700 µmol mol-1 despite a marked increase in 

photosynthesis and vegetative growth above 32/220C  and it was suggested 

that the decrease in seed yield was related to lower set due to poor pollen 

viability and smaller seed size due to reduced seed growth duration (Vara 

Prasad et al., 2003). Furthermore, Pooter and Perez- Soba (2002) and Brooks 

and Farquhar (1985) suggested that high temperature above optimum 

decreases solubility of CO2 relative to O2 in the cytosol, and reduces the 

Rubisco activity (Crafts-Brandner and Salvucci, 2000). Consequently, there is a 

rise in photorespiration rates regardless of CO2 concentration thereby net 

photosynthesis decrease (Taiz and Zeiger, 2002). 

Under lower than optimum temperature the elevated CO2 stimulates less 

photosynthesis (acclimated) causing non-structural carbohydrates to 

accumulate and as a result growth is inhibited (Poorter and Perez-Soba, 2002). 

However, in some cases elevated CO2 attenuated the negative effect of 

temperature from 1.5 and 6.0 0C above ambient temperature and increased the 

leaf photosynthesis and reduced stomatal conductance and transpiration rate 

which improved the WUE (Vu, 2005). 
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The response to elevated CO2 and high temperature is dependent on the 

environmental condition, Rosenzweig and Liverman (1992) stated that at 

elevated CO2 high temperature in temperate regions led to the length of the 

plant growth duration (during season) and the possibility of growing crops 

successively in tropical region may have a negative impact. Polly (2002) 

indicated that rising CO2 will enhance crop water use efficiency mainly by 

increasing photosynthesis and growth but yield may be most responsive when 

increasing CO2 is coupled with increased temperature. Thus, leaf area, and 

seed dry weight increased significantly by 72%, while seed number was 

unaffected with an increase in temperature of only 1.0 0C to 1.8 0C for winter 

wheat grown under rising CO2 and air temperature in the UK. 

The damaging effect of ozone is strongly ameliorated by elevated CO2. This is 

because rising CO2 reduced stomatal conductance as a consequence the O3 

flux in to the leaf interior is reduced (Poorter and Perez-Soba, 2002). For 

example, a study on long–term of CO2 and ozone (O3) enrichment in FACE 

reported that elevated CO2  induced net photosynthesis and reduced 

transpiration and led to improvement in water use efficiency as also found in 

closed chamber experiments but also decreased the damage effect of ozone on 

photosynthetic capacity during vegetative growth of spring wheat  (Triticum 

aestivum L.) (Mulholland et al., 1997). Recently, Bernacchi et al., (2006) 

demonstrated that the physiological response of soybean grown in the FACE 

under the combined elevation of CO2 and O3 the plant produced a greater 

assimilation rate compared with CO2 or O3 alone. 
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Previous reports on plant physiological response and yield results from elevated 

CO2 and SO2 interaction experiments also suggested that increasing CO2   

mitigated   the effect of SO2 stress by altering plant physiology (Lee et al., 1997). 

1.5.2. Interaction of CO2 with water stress 
 

Drought is one of the most important environmental factors limiting the growth 

and productivity of crop species worldwide, among of all the physical stresses in 

the global environment (Mooney, 1999) and therefore, changes in rainfall 

patterns will affect carbon fluxes, assimilation rates and transpiration rates are 

expected to increase as temperature increases (Heimann and Reichstein 2008). 

Shaw et al 2005 observed this phenomenon in numerous studies in semi-arid 

ecosystems where stomatal closure and decrease in stomatal density permit 

the possibility for plants to balance growth demand for substrate with water lost 

by transpiration. Also under severe water stress, the plants root growth/shoot 

growth increased because the limited water extracted by roots was mainly 

consumed by the root system itself and only a small amount of water was 

transported to shoot (Mardanov et al., 1998).   

Since elevated CO2 enhances a partial closure of stomata which reduces water 

use water stress is found to be offset in a majority of species under increased 

ambient carbon dioxide (Tyree and Alexandar 1993) and therefore under 

elevated CO2 plants growing under water stress might flourish longer on a given 

water supply (Poorter and Perez-Soba, 2002). For example, Bunce (2008) 

recorded that elevated CO2 reduced stomatal conductance for crop plants but 

the relative reduction is not constant, but is dependent on other factors (light, 

temperature and humidity) and different species showed different responses 
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with a doubling of CO2 in the stomatal aperture which varied between 15% for 

some crop species to ˃ 50% in others (Pospisilova  and Catsky, 1999) also 

leading to enhanced WUE where measured (Beering, 2005; Hsiao et al., 1999). 

It has also been shown that under elevated CO2 plant root dry matter 

accumulation and number of roots at all depth of the soil profile to 150 cm 

increase, and the root to shoot ratio consequently enables plants to reach and 

capture more water (Rogers  et al., 1999). This increase was observed under 

water/or nutrient limiting conditions at elevated CO2 (Stulen and Hertog, 1993). 

Shaw et al., (2005) demonstrated that elevated CO2 and water stress altered 

root capacity to water transport through their xylem for example, elevated CO2 

reduced root hydraulic conductance by 26% in soybean and by 50% in 

sunflower compared to ambient CO2. 

Other studies have concluded that the plant response to elevated CO2 under 

limited soil water availability is temperature dependent. If the increase in 

ambient CO2 concentration is accompanied by an increase in air temperature, 

transpiration rates are expected to increase which may offset the advantages of 

an increasing CO2 in limited water supply grown plants (Heimann  and 

Reichstein, 2008). In a study in which air temperature was controlled the water 

use was reduced by about 10% in rice; in this way the plant drought resistance 

improved and growth and yield were maintained (Baker et al., 1997). 

In contrast, Wu et al., (2004) suggested that plants may benefit more from 

elevated CO2 when adequate water is supplied. They subjected spring wheat to 

two levels of CO2 (350, 700 µmol mol-1) and two levels of soil water 80, 40% of 

field water capacity (FWC), and concluded that wheat plant produced more 

biomass and grain yield with greater grain number and harvest index which 
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resulted from a significant increase in shoot dry weight under higher of 700 

µmol mol-1 and 80% field capacity and water use efficiency significantly 

increased. 

1.5.3. Interaction of CO 2 with nutrients 
 

Elevated CO2 increases plant growth through its effect on photoassimilation but 

this requires increased mineral absorption and nutrient use efficiency and the 

demand for mineral nutrients increases with long term growth in increasing CO2 

levels (Stitt and Krapp, 1999). It is often documented that the most comparative 

explanation for photosynthesis activity down regulation in C3 plant species is 

related to low nitrogen concentration in the leaf under long term exposure to 

elevated CO2 and this is highly pronounced under low nitrogen supply (Del Pozo 

et al., 2007; Nakano et al., 1997). For instance, long term (4 weeks) exposure of 

alfalfa (Medicago sativa L.) to two levels of CO2 (400 and 700 µmol mol-1) and 

three levels of nitrogen (0, 10 and 15 mM) in the form of NH4NO3 concluded that 

the photosynthetic rate decreased at elevated CO2 and (0 mM) nitrogen in 

plants compared with ambient as a result of C:N imbalance, but plants under 

elevated CO2 and supplied with 15 mM NH4NO3 maintained high photosynthetic 

rates as a result of  superior C:N modification (Sanz-Sáez et al., 2010). 

Other researchers have concluded that the reduction in stomatal conductance 

and transpiration rate of elevated CO2 reduced the leaf nitrogen concentration 

and was responsible for photosynthesis down regulation (Kanemoto et al., 

2009), as a reduction in transpiration rate may decrease the mass flow of the 

soil solution and the mobilization of nitrogen from the soil to the root, and hence 

limit nitrogen acquisition by the plant (McDonald et al., 2002). 
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The reduction in leaf nitrogen concentration is occasionally associated with the 

reduction in the amount of Rubisco and its activity due to limited nitrogen 

availability at elevated CO2 (Ainsworth and Long, 2005; Ainsworth and Rogers, 

2007; Rogers and Humphries, 2000). For example, three levels of CO2 (350, 

550 and 900 µmol mol -1) and nitrogen rates ranging from very low to very high 

were tested on wheat and the results showed, that the shoot growth was 30% 

greater at 550 µmol mol-I as compared with ambient at all nitrogen rates, but 

there was no significant increase in shoot growth under 900 µmol mol-1 and low 

nitrogen rate. Elevated CO2 to 900 µmol mol-1 reduced leaf nitrogen 

concentration by 58% under low nitrogen supply and led to a reduction in 

Rubisco and nitrogen was allocated away from Rubisco into other soluble 

protein fractions (Rogers et al., 1996). Alternatively photosynthetic acclimation 

after prolonged exposure to elevated CO2 could in part be due to diverting 

nitrogen away from the photosynthetic apparatus towards the growth of other 

organs (Wolfe et al., 1998). Also the total non-structural carbohydrate was 

increased at elevated CO2 and low nitrogen (Booker et al., 2000) and the 

increment in non-structural carbohydrate is considered to have led to a dilution 

of tissue nitrogen concentration (Taub and Wang, 2008) and might have a 

feedback on photosynthetic rate (Baxter et al., 1995). 

Moreover, the down-regulation in photosynthetic activity under long term 

elevated CO2 and low nitrogen is mainly correlated with the balance between 

source-sink strength rather than the nitrogen concentration in plant tissues. For 

example  Ainsworth et al., (2003) using 10 years FACE experiments growing 

perennial rye-grass (Lolium perenne L. CV. Bastion) at 600 µmol mol-1 CO2 and 

two levels (low and high) of nitrogen, concluded that differences between 



                                                                                                                                           Chapter 1    

                                                                        General Intrododuction 

27 
 

ambient and elevated CO2 in the low nitrogen treatment, the assimilation rate in 

term of maximum carboxylation velocity (Vc,max) and the maximum rate of 

electron transport (J max) was smaller after cutting  and were significantly lower 

in elevated CO2  as compared to ambient in low nitrogen without cutting. 

However, it is often reported that elevated CO2 attenuated the negative effect of 

nitrogen stress, and enhanced marked growth (Wong and Osmond, 1991). For 

example, at limited nitrogen supplied, cotton plants responded more to elevated 

CO2, because a large amount of carbon was fixed in photorespiration and 

subsequently, photorespiration was suppressed resulting in a lower nitrogen 

requirement at elevated CO2 (Rogers et al., 1993).  

An another example, in hydroponically grown wheat showed that the 

photosynthesis had not acclimated in response to elevated CO2 and low 

nitrogen, and the amount and activity of Rubisco and tissue nitrogen 

concentration was maintained (Farage et al., 1998).  

The variability in response towards nitrogen availability of elevated CO2, 

appears to depend on crop species and the degree of nitrogen deficiency that 

plants received (Stitt and Krapp, 1999). It has been shown that nitrogen fixing 

species has the ability to respond strongly to CO2 increase when nitrogen is 

lower (Poorter and Navas, 2003) and more than non-fixing species because 

root nodules provide the plant with an adequate source of nitrogen (Hebeisen et 

al., 1997; Schenk et al., 1997). The growth and seed yield in non-nodulated 

soybean (Glycine max L.) plants substantially increased under (700 µmol mol-1) 

CO2 and most nitrogen levels used (0.05,1.0, 2.5, 5.0 and 10.0 mM KNO3), but 

not under the lowest levels of (0.05 mM) (Cure et al., 1988).  



                                                                                                                                           Chapter 1    

                                                                        General Intrododuction 

28 
 

To date, there is no literature published on the effect of elevated CO2 and/or its 

interaction with other environmental factors (nutrients or water) for safflower in 

spite of its undoubted medical, pharmaceutical and economic importance 

(Berglund  et al., 2007; Dajue  and Mundle, 1996; Smith, 1996) and the fact that 

it is widely grown in arid or semi-arid regions of the world (Johnston et al., 2002) 

that are facing potentially significant climate change (Shaw et al., 2005). Lawlor, 

(1999) stated that the effect of rising atmospheric CO2 on semi-arid plants will 

be great because those species showed significantly more increase in yield 

under CO2  enrichment. There is therefore a research gap in the literature 

regarding safflower response to elevated CO2. 

The following sections give more details about the safflower crop. 

1.6. Safflower 

1.6.1. Safflower biology 
 

Safflower (Carthamus tinctorius Linn.) is a member of the family Compositae or 

Asteraceae same family as sunflower (Helianthus annus). It is a branching 

thistle like herbaceous annual or winter annual plant (Smith, 1996) with the 

height varying between (0.5 - 1.8 m) (Kaffka and Kearney, 1998).  

Seeds need up to 3 weeks to emerge (Herdrich, 2001) and a slow growing 

rosette stage follows germination. During this stage, near ground level, 

numerous broad leaves are produced and a strong tap root develops that gives 

significant drought tolerance. During this rosette stage, safflower seedlings are 

cold resistant and are even resistant to frost but the crop is a poor competitor 

with fast growing weeds (Berglund  et al., 2007). Next, the stem elongates 

quickly and produces branches, the number of which depends on plant to plant 
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competition. The duration of this stage is from 4 - 7 weeks, depending on the 

weather conditions (Dajue  and Mundle, 1996) especially temperature (Herdrich, 

2001). The stem and branches produce a globular flower capitulum enclosed by 

clasping bracts which are typically spiny with variation among varieties and 

individual plants within a variety. Leaf size is also different among varieties and 

even individual plants (Plate 1.1) and ranges mainly from 2.5 - 5 cm wide and 

10 –15 cm long (Dajue  and Mundle, 1996). Most leaves are deeply serrate, 

short and stiff in shape on the lower stem and can be ovate around the 

inflorescence, most safflower crop types have spineless leaves on the lower 

stem but upper leaves have degrees of spininess (Smith, 1996). Flowering 

usually begins in the primary capitulum followed by the secondary capitulum 

and so forth. Within the capitulum, flowering starts in the outer circle of florets 

and progresses centripetally over several days up to a week. Early blooms are 

shades of orange, yellow and red but post-bloom colour is darker and white 

flowers occasionally occur (Dajue  and Mundle, 1996). A safflower flower is 

composed of petals that attach to a corolla tube at the base of which is an 

“inferior” ovary. The style and stigma are surrounded by five fused anthers 

which are longer than the corolla tube (Nimbkar and Singh, 2005). Self-

pollination in the tubular florets is normal with generally less than 10% 

outsourcing. Each capitulum contains 15 - 30 seed (achenes) which develop 4 - 

5 week after flowering (Dajue  and Mundle, 1996; Oelke  et al., 1992). An 

achene typically consists of 33 - 60% hull and 40 - 67% kernel (Dajue and 

Mundle, 1996). The typical proximal composition of seed is 32 - 40% oil, 11 - 

17% protein and 4 - 7% moisture (Janick and Whipky, 2007). However, the oil 

content of the seed differed considerably among varieties and across 
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environmental factors (Coşge et al., 2007).Seed weight increases most rapidly 

during the first 15 days after flowering and reaches a maximum dry weight in 

about 28 days and the oil amount during this period increases 5 - 10 fold with 

fatty acid build up beginning about 10 days after flowering (Hill and knowles, 

1968). Day length influences the length of the plant growing period with short 

photoperiods extending development phases. The growing period for autumn 

sown crops varies from 200 to 230 days (Quiroga et al., 2001) In general the 

safflower requires about 120 - 170 days producing a crop (Kaffka and Kearney, 

1998). On average safflower is ready to harvest about 50 - 60 days after the 

peak of flowering at optimum temperature (Kaffka and Kearney,1998) when 

most of the later leaves have turned brown and only a very little green remains 

on the bracts of the latest flowering heads. Seed should rub free of the least 

mature heads and it is usually harvested using a small grain combine (Berglund  

et al., 2007). 

 Depending on the types of fatty acids in the oil, two different types of safflower 

have been recorded and characterized by the fatty acid content; oleic safflower 

contains high amount about 77% oleic acid and linoleic safflower contains  

about  77% linoleic fatty (Kaffka and Kearney, 1998).   
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Table 1.1. Typical fatty acid composition other edible grade specifications of linoleic 

and oleic safflower types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic  Linoleic safflower Oleic safflower 

Fatty acid   

C16 Palmatic% 5.0 5.0 

C18 Stearic % 5.2 2.0 

C18: 1 Oleic% 15.0 77.0 

C18:2 Linoleic% 77.0 15.0 

C18 : 3 Linolenic <1.0 <1.0 

Others: 0.7 1.3 

Free fatty acid as (oleic) 0.03 0.03 

Ioden value 144.0 92.0 

Peroxide value asshipment 0.1 0.1 

Refractive Index 1..474 1.690 
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Plate 1.1. Photographs illustrating safflower plant characteristics and growth 
stagedevelopments inside -: from left to right; rosette, stem elongation, branching, 

 budding and flowering stages. 
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1.6.2. Uses of safflower 
 

Safflower is a multipurpose oilseed crop which exhibits potential medical, 

pharmaceutical and cosmetic importance all over the world (Dajue and Mundle, 

1996; Smith, 1996). The following uses have been reported for safflower: 

1. Traditionally this crop was grown for its flowers for colouring and flavouring 

foods.  Flowers contain the water soluble yellow dye carthamidin (C16H20O11) 

and a water insoluble red dye carthamin (C21H22OH.H2O). These have been the 

source of yellow and red dye in the food and industries in Egypt and dye from 

safflower was used to colour cotton and silk in the 18th century in Italy and 

France (Dajue and Mundle, 1996). Recently, according to reviews by Emongor, 

(2010) these yellow and red pigments have been shown to be safe for cosmetic 

colourings such as face cream, shampoo, perfume or body lotion and hair 

cream. In Chinese medicine, flower petals have been used as a stimulant for 

blood circulation and phlegm, healing of fractures, contusions and strain and for 

various female maladies (Emongor, 2010) and some nutrients have been 

extracted from florets and have been used in treatments of many illnesses such 

as menstrual problems, cardiovascular diseases and pain associated with 

trauma as well as in tonic tea (Singh and Nimbkar, 2006). 

2. The seed is also a source of bird food and an oil source (Berglund et al., 

2007). Also seed has been used in medicine where the seed can be boiled and 

taken as a remedy for the problem in mensuration to increase blood flow and a 

mixture of ground safflower seed and mustard oil has been used to reduce 

rheumatic pain (Emongor, 2010). 
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3. Oil is used by both food producers and industry (Quiroga et al., 2001). Those 

varieties high in monounsaturated fatty acid (oleic acid) use as heat stable 

cooking oil for frying food items whilst those high in linoleic oil are valued as a 

drying agent in paints and varnishes because of non-yellowing characteristics 

impaired to paint (Berglund 2007). However, Safflower is currently grown mostly 

for its edible oil, considered as a favourable oil for human consumption due to 

high quantity (70-75%) of polyunsaturated (Linoleic acid) or mono-unsaturated 

fatty acid which play an important role in reducing cholesterol level in blood 

(Nimbkar and Singh, 2005).  Safflower oil can also be used in producing 

Biodiesel fuels in mixtures with other vegetable oils (Demirbaş, 2003). 

4. According to Emongor, (2010) a pharmaceutical company called symbiosis, 

in April 2007 created insulin from genetically modified safflower plant extracts. 

In India and Afghanistan the tea made from safflower foliage was used to 

prevent the abortion and fertility in women (Dajue and Mundle, 1996). Male 

sterility and dead sperm diseases have also been treated successfully using 

safflower dicotyledons. Dajue and Mundle, 1996).  Safflower whole plant can be 

grazed by livestock or stored as hay or silage, if cut at or just after the bloom 

stages (Berglund et al., 2007) and the nutrition value of silage and hay safflower 

has been found to be similar or better than oats and alfalfa (Smith, 1996), 

Sheep and cattle can also graze succulent safflower and stubble fields after 

harvest (Oelke  et al., 1992). 

5. The meal left after oil extraction is sometimes used as a protein supplement 

for livestock and poultry feed (Berglund et al., 2007) in common with many other 

oilseed crops such as rapeseed, soy and corn. The meal after oil extraction 

contains about 20% protein (Oelke  et al., 1992). 
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1.6.3. Origin and distribution  
 

Safflower is from the genus of Carthamus L. Which is a member of the Tribe 

Cynarea, subfamily Tubuliflorea and family Asteraceae The genus Carthamus  

has members  with 20, 22, 24, 44, and 64 chromosomes and include 25 species 

and sub-specie (Sehgal and Raina, 2011) of which only Carthamus tinctorius  

having 2n = 24 chromosomes is the cultivated type (Singh and Nimbkar, 2006). 

Safflower is believed to have originated in southern Asia and has been 

cultivated in India, China, Persia, and Egypt. During the middle Ages it was 

introduced in Italy, France and Spain and after the discovery of America, 

introduced to Mexico and Venezuela and Colombia by the Spanish. It was taken 

to U.S.A in 1925 from the Mediterranean region (Janick and Whipky, 2007) and 

the  weedy progenitors (n = 12) of cultivated safflower such as C. Flavescens 

Spring, C. Oxyacantha M.B. and C. palaestinus Eig, are widely distributed in 

these areas (Röbbelen et al., 1989). 

1.6.4. History and production 
 

Historically, the crop has been restricted to the Middle East part of Asia and 

Africa but over time it has also been adapted to the semi-arid climatic conditions 

of the western United States (Dajue  and Mundle, 1996) and its production in 

the Great Plains states began in 1927. Western Nebraska and eastern 

Colorado had the first commercial production, but now it has become a 

commercial crop in several Western states and on the Canadian Prairie. Fifty 

percent of the grown area in the  U.S.A is now located in California, but  North 

Dakota and Montana  also contribute to the domestic production followed by 

South Dakota, Idaho, Colorado and Arizona (Armah-Agyeman et al., 2002; 
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Oelke  et al., 1992). According to Smith and Jimmerson (2005) safflower 

production in the world increased steadily from the 1990s to 930,000 metric 

tons in 1997 but after that production decreased to only 604,157 metric tons in 

2004 as shown in Table (1.2). In comparison to other oil crops, it has remained 

as a minor crop around the world. However, recently interest in this crop has 

been rekindled (Singh and Nimbkar, 2006). It has been estimated that safflower 

is now being grown in over 60 countries in the world with half of the world’s 

production in India (Singh and Nimbkar, 2006; Singh et al., 2001). In Iran the 

area under cultivation has increased over the last few years and reached 10000 

ha during 2008 whereas it was 200 - 300 ha in 1997 (Omidi et al., 2009) and it 

is considered an important dependable oil crop in Iran where the crop is grown 

in dry areas and also in cropping systems in irrigated areas (Jalali et al., 2011). 

Interest in safflower has been renewed in the last few years in India (Nimbkar, 

2002) and in Turkey due to a growth in population and an increasing demand 

for oil (Istanbulluoglu, 2009a). In North America it has been ranked as one of 

the most superior oilseed crops (Johnston et al., 2002). Moreover, in many of 

the agricultural areas in the world, this crop is now grown for it is edible oil 

(McPherson et al., 2004). It has been concluded that there are three reasons for 

renewed safflower production around the world (1) The suitability of safflower 

for semi-arid region with a shortage rainfall (2) the demand of consumers for 

healthy oil with lower amounts of saturated fats (3) the industrial and medicinal 

uses of safflower flowers especially in China (Singh and Nimbkar, 2006). 
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Table 1. 1. World Safflower production historically. (Smith and Jimmerson, 2005) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Production in metric tonnes 

1993 815,165 

1994 901,443 

1995 877,064 

1996 903,870 

1997 930,091 

1998 653,036 

1999 869,181 

2000 689,556 

2001 607,620 

2002 601,332 

2003 671,485 

2004 604,157 
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1.6.5. Environment requirement 
 

1.6.5.1 Climate 

 

Safflower is a sun loving crop requiring long photoperiods, high temperature 

and bright sunny days in July and during early September to speed 

development. The plant requires dry atmospheric conditions and warm 

temperature during flowering for successful seed set. Safflower needs 2,200 

growing degree days to mature (2,200 growing heat units) (Berglund et al., 

2010) with a 120 day frost free growing season (Herdrich, 2001). However, 

emerging plants need cool temperature for rosette development and root growth 

with an average daily temperature of 15 - 20 0C and then higher temperatures 

during stem elongation (Dajue  and Mundle, 1996). 

1.6.5.2. Soil  

 

Deep, fertile, well drained loam soils with good water holding capacity is 

considered as the best for safflower. But when the rainfall quantity and 

distribution are adequate the plant can flourish in lower holder water capacity 

soils (Berglund et al., 2010; Berglund  et al., 2007; Herdrich, 2001; Oelke  et al., 

1992). It has the same tolerance to salinity as barley (Oelke  et al., 1992).  

1.6.6. Cultural practice 
 

 1.6.6.1. Sowing date 

 

In general, in the U.S.A safflower seed is sown in early spring, or whenever the 

soil temperature is above 40 0F crop, and needs 8 to 15 days to emerge. In 

early sowing plants take full advantage of the entire growing season and 
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delaying sowing to May increases the risk of autumn frost injury and diseases 

that reduce seed yield and quality (Berglund et al., 2010; Berglund  et al., 2007). 

In West Asia and North Africa, Iran and Turkey both winter and spring sowings 

are recommended,  but the winter sown crop is significantly higher yielding than 

the spring sown crop (Abdulhabip et al., 2004; Nikabadi et al., 2008; Omidi and 

Sharifmogadas, 2010; Uslu, 2003; Yau, 2007).         

1.6.6.2. Irrigation 

 

It is considered an important winter crop in some semiarid regions due to its 

drought tolerance because of its able to capture the water from depths up to 2.5 

- 3 m (Berglund  et al., 2007). However, fully irrigated winter crops increased 

seed yield by 4.05 t ha-1 and by 3.74 t ha-1 for fully spring irrigated crops 

(Istanbulluogh et al., 2009). 

1.6.6.3. Fertilization  

 

Safflower is considered an important oil crop particularly under low input 

conditions (Abbadi et al., 2008). The amount of nutrients needed for safflower 

depends on; yield goal, soil test results and the sequence of the crop in the 

rotation (Berglund  et al., 2007) and soil moisture availability and how much 

irrigation is supplied (Lyon et al., 1991). In general, in order to maximize both 

flower and seed yield in safflower 60N: 30 P2O5: 30K2O is recommended 

(Nimbkar, 2008). Nitrogen is the most important nutrient for safflower growth 

and productivity (Lyon et al., 1991). Recently, (Dordas and Siouls., 2008 and 

2009) demonstrated that nitrogen fertilizer modified physiological parameters, 



                                                                                                                                           Chapter 1    

                                                                        General Intrododuction 

40 
 

biomass accumulation and partitioning  and as a result the seed  yield 

significantly increased (for  more detail see ch 4). 

1.6.6.4. Crop rotation  

 

Safflower is the best crop in cropping systems for dry land conditions 

(Istanbulluoglu, 2009a). The use of cropping systems (i.e. rotation) is an 

effective way to achieve sustainable agriculture production system especially in 

dry land areas and improves soil physical properties and also helps to control 

weeds, pests and diseases (Quiroga et al., 2001) 

1.6.6.5. Diseases and their control 

 

Leaf spot Alternaria (Alternaria certainty), has symptoms of large, brown 

irregular spots on leaves and flower bracts and bacterial blight (Pseudomonas 

syringae) have similar symptoms, together these are the most serious disease 

under normal rainfall and prolonged periods of high humidity (Berglund et al., 

2007 Oelket al., 1992) and cause significant damage to photosynthetic tissues 

and consequently reductions in seed yield have been reported. The fungicide of 

Quadris (Azoxystrobin) is recommended for foliar application at the first 

flowering to control or suppress Alternaria leaf spot  and bacterial blight is only 

properly controlled by tolerant variety selection and the use of disease free seed 

(Berglund  et al., 2007). 

Safflower rust (Puccinia carthami) is very common but not a very serious 

disease, the seed can be treated. The planting of clean, disease free seed, the 

crop rotation system and field selection are important to control this disease in 
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the field (Berglund et al., 2007). Recently, it has been concluded that safflower 

is vulnerable to leaf spot disease caused by Cercospora beticola (Lartey et al., 

2005). Safflower, sunflower, lentil and pears are susceptible to white mold 

(Sclerotinia sclerotiorum) of canola and it is best not to follow this crop with 

safflower in a rotation (Berglund et al., 2007). 

1.6.6.6. Insect and other predators and their control 

  

There are a few insect pests that attack safflower and cause economic damage 

(Berglund 2007). However, recently the sensitivity of safflower to safflower fly 

(Acanthiophilus helianthi) has been studied in Iran and economic damage 

recorded under water stress conditions (Hatami et al., 2008). 
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1.7. Aims of the project 
 

The main aims of this study were to investigate the effects on safflower 

physiology, growth, seed yield and oil content 

  Water stress  

 Nitrogen fertilizer  

 Elevated CO2  

   Elevated CO2 x nitrogen 

 The objectives are described later in each of the relevant chapters.  

 

 



 

 

 

 

 

 

 

Chapter 2 

General Materials and Methods
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2.1. Plant material 

 

Safflower seed supplies were not able to be imported from Iraq for this 

investigation nor were seed companies able to provide reliable certified seed. 

As a consequence ‟Richters” Lemon Yellow variety (a non-certified variety) was 

obtained from Richter Seeds Ltd (herbal seed supplier) and was used 

throughout the investigations. For all experiments seeds were pre-germinated in 

an incubator in the dark with a 12 h diurnal temperature fluctuation of 23/12 0C 

until radicle emergence (3 days) before sowing in pots. 

2.2. Plant container description 

 

Pots of a required dimension were not available commercially and were 

therefore constructed from 11.4 cm diameter cylindrical polypropylene drainage 

pipe cut into lengths 30 cm high (Plate 2.1) and used as  previously reported 

(Nasser et al., 2008).  Each “pot” was placed into a graduated clear plastic 

beaker to form the base of the pot and so that the level of the drainage water 

could be monitored when necessary. 
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Plate 2. 1. Photograph to illustrate the pots and growth media (white colour standard 
perlite, dark colour are John Innes No.2 (left) and multi-purpose compost (right) used 

 in experiments. 

2.3. Growth media 

 

Two types of growth media (Plate 2.1) were used in the different experiments: 

2.3.1. John Innes NO. 2 loam based compost was used in the investigation of 

the effect of drought. However growing plants in this medium in the experiment 

investigating the effect of nitrogen (see chapter 4) resulted in necrotic plant 

symptoms which were attributed to an unknown effect of the compost. As a 

consequence the growing medium was changed to Perlite for the remaining 

experiments.  

2.3.2. Standard grade horticultural perlite (William Sinclair Horticulture Ltd) + 

hydroponic solution.  
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2.4. Hydroponic solution  

 

Two types of hydroponic solution were used. 

2.4.1. A standard hydroponics growth solution Vita link Max Grow (soft water) 

supplied by Grow-well Hydroponics Ltd http://www.growwell.co.uk/vita-link-max-

hydroponic-nutreint.html (nutrient details given in Appendix 1). This material 

was supplied in two parts (A & B) and diluted prior to mixing to avoid 

precipitation of some of the nutrients.  

2.4.2. Complete Hoagland’s solution minus nitrogen. In order to facilitate the 

Nitrogen dosing experiment a nitrogen free Hoagland’s solution had to be 

prepared using the following nutrient mix: (Hershey, 1995). 

Hoagland solution (per liter of nutrient solution) 

10 mL of 0.05 Μolar mono calcium phosphate .Ca (H2PO4)2 
200 mL of 0.01 Μolar calcium sulphate dehydrate CaSO4.2H2O 
5 mL of 0.5 Μolar potassium sulphate K2SO4 
2 mL of 1 Μolar magnesium sulphate Mgso4 
1 mL of Micronutrient stock solution (see below) 
2.4 mL of iron Chelate stock solution. 
 
Micronutrient  stock solution per litre: 
2.86 g Boric acid 
1.81 g Manganese chloride-4 hydrate 
0.22 g Zinc sulfate–7 hydrate 
0.08 g Copper sulphate 
0.02 g 85% Molybdic acid 
Diluted 1: 1000 the micronutrient stock solution to provide the following nutrient: 
Boron 0.5 mg L -1 
Manganese 0.5 mg L-1 
Zinc 0.05 mg L -1 
Copper 0.02 mg L-1 
Molybdenum 0.01 mg L-1  
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2.5. Enclosed CO2 chambers 

 

Controlled CO2 chambers were constructed from Lexan Ecell D polycarbonate 

sheets (Gilbert Curry Industrial Plastics Co Ltd) and located in a glass-house. 

The chambers were 60 cm x 60 cm x 140 cm (width x length x height) (Plate 

2.2). Two pipes were connected at the rear side of each chamber, one pipe 

delivered the air into the chamber, and the other one carried the air out in order 

to maintain air circulation inside each chamber. For CO2 elevated chamber, 

carbon dioxide was supplied using cylinders of compressed CO2 (BOC gases) 

coupled to an IRGA EurothermTM controller which pulsed CO2 from the bottled 

gas to a set point of  850 ppm in investigations of elevated CO2 (CH 5 & 6). 

According to the SRES  emissions scenarios reported in the Fourth Assessment 

of the IPCC working group III ‟ Mitigation of Climate Change” in 2007, the 

concentration of CO2 projected for year 2050-2080  ranges from 710855 p.p.m. 

and  from 855-1130 ppm for the period 2060-2090. Therefore the range of 850 

ppm was chosen to represent the CO2 enrichment use in this experiment. In 

investigating the interaction between elevated CO2 and nitrogen carbon dioxide 

was also supplied using cylinders of compressed CO2 (BOC gases) but coupled 

to an Eco Technics Evolution controller and sensor which replaced the 

Eurotherm controller. 

Exit pipes were reconnected to a single conduit pipe and vented to the outside 

of the glass-house using a constantly running extractor fan (computer cooling 

fan) which drew the air out of both elevated and ambient chambers. The conduit 

pipes were Superflex PU R Anti-abrasive which had an operating temperature 
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range between -40 0C and + 90 0C (Teign Flex, Heathfield Industrial Estate, 

Newton Abbot, UK). 

Holes were cut in the base of each chamber to accommodate 16 pots and to 

give the chambers sufficient headroom to accommodate the safflower plants 

through to flower development. 

TelairTM monitors were used to measure CO2, temperature and relative 

humidity inside the chambers at 6 minute intervals and data logged to HoboTM  

data loggers. Data were downloaded from the data loggers every 2 weeks using 

BoxcarTM software and then the required data exported to a Microsoft Excel file 

for manipulation. Over the whole growth period for each chamber the weekly 

average for each measured parameter was calculated. The calculated average 

data for CO2 or temperature of all chambers were then compiled into one chart. 

The relative humidity was monitored only in two chambers (1 elevated CO2 + 1 

ambient CO2). 

 

Plate 2. 2. Photograph to illustrate the enclosed CO2 chambers used in experiments. 
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2.6. Measurements taken 

 

2.6.1. Soil moisture content 
 

The soil water holding capacity was established for the John Innes NO.2, by 

irrigating two pots until full saturation and then allowing them to drain until 

drainage flow stopped and the pots weighed. The soil was then allowed to air-

dry in the glass-house and the weight measured periodically and Theta ProbeTM 

(Delta T Devices) readings taken. In this way it was possible to determine when 

soil water content reached 70% of the available water capacity which was taken 

as a re-watering threshold. Allowing pots to dry until the soil water availability 

reached 25% of the available water capacity was determined as severe drought. 

Plants were watered with 200 ml tap water in control (well watered) pots whilst 

draughted plants were watered with 50 ml tap water to maintain drought but not 

to kill plants. 

2.6.2. Stomatal conductance 
 

Plant stomatal measurements (drought effect) were taken using an AP4 

Porometer (Delta-T Devices) (Plate 2.3) .The basis of the method measures the 

amount of water evaporating from a plant leaf via stomatal pores into the 

atmosphere to change the relative humidity of a small cavity or cup inside the 

sensor head and converting this into a reading. This is compared with a 

calibration plate with holes of defined evaporation characteristics. Readings are 

expressed in units of seconds per cm2 of leaf area. A cyclical purging of the 

head cup using semi-dried air (by passing through a silica gel container) 

enabled a stable reading to be obtained before recording. 
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Plate 2. 3. AP4 Porometer (Delta-T Devices.) 

2.6.3. Chlorophyll fluorescence measurement 
 

Chlorophyll fluorescence was measured (drought effect) using a plant efficiency 

analyzer (PEA) (HansatechTM) (Plate 2.4). The basis of the method is to expose 

the leaf, after dark adaptation, to the illumination which the sensor unit provides 

as a pure red light with a peak wave length of 650 nm which is ready absorbed 

by chloroplasts. During measurement the PEA sensor unit was held over the 

light exclusion clip and the shutter opened and the ratio of variable fluorescence 

(Fv) to maximum fluorescence (Fm) was calculated automatically. The light 

level and recording interval were both selectable from the keypad via the status 

menu. During a recording the fluorescence received by the sensor unit was 

digitized in the control box and recorded. The instrument records a number of 

parameters automatically over a period of a few seconds; F0::is only observed 

when the first stable electron acceptor of photo system II, called QA, is fully 
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oxidized, Fm: is the maximum fluorescence value obtained for the saturating 

light and the electron acceptor QA is fully reduced (maximum excitation), Fv: 

which is the variable component of fluorescence and is obtained by subtraction 

from the Fm value and indicates that photochemical quenching at maximum 

capacity and Tm: is the time at which the maximum florescence occurs. 

Fv/Fm (this is a ratio which has been shown to be proportional to the quantum 

yield of photochemistry and indicates the state of net photosynthesis) was used 

in this study because is sensitive indication of plant photosynthetic state and 

plant health. 

A- Determination of required dark adaptation time 

20 plastic clips were placed on (20 independent) safflower leaves the shatter 

was closed and the measurement was taken for clips located in sequence 

from 1 to 40 minutes (approx.). Full light level was used in order to ensure 

the dark adaptation is enough in all light conditions. Results showed that the 

Fv/Fm ratio stabilized at 15 minutes showing that 15 minutes provides 

adequate dark adaptation for safflower. 

B- Selecting a saturating light level 

20 clips were placed on safflower leaves after 2 minutes the shutter was 

closed and after 15 minutes of dark adaptation measurements were taken at 

increasing light level between 10-100%. Results showed that the most 

stabilized value of Fv/Fm ratio of all leaves used was obtained by 80% level 

of light. 
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A measurement was taken in both the morning and afternoon by selecting 3 

plants randomly for each treatment in each replicate, the upper expanded 

leaves of the same age and position were selected then the leaves were 

dark adapted with plastic leaf clip for 15 minutes before the measurement. 

 

             Plate 2. 4. Plant efficiency analyzer (Hansatech) TM 

 

2.6.4. Supplementary radiation measurement  
 

Supplementary radiation to maintain a 12 h. Photoperiod was provided during 

the winter months in the glass-house using SonT 400W Sodium Vapor lamps. 

The photosynthetically active radiation (PAR) supplementation was measured 

on both sunny and cloudy days, using a PAR meter (Skye Instruments Ltd) and 

ranged between 800 - 1000 µmol m-2 s-1 at canopy height. 

During the winter months when it was dark i.e. at the beginning and the end of 

the day and when it was cloudy, the photosynthetic active radiation from the 

supplemental lighting on its own ranged between 180 - 280 µmol m-2 s. -1 
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2.6.5. Acidity/ alkalinity of Hoagland’s solution (pH) measurement 
 

Measurement of the pH of the Hoagland’s solution was taken using a pH meter 

electrode (Denver Instrument Company, USA) (Plate 2.5). The electrode was 

calibrated in standard buffer solutions with pH values of 4 and 7 before taking 

measurements and periodically between measurements. The electrode was 

immersed in the sample solution and gently stirred until a stable value was 

recorded. The pH for Hoagland’s was between (5.51 - 5.60) and for Hoagland’s 

minus nitrogen between (6.10 to 6.20). 

 

              Plate 2. 5. PH meter  and electrode (Denver Instrument Company, USA). 

 

2.6.6. Photosynthetic parameters 
 

The photosynthetic activity of the three top expanded leaves for three plants in 

each treatment within each replicate were measured at anthesis in experiments 

2, 3 and 4 (ch 4. 5 & 6) using an LCi Portable Photosynthesis System (ADC 

BioScientific, Herts. UK) (Plate 2.6). The lace was prepared for use with the 
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internal battery fully charged and the soda lime was checked to ensure it was in 

good condition; the plant leaf chamber (PLC) cable was plugged into the lake 

console connector, the air tube was placed outside of the glass-house and the 

jaws of the PLC were left open for half an hour before use to stabilize. The flow 

rate was set at 200 µmol SS-1 and stabilization of substomatal CO2 was used as 

a guide to settling time for analysis, this was taking about 20 - 40 seconds and 

the light unit was used at approximately 490 – 520 PAR. The equipment was 

used with the broad leaf (6 cm2) chamber with the spectral response from the 

lamp operated at 11 V DC. 

Three parameters are affected by the lamp unit: 

 Qleaf 

Qleaf effectively provides a measure of the voltage value for Q over the leaf area 

provided by the chamber in use, and whilst the light level was being adjusted, 

the Qleaf was seen to vary accordingly on the LCi display until the required level 

is achieved. The LCi allows the set level for Qleaf to hold for subsequent use in 

the calculation. The PAR sensor and adaptor are then removed from the 

chamber and subsequent leaf measurements made with the lamp settings held 

constant. 

Normally Qleaf = Q × Trw, where Trw is the transmission losses through the 

shield and window of the chamber. Trw = 1, Qleaf = Q. As the PAR sensor in the 

plane was positioned on the leaf surface, there were no transmissions losses to 

account for. 

 Trw 
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The Trw average for each type of chamber has been expressed as a fraction of 

the peak value, for safflower the broad chamber was used and for this chamber, 

Trw = 0.9. 

 H factor 

The energy absorbed by the leaf is given by Q × H factor, where the value for H 

factor quantifies the fraction of visible/infrared energy transmitted/absorbed by 

the leaf. Since Q was effectively measured at the site of the leaf and most of the 

infrared energy was removed by the IR absorbing filter built into the lamp unit, H 

factor is predominantly the conversion from incident quanta between 400 & 700 

nm to the radiant energy associated with a tungsten filament. Since this radiant 

energy is dependent on the filament colour temperature (Tc) as established by 

the voltage applied, the recommended Hfactors/voltage is 0.160 for lamp 

voltage 11V and Tc 3000K. 

Leaf measurement was made by enclosing the leaf in the leaf chamber. 

Measurement took up to 4 minutes to readjust to it is new microclimate. During 

this period CO2 & H2O gradually stabilised. After readings were stable a 

recording was taken. 

The system also measured leaf temperature, chamber air temperature, PAR 

and atmospheric pressure. The PAR at the leaf and the radiant energy balance 

of the leaf were calculated. 

Measured and calculated data were displayed on the LCD on the front panel of 

the console. By scrolling through the page keys the measured data was 
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displayed. The data either logged on a PCMCIA type 1 memory card or was 

sent directly to a dumb terminal via the RS232 serial link connector. 

The PC card, which is located in a special holder at the front of the unit, was 

removed by pressing the eject button and downloaded via a serial link to a PC. 

 

          Plate 2. 6. LCi Portable Photosynthesis System (ADC BioScientific Ltd. UK). 

 

2.6.7. Water use efficiency 
 

Instantaneous water use efficiency (WUE) was expressed on an economic yield 

basis by dividing the biomass production at both anthesis and harvest by the 

amount of water consumed during the relevant growing period (Conley et al., 

2001). 
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2.6.8. Plant morphology, dry weight measurements 
 

The plant height was measured for each plant using a ruler, from the point on 

the stem at the soil surface to the point of the apical meristem, to the nearest 

centimeter. Leaf number was counted as all fully expanded leaves on the main 

stem and branches, and the total leaf area was measured at anthesis using a 

Delta-T image Analysis System (DIASTM ) (Plate 2.7). The basis of the method 

is that the device contains a camera which takes images of the leaves and 

measures their area. After calibration the leaves were flattened and placed 

under the focal plane of the camera and measurements taken through a 

computer interface and data stored electronically. LAI was calculated by 

dividing the total leaf area by the surface area of the pot (Breda, 2003). 

 

    Plate 2.7. Plant leaf area meter, Delta-T image Analysis System (DIASTM ) 
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Harvested plants were separated into organs (stem + branch, leaf, capitula) and 

dried at 80 0C for 48h in a Gallenkamp drying oven until constant weight and 

weighed using an Oxford open top-pan balance and an average above ground 

biomass recorded. 

2.6.9. Chlorophyll content measurement  
 

Chlorophyll content of three sub-samples of leaves of three plants selected 

randomly from each treatment at anthesis was measured. The leaf samples 

were extracted with acetone 80% (v/v) and the amount of chlorophyll was 

determined using a spectrophotometer at wavelengths 645 and 663 nm (Porra, 

2002) 

Chlorophyll extraction 

1.1 g of safflower leaves (fresh weight) was placed into a clean mortar 

2. 40 mL of 80% (v/v) acetone added and the tissue were ground for about 5 

minutes using a pestle. 

3. The green liquid was carefully transferred to a Buchner funnel containing a 

pad of whatman No.1 filter paper. After filtering the grinding was repeated with 

another 30 mL aliquot of 80% acetone. After 3 to 4 minutes this was filtered and 

added the first extraction. 

4. Then the slurry was filtered into the flask containing the other filtrates. The 

mortar and sides of the funnel were rinsed with 10 mL of 80% acetone to 

ensure that all the chlorophyll is collected and the filtrated added to flask and 
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the final volume of the filtered was adjusted to 100 mL by adding additional 80% 

acetone.  

Chlorophyll determination 

The amount of chlorophyll was measured using a Heliosepiclon 

spectrophotometer (Unicam, UK) (Plate 2.8) and was set at wavelength 645 

and 663 nm which corresponded to the absorption spectra of Chlorophyll a and 

b extracted from the leaves. 

The optical density (D) of the chlorophyll extracted in a 10 mm cuvette with the 

spectrophotometer set at 645, 663 and 652 nm was recorded against an 80% 

acetone solvent blank. Then the amount of chlorophyll present in the extract 

was calculated on the basis of milligrams of chlorophyll per gramme of leaf 

tissue according to the following equations: 

mg chlorophyll a / g tissue = [ 12.7 ( D 663 ) – 2.69 ( D 645 )] × V/ 1000 × W 

mg chlorophyll b / g tissue = [ 22.9 ( D 645 ) – 4.68( D 663)] × V/ 1000 × W 

mg total chlorophyll / g tissue = [ 20.2 ( D 645 ) + 8.2 ( D 663)] × V/ 1000 × W 

mg total chlorophyll / tissue = D652 × 1000 / 34.5 × v / 1000 x W 

D: The optical density reading of the chlorophyll extract at the specific indicated 

wavelength. 

V: the final volume of the 80% acetone – chlorophyll extract  

W: the fresh weight in gramme of the tissue extracted. 
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                  Plate 2.8. Heliosepiclon spectrophotometer (Unicam, UK). 

 

2.6.10. Nitrogen determination of plant parts by Kjeldahl 
 

At anthesis the nitrogen content of different plant organs was determined using 

Kjeldahl apparatus, Gerhardt, UK Ltd (Bremner, 1996) (Plate 2.9). The basis of 

the method is the digestion of the sample in strong sulphuric acid in the 

presence of a catalyst such as sodium sulphate and copper converts the 

nitrogen compound to ammonium sulphate. The ammonium content in digestion 

mixture will dissolve and by distillation the amount of ammonia distilled off 

calculated, and hence the amount of nitrogen determined. 

The following steps were followed in conducting the analysis: 

1. Digestion: the dried plant materials were weighed and the samples placed 

into a digestion flask. One sodium sulphate and copper catalyst tablet was 

added. Then the tubes were put in a digestion block for 3 - 4 h where the tubes 
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were heated gradually up to 370 0C and left at this temperature to reflux for 30 

minutes and then allowed to cool. 

2. Distillation: the digestion solutions were transferred under the fume cupboard 

to 50 mL volumetric flasks and thoroughly mixed with distilled water to a 50 mL 

volume. The samples were still warm and were left to cool down for a while, and 

then the reduced volume was made up again with distilled water to the 50 mL 

mark and then samples were transferred to 50 mL sealable plastic tubes which 

were kept in the fridge to be analysed later when the flow injection analyser was 

available. 

3. Titration: Bran and Luebbe Auto analyser 3 (flow injection analyser) was used 

to analyse the samples for nitrogen concentration. Values were given in mg L -1  

and nitrogen content as g 100 g -1  of the sample dry material calculated as 

follows: 

N content (g100g -1) = 50 x N concentration (mg L -1) sample dry weight g/1000. 

The principle of the Auto analyzer operation is that the instrument operates a 

method known as continuous air segmented flow analysis. An auto sampler is 

filled with samples, standards and quality controls and the order of analysis is 

programmed into the computer. A peristaltic pump continuously pumps the 

entire reagent and the samples from the auto sampler into the chemical 

manifolds. In the manifolds the samples and reagents are mixed and treated 

according to the method protocols. On leaving the chemical manifolds the 

samples are passed through a colorimeter and their absorbance is measured at 
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a specific wavelength. The computer then compares this to the calibration curve 

and calculates the concentration of the analyses in the sample. 

 

Plate 2.9. Kjeldahl Apparatus (Gerhardt UK Ldt); Distillation unit – vapodestso and 

Digestion Block – Kjeldatherm. 

2.6.11. Seed oil content 
 

Two types of equipment were used in conducting the analysis of seed oil 

2.6.11.1. Soxhlet analysis  

 

The oil content was determined following the official AOAC method. The 

homogenized dry seed was extracted with petroleum ether using a Soxtherm 

model 41× for 87 min.  

The following steps were followed in conducting the analysis: 

1. A pinch of anti-bumping granules was placed into each beaker. 
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2. Samples were weighed into the thimbles and the thimbles were plugged with 

cotton wool. 

3. Thimbles were placed into the unit by fixing the No3 mental adapters to the 

magnetic ring at the bottom of each condenser, then samples were raised up by 

pressing the arrow button, (2nd from right on the bottom panel. 

4. 140 ml of 40-60 petroleum ether was added to each beaker then the beakers 

were placed on the Soxtherm. 

5. The plastic screen was closed and the machine was run through the program 

with pre-set boiling and rinsing times. 

6. The Soxtherm extraction unit was switched on and the tap water connected 

to the condensers turned on. 

7. Program temperature was set on 150 0C for petroleum ether and rinsing time 

determined (Table 2.1). 

8. When the run had completed the beakers were transferred into a pre-

weighed round bottom flasks and the petroleum ether evaporated using a rotary 

evaporator and the flasks reweighed and the oil content expressed as a 

percentage of dry weight (w/w). 
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            Table 2.1. Program details used in the analysis. 

Running temperature for  Petroleum ether 150 0C 

Temperature limit 200 0C 

Hot extraction 30 minutes 

Evaporates A 4Χ 15 ml 

Rinsing time 45 minutes 

Evaporation B 3Χ 15 ml 

Evaporation C Nil 
Reduction interval 4 minutes 
Pulse 3 seconds 

 

2.6.11.2 Soxhlet extractor 

The homogenized fresh extracted with chloroform: methanol (2:1, v/v) using 

Soxtec system manual 1000 7414, Rev, 3.0. (Stirling University). Total lipids 

were prepared according to the method of Folch et al., (1957) and non-lipid 

impurities were removed by washing with 0.88% (w/v) KCl. The weight of lipids 

was determined gravimetrically after evaporation of solvent and overnight 

desiccation under vacuum. 

The following steps were followed in conducting the analysis: 

1. 0.5-3 g of homogenized fresh samples was weighed into an extraction 

thimble and the weight were record taken to 4 decimal places on LM003. 

Approximately the same weight of Colette or kieselguhr, added and mixed 

thoroughly with a spatula and covered with a wad of cotton wool. 

2. Extraction cups were weighed (containing 5 -10 glass balls) for each thimble 

(W1) and recorded to 4 decimal places on a LM003 balance. 
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3. The Soxtec extraction unit was switched on and the tap water connected to 

the condensers turned on. 

4. Program temperature was set at 160 0C for chloroform: methanol (2:1, v/v). 

5. The thimbles were placed into the unit by fixing the metal adapters to the 

magnetic ring at the bottom of each condenser, then samples were raised up by 

pressing the arrow button, (2nd from the right on the bottom panel). 

6. The cups were placed into the holder then half filled with 80 ml of chloroform: 

methanol (2:1, v/v) and placed on the metal plate underneath the condensers. 

The plastic screen was closed, and the machine was run through the program 

with pre-set boiling and rinsing times. 

7. When the run had completed the cups were removed by raising the plastic 

screen and pressing the arrow button. 

8. The cups were placed in the drying oven at 100-105 0C for between 1- 2h. 

Then the cops were allowed to cool in a chemical desiccator over the fresh 

silica gel and reweighed after 1h. The oil content was calculated as % lipid= w2 

- w1/ sample weight x 100. 

2.6.12. Fatty acid composition  
 

Fatty acid methyl esters (FAME) were prepared by acid-catalyzed 

transesterification of total lipids according to the method of Christie, (2003). 

Extraction and purification of FAME were performed as described by Ghioni et 

al., (1996). FAME was separated by gas-liquid chromatography using a Thermo 
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Fisher Trace GC 2000 (Thermo Fisher, Hemel Hempstead, UK) equipped with a 

fused silica capillary column (ZBWax 60m x 0.32 x 0.25 mm i.d.; Phenomenex, 

Macclesfield, UK) with hydrogen as a carrier gas and using on-column injection. 

The temperature gradient was from 50 to 150 0C at 40 arc min-1 and then to 195 

0C at 1.5 arc min-1 and finally to 220 0C at 2 arc min-1. Individual methyl esters 

were identified by reference to published data (Ackman, 1980). Data were 

collected and processed using the Chromcard for Windows (version 2.00) 

computer package (Thermoquest Italia S.p.A., Milan, Italy). The following steps 

were followed in accomplishing the analysis: 

1 mg of lipid placed into a 15 ml Quick fit test tube and 17:0 free fatty acid 

standards (Heptadecaenoic acid) added at 10% of the total lipid mass. The 

organic solvent evaporated off at the nitrogen evaporator. 

1. Added 2 ml of the mutilation reagent (1% (v/v) solution of sulfuric acid in 

methanol. 

2. The tubes were flushed with nitrogen and stoppered with a piece of paper to 

prevent the stopper blowing out when the tub is heated. 

3. The tubes incubated overnight (min 16 h, max 18h) at 50 0C in the hot-block 

then cooled to room temperature. The tissue or paper removed and 2 ml of 2% 

KHCO3, added 5 ml of ISO-hexane: diethyl ether (1:1, v/v) + 0.01 % (w/v) BHT. 

4. The tubes were gently shaken to mix the content and then centrifuged at 350-

400 G for at least for 2 min. 
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5. The upper organic layer was transferred to another clean test tube using a 

Pasteur pipette and a further 5 ml is hexane: dithylether (1:1, v/v) added to the 

original tube mixed and centrifuged as in 8:8 and 8:9 and the upper layer 

transferred as before. The solvent was evaporated on the nitrogen evaporator. 

6. The crude FAME was re-dissolved in 100 µL of ISO-hexane and mixed. 

7. Methyl esters were purified by TLC on 20 x 20 cm plate. The samples were 

loaded on to the TLC plates using a glass Hamilton syringe (rinsed the syringe 

with ISO-hexane between samples). The plate then chromatographed in ISO-

hexane: diethyl ether: acetic acid (90:10:1, v/v) up to 1 - 15 cm from the top of 

the plate. 

8. The plates were then removed from the tank and the solvent allowed 

evaporating in the fume cupboard. 

9. The plates were sprayed with 1% (w/v) iodine in chloroform to visualize the 

fumes. The outer origins of the plate were masked off with blank glass plates so 

that only the very outer edge of the bands was exposed. This section was then 

sprayed lightly with iodine using the atomizer pump. The FAMEs band clearly 

marked with pencil. The saturated and mono saturated fatty acids are in the 

upper band and polyunsaturated fatty acids in the lower band. Then the bands 

scraped from the TLC plate into test tubes using a straight edged scalpel blade.  

10. FAMEs were eluted from the silica with 10 mL of iso-hexane: diethyl ether 

(1:1, v/v) + 0.001% (w/v) BHT. Then mixed and centrifuged as before to 

sediment the silica. Carefully the solvent was removed to a clean small test tube. 
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11. The solvent was evaporated on the nitrogen evaporator and the samples 

transferred to 2 mL glass vials in 0.5-1 mL of iso-hexane, evaporated to dryness 

and re-dissolved in iso-hexane + 0.01% (v/v) BHT to concentration of 1 mg mL-1. 

The FAMEs were stored under nitrogen or argon at -18 0C or less until GLC 

analysis. 

12. After the analysis was completed the results from the GLC were obtained as 

a weight percent fatty acid composition. 

2.7. Statistical analysis 

 

Statistical analyses of data were performed using Minitab v.15 using two-way 

ANOVA. Significant differences between treatments were determined using 

least significant differences (L.S.D) at the 0.05 level. Pearson correlations were 

carried out using SPSS v.19 and significance examined at the 0.05 and 0.01 

levels. 

For the last experiment (the interaction effect between elevated CO2 and 

nitrogen) statistical analysis of data were performed using Minitab v.16 using 

nested ANOVA (split plot design). Significant differences between treatments 

were determined using least significances (L.S.D) at the level 0.05.  

All graphs were plotted using Microsoft Excel 2010, and the lines fitted with a 

2nd order polynomial.  All data were tested for normality distribution at p ≤ 0.05 

using Minitab Basic statistics which showed the data were normally distributed 

and did not require transformation. All data analyses in this thesis were 

performed on a per plant basis. 
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3.1. Introduction  

 

The drought is considered to be one of the major environmental stresses for 

land loss and reduced crop yield, and together with salinity is responsible for a 

predicted reduction in average yield of up to 50% by the year 2050 as a result of 

associated climate change events (Wang et al., 2003). Therefore, many efforts 

have been made towards the identification of the choice of crops or varieties 

suitable for dry land conditions (Öztürk et al., 2008) and the interest in safflower 

has been renewed. As an oilseed crop that is well adapted to arid and semi-arid 

regions of the world (McPherson et al., 2004), safflower is resistance  to drought 

due its deep tap root (Bassiri et al., 1977) and coupled with the suitability of its 

oil for many purposes (Berglund et al., 2010) safflower is a candidate species 

under drought conditions. 

In general, the effect of drought stress is usually manifested as a decrease in 

photosynthesis and growth at the whole plant level (Yordanov et al., 2000). 

Stomatal closure is the one of the first physiological responses to drought which 

affects the leaf water status and transpiration rate (Kang et al., 2002b) with 

drought reducing stomatal conductance leading to a limitation of CO2 diffusion 

into the leaf and thereby into  the chloroplast and as a result photosynthetic rate 

will be reduced (Medrano et al., 2002). Non-stomatal limitation of 

photosynthesis has also been observed  such as metabolic impaired adenosine 

triphosphate (ATP) and decreased ribulose bisphosphate (RuBP), eventually 

affecting the activity of photosystem under severe drought in C3 crop species  

(Flexas et al., 2002). However, water stress had no effect on the variation of the 

maximum fluorescence ratio (Fv/Fm) indicating that drought had no effect on 

the primary photochemistry of PSII in many C3 crops including oil seeds such as 



              Chapter 3    

The effect of drought on the physiology, growth, yield and seed oilcontent of safflower 

71 
 

sunflower (Helianthus annus L.) (Cornic and Fresneau, 2002; Pankovic et. al. ; 

Pastenes et. al., 2005; Subrahmanyam et al., 2006) and it has been shown that 

PS II is quite resistant to water stress (Shangguan et al., 2000a). The response 

of plants to drought conditions is determined by the duration of the drought 

(Bray, 1997), the degree of water stress and the critical stage of growth (Aiken 

and Lamm, 2006). 

In spite of the ability of safflower to survive under dry and hot conditions, and its 

potential as an oil seed crop for low rainfall areas (Öztürk et al., 2008) it is still 

likely to be affected by drought but such response is not reported widely in the 

literature. Islam, (2011) has recently reported drought induced physiological 

modification in five safflower genotypes via reduction in stomatal conductance, 

relative leaf water content, and osmotic adjustment when water stress was 

imposed from 80% flowering to maturity (terminal drought) and as a result seed 

yield seed oil content decreased with significant differences among genotypes. 

Further, water deficit has been reported to  decrease the maximum quantum 

yield of PSII photochemistry (Fv/Fm) ratio in six safflower genotypes at both 

heading and pollination stages, with a maximum evaporation rate of 135 mm 

(among three evaporation rates: 75, 105 and 135 mm) and seed/ head and 

heads/plant decreased (Miladi and Ehsanzadeh, 2010). Water use efficiency  

(WUE) in safflower was increased with increase in the water supply at the 

vegetative stage in the winter growing season in Eastern India (Kar et al., 2007), 

and (Istanbulluoglu et al., 2009) stated that WUE only increased when plants 

were irrigated at the vegetative stage compared to when they were irrigated 

only at the seed filling stage in Turkey (winter sown crop). 
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In addition, Sharrifmoghaddasi and Omidi, (2010) concluded that safflower had 

a significant net assimilation rate (NAR) and LA when irrigated at all stages of it 

is grown, including emergence, stem elongation, bud formation, beginning of 

flowering, 50% flowering, end of flowering and as a result seed and oil yield 

significantly increased under rain fed conditions. It has been indicated that pre 

antithesis translocation of dry matter and stored nitrogen is crucial to produce 

high yields under Mediterranean climatic conditions (Koutroubas et al., 2004). 

However, the stages of flowering and seed filling were considered as the critical 

stages for irrigation of safflower to produce viable seed and oil yields 

(Sharrifmoghaddasi and Omidi, 2010). In semi-arid and Mediterranean 

environments, late sowing of spring safflower led to a lower seed yield due to 

the later flowering coincides with the terminal drought and extreme heat (Yau, 

2007). Moreover, a negative effect of drought on safflower seed yield and seed 

oil content have been frequently reported under similar conditions with some 

significant differences in respect to genotypes. The number of capitula per plant 

and numbers of seed per plant and numbers of seed per capitulum were the 

important yield component of safflower determining the response to drought 

(Abel and Driscoll, 1976; Steer and Harrigan, 1986) and  these traits decreased 

under water deficit (Eslam, 2011; Ferasat et al., 2008; Miladi and Ehsanzadeh, 

2010; Pasban Eslam and Sadeqi, 2008). Also seed and oil yield have been 

strongly correlated to stem height under drought in safflower (Bagheri, 2011b).  

Safflower response to water stress in the field may be different to that under the 

experimental pot grown conditions and there are no reports in the literature on 

the effect of water stress on safflower grown in pots. This investigation reports 
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the results of a detailed study to investigate the effects of drought on the growth, 

physiology and yield of safflower grown in pots in the glass-house. 
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3.2. Aim 

 

To evaluate the effect of drought on safflower physiology, growth performance, 

seed yield and oil content. 

3.3. Objectives 

3.3.1. Objective 1 
 

Examine the physiological response of safflower to drought via an investigation 

of stomatal conductance and chlorophyll fluorescence. 

3.3.2. Objective 2 
 

Investigate the effect of drought on safflower growth in term of stem height, leaf 

number and dry matter accumulation in different plant organs. 

3.3.3. Objective 3 
 

Assess the seed oil content of safflower with respect the effect of stage of 

imposing drought.  
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3.4. Materials and Methods 

3.4.1. Experimental design and measurements taken 
 

The experiment was carried out in a semi-controlled glass-house during the 

year 2009 located at Plymouth University, UK. The experimental design was a 

randomized block with four replicate comprising of 48 pots filled with John Innes 

NO.2 loam based compost. The treatments consisted of four watering regimes: 

1. Control, where all pots well watered, 2. Mid-season drought which 

commenced 20 days after planting at the rosette stages, 3. terminal drought 

which commenced after 60 days from planting during stem elongation and 4. 

Mid-season + terminal drought from rosette stage through to harvest. 

The amounts of water for well watered and drought regimes were established 

on the basis of the available water capacity of the compost as described in 

chapter 2. Air temperature was logged using a TinyTagTM data logger. Mean 

weekly maximum and minimum temperatures during growth period are 

presented in Figure 3.1. 

 



              Chapter 3    

The effect of drought on the physiology, growth, yield and seed oilcontent of safflower 

76 
 

 

Figure 3.1. Weekly mean maximum and minimum temperatures during the  

        growing period from March to August 2009.   

   

Leaf stomatal conductance was measured (see ch 2) at weekly interval. The 

best time of day for taking measurements was established by taking hourly 

readings from 07:00 until 19:00 for the upper expanded leaf for 6 plants in each 

replicate and each treatment. Results showed that the high transpiration rate 

occurred in the morning between (09:00 and 11:00) and then declined steadily 

in the afternoon for both well watered (control) and drought treated (Figure 3.2). 

Droughted plants tended to have a lower transpiration rate throughout the 

afternoon period and this typically reflected an imbalance in transpiration losses 

at the leaves and water uptake from the roots. 



              Chapter 3    

The effect of drought on the physiology, growth, yield and seed oilcontent of safflower 

77 
 

       

Figure 3. 2. Mean stomatal conductance in the upper leaf of safflower plants 

     through the day. 

 

Given the results presented in Figure 3.2 and in order to make comparisons 

across treatments it was decided that stomatal conductance would be 

measured throughout the experiment at two times in the day between 09:00 to 

11: 00 in the morning and again in the afternoon from 16:00 to 18:00 on the day 

after the application of irrigation. 

Measurements were taken for three plants for each treatment in each replicate. 

The upper most fully expanded leaves of the same age were selected. In this 

way, different leaves were measured each time until branching and then on the 

same leaves each time. Chlorophyll fluorescence was measured during the 

growing period at weekly interval (one day after each stomatal measurement) 

(see ch 2). The days to 50% flowering were recorded. At harvest the plant stem 

height was determined and number of leaves, branch number, capitula number 

and seed number counted. Plants organs were dried weighed. The seed were 

weighed using an Oxford closed top balance and then placed in a -20 0C 

freezer for 48 h and then dried by freeze dryer at - 44 0C for about 1 h to 
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constant weight. Oven drying of seed was not practiced due to potential 

volatilisation of oils and lipids. The determined weight loss was taken as 

moisture. The samples were then ground using a pestle and mortar in 

preparation for oil analysis (see ch 2). Harvest index was determined by dividing 

seed yield by total biomass (biological yield).  
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3.5. Results 

3.5.1. Stomatal conductance 
 

During the experiment the stomatal conductance of control plants significantly 

(p ≤ 0.05) declined with increasing maturity when measured during the morning 

at the peak of stomatal conductance (Figure 3.3, Table 3.1 and Table 3.2). 

Initially there was a small but steady decline in stomatal conductance during the 

late rosette period but this was followed by a steep decline during stem 

elongation before returning to a steadier but the lower stomatal conductance 

until maturity. The reasons for this decline are not entirely clear but the rapid 

decline occurred at the same time as rapid stem elongation during which times 

leaves continued to appear. After stem elongation (70 days) measurement of 

stomatal conductance could be made on the same leaf each time and therefore 

the later stomatal conductance (70 - 115) days and the subsequent decline is 

probably due to a leaf age related stomatal closure competency effect. 

The imposed drought had the effect of reducing mean stomatal conductance 

below that of the control as shown in Figure (3.3) and Table (3.1). This is 

demonstrated more clearly in Figure (3.4) when the control data is subtracted 

from drought data to give the differences values (“delta conductance”). When 

drought was applied early (mid-season drought) it caused a big drop in stomatal 

conductance and was only 50% of the control by day 47 (Figure 3.3) about 

three weeks after imposing drought. In those pots where the mid-season 

drought was relieved (at about 60 days) the plants showed some recovery in 

stomatal conductance until 88 days (3 weeks later) when it was again the same 

as the control. When drought was applied late (terminal drought) it also reduced 
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stomatal conductance drastically (p ≤ 0.05) compared to the control and this 

reduction continued until maturity (Figure 3.3) 

 

                 Figure 3.3. Mean of stomatal conductance under different water regimes 

                  in the morning during growth period. 

 

 

 

 

      Figure 3.4. Mean of stomatal conductance differences from the control 

             in the morning during growth period. 

 

Mid-season 

drought 

Terminal drought 

Mid -season 

drought  

Terminal drought 
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Finally, when the drought was applied at both times (mid-season + terminal 

drought) it produced the lowest (p ≤ 0.05) recorded stomatal conductance of all 

plants.
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Table 3.1. Mean value of stomatal conductance mmol m-2 s-1(measured in the morning) under different water regimes during the  

  growth period showing significant differences within a measurement time period (i.e. within a column). 

 

Water regimes 

Days from sowing 

27 34 41 48 55 62 69 78 83 90 97 107 114 

Control 1.29 1.19 1.88 1.13 
a
 1.06 

a
 1.008 

a
 0.75 

a
 0.43 

a
 0.43 

a
 0.41 

a
 0.26 

 a
 0.40 

a
 0.33 

a
 

Mid-season 

drought 
1.19 1.19 1.20 0.95 

b
 0.64 

b
 0.52 

 b
 0.44

 b
 0.27 

b
 0.30 

b
 0.39 

a
 0.20 

b
 0.32 

b
 0.31 

a
 

Terminal drought 1.29 1.19 1.88 1.13 
a  

 1.06
 a
 1.008 

a
 0.57 

c
 0.28 

b 
 0.26

 b
 0.32 

b
 0.18 

b
 0.18 

c
 0.11 

b
 

Mid-season 

+terminal drought 
1.88 1.19 1.12 0.95 

b
 0.64 

b
 0.52 

b
 0.24 

d
 0.18 

b
 0.17 

c
 0.12 

c
 0.13 

c
 0.14  

d
 0.11 

b
 

P value 0.581 1.000 0.603 0.000 0.000 0.000 0.000 0.007 0.001 0.000 0.000 0.000 0.000 

L.S.D at 0.05 N.S N.S N.S 0.022 0.040 0.060 0.13 0.11 0.08 0.06 0.04 0.06 0.059 

*Means followed by the same letter within the column are not significantly different at 0.05 levels
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Table 3.2. Mean value of stomatal conductance mmol m-2 s-1 (measured in the morning) under different water regimes during the  

growing period showing significant differences over time within a treatment (i.e. within a row). 

*Means followed by the same letter within the rows are not significantly different at 0.05 leve

Water regimes 

Days from sowing 

27 34 41 48 55 62 70 77 84 93 100 107 114 P 
L.s.D 

at 0.05 

Control 1.29 
a
 1.19 

a
 1.18 

b
 1.13 

b
 1.06 

b
 1.008 

b
 0.75 

b
 0.43 

c
 0.43 

 c
 0.43 

c
 0.27 

d
 0.40 

c
 0.33 

d
 0.000 0.12 

Mid-season 

drought 
1.19 

a
 1.19 

a
 1.12 

a
 0.95 

a
 0.64 

b
 0.52 

c
 0.43 

d
 0.27 

e
 0.30 

e
 0.30 

e
 0.20  

e
 0.35 

e
 0.31 

e
 0.000 0.12 

Terminal 

drought 
1.29 

a
 1.19 

a
 1.19 

a
 1.13 

a
 1.06 

a
 1.008 

a
 0.57 

b
 0.28 

c
 0.26 

c
 0.26 

c
 0.14 

d
 0.18 

d
 0.11 

d
 0.000 0.11 

Mid-season 

+terminal 

drought 

1.19 
a
 1.19 

a
 1.12 

b
 0.95 

b
 0.64 

c
 0.32 

c
 0.18 

d
 0.17 

d
 0.17 

d
 0.17 

d
 0.13 

 d
 0.14 

d
 0.11 

d
 0.000 0.10 



              Chapter 3    

The effect of drought on the physiology, growth, yield and seed oilcontent of safflower 

84 
 

A similar pattern was shown for the stomatal conductance in the afternoon 

although overall, stomatal conductance at this time was a lot lower than in the 

morning. For control plants the mean stomatal conductance again significantly 

declined with increasing maturity (Figure 3.5, Table 3.3 and Table 3.4). There 

was a steady decline during the early equivalent period for the mid-season 

drought before it then returned to a slightly reduced level until day 115. 

 

            

 

      Figure 3.5. The mean of stomatal conductance under different water regimes 

         in the afternoon during growth period. 

Mid- season drought Terminal drought 
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Drought again had the effect of reducing the mean stomatal conductance below 

that of control (Figure 3.5. Table 3.3 and Table 3.4). When early (mid-season 

drought) was applied stomatal conductance was significantly (p ≤ 0.05) reduced 

by about 50% at 41 days after sowing. After 63 days the plants recovered after 

re-watering, but there was a steady fluctuation until 95 days when it was again 

the same as control. 

Stomatal conductance was drastically (p ≤ 0.05) reduced when late (terminal) 

drought was applied and this reduction continued in a steady manner until day 

115. 

The lowest value of stomatal conductance was recorded with the full drought 

treatment (both mid-season + terminal drought). 
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Table 3.3. Mean value of the stomatal conductance mmol m-2 s-1    for each water regimes during growing period in the afternoon showing 

 significant difference within a time period (i.e. within column). 

*Means followed by the same letter within the column are not significantly different at 0.05 levels.  

 

 

Water regimes 

Days from sowing 

27 34 41 48 55 62 70 77 84 93 100 107 114 

Control 0.40  0.35  0.35  0.39 
a
 0.31 

a
 0.32 

a
 0.26 

a 
 0.25 

a
 0.18 

a
 019 

a
 0.18 

a
 0.18 

a
 0.16 

a
 

Mid-season 

drought 
0.41 0.35 0.35 0.35 

b
 0.16 

b
 0.13 

b
 0.20 

 b
 0.16 

b
 0.12 

b
 0.17 

a
 0.16 

b
 0.16 

b
 0.14 

b
 

Terminal drought 0.45 0.35 0.35 0.39 
a
 0.31 

a
 0.32 

a
 0.24 

b
 0.14 

b
 0.07 

b
 0.09 

b
 0.14 

b
 0.14 

b
 0.083 

b
 

Mid-season 

+terminal drought 
0.40 0.35 0.35 0.35 

b
 0.16 

b
 0.13 

b
 0.12 

c
 0.95 

c
 0.06 

b
 0.08 

b
 0.058 

c
 0.058 

c
 0.078 

c
 

P value 0.104 0.998 0.998 0.066 0.000 0.000 0.005 0.005 0.038 0.042 0.017 0.007 0.017 

L.S.D. at 0.0 5 N.S N.S N.S 0.026 0.021 0.069 0.060 0.060 0.092 0.078 0.066 0.13 0.051 
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Table 3. 4.Means value of the stomatal conductance mmol m-2 s-1 for each water regimes during growing period in the afternoon showing 

 significant differences over time within a treatment (i.e. within a row). 

   *Means followed by the same letter within the rows are not significantly different at 0.05 levels. 

Water regimes 

Days from sowing 

27 34 41 48 55 62 70 77 84 93 100 107 114 P L.S.D 

Control 0.40 
a
 0.35 

a
 0.35 

a
 0.39 

a
 0.31 

b
 0.32 

b
 0.24 

b
 0.26 

b
 0.25 

b
 0.18 

c
 0.19 

c
 0.18 

c
 0.16 

c
 0.000 0.073 

Mid-season 

drought 
0.41 

a
 0.35 

a
 0.35 

a
 0.39 

a
 0.16 

c
 0.13 

c
 0.20 

c
 0.28 

b
 0.16 

c
 0.12 

c
 0.17 

c
 0.16 

c
 0.14 

c
 0.000 0.069 

Terminal 

drought 
0.45 

a
 0.35 

a
 0.35 

a
 0.39 

a
 0.31 

a
 0.32 

a
 0.24 

b
 0.24 

b
 0.14 

b
 0.07 

c
 0.088 

c
 0.14 

b
 0.083 

c
 0.000 0.072 

Mid-season 

+terminal 

drought 

0.40 
a
 0.35 

a
 0.35 

a
 0.35 

a
 0.16 

b
 0.13 

b
 0.12 

b
 0.12 

b
 0.095 

c
 0.06 

c
 0.80 

c
 0.06 

c
 0.08 

c
 0.000 0.053 
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3.5.2. Chlorophyll fluorescence 
 

The maximum quantum yield of PSII chemistry when measured in the morning 

for control plants was constant from sowing and from 42 to 65 and 69 days 

(Figure 3.6, Tables 3.5 and 3.6) with a Fv/Fm ratio value of approximately 0.80 

± 0.03. It then declined substantially at day 65 and day 74 but recovered back to 

approximately 0.75 for the rest of the experiment. The reasons for this sudden 

decline are not entirely clear but high temperature inside the glass-house 

(above 40 0C) might be responsible for the decline in this period. Exceptionally 

high temperature themselves may have been responsible for the decline or 

associated increased stomatal closure and transpiration rate may have 

accentuated a drought effect. 

None of the three water stress treatments had any significant (p ≥ 0.05) effect 

on Fv/Fm ratio until 65 days from sowing when there was a small but significant 

(p < 0.05) reduction for terminal and mid-season + terminal drought compared 

with the control. The pattern of results was similar when measured in the 

afternoon (Figure 3.7 and Table 3.6) showing the same reduction at 79 and 93 

days but in contrast to the morning measurements this recovered and remained 

low until 107 days. Small but significant reductions associated with terminal and 

mid-season terminal drought were also evident. 
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Figure 3.6. Means ratio of variable fluorescence (Fv) to maximum fluorescence (Fm) 
under different water regimes in the morning during growth period.  Vertical bars  

  are standard error of the mean (n= 12) at 0.05 levels. 

 

 

 

Figure 3.7.Means ratio of variable fluorescence (Fv) to maximum fluorescence (Fm) 
under different water regimes in the afternoon during growth period. Vertical bars are  

standard error of the mean (n= 12) at 0.05 levels. 
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Table 3.5. Mean value of the ratio of variable fluorescence (Fv) to maximum fluorescence (Fm) versus maturity under different water  

regimes in the morning during growth period. 

*Means followed by the same letter within the rows are not significantly different at 0.05 levels. 

 

 

 

Water regimes 

Day from sowing 

45 50 57 64 71 79 93 107 p L.S.D 

Control 0.81 
a
 0.82 

a
 0.83 

a
 0.78 

b
 0.54 

c
 0.32 

d
 0.79 

a
 0.82 

a
 0.000 0.03 

Mid- season 

drought 
0.79 

a
 0.78 

a
 0.82 

a
 0.78 

a
 0.53 

b
 0.31 

c
 0.81 

a
 0.80 

a
 0.000 0.03 

Terminal drought 0.81 
a
 0.81 

a
 0.82 

a
 0.77 

a
 0.46 

c  
 0.28 

d
 0.71 

b
 0.71 

b
 0.000 0.06 

Midseason+ 

terminal drought 
0.79 

a
 0.78 

a
 0.80 

a
 0.75 

a
 0.48 

b
 0.35 

b
 0.73 

a
 0.75 

a
 0.000 0.06 
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Table 3.6. Means value of the ratio of variable fluorescence (Fv) to maximum fluorescence (Fm) versus the maturity under different water 

regimes in the afternoon during growing period. 

 

*Means followed by the same letter within the rows are not significantly different at 0.05 levels.

Water regimes 

Day from sowing 

45 50 57 64 71 79 93 107 P L.S.D at 0.05 

Control 0.79 
b
 0.83 

a 
0.82 

ab
 0.82 

ab
 0.66 

c 
 0.36 

d
 0.39 

d 
 0.80 

a
 0.000 0.04 

Midseason drought 0.79 
c 
 0.83 

a
 0.82 

b
 0.82  

b
 0.64 

d
 0.35 

e
 0.40 

f
 0.80 

c
 0.000 0.01 

Terminal drought 0.68 
b
 0.82 

a
 0.81

a
 0.81 

a
 0.60 

c
 0.30 

d
 0.32 

d
 0.73 

b
 0.000 0.08 

Mid-season+ 

terminal drought 
0.71  

a
 0.80 

a
 0.80 

a
 0.80 

a
 0.80 

a
 0.62 

b
 0.31 

c
 0.35 

c
 0.000 0.07 
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3.5.3. Plant development, growth and seed yield at harvest 
 

The time from germination to 50% flowering was 105 days for well watered 

plant and this was similar to the plants subjected to mid-season drought and 

terminal drought. However for the mid-season drought time to flowering was 

reduced to 101 days. Plant morphology in term of plant height, leaf number, 

branch number and capitula number were significantly affected by drought. 

Plant stem height was significantly (p ≤ 0.05) affected by drought but there was 

no significant effect between mid-season and terminal drought on plant stem 

height. The smallest plants were observed under mid-season + terminal drought 

(Figure 3.8), also the extreme water stress (mid-season + terminal) significantly 

(p ≤ 0.05) decreased the leaf number as compared with control and other 

drought treatments (Table 3.7). 

Among the water stresses imposed mid-season drought had no significant 

effect on yield component (branch and capitula number) compared with the 

control. Well watered plants were superior in producing seed yield and all water 

stresses significantly reduced seed number compared with the control (p ≤ 0.05) 

with reduction under terminal and mid-season + terminal being greater 

compared with mid-season drought alone. 
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Table 3.7. Mean of plant development criteria and yield component number/plant, and plant organs dry weight (gpl-1) under different 
Water regimes at harvest. 

 *Means followed by the same letter within the column are not significantly different at 0.05 levels

Water regimes Leaf NO. Branch NO. 
Capitula 

NO. 
Seed NO. 

Stem  and branch 

dry weight  

Leaf dry 

weight 

Capitula 

dry 

weight 

 Fresh 

seed 

weight 

1000 

weight 

control 46 
a
 2 

a
 3 

a
 171 

a
 5.40 

a
 3.18 

a
 2.40 

a
 7.00 

a
 41 

 a
 

Midseason drought 42 
a
 2 

a
 3 

a
 88 

b
 4.05 

b
 2.00 

b
 1.63 

 b
 3.60 

b
 41 

a
 

Terminal drought 43 
a
 1 

b
 2 

 b
 18 c 3.98 

c
 2.70 

 a
 0.85 

c
 0.66 

c
 35 

b
 

Midseason+ terminal 

drought 
37 

b
 1 

b
 1 

c
 13 

 c
 2.33 

d
 1.50 

b
 0.95 

c
 0.44 

c
 34 

b
 

P value 0.012 0.000 0.002 0.001 0.000 0.007 0.005 0.001 0.000 

L.S.D  4.43 0.20 0.85 60 0.91 0.84 0.77 2.44 2.39 
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Plant growth, in term total above ground biomass was driven from above 

ground biomass except seed markedly affected by drought; shoot and branches 

weighed significantly less (p ≤0. 05) under water stress with similar values for 

terminal and mid-season drought (Table 3.7), whilst mid-season drought had 

more effect on stems and branches dry weight compared with the control. All 

water stress regimes significantly (p ≤ 0.05) reduced leaf weight by same 

amount compared with the control. For capitula dry weight a significant (p ≤ 

0.05) reduction was recorded only for terminal and mid-season + terminal 

drought plants compared to the control and mid-season drought. 

Seed set in this experiment was a problem and overall low seed set was 

recorded. However, seed set was in proportion to the treatments. All drought 

treatments had a significant (p ≤ 0.05) effect on seed dry weight (Figure 3.10). 

The greatest reduction was recorded for terminal and mid-season + terminal 

drought compared with mid-season drought alone. Despite this reduction in 

seed yield, 1000 seed weight was conserved with only small differences 

between treatments and only the mid-season + terminal drought had a 

significantly lower 1000 seed weight compared with the control (Table 3.7). All 

of the water stress significantly (p ≤ 0.05) decreased the above ground biomass 

(Figure 3.9), biological yield (seed dry weight/ above ground dry weight) (Figure 

3.11) and consequently decreased harvest index (Figure 3.12) compared with 

the control. 
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                   Figure 3.8.Mean of plant height under different water regimes. 

                      Vertical bars are standard error of the mean (n= 12) at 0.05 levels. 

 

 

 

 

 

 

           

 

 

 

 

 

 

 Figure 3. 9. Mean of above ground dry weight under different water 
regimes.Vertical bars are standard error of the mean (n= 12) at 0.05 
levels. 
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                    Figure 3.10. Meanof seed dry weight under different water regimes. 
                    Vertical bars are standard error of the mean (n = 12) at 0.05 levels. 

 

 

 

 

                     Figure 3.11. Mean of biological yeild  under different water regimes. 
                      Verticalbars are standard error of the mean (n = 12) at 0.05 levels .  
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                         Figure 3.12. Mean of harvest index under different water regimes.  
                          Vertical bars are standard error of the mean (n = 12) at 0.05 levels.   
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 3.5.4. Chemical analysis 
 

Due to insufficient quantities of seed obtained at harvest, only seed moisture 

content and gross oil content were carried out. The average oil concentration of 

dry seed is shown in Table (3.8) and was significantly decreased (p ≤ 0.05) by 

the drought treatments. The highest reduction occurred under terminal drought 

and with midseason + terminal drought. The seed moisture content was 

strongly affected by water stresses despite the relatively small effect on 1000 

seed weight reported above. Whilst this appeared as an inconsistency it in fact 

reflects the naturally very low moisture contents of safflower seed and in 

contrast the high oil and protein content. 

Table 3.8. Mean of oil and water of seed content under four watering regimes. 

 

Water regimes 

constituents 

% oil % moisture 

Control 21 
a
 5.8 

a
 

Mid-season drought 20 
a
 2.6  

b
 

Terminal drought 18 
b
 0.5  

C
 

Midseason + terminal drought 18 
b
 0.4  

C
 

P value 0.000 0.000 

L.S.D 0.98 0.25 

*Means followed by the same letter within a column are not different significantly at 0.05 levels. 
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3.5.5. Correlations 
 

Pearson correlations (Table 3.9), showed that there is  a positive correlation 

between stem height (H) above ground biomass (AGB), capitula number (NC), 

seed number(NS), fresh seed weight (FSW) and seed oil content (OC)  all per 

plant, under both well irrigated and droughted treatments. This means that all of 

these parameters reduced together under drought treatments. 

Table 3.9. Pearson correlation among stem height, biomass, fresh seed weight 

     and seed oil content under different water regimes. 

 

 H AGB NC NS 

H     

AGB 0.813    

NC 0.879 0.812   

NS 0.836 0.999 
**

 0.816  

FSW 0.837 0.999 
**

 0.819 1.000 
**

 

OC 0.793 0.987 0.870 0.980 
**

 

** Correlation is significant at the 0.01 level (2-tailed). 
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3.6. Discussion 

 

This study confirmed that stomatal conductance increases in safflower in the 

morning with highest values between 09:00 and 11:00 and thereafter gradually 

decreases throughout the afternoon (Figure 3.2). This means that the 

corresponding transpiration rate increases in the morning and thereafter 

decreases throughout the afternoon. A similar finding was reported for cowpea 

(Vigna unguiculata)  (Bates and Hall, 1982). Stomatal conductance decreased 

in this study with maturity in both normally watered and drought stressed plants 

and such a result is commonly reported (Field and Mooney, 1983). The water 

stresses imposed in this experiment reduced stomatal conductance compared 

to the control and this could be interpreted as decreased relative leaf water 

content (RWC). This result supports recent work on field grown safflower by 

Eslam (2011) who indicated that water stress induced decreases in RWC and 

stomatal conductance and recorded values for stomatal conductance ranging 

between 0.41 for well watered and 0.23 for drought imposed from 80% 

flowering to maturity (i.e. terminal drought). In the work reported in this chapter 

the recorded values for stomatal conductance were about 0.40 to 0.20 for 

control and drought respectively, from rosette to maturity (midseason + terminal 

drought) on the same day (see Figure 3.3) and the similarity in data values with 

those presented by Eslam (2011) lends confidence to the prediction that similar 

results to those presented here for safflower under semi controlled conditions 

can also be expected under field conditions. In general, stomatal closure and 

intercellular CO2 concentration (Ci) is related to soil moisture content in C3 plant 

species, and stomatal closure was responsible for a decline in photosynthetic 

rate under drought (Medrano et al., 2002; Tezara et al., 1998). Water stress had 
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no effect on variable to maximum fluorescence ratio (Fv/Fm) indicating that the 

drought had no effect on primary photochemistry of PSII in many C3 crops 

including sunflower (Helianthus annus L.) (Cornic and Fresneau, 2002a; Lu and 

Zhang, 1998; Marco et al., 1988; Panković et al., 1999; Pastenes et al., 2005; 

Subrahmanyam et al., 2006) showing that PS II is quite resistant to water stress 

(Shangguan et al., 2000a). The same result was reported for safflowers in this 

study which indicates that the decreases in net assimilation rate are only related 

to stomatal closure and not to disruption to the biochemistry of photosynthesis. 

When the temperature became very high inside the glass house (about 40 0C) 

(see Figure 3.1) the ratio of Fv/Fm decreased in dark adapted leaves even in 

well irrigated plants and there was a small but significant reduction in terminal 

and mid + terminal drought compared with the control (Figure 3.6 and 3.7) and 

(Table 3.5 and 3.6). This indicated that high temperatures may have been 

responsible for the decline or associated increased transpiration rate and this 

may have accentuated the drought effect. Similarly, a combination of high 

temperature more than ( 400C) and water deficit in bean (Phaseolus vulgaris L.) 

decreased the ratio of Fv/ Fm and CO2 up take but the crop was still able 

recover from a short term stress  (Yordanov et al., 1997). 

This non-stomatal limitation of photosynthesis has also been observed under 

severe drought in other C3 crop species (Flexas et al., 2002). Moreover, recently 

during  an experiment on field grown safflower in Isfahan, Iran, using three 

irrigation treatments across all six safflower genotypes studied, chlorophyll 

fluorescence Fv/Fm decreased only under the maximum evaporation level (135 

mm) when measured at both heading and at pollination stages (Miladi and 

Ehsanzadeh, 2010). 
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Plant response to drought conditions is determined by drought duration (Bray, 

1997) and the critical stages of plant development at which drought is imposed 

(Ahmed and Suliman, 2010; Aiken and Lamm, 2006; Sinaki et al., 2007). In this 

study safflower exhibited recovery when water stressed during earlier growth 

stages (rosette), but when drought was imposed during the elongation stage 

and/or rosette to maturity (mid + terminal drought) stomatal conductance was 

significantly reduced (Figure 3.3 and 3.5). Other oil crops such as rapeseed 

have also shown recovery after relief of early drought (Ahmadi and Bahrani, 

2009). 

It is frequently reported that a reduction in photosynthesis is mainly due to a 

reduction in stomatal conductance, and as a consequence this leads to a 

reduction in the aboveground biomass and seed yield observed (Kang et al., 

2002b; Mwale et al., 2007). This was the case in the current study where 

safflower significantly accumulated less dry matter under water stresses 

regimes (Figure 3.9). Thus, water deficit reduced stomatal conductance and as 

a result the CO2 uptake and assimilation rate were reduced resulting in biomass 

reduction. The highest level of reduction recorded was when plants were 

exposed to the longest duration of drought from the rosette through to maturity 

compared to either control or other two drought regimes. The least reductions 

many of which were non-significant in above ground biomass, biological yield 

and harvest index were produced by plants exposed to mid-season drought 

(Figure 3.9, 3.11 and 3.12). As a consequence of these biomass changes, seed 

yield and seed number showed a similar patterns of response (Figure 3.10 and 

Table 3.7). This is probably because like most seed crops safflower translates a 

large percentage of its pre-anthesis carbohydrate accumulation to the seed 
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during late season drought stresses (Koutroubas et al., 2004). Grain/seed yield 

is often determined by total biomass production and the proportion of biomass 

translocated to grain/seed (Boogaard et al., 1996). Other workers have shown 

that generally, field grown safflower showed a reduction in photosynthesis and 

other parameters when exposed to drought at different stages of growth 

(Sharrifmoghaddasi and Omidi, 2010). For example, a study of 12 genotypes of 

safflower by Sharghi and Bagheri, (2011) concluded that biological yield, seed 

and oil yield increased under irrigation compared with non-irrigated plants at 

both rosette and end of elongation stages. In addition, Jalali et al., (2011) 

revealed that a long period of water stress during stem elongation (mid to 

terminal drought) severely affected safflower growth and yield while a moderate 

drought at the same stage had no significant effect on these traits. In contrast, 

the highest average weight of 1000 seeds was recorded for full irrigation and 

midseason drought while both terminal drought and mid + season drought 

produced less weight of 1000 kernel weight for field grown safflower 

(Istanbulluogh et al., 2009; Istanbulluoglu, 2009b) whilst here,  1000 seed 

weights were reasonably well conserved. 

Safflower morphology in term of leaf number, stem height and branch number 

were affected by water stress especially when plants were droughted from the 

rosette stage right through to maturity. In some safflower cultivars plant 

morphology was shown to be changed under drought by Bagheri (2011a) but 

tolerant cultivars showed no change under drought. 

For safflower to produce high yields, the number of capitula per plant and 

numbers of seeds per capitulum are important traits (Abel and Driscoll, 1976; 

Steer and Harrigan, 1986). Both of these yield components have been shown to 
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decrease under water stress (Eslam, 2011; Pasban Eslam and Sadeqi, 2008). 

As observed in the present study the number of capitula per plant and the 

number of seed per plant significantly reduced under both terminal and mid+ 

terminal drought compared with the control and the correlation between these 

parameters (Table 3.9) clearly showed their inter-relationship. This finding was 

supported by work with field grown safflower at different stages of imposed 

drought by Mozaffari and Asadi (2006) who observed positive correlation 

among capitulum diameter and the number of seed per capitulum under drought. 

Also, Eslam (2011) found that drought during earlier stages of reproductive 

safflower caused seed and or capitula number reduction. Also in cold dry land 

grown safflower genotypes in Iran, Alizadeh, (2005) found a positive correlation 

between seed and oil yield with plant height and capitulum weight. As shown in 

this study well watered plants produced taller plants with more seed number, 

inversely under drought the plant height, capitula number and seed number 

reduced significantly. In addition, high correlation between seed yield and total 

plant biomass in safflower has been established by Mokhtassi Bidgoli et al. 

(2006) in agreement with the results reported here under both droughted and 

well watered treatments. 

In Iran Kar et al., (2007) reported that supplemental irrigation during 

reproductive phases had a significant effect on increasing seed yield in 

safflower with some differences between genotypes. Generally, seed yield of 

safflower from any of the treatments exposed to drought at one or more growth 

stage was significantly lower than fully irrigated, but highest reduction observed 

was found to be drought at late vegetative growth stage (Istanbulluoglu et al., 

2009). In addition, the highest average weight of 1000 seed was found to be in 
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the ranges of 51 - 55 g and was recorded for the treatments including irrigation 

application at the late vegetative stage (Istanbulluoglu et al., 2009). In contrast, 

some spring genotypes showed a tolerance to water stress imposed at 80% 

flowering until maturity in Iran whereas in others water stress at this stage 

decreased number of seed, seed and oil yield due to limited supply of 

carbohydrate to the capitula leadings to a reduction in the 1000 seed weight 

and harvest index (Pasban Eslam and Sadeqi, 2008). In contrast, according to 

a field study on hybrid and open pollinated safflower by Ozturk et al., (2008) 

non-irrigated plants produced nearly the same seed yield and 1000 weight as 

irrigated ones but the effect of genotypes and years in both non-irrigated and 

irrigated treatments for seed production was significant.  

Seed yield in the current study was lower than expected for control plants with  

number per head produced by field growing safflower typically ranged between 

(15 - 50 achene) (Dajue  and Mundle, 1996). The reasons for this are not clear, 

but one possible explanation is the size of pot in which plants were grown 

causing restricted root growth. Alternatively, the amount of compost in the pots 

may not have supplied the plants with adequate mineral nutrition. Another 

interpretation could be that although the control treatments was thought to be 

well watered, in reality it was not and even the controls represented a water 

restricted regimes. Recently it has been shown that safflower produced the 

greatest head number per plant, seed number per head and consequent seed 

yield, at 100% water field capacity compared to 75% and 50% field capacity  

(Ferasat et al., 2008; Kazemeini et al., 2010). However, seed number was 

significantly higher in well watered plants compared with the water deficits 

treatments mostly as a result of the reasons mentioned earlier and also 
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because drought reduced the ion uptake and nutrient metabolism was affected 

(Farooq et al., 2008). The amount of nutrient taken up by the plant generally 

depends on the structure and growth rate of the roots, the ion concentration 

gradient between roots and surrounding soil and soil membrane permeability 

(Alam and Pessarkli, 1999). 

Fai et al., (2007) divided development of seed into four different stages: embryo 

patterning, embryo growth and seed filling and desiccation. Seed storage 

products such as protein, oil and carbohydrate accumulation start after the 

completion of embryo growth (Bewley and Black, 1994). The import of sucrose 

from the vegetative parts of the plant has a fundamental function in the 

development of seeds as a main source of carbon and energy transportation 

and as a gene expression regulator (Koch, 2004) and the concentration of 

starch and soluble sugars increases to their highest values during the first few 

weeks of seed development (Romano et al.,1984). Proteins are mainly 

produced in the cotyledons throughout the mid to late development stages 

(Golombek et al., 2001) and a marked amount of oil accumulation starts later 

than protein, but continues even after protein accumulation in cauliflower 

(Brassica oleracea L. var. botrytis) (Gorosamy and Thiagarajan , 1998). Many 

environmental factors affect seed development and composition such as high 

temperature and soil moisture (Lozovoya et al., 2005). 

Safflower oil and moisture content were significantly lower (p < 0.05) under 

drought, with the greatest reduction observed during elongation and rosette 

stages (Table 3.8). The reduction observed was when full drought from rosette 

to maturity was imposed. Despite this reduction 1000 seed weight was same as 

well irrigated plants. Unfortunately; due to insufficient seed produced in this 
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study the protein determination was not performed. Increased seed protein 

content would be anticipated as typically proteins are accumulated during seed 

filling prior. As previously found there is a negative correlation between seed oil 

content and protein under water deficits in safflower (Tuncturk and Çiftçi, 2007). 
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3.7. Conclusion 

 

It can be concluded from the present study that drought affects safflower 

physiology, through reduced stomatal conductance and corresponding reduced 

transpiration rate and intercellular CO2 concentration leading to a reduction in 

assimilation and ultimately biomass. The drought did not unduly affect the 

Fv/Fm ratio and it was stable under all watering regimes, but high temperature 

decreased the ratio of Fv/ Fm even for well watered plants. This means that the 

drought did not affect the photosynthetic apparatus unduly. 

Safflower physiology and growth recovered after relieving mid-season drought. 

Seed yield was related to capitula number in both normal and stressed plants. 

The results indicate that for the maximum economic yield in safflower full 

irrigation is necessary at growth stages from elongation and branching through 

to maturity and pre- anthesis biomass allocation and translocation of seed is 

important. Seed oil content decreased under water stress with the most 

reduction occurring with water stress at the stem elongation stage and from the 

rosette stage to maturity.  
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4.1. Introduction 

 

The interdependence of carbon and nitrogen assimilation is well established 

and the nitrogen budget of the plant is primarily spent in the maintenance of the 

photosynthetic protein and chlorophyll apparatus although a continuous supply 

of carbon dioxide and energy is required for nitrogen assimilation and 

distribution (Foyer et al., 2001). With early growth this energy supply comes 

from seed reserves but as the plant develops it is derived from photosynthesis 

and therefore forms part of the plant respiratory load associated with growth 

and development. Adequate nitrogen is required to maintain an optimal 

photosynthetic rate and consequently crop growth (Gastal and Lemaire, 2002). 

The importance of nitrogen fertilization to field grown safflower was reported by 

Zaman and Das, (1990) and physiological responses have been investigated by 

Dordas and Sioulas (2008) where it was shown that elevated nitrogen levels to 

(200 kg N ha-1) in the form of ammonium sulfate increased leaf nitrogen 

concentration and chlorophyll content leading to an increase in photosynthetic 

rate and stomatal conductance and, consequently, WUE and increased seed 

yield. During other oilseed crop, sunflower (Helianthus annus L.), the 

photosynthesis rate per unit leaf nitrogen was maintained under nitrogen stress 

because the initial reduction in photosynthesis with nitrogen deficiency was 

ameliorated by increased intracellular CO2. 

The total biomass of safflower were taken as an indicator of photosynthetic 

product translocation and accumulation and Dordas and Sioulas,(2009) 

concluded that 200 kg N ha-1 increased the total above ground biomass at both 

anthesis and harvest. Also dry matter partitioning to different plant parts, 

depending on the growing season, was increased.  



                                                                                                                                               Chapter 4    

                           The effect of Nitrogen nutrition on safflower physiology, growth and yield 

111 
 

Leaf photosynthesis is strongly related to LAI, and is directly associated with 

plant biomass in particular in C3 plants because the photosynthetic capacity is 

limited by nitrogen per unit leaf area (Evans, 1989). A multi- year study of field 

grown safflower at four levels nitrogen fertilizer (0, 40, 80 and 120 kg N ha-1  in 

the form of ammonium nitrate) concluded that plant growth at different stages 

from stem elongation to maturity including LAI, chlorophyll content, plant organ 

nitrogen concentration and biomass were not affected by increased nitrogen. 

However, in other oil crops such as sunflower nitrogen fertilizer enhanced 

growth and productivity through increasing the LAI and canopy development 

(Gimenez et al., 1994). 

Nitrogen levels have been shown to affect safflower crop component and 

growth performance, Siddique and Oad, considered 120 kg N ha-1 as the 

optimum level for the production of maximum seed yield by significantly 

producing greater branches, heavier seed weight and more seed number per 

plant, while more heads per plant and taller plants were recorded in plots 

treated with 180 kg N ha.-1 Also Elfadl et al., (2009) reported that 86 kg N ha-1 

was adequate for maximum safflower seed yield when sown after a crop 

fertilised with nitrogen fertilizer at the commercial rate. However, neither 

thousand seed weight nor the number of capitula per plant  and consequently 

seed yield was altered in three varieties of safflower (Gila, KW-74 and Sironaria)  

at two sites under three rates of nitrogen (0, 40 and 80 kg N ha-1) (Strasil and 

Vorlicek, 2002).  

Safflower seed oil content can be affected by nitrogen fertilizer. In Turkey the 

recommended N fertilizer rate for safflower seed yield and crude oil was 120 kg 

N ha-1 as ammonium nitrate, and Tuncturk and Yildirim, (2004) concluded that 
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the oil yield was increased as a result of increasing nitrogen was due to seed 

yield rather than  increased seed oil concentration. In general, the major effect 

regarding increasing oil yield in safflower in response to nitrogen supply was 

due to the increased seed (achene) yield whilst the response in terms of oil 

content was not significant (Abbadi et al., 2008). 

The fatty acid composition of safflower however has not been studied in relation 

to nitrogen supply. In other oilseed crops such as oilseed rape, it has been 

observed that varying levels of nitrogen fertilizer (50, 100, 150 and 200 kg N ha-

1) had no significant effects on seed fatty acid composition (Starner et al., 1999). 

Also, neither nitrogen rate nor time of application in two seasons affected seed 

oil content and its fatty acids (palmitic, stearic, oleic, linoleic and linolenic, 

arachidic and erucic) composition in rapeseed (Ibrahim et al., 1989). In contrast, 

Zheljazkove et al., (2012) found that increasing the nitrogen application from 50 

to 150 kg N ha-1 increased seed yield and modified the oil content and fatty acid 

composition in the same species. 

It has been reported that safflower seed genotype and sowing date (Gecgel et 

al., 2007) can interact with other environmental factors such as temperature to 

have an impact on oil content and fatty acid composition rather than nitrogen as 

in other oil crops (Omidi et al., 2009; Zheljazkov et al., 2012).   

Studying the effects of nitrogen in the field or in potting compost is always 

complicated by the effect of soil residual nitrogen stores. The use of hydroponic 

or semi-hydroponic systems however allows nitrogen supply to be controlled 

precisely. This investigation reports the results of a detailed study to investigate 
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the effects of nitrogen fertilizer on the growth, physiology and yield of safflower 

grown in the glass-house using a perlite based hydroponic system. 
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4.2. Aim 

 

To study the effect of nitrogen nutrition on safflower growth performance, seed 

yield and quality.  

4.3. Objectives 

4.3.1. Objective 1   
 

Evaluate the effect of different doses of nitrogen fertilizer on growth parameters 

(stem height, leaf number, LAI, above ground biomass) and yield components 

(branch number, capitula number, seed number per plant). 

 4.3.2. Objective 2 
 

Investigate the physiological parameters (assimilation rate, stomatal 

conductance, transpiration rate, sub-stomatal conductance and water use 

efficiency) in response to nitrogen fertilizer. 

4.3.3. Objective 3 
 

Investigate the effect of different doses of nitrogen fertilizer on seed quantity 

and quality by studying the seed oil content and fatty acid composition. 
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4.4. Materials and Methods 

 

4.4.1. Critique of necrotic plant symptom issues in the glass-house 
 

Four attempts between September 2009 and August 2010 were made to 

establish this experiment in the glass-house. The following describes the 

experimental design used, and the plant physiological necrosis issues that 

affected these plants and the attempts to overcome this problem. 

In the first experiment, seeds were transferred (on15th of November 2009) to 

pots filled with John Innes No.2 compost (this medium was chosen because it 

contained low nitrogen reserves). The experimental layout was a randomized 

block design with four replicate where each replicate comprised 48 pots. It had 

been planned to apply eight levels of ammonium nitrate nitrogen (0.9, 1.8, 2.7, 

3.6, 4.5, 5.4 and 6.3 g per 24 pots) to give the equivalent of (0, 25, 50, 75, 100, 

125, 150, and 175 kg N ha-1) in two equal doses. After a month of germination, 

the first doses of nitrogen levels were supplied, with each weight of ammonium 

nitrate dissolved in 120 mL distilled water, and using a pipette 5 mL were added 

to the appropriate pot. 

After the first application of nitrogen fertilizer and when the plant had reached a 

stem elongation stage the plants failed. For most of the plants, the stem died 

and leaves became yellow and dried up (Plate 4.1 shows these plant 

symptoms). 
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Plate 4. 1. Necrotic plant symptom issues in the first nitrogen experiment. 

 

After a further two weeks the experiment was abandoned and was re-

established by sowing seeds in the same medium, John Innes No.2, and in 

multi-purpose compost. Plants in both compost types again demonstrated the 

physiological necrosis and die back and the experiment had to be abandoned 

again. 

4.4.2. Diagnosis of the necrosis problem  
 

It was rationalized that the necrosis could be caused either by a pathogen, or a 

soil/ compost component or seed contaminant or environmental stress. 

Alternatively the symptoms could be due to a genetic factor of the genotype. 

The following investigations were carried out in an attempt to diagnose and 

overcome the problem: 

1. Microbiological investigation 

2. Elimination of seed–borne contamination sources 

3. Investigation of environmental stresses (temperature shock) 

4. Investigation of the effect of the genotype and substrate 
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1. Microbiological investigation 

The symptoms were investigated microbiologically using a “Koch’s postulates” 

approach i.e. isolation and reinfection of an unidentified microorganism. This 

failed to identify any causative organisms from either the surface of the leaves 

or from incubation of whole leaves in vitro and no hype nor bacterial 

contaminants could be visualized under the microscope and it was therefore 

concluded that the symptoms were not associated with an identifiable pathogen. 

The disorder therefore was either a condition of the seed-lot or associated with 

the substrate. 

2. Elimination of seed–borne contamination 

Seed-borne contamination is a common source of the disease carryover on 

many crops and can be reduced by seed surface sterilization or fungicidal seed 

dressing. The first experiment was re-established, but the seeds were surface 

sterilized before germination.  

Seeds were immersed in 70% ethanol for two minutes followed by a 5 minute 

soak in 10% domestic bleach (containing sodium hypochlorite 0.06% active Cl). 

Seeds were then rinsed six times with sterile water before being placed in the 

incubator for germination. The germinated seeds were sown on 15th of January 

2010 in John Innes No.2. When the safflower plants reached the stem 

elongation stage and after the first application of nitrogen the necrosis appeared 

in the majority of plants and the experiment had to be abandoned again. A few 

remaining healthy plants were kept from this experiment to examine 

environmental stress effects. 
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3.  Environmental stress effects 

Glasshouses in the UK, particularly small glass-house as used here, are prone 

to extreme fluctuation in temperature which may go either above or below 

critical plant temperature thresholds and cause physiological symptoms similar 

to those shown in Plat 4.1 As nothing is published about safflower thermal 

tolerances an experiment was conducted in a phytotron to test thermal 

extremes.  

Two pots of healthy plants were tested using a Sanyo M533 incubator under 

two extreme temperatures (very high, 45 0C and low to -7 0C) for 48 h.  

Neither temperature shock had any morphological effect on plant health and did 

not reproduce symptoms in Plate 4.1 showing that safflower appears to be 

robust in the face of extremes of temperature. 

It was concluded that the necrotic symptoms were not caused by extremes of 

temperature fluctuation. It was also reassuring to establish that safflower 

appears to be robust in the face of extremes of temperature and this gave 

reassurance to growing this plant in a semi-controlled glass-house.  

4. Investigation of the effect of the genotype and soil type  

Four other cultivars of safflower (Sham, Accar 6, Sonl 5 and P125036) were 

obtained from a Syrian research centre and were used together with the original 

variety in a substrate experiment to test both the new seeds and some new 

substrates. The substrates tested were John Innes No.2, multipurpose compost 

and perlite standard + hydroponic solution (see ch 2). 
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The seeds were sown on March 1st 2010. The plants were watered with tap 

water for John Innes No.2 and multipurpose compost and the plants grown in 

perlite were watered with a standard hydroponic solution.  

Results showed unequivocally that the necrotic disorder that symptoms 

appeared in plants of all genotypes growing on both John Innes No.2 and 

multipurpose compost (Plate 4.2) whilst the perlite grown plants were 

completely healthy (Plate 4.3).  

Whilst the final problem with the composts was not tracked down for this 

experiment and the remaining experiments in this thesis Perlite was used as the 

growth substrate in order to avoid the necrosis problem. 

This problem set this project back more than 6 months and demonstrates to 

future researchers the sensitivity of this species to root conditions associated 

with growing substrates. 

 

Plate 4. 2.Necrotic plant symptom issues in the glasshouse with John Innes No.2  

   and multipurpose compost. 
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Plate 4.3. Healthy plants at same stage grown in standard perlite. 

 

4.4.3. Experimental design and measurement taken  
 

The nitrogen experiment was finally successfully established during 2010. 

Germinated seed were planted pots filled with standard grade perlite. The 

experimental design was a Randomized Block with four replicate with each 

replicate comprising of 48 pots. Plants were watered with 20 - 100 mL of a 

standard hydroponic solution Vita Link Max Grow (soft water) A and B every 3 - 

5 days for 28 days. Thereafter plants were irrigated using 50 - 200 mL complete 

Hoagland’s solutions minus nitrogen every week. Eight levels of supplementary 

ammonium nitrogen solution were prepared by dissolving 0, 0.46, 0.91, 1.34, 

1.8, 2.28, 2.64, 3.12 g N as ammonium nitrate in 4.8 L of Hoagland’s solution 

and applied to give the equivalent of (0, 25, 50, 75, 100, 125, 150 and 175 kg N 

ha-1) using 200 mL of the appropriate solution per pot. Nitrogen was applied in 4 

doses at monthly intervals. Also 100 - 200 mL of water was applied according to 
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the demand in between nutrient applications. The given amount of water were 

recorded every time during the growing period and instantaneous WUE was 

expressed on an economic yield basis by dividing the biomass production at 

both anthesis and harvest by the amount of water consumed during the growing 

period (Conley et al., 2001). 

Air temperature and humidity were logged using a TinyTag data logger (mean 

maximum and minimum temperature were 300C and 60 0C Figure 4.1). The 

growing season and the mean maximum and minimum humidity were 100% 

and 4.6% (Figure 4.2). 

 

Figure 4. 1.Mean weekly temperature inside glasshouse during the nitrogen 

experiment. 
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Figure 4. 2. Mean weekly relative humidity inside glasshouse during the 

           nitrogen experiment. 

 

At 50% anthesis the physiological parameters assimilation rate, transpiration 

rate, stomatal conductance and sub-stomatal CO2 were measured on the 

youngest three top expanded leaves of three plants in each replicate for each 

treatment. After one day half of the plants used for photosynthesis 

measurement were harvested (24 plants) for measuring stem height, number of 

leaf, branch number, capitula number, leaf area and LAI, chlorophyll content, 

plant organs biomass and nitrogen content. Three samples of plant leaves from 

each replicate and each treatment were used for measuring chlorophyll content. 

The remaining plants were harvested and plant separated into plant organs 

(stem + branch, leaf, capitula) and dried then ground and nitrogen 

concentrations measured. At the end of the experiment the other half of the 

plants (24 pots) were harvested (15th May 2011) and the average stem height, 

leaf number, branch number, capitula number, above ground biomass, seed 
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yield per plant, 1000 seed weight and seed yield per hectare were recorded for 

each replicate and each treatment. Seeds were sent to Stirling University and 

seed oil content and fatty acid composition were analysed (see ch 2). 
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4.5. Results 

4.5.1. Physiological parameters  
 

At anthesis, the mean leaf assimilation rate at anthesis increased incrementally 

with each increase in nitrogen supplied to give a response curve to nitrogen 

application (Figure 4.3.A). Assimilation rate was significantly increased (p ≤ 0.05) 

at 100 kg N ha-1, but increases above this level were not significant. A similar 

pattern was shown for stomatal conductance at anthesis (Figure 4.3) with a 

significant increase (p ≤ 0.05) up to 100 kg N ha-1 with no significant increases 

recorded above 100 kg N ha-1. This led to a corresponding increase in 

transpiration rate which also showed an incrementally increasing response (p ≤ 

0.05) up to 100 kg N ha-1 (Figure 4.3) and the mean transpiration rate was 32% 

higher compared with the control. While the CO2 concentration in the sub-

stomatal cavity went down slightly with each increase in nitrogen these 

differences were not statistically significant (p = 0.539) (Figure 4.3). 
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Figure 4. 3.Mean of  A. assimilation rate (A), B. stomatal conductance (gs), C. 
transpiration rate (E) and D.  sub-stomatal conductance (Ci), at  50% anthesis different 
levels of nitrogen fertilizer. Vertical bars are standard errors of the mean (n= 4) at 0.05 
level. 
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4.5.2. Water use efficiency  
 

WUE from sowing to anthesis and from sowing to harvest was significantly (p ≤ 

0.05) increased with each increase in nitrogen rate compared to the control 

(Figure 4.4 A and B) . Under the highest nitrogen rate of 175 kg N ha-1 WUE 

increased by 44% at anthesis and by 41% at harvest as compared with the 

control. 

 

 

 

 

Figure 4. 4.Mean of A.  water use efficiency from sowing to  50% anthesis and B.  
water use efficiency from sowing to harvest at different levels of nitrogen fertilizer.  

Vertical bars of standard errors of the mean (n= 4) at 0.05 levels. 
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4.5.3. Plant nitrogen and chlorophyll concentration  
 

At anthesis, the nitrogen content of the plant parts were significantly (p ≤ 0.05) 

affected by nitrogen fertilization (Table 4.1) and nitrogen fertilizer affected plant 

organs differently. Stem and branches responded to each nitrogen level with 

significant increment in nitrogen content, and the capital responded to most of 

the range of nitrogen applied. The leaves were less responsive to a highest 

nitrogen content achieved at 100 kg N ha-1. Chlorophyll a, b and total 

chlorophyll content at anthesis were significantly (p ≤ 0.05) affected by nitrogen 

treatment (Table 4.2). 150 kg N ha -1 increased the mean chlorophyll content by 

55% compared with the control and no significant increment in chlorophyll a, b 

and total chlorophyll was observed with nitrogen higher than 150 kg N ha -1. 
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Table 4.1. Mean of nitrogen concentration (g 100 g-1 dry weight) of various plant parts 

 at different nitrogen levels at 50% anthesis. 

 

Equivalent nitrogen 

treatments kg ha
-1

 
Stem and branch Leaf Capitula 

    

0 ( control) 0.24 
f
 1.28 

c 
   0.73

 f
 

25  0.25 
e
 1.56 

bc 
 0.82 

e
 

50  0.25 
e
 1.74 

b
 0.89 

d
 

75  0.25 
e
 1.88 

b
 0.99 

c
 

100  0.28 
 d

 2.14 
a
 1.09 

b
 

125  0.31
 b

 2.21 
a
 1.08 

b
 

150  0.30 
c
 2.16 

a
 1.20  

a 
 

175  0.33 
a
 2.34 

a
 1.22 

a
 

P 0.000 0.000 0.000 

L.S.D at 0.05 0.03 0.31 0.43 

*Means followed by the same letter within a column are not significantly different at 0.05 levels. 
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Table 4. 2. Mean values of plant chlorophyll content (mg g-1 leaf fresh weight) under 

 different nitrogen fertilizer at 50% anthesis. 

 

*Means followed by the same letter within a column are not significantly different at 0.05 levels. 

 

 

 

 

Equivalent nitrogen 

treatments kg  ha
-1

 
Chlorophyll  a Chlorophyll  b Total chlorophyll 

    

0  ( control) 0.58 
d
 0.40 

c
 0.98 

d
 

25  0.85 
c
 0.48 

c
 1.34 

c
 

50  0.85 
c
 0.51 

b
 1.40 

c
 

75  1.05 
 b

 0.58 
 b

 1.64 
bc

 

100  1 .21 
b
 0.60 

b
 1.83 

b
 

125  1.22 
a
 0.58 

b
 1.83 

b
 

150  1.42 
a
 0.78 

a
 2.10 

a
 

175  1.42 
 a

 0.79 
a
 2.20 

a
 

P 0.000 0.000 0.000 

L.S.D at 0.05 0.25 0.13 0.31 
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4.5.4. Plant morphology, growth and seed yield  
 

At anthesis, plant height was not affected significantly (p > 0.05) by nitrogen 

treatments compared with the control (Table 4.3). Number of leaves branches 

and capitula per plant significantly (p < 0.05) responded to some nitrogen 

treatments. The greatest mean values were obtained at 125 kg N ha-1 with no 

further response to higher levels of nitrogen, and leaf area index LAI increased 

incrementally  with increasing nitrogen levels reaching a plateau of about LAI 

6.27 for the three highest levels of nitrogen (Figure 4.5. A). 125 kg N ha-1 

increased the LAI by 42 % compared with the control. This value is comparably 

higher than that recorded in field grown safflower which reached a plateau of 

LAI about 3.8 (Jalali et al., 2011). 

At harvest, the plants showed significant development in response to nitrogen 

fertilizer. Plant height was significantly (p > 0.05) taller when nitrogen increased 

to more than 75 kg N ha-1 compared to the other three lower nitrogen rates. A 

similar trend was found with the number of leaves, branches and capitula per 

plant (Table 4.3). The correlation coefficient between seed number and capitula 

number showed that the seed number and capitula number per plant increased 

with nitrogen rate to more than 125 kg N ha-1 and were highly correlated (r = 

0.946). Plant growth in term of dry matter accumulation (plant biomass) 

increased with each increase nitrogen fertilizer. Overall, the above ground dry 

weight was increased with a 46% and 42% over the control at 175 kg N ha-1 at 

both anthesis and harvest, respectively (Figure 4.5.A and B). Seed yield 

showed a similar pattern of response towards increased nitrogen levels and 

seed fresh weight increased by 76% at 175 kg N ha -1 compared with the 

control (Figure 4.5.D). 
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  Table  4. 3. Means values of plant development criteria and yield component with their dry weight (gpl-1), at different levels of 

            nitrogen fertilizer at 50% anthesis. 

 

Parameters 

At anthesis 

L.S.D at 
0.05 levels 

Equivalent nitrogen levels kg ha
-1

 

0 25 50 75 100 125 150 175 

Plant height (cm) 
93 95 97 93 98 98 102 100 n.s 

Leaf number 
 38 

d
 44 

c
 42 

c
 41

c
 52 

b
 56 

ab
 62 

a
 54 b 8.42 

Leaf area 
 374

 d
 481 

c
 573 

b
 545 

b
 561 

b
 639 

a
 634 

a
 640 

a
 110 

Branch number 
2 

c
 3 

b
 3 

b
 3. 

b
 4 

b
 4. 

a
 4. 

a
 4 

a
 0.83 

Capitula number 

3 
b
 4 

b
 4 

b
 3 

b
 3 

b
 4 

a
 4

a
 4 

a
 0.89 

Shoot and branch dry 
weight  4 

d
 5 

d
 5 

c
 6 

c
 5 

c
 6 

b
 7 

b
 7 

a
 0.79 

Leaf dry weight  
2 

d
 3 

c
 3 

b
 3 

b
 3 

b
 4 

b
 4 

b
 4 

a
 0.41 

Capitula dry weight  

3 
c
 2 

c
 3 

b
 4 

b
 4 

b
 4 b 4 

b
 5 

a
 1.53 

          *Means followed by the same letter within column are not significantly different at 0.05 levels. 
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Table 4. 4. Mean values of plant development criteria, yield component with their dry weight (gpl-1), seed number, and 1000 fresh  

        seed weight at different levels of nitrogen fertilizer at  harvest. 

 

*Means followed by the same letter within column are not significantly different at 0.0 levels. 

Parameters 

At harvest 

L.S.D at 0.05 
levels 

 

Equivalent nitrogen levels levels kg ha
-1

 

0 25 50 75 100 125 150 175 

Plant height (cm) 
92

 a
 93 

ab
 94 

ab
 98

 a
 99

 a
 98 

a
 100

 a
 100 

a
 5.13 

Leaf number 
 

33 
b
 39

 b
 41 

b
 45 

b
 51 

a
 54 

a
 55 

a
 57 

a
 6.61 

Branch number 2
 b

 3 
b
 3 

b
 3 

b
 4 

a
 4 

a
 4 

a
 4 

a
 0.75 

Capitula number 
3 

b
 3 

b
 4 

b
 4

 b
 4 

a
 5 

a
 5 

a
 5 

a
 0.66 

Seed number 
 

6
 d

 7 
d
 10

 c
 9

 c
 16 

b
 18

 b
 23 

a
 25 

a
 2.66 

Shoot and branch dry weight 
4 

c
 4 

c
 4 

c
 5 

c
 5 

ab
 6 

a
 5

 a
 6 

a
 0.82 

Leaf dry weight 
2

 d
 2 

d
 2

 c
 2 

b
 2

 b
 3

 ab
 3

 a
 3 

a
 0.73 

Capitula dry weight 
23 

a
 3 

b
 4 

b
 4 

b
 5 

a
 5 

a
 5 

a
 6 

a
 0.99 

1000 seed weight 
33 

a
 31 

b
 30

 b
 29 

b
 37 

a
 39 

a
 36

 a
 36

 a
 5.96 
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Figure 4. 5.Mean of  A. LAI and B. total above ground dry weight at 50% anthesis,  

  C.  total above ground and D. seed fresh weight at harvest at different levels of    

      nitrogenfertilizer. Vertical bars are standard errors of the mean (n= 4) at 0.05 levels. 
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4.5.5. Chemical analysis 
 

Due to an insufficient quantity of seed obtained at harvest, seed oil content and 

fatty acid analysis were performed on a sample pooled from all replicates (Table 

4.5). In comparison with the control the nitrogen fertilization did not affect the 

seed oil content. However, the total oil yield increased with nitrogen increment 

above 100 kg N ha-1 due to the increase in seed yield per plant. 

All treatments resulted in seeds containing slightly lower total oil content relative 

to the original (parent) seed sown (Table 4.5). None of the fatty acid studies 

were affected by the application of nitrogen fertilizer. Relative to the original 

seed the seed from the experimental treatments had some decreased saturated 

fatty acids (palmitic and stearic) and mono-unsaturated fatty (oleic acid) while 

inversely, the poly-unsaturated fatty acid (linoleic) levels increased resulting in 

an overall decrease in  the ratio of oleic/linoleic acid. 
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Table 4.5.The total % of oil and fatty acid composition under different nitrogen and  

the % oil and fatty acid in original seed (on fresh weight basis). 

 

 

 

 

 

 

 

 

 

 

 

Seed composition 

Equivalent nitrogen treatments kg ha
-1

 
 Parent  

seed 
0 25 50 75 100 125 150 175 

Oil 19.5 17.33 19.51 18.75 19.15 18.33 18.40 18.4 21.30 

Palmitic   C16 6.65 6.61 6.69 6.47 6.44 7.72 6.55 6.63 7.75 

Stearic     C18 2.23 2.16 2.36 2.29 2.28 2.47 2.32 2.27 2.54 

Oleic       C18:1n 0.63 0.63 0.63 0.64 0.64 0.71 0.69 0.69 11.65 

Linoleic  C18: 2n 77.2 77.84 77.03 77.34 77.23 75.80 76.33 77.0 73.63 

Linolenic C18: 3n 0.12 0.13 0.12 0.12 0.11 0.11 0.12 0.12 0.12 
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4.5.6. Correlations 
 

Pearson correlations (Table 4.6) showed that high nitrogen supply significantly 

increased leaf nitrogen content (LNC) and leaf chlorophyll content (TCC) and 

was positively related to LAI. This emphasized the importance of nitrogen for 

leaf growth and for providing the chlorophyll protein complex for photosynthesis, 

thus increasing the assimilation area and chlorophyll apparatus. Nitrogen input 

was strongly correlated (at both p < 0.05 and 0.01 levels) and to assimilation 

rate, and was positively correlated to stomatal conductance and transpiration 

rate and as a consequence WUE was positively correlated to leaf nitrogen 

content (p < 0.05). Ultimately, a strong positive correlation between above 

ground biomass (AGB) and leaf nitrogen content was (LNC) demonstrated. 

Taking all the parameters together, in this study safflower seed yield showed a 

positive correlation (at both p < 0.05 and 0.01 levels) with all of the physiological 

parameters, WUE, LNC, TCC, LAI and AGB, while seed oil content negatively 

correlated to seed yield. 
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Table 4. 6. Pearson correlation among physiological characteristics and above ground biomass at anthesis, above ground biomass  

at harvest, seed yield and seed oil content at harvest. 

 

 
LAI A E gs Ci WUE TCC LNC 

AGB at 

anthesis 

ABG at 

harvest 
SY 

LAI            

A 0.964 **           

E 0.891 ** 0.941 **          

gs 0.867 ** 0.933 ** 0.925 **         

Ci 0.878 ** 0.950 ** 0.904 ** 0.928 **        

WUE 0.713 ** 0.841 ** 0.722 ** 0.716 ** 0.822 **       

TCC 0.899 ** 0.979 ** 0.953 ** 0.936 ** 0.967 ** 0.848 **      

LNC 0.897 ** 0.949 ** 0.944 ** 0.921 ** 0.950 ** 0.749 ** 0.973 **     

ABG at anthesis 0.929 ** 0.960 ** 0.878 ** 0.891 ** 0.961 ** 0.801 ** 0.954 ** 0.972 **    

ABG at harvest 0.898 ** 0.964 ** 0.871 ** 0.911 ** 0.978 ** 0.872 ** 0.970 ** 0.929 ** 0.963 **   

SY 0.802 ** 0.912 ** 0.841 ** 0.942 ** 0.948 ** 0.860 ** 0.918 ** 0.870 ** 0.890 ** 0.940 **  

OC - 0.414 -0.454 - 0.5 27 - 0.348 -0.494 -0.483 -0.478 - 0.350 - 0.326 - 0.168 -0.385 

*Correlation is significant at the 0.05 level    **Correlation is significant at the 0.01 level 
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4.6. Discussion 

 

This experiment indicated that the safflower leaf assimilation rate at anthesis 

increased with increasing levels of nitrogen fertilizer. At 100 kg N ha- 1 the 

assimilation rate was found to be increased by 42% compared with the control 

(Figure 4.3), with no significant increment in plant photosynthesis thereafter. 

This indicates that at 100 kg N ha-1 was critical for plants to maximize 

assimilation rate. Maximum assimilation rate achieved at anthesis has also 

been previously reported in field grown safflower with a 51% increase in the 

assimilation rate (Dordas and Sioulas, 2008) and such an increment was about 

two times higher compared with the control under highest nitrogen level. It can 

be predicted therefore that similar results to those presented here for safflower 

under semi-controlled conditions can be expected under field conditions. Such 

increased assimilation rate is commonly reported in other crops (Cechin and 

Fumis, 2004; Ciompi et al., 1996) and it is considered an essential improvement 

aspect of the crops physiological response to the removal of a limiting factor. 

Nitrogen availability typically increases the photosynthetic capacity of C3 plants 

because the levels of proteins of the Calvin cycle (including Rubisco accounting 

for 85 - 90%) and thylakoids are related to increases in leaf nitrogen content 

(Evans, 1989; Warran et al., 2000).  

Photosynthetic enhancement could then be interpreted as a result of 

improvement in the leaf nitrogen status and consequent nitrogen investments in 

photosynthetic components. This pattern of incremental photosynthetic 

improvement has been observed in pot grown sorghum at three rates of 

nitrogen (0% to 20% and 100%) using a Hoagland’s solution approach as used  
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here (Zhao et al., 2005). By contrast, nitrogen deficiency is reported to reduce 

initial activity of Rubisco by 20% and slightly increase starch by about 25% in 

upper canopy leaves of fully grown sunflower. This eventually led to reduced 

initial photosynthesis and the intercellular CO2 increased such that the ratio of 

assimilation was maintained per unit of leaf nitrogen (Fredeen et al., 1991). 

It was confirmed also that the photosynthetic rate in both shade and sun plant 

species was linearly related to leaf nitrogen content (Evans , 1989) and Lawlor 

et al. ( 1987) detected that the photosynthetic rate can be greater with nitrogen 

input when measured in warm conditions with an illumination up to 1000 µmol 

m-2 s.-1 In contrast, other studies have recorded no effect of nitrogen fertilization 

on winter wheat leaf  assimilation rate (Shangguan, 1997; Shangguan et al., 

2000b). 

Stomatal conductance was increased and led to an increase in transpiration 

rate at anthesis. Application of the 100 kg N ha-1 increased stomatal 

conductance by 52% and transpiration rate by 32%. Stomatal conductance was 

up to two times higher under the highest nitrogen level as compared to the 

lowest at anthesis (Figure 4.3.B). This parameter showed an increase of 27% in 

other studies (Dordas and Sioulas, 2008). This achievement could be due to the 

contribution of transpiration rate and stomatal conductance on photosynthetic 

assimilation rate. There is a clear linear relationship between assimilation rate 

and transpiration rate as well as between assimilation rate and stomatal 

conductance (Table 4.6) and this result is strongly supported by findings 

elsewhere (Broadly, 2000; Cechin and de Fatima Fumis, 2004; Del Pozo et al., 

2007; Zhao et al., 2005). 
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In contrast, the negative relationship between assimilation rate and transpiration 

rate and the linear relationship between assimilation rate and stomatal 

conductance for safflower at antithesis has been reported as a clear effect of 

nitrogen treatment (Ciompi et al., 2008; Dordas and Sioulas, 2008) although no 

effect of nitrogen treatment has also been reported (Fredeen et al., 1991). 

A negative correlation between the assimilation rate and sub stomatal 

concentration of CO2 was obtained in this study (Table 4.6). This finding was 

interpreted a result of investments of carbon in photosynthesis with increasing 

nitrogen supplied which led to a decline in the intercellular CO2, and this 

corresponds with that for safflower measured by others (Dordas and Sioulas, 

2008). 

It was observed that in safflower plants, the highest assimilation rate was in 

fertilized treatments, related to higher stomatal conductance and transpiration 

rate leading to the highest water use. On the contrary, this also led to higher 

production rates and therefore the WUE showed an average increase of about 

44% 41% from sowing to anthesis and from sowing to harvest respectively, 

under the highest nitrogen rate as compared with the control (Figure 4.4.A and 

B). This can be interpreted as a result of the increase in the above ground dry 

matter accumulation which has a water cost (Shaw et el., 2005) Increased WUE 

is correlated in consequence of this as reported elsewhere (Dordas and Sioulas, 

2008) and previously recorded in other crops and plant species (Fredeen et al., 

1991). For example, Cechin and Fumis (2004) found that increases in 

transpiration rate in high nitrogen grown sunflower plants did not result in lower 

WUS because of a higher rate of photosynthesis.  
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Safflower responded strongly to increasing nitrogen supply with respect to plant 

morphology and growth through producing taller plants with more branches and 

leaves. This result corresponds with Gimenez et al., (1994) who found that 

sunflower growth was enhanced by nitrogen fertilizer through increasing the LAI 

and canopy development and (Siddiqui and Oad, 2006) reported that increased 

nitrogen from120 to 180 kg N ha-1 produced taller safflower plants. Oad et al., 

(2001) also found a positive response of sunflower stem height to increasing 

rate of nitrogen fertilizer. Similarity, oilseed rape produced more leaves under 

1176 mg N pot-1 (as ammonium nitrate) applied at the rosette stage (Svecnjak 

and Rengel, 2006). 

LAI of safflower behaves like many other C3 plants and strongly responded to 

nitrogen fertilizer and 125 kg N ha-1 increased LAI by 42% as compared with the 

control (Figure 4.5. A), and was tightly correlated to assimilation rate (Table 4.6). 

LAI reached a plateau in 6.27 to the highest levels of nitrogen and this was 

interpreted as plant growth acclimation in term of leaf growth with nitrogen 

availability. LAI was tightly correlated to assimilation and this was interpreted as 

improved growth through increasing the cell size as a result of increased 

photosynthetic rate caused by the doubling of nitrogen as previously 

established (Lea et al., 2001). Similar findings have previously been reported for 

field grown sunflower by Gimenez et al., (1999) and Cechin and Fumis, (2004) 

and for pot grown sorghum (Zhao et al., 2005). It was also reported by Fallovo 

et al., (2009) that LAI was increased by a similar amount with all forms of 

nitrogen. In contrast, fertilizer from 0 to 120 kgN ha-1 did not significantly 

improve LAI relative to control in field grown safflower and as a result above 

ground biomass did not change (Yau and Ryan, 2010). Safflower growth in term 
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of LAI in the current study showed a greater range between 3.66 to 6.27 than 

that reported in field grown safflower which was recorded as 3.8 under 

Mediterranean conditions (Iran) (Jalali et al., 2011). However, under field 

conditions in Turkey, LAI was reported to range between 19 to 20 (Yau and 

Ryan, 2010). This is probably because it was grown in a good soil with a greater 

root growth which leads to a greater vegetative growth especially when the 

quantity and distribution of rainfall are good. But in comparison with other crops 

e.g., durum wheat, the LAI increased by about the same value as produced by 

safflower in this study and ranged between 1.3 for control and 7 for fertilizing 

plants (Latiri-Souki et al., 1998). 

Safflower concentrated more nitrogen in its leaves which led to higher 

chlorophyll and 150 kg N ha-1 increased total chlorophyll content with a 55% 

increase compared with the control (Table 4.1) and (Table 4.2). Nitrogen 

fertilizer affected plant organs differently and this may be attributed to the fact 

that nitrogen tends to be translated from the stem to the leaves and then to the 

capital in different amounts under different nitrogen regimes applied. Nitrogen 

supply increases in leaf nitrogen concentration and chlorophyll content was also 

previously reported for safflower (Dordas and Sioulas, 2008) and sorghum 

(Zhao et al., 2005) and a linear relationship between leaf chlorophyll content 

and plant nitrogen concentration was reported at anthesis. Consequently, the 

positive relationship between leaf chlorophyll content and leaf assimilation rate 

at anthesis was observed (Table 4.6).This is in agreement with Lawlor et al., 

(2001) and other findings revealing that the structures involved in light 

harvesting in photosynthesis that capture the photon energy are actually a 

chlorophyll protein complex . Such changes in leaf chlorophyll content in  
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response to increased nitrogen supply have also been reported in maize (Zea 

mays L. CV. Maya) leaves (Tóth et al., 2002). In contrast, none of the four 

nitrogen levels (0, 40 ammonium sulfate, 80 and 120 kg N ha-1 ammonium 

nitrate) had significant increments of change in safflower organ nitrogen 

concentration and as a result leaf chlorophyll content as well as biomass was 

not affected significantly when tested in a field grown multi-year experiments 

(Yau 2010). 

The assimilation rate factors mentioned above led to a higher biomass 

production both at anthesis and at harvest when nitrogen was increased (Figure 

4.5. B and C). This is typically reported elsewhere (Cechin and de Fatima Fumis, 

2004;, Huber et al., 1989) and Zhao et al. (2005) and indicated that total plant 

dry matter production was strongly affected by nitrogen fertilizer and paralleled 

shoot/leaf dry matter accumulation. In the current study, safflower plants 

weighed up two times heavier in comparison to the control when given 

adequate nitrogen and similar results have been obtained for field grown 

safflower (Dordas and Sioulas, 2008). Both increasing photosynthesis and 

biomass led to incremental increase in seed yield. This was interpreted as a 

result of improvement in leaf nitrogen status by nitrogen fertilization, and clearly 

demonstrated the role of leaf nitrogen in photosynthesis enhancement and 

photosynthetic product partitioning. In contrast with this result, Siddiqui and Oad, 

(2006) stated that for field grown safflower seed yield and yield responded to 

nitrogen fertilizer with an additional increment in nitrogen rate and beyond a 

peak of 120 kg N ha-1 no significant further increase in response was 

observed.The increases in seed yield were always associated with an increase 

in head number (capitula) per plant and thereby seed number (Abbadi et al., 
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2008). As reported here the seed number positively correlated with capitula 

number (r = 0.946) and this generally agrees with previous studies (Dordas and 

Sioulas, 2008; Tuncturk and Yildirim, 2004). In a recent study, safflower seed 

yield was increased and associated with both head numbers per plant and seed 

number per head, when fertilized with 100 kg N ha-1 applied in three stages, 

sowing, early elongation and early flowering (Soleimani, 2010). In contrast, in 

another study the number of heads per plant did not significantly differ from 

those produced either under control or nitrogen regimes (Elfadl et al., 2009). 

The seed yield per plant obtained in this study was lower than expected and this 

is possibly because of high mean relative humidities (about 50%+) associated 

with an average low temperature (17 0C) during the flowering period which may 

have affected head fertility. Safflower is typically grown in arid or semi-arid 

region of the world (Johnston et al., 2002) with a hot and dry condition rather 

than cool moist climates as found in the UK (Dajue  and Mundel, 1996; Knowles, 

1976). Also pot size in which plants were grown may have restricted the plant 

root growth which may affect root nutrient uptake especially during seed 

formation. 

In the current experiment, it was difficult to make a decision about the effect of 

nitrogen supplied on seed oil composition on a one replicate basis. However, it 

can be tentatively concluded that the seed oil content and fatty acid composition 

were not affected by nitrogen fertilizer increment. In both control and nitrogen 

treatments the seed oil content was less than oil obtained from the original  

(parent) seed (Table 4.5) and the oleic linoleic acid ratio decreased in both 

control and nitrogen treatments relative to the parent seed. This suggests other 
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environmental factors impact on seed oil content and fatty acid composition. It 

has been reported that the temperature had little effect on the oil and fatty acid 

synthesis of the high oleic and linoleic genotypes, but the genotype with 

intermediate levels of both fatty acids will produce high levels of oleic acid at 

high temperature and high levels linoleic acid at low temperature (Knowles, 

1985). In work on sunflower, Izquierdo et al., (2006) reported higher oleic acid 

concentrated in oil when night temperature increased from 20 to 23 0C during 

the seed filling period. For linoleic acid an inverse trend was observed which 

increased with a minimum night temperature. Temperatures above 23 0C did 

not affect fatty acid composition except palmitic acid which was highest at 28 0C 

(Samancı and Özkaynak, 2003). Furthermore, Omidi et al., (2010) and 

Zheljazkov et al., (2009) have suggested that response of oil content and fatty 

acid composition of nitrogen is more dependent upon other environmental 

conditions, genotype and location than nitrogen. This is supported by Gecgel et 

al., (2007) who showed that safflower genotype and sowing date are important 

factors impacting oil content and fatty acid composition. Nevertheless, nitrogen 

treatment has been reported to increase both yields and oil levels in irrigated, or 

higher rainfall areas (Dajue  and Mundel, 1996) but many studies have not 

shown any relationship between nitrogen rates and safflower oil content 

(Dordas and Sioulas, 2008; Elfadl et al., 2009). 

The current study showed a negative correlation between oil content and seed 

yield. This could be interpreted as a result of increased protein or other seed  

contents. Rathke et al., (2005) found similar results with no relationship 

between seed yield and oil content and a negative correlation between oil 

content and protein in winter oilseed rape and stated that the inverse 
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relationship under higher nitrogen supply might be due to decreased availability 

of carbohydrates for oil creation. In contrast, the increased nitrogen application 

from 50 to 150 kg N ha-1 increased seed yield and modified the oil content and 

fatty acid composition relative to the control in winter mustard (Brassica juncea 

L.) grown in three different locations in Mississippi (south eastern United States) 

(Zheljazkov et al., 2012). 

In addition, the change in fatty acid profile under nitrogen might be dependent 

upon its time of application For example, Steer and Seiler (1990) found that for 

sunflower the percentage of palmitic (16: 0) and linoleic (18: 2) acids increased 

significantly when nitrogen was applied before floret initiation while the stearic 

(18:0) and oleic (18:1) acids decreased and only stearic acid responded when 

the nitrogen was applied between floret initiation and anthesis. After anthesis, 

nitrogen application increased the ratio of oleic/linoleic. By contrast, neither 

nitrogen rate or time of application in two seasons affected the percentage of 

rapeseed oil content and its fatty acids (palmitic, stearic, oleic, linoleic and 

linolenic, arachidic and erucidic) (Ibrahim et al., 1989). 
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4.7. Conclusion  

 

In this study, safflower physiological parameters (assimilation rate, transpiration 

rate and stomatal conductance) and LAI showed positive and incremental 

response to nitrogen when measured at anthesis. The combination of increases 

in both assimilation rate and leaf area contributed to the increase in seed yield. 

It is noticeable that the seed yield response continued to increase whilst leaf 

area and assimilation rate slowed down and this indicates that high nitrogen 

application rate also has an effect on partitioning of plant biomass to the seed 

component. Water use per g of seed yield increased as nitrogen rate increased 

indicating that there is a water use cost associated with increasing yield by 

nitrogen fertilizer but water was used more efficiently as biomass rose in 

response to increase in nitrogen applied. The seed oil content change and fatty 

acid profiles did not change dramatically with nitrogen fertilizer increases but 

there are still uncertainties about the effect of nitrogen fertilizer on seed quality 

in this study. Further studies need to include an interaction of nitrogen with 

other factors, especially temperature and also the time of nitrogen application 

needs to be tested to estimate exactly the effect of nitrogen on safflower seed 

yield and oil composition. 
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5.1. Introduction 

 

It is frequently reported (Ainsworth and Long, 2005; Ainsworth and Rogers, 

2007; Bowes, 1996; Leakey et al., 2009; Reddy et al., 2010; Seneweera and 

Norton, 2011) that the rate of photosynthesis of C3 plants grown at elevated 

CO2 is higher than in plants grown at ambient CO2. This is because an increase 

in the CO2 availability activates the carboxylation binding site of Rubisco and 

decreases the oxidation activity, and hence inhibits or reduces photorespiration 

(Taiz and Zeiger, 2002). In addition, the higher CO2 reduces the stomatal 

conductance due to either partial stomatal closure (Ainsworth and Rogers, 2007; 

Drake and Leadley, 1991; Wheeler et al., 1999) or decreases in stomatal 

density (Shaw et al., 2005). Bunce (2004) reported that elevated CO2 reduces 

stomatal conductance for many crop plants but the relative reduction is not 

constant, but is dependent on other factors (light, temperature and humidity) 

and different species showed different responses with a doubling of CO2 

leading to enhanced WUE (Hsiao and Jackson, 1999a; Hsiao and Jackson, 

1999b). As a result of these affect the plant growth is expected to rise in almost 

all cases but the magnitude of response will differ between functional crops 

(Ainsworth and Long, 2005; Poorter, 1993). 

On the other hand, a reduction in transpiration rate resulting from partial 

stomatal closure in response to doubling CO2 can also lead to a rise in leaf 

temperature and ultimately lead to an increase in transpiration rate which may 

offset the positive effect of stomatal closure (Allen, 1998; Allen Jr and Prasad, 

2004; Kimball et al., 2002). Furthermore, stomatal closure reduces the CO2 

diffusion into the leaves which can reduce the CO2 in the sub-stomatal cavity 
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and consequently reduce the photosynthetic rate. In this way stomata are said 

to acclimate to elevated CO2 (Sage, 1994).  

Productivity is strongly related to vegetative growth through LAI increases and 

is then directly associated with biomass increases. LAI determines the amount 

of light intercepted and total crop photosynthetic rate (Gastal and Lemaire, 

2002). Leaf area and thereby LAI often shows changes with rising CO2 

(Dermody et al., 2006; Ewert and Pleijel, 1999; Hirose et al., 1997). It is often 

reported (Campbell et al., 2001; Reddy et al., 1998; Rodriguez et al., 2001; 

Manderscheid et al., 2003) that LAI increases under doubled CO2. As a result 

photosynthesis of upper canopy leaves increases (Campbell et al., 2001; 

Heinemann et al., 2006; Rodriguez et al., 2001; Yuelin et al., 2005). Contrary to 

what was observed in many other studies in some cases leaf area and 

consequently LAI remain unchanged (Hartz‐Rubin and DeLucia, 2001; Sims et 

al., 1999b; Yoon et al., 2009) and in other cases elevated CO2 decreased the 

leaf area and specific leaf area decreased by 6% in plants exposed to elevated 

CO2 (Ainsworth and Long, 2005). 

The increases in LAI at the canopy level under elevated CO2 provide a greater 

surface for transpiration which increases the water use, in this way the WUE 

may be offset under CO2 enrichment (Allen Jr, 1999). But still, the positive effect 

of rising CO2 on productivity and dry matter production through increasing 

photosynthesis, reducing the transpiration rate and WUE improvement related 

to LAI is frequently pronounced (Carlson and Bazzaz, 1980; Lawlor and Mitchell, 

1991; Reddy et al., 1995). Concomitantly, as a result of higher biomass 

allocation towards sinks, grain yield is often reported to increase under elevated 

CO2 (Hikosaka et al., 2011; Hogy and Fangmeier, 2008; Kimball et al., 2001; 
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Kimball et al., 2002; Wu et al., 2004). However, under conditions where some 

other factors are severely limiting the long term elevated CO2 effect may not be 

manifested e.g., such as low nitrogen supply (Kanemoto et al., 2009; Le Roux 

et al., 2001), and growing plants in pots where plants are limited both in root 

growth and nutrient availability (Ainsworth et al., 2002; Arp, 1991) and low 

temperature (Long, 1991). In these situations imbalances within the 

photosynthetic system occur which lead to the accumulation of non-structural 

carbohydrate which may act as the feedback of the CO2 stimulation of 

photosynthesis under CO2 enrichment. This feedback is known as 

photosynthetic acclimation (Bowler and Press, 1996; Ghannoum et al., 2002). 

Eventually, with photosynthetic down-regulate a reduction in biomass and seed 

yield is sometimes observed (Ainsworth et al., 2002; Prasad et al., 2002). 

However, more recently, Sinha (2011) indicated that plant organ dry weight was 

significantly enhanced in three wheat species in spite of photosynthetic down 

regulation due to higher accumulation of starch and total soluble sugars. In 

order to sustain the photosynthetic rate under long term exposure to elevated 

CO2 and to avoid photosynthetic down-regulation, high sink strength (carbon 

utilization) is required (Lawlor, 1995; Long et al., 2004). 

A modification in plant response to expected increases in atmospheric CO2 and 

combined temperature change may have thus been underestimated by earlier 

workers. Cheng et al., (2009) found that both whole plant biomass and grain dry 

weight were reduced under elevated CO2 in combination with high temperature 

due to a shortening in crop growth cycle and accelerated development and  

thereby, the advantages of an increasing CO2 on assimilation may be offset by 

supra optimum temperature (Streck, 2005). Therefore, an optimum temperature 
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is required to maintain the maximum assimilation rate. High temperatures in 

excess to 36 0C and low temperature below 18 0C are identified to diminish 

carbohydrate translocation through the phloem resulting in down regulation of 

assimilation in fast growing metabolic sinks (Reddy et al., 2010). 

Alongside increasing crop growth and yield at elevated CO2, crop grain/seed 

quality has been suggested to be altered as a result of reduction in vegetative 

tissue nitrogen concentration rather than the carbon accumulation during grain 

filling (Högy and Fangmeier, 2008; Jackson et al., 1994; Hogy et al., 2011; 

Lierffering et al., 2004) and due to a drop in nitrogen concentration in plant 

organs  protein concentration decreased (Blumenthal et al., 1996; Hampton et 

al., 2012; Thompson and Woodward, 1994; Wu et al., 2004; Yang et al., 2007) 

but the non-structural carbohydrate (Hogy et al., 2009)  and lipids increased in 

cereal crops grain under elevated CO2 (Sator, 1999; Williams et al., 1995). 

However, the seed oil content was not affected in oilseed rape at elevated CO2 

(Franzaring et al., 2008) but Hogy et al., (2010) reported that the fatty acid 

composition changed in the same species at elevated CO2. 

Generally, the beneficial effect of elevated CO2 has been extensively reported in 

C3 crop species for physiology, growth, yield (Kimball et al., 2002) but for quality 

only in some oil crops such as oilseed rape (Högy et al., 2010). 

To date, there are no reports in the literature concerning the effect of elevated 

CO2 on safflower physiology, growth, yield and chemical composition, in spite of 

the medical, pharmaceutical and economic importance that has been 

demonstrated for the crop (Berglund et al., 2010; Berglund et al., 2007; Dajue 

and Mündel, 1996; Smith, 1996). Safflower is typically grown in the arid or semi-
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arid regions of the world (Johnston et al., 2002) that are facing potentially 

challenging climate change (Shaw et al., 2005). Lawlor, (1999) reported that the 

effect of rising atmospheric CO2 on semi-arid plants will be amongst the 

greatest because those species showed significant increase in yield under CO2 

enrichment.  

This chapter reports the results of an initial investigation of the effect of CO2 

enrichment on physiology, growth and seed composition of this crop grown in 

an enclosed chamber using a perlite based hydroponic system. 

. 
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5.2. Aim 

 

Study the effect of elevated atmospheric CO2 on safflower physiology, growth 

performance and seed yield, seed oil content and fatty acid composition.  

5.3. Objectives 

5.3.1. Objective 1 
 

Investigate the effect of CO2 enrichment on some growth parameters (stem 

height, leaf number, LAI, above ground biomass) and yield components (branch 

number, capitula number, seed number per plant). 

5.3.2. Objective 2 
 

Examine the physiological parameters (assimilation rate, stomatal conductance, 

transpiration rate, sub-stomatal conductance and water use efficiency) under 

elevated CO2. 

5.3.3. Objective 3 
 

Investigate the effect of elevated CO2 on seed quantity and quality by studying 

the seed oil content and fatty acid composition.  
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5.4. Materials and Methods 

 

Experimental design and measurements taken 

Plants were grown under ambient and elevated CO2. Pots were watered with 10 

- 30 mL of a standard hydroponics growth solution A and B (details given in 

material and methods) every 3 - 5 day until plants reached the elongation phase. 

Thereafter the amount of solution added was increased to 50 - 200 mL and 

supplied every week so as to leave at least 200 mL of drainage fluid in the 

drainage beaker) until 2 weeks before harvest when the watering was 

completely stopped. Tap water was supplied in between according to demand 

and all amounts of water added were recorded for each pot. 

Weekly average CO2 (Figure 5.1), temperature (Figure 5.2) and relative 

humidity (Figure 5.3) were calculated and recoded. An average of 88.8% RH for 

ambient and 84.14% for the elevated chamber and an average temperature of 

17 0C during the growth period were recorded. The average CO2 concentrations 

in the supplemented chambers were 1074, 1022, 1017 and 997 µmol mol-1 in 

the four chambers respectively with an overall average of 1028 µmol mol-1. 

These, were higher than originally planned but were still double compared to 

ambient which was recorded at an overall average of 400 µmol mol-1. 

At 50% anthesis (4th June 2011) the physiological parameters assimilation rate, 

transpiration rate, stomatal conductance and sub stomatal CO2 were measured 

on the youngest, three top expanded leaves of all plants (see ch 2). Days from 

sowing to 50% flowering were recorded. 

A day after  (32 plants in total ) plants were harvested and stem height, number 

of leaves per plant,  branch number, capital number, leaf area and  leaf area 
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index (LAI), chlorophyll content, plant organs biomass and nitrogen content 

were measured.  

The three sub-samples of three youngest expanded leaves of two plants from 

each chamber were used for measuring chlorophyll and other three sub-

samples dried for determination of nitrogen content. Also two of the harvested 

plants were separated into plant organs (stem + branch, leaf, capitula) and 

dried and weighed and recorded. Finally, these dried organs were ground and 

nitrogen concentration measured (see ch 2) 

An aphid infestation was diagnosed at the plants at the flowering stage (three 

days after anthesis) and plants in all chambers were infested but plants in one 

of the elevated chambers were seriously infested. To manage the problem, the 

plants were sprayed with recommended chemicals (Garden bug killer 

containing difenoconazole and thiacloprid). 

When most of the leaves had turned brown and only a tone of green remained 

on the bracts of the latest flowering heads (Berglud et al., 2007) the remaining 

plants were harvested (on 28th July 2011) and the average stem height leaf 

number, branch number, capitula number, above ground biomass and seed 

yield per plant for both ambient and elevated CO2 determined. The percentage 

total seed oil content was determined on a fresh weight basis, using Soxhlet 

and percentage of fatty acids determined using GLC (see ch 2). 
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                                     Figure 5. 1. Weekly average CO2 concentration per chamber over the growth period. 
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                               Figure 5. 2.Weekly average temperature per chamber over the growth period. 
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                                  Figure 5. 3. Weekly average relative humidity per chamber over the growth period.   
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5.5. Results 

 

5.5.1. Physiological parameters  
 

Elevated CO2 at anthesis significantly (p < 0.05) increased mean assimilation 

rate compared to ambient (Figure 5.4.A) whilst significantly (p < 0.05) reducing 

stomatal conductance (Figure 5.4.B) and thereby the transpiration rate was also 

significantly (p < 0.05) reduced under elevated CO2 compared to ambient CO2 

(Figure 5.4.C). The CO2 concentration in the sub-stomatal cavity did not differ 

between the treatments (Figure 5.4.D). 
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Figure 5.4. Mean of A. assimilation rate (A),B. stomatal conductance (gs), C. 
transpiration rate (E) and D. intercellular CO2 concentration (Ci) under the elevated 
CO2 at 50% anthesis. Vertical bars are the standard errors of the mean (n =16) at 0.0 5 
levels.  

 

 

 



                                                                                                                                               Chapter 5   

The effect of elevated CO2 on safflower physiology, growth performance and seed oil composition 

162 
 

5.5.2. Plant nitrogen concentration and chlorophyll content  
 

Compared to ambient conditions, plant organs at anthesis significantly 

concentrated less nitrogen under elevated CO2 and under both growth 

conditions the concentration differed in different plant organs. The concentration 

of nitrogen in the youngest fully expanded leaves, which were used for 

measuring the assimilation rate at anthesis, was significantly reduced by 

elevated CO2 compared with ambient CO2 (Figure 5.5). 

Chlorophyll a, b and total chlorophyll in samples of the same three youngest 

fully expanded leaves showed that they were not significantly affected by 

elevated CO2 treatment (Figure 5.6). 
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Figure 5.5. Mean of nitrogen concentration (g100g-1) in A. shoot and branch, B. total 
leaves, C..capitula and D. 3 expanded leaves on dry weight basis at 50% anthesis. 
Vertical bars are standard errors of the mean (n= 3) at 0.05 levels. 
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Figure 5.6. Mean of A. 3 expanded leaf chlorophyll a,B.  b and C. total chlorophyll 
content of fresh Weight basis  at 50% anthesis under the effect of elevated CO2.  

      Vertical bars are standard errors of the mean (n =3) at 0.05 levels. 
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5.5.3. Plant development, morphology, growth and seed yield 
 

Days to 50% flowering were 78 days for both elevated and ambient CO2 grown 

plant. From anthesis to harvest, the plant height did not show any significant 

effect under elevated CO2 as compared to ambient CO2 (Table 5.1). In contrast, 

the leaf number, and yield components responded significantly to elevated CO2, 

with 4%, 50% and 30% increase in the number of leaves, branches and capitula, 

respectively, when counted at harvest (Table 5.2). Plants grown under elevated 

CO2 significantly enhanced leaf area and a consequence leaf area index LAI at 

anthesis, with a 28% increase as compared to ambient CO2 grown plants 

(Figure 5.7.A).  

Plants exhibited more growth in term of dry matter accumulation in response to 

elevated CO2 (Table 5.1). Elevated in comparison to ambient CO2 increased 

total above ground dry weight by 51% and 43% at anthesis and harvest, 

respectively (Figure 5.8B and C). 

Increasing CO2 had little effect on seed number with only a small increase which 

was not statistically significant (p = 0.520) (Table 5.1). Plants produced an 

average of 8 seed per capitula which is much less than that reported value for 

field grown safflower of 15 - 30 seed per capitula (Dajue and Mundle 1996). In 

general the seed set was lower than expected but sill proportionate to the 

treatments and fresh seed weight increased by 49% under elevated CO2 

compared to ambient CO2 (Figure 5.8.D). 
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Table 5. 1.Means value of plant development criteria and yield component per 
plantwith their dry weight (gpl-1)under the effect of elevated CO2 at 50% anthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 
At anthesis 

Elevated CO2 Ambient CO2 P Value 

Plnat height 

(cm)  

95 91 0.092 

Leaf number p 34 30 0.110 

Leaf area  37 27 0.000 

Branch number  3 1 0.000 

Capitla number  3 2 0.000 

Shoot and 

branch dry 

weight  

4 2 0.000 

Leaves dry 

weight  

2 1 0.000 

Capitula dry 

weight  

3 1 0.000 
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Table 5. 2. Means value of plant development criteria and yield component per 

 plant  with their dry weight (gpl-1) under the effect of elevated CO2 at harvest. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Parameters 
At harvest 

Elevated CO2 Ambient CO2 P Value 

Leaf number  31 26 0.000 

Branch number  4 2 0.001 

Capitula number  3 2 0.006 

Shoot and branch dry weight  2 1 0.000 

Leaves dry weight 2.07 0.98 0.000 

Capitula dry weight  1.61 0.73 0.000 

Seed number p 25 17 0.52 
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Figure 5.7. Mean of A. LAI and B. above ground dry weight at 50% anthesis, C. above 
ground dry weight and D. fresh seed weight at harvest under the effect of elevated 

   CO2. Vertical bars are standard errors of the mean (n= 4) at 0.05 levels. 

.
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5.5.4. Seed chemical analysis 
 

Due to insufficient quantities of seed obtained seed oil content and fatty acid 

analysis were performed on a sample pooled from all replicates. The elevated 

CO2 slightly reduced seed oil content compared to ambient and the seed oil 

content in both growth conditions was less than the parent seed (Table 5.3). 

In comparison with the parent seed the saturated fatty acids (palmitic and 

stearic) and mono-saturated fatty acid (oleic) were slightly reduced in this study 

for both CO2 treatments (Table 5.3), whilst the unsaturated fatty acids (linoleic 

and linolenic) were increased. In comparison to ambient CO2 the ratio of 

unsaturated fatty acids/saturated fatty acids slightly increased in oil produced 

under elevated CO2. 

Table 5. 3. Total % seed oil content and fatty acid composition under the effect of 
elevated CO2 compared to ambient CO2 and original seed. 

 

 

Parameters 

Parent seed 

Seeds produced  

under ambient CO2 

Seeds produced  

under elevated CO2 

Oil content 21.3 18.44 17.95 

Palmitic  16:0 7.75 6.59 6.53 

Stearic    18: 0 2.54 2.35 2.19 

Oleic      18: 1n 11.65 0.64 0.64 

Linoleic  18:2n 73.63 76.96 77.45 

Linolenic  18:3n 0.12 0.13 0.14 
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5.6. Discussion  

 

These results showed that the assimilation rate of safflower increased at 

elevated CO2 compared to ambient CO2.Elevated CO2 (1000 µmol mol-1) 

significantly increased the assimilation rate by an average of 27% compared to 

ambient (400 µmol mol-1) (Figure 5.4.A). This was interpreted to be as a result 

of increased CO2 at the carboxylation binding site of Rubisco and hence, 

inhibited photorespiration under CO2 enrichment. Such a response has been 

frequently reported (Andrews et al., 1995; Leakey et al., 2009) and many 

workers on several C3 plants, conducted in different controlled conditions, 

concluded that the light saturated photosynthetic rates at doubled CO2 is usually 

increased to some extent (Ainsworth and Long, 2005; Leakey et al., 2009; 

Reddy et al., 2010). Elevated CO2 in both FACE and enclosed chamber studies 

has shown a similar direct change in assimilation rate and productivity 

(Ainsworth and Long, 2005). Similar results have been reported for soybean, 

dry bean, peanut and cowpea but at the optimum temperature and in the 

absence of abiotic and biotic stress (pests, diseases and weeds) (Prasad et al., 

2005). In soybean, it has been reported that elevating CO2  to 1000 μmol mol−1 

enhanced photosynthesis more at 22/16 0C than at 26/20 0C (SionitI et al., 1987) 

and the optimum temperature is required to maintain this maximum assimilation 

rate. High temperatures above 36 0C and temperatures below 18 0C have been 

identified to diminish carbohydrate translocation through phloem resulting in 

down-regulation of assimilation (Reddy et al., 2010) because low and high 

temperature have been shown to cause progressive damage to the protoplasm 

(Kendall,1952). 
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In fact, it has been concluded that elevated CO2 enhances assimilation rate in 

C3 plants by an average of 31%, but the magnitude of enhancement, varies 

among different species and environments (Ainsworth and Rogers, 2007).  

In general, modelling studies have reported that assimilation rate and 

productivity for crops were sustained over time  for short term exposure to rising 

CO2, but they were down regulated during long term exposure to high CO2  

(Ainsworth et al., 2002; Field and Moony, 1986; Rogers et al., 1986; Sims et al., 

1999; Wheeler at al., 1999). Arp (1991) revealed that down-regulation in 

photosynthetic capacity (acclimation) at long term exposure to high CO2 was 

related to the pot size in which plants were grown because the volume of the 

pots impacted the sink size by restricting root growth and a similar effect might 

be seen here. 

In the current study, elevated CO2 reduced stomatal conductance at anthesis by 

29% and a corresponding decrease in transpiration rate was 18% under CO2 

enrichment treatment compared to ambient (Figure 5.4. B and C). Such results 

have often been reported (Ainsworth and Long, 2005; Drake and Leadley, 1991; 

Poorter and Perez-Soba, 2002; Shaw et al., 2005; Wheeler et al.,1996 a; 

Wheeler at al., 1996b). These reductions may be attributed to WUE 

improvement and enhanced assimilation rate as reported elsewhere (Drake et 

al., 1997). Elevated CO2 to 700 µmol mol-1 CO2 increased photosynthesis rate 

in peanut by an average of 27% across all temperature regimes used (32/22, 

36/26, 40/30, and 44/34 0C) due to reduction in stomatal conductance and leaf 

transpiration (Gifford et al., 2000).  
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No significant differences were found in sub-stomatal CO2 concentration 

between elevated CO2 and ambient CO2 at anthesis (Figure 5, 4). This could be 

explained by more CO2 investments in photosynthesis on one hand, and 

stomatal closure reduced transpiration rate at the same time reducing the 

diffusion of CO2 in to the leaves at elevated CO2 on the other. The amount of 

intracellular CO2 concentration is frequently reported to be at the same 

irrespective of the levels of CO2 (Drake et al., 1997; Sage, 1994). Ainsworth and 

Long (2005) from a meta- analysis review of 12 FACE experiments reported 

that there was no obvious change in the ratio between atmospheric CO2 and 

intercellular CO2. In contrast, CO2 enrichment led to an increase in intracellular 

CO2 concentration in a total of 17 temperate grasses and herb species leaves  

(Beerling and Woodward, 1995). The same results were also reported for 

deciduous forest trees (Korner et al., 2005) and the deciduous woody shrub 

Lindera bezoin L. (Cipollini et al.,1994). 

Plant organ nitrogen content was significantly depressed at high CO2 compared 

to ambient (Figure 5.5) leading to an increased ratio of C: N. This trend is 

consistent with the observation that plants change their nitrogen allocation to 

optimize energy cost (Cotrufo et al., 1998; Jablonski et al., 2002; Kimball et al., 

2002). Moreover, this has been interpreted as an increased ability of plants to 

use nitrogen more efficacies as a result of the marked increase in 

photosynthetic rate at doubled CO2 (Cruz et al., 2003) as reported here for 

safflower. Another explanation is the consequence of a decrease in 

transpiration rate resulting from reduced stomatal conductance in response to 

elevated CO2 which possibly limited plant nitrogen uptake from the root 
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environment, but this explanation has received little attention in the literature 

(Kanemoto et al., 2009). 

Safflower leaves concentrated less nitrogen but this did not lead to big changes 

in chlorophyll content in elevated CO2 (Figure 5.6).  In previous work on cotton, 

(Delucia et al., 1985) proposed that elevated CO2 (1000 µmol mol-1) reduced 

leaf chlorophyll content and the ratio of chlorophyll a/b changed with reductions 

in transpiration rate and nitrogen content. The reduction in leaf chlorophyll 

content under elevated CO2 was due to mild chlorosis in leaves in response to 

CO2 increase. 

CO2 enrichment did not enhance the plant height and leaf numbers at anthesis 

and stem height at harvest, which corresponds to previous finding where no 

significant effect of two levels of increasing CO2 (600 and 800 µmol mol-1) in 

cotton plant height was found. Also the interaction of CO2 with high temperature 

(35/25 0C) did not alter the stem height (Yoon et al., 2009). Seven FACE 

experiments for 12 species of trees and shrubs showed an increase in stem 

height, while C3 crop species showed no change (Ainsworth and Long, 2005). 

With the growth in doubled CO2 the leaf number increased by 8%. In contrast, 

oilseed rape plants grown under elevated CO2 were markedly taller than those 

grown under normal CO2 (Franzaring et al., 2008). 

Plant yield components in term of leaf, branch and capitula numbers were 

affected in plants grown under elevated CO2 (Table 5.1and 5.2) at the same 

time the dry weight of these reproductive organs increased and this was 

interpreted as a result of a speed up of plant development during vegetative 

growth and also photosynthetic product shift to generative growth organs 
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increased at elevated CO2 (Franzaring at al., 2008). The same result was 

reported for cotton where the number of bolls per plant increased due to a 

larger number of secondary branches at elevated CO2 at optimum temperature 

for cotton growth (Reddy et al., 1998). In previous work on soybean, Rogers et 

al., (1984) suggested that branch growth and development, leaf initiation and 

leaf expansion are sensitive to carbon availability.  

Leaf morphology in term of LAI at anthesis was significantly enhanced by 28% 

at increase at elevated CO2 (Figure 5.7.A) probably due to a direct 

consequence of increased assimilation rate and growth. This agrees with 

previous findings that the greatest stimulation occurred when the canopy leaf 

area reached its greatest but the increased LAI did not lead to noticeable 

changes in canopy light absorption (Manderscheid et al., 2003). However, some 

authors have predicted that LAI would increase in the upper canopy under 

doubled CO2  because elevated CO2 reduces the light compensation point for 

photosynthesis and thus stimulates leaf production (Campbell et al., 2001; 

Reddy et al., 1998; Rodriguez et al., 2001) also LAI of peanut (Bannayan et al., 

2009) and soybean increased under elevated CO2 (Heinemann et al., 2006; 

Yuelin et al., 2005) but in contrast no other significant effect of elevated CO2 on 

LAI was found by Sims et al., (1999) and Yoon et al., (2009) and elevated CO2 

failed to increase the leaf area and in fact specific leaf area decreased by 6% in 

plants exposed to elevated CO2 (Ainsworth and Long, 2005). Ewert (2004) 

showed in his review the relative importance of LAI for canopy assimilation and 

biomass accumulation and translocation under varying levels of CO2 and 

suggested that under elevated CO2 and other environmental factors, plant 

growth and productivity are unlikely to be realized   without increasing LAI. 



                                                                                                                                               Chapter 5   

The effect of elevated CO2 on safflower physiology, growth performance and seed oil composition 

175 

There was a strong response of above ground biomass to elevated CO2, with 

an increase of 51% at anthesis and 43% of harvest for plants subjected to high 

CO2 compared to ambient CO2 indicating that the total aboveground biomass 

correlated with LAI changes and followed a similar pattern (Figure 5.7 B nd C) 

and this paralleled shoot weight as previously reported (Fangmeier et al., 1996; 

Manderscheid et al., 2003; Pinter Jr et al., 1996)  

The seed yield of a crop is a function of final total biomass production and 

harvest index (Yang et al., 2006a) and the highest seed yield (54%,  Figure 5.7 

D) recorded here under elevated CO2 was more a function of the increased 

biomass rather than any shift in harvest index. The increased biomass at 

elevated CO2 was interpreted as a result of photosynthetic capacity increases 

leading to improved net assimilation rate. Some other studies also show a good 

correlation between photosynthesis and productivity, e.g., in work on cotton 

Reddy et al., (1995) reported that increasing total biomass was due to higher 

photosynthesis rates at elevated CO2. This achievement in above ground 

biomass and grain weight here was interpreted as a result of increased LAI and 

assimilation rate and thereby radiation use efficiency Lawlor, (1995) and 

Manderscheid et al., (2003). Yuelin et al., (2005) in a study on soybean found 

that elevated CO2 from 550 to 750 µmol mol-1 increased leaf area index from 

4.08 to 7.57% and increased pod number per plant from 6.8 to 11.61%, 

eventually led to the increase in seed weight per plant from 15.14 to 29.10%.  

(Gifford and Evans, 1981) showed that increase in seed yield can come from 

improved carbon partitioning and storage of photosynthetic assimilates and in 

agreement with this hypothesis elevated CO2 enhanced the plant biomass and 

grain yield in field grown rice (Lieffering et al., 2004) and elevated CO2 
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increased the grain yield due to increasing LAI and biomass in soybean (Yuelin 

et al., 2005). Furthermore, total plant dry weight increased at two elevated of 

CO2 levels (600 and 800 µmol mol-1) and temperature (25/15 and 35/25 0C) but 

did not correlate to the change in LAI. Yoon et al., (2009) suggested that higher 

resource use efficiency per unit leaf area rather than enhancing the leaf area for 

capture of resource.  

So as can be seen from this discussion, there are several ways that plant 

species can respond in its assimilation to increased levels of CO2 and safflower 

appears to be in the group which increase both assimilation rate and LAI and 

thereby light efficiency capture. However, the increased assimilation and LAI did 

not result in a significant increase in seed number in this study (Table 5.1). 

Increasing CO2 had little effect on seed number, the seed number was slightly 

increased by CO2 but was not statistically significant (p = 0.520). The plants 

under CO2 enrichment produced 8 seed per capitula which is less than the 

recorded value for field grown safflower of 15-30 seed per capitula (Dajue  and 

Munde, 1996). The exact reason for this is not known but it may be explained 

by the cloudy (short photoperiod) days during bud development and pollination 

(most of the days were cloudy) in combination with high humidity and low 

temperature in the enclosed chamber (mean temperature was about 19 0C and 

humidity was about 88%) and these could have affected flower fertility 

especially at the time of pollination. Safflower is typically grown in arid or semi-

arid regions of the world with a hot, dry and long day climate (Dajue  and 

Mundle, 1996).The supplemented photoperiod provided here in association with 

the cloudy days, low temperature and high humidity seems to have been 

inadequate for safflower flowers to fertilizer adequately. This speculation is 
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strongly supported by work on soybean where Siontl et al. (1987) reported that 

no soybean seeds were produced at 18/12 0C across all levels of elevated CO2 

(350, 675 and 1000 µmol mol-1). Similarly, photoperiod of 16 h. and day/night 

temperatures of 18/28 0C increased the flowering and pod formation in bean 

(Vicia faba L.), conversely, at 5/13 0C and 10 and 13 h. of photoperiod seed set 

responded negatively (Ellis et al., 1988). 

In general, under conditions where some other factors are severely limiting, 

such as low temperature, the effect of CO2 elevation might not be noticeable 

(Long, 1991); Furthermore, Amthor (1998) concluded from his review that yield 

can be enhanced from CO2 enrichment to some extent but that other factors 

have more stimulatory effect on crop seed yield, such as selection of genotypes 

with increased harvest index and disease resistance, nitrogen fertilizer and 

chemical weed and pest control. A second explanation for poor seed set may 

be due insufficient nutrient availability with small pot volumes, for example 

boron deficiency is known to affect seed set in wheat (Rerkasem et al., 1993).  

Despite the low seed number there was still a positive effect of elevated CO2 

compared to ambient and this was closely related to the increase in capitula 

number per plant. From the correlated responses in various crosses Patil et al., 

(1994) found that for yield improvement in safflower the selection for capitula 

number per plant was effective. In other reports seed number was not affected 

by elevated CO2 (Kimball et al., 2001; Kimball et al., 2002). Whereas, elevated 

CO2 (700 µmol mol-1) increased seed number in soybean by an average of 22% 

due to increased plant biomass (Boote et al., 1989). 
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It was observed that the days from sowing to flowering were not affected by 

high CO2, and the same result was found for rapeseed (Franzaring et al., 2008) 

and flowering time has generally been shown to be un affected by elevated CO2 

(Springer and Ward, 2007). Furthermore, Prasad et al., (2003) stated that the 

days from sowing to flowering, pollen viability and seed set are temperature 

sensitive under elevated CO2 and ambient to a similar degree. No differences 

were observed at the start of flowering date at different levels of CO2 

investigated for soybean but the start of flowering showed differences at 

different temperature regimes (Heinemann et al., 2006). 

Elevated CO2 slightly reduced seed oil content compared to ambient, but the 

seed oil content in both elevated CO2 and ambient was less than the original 

(parent) seed oil content recorded as 21%. The net oil yield increased at 

elevated CO2 due to increasing seed yield (Figure 5.8) and the same result was 

reported for rapeseed and indicated that the positive effect of CO2 enrichment 

on repressed growth is only moderate after flowering stage (Franzaring et al., 

2008). In comparison with the parent seed the saturated fatty acids (palmitic 

and stearic) and mono-saturated fatty acid (oleic) were reduced in this study for 

both elevated CO2 and ambient (Table 5.8). In contrast, the unsaturated fatty 

acids (linoleic and linolenic) were increased. In comparison to ambient the ratio 

of unsaturated fatty acids/saturated fatty acids was slightly increased in oil at 

elevated CO2. It is not possible to place much confidence in the suggestion that 

elevated CO2 affects the seed oil content, and some changes in fatty acids 

profile in this study, because it was based on only one replicate. However, it can 

be speculated that non-structural carbohydrate (carbohydrates that the plant is 

unable to utilize) and its relative source/sink size has been shifted towards the 
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seed and reduced the seed nitrogen content and made alterations in seed 

composition of elevated CO2. Other environmental factors such as temperature 

could be important for seed composition (Knowles, 1985). 

Unfortunately, due to insufficient seed obtained in this study, the seed nitrogen 

concentration could not be measured. But a reduction in nitrogen concentration 

and protein content could be possible at elevated CO2 due to nitrogen 

concentration reduction in plant organs at anthesis. As previously suggested the 

nitrogen uptake was complete at anthesis, and after anthesis was translated 

from the vegetative pool to the seeds which would lead to a decrease in seed 

nitrogen content (Fangmeier et al., 1999). 

In agreement with the current study, recent work on oilseed rape (Högy et al., 

2010) showed that total oil content of seed was not affected by elevated CO2 

(494 µmol mol-1) but oil yield increased due to increasing seed yield, while fatty 

acid composition changed only slightly compared to ambient. Also Franzaring et 

al., (2008) found no significant effect of elevated CO2 (500 µmol mol-1) on oil 

seed rape seed oil content at compared to ambient. Conversely, elevated CO2 

reduced seed protein content in cereal crops such as rice (Lieffering et al., 2004; 

Yang et al., 2006b) and wheat due to a drop in the seed nitrogen concentration 

and an increase in the non-structural carbohydrate (Högy et al., 2009) and lipids 

in wheat grain (Sator, 1999; Williams et al., 1995). Results from these studies 

suggest that grain quality altered with a rise in CO2 but for safflower this was not 

evident. 
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5.7. Conclusion 

 

This experiment clearly demonstrated that CO2 levels elevated to approximately 

twice the levels of ambient, and with an optimal of water and nutrient supply, 

increased the assimilation rate of safflower at anthesis. This increase can be 

linked to a reduction in a stomatal conductance and transpiration rate. The 

above ground biomass markedly increased and was associated with a 

noticeable increase in LAI and assimilation rate at elevated CO2 and this 

increased above ground biomass which was maintained through to harvest. 

This indicates that elevated CO2 increased assimilation rate and partitioning of 

biomass. Seed set was very low at both elevated CO2 and ambient, and it is 

suggested that pollination of flowers has failed because the flowering period 

coincided with short days combined by high humidity and low temperature and 

the amelioration of these stresses by CO2 enrichment was not possible. Seed oil 

content might be reduced slightly by elevated CO2 and the seed fatty acid profile 

might also be altered but only in a minor way. Overall, the results reported here 

suggest that safflower would perform well under conditions of increasing CO2 

levels.  
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6.1. Introduction 

 

Elevated CO2 results in initial stimulation of photosynthesis, but this stimulation 

is often partially or completely reversed especially under long term exposure 

(Ainsworth et al., 2003; Martínez-Carrasco et al., 2005). Sink strength and 

nitrogen status are the main two factors that have been implicated in the 

acclimatory response of plants grown at elevated CO2. Many results from FACE 

have provided links between nitrogen supply and assimilation acclimation 

(down-regulation) and concluded that plants grown at low nitrogen supply 

characteristically accumulate more non-structural carbohydrate and exhibited 

greater acclimation of Rubisco than those grown at adequate nitrogen supply 

(Ainsworth et al., 2003; Ainsworth and Long, 2005). Therefore, in low nitrogen 

supply a reduction in photosynthetic capacity is often has been observed at 

elevated CO2 (Del Pozo et al., 2007; Drake et al., 1997; Geiger et al., 1999; 

Harmens et al., 2000; Pettersson and McDonald, 1994) and this is because 

photosynthetic capacity is strongly related to the leaf nitrogen content (Evans, 

1989; Sage and Pearcy, 1987) primarily because the enzymes of the Calvin 

cycle, such as Rubisco, and thylakoids account for most of the plant nitrogen 

content (Taiz and Zeiger, 2006). Nitrogen is also comparative to leaf chlorophyll 

content (Evans, 1989). Reduction in nitrogen availability therefore is often 

associated with a decrease in the amount and activity of Rubisco carboxylation 

(Ainsworth and Long, 2005; Ainsworth and Rogers, 2007; Long et al., 2004; 

Rogers and Humphries, 2000), a decrease in chlorophyll content and a decline 

in nitrogen reductase activity (Brooks et al., 2000; Geiger et al., 1999; Nakano 

et al., 1997). Also gas exchange alteration such as decreased stomatal 

conductance and transpiration rate can be associated with reduced leaf 
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nitrogen content under elevated CO2 (Del Pozo et al., 2007; Taub and Wang, 

2008). As a consequence of these effects, plant growth response to elevated 

CO2 is often decreased under low nitrogen supply (Hocking and Meyer, 1991; 

Johnson et al., 1998). An indirect effect of nitrogen deficiency in photosynthetic 

acclimation can be a limitation of sink development to utilize any additional of 

photo assimilation arising from CO2 fertilization (Rogers et al., 1998). 

Nitrogen supply not only increases the amount of nitrogen in the whole canopy, 

but also affects the distribution of nitrogen among the different leaves within the 

canopy (Dreccer et al., 2000). Photosynthetic acclimation resulting from 

elevated CO2 could be mitigate by nitrogen nutrition  (Del Pozo et al., 2007) and 

the growth under sufficient nitrogen supply and predicted increase in 

atmospheric carbon dioxide results could optimize the light saturated 

assimilation rate (Geiger et al., 1999; Johnson et al., 1995; Radoglou et al., 

1992; Rogers et al., 1996; Sanz-Sáez et al., 2010). Low nitrogen supply was not 

found to aggravate photosynthetic acclimation, but the growth in elevated CO2 

and either high or low nitrogen is dependent on sink/source (Farage et al., 1998; 

Jifon and Wolfe, 2002; Pettersson and McDonald, 1994; Stitt  and Krapp, 1999). 

Photosynthetic acclimation may be greater in leaves of plants at higher nitrogen 

supply than the lower because of higher sink strength of assimilating product. 

Elevated CO2 appears to increase nitrogen use efficiency (Hoking and Meyer, 

1991; Leaky et al., 2009; Zerihun et al., 2000) and as a result the negative 

effect of nitrogen deficiency may be ameliorated by elevated CO2 (Radoglou et 

al., 1992) and the plant growth, biomass and seed production are sometimes 

not significantly different between low and high nitrogen treatments at elevated 

CO2 (Larigauderie et al., 1988).  
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In general, elevated CO2 increased rate of growth will typically lead to increased 

demand  for mineral nutrients (Reddy et al., 2004) and various research studies 

have been undertaken to study the interactive effect of elevated CO2 and 

nitrogen fertilizer on different crop species, including  oil crops such as 

sunflower (Zerihun et al., 2000). Arid or semiarid ecosystems account for about 

1/3 of the total land area of the world and are likely to undergo a significant 

impact of climate change through changes in their biochemistry (Schlesinger et 

al., 1990). Many of these ecosystems are already facing a loss of nutrient due 

to land use (Evans and Belnap, 1999). In addition, the occasional nature of 

water availability in these ecosystems has a significant consequence on soil 

carbon and nitrogen cycling (Austin et al., 2004). Safflower is one of the few oil 

crops which is well adapted to these ecosystems and it shows a good tolerance 

to dry, cold winters and hot summers (Johnston et al., 2002; Quiroga et al., 

2001). It is of interest to study the interactive effect of elevated CO2 and nitrogen 

supply on safflower physiology, growth and seed yield. 
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6.2. Aim 

 

To assess the interaction effect of elevated CO2 and nitrogen nutrition on the 

physiology, growth development and seed yield. 

6.3. Objectives 

6.3.1. Objective 1 
 

Examine the safflower physiology response to elevated CO2 under a range of 

nitrogen supplied, and investigate whether the effect of elevated CO2 on 

photosynthesis depends on nitrogen availability. 

6.3.2. Objective 2 
 

To determine whether the nitrogen status of different plant organs varies in 

response to elevated CO2 under different levels of nitrogen fertilizer. 

6.3.3. Objective 3 
 

To investigate the effects of CO2 enrichment and nitrogen nutrition on canopy 

development (LAI). 

6.3.4. Objective 4 
 

To investigate the interaction effect of CO2 and nitrogen nutrition on above 

ground biomass accumulation and biomass partitioning. 
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6.4. Material and Methods 

 

Experimental design and measurements taken 

Plants were grown under ambient and elevated CO2. The study layout as a 

split- plot design with CO2 as the main plot with four chambers supplied with 

elevated CO2 and four with ambient air. Nitrogen fertilizer levels were the 

subplots with four levels of nitrogen (equivalent to 25, 70, 125 and 175 kg N ha-1) 

chosen because of the results obtained in the nitrogen nutrition experiment (ch 

4). Two ambient and two elevated chambers were located on each side of the 

glass-house and the allocation of elevated or ambient CO2 was made at random. 

Each chamber had 16 pots, 4 pots of each nitrogen treatment as shown in Plate 

(6.1). The germinated seed was sown on 20th October 2011. Pots were watered 

with 10 - 30 mL of a standard hydroponics growth solution A and B every 3 - 5 

days for the first month. Thereafter, plants were irrigated with 50 - 200 mL 

complete Hoagland’s solution minus nitrogen (for detail see chapter 2 and 

appendix A) every (5-7 days). Nitrogen was applied by supplementing the 

Hoagland’s at watering time. Four levels of ammonium nitrogen solution were 

prepared by dissolving (0.7, 1.9, 3.14 and 4.22 g ammonium nitrate) (detailed in 

ch 4). 

The weekly average CO2 (Figure 6.1) temperature (Figure 6.2) and humidity 

(Figure 6.3) were calculated. An average humidity of 84% for ambient and 89 % 

for elevated chamber and an average temperature of 14 0C for both ambient 

and elevated CO2 during the growth period were recorded. 

The average CO2 concentrations in the supplemented chambers were 1008.66, 

1002.93, 1002.79 and 999.48 µmol mol-1 in the four chambers respectively, with 
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an overall average of 1000 µmol mol-1. These, were higher than original 

planned set point but were still double compared to ambient which recorded an 

overall average of 400 µmol mol-1. 

At (50%) anthesis on 5th Jun 2012 the physiological parameters: assimilation 

rate, transpiration rate, stomatal conductance and sub stomatal CO2 were 

measured on the youngest, three top expanded leaves of all plants in each 

nitrogen treatment. One day later the plants in six of the chambers (3 ambient + 

3 elevated chambers)were harvested and stem height, number of leaf per plant, 

branch number, capitula number, leaf area and  leaf area index (LAI), 

chlorophyll content, plant organ biomass and nitrogen content measured. As the 

number of plants in this experiment for each treatment was limited just 2 sub-

samples of three youngest expanded leaves of 4 plants from each nitrogen 

treatment and each chamber were used for measuring chlorophyll and other 2 

sub-samples were dried and from the dried samples 3 subsamples used in 

nitrogen determination The other 2 remaining chambers were harvested at 

maturity on 15th July 2012 and the stem height, number of leaf, branch number, 

capitula number, and number of seed and above ground dry weight were 

measured (see ch 2 for detail). 

The plant nitrogen uptake was calculated the total nitrogen (nitrogen 

concentration in shoot + branches, total leaf and capitula) multiplied by the total 

above ground dry weight. 
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Plate 6. 1 Photograph to illustrate the enclosed chambers used and the coloured labels 

used to indicate different levels of nitrogen used in experiment.  
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                            Figure 6. 1. Weekly average CO2 concentration per chamber over growth period. 
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                              Figure 6. 2.Weekly average temperature per chamber over growth period. 
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                      Figure 6. 3. Weekly average relative humidity per chamber over growth period. 
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6.5. Results 

A summary of the results is presented in Table 6.1 and Table 6.2 and each of 
the results is discussed later in the text. 

Table 6.1. A summary of the P value and L.S.D. (0.05 level) of main and interaction 
effects of elevated CO2 and nitrogen rates on different parameters studied on safflower 
at 50% anthesis. 

 

Parameters 
P  value L.S.D 

CO2 N 
CO2 X 

N CO2 N 
CO2 X  

N 

Assimilation rate (A)  
0.000 0.000 0.968 0.78 1.11 n.s 

 

Intercellular concentration of CO2  (Ci) 
0.000 0.194 0.01 9.66 n.s n.s 

 

Stomatal conductance  (gs) 
0.659 0.000 0.529 n.s 0.06 n.s 

 

Transpiration rate  (E) 
1.000 0.000 0.978 n.s 0.61 n.s 

 

Total leaf nitrogen concentration (g100g
-1

) 
0.000 0.000 0.000 0.024 0.034 0.048 

 
Shoot + branch nitrogen concentration 
(g100g

-1
) 

0.000 0.000 0.176 0.018 0.024 n.s 

Capitula nitrogen concentration (g100g
-1

) 
0.000 0.000 0.006 0.001 0.044 0.062 

3 expanded leaves nitrogen concentration 
(g100g

-1
) 

0.000 0.000 0.102 0.072 0.098 n.s 

3 expanded leaf chlorophyll a content (mg 
g fresh weight) 

0.559 0.000 0.891 0.020 0.030 n.s 

3 expanded leaf chlorophyll b content (mg 
g fresh weight) 

0.280 0.000 0.846 0.026 0.037 n.s 

3 expanded leaf total chlorophyll content 
(mg g fresh weight) 

0.420 0.000 0.753 0.075 0.11 0.15 

Leaf number 
0.000 0.831 0.369 6.1 n.s n.s 

 

Leaf area index (LAI) 
0.000 0.000 0.000 0.04 0.05 0.07 

 

Stem height 
0.000 0.016 0.970 2.71 3.83 n.s 

 

Branch number  
0.000 0.207 0.217 1.7 n.s n.s 

 

Capitula number ( g pl
-1

) 
0.000 0.023 0.666 1.7 n.s n.s 

 

Leaf dry weight ( g pl
-1

) 
0.000 0.000 0.048 0.48 0.67 n.s 

 

Shoot+ branch dry weight ( g pl
-1

) 0.000 0.000 0.032 0.49 0.69 0.98 

Capitula dry weight (gpl
-1

) 0.000 0.000 0.004 0.68 0.96 n.s 

Total above ground dry weight ( g pl
-1

) 0.000 0.000 0.640 1.42 2.01 n.s 
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Table 6.2. A summary of the P value and L.S.D. (0.05 level) of main and interaction 
effects of elevated CO2 and nitrogen rates on different parameters studied on  safflower 
at harvest. 

 

Parameters 

P value L.S.D 

CO2 N CO2 × N CO2 N CO2 X N 

Stem height (cm) 0.000 0.000 0.026 
0.99 1.40 n.s 

Leaf number 0.002 0.000 0.327 
4.3 6.0 n.s 

Branch number 0.000 0.000 0.000 

0.9 1.2 1.7 

Capitula number 0.000 0.0000 0.011 

1.1 1.5 2.1 

Seed number 0.000 0.095 0.181 
1.2 n.s n.s 

Shoot + branch dry weight (gpl
-1

)
  

0.000 0.000 0.003 

0.46 0.644 0.91 

Leaf dry weight (gpl
-1

)  0.000 0.000 0.012 
0.35 0.50 n.s 

Capitula dry weight (gpl
-1

)  0.000 0.000 0.150 
0.093 0.92 n.s 

Total  above ground dry weight (gpl
-1

) 0.000 0.000 0.001 
0.68 0.96 n.s 

Seed fresh weight (gpl
-1

)  0.000 0.023 0.590 0.068 0.096 N.S 
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6.5.1. Physiological parameters 
 

At anthesis, the mean assimilation rate (CO2 assimilation) increased 

incrementally with each increase in nitrogen supplied at both elevated CO2 and 

ambient CO2 (p ≤ 0.05), and was up to 18% higher at elevated CO2  than 

ambient CO2, and the highest value was obtained under the highest nitrogen 

input (Figure 6.4.A). Plants at the highest nitrogen level had a 37% higher rate 

of assimilation rate than those grown under the lowest nitrogen level. There was 

no significant (p > 0.05) interaction effect between both CO2 levels and nitrogen 

treatments and this reflected in the parallel response curves in Figure (6.4.B). 

Elevated CO2 significantly (p < 0.05) increased the CO2 in leaf intercellular 

spaces and each increment in nitrogen input and was higher by 8% compared 

with ambient CO2, and the highest value was elicited at 125 kg N ha. -1 
Under 

ambient CO2 there was no significant effect between nitrogen levels on the 

intercellular CO2 concentration (Figure 6.4.C). The plants showed no significant 

(p > 0.05) differences in stomatal conductance in response to CO2 levels 

(Figure 6.4.C). Stomatal conductance was significantly (p < 0.05) increased with 

nitrogen and there was a 27% increase at 125 kg N ha-1 compared with the 

lowest level, with no significant interaction effect of CO2 and nitrogen treatments. 

Transpiration rate showed a similar pattern of change to stomatal conductance 

and there were no significant (p > 0.05) differences in transpiration rate 

between CO2 levels (Figure 6.4.D) but there was a significant (p < 0.05) 

response to nitrogen treatments, with an increase of 28% at 125 kg N ha-1 

compared with the lowest nitrogen level. There was no significant CO2 and 

nitrogen interaction (p > 0.05). 
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Figure 6.1. Mean of A. Assimilation rate (A), B.  Intercellular space CO2 concentration 
(Ci), C. Stomatalconductance (gS) and D. Transpiration rate (E) at 50% anthesis under 
elevated CO2 and different levels of nitrogen fertilizer. Vertical bars are standard errors 
of the mean (n = 16) at 0.0 5 levels. 
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6.5.2. Plant nitrogen, chlorophyll content and nitrogen uptake  

At anthesis, elevated CO2 significantly (p < 0.05) reduced nitrogen 

concentration of plant organs compared to ambient CO2 (Figure 6.5) with the 

greatest reduction under the lowest nitrogen levels. Plants grown in high CO2 

had a significant reduction in their shoot and branch, leaf, capitula and an 

expanded leaf nitrogen concentration (7%, 24%, 4% and 8% respectively). 

There were also reduction in their shoot and branch, total leaf, capitula and 

expanded leaves nitrogen concentration (27%, 24%, 26% and 30% respectively) 

compared to ambient CO2, when comparing the lowest nitrogen input to the 

highest. In addition, the CO2 and nitrogen interaction showed significant (p < 

0.05) effects on 3 expanded leaves and capitula nitrogen concentration, but 

showed no significant effect on total leaf and shoot and branch nitrogen 

concentration. Plants under elevated CO2 and  25 kg N ha-1  have taken up 0.30 

gpl-1 which was same amount taken up by plants under ambient CO2 and 75 kg 

N ha.-1 Elevated CO2 significantly (p < 0.05) reduced leaf chlorophyll content 

and the greatest reduction was at the lowest nitrogen input (Figure 6.6), with a 

4%, 5% and 8% reduction in chlorophyll a, b and total chlorophyll respectively 

under the elevated CO2 compared to ambient CO2, and a reduction of 24%, 44% 

and 31% in chlorophyll a, b and total chlorophyll, respectively, at the lowest 

nitrogen supplied under elevated CO2 compared with the highest nitrogen 

supplied. The CO2, nitrogen interaction showed only significance with total 

chlorophyll. 
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Figure 6.2. Mean of nitrogen concentration in different plant organs on dry weight basis 
in; A. shoost and branches, B. leaves, C. capitula and in D. three expanded leaf at 50%  

anthesis under the effect of elevated CO2 and different levels of nitrogen fertilizer. 
Vertical bars are standard errors of the mean (n =3) at 0.05 levels.   
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Figure 6.3. Mean of three leaf chlorophyll content on fresh weight basis at 50% 
anthesis under the effect of elevated CO2 and different levels of nitrogen fertilizer; A. 
mean chlorophyll a content, B. mean chlorophyll b content and C. mean total 
chlorophyll content. Vertical bars are standard errors of the mean (n= 2) at 0.05 levels. 
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6.5.3. Plant Morphology, growth and seed yield 

 

At both anthesis and harvest, safflower growth in term of stem size and  the 

number of branches, leaves and capitula, as well the leaf area positively 

responded to elevated CO2 at all nitrogen levels over the ambient CO2 (Table 

6.3,6.4 and Figure 6.7). Plants grown at elevated CO2, significantly (p < 0.05) 

produced taller plants with, a 5% increase at anthesis and 4% at harvest over 

the ambient CO2 and with an increase of 3% at anthesis and 5% at harvest at 

125 kg N ha-1 over the 25 kg N ha. -1. There was no CO2 and nitrogen 

interaction (p > 0.05) with respect to plant height. Average leaf area for each 

plant at anthesis showed significant effects (p < 0.05) (Table 6.3) due to 

elevated CO2 at all nitrogen treatments. Consequently, LAI significantly 

increased (p < 0.05) at higher CO2 by 2% over the ambient CO2 (Figure 6.5) 

and by 6% at the 125 kg N ha-1 compared to the 25 kg N ha-1 and LAI ranged 

between 4.41 to 4.96 under different treatments. 

The yield components (branches and capitula number) significantly (p > 0.05) 

increased from anthesis to maturity in response to elevated CO2 and nitrogen 

(Table 6.3 and 6.4). At harvest, branch number and capitula number increased 

by 43 and 50% in plants growth at elevated CO2 compared to ambient CO2 

respectively, with the highest values in the higher nitrogen input, with an 

increase of 60% in both branch and capital under 125 kg N ha-1 compared to 

the lowest nitrogen input. 

The seed yield in term of seed number obtained in this experiment was again 

low, but it still significantly (p > 0.05) responded to elevated CO2, with an 

increase of 49% compared to ambient CO2, with no significant (p < 0.05) 
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response to nitrogen and the interaction between CO2 and nitrogen 

treatments.At both anthesis and harvest, whole plant biomass showed a 

significant (p > 0.05) effect of elevated CO2 and or nitrogen fertilizer (Figure 6.9 

and Figure 10), with no significant interaction of CO2 and nitrogen (p <0.05). At 

all nitrogen treatments, plants grown at high elevated CO2 had up to 34% dry 

matter at anthesis and 36% at harvest  compared to  the ambient CO2, and 

reached the highest value was under the 125 kg N ha-
1 nitrogen input, with an 

increase of 35% at anthesis and 40% at harvest compared with the lowest 

nitrogen input. The whole plant biomass increment was driven by an increase in 

shoot and branch dry weight, total leaf dry weight and capitula dry weight, all 

these parameters were significantly higher (p > 0.05) at higher levels of CO2 

compared to ambient CO2, and they continued accumulating dry matter with 

each increase in nitrogen levels. Seed yield in term of seed weight, under all 

nitrogen treatments, was significantly (p > 0.05) higher by 47% than ambient 

CO2 (Figure 6.11), and the highest value was obtained under the highest level 

of nitrogen, with a 26% increase compared with other three nitrogen levels, with 

no significant interaction effect of CO2 and nitrogen on seed weight. 
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Table 6.3. Means values of plant development criteria and yield component per plant at 50% anthesis under elevated CO2 and 

     differenent levels of nitrogen fertilizer. 

 

*Means following by the same letter within rows are not significantly different at 0.05 levels 

                                                                                                              At anthesis 

Parameters 

CO2 Nitrogen  Elevated CO2 Х Nitrogen Ambient  CO2 Х Nitrogen L.S.D  at  0.05 levels  

Elevated 
CO2 

Ambient 
CO2 

25 75 125 175 25 75 125 175 25 75 125 175 CO2 N 
CO2 Х 
N 

Leaf number 97  
a
 90  b 93 92 93 95 95 97 98 99 92 88 88 90 6.1 n.s n.s 

Leaf area 495  
a
 483 

b
 461 

d
 486 

c
 498

 b
 510 

a
 472 

c
 489 

b
 501 

b
 517 

a
 449  

c
 482 

c
 495

 b
 503 

a
 2.8 4 5.7 

Branch 
number 

6  
a 

 2 
b
 4 4 5 5 5 5 7 6 2 3 3 3 1.7 n.s n.s 

 Capitula 
number 

5  
a
 3  b

 4 3 4 5 4 4 7 6 3 3 4 4 1.7 n.s n.s 
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Table 6. 4. Mean values of plant development criteria, yield components and seed number per plant at harvest under elevated CO2 and 
different levels of nitrogen fertilizer. 

  

*Means following by the same letter within rows are not significantly different at 0.05 levels.

At anthesis 

Parameters CO2 Nitrogen Elevated CO2 Х Nitrogen Ambient CO2 Х Nitrogen L.S.D at 0.05 levels 

Elevated 

CO2 

Ambient 

CO2 

25 75 125 175 25 75 125 175 25 75 125 175 CO2 N CO2Х N 

Leaf number 91
a
 83 

b
 79 

b
 83 

b
 92 

a
 94 a 83 89 92 99 76 78 92 89 4.3 6.0 n.s 

Branch 

number 

7 
a
 3 

b
 3 

c
 4

 b
 7

 a
 7

 a
 4 

b
 5 

b
 10 

b
 10 

a
 3 

b
 4 

c
 4 

b
 5 

a
 0.9 1.2 1.7 

Capitula 
numbr 
number 

6 
a
 3 

b
 3 b 3 

b
 6

 a
 7 

a
 4 

b
 4 

b
 9 a 10

 a
 2 

b
 3 

b
 3

b
 5 

a
 1.1 1.5 2.1 

Seed number 6 
a
 3

 
 4 5 4 6 6 6 5 8 2 4 4 4 1.2 n.s n.s 



                                                                                                                                               Chapter 6   

The interaction effect of elevated CO2 and varying levels of nitrogen on the physiology, growth 

development and seed yield 

203 
 

 

  

Figure 6.4.Mean of A. plant stem height  at 50% anthesis and B.harvest under  
elevated CO2 and different levels of nitrogen. Vertical bars are standard errors of the   
mean (n=12) at 0.05 levels. 

 

 

 

Figure 6.5.Mean of leaf area index (LAI) at elevated CO2 and different levels ofnitrogen 
fertilizer at 50%  anthesis. Vertical bars are standard errors of the mean (n=12) at 0.05  
levels. 
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Plate 6. 2.Photograph to illustrate the comparison between plant growth (plant height  

and branch number) in ambient and elevated chambers. 
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Figure 6.6. Mean of A. shoot and branches,B. leaves,C. capitula and D. total 
aboveground dry weight at 50% anthesis under elevated CO2 and different levels of 
nitrogenfertilizer. Vertical bars are standard errors of the mean (n =12) at 0.0 5 levels.                                                                                
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Figure 6.7. Mean of  A. shoot and branches, B. leaves, C. capitula and D. above 
ground dry weight at harvest under elevated CO2 and different levels of nitrogen  

 fertilizer. Vertical bars are standard errors of the mean (n =4) at 0.0 5 levels. 
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Figure 6.8.Mean of fresh seed weight under elevated CO2 and different levels  

of nitrogen. Vertical bars are standard errors of the mean (n=4) at 0.05 levels. 
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6.6. Discussion 

 

It has been frequently reported that increases in both atmospheric CO2 

concentration and nitrogen supply result in large and sustained increases in 

light saturated assimilation rate (Geiger et al., 1999; Johnson et al., 1995; 

Radoglou et al., 1992; Rogers et al., 1996b; Sanz-Sáez et al., 2010). For 

example, elevated CO2 (700 µmol Mol-1) resulted in an increase of 30% and 

40% increase in an assimilation rate under high nitrogen  and low nitrogen 

(without nitrogen supplied respectively as compared to ambient CO2 (350 µmol 

mol-1) in fully expanded primarily the leaves of Phaseolus vulgaris  (Radoglou et 

al., 1992). The results obtained at antithesis in this study corroborate these 

findings at all levels of nitrogen supplied, elevated CO2 to (1000 µmol mol-1) 

increased assimilation rate by 18% as compared to ambient CO (400 µmol mol-1) 

and elevated CO2 resulted in an increase of 15% in assimilation rate for plants 

grown with highest nitrogen supply and 26% for plants grown under the lowest 

nitrogen supply (Figure 6.4.A). This increment was a result of increased 

intercellular CO2 concentration at elevated CO2, and compensated for limited 

nitrogen in plants grown under elevated CO2. As a result the stomatal 

conductance and corresponding transpiration rate did not significantly reduce 

under the effect of elevated CO2. At both ambient and elevated CO2 stomatal 

conductance and transpiration rate significantly (p > 0.05) increased with 

nitrogen input, with a 26% and 24% at 125 kg N ha-1 respectively, compared to 

the lowest nitrogen levels (Figure 6.4 C and D). These results are consistent 

with the finding that stomata have been shown to be sensitive to the intercellular 

CO2 concentration (Mott, 1988). This can be interpreted as the increases of the 

carboxylation capacity of Rubisco under elevated CO2 at high nitrogen supplied 
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(Ainsworth and Long, 2005; Ainsworth and Rogers, 2007; Jifon and Wolfe, 2002; 

Long et al., 2004). The results presented here coincide with those previously 

reported by Radoglou et al. (1992). So far, the results in this study suggest that 

the effect of CO2 and nitrogen on assimilation rate is independent of each other. 

However, Anten et al., (2004) found an interactive effect of nitrogen and CO2 on 

canopy Found in gain indicating that photosynthetic rate is the canopy carbon 

gain, and showed that this interaction resulted from the increase in LAI with 

increasing nitrogen input, resulting in the interception a higher total quantum 

yield of light at elevated CO2.  

In fact, the interactive effect between CO2 and nitrogen on photosynthetic rate 

and growth could operate through two mechanisms; the nitrogen availability 

decreases photosynthetic acclimation to elevated CO2  and this has previously 

been shown to be more obvious when nitrogen is limited (Stitt  and Krapp, 

1999), also, long exposure to elevated CO2 leads to photosynthesis acclimation 

caused by carbohydrate accumulation, which tends to be more pronounced 

under lower than higher nitrogen availability (Ainsworth and Rogers, 2007).  

In contrast to these studies, the photosynthetic acclimation to elevated CO2 was 

more pronounced in high compared to low nitrogen supply because under 

nitrogen deficiency leaf area, assimilation and sugar levels decreased and 

allocation of biomass to non-photosynthetic tissue increased (Jifon and Wolfe, 

2002). Moreover, Rubisco has not been shown to decrease with nitrogen 

deficiency under elevated CO2 (Farage et al., 1998; Rogers et al., 1998).  

In the current study, elevated CO2, significantly (p < 0.05) reduced nitrogen 

concentration in different plant parts compared to ambient CO2, and the lowest 
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concentration was at the lowest level of nitrogen (Figure 6.5). It can be 

assumed that the reduction in plant tissue nitrogen concentration under 

elevated CO2 and at all nitrogen treatments did not lead to photosynthetic 

acclimation as photosynthetic acclimation is strongly related to a decrease in 

leaf nitrogen concentration under low nitrogen supplied (Ainsworth and Long, 

2005; Sanz-Sáez et al., 2010). This can be explained that the photosynthetic 

rate under elevated CO2 and 25 kg N ha-1 was equivalent to the photosynthetic 

rate at 125 kg N ha-1 and ambient CO2 and this suggested that the negative 

effects of low nitrogen can be ameliorated by elevated CO2 as the amount of 

nitrogen taken up by the plants under the interaction of elevated CO2 and 25 kg 

N ha-1 same as the amount taken up by the plants under ambient CO2 and 

higher nitrogen rates (0.30 g Paul-1). As mentioned earlier, the mean 

photosynthetic rate (A) for plants grown under the lowest nitrogen level was 

significantly (p > 0.05) higher than for the plants grown under the lowest 

nitrogen level at ambient CO2. Therefore, this study lends further support to the 

hypothesis that elevated CO2 improves the photosynthetic nitrogen use 

efficiency (PNUE). 

In agreement with this study the PNUE increased by an average of 50% in 

sunflower under CO2 enrichment (Zerihun et al., 2000). Similar responses were 

reported here for the leaf chlorophyll content, thus when the nitrogen 

concentration was reduced in these leaves chlorophyll a, b and total chlorophyll 

was significantly (p < 0.05) reduced at elevated CO2 with the most reduction 

under the lowest nitrogen input (Figure 6.6). Reasons for chlorophyll reduction 

in elevated CO2 may be related to the leaf nitrogen reduction (Nakano et al., 

1997), and the decrease in leaf chlorophyll content results in chlorosis as 
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previously reported (Radoglou and Jarvis, 1992) but no chlorosis was observed 

here. In a two year study on spring wheat, in one of the years leaf chlorophyll 

content was not significantly (p > 0.05) changed by CO2, but it was significantly 

reduced under nitrogen deficiency. While, in the other year, the acclimation of 

leaf photosynthesis rate and stomatal conductance in elevated CO2 over the 

ambient CO2, was associated with lower total leaf chlorophyll content (Del Pozo 

et al., 2005). There was no significant (p > 0.05) interaction effect of elevated 

CO2 and nitrogen reported here for leaf nitrogen concentration and all types of 

chlorophyll content as all increased with each increase in nitrogen levels at both 

ambient and elevated CO2. In contrast, Jifon and Wolfe (2002) found that leaf 

nitrogen and chlorophyll concentration were not significantly affected by 

elevated CO2, and the leaf nitrogen concentration was higher under lower 

nitrogen than high nitrogen, while the chlorophyll content was significantly 

higher in high nitrogen than low nitrogen plants in all CO2 levels. 

Shoot growth is often used to estimate capacity for the utilization of the photo 

assimilates and to maintain the photosynthetic capacity under limited nitrogen at 

CO2 enrichment (Drake et al., 1997). In this experiment, at all nitrogen 

treatments, shoot growth significantly (p < 0.05) responded to elevated CO2 

compared to ambient CO2 and the plants grown under elevated CO2 were taller 

by about 5% than those grown under ambient CO2 (Figure 6.4.A and B). 

Similarly, at all nitrogen treatments, LAI positively responded to elevated CO2 

with a 2% increase over the ambient CO2,  The greatest LAI was increased by 

6% at 125 kg N ha-1 compared to 25 kg N ha-1 (Figure 6.8),  and these 

parameters peaked at 125 kg N ha-1 at both CO2 levels. LAI ranged between 

4.41 to 4.96. 
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A proportional increase in leaf area and LAI with nitrogen input is commonly 

reported (Li et al., 2004). Others have also reported that leaf area increased 

with nitrogen input but at different CO2 levels were similar indicating that 

optimum LAI does not increase in elevated CO2 when nitrogen is low. Two 

factors may be responsible for this, firstly is that plants grown in elevated CO2 

have higher quantum yield which make its leaves in the canopy more nitrogen 

limited. The second is a higher dark respiration rate under elevated CO2 which 

leads to a higher light compensation point and lowers LAI (Hirose et al., 1997). 

Others, state that LAI increases at elevated CO2 only when nitrogen  take up is 

high, but not when nitrogen take up is low (kim et al., 2001). 

In this study increased assimilation rate and leaf area contributed to the 

increase in above ground biomass (Figure 6.6 and 6.7). The above ground dry 

weight was increased by 35% and 36% at anthesis and harvest, respectively, 

under elevated CO2 and the higher value under the higher nitrogen input, were 

35% and 40% at anthesis and harvest, at 125 kg N ha-1 as compared with the 

lowest nitrogen level. The above ground dry weight of plants under elevated 

CO2 with the lowest nitrogen rate was 42% higher than the ambient CO2 and 

lowest nitrogen rate grown plants. Above ground biomass of all morphological 

components; shoot, branch, leaf and capitula were significantly (p < 0.05) 

higher at elevated CO2, and under higher nitrogen levels. This suggests that 

elevated CO2 compensates for the negative effect of nitrogen stress. At the 

same time, nitrogen supply is preventing photosynthesis from CO2 acclimation 

as reported by (Kim et al., 2003). The short term exposure to elevated (700 

µmol mol-1) and ambient CO2 with alfalfa and three levels of nitrogen fertilizer 

concluded that plants grown at elevated CO2 and zero nitrogen significantly 



                                                                                                                                               Chapter 6   

The interaction effect of elevated CO2 and varying levels of nitrogen on the physiology, growth 

development and seed yield 

213 
 

increased photosynthetic activity due to increased nitrogen use efficiency, but 

there were no significant differences across all CO2 and nitrogen levels and 

photosynthetic down regulation had occurred. While, the long term exposure to 

elevated (700 µmol mol-1) CO2 markedly enhanced leaf area and plant biomass 

over the ambient CO2 when plants were irrigated with nitrogen, photosynthetic 

activity was maintained (Sanz-Sáez et al., 2010). This finding clearly supports 

the hypothesis that growth in limited nitrogen restricts the development of sink 

capacity to utilize the photo-assimilate and leads to an accumulation of non-

structural carbohydrate which increases the C: N ratio, and exacerbates the 

acclimation of photosynthesis (Ainsworth et al., 2003; Ainsworth and Rogers, 

2007). The same was reported for open top grown rice at elevated (700 μmol 

mol-1 CO2) and three levels of nitrogen (0, 90 and 200 kg N ha-1) (Ziska et al., 

1996).   

In all nitrogen treatments, elevated CO2 significantly (p < 0.05) increased the 

branch number and corresponding capital number, with  the highest  values 

under 125 kg N ha-1  compared to the lowest nitrogen input. 

In the present study, there was a significant (p < 0.05) interaction effect of CO2 

and nitrogen on LAI at anthesis on branch and capitula number when counted 

at harvest. It can therefore be predicted that the response of LAI, the branch 

and the capital number of safflower here is dependent on CO2 concentration, 

and suggests that 125 kg N ha-1 is sufficient for safflower to produce greater LAI, 

above ground biomass and branch and capital number and depending on LAI 

leaf and shoot dry matter accumulation. Similarly as reported here for safflower 

for cotton, significant interaction effects of CO2 and nitrogen was observed on a 

branch and boll number, with no significant interaction effect on plant height and 
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total above biomass (Reddy et al., 2004). The explanation for this interactive 

effect is the increased assimilation rate and growth under elevated CO2, and the 

demand for nitrogen input increases and a greater sink capacity can be 

provided and the photosynthesis rate sustained. 

Unfortunately, despite the increased sink capacity in determining yield, and the 

yield components (branch number, capitula number) in response to elevated 

CO2, the seed number obtained was low and it was therefore difficult to indicate 

which of these factors control the seed set. However seed yield still responded 

significantly (p > 0.05) to elevate CO2, with an increase of 49% compared to 

ambient CO2, with no significant (p < 0.05) response to nitrogen and the 

interaction between CO2 and nitrogen treatments. As discussed in former 

chapters, other environmental factors could have an important role in controlling 

seed set in safflower but they are clearly acting in an even manner independent 

of the treatments applied in these experiments. 

Finally, seed biomass (fresh weight) was a much smaller component of overall 

biomass than stem, leaves and capitula, so harvest index is rather meaningless 

and was not calculated. At all nitrogen treatments, seed weight positively (p < 

0.05) responded to elevated CO2, with a 47% increase as compared to ambient 

CO2, and the heavier seeds obtained under the highest nitrogen rate with a 

26% as compared with the three other nitrogen rates, with no significant of CO2 

and nitrogen interaction  effect on seed weight (Figure 6.8). At both elevated 

and ambient CO2, seed weight increased in a similar pattern. A positive 

interaction effect of CO2 and nitrogen supply was shown for rice grain yield, and 

the increase of grain yield as compared with the final total biomass was greater 
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at elevated CO2, under the medium and high nitrogen rate, while it was smaller 

than final total biomass under low nitrogen rate (Kim et al., 2003). 
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6.7. Conclusion 

 

The results presented here, show that safflower positively responded to 

elevated CO2 (from 400 µmol mol-1 to 1000 µmol mol-1) and the response was 

maintained at each increase in nitrogen nutrition input. By and large there were 

few interactions between CO2 and nitrogen indicating that they are “simple” 

limitations to assimilation and production. Since the photosynthetic rate still 

significantly increased under the lowest nitrogen in response to elevated CO2 

compared to ambient CO2 it can also be concluded that the negative impact of 

nitrogen deficiency on photosynthesis can be ameliorated by elevated CO2. The 

nitrogen level of 125 kg N ha-1 was sufficient for optimum growth and biomass 

production of safflower in response to elevated CO2 and this agrees with the 

nitrogen experiment carried out earlier (ch 4). It can also be concluded that the 

growth in increased CO2, need 125 kg N ha-1 to avoid photosynthetic down-

regulation. It can be concluded that seed yield positively responded to elevated 

CO2 and nitrogen fertilizer. For safflower therefore, CO2 and nitrogen fertilizer 

can both be regarded as fertilizers with a doubling of CO2 being equivalent to an 

increase in 100 kg ha-1 of nitrogen at ambient CO2. This means that the 

optimum nitrogen level for maximum production is going to be higher as 

atmospheric CO2 levels rise. 
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Environmental factors, defined as the sum of all external factors and 

substances affecting the growth, structure, and reproductive capacity of a crop 

are known as limiting factors (Fageria et al., 2010). These limiting factors are 

water, energy (light), carbon,  temperature and nutrients (Chapin et al., 1987) 

and an imbalance of any of these factors will result in stress and ultimately to a 

restriction of crop growth and yield. The stresses imposed on crops by pollution, 

drought, salinity, high/low temperature, high/low pH, nutrient deficiency, climatic 

change or any other stresses affect plant metabolism and modify physiological 

processes leading to a reduction in plant growth and productivity (Fageria et al., 

2010). Multiple stresses may be operating at any one time for the crop in the 

field (Chapin et al., 1987). Good farming practice such as fertilizing and 

irrigation aim to reduce or remove limiting factors and reduce stress to crops. 

The most certain change in predicted climate change scenarios is in 

atmospheric carbon dioxide concentrations which are projected to reach 850 

µmol mol-1 by the year 2090 (IPCC., 2007). This rise is likely to contribute to a 

rise in the mean global temperature which will in turn alter climatic patterns and 

rainfall events (Shaw et al., 2005). In good growing environments soil nutrient 

deficits may appear as plant root systems proliferate in response to 

photosynthetic rate increases (Rogers  et al., 1999). However, compensation 

between limiting resources is possible (Fredeen et al., 1991). The main target of 

this study was to investigate whether these some of these stresses (drought, 

nitrogen deficiency and elevated CO2) have an impact on safflower growth or 

whether there can be compensationbetween these stresses. 
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 7.1. Comparison of the results between experiments 

 

Results from this study clearly showed that the physiology of safflower 

responded positively to the removal of the limiting factors of water, nitrogen and 

CO2. As a result LAI and assimilation increased and as a consequence the 

above ground biomass and seed yield increased. Slight differences between 

experiments were related to microclimatic conditions for each experiment 

related predominantly to the glass-house and chambers and the time of year at 

each experiment was conducted. Plant growth in the chamber (in CO2 

experiments) was in general smaller than in the open glass-house (drought and 

nitrogen experiments). However, within a small acceptable margin of difference 

the experiments showed good correlation one with another in terms of 

productivity and the physiological characters measured. In general, seed set 

was the main problem with these studies. Plants did not produce as much seed 

number per head nor per plant as was expected. This could be explained by a 

number of possibilities including the pot volume in which plants were grown 

which could have restricted the root growth and lowered the capacity of the 

roots to absorb the nutrients and water on one hand (in the field the roots can 

grow to 3 m depth) (Dajue  and Mundle, 1996) and create nutrient deficiency. 

Some trace elements such as boron affect seed set and boron deficiency has 

been shown to affect seed set in wheat (Rerkasem et al., 1993) and it is 

possible that the Boron levels supplied in the Hoagland’s solution were 

insufficient. The cloudy days and short photoperiods during bud development 

and pollination, despite best efforts to counteract these with supplementary 

lighting, in combination with high humidity and temperature in enclosed 

chambers could also have affected the head fertility. Safflower is typically grown 



                                                                                                                                               Chapter 7  

                                                                                                                 General Discussion 

220 
 

in arid or semi-arid regions of the world (Johnston et al., 2002) with hot, dry and 

long day climate. (Dajue  and Mundle, 1996). This mean that the rosette stage 

and elongation phase will lengthen under less inductive photoperiods, and 

exposure to long photoperiod during flowering stage and anthesis will lead to 

ahigher number of fertile florets, leading to an increased grain number and 

thereby to a higher yield like other long day crops such as wheat (Gonzalez et 

al., 2003) and it appears that the climate provision in the UK is not conducive to 

seed set in safflower grown out of season.  

A stronger whole plant response was reported from the interaction effect of CO2 

and nitrogen compared to the response from the elevated CO2 effect alone 

experiments, where the plants were taller even under ambient CO2. Number of 

branches and capitula were greater and plants produced more above ground 

biomass under the interaction effect of CO2 and nitrogen rather than CO2 or 

nitrogen, or water alone. This is possible because the longest growth period 

through the winter period of this experiment led to more vegetative growth than 

plants sown in spring (the elevated CO2 experiment). A study on two species of 

safflower, Carthamus tinctorius L. and Carthamus flavescens, were grown in a 

greenhouse under high temperature with long photoperiod (20 0C and 14 h 

light), high temperature with short photoperiod (20 0C with 10 h light) and low 

temperature (14 0C) regardless of photoperiod and the rosette stage of both 

species persisted longer under short photoperiod (10 h) than long (14 h) with 

the greater response for Carthamus tinctorius L. and whilst the duration of the 

rosette was longer under lower temperature with short photoperiod 

(Zimmerman,1973)  and these results support  the results reported here. 
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This in turn led to higher seed yield for each nitrogen treatment under both 

elevated and ambient CO2. It can therefore conclude that the highest seed 

yields were obtained from the interaction of CO2 and nitrogen compared to the 

earlier experiments but these were still lower than produced by field grown 

safflower (Dajue  and Mundle, 1996; Oelke  et al., 1992). 
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7.2. Comparing results with the literature 

 

Physiologically, safflower showed similar patterns in its physiology as has been 

reported for several other C3 plant species (Medlyn and McMurtrie (2005). It 

showed typical figures that for the increased intercellular CO2 concentration 

(400 - 600 µ mol mol -1) the transpiration rate was reduced  (0.12 – 0.1 mmol 

mol-1) in the same range of intercellular CO2 and transpiration rate, 

photosynthetic rate increased and the recorded value ranged between (10 -12 

µmol m-2 s-1). Elevated CO2 to levels of about 1000 µmol mol-1 significantly 

increased assimilation rate by 27% at anthesis compared to ambient CO2 (400 

µmol mol-1) due to increased intercellular CO2 concentration. This is assumed to 

lead to an increase in CO2 at the carboxylation binding site of Rubisco and 

hence reduced photorespiration. In addition, stomatal conductance reduced by 

an average of 29% and a corresponding decrease in transpiration rate occurred 

by an average rate of 18% attributed to the increased photosynthetic rate. Such 

a result has also been reported for other species (Ainsworth and Long, 2005; 

Ainsworth and Rogers, 2007; Bowes, 2004). However the magnitude of 

enhancement varies among different species and environments (Ainsworth and 

Rogers, 2007) especially among the oil crops that have been previously studied 

such as sunflower (Cheng et al., 2000) and peanut at optimum temperatures 

(Vu, 2005) showed a similar pattern of change and same pattern showed by 

safflower in this experiment. Several studies on different crops showed that 

assimilation rate significantly increased with increasing CO2 to some extent but 

with time this was down regulated, a phenomenon referred as photosynthetic 

acclimation (Ainsworth et al., 2002). The most common explanation for this 

phenomenon under elevated CO2 was the concomitant accumulation of 
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nonstructural carbohydrate in the leaf due to a small sink size that did not have 

the strength to take up all the carbohydrate produced resulting in a feedback 

down regulation. This has often been attributed to the size of pots in which 

plants were grown and the volume of pots restricting root growth and 

decreasing the nutrient availability (Arp, 1991; Sims et al., 1999a). Such down-

regulation however was not apparent in the experiments on safflower reported 

here. 

Safflower growth in the terms of leaf area and LAI positively responded to CO2 

enrichment. At anthesis LAI showed an increase by an average of 28% of 

elevated CO2 compared to ambient as a direct consequence of increased 

assimilation rate and growth. Thus LAI attributed to an increase in net crop 

assimilation rate in this study. This extent of increase is often reported and it is 

concluded that the greatest crop photosynthesis occurred when the canopy leaf 

area reached its greatest (Manderscheid et al., 2003). Recently, the LAI of 

peanut (Bannayan et al., 2009) and soybean (Heinemann et al., 2006; Yuelin et 

al., 2005) were also reported to have shown increased LAI at elevated CO2 and 

as a result the plant photosynthetic rate and above ground biomass increased. 

In contrast with some other studies there was no significant response of LAI to 

elevated CO2 (Sims et al., 1999a; Yuan et al., 2009) and elevated CO2 actually 

decreased the specific leaf area (Ainsworth and Long, 2005). Furthermore 

some authors have concluded that increased LAI decreased the crop 

photosynthesis rate because they have predicted that elevated CO2 reduced 

the light compensation point for photosynthesis and thus stimulated leaf 

production which put a greater respiratory load on the crop (Campbell et al., 

2001; Rodriguez et al., 2001). 
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In the current study, elevated CO2 increased LAI and at the same time reduced 

transpiration rate and the water use efficiency (WUE) was improved and such 

results have also been reported elsewhere (Ainsworth and Long, 2005; Bowes, 

2004). However, others have also reported that leaf area increases in response 

to elevated CO2 increase the surface area for transpiration with the other words 

the increased leaf area led to increase the photosynthesis rate but at the 

expense of water used (Allen, 1999). Since WUE is a product of the use of 

water per unit of dry matter produced, efficiencies can be lower in crops with 

bigger biomass, as was the case here, but still use more water than a smaller 

biomass crop. Stimulation of a crop canopy can therefore have a water use cost 

despite being more efficient. 

The assimilation rate factors mentioned above and increased LAI normally 

contribute to higher dry matter accumulated and as a consequence seed yield is 

usually increased and this response is widely documented (Lawlor, 1995; Long 

et al., 2006; Manderscheid et al., 2003; Yang et al., 2006a; Yuelin et al., 2005). 

However, contrasting results have also been reported when other limiting 

factors were not optimized e.g. high temperature (Cheng et al., 2009; 

Heinemann et al., 2006) or because of photosynthetic acclimation (Ainsworth et 

al., 2002; Arp, 1991). 

Safflower yield components (number of branches per plant and number of 

capitula per plant) significantly increased at elevated CO2 lying the foundation 

for higher seed yield but in these experiments the seed set was poor because 

the flowering and pollination of flower discussed above. It is concluded that the 

fertilization effect caused by elevated CO2 did not have any effect on the 

pollination problem. In a similar manner low temperature was found to modulate 
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the positive effect of elevated CO2 on soybean during seed set (SionitI et al., 

1987) so this is not a unique observation. Seed number increases in response 

to elevated CO2 is commonly found (Jablonski et al., 2002; Kimball et al., 2002; 

Wu et al., 2004) and whilst seed set was low in the safflower experiments the 

relative differences between treatments were as predicted and proportional to 

the treatments applied. 

Elevated CO2 slightly reduced seed oil content in safflower, and slightly 

changed fatty acid composition compared to ambient. However it is not possible 

to place much confidence in these observations because the full analysis was 

based on a pooled sample due to seed sample size. A reduction in seed 

nitrogen concentration And protein content could be possible at elevated CO2 

due to nitrogen concentration reduction in plant organs at anthesis result of 

changes in nitrogen use efficiency. It is usually reported that the rate of growth 

per unit of nitrogen in the plant increases in response to elevated CO2 (McKee 

and Woodward, 1994; Rogers and Dahlman, 1993). In fact, some recent studies 

have indicated that there are no significant effects of elevated CO2 on seed oil 

content and only slight changes in fatty acid profiles (Franzaring et al., 2008; 

Högy et al., 2010) and a considerable number of studies suggest that the grain 

quality in cereal altered with a rise in CO2 due to a drop in the seed nitrogen 

concentration (Högy et al., 2009; Lieffering et al., 2004; Yang et al., 2006b). 

Other workers have reported an increase in grain lipid as an indicator of altering 

quality in response to elevated CO2 (Sator, 1999; Williams et al., 1995). Thus, 

whilst the safflower seed quality data are on a pooled sample and not subject to 

replication, the profiles observed are in line with the, rather limited, published 

literature and this gives credence to the results. 
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It is well established that nitrogen is one of the most important mineral nutrients 

for crop growth and yield and crops need nitrogen in larger quantities compared 

with other mineral nutrients (Forde et al., 1999). There is an interdependent 

relationship between carbon and nitrogen assimilation. The nitrogen budget of 

the plant is spent in the maintenance of the photosynthetic protein and 

chlorophyll binding apparatus and in converse a continuous supply of energy 

from carbon dioxide fixation is required for nitrogen assimilation and distribution 

(Foyer et al., 2001). In maintaining the balance of carbon and nitrogen, a 

number of enzymes play major roles and one of these is the glutamate 

dehydrogenase (GDH) shunt to return the carbon in amino acids back into the 

carbon metabolism reactions and the tri-carboxylic acid cycle (Miflin and 

Habash, 2002). Nitrate reductase (NiR) and major foliar glutamate synthase 

activity use ferredoxin as a reductant of carbon to assimilate nitrate into the 

amino acids glutamine, glutamate, asparagine and asparate. In illuminated 

leaves 80% of the reductant necessary is generated directly by the 

photosynthetic electron transport chain and from the respiratory oxidation of 

fixed carbon (Foyer  et al., 2001) 

To put it succinctly, increased nitrogen availability increased leaf Rubisco and 

chlorophyll content (Lawlor et al., 2001) which led to an increase in leaf area 

through increasing the number of cells and their size (Lea et al., 2001) and as a 

result the LAI increased which increased the amount of light intercepted and the 

radiation use efficiency increased and photosynthesis efficiency was maintained 

(Gastal and Lemair, 2002). Consequently in a majority of C3 crop species the 

growth and productivity are significantly enhanced by nitrogen (Lawlor et al., 

2001) and this includes oil crops. For example in sunflower, Cechin and Fumis, 



                                                                                                                                               Chapter 7  

                                                                                                                 General Discussion 

227 
 

(2004) reported that high nitrogen supply led to a significant increase in shoot 

and leaf dry matter accumulation in greenhouse grown plants resultant from 

increased leaf nitrogen content, photosynthesis rate and water use efficiency. 

Also in the field, three rates of nitrogen (0, 100 and 200 kg N ha-1) on the two 

hybrids of safflower (CW9048 and CW9050 ) was tested by Dordas and Sioulas 

(2008) and the results showed that leaf nitrogen content, photosynthesis rate, 

chlorophyll content and water use efficiency positively related to leaf nitrogen 

content and significantly increased at 200 kg N ha-1. As a result, plant biomass 

and yield component (number of branch and number capitula per plant) seed 

yield significantly increased, while seed oil content was not affected. Dordas 

and Sioulas (2009) concluded that 200 kg N ha-1 increased the total above 

ground biomass at both anthesis and harvest. Also dry matter partitioning into 

different parts, depending on the growing season, was increased. These 

findings were strongly confirmed by the results obtained in this study, under 

semi-controlled glass-house conditions where safflower seed yield in term of 

seed number and individual seed weight significant increased with each 

increase in nitrogen level. These increments were the results of the increased 

photosynthesis rate, stomatal conductance and consequence transpiration rate 

which were all positively related to leaf nitrogen content and leaf chlorophyll 

content. Consequently water use efficiency and above ground biomass also 

increased continually with increased nitrogen level, but seed oil content and 

fatty acid composition were not affected by nitrogen input. It is suggested that 

other environmental factors affect the seed oil content and fatty acid 

composition more and recently Gecgel et al., (2007) reported that the genotype 

and sowing date are the most important factors that control seed oil content and 
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fatty acid composition in safflower. These results confirm other studies which 

did not show any relationship between nitrogen rates and safflower seed oil 

content (Dordas and Sioulas, 2008; Elfadl et al., 2009). Also in other oil seed 

crops such as oilseed rape an inverse relationship between seed oil content 

and high nitrogen supplied has been found and suggests that high nitrogen 

might decrease availability of carbohydrates for oil creation (Rathke et al., 2005). 

In spite of the amelioration of a negative impact of nitrogen deficiency on crop 

growth  by elevated CO2( Larigauderie et al., 1988; Radoglou et al., 1992) long 

term growth at elevated CO2 leads to photosynthetic elongation in several 

species caused by carbohydrate accumulation which tends to be more 

pronounced under lower than higher nitrogen availability (Ainsworth and Rogers, 

2007). Elevated CO2 increases the photosynthetic rate initially at both low and 

high nitrogen and it enhances the root and shoots growth and biomass 

allocation under higher nitrogen and creates strong sinks. Ultimately, 

photosynthesis is maintained better under higher nitrogen (Ainsworth and 

Rogers, 2007). In turn, increases in both atmospheric CO2 concentration and 

nitrogen supply result in large and sustained increases in the assimilation rate 

(Geiger et al., 1999; Rogers et al., 1996a; Rogers et al., 1996b; Sanz-Sáez et 

al., 2010). 

As reported here for safflower at anthesis, the assimilation rate increased 

incrementally significantly with each increase in nitrogen supplied at both 

elevated CO2 and ambient CO2 and suggested that effects of CO2 and nitrogen 

on assimilation rate are independent of each other. At all nitrogen treatments 

assimilation rate was up to 18% higher at elevated CO2 than ambient CO2, and 

the highest value was obtained under the highest nitrogen. The photosynthetic 
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rate under elevated CO2 and 25 kg N ha-1 was equivalent to the photosynthetic 

rate at 125 kg N ha-1 and ambient CO2 and this suggested that the negative 

effects of low nitrogen can be ameliorated by elevated CO2 as the amount of 

nitrogen taken up by the plants under the interaction of elevated CO2 and 25 kg 

N ha-1 same as the amount taken up by the plants under ambient CO2 and 

higher nitrogen rates (0.30 g Pl-1). As a result plant growth in term of leaves 

number, leaf area, LAI, plant height, branches number, capitula number above 

ground dry weight  were significantly higher under the elevated CO2 at 25 kg N 

ha-1compared to ambient CO2 and 125 kg N ha-1.  Also at anthesis plant growth 

in term of plant height, leaf number, branch number and capitula number 

significantly responded to increased nitrogen levels at both elevated and 

ambient CO2 but at all nitrogen treatments, they were significantly higher at 

elevated CO2 compared to ambient CO2 the higher nitrogen input. There was 

only a small interaction effect between elevated CO2 and nitrogen on the LAI at 

anthesis, the number of branches, capitula and seeds per plant and total above 

ground biomass at harvest. It was clearly indicated that the highest nitrogen 

availability provided the biggest size of the sink that utilized the additional 

photoassimilate at elevated CO2. Plants at 175 kg N ha-1 produced significantly 

the highest seed yield at elevated CO2 compared to other three nitrogen levels. 

This finding strongly supports the hypothesis that nutrient availability led to a 

larger sink to utilize additional photoassimilate under elevated CO2 (Ainsworth 

and Long, 2005).                                                                                                 

In contrast to this study, under conditions where nitrogen stress decreases leaf 

area, assimilation and sugar levels and increased allocation of biomass to non- 

photosynthetic tissue, the photosynthetic acclimation to elevated CO2 can be 
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more pronounced in high compared to low nitrogen supply (Jifon and Wolfe, 

2002). But this was clearly not an issue with safflower in these experiments. 

Drought is one of the most important environmental factors limiting the growth 

and productivity of crop species worldwide and is probably the most important 

of the plant physical stresses in the global environment (Luo et al., 1999). 

Drought and salinity are considered to be the major environmental stresses for 

land loss and reduced crop yield with a predicted reduction in average yield of 

up to 50% in the world by the year 2050 as a result of associated climate 

change events (Wang et al., 2003). Plant biomass and productivity of a wide 

range of crops is reduced under drought, for example, in sunflower (Nezami et 

al., 2008), peanut (Chapman et al., 1993) wheat (Kang et al., 2002), sunflower 

(Schittenhelm, 2010) rapeseed (Istanbulluoglu et al., 2010) bean (Acosta 

Gallegos and Kohashi Shibata, 1989; Boutraa and Sanders, 2001) and field 

grown safflower (Eslam, 2011; Istanbulluogh et al., 2009; Jalali et al., 2011; Kar 

et al., 2007; Pasban Eslam and Sadeqi, 2008; Sharghi and Bagheri, 2011) and 

it is widely documented that the direct effect of drought (short and long term 

drought) on photosynthetic rate would be through stomatal closure. It has been 

frequently established and supported by the work here that water stress has no 

effect on the variation of the maximum fluorescence ratio (Fv/Fm) indicating that 

drought has no effect on the primary photochemistry of PSII in most C3 crops 

including sunflower (Cornic and Fresneau, 2002; Panković et al., 1999; 

Pastenes et al., 2005; Subrahmanyam et al., 2006). This shows that PSII is 

quite resistant to water stress (Shangguan et al., 2000). For safflower in this 

work, the maximum quantum yield of PSII photo-chemistry for all water regimes 

(including well water plants) was constant until day 120 and then declined at 
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day 125 but recovered back. The reason for this sudden decline is not entirely 

clear but high temperature inside the glass-house (above 40 0C) might be 

responsible for this decline. A similar decline in variable fluorescence (Fv) was 

also reported in the literature when plant leaves were exposed to a high heat 

shock temperature of 40 0C (Feierabend et al., 1992). Similarly, a combination 

of high temperature more than (40 0C) and water deficit in Phaseolus bean 

decreased the Fv/Fm ratio and CO2 uptake but the crop could then recover as 

seen here too (Yordanov et al., 1997). In contrast, other researchers have cited 

both stomatal and non-stomatal limitation of photosynthesis through decreasing 

Rubisco and adenosine triphosphate (ATP) under severe drought (Flexas and 

Medrano, 2002). Moreover, recently, during an experiment on field grown 

safflower in Isfahan, Iran, using three irrigation treatments  across six safflower 

genotypes, chlorophyll fluorescence Fv/Fm decreased under the maximum 

evaporation level (135 mm) when measured at both heading and at pollination 

stages (Miladi and Ehsanzadeh, 2010). 

As stomatal conductance is reduced under the effect of drought the plants 

biomass, seed yield and yield components (capitula number) were significantly 

decreased (Eslam, 2011; Sharrifmoghaddasi and Omidi, 2010). The highest 

level of reduction recorded was when plants were exposed to drought 

throughout their development (from rosette to maturity) compared to the control 

and other drought regimes. This was probably due to the fact that safflower 

translocates a large percentage of its pre-anthesis carbohydrate accumulation 

to the seed during late season drought stress (Koutroubas et al., 2004). Also 

Jalali et al., (2011) revealed that a long period of water stress during stem 
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elongation (terminal drought) severely affected safflower growth and yield while 

a moderate drought at the same stage had no significant effect. 

Nonsignificant reductions in above ground biomass, biological yield and harvest 

index were recorded for safflower here when exposed to mid-season drought. 

This was because safflower exhibited recovery when plants were relieved of 

water stress at earlier growth stages (rosette) and similarly other oil crops such 

as rapeseed have also shown recovery after relief of drought in the same way 

(Ahmadi and Bahrani, 2009). 

The most important factors determining seed oil content and fatty acid 

composition is the genotype (Dajue, 1993) but other environmental factors such 

as drought have also been reported to affect the seed oil content in safflower 

and other oilseeds. Ashrafi and Razmjoo (2010) found that as water stress 

levels increased the oil content decreased. As reported in this study, terminal 

drought and long term drought reduced seed oil content by 14% but mid-season 

drought only reduced oil content by 5% compared with the well watered control.  
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7.3. General Conclusions  

 

Despite being cited as a drought-resistant crop, Safflower positively responded 

to water availability and drought negatively affected safflower physiology, 

growth, seed yield and seed oil content. The reduction in biomass and seed 

yield could be mainly attributed to stomatal conductance indicating a closure of 

stomata. The Fv/Fm ratio was not affected and did not contribute to the 

reduction in CO2 uptake and CO2 fixation capacity as it was stable under all 

watering regimes. Since safflower growth recovered after early (mid-season) 

drought, this study suggested that the most sensitive stages for safflower over 

which it should be supplied with full irrigation is from stem elongation to maturity. 

For safflower to optimize assimilation rate and LAI more than 100 kg N ha-1 

should be supplied and increases in both assimilation rate and leaf area can be 

expected to contribute to the increase in seed yield. Seed yield reached its 

maximum of 175 kg N ha-1 and this indicated the higher the nitrogen input the 

higher the partitioning to seed occurred. Seed oil content and fatty acid profile 

did not change with changes in nitrogen fertilizer availability. Seed yield also 

markedly increased and was associated with a noticeable increase in above 

ground biomass and assimilation rate of elevated CO2. Elevated CO2 was 

shown to increase both assimilation rate and partitioning of biomass. Seed oil 

content might be reduced and the seed fatty acid might be altered only slightly 

by elevated CO2 and the result suggests that safflower would perform well 

under conditions of increasing CO2 predicted for later this century. Since the 

photosynthetic rate still increased significantly under the lowest nitrogen in 

response to elevated CO2 compared to ambient CO2, it can be concluded that 

the negative impact of nitrogen deficiency on photosynthesis can be 
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ameliorated by elevated CO2 and doubling CO2 was equivalent to applying an 

extra 100 kg N ha-1. At the same time Safflower had a large sink capacity that 

allowed a high photosynthetic rate at elevated CO2 to be maintained. A nitrogen 

availability level equivalent of 125 kg N ha-1 was sufficient to avoid 

photosynthetic down regulation. If other factors optimized for safflower seed set 

are overcome it can be concluded that the seed yield positively responds to 

elevated CO2 and nitrogen level of 175 kg N ha-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                               Chapter 7  

                                                                                                                 General Discussion 

235 
 

7.4. Limitations of the study and future work 

 

The results from this study are from pot grown plants inside a glass-house in 

enclosed chambers where some of the environment factors are limited. The 

enclosed chamber led to a limitation of radiation and coupled with low wind 

speed led to high humidity (chamber effect). The size of glass-house and 

chambers also limited the number of plants that could be grown and as a 

consequence did not allow an investigation of all relevant parameters.  

Furthermore, growing plants in pots led to a restriction in root growth and a 

possible limitation of nutrient availability to support plant growth. Re-

establishment of the same experiments in free-air CO2 enrichment (FACE) and 

open top chamber (OTC) along with growing plants in the soil are necessary to 

reflect the field microclimate, as they allow more natural condition and more 

detailed analysis required to represent a more exact picture as natural field 

conditions. 

In this study, the effect of water stress, nitrogen, elevated CO2 and elevated 

CO2 in conjunction with nitrogen were only investigated on one cultivar and 

others should be studied to determine if there is genotypic variance in these 

responses. Four doses of nitrogen fertilizer in the form of ammonium nitrate 

were supplied at four monthly intervals in the nitrogen experiment in the 

nitrogen interaction with elevated CO2 and it would desirable to further study 

increase doses of nitrogen especially during seed filling. Seed set was a 

problem in all of the experiments and this needs further experimentation to 

determine what is limiting pollination/fertilization. Other limiting factors such as 

radiance and high temperature appear to be the most likely to investigate in this 

respect. The physiological parameters were only measured at 50% anthesis 
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and these parameters should be tested at other growth stages to provide a full 

picture of safflower’s response over time. In addition, multiple stresses will 

occur in the field as the climate changes in the future, for example elevated 

atmospheric CO2 is usually combined with increased temperature (IPCC. 2007) 

and a collapse of water resources may occur. It will be particularly important to 

study various recovery processes after the relief of water stress for the effective 

use of water (Miyashita et al., 2005). Thus, the interaction of these factors on 

safflower growth, seed set and productivity and the molecular and biochemical 

changes associated with tolerance and susceptibility of responses should be 

the main focus of future work so as to provide a wide knowledge for plant 

breeders to develop or select safflower genotypes with adaptation to such 

environmental change. The use of safflower as an alternative agricultural crop 

in regions facing drastic climatic change, especially water shortage, can be 

expected. 
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Appendix (A) 

Hydroponic growth solution (VITALINK Max Grow) 

This solution is constituted of two parts; part A and part B. 

Each part comprised of the following macro and micro nutrients (manufacturers 

guaranteed analysis  

Nitrogen (Total) 5.125% 

Nitrate nitrogen 4.75 % 

Ammoniacal nitrogen 0.37% 

Potassium K2O 7.8 % 

Phosphorus (P2 O5) 2.6 % 

Calcium 2.625 (SW 3.625%) 

Magnesium 0.75% (SW 1%) 

Sugar 0.7% ( SW 0.64) 

Boron 0.0087% 

Copper 0.002% 

Iron 0.068 

Manganese 0.0145 

Molybdenum 0.0013% 

 Since 0.0098% 

Cobalt 0.0013% 

Nickel 0.0013% 
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All macro and micro nutrients are in a chelated from apart from molybdenum 

which is supplied as Ammonium molybdate, cobalt as sulphate and nickel as 

sulphate. 

Directions of use 

The solutions should be shaken thoroughly before use and always add equal 

quantities of part A and B  

The desired volume of water was added to the nutrient solutions and added the 

following rates: 

Young vegetative add 1-2 mL part A per litre and add 1-2 mL part B per litre (CF 

4.8) pH 5.2 - 6.5 

Mature plant 3-4 mL of part A and 3-4 mL of part B per litre (CF 12-18) pH 5.2 - 

6.5. 
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