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Bayesian Stochastic Differential Equation Modelling with Application to Finance

Muhannad Al-Saadony

Abstract

In this thesis, we consider some popular stochastic differential equation models used

in finance, such as the Vasicek Interest Rate model, the Heston model and a new fractional

Heston model. We discuss how to perform inference about unknown quantities associated

with these models in the Bayesian framework.

We describe sequential importance sampling, the particle filter and the auxiliary particle

filter. We apply these inference methods to the Vasicek Interest Rate model and the

standard stochastic volatility model, both to sample from the posterior distribution of the

underlying processes and to update the posterior distribution of the parameters sequentially,

as data arrive over time. We discuss the sensitivity of our results to prior assumptions.

We then consider the use of Markov chain Monte Carlo (MCMC) methodology to sample

from the posterior distribution of the underlying volatility process and of the unknown

model parameters in the Heston model. The particle filter and the auxiliary particle

filter are also employed to perform sequential inference. Next we extend the Heston

model to the fractional Heston model, by replacing the Brownian motions that drive the

underlying stochastic differential equations by fractional Brownian motions, so allowing

a richer dependence structure across time. Again, we use a variety of methods to perform

inference. We apply our methodology to simulated and real financial data with success.

We then discuss how to make forecasts using both the Heston and the fractional Heston

model. We make comparisons between the models and show that using our new fractional

Heston model can lead to improve forecasts for real financial data.
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Chapter 1

Introduction

In this thesis we extend and develop models and inference techniques for financial data.

In particular, we extend the popular Heston model for financial modelling to a more

general fractional Heston model and perform inference about the unknown quantities

of this model from financial data using various sequential Monte Carlo techniques. In

Section 1.1, we present some background to fractional stochastic differential equation

modelling and to associated Bayesian inference. In Section 1.2 we outline the aim and

structure of the thesis.

1.1 Background

A large number of statistical models used in financial, including the Heston model, are

defined by means of stochastic differential equations, a major topic in measure theory.

This is because stochastic differential equations are effectively ordinary differential equations

extended by the addition of a term defined using a random measure. Brownian motion

plays a central role in stochastic differential equations. Brownian motion is a stochastic

Gaussian process with mean zero, variance that increases with time, and independent

increments; for a further discussion, see Mikosch (1998), for example.

Stochastic differential equations have been developed in many different areas such as

finance, biology, engineering and physics. Klebaner (2012) presents a thorough introduction

to stochastic calculus and discusses a range of applications from finance (including currency

options), biology (including population growth, genetric evolution and cell biology) and
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physics (including signal processing and random oscillators). Nielsen and Shiryaev (2010)

work on some importance features related to stochastic processes such as random change

of time and the modelling and interpretation of empirically observed dynamic processes.

Many authors discuss both stochastic models for financial applications as well as Monte

Carlo methods to make inference about unknown model parameters. Korn et al. (2010),

for example, present Monte Carlo methods and algorithms, including multilevel Monte

Carlo methods, for financial and actuarial models using simulation algorithms.

In recent years, some statistical methods have been developed specifically for stochastic

differential equation. As an example, Kessler et al. (2012) present a summary of current

research trends and recent developments in statistical methods for stochastic differential

equations. They discuss a spectrum of estimation methods, including non-parametric

as well as parametric estimation based on likelihood methods, estimating functions, and

simulations based techniques for high-frequency data.

A good example of a stochastic differential equation is the Vasicek Interest Rate model.

Vasicek (1977) describes the evolution of interest rate as a factor of market risk. We will

discuss the Vasicek Interest Rate model in Chapter 2.

Much research follows from the model for European call and put options presented by Fisher

and Scholes (1973). One recent study (Buchen, 2012) explains some types of options in

assets markets and illustrates how to use straightforward techniques to price a wide range

of exotic options within the Black & Scholes framework (Fisher and Scholes, 1973). Such

options include barrier options (with payoffs which are related to some aspect of the actual

asset path such as whether a given barrier level has been crossed), lookback options (with

payoffs which depend on the maximum or minimum asset price over some monitoring

windows), Asian options (with payoffs which depend in various ways on the average of

the asset prices over some specified time windows) and exotic multi-options (multi-time

periods and multi-asset options). From a practical point of view, Iacus (2010) presents

some elementary and advanced topics on modern option pricing, from the basic models

of the Black & Scholes theory to more sophisticated approaches based on Lévy and other

jump processes. Iacus (2007) discusses the use of appropriate statistical techniques, with
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the choice of particular financial models starting from real financial data.

The Heston (1993) model is one of the most popular stochastic volatility models in

the statistical literature. Aït-Sahalia and Kimmel (2007) and Atiya and Wall (2009)

studied maximum likelihood parameter estimation for the Heston model. Benhamou et al.

(2010) derive an accurate analytical formula for the price of vanilla options for any

time dependent Heston model and Drǎgulescu and Yakovenko (2002) present an analytic

formula for the time-dependent probability distribution of stock price changes. Based on

the setting of the Black & Scholes model, if the underlying volatility process is estimated

using sequential price process data, then it is called historical volatility, otherwise it is

called implied volatility, which is shown in Miyahara (2012) to depend on the strike

price, which is the specified price at which an option contract can be exercised. In

more applied work, Bauwens et al. (2012) explore key concepts and topics essential for

modelling the volatility of financial time series, both univariate and multivariate, and high-

and low-frequency data, using parametric and non-parametric techniques.

A fractional stochastic differential equation is a generalization case of a stochastic differential

equation. The general idea of a fractional stochastic differential equation is to replace

Brownian motion by the more general fractional Brownian motion. Biagini et al. (2010)

present fractional Brownian motion models which have been used for a number of phenomena

in different fields in finance. As fractional Brownian motion represents a natural one-parameter

extension of Brownian motion, with the parameter being the Hurst index, it is logical to

ask if a stochastic calculus for fractional Brownian motion can be developed by generalizing

the Itô calculus for processes based on Brownian motion as presented in Iacus (2007), for

example. Chapter 1 of Tsoi et al. (2011) presents a multidimensional Wick-Itô formula,

which is a very important tool for analysing fractional Brownian motion, fractional Gaussian

processes and fractional white noise. More generally, multivariate fractional Brownian

motion has been studied recently by Jiang and Zhou (2011), Amblard and Coeurjolly

(2011), Lavancier et al. (2009) and Coeurjolly et al. (2010), who consider a special case,

bivariate fractional Brownian motion and the associated cross-correlation. Coeurjolly

(2000) and Dieker (2004) study the simulation of fractional Brownian motion and present
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associated algorithms. An interesting role of fractional Brownian motion is making inference

for long memory processes. Some basic asymptotic analysis for this is given in Giratis

et al. (2012). The problem of estimating the Hurst index is discussed in Gloter and

Hoffmann (2004), Chronopoulou and Viens (2011), Chang and Chang (2002) and Gloter

and Hoffmann (2007), using both non-parametric and parametric methods. Prakasa Rao

(2010) presents statistical inference methodology for fractional diffusion processes and

considers parametric and non-parametric inference problems for fractional processes when

a complete path of the process over a finite interval is observable.

The Bayesian approach to statistical inference has been increasingly applied in the area

of finance in recent years. In the Bayesian approach, prior knowledge about unknown

parameters is quantified by means of a probability density function. This probability

density function, know as the prior density is updated when data arrive using Bayes’

Theorem to give the posterior density function, upon which inference about the unknown

quantities is based. Markov chain Monte Carlo (MCMC) methodology provides popular

algorithms for sampling from the posterior distribution. Some important foundations and

algorithms for the Bayesian approach are presented by Brooks et al. (2011) and Lunn

et al. (2013). One recently developed method is the particle filter, the basic aim of which

is to update the posterior distribution of the unknown quantities of an underlying state

space model. A state space model is a mathematical model which consists of observed

and hidden processes. The simplest diagram of a state space model (Petris et al., 2009)

takes the form:

x0 // x1 //

��

x2 //

��

· · · // xt−1 //

��

xt //

��

xt+1 //

��

· · ·

y1 y2 · · · yt−1 yt yt+1

(1.1)

In this case, the aim is to estimate the hidden process x1,x2, . . . and the model parameters

sequentially as data y1,y2, . . . arrive. This approach fits nicely into the Bayesian framework,

as discussed in Chapter 2, because it naturally models the observed data and the hidden
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processes. The diagram for the model that we will study in this thesis is as follows:

v0 //

  

v1 //

  

v2 //

  

· · · //

""

vt−1 //

##

vt+1

y0 // y1 // y2 // · · · // yt−1 // yt+1

(1.2)

In this case, our aim will be to estimate the hidden volatility process v1,v2, . . . and the

model parameters sequentially as observed data y1,y2, . . . arrive, assuming that the initial

values (y0,v0) are known. After defining our state space model, the particle filter will be

used to estimate the hidden process assuming that the other parameters are known. In

fact, the particle filter consists of two steps, filtering and smoothing. The aim of filtering

is to update a target distribution at every iteration when the distribution is computed

approximately. The aim of smoothing is to sample from a joint distribution and then to

use this to approximated an associated marginal. We will extend the method to estimate

the parameters using the auxiliary particle filter. Durbin and Koopman (2012) present a

full theoretical treatment of linear, non-linear, non-Gaussian and multivariate time series

models using the particle filter, the extended Kalman filter, and unscented filtering and

smoothing based on approximation and simulation methods.

Stochastic filtering has been applied to finance as discussed by Date and Ponomareva

(2011) and Javaheri et al. (2002). A review of linear and non-linear time series filtering to

applications in mathematical finance and in particular to the Heston model, and associated

filters is presented in Chapter 9 of Bhar (2010). These authors work in the continuous

time framework, consider a general state space model and filter, linearize it and apply the

Kalman Filter. They then extend their approach to non-linear state space model. White

(2006) describes some non-linear filtering algorithms for stochastic volatility models. Jianhui

(2008) presents a novel particle filter algorithm for the fractional Ornstein-Uhlenbeck

model applied to finance. The fractional Ornstein-Uhlenbeck process is a generalization

of the Ornstein-Uhlenbeck process, which is the solution of a one-dimensional homogeneous

5



linear stochastic differential equations, driven by fractional Brownian motion, as discussed

Prakasa Rao (2010).

The aim of forecasting is to predict a future value of an underlying process from available

data. The most popular forecasting methods based on stochastic differential equations are

discussed in Hyndman et al. (2008). These authors perform inference in the Bayesian

framework and discuss applications to business and industry.

All the computational for thesis have been performed using R (R Core Team, 2012), the

software environment for statistical computing and graphical, and some of R’s contributed

packages.

1.2 Aim and Outline of the Thesis

In this thesis we aim to extend the popular Heston model for financial modelling to a more

general fractional Heston model and to perform inference about the unknown quantities

of this model from financial data using various sequential Monte Carlo techniques.

More precisely, our objective is to compare the performance of the fractional Heston

model with that of the standard Heston model in the Bayesian framework. In particular,

we will discuss the estimation of the Hurst indices of the fractional Brownian motion

processes that define the stochastic differential equations for volatility and asset price

using simulated and real data. Our work will be illustrated by application to real data

from the Standard & Poor SP350 European Market Index. We will develop and discuss

particle filter and auxiliary particle filter algorithms to achieve these objectives.

The outline of this thesis is as follows:

In Chapter 2 we present some methods for Bayesian Inference, including sequential

importance sampling, the particle filter and the auxiliary particle filter algorithms. We

apply these algorithms to two examples from finance, namely the Vasicek Interest Rate

model, defined by a stochastic differential equation, and the stochastic volatility model,

which models the underlying variability of a share price. We then explore the sensitivity

6



of our posterior sample to prior assumptions, and make some recommendations for the

choice of the prior distribution.

In Chapter 3 we present the Heston model. We use Markov chain Monte Carlo

algorithms (MCMC) to sample from the posterior distribution of the underlying volatility

process and the parameters. Next we use particle filter based methodology both to sample

the posterior distribution of underling volatility process and to update the posterior distribution

of the parameters sequentially, as data arrive over time. As mentioned, we apply our

approach to simulated and real data.

In Chapter 4 we extend the Heston model to the fractional Heston model by replacing

Brownian motion by fractional Brownian motion in the equations that define the model.

After explicitly defining the fractional Heston model and showing its representation as a

state space model, we use particle filter based methodology both to sample the posterior

distribution of the underlying volatility process and to update the posterior distribution of

the parameters sequentially. We apply our approach to simulated and real data. Finally,

we apply forecasting beyond and within the data and make comparisons between the

forecasts obtained from the Heston and fractional Heston models.

In Chapter 5 we review the main conclusion from each chapter and make suggestion for

future work.
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Chapter 2

Particle Filter

In this chapter we discuss particle filter based methodologies and apply then to the Vasicek

Interest Rate and Stochastic Volatility Models. These models define as stochastic differential

equations. In Section 2.1 we introduce some basic ideas of the particle filter and write the

Vasicek Interest Rate model as a Hidden Markov model. In Section 2.2 we present some

important features about importance sampling.

In Sections 2.3, 2.4 and 2.5 we explain the particle filter, the auxiliary particle filter and

the auxiliary particle filter with unknown parameters algorithms, while in Section 2.6

we present all our results including sensitivity studies concerning the choice of the prior

distribution for some of the parameters of our models.

2.1 Introduction

The particle filter, which is example of a Sequential Monte Carlo (SMC) method, approximates

complicated posterior distributions in on-line filtering applications. Moreover, the particle

filter is a very successful numerical methods for solving many problems in non-linear

non-Gaussian scenarios. The particle filter can estimate a sequence of hidden parameters

xk,k = 0,1,2, ... from a sequence of observed data yk,k = 1,2, . . . ; see 1.1 on page 4.

Firstly, we will explain the general model to which the particle filter can be applied. This

is the Hidden Markov model or State Space model, formulated as follows:-

9



• We have an underlying process x0,x1, ..., assumed to follow a first order Markov

process, such that xk|xk−1 ∼ πxk|xk−1
(xk|xk−1), with initial distribution π(x0);

• we have observations y1,y2, ..., assumed to be conditionally independent provided

that x0,x1, ..., are known, allowing us to write yk|xk ∼ πyk|xk
(yk|xk).

Therefore, we can write a State Space model as:-

xk = f (xk−1,wk) (2.1)

yk = h(xk,vk), k = 1,2, ..., (2.2)

in which f and h are known function, and wk and vk are independent identically distributed

sequences with known probability density functions. An important special case of (2.1)

and (2.2) is

xk = g(xk−1)+wk

yk = xk + vk.

Usually, E(wk) = 0 and E(vk) = 0.

One of our aims will be to use simulation to understand the posterior density of the

underlying process x up to time t given data up to time t, π(x0:t |y1:t) in which x0:t =

(x0,x1, ...,xt) and y1:t = (y1,y2, ...yt). In general, we write vs:t = (vs,vs+1, ...,vt). We

will assume that πt(x0:t |y1:t) is known up to a normalizing constant as the product of a

likelihood function and a prior density.

We will begin by applying the particle filter to the Vasicek Interest Rate model, and other

models such as the stochastic volatility model. So, as an illustration, we reformulate the

Vasicek model as a State Space model. The Vasiceck Interest Rate model is formulated

as a Stochastic Differential Equation (SDE) as:-

dxt = θ1(θ2− xt)dt +θ3dBt , (2.3)
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where θ1,θ2 and θ3 are (possibly unknown) positive parameters and Bt is Brownian

motion. Note that (2.3) can be written as

dxt = (θ1×θ2−θ1xt)dt +θ3dBt ,

so that often the re-parametrization β1 = θ1× θ2,θ1,θ3 is used. We assume that xt is

observed as yt through an observation equation of the same form as (2.2):-

yt = xt + vt ; (2.4)

yt is a noisy version as xt .

We now reformulate the Vasicek Interest Rate model for the underlying process in the

form (2.1). First, remember that (2.3) has solution:-

xt = x0 exp(−θ1t)+θ2(1− exp(−θ1t))+θ3 exp(−θ1t)
∫ t

0
exp(θ1s)dBs; (2.5)

for the definition of the integral
∫ t

0 exp(θ1s)dBs, see Section 2.1.2 of Mikosch (1998).

Let

I(0, t) =
∫ t

0
exp(θ1s)dBs,

so that (2.5) becomes

xt = θ2 +(x0−θ2)exp(−θ1t)+θ3 exp(−θ1t)I(0, t).

Then, the Vasicek Interest Rate at time t +δ t is

xt+δ t = θ2 +(x0−θ2)exp(−θ1t)exp(−θ2δ t)+θ3 exp(−θ1t)exp(−θ1δ t)I(0, t +δ t)

11



By the additive property of integration, it follows easily that

I(0, t +δ t) = I(0, t)+ I(t, t +δ t).

Hence,

xt+δ t = θ2 +(x0−θ2)exp(−θ1t)exp(−θ1δ t)+

θ3 exp(−θ1t)exp(−θ1δ t)I(0, t)+θ3 exp(−θ1t)exp(−θ1δ t)I(t, t +δ t)

= θ2 + exp(−θ1δ t)[(x0−θ2)exp(−θ1t)+θ3 exp(−θ1t)I(0, t)]+

θ3 exp(−θ1t)exp(−θ1δ t)I(t, t +δ t)

= θ2 +(xt−θ2)exp(−θ1δ t)+θ3 exp(−θ1t)exp(−θ1δ t)I(t, t +δ t)

Then,

xt+δ t = θ2(1− exp(−θ1δ t))+ xt exp(−θ1δ t)+ξt+δ t , (2.6)

where ξt+δ t = θ3 exp(−θ1t)exp(−θ1δ t)I(t, t + δ t). By definition of the integral I(t, t +

δ t), ξt+δ t is Gaussian with mean zero (Mikosch (1998)). From (2.6), the conditional

variance has the following form:-

var[xt+δ t |xt ] = var[θ2(1− exp(−θ1δ t))+ xt exp(−θ1δ t)+ξt+δ t |xt ]

= var[ξt+δ t |xt ].

Since by definition of I(t, t +δ t),ξt+δ t and xt are independent variables, it follows that

var[xt+δ t |xt ] = var[ξt+δ t ].

So, setting t = k−1 and δ t = 1, we have

xk = θ2(1− exp(−θ1))+ xk−1 exp(−θ1)+ξk (2.7)
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where E[ξk] = 0 and var[ξk] = var[xk|xk−1]. Equation (2.7) therefore takes the same form

as equation (2.1). Moreover, we rewrite the observation equation (2.4) in the same form

as used by Faff et al. (2006) as

yk = xk +Hzk, (2.8)

where zk ∼ N(0,1) and the standard deviation H of the noise process may be unknown.

This form corresponds to equation (2.2). We refer to the resulting model as the noise

Vasicek Interest Rate model. In Section 2.2 we discuss Importance Sampling and Sequential

Importance Sampling. The basic particle filter is set out in Section 2.3, and this is

extended to the Auxiliary Particle Filter in Section 2.4. Our treatment is based on the

excellent book by Petris, Petrone and Campagnoli (2009) (Petris et al., 2009). In Section 2.5

we discuss an extension of the basic auxiliary particle filter to the estimation of unknown

parameters. We present illustrative applications to the stochastic volatility model and to

the noisy Vasicek Interest Rate model in Section 2.6.

2.2 Importance Sampling

The general idea of Importance Sampling is to estimate an expectation of interest under a

distribution π from which it is difficult to sample by re-weighting realization drawn from

a different distribution g. Mathematically, if we have a interesting function f , then its

expected value under the probability density function π is:

Eπ( f (X)) =
∫

f (x)π(x)dx. (2.9)

Let us assume that we cannot sample realization from π and let g be a probability density

function from which we can sample realization. We can rewrite (2.9) as

Eπ( f (X)) =
∫

f (x)
π(x)
g(x)

g(x)dx

= Eg( f (X)w∗(X))
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where

w∗(x) = π(x)/g(x) is called an importance function or weight and the density g is called

an importance density. Therefore, the expected value Eπ( f (X)) can be estimated or

approximated as:-

Eπ( f (X))≈ 1
N

N

∑
i=1

f (x(i))w∗(x(i)), (2.10)

where x(1), ...,x(n) is a sample of N realization from g. Often in Bayesian applications the

target density π is a posterior density known only up to a normalization constant C as the

product of a likelihood function and a prior density; this means π = π∗

C , where we know

π∗ but not C. If we set f =C in (2.10) , we have that

C = Eπ(C)

≈ 1
N

N

∑
i=1

Cw∗(x(i)),

in which

Cw∗(x(i)) = C
π(x(i))
g(x(i))

(2.11)

= C
π∗(x(i))

C

g(x(i))
(2.12)

=
π∗(x(i))
g(x(i))

(2.13)

is known.

Let

w̃(i) =Cw∗(x(i)) =
π∗(x(i))
g(x(i))

,

so that

C ≈ 1
N

N

∑
i=1

w̃(i),
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in which w̃(i) is known. We can now estimate Eπ( f (X)) for a general f as follows:-

Eπ( f (x)) ≈ 1
N

N

∑
i=1

f (x(i))w∗(x(i))

=
1
N ∑

N
i=1 f (x(i))w̃(i)

C

≈
1
N ∑

N
i=1 f (x(i))w̃(i)

1
N ∑

N
i=1 w̃(i)

=
∑

N
i=1 f (x(i))w̃(i)

∑
N
i=1 w̃(i)

=
N

∑
i=1

f (x(i))
w̃(x(i))

∑
N
j=1 w̃( j)

=
N

∑
i=1

f (x(i))w(i),

where

w(i) =
w̃(i)

∑
N
j=1 w̃( j)

are known normalized weights so that ∑
N
i=1 w(i) = 1. In the above, we can view the sample

x(1), ...,x(N) with associated weights w(1), ...,w(i) as a discrete approximation of the target

π . So, using δx for the unit mass at x and setting π̂ = ∑
N
i=1 w(i)δx(i) , we have π̂ ≈ π. The

realizations x(1),x(2), ...,x(N) are referred to as Particles.

2.2.1 Sequential Importance Sampling

We can extend the above Importance Sampling approach to sample sequentially from the

posterior πt : at time t = 1 we require a sample from π1(x0:1|y1), at time t = 2 we require

a sample from π2(x0:2|y1:2), and so on.

The algorithm for doing this is as follows:-

For i = 1,2, ...,N, sample x(i)0 ∼ π(x0)

Set t = 1
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For i = 1, ...,N, sample x(i)1 ∼ g1, where g1 is a probability density function

chosen by the user.

Calculate

w̃(i)
1 =

L(y1|x
(i)
1 )π(x(i)1 |x

(i−1)
0 )

g1(x
(i)
1 )

,

where L is the likelihood function.

Normalize the weights w̃(i)
1 , i = 1,2, ...,N, to get w(i)

1 ,

Set t = t +1

For i = 1, ...,N, sample x(i)t ∼ gt , where gt is a probability density function

chosen by the user.

Calculate

w̃(i)
t =

L(yt |x(i)t )πt(x
(i)
t |x

(i)
t−1)

gt(x
(i)
t )

w(i)
t−1.

Normalize the weight w̃(i)
t , i = 1, ...,N, to get w(i)

t .

The derivation of w̃(i)
t in terms of w(i)

t−1 will be seen in Section 2.3. An alternative approach

would be to re-sample x(1)t ,x(2)t , ...,x(N)
t according to the weights w(1)

t ,w(2)
t , . . . ,w(N)

t , and

then to set the weights to be constant at w(i)
t = 1

N . This means that they cancel out in the

next iteration. The above procedure can be modified in an obvious way if x0 is considered

to be known.

2.2.2 Sequential Monte Carlo Bayesian Algorithm using Weight Updating

We now present a variation on the Sequential Importance Sampling method of Section 2.2.1

applied to the Vasicek Interest Rate model observed without noise. In particular, let us

return to the Vasicek Interest Rate model defined in equation (2.7), and let us assume that

xt , t = 1, ...,T, are observed sequentially, but without noise.

Let θ = (θ1,θ2,θ3) and let us assume that we wish to estimate the posterior π(θ |x0:t) of

θ given x0:t , t = 1, ...,T, sequentially. Let π(θ) be the prior distribution of θ and let x0 be

known. By Bayes Theorem
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π(θ |x0:t) ∝ π(x0:t |θ) ·π(θ)

= π(xt |x0:t−1,θ) ·π(x0:t−1|θ) ·π(θ)

= π(xt |xt−1,θ) ·π(x0:t−1|θ) ·π(θ),

where the transition density π(xt |xt−1,θ) is given by (2.7). We can sample from

π(θ |x0:t) sequentially as follows:

For i = 1, ...,N, sample θ (i) ∼ π(θ) and set w(i)
0 = 1

N .

Set t = 1

For i = 1, ...,N, modify the weights by calculating

w̃(i)
1 = π(x1|x0,θ

(i))w(i)
0 .

Normalize the weights w̃(i)
1 , i = 1, ...,N, to get w(i)

1 .

Set t = t +1

For i = 1, ...,N, modify the weights by calculating

w̃(i)
t = π(xt |xt−1,θ

(i))w(i)
t−1.

Normalize the weights w̃(i)
t , i = 1, ...,N, to get w(i)

t .

At any time t, the weighted particles (θ (1),w(1)
t ),(θ (2),w(2)

t ), . . . ,(θ (N),w(N)
t ) represent

a sample from the posterior π(θ |x0:t).

2.3 The Basic Particle Filter

The general idea of the particle filter is an extension of Importance Sampling. In fact,

the particle filter is an extension of Importance Sampling to Filtering and Smoothing. In
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Filtering we are interested in the sequential approximation of the distributions π1(x0:1|y1)

and π1(y1) at the first time instance, π2(x0:2|y1:2) and π2(y1:2) at the second time instance,

and so on. Therefore, it is clear that the target distribution will change every time that

a new observation y is made. Smoothing is concerned with sampling from the joint

distribution πT (x1:T |y1:T ) and approximating the associated marginals πT (xk|y1:T ) where

k = 1,2, . . . ,T.

In general, we consider the problem of updating a discrete approximation of πt−1(x0:t−1|y1:t−1)

when the observation yt becomes available. Then, there are two steps for updating. The

first step involves drawing an additional component x(i)t to obtain x(i)0:t and the second step

involves updating the weights w(i)
t−1 to w(i)

t .

We will adopt the following form for our importance density:-

gt(x0:t |y1:t) = gt|t−1(xt |x0:t−1,y1:t).gt−1(x0:t−1|y1:t−1)

where

gt|t−1 is an importance transition density which can depend on x0:t−1.

We shall update the weights as follows:-

wt ∝
π(x0:t |y1:t)

gt(x0:t |y1:t)
∝

π(x0:t ,yt |y1:t−1)

gt(x0:t |y1:t)

∝
π(xt ,yt |x0:t−1,y1:t−1) ·π(x0:t−1|y1:t−1)

gt|t−1(xt |x0:t−1,y1:t) ·gt−1(x0:t−1|y1:t−1)

∝
π(yt |xt) ·π(xt |xt−1)

gt|t−1(xt |x0:t−1,y1:t)
.wt−1

In general, we can rewrite the last formula for the ith unnormalized weight corresponding

to the ith particle x(i)t as:-

w̃(i)
t =

π(yt |x(i)t ) ·π(x(i)t |x
(i)
t−1)

gt|t−1(x
(i)
t |x

(i)
0:t−1,y1:t)

.w(i)
t−1
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The final step of updating the weights then becomes simple normalization:-

w(i)
t =

w̃(i)
t

∑
N
j=1 w̃( j)

t

It turns out that some of the normalized weights w(i)
t are sometimes very close to either 1

or 0. This can be problematic as having a weight close to 1 means that only one particle

is important. To overcome this we calculate the effective sample size that is defined as

Ne f f =

[
N

∑
i=1

(w(i)
t )2

]−1

.

If w(i)
t = 1

N , i = 1, ...,N, then the particles have equal weight and Ne f f = N. If w(1)
t = 1,

for example, and w(i)
t = 0, i = 2, ...,N, then Ne f f = 1 as only one particle is important. If

Ne f f drops below a certain value N0, then we re-sample the particle paths x(i)0:t , i = 1, ...,N,

so that each re-sampled particle path has a new weight 1
N . This keeps the particle filter in

control.

So here is a summary of the basic particle filtering algorithm:-

- At time t = 1

- sample x(i)1 ∼ g1(x1|y1) and set w(i)
0 = N−1, i = 1,2, ...,N

- t = 2, ...,T :

- For i = 1, ...,N

- Draw x(i)t from gt|t−1(xt |x(i)0:t−1,y1:t)

- set

w̃(i)
t =

π(yt |x(i)t ) ·π(x(i)t |x
(i)
t−1)

gt|t−1(x
(i)
t |x

(i)
0:t−1,y1:t)

.w(i)
t−1.

- Normalize the weights

w(i)
t =

w̃(i)
t

∑
N
j=1 w̃( j)

t

- compute Ne f f =
[
∑

N
i=1(w

(i)
t )2

]−1
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- if Ne f f ≤ N0, re-sample

- we will draw a sample of size N from a discrete distribution p(x0:t =

x(i)0:t) = w(i)
t , i = 1,2, ...,N, and relabel this sample x(1)0:t , ...,x

(N)
0:t

- Reset the weights : w(i)
t = N−1, i = 1,2, ...,N.

- Set π̂ = ∑
N
i=1 w(i)

t δ
x(i)0:t

. This is referred to as a mixture approximation to the

required posterior π(x0:t |y1:t).

An advantage of the particle filter is that it can be applied to a variety of models defined

through equations (2.1) and (2.2), including models that deal with non-Gaussian noise.

The particle filter can also be applied to more general models, although it can become very

complicated to implement and inefficient, focusing too much on more probable regions

of the state space.

2.4 Auxiliary Particle Filter

The auxiliary particle filter was introduced by Pitt and Shephard in 1999. Essentially,

it is an improvement on the particle filter that yields better simulations from the tails of

the underlying density. Moreover, the Particle Filter has two points of weakness. The

first weakness, already mentioned in Section 2.3, is related to the efficiency of the sample

and is caused by the fact that some of the weights may take very large values, known as

outliers, leading to degeneracy. The second weakness is related to the often poor quality

of the particle filter approximation in the tails of the density of interest. The mixture

approximation π̂ is often poor when outlying particle are sampled.

The basic idea of the auxiliary particle filter is to extend the particle filter by adding an

auxiliary variable. An example of an auxiliary variable is the variable I in the following

argument, where we write a density P(x) as a mixture of densities defined by I :-

P(x) = ∑
I

P(x, I = i)

= ∑
I

P(I = i)P(x|I = i).
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We assume that at time t − 1 we have a discrete approximation π̂t−1 = ∑
N
i=1 w(i)

t−1δ
x(i)0:t−1

of the joint posterior distribution π(x0:t−1|y1:t−1). Our aim is to update this approximate

joint distribution when a new data point yt is observed. We will write:-

π(x0:t |y1:t) ∝ π(x0:t ,yt |y1:t−1)

= π(yt |x0:t ,y1:t−1) ·π(xt |x0:t−1,y1:t−1) ·π(x0:t−1|y1:t−1)

= π(yt |xt).π(xt |xt−1) ·π(x0:t−1|y1:t−1)

≈ π(yt |xt).π(xt |xt−1) · π̂t−1(x0:t−1)

=
N

∑
i=1

w(i)
t−1π(yt |xt)π(xt |x(i)t−1)δx(i)0:t−1

(2.14)

It is clear that the above equation is an un-normalized distribution for x0:t in which x0:t−1

is a discrete component and xt is continuous. Therefore, the target is approximated by a

mixture distribution, that can be by expressed using an auxiliary variable as follows:-

P(I = i) = w(i)
t−1

x0:t |I = i ∼ Cπ(yt |xt)π(xt |x(i)t−1)δx(i)0:t−1
.

So, for a given i, the original target π(x0:t |y1:t) can be extended to become:-

π
aux(x0:t , i|y1:t) ∝ w(i)

t−1π(yt |xt)π(xt |x(i)t−1)δx(i)0:t−1
.

Pitt and Shephard (1999) suggested the following formula for the importance density

gt(x0:t , i|y1:t) ∝ w(i)
t−1π(yt |x̂(i)t )π(xt |x(i)t−1)δx(i)0:t−1

where x̂(i)t is a central value, such as the mean or the mode of π(xt |xt−1 = x(i)t−1). For

example x̂(i)t = E[xt |xt−1 = x(i)t−1], which may, for example, be f (x(i)t−1) if E[wt ] = 0 in
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transition equation (2.1), or θ2(1− exp(−θ1))+ x(i)t−1 exp(−θ1) for the Vasicek Interest

Rate model using transition equation (2.7). Then, there are two step to produce k = 1, ...,N

particle paths from this importance density:

1− Draw the latent variable Ik with

P(Ik = i) ∝ w(i)
t−1π(yt |x̂(i)t ) i = 1,2, ...,N.

2− Draw x(k)t ∼ π(xt |x(i)t−1) for Ik = i.

and set x(k)0:t = (x(Ik)
0:t−1,x

(k)
t ).

Thereafter, the auxiliary particle filter proceeds as follows:-

− At time t = 1, ...,T.

− Compute the importance weights via (2.13) for example as:-

w̃(k) =
w(Ik)

t−1 ·π(yt |x(k)t ).π(x(k)t |x
(k)
t−1)

w(Ik)
t−1 ·π(yt |x̂(Ik)

t ) ·π(x(k)t |x
(k)
t−1)

=
π(yt |x(k)t )

π(yt |x̂(Ik)
t )

, k = 1, ...,N.

− Normalize the weights:-

w(i)
t =

w̃(i)
t

∑
N
j=1 w̃( j)

t

, i = 1, ...,N.

− Compute the Ne f f :-

Ne f f =

[
N

∑
i=1

(w(i)
t )2

]−1

.

− If Ne f f ≤ N0, re-sample :-
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Draw a sample of size N from the discrete distribution P(x0:t = x(i)0:t) = w(i)
t ,

for i = 1, ...,N, and relabel this sample x(1)0:t , ...,x
(N)
0:t .

Reset the weights: w(i)
t = N−1 for i = 1, ...,N.

− Set π̂t = ∑
N
i=1 w(i)

t δ
x(i)0:t

.

Therefore, the main advantage of the auxiliary particle filter is to improve the efficient

of drawing in the sense that the more highly weighted particles at time t − 1 that are

consistent with new data yt progress to be particles at time t. Effectively, particles that

have a lot of information about the density of interest will survive and progress.

2.5 Auxiliary Particle Filter with Unknown Parameters

In practical situations the target density πt may involve unknown parameters ψ . We will

now see how to include the estimation of ψ in our particle filter algorithm. We often

drop the subscript t for ease of notation. Liu and West (2001) suggested estimating

unknown parameters by using the auxiliary particle filter. We will assume ψ is a vector

of unknown parameters. The general idea of this method is that the target distribution

at time t is continuous not only in xt , but also in ψ . We will draw values of ψ from

a continuous importance density based on a discrete approximation at time t − 1. The

discrete approximation at time t−1 is

π̂t−1(x0:t−1,ψ) =
N

∑
i=1

w(i)
t−1δ

(x(i)0:t−1,ψ
(i))

≈ π(x0:t−1,ψ|y0:t−1)

from which the discrete marginal distribution follows as

π̂t−1(ψ) =
N

∑
i=1

w(i)
t−1δ

ψ(i)

≈ π(ψ|y0:t−1).
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Basically, Liu and West (2001) suggest using a Normal distribution centred at ψ(i) with

covariance matrix Λ instead of the point masses δ
ψ(i) . The target distribution for ψ

therefore becomes:-

π̂t−1(ψ) =
N

∑
i=1

w(i)
t−1N(ψ;ψ

(i),Λ); (2.15)

where N(ψ;ψ(i),Λ) is the probability density function of a multivariate normal random

variable with mean ψ(i) and variance matrix Λ. Now, we will find the mean vector ψ̄ and

variance matrix of ψ under this π̂t−1:-

ψ̄ = E(ψ)

= E(E(ψ|I))

= E(ψ(I))

=
N

∑
i=1

w(i)
t−1ψ

(i),

var(ψ) = E(var(ψ|I))+var(E(ψ|I))

= E(Λ)+var(ψ(I))

= Λ+Σ

where I is a latent classification variable for the components of the mixture distribution

with P(I = i) = w(i)
t−1 and Σ = var(ψ(I)) is the variance matrix of ψ under the original

discrete approximation.

We will now modify the definition of π̂t−1 given in (2.15) to

π̂t−1(ψ) =
N

∑
i=1

w(i)
t−1N(ψ;m(i),h2

Σ) (2.16)

where m(i) = aψ(i)+(1−a)ψ, in which a ∈ (0,1) and a2 +h2 = 1.

We will re-calculate the expected value and covariance matrix of ψ under (2.16) as
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follows:-

E(ψ) = E(E(ψ|I))

= E(aψ
(I)+(1−a)ψ)

= aψ +(1−a)ψ

= ψ; (2.17)

var(ψ) = E(var(ψ|I))+var(E(ψ|I))

= E(h2
Σ)+var(aψ

(I)+(1−a)ψ)

= h2
Σ+a2var(ψ(I))

= h2
Σ+a2

Σ (2.18)

= Σ.

We note that var(ψ) = Σ is better than the previous variance Λ+Σ because, for example,

for any non-zero vector a, var(aT ψ) = aT ΣalaT Λa+aT Σa = aT (Λ+Σ)a which would

be the variance of aT ψ under the distribution (2.15). The resulting joint distribution for

x0:t−1 is discrete and for ψ is continuous,

π̂t−1(x0:t−1,ψ) =
N

∑
t=1

w(i)
t−1N(ψ;m(i),h2

Σ)δ
x(i)0:t−1

.

Now, the target distribution at time t becomes:-

π(x0:t ,ψ|y1:t) ∝ π(x0:t ,ψ,yt |y1:t−1)

= π(yt |x0:t ,ψ,y1:t−1) ·π(x0:t |x0:t−1,ψ,y1:t−1) ·π(x0:t−1,ψ|y1:t−1)

= π(yt |xt ,ψ) ·π(xt |xt−1,ψ) ·π(x0:t−1,ψ|y1:t−1)

≈ π(yt |xt ,ψ) ·π(xt |xt−1,ψ) · π̂t−1(x0:t−1,ψ)

=
N

∑
i=1

w(i)
t−1π(yt |xt ,ψ)π(xt |x(i)t−1,ψ)N(ψ,m(i),h2

Σ)δ
x(i)0:t−1

. (2.19)

We can now apply the auxiliary particle filter, in a slightly modified form, to sample

from (2.19). This is Lui and West’s algorithm (Liu and West, 2001):-

25



− Draw (x(1)0 ,ψ(1)), ...,(x(N)
0 ,ψ(N)) independently from π(x0)π(ψ) and set w(i)

0 =

N−1, i = 1,2, ...,N, so

π̂0 =
N

∑
i=1

w(i)
0 δ

(x(i)0 ,ψ(i))
.

− For t = 1,2, ...,T

− Compute ψ = Eπ̂t−1(ψ) and Σ = varπ̂t−1(ψ).

For i = 1,2, ...,N, set

m(i) = aψ
(i)+(1−a)ψ

x̂(i)t = E(xt |xt−1 = x(i)t−1,ψ = m(i)).

− For k = 1,2, ...,N

− Draw Ik with

P(Ik = i) ∝ w(i)
t−1π(yt |xt = x̂(i)t ,ψ = m(i)).

− Draw ψ(k) from N(m(Ik),h2Σ).

− Draw x(k)t from π(xt |xt−1 = x(Ik)
t−1,ψ = ψ(k)) and set x(k)0:t = (x(Ik)

0:t−1,x
(k)
t ).

− Set

w̃(k)
t =

π(yt |xt = x(k),ψ = ψ(k))

π(yt |xt = x̂(Ik)
t ,ψ = m(Ik))

− Normalize the weights:-

w(i)
t =

w̃(i)
t

∑
N
j=1 w̃(i)

t

− Compute Ne f f =
[
∑

N
i=1(w

(i)
t )2

]−1

− If Ne f f ≤ N0 re-sample:-

− Draw a sample of size N from the discrete distribution p((x0:t ,ψ) =
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(x(i)0:t ,ψ
(i))) = w(i)

t , i = 1, ...,N, and relabel this sample

(x(1)0:t ,ψ
(1)), ...,(x(N)

0:t ,ψ
(N))

− Reset the weights:-

w(i)
t = N−1, i = 1,2, ...,N.

− Set π̂t = ∑
N
i=1 w(i)

t δ
(x(i)0:t ,ψ

(i))

2.5.1 Dealing with Positive Parameters

We shall briefly indicate how to deal with the case when elements of ψ are constrained to

be positive by explaining how we can estimate the parameters ψ = (θ1,θ2,θ3,H) of the

Vasicek Interest Rate Model expressed as a Hidden Markov model through equations (2.7)

and (2.8). Let us suppose that each of the positive parameters in ψ is indexed by the

subscript j, so that in the Vasicek Interest Rate model case the four components of ψ

are ψ j, j = 1, ...,4. Each component ψ j has associated with it a gamma distribution with

shape parameters α j and scale parameters β j. The multivariate normal distribution used in

(2.15) is then replaced with the product of these gamma densities. The associated gamma

mean µ j(α j,β j) and variance σ2
j (α j,β j) are the following:-

µ
(i)
j = µ j(α

(i)
j ,β

(i)
j )

= aψ
(i)
j +(1−a)ψ j

σ
2(i)
j = σ

2
j (α

(i)
j ,β

(i)
j )

= h2
Σ j j,
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where Σ j j is the jth diagonal element of Σ. These equations can be solved for α
(i)
j and

β
(i)
j . The resulting mixture distribution is

N

∑
i=1

w(i)
t−1π(ψ;α

(i),β (i)) (2.20)

where

π(ψ;α
(i),β (i)) =

4

∏
j=1

π(ψ j;α
(i)
j ,β

(i)
j ), (2.21)

in which α(i) and β (i) are vectors of parameters and π(·;α
(i)
j ,β

(i)
j ) is the gamma probability

density function with parameters α
(i)
j and β

(i)
j . We can work out the mean and variance

of the vector ψ under this mixture distribution by using arguments similar to those that

led to (2.17) and (2.18). In particular h2Σ is replaced by h2(diag) Σ, where diag(Σ) is a

matrix formed from Σ by setting all except the diagonal elements to zero, since by (2.21)

the parameters are independent give I. Hence, under (2.20), ψ has the same mean ψ and

variance matrix h2diag(Σ)+a2Σ≈ Σ when a is close to 1.

2.6 Simulation Studies

2.6.1 Stochastic Volatility model

Tayler (1982) suggested a Hidden Markov model for univariate stochastic volatility xt as

follows:-

xt = αxt−1 +σwt (2.22)

yt = β exp(xt/2)vt (2.23)

where

wt ∼iid N(0,1),

vt ∼iid N(0,1) and

xt really represents Volatility.
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This model is written in the same forms as (2.1) and (2.2). We have already seen that the

Hidden Markov model is formulated as follows:-

• We have an underlying process x0,x1, ..., assumed to follow a first order Markov

process, such that xk|xk−1 ∼ πxk|xk−1
(xk|xk−1), with initial distribution π(x0);

• we have observations y1,y2, ..., assumed to be conditionally independent provided

that x0,x1, ..., are known, allowing us to write yk|xk ∼ πy|x(yk|xk).

If we use the notation N(x; µ,V ) for the probability density function of an univariate

normal random variable with mean µ and variance V, the stochastic volatility model has :

π(x0) = N
(

x0;0,
σ2

1−α2

)
,

π(xt |xt−1) = N(xt ;αxt−1,σ
2),

π(yt |xt) = N(yt ;0,β 2 exp(xt)).

This prior is chosen so that the unconditional variance of xt remains constant.

We will apply to the Stochastic Volatility model the particle filter assuming that the

parameters α , β and σ are known, and the auxiliary particle filter assuming that these

parameters are unknown.

First, Figure 2.1 shows the results of the particle filter assuming known parameters. In

particular the value xt of the process which represent volatility, the observation yt , the

approximate posterior mean of xt under π(xt |y1:t) and approximate 90% credible intervals

are shown across time t. The true values of the parameters are α = 0.91,β = 0.5,σ = 1.

The 90% credible intervals contain the true volatilities indicating that this is estimated

well.

Secondly, Figure 2.2 shows the estimation of the parameters (α,β ,σ) across time using

the auxiliary particle filter. In particular the approximate posterior mean and approximate

90% credible intervals of each parameter are presented together with the known parameter

values. Again, good estimation is achieved, especially for α and σ .
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Figure 2.3 is an equivalent plot to Figure 2.1 for the auxiliary particle filter. It is quite

similar to Figure 2.1, although the credible intervals are rather different perhaps due to

the fact that the parameters (α,β ,σ) are estimated.
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Figure 2.1: Results of the particle filter assuming known parameters α = 0.91,β = 1,σ = 0.5.
The true volatility xt , t = 1, ...,T,T = 500, assumed known in our simulation study,
is indicated by the red/unbroken line. The data yt are represented by the dots. The
approximate mean of the posterior distribution π(xt |y1:t) is represented using the
red/broken line, while associated 90% credible intervals are shaded light blue/grey.
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Figure 2.2: Results for the auxiliary particle filter for the parameters (α,β ,σ). The true values of
the parameters, which are known in this simulation study, are indicated by the thick
horizontal line. The first graph is for parameter α , defined though equation (2.22). The
posterior mean is shown by the black curve, while 90% credible intervals are shown by
the outer lines. The second graph is for parameter β , defined through equation (2.23),
while the third graph is for parameter σ , defined through equation (2.22). The credible
intervals become narrower as more data become available.
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Figure 2.3: Results of the auxiliary particle filter assuming unknown parameters parameters
α,β ,σ . The estimate volatility xt , t = 1, ...,T,T = 500, is indicated by the
red/unbroken line. The data yt are represented by the dots. The estimated mean
of the posterior distribution π(xt |y1:t) is represented using the red/broken line, while
associated 90% credible intervals are shaded light blue/grey.
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2.6.2 Vasicek Interest Rate Model

Next, we will apply the Sequential Monte Carlo Bayesian Algorithm using Weight Updating

(outlined in Section 2.2.2), the particle filter assuming known parameters (outlined in

Section 2.3,) and the auxiliary particle filter assuming unknown parameters (outlined

in Section 2.4) to the Vasicek Interest Rate Model discussed in Section 2.1 in order to

illustrate further this methodology.

Results from the Sequential Monte Carlo Bayesian Algorithm are given in Figure 2.4.

In particular, the estimation of each parameter β1 = θ1× θ2, θ1 and θ3 based on data

yt , t = 1,2, . . . ,T,T = 500, is shown over time by presenting approximate posterior means

and 90% credible intervals. The maximum likelihood estimate based on all the data and

the true value of each parameter is also shown. The credible intervals become narrower

as more data become available.

The results from the particle filter are given Figure 2.5. In particular, the true value of

the Interest Rate xt , t = 1, ...,T,T = 500, the data yt , the approximate posterior mean of xt

under π(xt |y1:t) and approximate 90% credible intervals are presented. Good estimation

is achieved.

The results of the auxiliary particle filter assuming unknown parameters (β1,θ1,θ3,H)

are presented in Figure 2.6. The first graph for parameter β1(top left) shows the true value

of the parameter, the maximum likelihood estimation, the approximate posterior mean

and associated approximate 90% credible intervals. The second graph for θ1 (top right),

the third graph for θ3 (bottom left) and the fourth graph H (bottom right) all show similar

behaviour with the credible intervals containing the maximum likelihood estimates based

on the data. Again, the credible intervals tend to become narrower as more data become

available.

Figure 2.7 is an equivalent plot to Figure 2.5 for the auxiliary particle filter. An interest

rate estimate of similar quality has been achieved.
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Figure 2.4: Result for the Sequential Monte Carlo Bayesian Algorithm Weight Updating for
estimating the parameters β1, θ1 and θ3, with β1 = 3,θ1 = 3,θ3 = 3. The first graph
is for parameter β1 = θ1×θ2. The approximate posterior mean is shown by the black
curve, while approximate 90% credible intervals are shown by the outer lines. The
second graph is for parameter θ1, while the third graph is for parameter θ3. The true
value of each parameter is also shown. Note that we plot time = δ t,δ = 1

12 , on the
horizontal axis as we are thinking of the data as monthly with time being in years.
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Figure 2.5: Result of the particle filter assuming known parameters β1 = 3,θ1 = 3,θ3 = 3 where
β1 = θ1×θ2. The true value of the Interest Rate xt , t = 1, ...,T,T = 500, are indicated
by the unbroken line. The data yt are represented by the dots. The approximate mean
of the posterior distribution π(xt |y1:t) is represented by the broken line and is close to
the true values xt , while associated 90% credible intervals are shaded light blue/grey.
Note that we plot time = δ t,δ = 1

12 , on the horizontal axis as we are thinking of the
data as monthly with time being in years.
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Figure 2.6: Result of the auxiliary particle filter for the parameters β1 = θ1× θ2,θ1,θ3 and H,
where the standard deviation H of the assumed noise is defined through equation (2.8).
The true parameter values, which are known in this simulation study, are shown by the
thick black horizontal lines, while the dashed horizontal lines show the maximum
likelihood estimates based on all the data yt , t = 1, ...,T,T = 500. The approximate
posterior mean of each parameter is shown by the black line, while the associated
approximate 90% confidence intervals are shown by the outer lines. The graphs are
for parameters β1 (top left), θ1 (top right), θ3 (bottom left) and H (bottom right).
The credible intervals contain the maximum likelihood estimate. Note that we plot
time = δ t,δ = 1

12 , on the horizontal axis as we are thinking of the data as monthly
with time being in years.
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Figure 2.7: Result of the auxiliary particle filter assuming unknown parameters β1,θ1,θ3 where
β1 = θ1×θ2. The true value of the Interest Rate xt , t = 1, ...,T,T = 500, are indicated
by the unbroken line. The data yt are represented by the dots. The approximate mean
of the posterior distribution π(xt |y1:t) is represented by using broken line and is close
to the true values xt , while associated 90% credible intervals are shaded light blue/grey.
Note that we plot time = δ t,δ = 1

12 , on the horizontal axis as we are thinking of the
data as monthly with time being in years.
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2.6.3 The prior distribution on the parameter H of the noisy Vasicek

Interest Rate Model

When we implemented the auxiliary particle filter (Petris et al., 2009) for the noisy

Vasicek Interest Rate Model, we assumed that the prior distribution on the noise standard

deviation H was a uniform distribution. Informal experiments led us to believe that the

performance of the auxiliary particle filter was more sensitive to the choice of the prior

on H that to the choice of the prior on the other parameters of the noisy Vasicek Interest

Rate Model.

Therefore, we conducted a simulation study to assess the sensitivity of posterior inference

to the prior assumptions made about H. We generated data sets from the noisy Vasicek

Interest Rate Model of length 133 (including the initial value x0), thought of as being

eleven years of interest rate data. We considered various uniform priors on H, with small

minimum value 0.005 and different maximum values. We also considered a range of true

values of H. There are many ways to assess the effect of the choice of the prior on H on

posterior inference. We decided to use the number out of fifty 95% credible intervals for

the underlying interest rate at the final time point that contained the true interest rate. So

we simulated fifty data sets from the noisy Vasicek Interest Rate Model, ran the auxiliary

particle filter on each data set, and counted the number of 95% credible intervals at the

final time point that contain the underlying interest rate. In Table 2.1 we represent our

results when the true values of the other parameters are θ1 = 3, θ2 = 2 and θ3 = 1. We

immediately see that if the true value of H lies well within the interval that defines the

uniform prior relatively good performance is achieved. In Table 2.2 the results are for

different true values of the other parameters in particular θ1 = 3.87, θ2 = 0.75 and θ3 = 1.

Again, relatively good performance is achieved if the true value of H lies well within the

prior interval. We can also see from Table 2.1 and Table 2.2 that posterior inference can

be rather sensitive to the choice of the prior distribution on H in that a misspecified prior

can lead to poor posterior inference. In particular, for small true values of H (0.01,0.05

and 0.1), the auxiliary particle filter performs well, with almost all the credible intervals
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containing the true interest rate value, across all uniform prior distribution on H that we

considered. For large values of H (0.5 and 0.75), the performance of the auxiliary particle

filter is less good, especially when the interval for the uniform prior on H is narrow and

considerably below the true value of H.

In conclusion, the performance of the auxiliary particle filter seems consistent over prior

interval width provided that the true value of H lies well within the interval for the uniform

prior on H. A uniform prior distribution across a wide range of possible value of H, such

as [0.05,2] or [0.05,10], seems to offer good posterior performance for a range of realistic

true H values.

True value of H
Prior distribution on H 0.01 0.05 0.1 0.5 0.75

[0.005,0.25] 49 50 50 36 28
[0.005,0.5] 50 50 49 40 34

[0.005,0.75] 49 49 48 47 44
[0.005,1] 49 50 49 43 44

[0.005,1.5] 50 50 50 40 42
[0.005,2] 50 50 50 46 39
[0.005,10] 48 50 48 43 43

Table 2.1: The number out of fifty 95% credible intervals for the underlying interest rate at the
final time point that contain the true interest rate for the noisy Vasicek Interest Rate
Model where θ1 = 3, θ2 = 2 and θ3 = 1. The columns correspond to different true
values of H, while the rows correspond to different uniform prior distributions on H,
with the minimum value being set to 0.005 and with different maximum values.

True value of H
Prior distribution on H 0.01 0.05 0.1 0.5 0.75

[0.005,0.25] 50 50 50 30 29
[0.005,0.5] 50 49 50 45 40

[0.005,0.75] 50 50 49 43 40
[0.005,1] 50 50 49 44 45

[0.005,1.5] 50 49 49 44 40
[0.005,2] 50 50 50 43 44
[0.005,10] 50 50 48 41 42

Table 2.2: The number out of fifty 95% credible intervals for the underlying interest rate at the
final time point that contain the true interest rate for the noisy Vasicek Interest Rate
Model where θ1 = 3.87, θ2 = 0.75 and θ3 = 1. The columns correspond to different
true values of H, while the rows correspond to different uniform prior distributions on
H, with the minimum value being set to 0.005 and with different maximum values.
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2.6.4 The prior distribution on the β of the Stochastic Volatility Model

As we discussed above our implementation of the auxiliary particle filter for the stochastic

volatility model assumes a uniform prior distribution on β . We now investigate how

the performance of the auxiliary particle filter depends on the specification of this prior

distribution. We focus attention on the prior distribution on β because our experience is

that the performance of the algorithm is more sensitive to the choice of prior distribution

on this parameter than to the choice of the other prior distributions.

Therefore, we conducted a simulation study to assess the sensitivity of posterior

inference to the prior assumptions made about β by generating data sets from the stochastic

volatility model of length 500 (including the initial value x0). We considered various

uniform priors on β with small minimum value 0.005 and different maximum values. We

also considered a range of the true values of β and true values of α. We decided to use

the number out of fifty 95% credible intervals for the underlying volatility at the final

time point that contained the true volatility value as a measure of the quality of posterior

inference. So, we simulated fifty data sets from the noisy stochastic volatility model,

ran the auxiliary particle filter on each data set, and counted the number of 95% credible

intervals at the final time point that contained the underlying volatility process.

In Table 2.3 we present our results when the other parameters are α = 0.3 and σ =

0.01. We immediately see that when the true of value β lies well within the interval that

defines the uniform prior, good performance is achieved, while bad performance occurs

when the true value of β was out of the prior interval. In this case the algorithm often fails

because the likelihood term effectively assigns zero probability to the data. Performance

is also not good when the true value of β is very small and when the uniform prior interval

for β is very large.

In Table 2.4 results are presented for a different true values of α, in particular α = 0.6,

and the same true value of σ . Again, relatively good performance is achieved if the true
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value of β lies well within the prior interval and bad performance occurs if the true value

of β is outside the prior interval.

In Table 2.5 results are presented for another different true values of α in particular

α = 0.8, and the same true value of σ . The basic conclusion from Table 2.5 are the same

as those obtained from Tables 2.3 and 2.4: good performance is achieved if the true value

of β lies well within the prior interval, while bad performance occurs it the true value

of β is outside the prior interval. We can therefore see from Tables 2.3, 2.4 and 2.5 that

posterior inference can be rather sensitive to the choice of the distribution on β in that a

misspecified prior can lead to bad posterior inference.

For small true values of β (for example 0.01, 0.05 and 0.1), the auxiliary particle

filter generally performs well, unless the true value of β is outside of the prior interval,

in which case failure is due to the fact that the likelihood term effectively assigns zero

probability to the data. For large values of β (for example 0.6 and 0.7), the performance

of the Auxiliary Particle Filter is again generally good, especially when the interval for

the uniform prior is wider. Good performance can sometimes be achieved in this case

even when the prior interval does not contain the true parameter value.

In conclusion, the auxiliary particle filter seems to perform in a consistently good way

over the choice of uniform prior intervals for β prior width provided that the true value of

β is well supported by the interval. A uniform prior distribution for β such as [0.005,2]

or [0.005,10] seems to offer good posterior performance for a wide range of realistic true

β values. Of course, the prior distribution for β should reflect specific prior knowledge

about β , if such knowledge is available.
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True value of β

Prior distribution on β 0.01 0.05 0.1 0.5 0.6 0.7
[0.005,0.01] 50 − − − − −
[0.005,0.05] 50 49 2 − − −
[0.005,0.1] 50 50 49 − − −
[0.005,0.5] 49 50 49 50 50 50
[0.005,0.75] 48 50 50 50 50 50

[0.005,1] 49 50 50 50 50 50
[0.005,2] 43 50 49 50 50 50

[0.005,10] 28 43 50 50 50 49

Table 2.3: The number out of fifty 95% credible intervals for the underlying volatility process at
the final time that contain the true volatility value. The columns correspond to different
true values of β , while the rows correspond to different uniform prior distributions on
β , with the minimum value being set to 0.005 and with different maximum values. Data
sets were simulated with α = 0.3 and σ = 0.01. Dashes mean that the algorithm failed
in some way.

True value of β

Prior distribution on β 0.01 0.05 0.1 0.5 0.6 0.7
[0.005,0.01] 49 0 − − − −
[0.005,0.05] 50 49 1 − − −
[0.005,0.1] 50 50 50 0 − 0
[0.005,0.5] 50 49 50 50 50 48
[0.005,0.75] 50 50 49 49 50 50

[0.005,1] 50 49 50 50 50 50
[0.005,2] 44 49 49 50 50 50

[0.005,10] 30 43 48 50 50 50

Table 2.4: The number out of fifty 95% credible intervals for the underlying volatility process at
the final time that contain the true volatility value. The columns correspond to different
true values of β , while the rows correspond to different uniform prior distributions on
β , with the minimum value being set to 0.005 and with different maximum values. Data
sets were simulated with α = 0.6 and σ = 0.01. Dashes mean that the algorithm failed
in some way.
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True value of β

Prior distribution on β 0.01 0.05 0.1 0.5 0.6 0.7
[0.005,0.01] 50 − − − − −
[0.005,0.05] 49 50 − − − −
[0.005,0.1] 49 50 49 − − −
[0.005,0.5] 50 49 49 50 50 50
[0.005,0.75] 50 50 50 50 49 50

[0.005,1] 48 49 49 50 48 49
[0.005,2] 46 50 50 50 48 50

[0.005,10] 38 47 44 50 49 50

Table 2.5: The number out of fifty 95% credible intervals for the underlying volatility process at
the final time that contain the true volatility value. The columns correspond to different
true values of β , while the rows correspond to different uniform prior distributions on
β , with the minimum value being set to 0.005 and with different maximum values. Data
sets were simulated with α = 0.8 and σ = 0.01. Dashes mean that the algorithm failed
in some way.

2.7 Summary

In this chapter, we have discuss:

1. The definition and implementation of various sequential Monte Carlo algorithms

such as the particle filter and the auxiliary particle filter;

2. Applications of these algorithms to various models, namely the Vasicek Interest

Rate Model and the Stochastic Volatility model;

3. Studies concerning the choice of the prior distribution for some of the parameters

of our models.

Following on from our results, we will be applying these particles filter based on algorithms

to the Heston model, a popular model for financial data, in Chapter 3, and to an extension

of the Heston model in Chapter 4.
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Chapter 3

The Heston Model

In this chapter we discuss the Heston model and how to make inference about its unknown

quantities. In Section 3.1 we introduce the Heston model, before discussing inference

methodology for a special case in Section 3.2. In Section 3.3 we extend this methodology

to the general Heston model, while in Section 3.4 we present all our results using both

simulated and real data.

3.1 Introduction

Heston (1993) presented a new model to improve and extend the Black-Scholes model

(Fisher and Scholes, 1973) by adding some features such as non-constant volatility, a

non-log-normal distribution for the assets prices, a potential correlation between the stock

price process and the volatility process. The volatility is assumed to be a stochastic

process defined through a stochastic differential equation which gives it the important

mean-reverting property (Bauer, 2012). One form of this model can be written as follows:-

dSt

St
= µdt +

√
vtdws

t

dvt = β (κ− vt)dt +σ
√

vtdwv
t

E(dws
t dwv

t ) = ρdt,

where

St is an asset price at continuous time t,
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vt is a volatility at continuous time t,

µ is a rate of the asset returns,

β is a mean-reversion rate,

κ is a long run volatility,

σ is a volatility of the volatility process,

ρ is a correlation coefficient between the two underlying processes and

dws
t and dwv

t are standard Brownian motion increments over a time interval dt.

In this model, the volatility remains greater than or equal to zero. Also, if the Feller

condition 2κβ > σ2 holds, volatility will be strictly non-zero (Heston, 1993).

We will study the Heston model in the two cases ρ = 0 (uncorrelated underlying processes)

and ρ 6= 0 (correlated underlying processes) as follows:-

3.2 The Heston Model when ρ = 0

In this case, the Heston model will be as follows:-

dSt

St
= µdt +

√
vtdws

t (3.1)

dvt = β (κ− vt)dt +σ
√

vtdwv
t , (3.2)

in which ws
t and wv

t are independent Brownian motion processes.

Equations (3.1) and (3.2) can be thought of as a form of the general stochastic volatility

model.

Our aim is to estimate the volatility process vt assuming that the asset price process St is

known.

It is more convenient to work with yt = log(St/S0). Using the Itô Lemma (Mikosch, 1998),

we can transform (3.1) into an equation for yt :

dyt =

[
∂yt

∂St
µSt +

∂yt

∂ t
+

1
2

vtS2
t

∂ 2yt

∂S2
t

]
dt +

∂yt

∂St

√
vtStdws

t
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where

∂yt
∂St

= 1
St

, ∂ 2yt
∂S2

t
=− 1

S2
t
, and ∂yt

∂ t = 0.

This leads to

dyt =

[
1
St

µSt +0+
1
2

vtS2
t

(
− 1

S2
t

)]
dt +

1
St

√
vtStdws

t

=

(
µ− 1

2
vt

)
dt +
√

vtdws
t . (3.3)

The advantage is that the right side of equation (3.3) depends only on the process vt , and

not on yt .

Now, we will use the Euler scheme to transform the Heston model (Korn et al., 2010)

from continuous to discrete time. The aim of applying the Euler scheme is that it is easier

to deal with discrete rather than continuous time.

Firstly, the Euler scheme of yt is

yt+4 = yt +
∫ t+4

t

(
µ− 1

2
vu

)
du+

∫ t+4

t

√
vu dws

u,

by integrating the above equation. We now let 4→ 0. When we move from continuous

to discrete time, positivity of the volatility process is unfortunately no longer guaranteed.

Hence, we replace vt with |vt | under the square root:-

yt+4 = yt +

(
µ− 1

2
vt

)
4+

√
|vt |
√
4Zs

t , Zs
t ∼ N(0,1),

since dws
t ∼ N(0,4) when dws

t = ws
t+4−ws

t .

Secondly, the Euler scheme of vt is

vt+4 = vt +
∫ t+4

t
β (κ− vu)du+

∫ t+4

t
σ
√

vu dwv
u

so

vt+4 = vt +β (κ− vt)4+σ
√

vt
√
4Zv

t , Zv
t ∼ N(0,1), (3.4)
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since dwv
t ∼ N(0,4).

As before, because of the possibility of a negative variance, we rewrite equation (3.4) as

follows:-

vt+4 = vt +β (κ− vt)4+σ
√
|vt |
√
4Zv

t .

In conclusion, the Heston model when ρ = 0 in discrete time can be written as :-

yt+4 = yt +

(
µ− 1

2
vt

)
4+

√
|vt |
√
4Zs

t (3.5)

vt+4 = vt +(α−βvt)4+σ
√
|vt |
√
4Zv

t , (3.6)

where yt = log(St/S0) and α = β ×κ.

3.2.1 Maximum Likelihood Estimation

To write the likelihood function of the Heston model when ρ = 0, we will use equations

(3.5) and (3.6). We will assume that the initial values y0 and v0 are known. We will

indicate the values of y and v at time 4,24, . . . , t4 as y1, . . . ,yt and v1, . . . ,vt , and we

will write y1:t and v1:t for the collection of all these values. The volatilities v0,v1:t are of

course positive. Mathematically, the likelihood function can be expressed as

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = L((yt ,vt)|(yt−1,vt−1), . . . ,(y1,v1),(y0,v0),θ)×

L((yt−1,vt−1)|(yt−2,vt−2), . . . ,(y1,v1),(y0,v0),θ)

×·· ·×L((y2,v2)|(y1,v1),(y0,v0),θ)

×L((y1,v1)|(y0,v0),θ)

where

θ = (µ,α,β ,σ) is a vector of parameters.
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In addition, since here the y1:t and v1:t processes satisfy the Markov property, we can write

the likelihood function as

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = L((yt ,vt)|(yt−1,vt−1),θ)

×L((yt−1,vt−1)|(yt−2,vt−2),θ)

×·· ·×L((y2,v2)|(y1,v1),θ)

×L((y1,v1)|(y0,v0),θ).

From equations (3.5) and (3.6), it can be seen that each process does not depend on all of

the parameters, so we can rewrite the above equation for the likelihood as

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = L(yt |(yt−1,vt−1),µ)×L(vt |vt−1,α,β ,σ)×

L(yt−1|(yt−2,vt−2),µ)×L(vt−1|vt−2,α,β ,σ)

×·· ·×L(y1|(y0,v0),µ)×L(v1|v0,α,β ,σ).

Since the conditional distribution of each process is normal with mean and variance as

follows:-

yt |(yt−1,vt−1,µ) ∼ N(yt−1 +(µ−0.5vt−1)4,4vt−1)

vt |vt−1,α,β ,σ ∼ N(vt−1 +(α−βvt−1)4,σ24 vt−1),
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the likelihood function of the Heston model when ρ = 0 takes the following form :-

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = N(yt ;yt−1 +(µ−0.5vt−1)4,4vt−1)×

N(vt ;vt−1 +(α−βvt−1)4,σ24 vt−1)×·· ·×

×N(y2;y1 +(µ−0.5v1)4,4v1)

×N(v2;v1 +(α−βv1)4,σ24 v1)

×N(y1;y0 +(µ−0.5v0)4,4v0)

×N(v1;v0 +(α−βv0)4,σ24 v0),

in which N(x;m,s2) is the normal probability density function with mean m and variance

s2 evaluated at x.

From the above equation, we can use the likelihood function to estimate the parameters

µ,α,β and σ using maximum likelihood estimation when the values of volatility process

and asset price process are assumed known. In general, our aim here is to estimate the

current volatility vt from the current and past asset prices and past volatilities.

We remark that we will use the full likelihood form L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ)

when we discuss the fractional Heston Model in Section 4.3 and Section 4.4 of the next

chapter. We also remark that we sometimes write L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ)

as L(y1:t ,v1:t |y0,v0,θ).

3.2.2 Bayesian Inference for the Heston Model when ρ = 0

The aim of Bayesian Inference (Brooks et al., 2011) is to use data to update our prior

belief about parameters into a posterior belief. In the Heston model when ρ = 0, we will

sample the posterior distribution of the parameters and the volatility process. Therefore,
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we can write our posterior distribution as follows:-

π(θ ,v1:t |y1:t ,v0,y0) ∝ π(θ ,y1:t ,v1:t |v0,y0)

= L(y1:t ,v1:t |v0,y0,θ)π(θ),

where we assume prior θ =(µ,α,β ,σ) independence of y0,v0 so that π(θ |v0,y0)= π(θ),

π(θ ,v1:t |y1:t ,v0,y0) is the posterior distribution of the parameter vector θ and the v1:t

processes,

L(y1:t ,v1:t |v0,y0,θ) is the likelihood function of both the y1:t and v1:t processes, and

π(θ) is the prior distribution of θ .

Here our ultimate aim is to estimate the historical volatility vt up to t and the parameters

θ . Because of the complexity of the posterior distribution for the parameters and the

volatility process, we understand it by sampling from it. We now describe three methods

for sampling from this posterior distribution. We sometimes simplify notation by dropping

unnecessary variables.

3.2.2.1 Markov chain Monte Carlo

We will apply a Markov chain Monte Carlo (MCMC) algorithm to sample from the

posterior distribution of the parameters and the volatility process. In particular, we will

use a popular method called the Metropolis-Hasting algorithm to sample from this posterior

distribution.

The Metropolis-Hasting algorithm consists of several steps. In general, these steps involve

simulating a candidate value from a proposal distribution, and then deciding whether or

not to accept the candidate value. This algorithm can be described as follows:-

- We sample using the framework of the Gibbs sampler. More precisely, we update

the parameters in the order µ,α,β ,σ and v1:t . For example, when updating µ, we

generate a candidate µ, called µ(cand), from a probability density function k,
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- We calculate

R1 =
L(y1:t ,v1:t |v0,y0,θ

(cand))π(θ (cand))k(θ)

L(y1:t ,v1:t |v0,y0,θ)π(θ)k(θ (cand))
,

where θ (cand) = (µ(cand),α,β ,σ), and we then accept µ(cand) as the new value

of µ with probability α1 = min[R1,1].

- We update all the components of v1:t together by sampling v(cand)
1:t from a probability

density function g, calculating

R2 =
L
(

y1:t ,v
(cand)
1:t |y0,v0,θ

)
g(v1:t)

L(y1:t ,v1:t |y0,v0,θ)g
(

v(cand)
1:t

) ,

and accepting v(cand)
1:t as the new value of v1:t with probability α2 = min[R2,1].

Note that the probability density functions k and g can depend on previous values.

3.2.2.2 The Particle Filter assuming θ is known

Before starting our discussion of the particle filter, we will write the Heston model when

ρ = 0 as a state space model

vt = vt−1 +(α−βvt−1)4+σ
√
|vt−1|

√
4Zv

t (unobserved equation) (3.7)

yt = yt−1 +

(
µ− 1

2
vt−1

)
4+

√
|vt−1|

√
4Zs

t (observed equation), (3.8)

where t = 1, . . . ,T.

The particle filter is an example of a sequential importance sampling algorithm and aims

to produce a good estimate of the unobserved vt from information about the observed

process up to time t. It is used for filtering and smoothing. The main task of filtering is to

update the target distribution every iteration when the distribution is computed approximately.

The main task of smoothing is to sample from the joint distribution, i.e, π(v1:t |y1:t), and
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approximate the associated marginals π(vk|y1:t) where k = 1, . . . , t. The target distribution

π(v1:t |y1:t) is approximated by means of particles v(i)1:t with associated weights w(i)
t .

When applying the particle filter, the parameters and initial values of each process are

assumed known.

Loosely speaking, our approach follows that in Chapter 5 of Giovanni Petris, Sonia

Petrone and Patrizia Campagnoli (2009) (Petris et al., 2009). The particle filter comprises

two steps. The first step draws new observation v(i)t i = 1, . . . ,N, to obtain v(i)1:t , and the

second step updates the weights w(i)
t−1 to w(i)

t .

Therefore, we can say that the particle filter updates a discrete approximation of

πt−1(v1:t−1|y1:t−1) when new data are available to produce a discrete approximation of

πt(v1:t |y1:t), where πt represents the posterior distribution at time t.

Mathematically, our importance function is

gt(v1:t |y1:t) = gt|t−1(vt |v1:t−1,y1:t)gt−1(v1:t−1|y1:t−1)

where gt|t−1 is an importance transition function.

Now, the weight w(i)
t of the ith particle, i = 1, . . . ,N, will be updated as follows:-

ŵ(i)
t ∝

πt(v
(i)
1:t |y1:t)

gt(v
(i)
1:t |y1:t)

∝
πt(v

(i)
1:t ,yt |y1:t−1)

gt(v
(i)
1:t |y1:t)

=
πt(v

(i)
t ,yt |v(i)1:t−1,y1:t−1)πt−1(v

(i)
1:t−1|y1:t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)gt−1(v

(i)
1:t−1|y1:t−1)

∝
πt(v

(i)
t ,yt |v(i)1:t−1,y1:t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)

× ŵ(i)
t−1

=
πt(v

(i)
t |v

(i)
t−1)πt(yt |yt−1,v

(i)
t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)

× ŵ(i)
t−1,

because to be changed, applied to vt ,yt in equations (3.7) and (3.8) for example.

We finally normalized the weights

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.
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A problem that can occur with the normalized weights is that some values are very close

to 1 or to 0; effectively such values are outliers. So, we will calculate the effective sample

size to quantity and later overcome this problem

Ne f f =

[
N

∑
i=1

(w(i)
t )2

]−1

− If w(i)
t = 1

N , then the weights are distributed evenly over the particles and Ne f f takes

its maximum value of N.

− If w(i)
t = 1, for example, and w(i)

t = 0, i= 2, . . . ,N, then Ne f f = 1 as only one particle

is important.

− If Ne f f drops below a certain value N0, then we re-sample the particles path v(i)1:t , i =

1, . . . ,N. The goal of the effective sample size is to keep the particle filter in control.

Let’s give a short summary of the particle filter for the Heston model when ρ = 0 :

- Initialize at time t = 1. Generate v(i)1 ∼ g1(v1|v0,y0), where g1(v1|v0,y0) is a probability

density function chosen by the user, and set w(i)
0 = N−1, i = 1, . . . ,N.

- Generating, computing and normalizing at time t = 2, . . . ,T :

- Generate v(i)t ∼ gt|t−1(vt |v(i)1:t−1,y1:t−1);

- Update the weights

ŵ(i)
t =

π(v(i)t |v
(i)
t−1)π(yt |y1:t−1,v

(i)
1:t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)

× ŵ(i−1)
t−1 ;

- Normalize the weights

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.

- Compute the effective sample size

Ne f f =

[
N

∑
i=1

(w(i)
t )2

]−1

.
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- If Ne f f 6 N0, where N0 is a certain preset fraction of the total number of particles,

re-sample

- Draw a sample of size N from a discrete distribution P(v1:t = v(i)1:t) = w(i)
t , i =

1, . . . ,N, and relabel this sample v(1)1:t , . . . ,v
(N)
1:t .

- Reset the weights:- w(i)
t = N−1, i = 1, . . . ,N.

3.2.2.3 Auxiliary Particle Filter with unknown parameters

The aim of the auxiliary particle filter is to overcome some of the problems associated

with the particle filter by using an auxiliary variable to identify potentially good particles.

In fact, these problems are concerned with the efficiency of the sample and the often poor

quality of the particle filter approximation in the tails of the density of interest. The reason

for the inefficiency of the sampler is that some of the weights may take very large values,

known as outliers, leading to degeneracy.

An additional advantage of the auxiliary particle filter is that it allows us to sample from

the posterior distribution of both the volatility process at time t and the parameters in

(3.7) and (3.8) sequentially. We follow Chapter 5 of Giovanni Petris, Sonia Petrone and

Patrizia Campagnoli (2009) (Petris et al., 2009).

Mathematically, at time t− 1, a value of θ can be drawn from a continuous importance

density based on a discrete approximate at time t−1 :

π̂t−1(v1:t−1,θ)≈ π(v1:t−1,θ |y1:t−1)

so that the distribution of θ is

π̂t−1(θ)≈ π(θ |y1:t−1).

We will assume that particles θ (i), i = 1, . . . ,N, have been drawn with associated weights

w(i)
t−1.

We will now assume that the target distribution of θ , at time t − 1, is a mixture of

multivariate normal distributions with mean θ (i) and variance matrix Λ, as suggested by
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Lui and West (2001)

π̂t−1(θ) =
N

∑
i=1

w(i)
t−1N(θ ;θ

(i),Λ). (3.9)

Under the continuous distribution (3.9), the mean vector θ is

θ = E(θ (I))

=
N

∑
i=1

w(i)
t−1θ

(i),

where I is an auxiliary variable, with Pr(I = i) = w(i)
t−1, i = 1, . . . ,N, and the covariance

matrix of θ is

var(θ) = E(var(θ |I))+var(E(θ |I))

= Λ+Σ > Σ (3.10)

where Σ= var(θ (I)) is the covariance matrix of θ under the original discrete approximation

π̂t−1, and the inequality holds since Λ is a positive definite matrix.

In order to reduce var(θ) to its original Σ, we re-defined equation (3.9) at time t− 1 as

follows:-

π̂t−1(θ) =
N

∑
i=1

w(i)
t−1N(θ ;m(i),h2

Σ)
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where m(i) = aθ (i)+(1−a)θ , in which a ∈ (0,1), and a2 +h2 = 1.

We compute the new expected value and covariance matrix as follows

E(θ) = E(E(θ |I))

= aθ +(1−a)θ

= θ ;

var(θ) = E(var(θ |I))+var(E(θ |I))

= h2
Σ+a2var(θ (I))

= h2
Σ+a2

Σ

= Σ. (3.11)

By comparing (3.10) and (3.11), it is obvious that (3.11) is better than (3.10) because the

variance in (3.11) is smaller.

Therefore, the joint distribution for the discrete v1:t−1 and the continuous θ takes the form

π̂t−1(v1:t−1,θ) =
N

∑
t=1

w(i)
t−1N(θ ;m(i),h2

Σ)δ
v(i)1:t−1

where δ
v(i)1:t−1

is the unit mass at v(i)1:t−1.

Now, the target distribution at time t will become

π(v1:t ,θ |y1:t) ∝ π(v1:t ,θ ,yt |y1:t−1)

= π(vt ,yt |v1:t−1,y1:t−1,θ)π(v1:t−1,θ |y1:t−1)

≈ π(yt |vt−1,yt−1,θ)π(vt |vt−1,θ)π̂t−1(v1:t−1,θ)

=
N

∑
i=1

w(i)
t−1π(yt |v(i)t−1,yt−1,θ)π(vt |v(i)t−1,θ)N(θ ;m(i),h2

Σ)δ
v(i)1:t−1

.

The auxiliary particle filter algorithm for sequentially sampling from the posterior distribution

of the volatility process and the parameters is therefore:-

- Initialize at time t = 1.
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Generate (v(1)1 , . . . ,v(N)
1 ) ∼ πv(v1) and (θ (1), . . . ,θ (N)) ∼ πθ (θ), where πv(v1) and

πθ (θ) are prior probability density functions chosen by the user. Set w(i)
1 =N−1, i=

1, . . . ,N.

- Computing and generating for t = 2, . . . ,T and i = 1, . . . ,N :

- Compute the mean of θ = Eπ̂t−1(θ) and the variance Σ = varπ̂t−1(θ). The

particle θ
(i)
t will depend on the new mean of θ :

m(i) = aθ
(i)+(1−a)θ .

- Generate an auxiliary variable Ik for k = 1, . . . ,N where

p(Ik = i) ∝ w(i)
t−1π(yt |vt−1 = v(i)t−1,yt−1,θ = m(i)).

- Generate

θ
(k) ∼ N(m(Ik),h2

Σ)

v(k)t ∼ π(vt |vt−1 = v(Ik)
t−1,θ = θ

(k))

and set v(k)1:t = (v(Ik)
1:t−1,v

(k)
t ).

- Compute the weights

ŵ(k)
t =

π(yt |v(k)t−1,yt−1,θ = θ (k))

π(yt |v(Ik)
t−1,yt−1,θ = m(Ik))

and normalize them

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.

- Compute the effective sample size Ne f f .

If Ne f f 6 N0, where N0 is a certain preset fraction of the total number of particles,

re-sample
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- Draw a sample of size N from a discrete distribution P((v1:t ,θ)= (v(i)1:t ,θ
(i)))=

w(i)
t , i = 1, . . . ,N, and relabel this sample (v(1)1:t ,θ

(1)), . . . ,(v(N)
1:t ,θ

(N)).

- Reset the weights:-

w(i)
t = N−1, i = 1, . . . ,N.

3.3 The Heston Model with Correlation Coefficient ρ

Between the Stochastic Processes

The Heston model including the correlation coefficient ρ can be written as follows:-

dSt

St
= µdt +

√
vt

(
ρdW v

t +
√

1−ρ2 dW s
t

)
(3.12)

dvt = (α−βvt)dt +σ
√

vt dW v
t , (3.13)

where α = β ×κ, in which κ is the long run volatility, and dW s
t and dW v

t are independent

Brownian motion increments. Note that E
[
ρdW v

t +
√

1−ρ2dW s
t

]
= 0,

that var
[
ρdW v

t +
√

1−ρ2dW s
t

]
= dt, and that E

[(
ρdW v

t +
√

1−ρ2dW s
t

)
dW v

t

]
= ρdt,

so that correlation
[
ρdW v

t +
√

1−ρ2dW s
t ,dW v

t

]
= ρ.

Our aim is to estimate the historical volatility vt up to time t, and the parameters θ =

(µ,α,β ,σ ,ρ).

The data that we will use will be the logarithms of the asset price process, i.e, yt =

log(St/S0), t = 1, . . . ,T, where S0 is the initial asset price value.

As we have seen in Section 3.2, an easier way of dealing with the Heston model is to use

discrete time.

Therefore, the Euler scheme of the above Heston model with non-zero ρ is

yt+4 = yt +

(
µ− 1

2
vt

)
4+

√
|vt |
√
4
(

ρ Zv
t +
√

1−ρ2 Zs
t

)
vt+4 = vt +(α−βvt)4+σ

√
|vt |
√
4Zv

t ,

in which Zs
t ,Z

v
t ∼ N(0,1) independently.
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3.3.1 Maximum Likelihood Estimation

In this more general case, the likelihood function will include the correlation coefficient

ρ. So, to obtain the likelihood function of the Heston model with non-zero ρ, we begin

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = L((yt ,vt)|(yt−1,vt−1), . . . ,(y1,v1),(y0,v0),θ)×

L((yt−1,vt−1)|(yt−2,vt−2), . . . ,(y1,v1),(y0,v0),θ)

×·· ·×L((y2,v2)|(y1,v1),(y0,v0),θ)

×L((y1,v1)|(y0,v0),θ)

where θ = (µ,α,β ,σ ,ρ) as above.

Thus, letting

µt =

 E [yt ]

E [vt ]

 and Σt =

 σ2
yt

ρσyt σvt

ρσyt σvt σ2
vt

 ,

in which σ2
yt

and σ2
vt

are the conditional variances of yt and vt as we shall shortly specify,

we have

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = N


 yt

vt

 ; µt ,Σt

×
N


 yt−1

vt−1

 ; µt−1,Σt−1

×·· ·×
N


 y1

v1

 ; µ1,Σ1

 (3.14)

in which N(x;M,S) is the bivariate normal probability density function with 2× 1 mean

M and 2×2 variance covariance matrix S evaluated at the bivariate x.
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In general, for t = 1, . . . ,T, we have

E(yt) = yt−1 +4
(

µ− 1
2

vt−1

)
E(vt) = vt−1 +4(α−βvt−1)

σyt =
√
|vt−1|

√
4

σvt = σ
√
|vt−1|

√
4

We can therefore estimate the parameters and volatility process using maximum likelihood

estimation.

3.3.2 Bayesian Inference for the Heston Model with Correlation Coefficient ρ

Bayes theorem is a very important tool in statistical inference. Briefly, Bayes theorem

updates previous information about the parameters and volatility process, called prior

information, to obtain the current information about the parameters and volatility process,

called posterior information, as we explained in Section 3.2.2, and 2; see (Lunn et al.,

2013).

The difference here is to extend our previous work to include the correlation coefficient ρ

in our model.

So, we can represent the posterior distribution as follows:-

π(θ ,v1:t |y1:t ,v0,y0) ∝ L(y1:t ,v1:t |v0,y0,θ)π(θ)

where

π(θ ,v1:t |y1:t ,v0,y0) is the posterior distribution of the parameters θ and the v1:t process,

L(y1:t ,v1:t |y0,v0,θ) is the likelihood function of the parameters defined through equation (3.14),

π(θ) is the prior distribution of the parameters; this is similar to what we saw in Section 3.2.2.

We will use three methods to sample from the posterior distribution of the parameters and

the volatility process as follows:-
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3.3.2.1 Markov chain Monte Carlo

As we explained in Section 3.2.2.1, in general, the Markov chain Monte Carlo algorithm

is as follows:-

- Sample θ (cand) ∼ k(θ (cand)).

- Sample v(cand)
1:t ∼ g(v(cand)

1:t ).

- Compute the following quantities

α1 = min

1,
L
(

y1:t ,v1:t |y0,v0,θ
(cand)

)
π

(
θ (cand)

)
k(θ)

L(y1:t ,v1:t |y0,v0,θ)π(θ)k(θ (cand))

 ,
α2 = min

1,
L
(

y1:t ,v
(cand)
1:t |y0,v0,θ

)
g(v1:t)

L(y1:t ,v1:t |y0,v0,θ)g
(

v(cand)
1:t

)


- Set θ = θ (cand) or v1:t = v(cand) with probability α1 and α2 respectively; otherwise

the values of θ or v1:t do not change.

3.3.2.2 The Particle Filter

We will set up the Heston model with non-zero ρ as a state space model taking the

following form

vt = vt−1 +(α−βvt−1)4+σ
√
|vt−1|

√
4Zv

t (unobserved equation) (3.15)

yt = yt−1 +

(
µ− 1

2
vt−1

)
4+

√
|vt−1|

√
4
(

ρ Zv
t +
√

1−ρ2 Zs
t

)
(observed equation)

(3.16)

where t = 1, . . . ,T

In general, the particle filter is an extension of the Monte Carlo method into the two

elements of filtering and smoothing. The aim of filtering is to find a good estimation of the
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volatility process and the parameters in the Heston model with non-zero ρ sequentially.

The aim of smoothing is to sample from the joint distribution and then approximate

the marginals of the volatility process and the parameters at time t. Again, we follow

Chapter 5 of Giovanni Petris, Sonia Petrone and Patrizia Campagnoli (2009) (Petris

et al., 2009).

Following Section 3.2.2.2, the difference in this case is that the weight w(i)
t of the ith

particle will be updated as follows:-

ŵ(i)
t ∝

π(v(i)1:t |y1:t)

gt(v
(i)
1:t |y1:t)

∝
π(v(i)1:t ,yt |y1:t−1)

gt(v
(i)
1:t |y1:t)

=
π(v(i)t ,yt |v(i)1:t−1,y1:t−1)π(v

(i)
1:t−1|y1:t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)gt−1(v

(i)
1:t−1|y1:t−1)

∝
π(v(i)t ,yt |v(i)1:t−1,y1:t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)

× ŵ(i)
t−1

=
L(v(i)1:t ,y1:t)

L(v(i)1:t−1,y1:t−1)gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)

× ŵ(i)
t−1

where

gt|t−1 is an importance transition function,

L(v(i)1:t ,y1:t) is the likelihood function at time t derived in Section 3.3.1

L(v(i)1:t−1,y1:t−1) is the equivalent likelihood function at time t−1.

Finally normalize the weights

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.

Therefore, the algorithm of the particle filter for the Heston model with non-zero ρ is

- At time t = 1,

generate v(i)1 ∼ g1(v1|v0,y0,θ), where g1(v1|v0,y0,θ) is a probability density function

chosen by the user, and set w(i)
1 = N−1, i = 1, . . . ,N.

- At time t = 2, . . . ,T,

- Generate v(i)t ∼ gt|t−1(vt |v(i)1:t−1,y1:t−1,θ);
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- Update the weights

ŵ(i)
t =

L(v(i)1:t ,y1:t |v0,y0,θ)

L(v(i)1:t−1,y1:t−1|v0,y0,θ)gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1,v0,y0,θ)

× ŵ(i−1)
t−1 ;

- Normalize the weights

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.

- Compute the effective sample size Ne f f

Ne f f =

[
N

∑
i=1

(w(i)
t )2

]−1

.

- if Ne f f 6 N0, where N0 is a certain preset fraction of the total number of particles,

re-sample

- Draw a sample of size N from a discrete distribution P(v1:t = v(i)1:t) = w(i)
t , i =

1, . . . ,N, and relabel this sample v(1)1:t , . . . ,v
(N)
1:t .

- Reset the weights:- w(i)
t = N−1, i = 1, . . . ,N.

3.3.2.3 Auxiliary Particle Filter with unknown parameters

If we follow the treatment of Section 3.2.2.3, it turns out that the difference is that

the weights depend on the likelihood function as shown in equation (3.14). Then, the

algorithm for the auxiliary particle particle of the Heston model with non-zero ρ is:-

- Initialize at time t = 1

generate (v(1)1 , . . . ,v(N)
1 ) ∼ πv(v1) and (θ (1), . . . ,θ (N)) ∼ πθ (θ), where πv(v1) and

πθ (θ) are prior probability density functions chosen by the user. Set w(i)
1 =N−1, i=

1, . . . ,N.

- Computing and generating at time t = 2, . . . ,T and i = 1, . . . ,N :

- Compute the mean of the θ (i)

m(i) = aθ
(i)+(1−a)θ
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where θ = Eπ̂t−1(θ).

- Generate an auxiliary variable Ik for k = 1, . . . ,N, where

p(Ik = i) ∝ w(i)
t−1π(yt |vt−1 = v(i)t−1,yt−1,θ = m(i)).

- Generate

θ
(k) ∼ N(m(Ik),h2

Σ)

v(k)t ∼ π(vt |vt−1 = v(Ik)
t−1,θ = θ

(k))

and set v(k)1:t = (v(Ik)
1:t−1,v

(k)
t ).

- Compute the weights

ŵ(i)
t =

L(v(k)1:t ,y1:t |y0,v0,θ = θ (k))

L(v(k)1:t−1,y1:t−1|y0,v0,θ = θ (k))π(yt |v(Ik)
t−1,yt−1,θ = m(Ik))π(v(i)t |v

(Ik)
t−1,θ = m(Ik))

and normalize them

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.

- Compute the effective sample size Ne f f .

If Ne f f 6 N0, re-sample

- Draw a sample of size N from a discrete distribution P((v1:t ,θ)= (v(i)1:t ,θ
(i)))=

w(i)
t , i = 1, . . . ,N, and relabel this sample (v(1)1:t ,θ

(1)), . . . ,(v(N)
1:t ,θ

(N)).

- Reset the weights:-

w(i)
t = N−1, i = 1, . . . ,N.
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3.4 Results

We apply our MCMC and particle filter based methodology to simulated data in Section

3.4.1 and to real data in Section 3.4.2.

3.4.1 Applications to Simulated Data

3.4.1.1 The Heston Model when ρ = 0

We will begin by estimating the parameters θ =(µ,α,β ,σ) of the Heston model with ρ =

0 as defined through (3.5) and (3.6) using maximum likelihood estimation as explained in

Section 3.2.1.

We begin by considering a simulated dataset of size T = 525 with

θ = (µ,α,β ,σ) = (0.1,0.2497,11.35,0.618).

The initial values of the asset price process S0 and volatility process v0 are 1 and 0.04,

respectively. We used R’s function optim to implement maximum likelihood estimation.

Figure 3.1 shows the estimation of the parameters θ using maximum likelihood estimation

with approximate 95% confidence intervals. The parameters in θ are clearly well estimated.

Figure 3.2 shows the estimation of the volatility process at a particular time using maximum

likelihood estimation with an approximate 95% confidence interval. Again, good estimation

of the volatility process is achieved.

Next, we applied our MCMC methodology for estimating the parameters θ and the

volatility process as explained in Section 3.2.2.1. We assume that the prior distributions

for µ, α and β are log-normal and that the prior distribution of σ is inverse gamma. We

also assume that the volatility process is known.

Figure 3.3 represents the results form our MCMC algorithm for sampling from the posterior

distribution of θ = (µ,α,β ,σ) assuming that the volatility process is known. The first

column shows time series plots of sampled values θ (t), where the superscript represents

MCMC iteration number. The second column shows the histogram of these parameter

values. In general, we can say that the results from the MCMC algorithm provide a good
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estimation for the parameters because the black and red lines are closer to each other

especially in the cases of µ,α and β , meaning that the true values of these parameters are

close to posterior means which therefore provide good estimates of the parameters.

Now we assume that the volatility process is unknown and needs to be estimated. Figure 3.4

represents the results from our MCMC algorithm applied to the posterior distribution of

θ and the volatility process. The first column shows the time series plots of µ,β and

the middle value of the volatility process. The second column shows the associated

histograms. The third column shows the time series plots of α,σ and value of the

volatility at the three quarter time point. The fourth column shows the associated histograms.

When we assume that the volatility process is unknown, our results are less good, and

values of the volatility process itself can be poorly estimated, although the other parameters

can be well estimated.

Next, we applied the particle filter to the Heston model when ρ = 0, as explained in

Section 3.2.2.2. The true values of parameters θ = (µ,α,β ,σ), and the initial values of

each process and the number of observations for the Heston model remain as given above.

Figure 3.5 shows the results for the volatility process assuming known θ parameters. In

particular, the true volatility process, the approximate posterior mean of the volatility

process and approximate 90% credible intervals are shown across time t. In general, the

posterior mean almost follows the true volatility process. This indicates that we can get a

good estimation of the volatility process using the particle filter when the parameters are

known.

Figure 3.6 shows the estimation of the parameters θ = (µ,α,β ,σ) across time using the

auxiliary particle filter, assuming that the volatility process is unknown. In particular, the

posterior mean and approximate 90% credible intervals for each parameter are presented

together. In general, good results are achieved using the auxiliary particle filter, although it

turns out to be more difficult to make inference about σ than about the other parameters.

Figure 3.7 shows the results of the auxiliary particle filter for estimating the volatility

process vt , assuming that the parameters are unknown. In particular, we see the volatility

process itself, the approximate posterior mean of the volatility process and associated
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approximate 90% credible intervals. Again, good estimation of the volatility process is

achieved using the auxiliary particle filter when the parameters are unknown.
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Figure 3.1: Profile log-likelihood function for the parameters θ based on likelihood function
derived in Section 3.2.1. The lower horizontal line provides an approximate 95%
confidence interval. In all cases the true parameter value shown by the vertical line is
consistent with this approximate 95% confidence interval.
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Figure 3.2: Profile log-likelihood function for the volatility process vt at a particular time t based
on the likelihood function derived in Section 3.2.1. The lower horizontal line indicates
an approximate 95% confidence interval. The true volatility value shown by the
vertical line is consistent with this approximate 95% confidence interval.
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Figure 3.3: Graphs showing simulations from the posterior distribution of the parameters of the
Heston model when ρ = 0 using the MCMC algorithm when the number of MCMC
iterations N = 10000. The first column shows time series plots of sampled value of
θ = (µ,α,β ,σ). The second column shows the histogram of the sampled parameter
values after burn–in. The vertical lines in the time series plots separates the burn-in
phase (left) from samples that are used for the future inference (right). The horizontal
lines in the times series plots and the black, red and dashed lines in the histograms
show the true parameter, posterior mean and maximum likelihood values, respectively,
where they can be shown on the scale.
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Figure 3.4: Graphs showing simulations from the posterior distribution of the parameters and
underlying volatility process of the Heston model when ρ = 0 using the MCMC
algorithm when the number of MCMC iteration N = 10000. The first and third
columns show time series plots of sampled values of µ,β , the volatility middle value,
α,σ , and volatility three quarter value, respectively. The second and fourth columns
show the histogram of the sampled parameters and volatility middle and three quarter
values, respectively, after burn–in. The vertical line in the time series plots separates
the burn-in phase (left) from samples that are used for the future inference (right). The
horizontal lines in the times series plots, and the black, red and dashed lines in the
histograms show the true parameter, posterior mean and maximum likelihood values,
respectively, where appropriate. In the histograms for µ and α the black and grey lines
lie on top of each other.
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3.4.1.2 The Heston Model with ρ Defined in Equations (3.12) and (3.13) of Section 3.3

We will illustrate the results of the Heston Model including the correlation coefficient ρ

between the asset price and volatility processes. The aim here is to estimate the parameters

θ = (µ,α,β ,σ ,ρ) and the volatility process vt using the MCMC method and particle

filter based methodology.

We consider simulated data sets of size T = 525 with

θ =(µ,α,β ,σ ,ρ)= (0.1,0.2497,11.35,0.618,0.2), or (0.1,0.2497,11.35,0.618,−0.2),

so that we consider the cases when the correlation coefficient ρ takes either positive or

negative values. The initial values of the asset price process and volatility process remain

S0 = 1 and v0 = 0.04, respectively.

Figure 3.8 shows the estimation of the parameters θ in the Heston model with non-zero ρ

using maximum likelihood with approximate 95% confidence intervals. The estimation

of the parameters in θ is clearly good.

Figure 3.9 shows the estimation of the volatility process vt at a particular time t in the

Heston model with non-zero ρ using maximum likelihood estimation with an approximate

95% confidence interval, as discussed in Section 3.3.1. The estimation of the volatility

process vt is clearly good.

Next, we applied our MCMC methodology for estimating the parameters and the volatility

process as explained in Section 3.3.2.1. We assume that the prior distribution for µ,α,β

and σ are log-normal and the prior distribution of ρ is a uniform distribution. In our case,

if ρ =−0.2, then the prior distribution is taken to be between (−0.3,0.2) and if ρ = 0.2,

then the prior distribution is taken to be between (−0.1,0.3).

Figure 3.10 and Figure 3.11 show the results for the parameters θ in the Heston model

with negative and positive ρ values, respectively. We are sampling from the posterior

distribution of the parameters θ assuming that the volatility process is known. In each

figure, we show the time series plots and the histograms for the parameters. We can say

that the estimation of the parameters in both cases is acceptable.

Figure 3.12 and Figure 3.13 show the results from our MCMC algorithm for sampling

from the posterior distribution of θ and the volatility process when the parameter ρ takes
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the given negative and the given positive values, respectively. In each figure, we show the

time series plots and the histograms for the parameters and the middle and three quarter

values of the volatility process. In this case, the results are unsurprisingly less good than

the previous case when the volatility is known.

Figure 3.14 and Figure 3.15 show the results of the particle filter for the Heston model

with the true values of ρ =−0.2 and ρ = 0.2, respectively, assuming known parameters as

discussed in Section 3.3.2.2. Here, we consider priors for ρ which are uniform [−0.3,−0.1]

and [0.1,0.3]. In particular, the true volatility process, the approximate posterior mean of

the volatility process and approximate 90% credible intervals are shown across time t.

Here, the volatility process is generally well estimated, although estimation when ρ = 0.2

is better than when ρ = −0.2 because the volatility process in this case is sometimes

outside the 90% credible intervals.

Figure 3.16 shows the estimation of the parameters θ of the Heston model with the given

negative value of ρ across the time using the auxiliary particle filter as discussed in

Section 3.3.2.3. In particular, the posterior mean and approximate 90% credible intervals

of each parameters are presented together. The true value of ρ is −0.2. Here, estimation

is less good than for the ρ = 0 case for all parameters except σ .

Figure 3.17 shows the results of the auxiliary particle filter for estimating the volatility

process assuming that the θ parameters are unknown and have to be estimated. Here, the

true value of ρ =−0.2. In particular, we see the volatility process itself, the approximate

posterior mean of the volatility process and associated approximate 90% credible intervals.

The volatility process seems well estimated.

Figure 3.18 shows the estimation of the parameters θ of the Heston model with the

given positive value of ρ across the time using the auxiliary particle filter as discussed in

Section 3.3.2.3. In particular, the posterior mean and approximate 90% credible intervals

of each parameter are presented together. The true value of ρ is 0.2. Here, better

estimation is achieved than previously when ρ =−0.2.

Figure 3.19 shows the results of the auxiliary particle filter for estimating the volatility

process assuming that the θ parameters are unknown and have to be estimated. Here, the
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true value of ρ = 0.2. In particular, we see the volatility process itself, the approximate

posterior mean of the volatility process and associated approximate 90% credible intervals.

Good estimation is achieved.

We performed other simulation studies with different true values of ρ, for example ρ =

−0.6 and ρ = 0.6 similar results to the experiments when ρ = −0.2 and ρ = 0.2 were

obtained, indicating that it is difficult to estimate the parameter ρ.

Overall, in this small simulation study the results for the Heston model with the given

positive value of ρ are somewhat better than the results for the Heston model with the

given negative ρ .

78



●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

−0.1 0.0 0.1 0.2 0.343
03

43
07

µ

Lo
g−

lik
el

ih
oo

d
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.15 0.25 0.35 0.4542
96

43
06

α

Lo
g−

lik
el

ih
oo

d

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

5 10 15 20 25

42
98

43
06

β

Lo
g−

lik
el

ih
oo

d

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.60 0.65 0.70

42
95

σ
Lo

g−
lik

el
ih

oo
d

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.55 0.60 0.65 0.7042
96

43
06

ρ

Lo
g−

lik
el

ih
oo

d

Figure 3.8: Profile log-likelihood function for the parameters θ of the Heston model with non-zero
ρ, based on likelihood function derived Section 3.3.1. The lower horizontal line
provides an approximate 95% confidence interval. In all cases the true parameter
value shown by the vertical line is consistent with this approximate 95% confidence
interval.
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Figure 3.9: Profile log-likelihood function for the volatility process vt at a particular time t of the
Heston model with non-zero ρ based on the likelihood function derived in Section
3.3.1. The lower horizontal line indicates an approximate 95% confidence interval.
The true value of vt shown by the vertical line is consistent with this approximate 95%
confidence interval.
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Figure 3.10: The graphs show simulations from the posterior distribution of the parameters θ of
the Heston model with non-zero ρ using the MCMC algorithm when the number
of iteration N = 10000. The first, third, fifth, seventh and ninth plots show time
series plots of sampled values of θ = (µ,α,β ,σ ,ρ), where ρ takes a negative value.
The second, forth, sixth, eighth and tenth plots show histograms of the sampled
values of the parameters. The vertical line in the time series plots separates the
burn-in phase (left) from samples that are used for the future inference (right). The
horizontal lines in the times series plots and the black, red and dashed lines in the
histogram show the true parameter, posterior mean and maximum likelihood values,
respectively, where they can be shown on the scale.
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Figure 3.11: The graphs show simulations from the posterior distribution of the parameters of
the Heston model with non-zero ρ using the MCMC algorithm when the number of
iteration N = 10000. The first, third, fifth, seventh and ninth plots show time series
plots of sampled values of θ = (µ,α,β ,σ ,ρ), where ρ takes a positive value. The
second, forth, sixth, eighth and tenth plots show histograms of the sampled values of
the parameters. The vertical line in the time series plot separates the burn-in phase
(left) from samples that are used for the future inference (right). The horizontal lines
in the times series plots and the black, red and dashed lines in the histogram show the
true parameter, posterior mean and maximum likelihood values, respectively, where
they can be shown on the scale.
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Figure 3.12: The graphs show simulations from the posterior distribution of the parameters and
underlying volatility process of the Heston model with a negative ρ using the MCMC
algorithm when the number of iteration N = 10000. The first and third columns show
the time series plots of sampled values of the parameters θ = (µ,α,β ,σ ,ρ) and the
middle and three quarter values of the volatility process, respectively. The second
and fourth columns show the histogram of sampled values of the parameters and
the volatility process values. The vertical line in the time series plot separates the
burn-in phase (left) from samples that are used for the future inference (right). The
horizontal lines in the times series plots and the black, red and dashed lines in the
histogram show the true parameter, posterior mean and maximum likelihood values,
respectively, where appropriate.
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Figure 3.13: The graphs show simulations from the posterior distribution of the parameters and
underlying volatility process of the Heston model with the positive value of ρ

using the MCMC algorithm when the number of iteration N = 10000. The first
and third columns show the time series plots of sampled values of the parameters
θ = (µ,α,β ,σ ,ρ) and the middle and three quarter values of the volatility process,
respectively. The second and fourth columns show the histogram of sampled values
of the parameters and the volatility process values. The vertical line in the time
series plot separates the burn-in phase (left) from samples that are used for the future
inference (right). The horizontal lines in the times series plots and the black, red and
dashed lines in the histogram show the true parameter, posterior mean and maximum
likelihood values, respectively, where appropriate.
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Figure 3.14: Estimation using the particle filter of the volatility process vt of the Heston model
with ρ =−0.2 assuming known parameters. The true volatility is represented by the
black line. The posterior mean of the volatility process is represented by the dashed
red line and the associated 90% credible intervals are in light blue.
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Figure 3.15: Estimation using the particle filter of the volatility process vt of the Heston model
with ρ = 0.2 assuming known parameters. The true volatility is represented by the
black line. The posterior mean of the volatility process is represented by the dashed
red line and the associated 90% credible intervals are in light blue.
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Figure 3.16: Estimation of the parameters of the Heston model with non-zero ρ using the auxiliary
particle filter. In each graph, the posterior mean is shown using the black trace, while
the associated approximate 90% credible intervals are shown by the outer traces. The
first graph is for the parameter µ, the second graph is for the parameter α, the third
graph is for the parameter β , the fourth graph is for the parameter σ , and final graph
is for the parameter ρ. A uniform prior with support on [−0.3,−0.1] was taken for
ρ. The true values are shown by the horizontal line, e.g., ρ =−0.2.
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Figure 3.17: Estimation of the volatility process vt in the Heston model with non-zero ρ using
the auxiliary particle filter when the θ parameters are unknown, with a negative
value −0.2 for ρ . The posterior mean of the volatility process is represented by
the red line. The true volatility is represented by the black line, and the associated
90% credible intervals are in light blue.
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Figure 3.18: Estimation of the parameters of the Heston model with non-zero ρ using the auxiliary
particle filter. In each graph, the posterior mean is shown using the black trace, while
the associated approximate 90% credible intervals are shown by the outer traces. The
first graph is for the parameter µ, the second graph is for the parameter α, the third
graph is for the parameter β , the fourth graph is for the parameter σ , and final graph
is for the parameter ρ. A uniform prior with support on [0.1,0.3] was taken for ρ.
The true values are shown by the horizontal line, e.g., ρ = 0.2.
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Figure 3.19: Estimation of the volatility process vt in the Heston model with non-zero ρ using
the auxiliary particle filter when the θ parameters are unknown with a positive value
0.2 for ρ . The posterior mean of the volatility process is represented by the red line.
The true volatility is represented by the black line, and the associated 90% credible
intervals are in light blue.
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3.4.2 Standard & Poor’s Index

Standard & Poor’s Index is a popular index in markets, particularly in liquid stock markets

around the world. Standard & Poor’s European 350 (SP350) is the one of seven headline

indices in the world. It is based on the European zone and it is drawn from 17 major

markets. We will apply the Heston model to the data shown in Figure 3.20. The number

of observation is T = 308.
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Figure 3.20: Graph of weekly means of the Standard & Poor’s Index from January 2005 to
December 2010.

3.4.2.1 The Heston model when ρ = 0

In this section, we will apply the Heston Model with ρ = 0, as defined though (3.5)

and (3.6) in Section 3.2, to the SP350 data shown in Figure 3.20.

Figure 3.21 shows the results of applying the particle filter to the Heston model with

ρ = 0, assuming that the other θ parameters are known. In particular, the posterior

mean representing the estimation of the volatility process, and approximate 90% credible

intervals, are shown across time. The values of the parameters are set to µ = 0.1, α =

0.2497, β = 11.35 and σ = 0.618, obtained from maximum likelihood estimation. We

can say that the vt process seems to reflect some of the features of the data.
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Figure 3.22 shows the results of estimating the θ parameters of the Heston model with

ρ = 0 across time t, using the auxiliary particle filter. In particular, the posterior mean

and approximate 90% credible intervals of each parameter are presented together.

Figure 3.23 shows the results of the auxiliary particle filter for the estimated volatility

process when the parameters are unknown. In particular, the estimated posterior mean

of the volatility process and approximate 90% credible intervals are shown across time t.

Again, the estimated vt process seems to reflect some of the features of the data.
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Figure 3.21: Estimation of the volatility vt of the SP350 process using the particle filter for the
Heston model with ρ = 0. The approximate posterior mean of the volatility process
is represented by the dashed red line and the associated 90% credible intervals are in
light blue.
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Figure 3.22: Estimation of the parameters of the Heston model with ρ = 0 across time t, using
the auxiliary particle filter applied to the SP350 data. In each graph, the posterior
mean is shown using the black trace, while the associated approximate 90% credible
intervals are shown by the outer traces. The first graph is for the parameter µ, the
second graph is for the parameter α, the third graph is for the parameter β and the
final graph is for the parameter σ .
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Figure 3.23: Estimation of the volatility vt of SP350 process in the Heston Model with ρ = 0 when
the other θ parameters are unknown. The estimated posterior mean of the volatility
process is represented by the red line and the associated 90% credible intervals are
in light blue.
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3.4.2.2 The Heston model with non-zero ρ

We will now include the non-zero correlation coefficient ρ in the Heston model, as defined

in equations (3.12) and (3.13) in Section 3.3. Again, we will use the SP350 data shown in

Figure 3.20.

Figure 3.24 shows the results of applying the particle filter to the Heston model with

non-zero ρ, assuming the other θ parameters are known. In particular, the posterior

mean, representing the estimation of the volatility process, and approximate 90% credible

intervals are shown across the time. The values of the parameters are set to µ = 0.1,

α = 0.2497, β = 11.35, σ = 0.618 and ρ =−0.2. Again, the estimated vt process seems

to reflect some of the features of the data.

Figure 3.25 shows the results of applying the particle filter to the Heston model with

non-zero ρ, assuming the other θ parameters are known. The only difference is that in

this figure the value of ρ is set to 0.2.

Once more we can say that the vt process is a sensible estimate as it coincides with some

of the features that we see in the data.

Figure 3.26 shows the results of estimating the θ parameters of the Heston model with

a uniform prior distribution with negative support for ρ, across for time t, using the

auxiliary particle filter. In these plots the posterior mean and approximate 90% credible

intervals of each parameter are shown.

Figure 3.27 shows the results of the auxiliary particle filter for the estimated volatility

process of the Heston model with a uniform prior distribution with negative support for ρ.

In particularly, the estimated posterior mean of the volatility process and approximate 90%

credible intervals are shown across time. Figure 3.28 shows the results of estimating

the θ parameters of the Heston model with a uniform prior distribution with positive

support for ρ, across time t, using the auxiliary particle filter. In these plots the posterior

mean and approximate 90% credible intervals of each parameter are shown. We can see

from Figure 3.26 and 3.28 that the parameter ρ is hard to estimate in that the posterior

distributions depend strongly on the choice of the prior.

Figure 3.29 shows the results of the auxiliary particle filter for the estimated volatility
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process of the Heston model with a prior distribution with positive support for ρ. In

particular, the estimated posterior mean of the volatility process and approximate 90%

credible intervals are shown across time.

Again, the auxiliary particle filter yields a sensible estimate for the volatility process as it

coincides with some of the features that we see in the data.
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Figure 3.24: Estimation of the volatility vt of the SP350 process using the particle filter for the
Heston model with an assumed negative value of ρ, i.e., ρ =−0.2. The approximate
posterior mean of the volatility process is represented by the dashed red line and the
associated 90% credible intervals are in light blue.
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Figure 3.25: Estimation of the volatility vt of the SP350 process using the particle filter for the
Heston model with an assumed positive value of ρ, i.e., ρ = 0.2. The approximate
posterior mean of the volatility process is represented the dashed red line and the
associated 90% credible intervals are in light blue.

99



0 100 250

0.
02

0.
06

0.
10

0.
14

t

µ

0 100 250

0.
24

0
0.

24
5

0.
25

0
0.

25
5

t

α

0 100 250

11
.2

11
.4

11
.6

11
.8

t

β

0 100 250

0.
50

0.
60

0.
70

0.
80

t

σ

0 100 250

−
0.

30
−

0.
20

−
0.

10
0.

00

t

ρ

Figure 3.26: Estimation of the parameters of the Heston model with a uniform prior distrbution
with negative support for ρ, across time t, using the auxiliary particle filter applied to
the SP350 data. In each graph, the posterior mean is shown using the black trace,
while the associated approximate 90% credible intervals are shown by the outer
traces. The first graph is for the parameter µ, the second graph is for the parameter
α, the third graph is for the parameter β , the fourth graph is for the parameter σ and
the final graph is for the parameter ρ.
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Figure 3.27: Estimation of the volatility vt of the SP350 process in the Heston model with a
uniform prior distribution with negative support for ρ, using the auxiliary particle
filter when the θ parameters are unknown. The estimated posterior mean of the
volatility process is represented by the red line and the associated 90% credible
intervals are in light blue.

101



0 100 2500.
02

0.
06

0.
10

0.
14

t

µ

0 100 250

0.
24

0
0.

24
5

0.
25

0
0.

25
5

0.
26

0

t

α

0 100 250

11
.0

11
.2

11
.4

11
.6

11
.8

12
.0

t

β

0 100 250

0.
55

0.
60

0.
65

0.
70

t

σ

0 100 2500.
10

0.
15

0.
20

0.
25

0.
30

t

ρ

Figure 3.28: Estimation of the parameters of the Heston model with a uniform prior distribution
with positive support for ρ, across time t, using the auxiliary particle filter applied to
the SP350 data. In each graph, the posterior mean is shown using the black trace,
while the associated approximate 90% credible intervals are shown by the outer
traces. The first graph is for the parameter µ, the second graph is for the parameter
α, the third graph is for the parameter β , the fourth graph is for the parameter σ and
the final graph is for the parameter ρ.
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Figure 3.29: Estimation of the volatility vt of the SP350 process in the Heston model with a
uniform prior distribution with positive support for ρ, using the auxiliary particle
filter when the θ parameters are unknown. The estimated posterior mean of the
volatility process is represented by the red line and the associated 90% credible
intervals are in light blue.
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3.5 Summary

In this chapter, we have discussed:

1. The Heston model when ρ = 0, where ρ is the correlation between the driving

stochastic processes. In particular,

we have presented the model in discrete time, and maximum likelihood estimation

and Bayesian inference using the MCMC and particle filter based algorithms for it.

2. The Heston model for general ρ .

In particular, we have presented the model in discrete time, and maximum likelihood

estimation and Bayesian inference using particle filter based algorithms for it.

3. Applications to simulated and real data when ρ = 0 and for non-zero ρ.

Following on from our results, we will extend the Heston model to the fractional Heston

model by replacing the driving Brownian motions with fractional Brownian motions in

Chapter 4. We will again use particle filter based algorithms to preform inference about

the unknown quantities of these models.
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Chapter 4

Fractional Heston Model

In this chapter we present and discuss our fractional Heston model. The Heston (1993)

model has been widely used in finance and was presented and discussed in detail in

Chapter 3. It is an extension of the Black-Scholes model (Fisher and Scholes, 1973)

in

the following areas (Bauer, 2012):

1− In the Heston model, unlike the Black-Scholes model, it is assumed that the volatility

process is non-constant, and that it is driven by a Cox-Ingersoll-Ross (CIR) process.

The volatility process therefore has the important mean-reverting property.

2− It has non-log normal distribution of asset prices. This means that asset price is no

longer assumed to follow a log normal distribution as in the Black-Scholes model

as Fisher and Scholes (1973) suggested.

3− There is a correlation between the asset price and the volatility process. The correlation

coefficient ρ between the driving stochastic processes is between −1 and 1, i.e.,

ρ ∈ [−1,1]. This relationship between the asset price and the volatility processes is

also called a leverage effect (Bauwens et al., 2012).

The Heston model is defined using Brownian motion. We now extend the Heston model

by using fractional Brownian motion instead of Brownian motion. Our extended model

allows a richer correlation structure to be used. We show that our extension offers advantages

when modelling and forecasting real data.
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In Section 4.1 and Section 4.2 we introduce fractional Brownian motion and its properties.

We discuss the fractional Heston model with zero correlation ρ between the driving

stochastic processes in Section 4.3, while in Section 4.4 we extend this model to allow

non-zero ρ . In Section 4.5 we discuss Bayesian inference for our models. In Section 4.6

we outline a forecasting method for the fractional Heston model, while in Sections 4.7

and 4.8 we present all our results.

4.1 Introduction to fractional Brownian motion

Fractional Brownian motion (fBm) is a generalization of Brownian motion Bt . It is a

continuous Gaussian process BH
t on [0,T ] as follows (Dieker, 2004; Coeurjolly, 2000):-

BH
t =

1
Γ
(
H + 1

2

) (∫ 0

−∞

[
(t− s)H− 1

2 − (−s)H− 1
2

]
dBs +

∫ t

0
(t− s)H− 1

2 dBs

)
t,s ∈ℜ

where

Γ is the gamma function such that Γ(α) =
∫

∞

0 xα−1e−xdx,

H is called the Hurst index and is a real number taking values in (0,1). The Hurst index is

sometimes referred to as an index of time series dependence. The main idea of the Hurst

index is to model long memory in the underlying process (Giratis et al., 2012).

The fBm has expectation zero for all times [0,T ] and has covariance function given

in Dieker (2004) as

E
[
BH

t BH
s
]
=

1
2
(
|t|2H + |s|2H−|t− s|2H) , t 6= s, t,s ∈ℜ. (4.1)

So that

BH
t ∼ N

(
0, t2H)

An important concept in fBm is that of an increment. Let s < t. Then the increment of

fBm over the interval (s, t] is

BH
t −BH

s ∼ BH
t−s; (4.2)
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it can be shown that the increment BH
t −BH

s has the same distribution as BH
t−s, namely

N
(
0,(t− s)2H) .
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Figure 4.1: Fractional Brownian motion paths with different values of the Hurst index H

In general, we can describe three cases for the dependence of fBm in terms of H in

Figure as follows:-

If H = 1
2 , the process is standard Brownian motion B and the covariance function γ(k)

between two increments is zero: γ(k) = 0, where k is the lag index.

If H > 1
2 , the process has positively correlated increments and is called a long memory

processes. It mean that the covariance function γ(k) between two increments is greater

than zero: i.e., γ(k)> 0.

If H < 1
2 , the process has negatively correlated increments and is called a short memory
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processes. It mean that the covariance function γ(k) between two increments is less than

zero: γ(k)< 0.

It can be seen that positive increment correlation leads to a process that seems visually less

rough, while negative increment correlation leads a process that seems visually rougher.

The covariance function in the last two cases can be shown to have the property that:-

γ(k) =C2H(2H−1)|k|2H−2, as |k| −→+∞

where C is a constant.

Sample paths of fBm for these three cases are shown in Figure 4.1.

4.2 Properties of fractional Brownian motion

In this section, we present some important properties of fBm:

1− It is a self-similar stochastic process. A self-similar process has the same behaviour

at different scales over time, i.e.

BH
at ∼ |a|HBH

t ,

which means that the two sides in the above equation have the same distribution.

This property tells us that when the process is considered on a different time scale,

it is a scaled version of itself on the original time scale.

2− It has stationary increments as defined in (4.2) above. Therefore, fBm is a self-similar

Gaussian process with stationary increments.

3− fBm has long-range dependence when H > 1
2 . Here long-range dependence can be

defined in terms of the behaviour of the autocorrelation function across time t:-

∞

∑
t=1

E
[
BH

1
(
BH

t+1−BH
t
)]

= ∞.
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The summand is the covariance between increments BH
t+1−BH

t and BH
1 −BH

0 over

time intervals of size 1 at lag t. So the sum of this covariance is infinite.

There are two processes which are related to fBm. The advantage of these processes are

in the areas of analysis and simulation. The processes are as follows:-

1− A fractional Gaussian noise (fGn) process is a stationary Gaussian process that

represents the increments of fractional Brownian motion

XH
t = BH

t −BH
t−1.

Immediately, XH
t is a random variable that follows a N(0,1) distribution.

Rose (1996) has shown that fGn is obtained by taking the difference of fBm, and

the spectrum of fGn is given

as

f (λ ) =
σ2

π
sin(πH)Γ(H +1)(1− cosλ )

∞

∑
j=−∞

|λ +2π j|−2H−1 0 < H < 1.

2− A Fractional Autoregressive Integrated Moving Average (FARIMA) process is a

generalization of a ARMA(p,q) with a fractional difference parameter d, where

d = H−0.5. We can define a FARIMA(0,d,0) process as:-

(1−β )dXt = at −0.5 < d < 0.5

where

at is a white noise process at time t;

(1−β )d is a fractional difference operator, which is defined as (1−β )d =∑
∞
k=0
(k

d

)
(−β )k,

in which β is the backward shift operator βYt = Yt−1.

The spectrum of the FARIMA process is simpler than the spectrum of fGn and takes
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the form (Rose, 1996):

f (λ ) = 2sin
(

λ

2

)−2d

= |1− exp(iλ )|−2d,

in which exp(iλ ) = cosλ + isinλ , since 2sin2
(

λ

2

)
= 1− cosλ .

4.3 The Fractional Heston Model when the Driving
Stochastic Processes are Uncorrelated

The fractional Heston model when the driving stochastic processes are uncorrelated (ρ =

0) can be written as follows:-

dSt

St
= µdt +

√
vtdBHs

t (4.3)

dvt = β (κ− vt)dt +σ
√

vtdBHv

t (4.4)

where

St is the fractional asset price at continuous time t,

vt is the fractional volatility at continuous time t,

µ is the rate of the asset returns,

β is the mean-reversion rate,

κ is a long run volatility,

σ is the volatility of the volatility process,

dBHs

t and dBHv

t are fractional Brownian motion increments and therefore fractional Gaussian

noise.

In this case, BHs

t and BHv

t are independent fractional Brownian motion processes.

Our ultimate aim is to estimate the fractional volatility process vt assuming that the

fractional Black-Scholes process St defined through (4.3) is known. It is more convenient

to work with yt = log(St/S0), as we mentioned in Chapter 3. Using Wick calculus (Biagini

110



et al., 2010) we obtain after some manipulation a solution to (4.3) as

St = S0 exp
(

µ t− 1
2

vt t2Hs
+
√

vt BHs

t

)
,

using the result at the end of Section 3.4 of Biagini et al. (2010). The only condition is

that Hs ∈
(1

2 ,1
)

as suggested in Biagini et al. (2010). Thus,

St

S0
= exp

(
µ t− 1

2
vt t2Hs

+
√

vt BHs

t

)
.

As we mentioned, yt = log(St/S0), and so we can rewrite the above equation as:

yt = µ t− 1
2

vt t2Hs
+
√

vt BHs

t .

This therefore motivates our fractional Heston model when ρ = 0 in discrete time which

we define as:

yt+4 = yt +µ4−1
2vt(4)2Hs

+
√
|vt |
√
4ZHs

t (4.5)

vt+4 = vt +(α−βvt)4+σ
√
|vt |
√
4ZHv

t , (4.6)

where yt = log(St/S0) and α = β ×κ.

The absolute value of vt is used to avoid a negative fractional volatility process arising

from the discretization, as we have already discussed in Section 3.2.

4.3.1 Maximum likelihood estimation

We shall use maximum likelihood estimation defined thorough equations (4.5) and (4.6)

to estimate the parameters θ = (µ,α,β ,σ ,Hs,Hv) of the fractional asset price process

and the fractional volatility process. We will indicate the values of y and v at times

4,24, . . . , t4 as y1, . . . ,yt and v1, . . . ,vt , and we will write y1:t and v1:t for the collection

of all these values. The volatilities v0,v1:t are of course positive. Mathematically, the
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likelihood function can be expressed as

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = L((yt ,vt)|(yt−1,vt−1), . . . ,(y1,v1),(y0,v0),θ)×

L((yt−1,vt−1)|(yt−2,vt−2), . . . ,(y1,v1),(y0,v0),θ)×·· ·

×L((y2,v2)|(y1,v1),(y0,v0),θ)×L((y1,v1)|(y0,v0),θ)

where

θ = (µ,α,β ,σ ,Hs,Hv) is a vector of parameters.

We can rewrite equations (4.5) and (4.6) as follows:-

ZHs

t =
yt+4− yt−µ4+1

2 vt42Hs

√
vt
√
4

(4.7)

ZHv

t =
vt+4− vt− (α−βvt)4

σ
√

vt
√
4

(4.8)

(4.9)

Thus, letting

µk =

 E
[
ZHs

1:k
]

E
[
ZHv

1:k
]
 and Σk =

 ΣHs 0

0 ΣHv

 , (4.10)

in which Σk is the conditional variance matrices of ZH
1:k obtained using (4.1),

we can rewrite the likelihood function as follows:-

L((ZHs

t ,ZHv

t ),(ZHs

t−1,Z
Hv

t−1), . . . ,(Z
Hs

1 ,ZHv

1 )|(y0,v0),θ) =
t

∏
k=1

MV N


 ZHs

1:k

ZHv

1:k

 ; µk,Σk



in which MV N(x;M,S) is the multivariate normal probability density function with mean

M and variance matrix S evaluated at x, and ZHs

1:t and ZHv

1:t are calculated through (4.7)

and (4.8)
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In general, for k = 1, . . . , t, we have

E
[
ZHs

1:k

]
= 0

E
[
ZHv

1:k

]
= 0.

We compute Σk as described before, using equation (4.1) and find a Toeplitz covariance

matrix for each process, where a Toeplitz matrix is such that each descending and ascending

diagonal contains constant elements.

We can therefore estimate the parameters and fractional volatility process using maximum

likelihood estimation.

4.4 The Fractional Heston Model with correlation ρ

between the Driving Fractional Brownian
Motion Processes

The fractional Heston Model with correlation ρ between the driving fractional Brownian

motion processes can be written as follows:-

dSt

St
= µdt +

√
vt

(
ρdBHv

t +
√

1−ρ2dBHs

t

)
dvt = β (κ− vt)dt +σ

√
vtdBHv

t ,

where the correlation parameter ρ ∈ (−1,1). As explained in Section 3.3, the correlation

between ρBHv

t +
√

1−ρ2BHs

t and BHv

t is ρ.

As also mentioned in Section 4.3, we can solve the fractional Black-Scholes model as:

St

S0
= exp

(
µ t− 1

2
vt t2Hs

+
√

vt

(
ρBHv

t +
√

1−ρ2BHs

t

))
.

As we mentioned, yt = log(St/S0), and so we can rewrite the above equation as:

yt = µ t− 1
2

vt t2Hs
+
√

vt

(
ρBHv

t +
√

1−ρ2BHs

t

)
.
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This therefore motivates our fractional Heston model with general ρ in discrete time

which we define as:

yt+4 = yt +µ4−1
2

vt(4)2Hs
+
√
|vt |
√
4
(

ρZHv

t +
√

1−ρ2ZHs

t

)
(4.11)

vt+4 = vt +(α−βvt)4+σ
√
|vt |
√
4ZHv

t , (4.12)

where yt = log(St/S0) and α = β ×κ.

The absolute value of vt is used to avoid a negative fractional volatility process arising

from discretization, as we have already discussed in Section 3.3.

4.4.1 Maximum likelihood estimation

We shall use maximum likelihood estimation defined through equations (4.11) and (4.12)

to estimate the parameters θ = (µ,α,β ,σ ,ρ,Hs,Hv) of the processes and the fractional

volatility process. Mathematically, the likelihood function can be expressed as

L((yt ,vt),(yt−1,vt−1), . . . ,(y1,v1)|(y0,v0),θ) = L((yt ,vt)|(yt−1,vt−1), . . . ,(y1,v1),(y0,v0),θ)×

L((yt−1,vt−1)|(yt−2,vt−2), . . . ,(y1,v1),(y0,v0),θ)

×·· ·×L((y2,v2)|(y1,v1),(y0,v0),θ)

×L((y1,v1)|(y0,v0),θ)

where

θ = (µ,α,β ,σ ,ρ,Hs,Hv) is a vector of parameters.

We will work with ZHs

1:k and ZHv

1:k to write the likelihood function.

Thus, we let

µk =

 E
[
ZHs

1:k
]

E
[
ZHv

1:k
]
 and Σk =

 ΣHs ρΣ(Hs+Hv)/2

ρΣ(Hs+Hv)/2 ΣHv

 ,
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in which ΣH are the conditional variance matrices of ZH
1:k, following the work of Jiang and

Zhou (2011).

We can rewrite the likelihood function as follows:-

L((ZHs

t ,ZHv

t ),(ZHs

t−1,Z
Hv

t−1), . . . ,(Z
Hs

1 ,ZHv

1 )|(y0,v0),θ) =
t

∏
k=1

MV N


 ZHs

1:k

ZHv

1:k

 ; µk,Σk

 ,

(4.13)

In general, for k = 1, . . . , t, we have

E
[
ZHs

1:k

]
= 0

E
[
ZHv

1:k

]
= 0,

and variance matrices can be computed as described before in Section 4.3.1.

We can therefore estimate the parameters and fractional volatility process using maximum

likelihood estimation.

4.5 Bayesian Inference for the Fractional Heston Model
with General Correlation ρ Between the Driving
Stochastic Processes

We adopt the Bayesian framework, as discussed in Section 3.3.2, and base our inference

on the posterior distribution of the parameters θ and the fractional volatility process in the

fractional Heston model. Here we work with general correlation ρ between the driving

stochastic processes. As mentioned in Section 4.4, the value of ρ is between (−1,1). We

will describe two methods as follows:
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4.5.1 The particle filter

We will begin by writing the fractional Heston model with general ρ as a state space

model as follows:-

vt = vt−1 +(α−βvt−1)4+σ
√
|vt−1|

√
4ZHv

t (unobserved equation) (4.14)

yt = yt−1 +µ4−1
2

vt−1 42Hs
+
√
|vt−1|

√
4
(

ρ ZHv

t +
√

1−ρ2ZHs

t

)
(observed equation)

(4.15)

t = 1, . . . ,T.

In the special case when ρ = 0, we can rewrite equations (4.14) and (4.15) as follows:-

vt = vt−1 +(α−βvt−1)4+σ
√
|vt−1|

√
4ZHv

t (unobserved equation) (4.16)

yt = yt−1 +µ4−1
2

vt−1 42Hs
+
√
|vt−1|

√
4ZHs

(observed equation) (4.17)

t = 1, . . . ,T.

The aim of the particle filter is to estimate sequentially the fractional volatility process

when the other parameters are known.

The basic idea of the particle filter is to generate the particles from an importance function

and to weight them appropriately. Effective sample size is used to keep particles in

control. This is done by re-sampling according to associated weights, meaning that

particles will small associated weights are unlikely to be re-samples.

We now present the general particle filter algorithm:-

− At time t = 1,

generate v(i)1 ∼ g1(v1|v0,y0,θ), where g1(v1|v0,y0,θ) is a probability density function

chosen by the user, and set w(i)
1 = N−1.

− At time t = 2, . . . ,T, i = 1, . . . ,N.

- Generate the ith particle of the process as v(i)t ∼ gt|t−1(vt |v(i)1:t−1,y1:t−1,θ),

where gt|t−1(vt |v(i)1:t−1,y1:t−1,θ) is an importance transition function.
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- Compute the weights

ŵ(i)
t ∝

π(v(i)1:t |y1:t)

gt(v
(i)
1:t |y1:t)

∝
π(v(i)1:t ,yt |y1:t−1)

gt(v
(i)
1:t |y1:t)

=
π(v(i)t ,yt |v(i)1:t−1,y1:t−1)π(v

(i)
1:t−1|y1:t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t)gt−1(v

(i)
1:t−1|y1:t−1)

∝
π(v(i)t ,yt |v(i)1:t−1,y1:t−1)

gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t)

× ŵ(i)
t−1

=
L(v(i)1:t ,y1:t)

L(v(i)1:t−1,y1:t−1)gt|t−1(v
(i)
t |v

(i)
1:t−1,y1:t−1)

× ŵ(i)
t−1

where

L(v(i)1:t ,y1:t) is the likelihood function at time t, and

L(v(i)1:t−1,y1:t−1) is the equivalent likelihood function at time t−1. We suppress

unnecessary parameters for notational simplicity.

- Normalize the weights

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.

- Compute the effective sample size Ne f f

Ne f f =

[
N

∑
i=1

(w(i)
t )2

]−1

. (4.18)

- if Ne f f 6 N0, where N0 is a certain preset fraction of the total number of particles,

re-sample

- Draw a sample of size N from a discrete distribution P
(

v1:t = v(i)1:t

)
= w(i)

t , i =

1, . . . ,N, and relabel this sample v(1)1:t , . . . ,v
(N)
1:t .

- Reset the weights:- w(i)
t = N−1, i = 1, . . . ,N.

4.5.2 The Auxiliary Particle with unknown parameters

The aim of the auxiliary particle is to overcome some problems that occur with the particle

filter. One of these problems is inefficiency of the sampler which occurs when some of

117



the weights may take extreme values, known as outliers. The auxiliary particle filter uses

an auxiliary variable to identify "good" particles.

Our aim is to sample from the posterior distribution of both the fractional volatility process

at time t and the parameters in the fractional Heston model in two cases (when ρ = 0 and

ρ 6= 0 generally) sequentially.

The methodology of the auxiliary particle filter with unknown parameters θ is:-

- At time t−1, a value θ can be drawn from a continuous importance density based

on a discrete approximate so the distribution is then

π̂t−1(v1:t−1,θ)≈ π(v1:t−1,θ |y1:t−1)

and the marginal distribution of θ is

π̂t−1(θ)≈ π(θ |y1:t−1).

- In addition, at time t−1, assuming that the target distribution of θ is a mixture of

multivariate normal distribution with mean θ (i) and variance matrix Λ, as suggested

by Lui and West (2001), we have

π̂t−1(θ) =
N

∑
i=1

w(i)
t−1N(θ ;θ

(i),Λ). (4.19)

Under the continuous distribution (4.19), the mean vector θ is

θ = E(θ (I))

=
N

∑
i=1

w(i)
t−1θ

(i),

where I is an auxiliary variable with Pr(I = i) = w(i)
t−1 and the covariance matrix of
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θ is

var(θ) = E(var(θ |I))+var(E(θ |I))

= Λ+Σ > Σ (4.20)

where Σ= var(θ (I)) is the covariance matrix of θ under the original discrete approximation

π̂t−1 and the inequality holds since Λ is a positive definite matrix.

In order to reduce var(θ) to Σ, we re-defined equation (4.19) at time t − 1 as

follows:-

π̂t−1(θ) =
N

∑
i=1

w(i)
t−1N(θ ;m(i),h2

Σ)

where m(i) = aθ (i)+(1−a)θ , in which a ∈ (0,1), and a2 +h2 = 1.

We compute the new expected value and covariance matrix as follows

E(θ) = E(E(θ |I))

= aθ +(1−a)θ

= θ ;

var(θ) = E(var(θ |I))+var(E(θ |I))

= h2
Σ+a2var(θ (I))

= h2
Σ+a2

Σ

= Σ. (4.21)

By comparing (4.21) and (4.20), it is obvious that (4.21) is better than (4.20) because

the variance in (4.21) is smaller.

Therefore, the joint distribution for the discrete v1:t−1 and the continuous θ takes

the form

π̂t−1(v1:t−1,θ) =
N

∑
t=1

w(i)
t−1N(θ ;m(i),h2

Σ)δ
v(i)1:t−1

where δ
v(i)1:t−1

is the unit mass at v(i)1:t−1.
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- At time t, the target distribution will now become

π(v1:t ,θ |y1:t) ∝ π(v1:t ,θ ,yt |y1:t−1)

= π(vt ,yt |v1:t−1,y1:t−1,θ)π(v1:t−1,θ |y1:t−1)

≈ π(yt |vt−1,yt−1,θ)π(vt |vt−1,θ)π̂t−1(v1:t−1,θ)

=
N

∑
i=1

w(i)
t−1π(yt |v(i)t−1,yt−1,θ)π(vt |v(i)t−1,θ)N(θ ;m(i),h2

Σ)δ
v(i)1:t−1

.

The auxiliary particle filter algorithm for sequentially sampling from the posterior distribution

of the fractional volatility process and the parameters is therefore:-

- Initialize at time t = 1.

Generate (v(1)1 , . . . ,v(N)
1 ) ∼ πv(v1) and (θ (1), . . . ,θ (N)) ∼ πθ (θ), where πv(v1) and

πθ (θ) are prior probability density functions chosen by the user. Set w(i)
1 =N−1, i=

1, . . . ,N.

- Computing and generating for t = 2, . . . ,T and i = 1, . . . ,N :

- Compute the mean of θ = Eπ̂t−1(θ) and the variance Σ = varπ̂t−1(θ). The

particle θ (i) will depend on the new mean of θ :

m(i) = aθ
(i)+(1−a)θ .

- Generate an auxiliary variable Ik for k = 1, . . . ,N where

p(Ik = i) ∝ w(i)
t−1π(yt |vt−1 = v(i)t−1,yt−1,θ = m(i)).

- Generate

θ
(k) ∼ N(m(Ik),h2

Σ)

v(k)t ∼ π(vt |vt−1 = v(Ik)
t−1,θ = θ

(k))
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and set v(k)1:t = (v(Ik)
1:t−1,v

(k)
t ).

- Compute the weights

ŵ(i)
t =

L(v(k)1:t ,y1:t |y0,v0,θ = θ (k))

L(v(k)1:t−1,y1:t−1|y0,v0,θ = θ (k))π(yt |v(Ik)
t−1,yt−1,θ = m(Ik))π(v(i)t |v

(Ik)
t−1,θ = m(Ik))

and normalize them

w(i)
t =

ŵ(i)
t

∑
N
j=1 ŵ( j)

t

.

- Compute the effective sample size Ne f f using (4.18).

If Ne f f 6 N0, where N0 is a certain preset fraction of the total number of particles,

re-sample

- Draw a sample of size N from a discrete distribution P((v1:t ,θ)= (v(i)1:t ,θ
(i)))=

w(i)
t , i = 1, . . . ,N, and relabel this sample (v(1)1:t ,θ

(1)), . . . ,(v(N)
1:t ,θ

(N)).

- Reset the weights:-

w(i)
t = N−1, i = 1, . . . ,N.

4.6 Forecasting

Forecasting is a very useful tool to estimate values within and beyond an underlying

process (Lunn et al., 2013). In our work, we will forecast the stock price st of the Heston

and fractional Heston models.

Mathematically, if we let stnew be the required forecast of the asset price at time tnew, then

we base our estimate of stnew on the predictive density

π(stnew |s1:t) =
∫

/0
π(stnew | /0)π( /0|s1:t)d /0,
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in which s1:t are the data available up to time t, the integration is over the vector /0= (θ ,vt)

of unknown parameter, where θ = (µ,α,β ,σ ,ρ,Hs,Hv) and vt is the volatility at time t,

and π( /0|st) is the posterior density.

For example, we will consider the expectation of a future value stnew as follows:-

Eπ(stnew |s1:t) [stnew] =
∫

stnew

stnewπ(stnew |s1:t)dstnew,

=
∫

stnew

stnew

∫
/0
π(stnew | /0)π( /0|st)d /0dstnew,

=
∫

/0

∫
stnew

stnewπ(stnew | /0)dstnew π( /0|s1:t)d /0,

= Eπ( /0|s1:t)

[
Eπ(st new| /0) [stnew ]

]
.

We can use our posterior sample to approximate this quantity as follows

Eπ(stnew |s1:t) [stnew ] =
1
N

N

∑
i=1

E
π(stnew | /0(i)) [stnew ]w(i)

t ,

where /0(i) = (θ (i),v(i)t ) is obtained from the ith particle with associated weights w(i)
t .

Furthermore, we can use simulated value of stnew to approximate Eπ(stnew | /0) [stnew ] . Together

we obtain this approximation:

Eπ(stnew |s1:t) [stnew ] =
1
N

N

∑
i=1

(
1
M

M

∑
j=1

s(i, j)tnew

)
w(i)

t , (4.22)

where s(i, j)tnew is found through equations (4.11) and (4.12) using /0(i).

To quantify the accuracy of our forecast, we will compute the Absolute and Square Root

differences between our forecast and an omitted part of the real data. These differences

can be written as follow:

Absolute difference = ∑
j
| s j− forecast value of s j | (4.23)

Square Root difference =

√
∑

j

(
s j− forecast value of s j

)2
, (4.24)
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in which s j are the values of the process that we are trying to forecast and that here are

assumed known.

4.7 Results

We apply the particle filter based methodology to simulated data in Section 4.7.1 and to

real data in Section 4.8.

4.7.1 Application to Simulated Case

4.7.1.1 The fractional Heston Model when ρ = 0

We will begin by estimating the parameters θ = (µ,α,β ,σ ,Hs,Hv) of the fractional

Heston model with ρ = 0 as defined through (4.16) and (4.17) using maximum likelihood

estimation as explained in Section 4.3.1.

We begin by considering a simulated dataset of size T = 300 with

θ = (µ,α,β ,σ ,Hs,Hv) = (0.2,2.497,11.35,0.618,0.6,0.4).

The initial values of the fractional Black-Scholes process S0 and fractional volatility

process v0 are 1 and 0.04, respectively. We used R’s function optim to implement maximum

likelihood estimation.

We applied the particle filter to the fractional Heston model when ρ = 0, as explained in

Section 4.5.1. The true values of the parameters θ = (µ,α,β ,σ ,Hs,Hv), and the initial

values of each process and the number of observation for the fractional Heston model are

given above.

Figure 4.2 shows the results for the fractional volatility process assuming that the θ

parameters are known. In particular, the true fractional volatility process, the approximate

posterior mean of the fractional volatility process and approximate 90% credible intervals

are shown across time t. In general, the posterior mean follows the true fractional volatility

process quite well. The true fractional volatility process is almost always the inside the

90% credible intervals indicating that our estimation methodology works well in this case.
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Figure 4.3 shows the estimation of the parameters θ = (µ,α,β ,σ ,Hs,Hv) across time

using the auxiliary particle filter, assuming that the fractional volatility process is unknown.

In particular, the posterior mean and approximate 90% credible intervals for each parameter

are presented together. In general, good results are achieved using the auxiliary particle

filter, although it turns out here to be more difficult to make inference about µ and σ than

about the other parameters. In particular, the estimate of Hs and Hv are seen to be good

here.

Figure 4.4 shows the results of the auxiliary particle filter for estimating the fractional

volatility process vt , assuming that the parameters are unknown. In particular, we see

the fractional volatility process itself, the approximate posterior mean of the fractional

volatility process and associated approximate 90% credible intervals. Good estimation

of the fractional volatility process is achieved here using the auxiliary particle filter when

the parameters are unknown because the true fractional volatility process is almost always

inside 90% credible intervals.
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Figure 4.2: Estimation using the particle filter of the fractional volatility process vt of the fractional
Heston Model when ρ = 0 assuming that the other parameters are known. The
true fractional volatility is represented by the black line. The posterior mean of the
fractional volatility process is indicated by the dashed red line and the associated 90%
credible intervals are in light blue.
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Figure 4.3: Estimation of the parameters of the fractional Heston model when ρ = 0 using the
auxiliary particle filter. In each graph, the posterior mean is shown using the black
trace, while the associated approximate 90% credible intervals are shown by the outer
traces. The first graph is for the parameter µ, the second graph is for the parameter
α, the third graph is for the parameter β , the fourth graph is for the parameter σ , the
fifth graph is for the parameter Hs and the final graph is for the parameter Hv. The
true values are shown by the horizontal lines.
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Figure 4.4: Estimation using the auxiliary particle filter of the fractional volatility process vt in
the fractional Heston model when ρ = 0 when the other parameters are unknown. The
true fractional volatility process is represented by the black line. The posterior mean
of the fractional volatility process is represented by the red line, and the associated
90% credible interval are in light blue.
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4.7.1.2 The fractional Heston Model with ρ defined in equations (4.11) and (4.12)

of Section 4.4

We will illustrate the results of the fractional Heston model including the correlation

coefficient ρ between the stochastic processes that drive the fractional Black-Scholes and

fractional volatility processes. The aim here is to estimate the parameters θ =(µ,α,β ,σ ,ρ,Hs,Hv)

and the fractional volatility process vt using particle filter based methodology.

We work with simulated data sets of size T = 300 with

θ = (µ,α,β ,σ ,ρ,Hs,Hv) = (0.2,2.497,11.35,0.618,−0.2,0.6,0.4),

or (0.2,2.497,11.35,0.618,0.2,0.6,0.4), so that we consider the cases when the correlation

coefficient ρ takes either negative or positive values. The initial values of the fractional

Black-Scholes process and fractional volatility process remain S0 = 1 and v0 = 0.04,

respectively.

Figures 4.5 and 4.6 show the results of the particle filter for the fractional Heston model

with the true values of ρ = −0.2 and ρ = 0.2, respectively, assuming known parameters

as discussed in Section 4.5.1. In particular, the true fractional volatility process, the

approximate posterior mean of the fractional volatility process and approximate 90%

credible intervals are shown across time t. Here, the estimation of the fractional volatility

process when ρ = −0.2 is better than the estimation of the fractional volatility process

when ρ = 0.2 because the fractional volatility process in this case follows the posterior

mean quite well.

Figure 4.7 shows the estimation of the parameters θ of the fractional Heston model

with the given negative value −0.2 of ρ across time using the auxiliary particle filter

as discussed in Section 4.5.2. In particular, the posterior mean and approximate 90%

credible intervals of each parameters are presented together.

Figure 4.8 shows the results of the auxiliary particle filter for estimating the fractional

volatility process assuming that the θ parameters are unknown with ρ = −0.2 . In

particular, we see the fractional volatility process itself, the approximate posterior mean

of the fractional volatility process and associated approximate 90% credible intervals.

Figure 4.9, which is similar to Figure 4.7 shows the estimation of the parameters θ of the
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fractional Heston model with the given positive value of ρ across time using the auxiliary

particle filter as discussed in Section 4.5.2.

Figure 4.10, which is similar to Figure 4.8 shows the results of the auxiliary particle

filter for estimating the fractional volatility process assuming that the θ parameters are

unknown with ρ = 0.2.

From these results we can see that particle filter based algorithms can produce some good

estimates of the unknown quantities of the fractional Heston model. The results for the

fractional Heston model with the given positive value of ρ are somewhat better than the

results for the fractional Heston model with the given negative ρ .
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Figure 4.5: Estimation using the particle filter of the fractional volatility process vt of the fractional
Heston model with ρ = −0.2 assuming that the other parameters are known. The
true fractional volatility is represented by the black line. The posterior mean of the
fractional volatility process is indicated by the dashed red line and the associated 90%
credible intervals are in light blue.
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Figure 4.6: Estimation using the particle filter of the fractional volatility process vt of the fractional
Heston model with ρ = 0.2 assuming that the other parameters are known. The
true fractional volatility is represented by the black line. The posterior mean of the
fractional volatility process is indicated by the dashed red line and the associated 90%
credible intervals are in light blue.
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Figure 4.7: Estimation of the parameters of the fractional Heston model with non-zero ρ using
the auxiliary particle filter. In each graph, the posterior mean is shown using the black
trace, while the associated approximate 90% credible intervals are shown by the outer
traces. The first graph is for the parameter µ, the second graph is for the parameter
α, the third graph is for the parameter β , the fourth graph is for the parameter σ , the
fifth graph is for the parameter ρ, the sixth graph is for the parameter Hs and the final
graph is for the parameter Hv. The true values are shown by the horizontal line, e.g.,
ρ =−0.2.
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Figure 4.8: Estimation of the volatility process vt in the fractional Heston model with non-zero ρ

using the auxiliary particle filter when the θ parameters are unknown, with a negative
value of ρ; ρ = −0.2. The posterior mean of the fractional volatility process is
represented by the red line. The true fractional volatility is represented by the black
line, and the associated 90% credible intervals are in light blue.
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Figure 4.9: Estimation of the parameters of the Heston model with non-zero ρ using the auxiliary
particle filter. In each graph, the posterior mean is shown using the black trace, while
the associated approximate 90% credible intervals are shown by the outer traces. The
first graph is for the parameter µ, the second graph is for the parameter α, the third
graph is for the parameter β , the fourth graph is for the parameter σ , the fifth graph is
for the parameter ρ, the sixth graph is for the parameter Hs and the final graph is for
the parameter Hv. The true values are shown by the horizontal line, e.g., ρ = 0.2.
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Figure 4.10: Estimation of the volatility process vt in the fractional Heston model with non-zero ρ

using the auxiliary particle filter when the θ parameters are unknown, with a positive
value of ρ; ρ = 0.2. The posterior mean of the fractional volatility process is
represented by the red line. The true fractional volatility is represented by the black
line, and the associated 90% credible intervals are in light blue.
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4.8 Application to Data from the Standard and Poor’s
Index

Similar to the work described in Section 3.4.2, we now apply the fractional Heston model

when ρ = 0 and with non-zero ρ to the SP350 data shown in Figure 4.11. The number of

observation is T = 308.
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Figure 4.11: Graph of the Standard & Poor’s weekly means Index from January 2005 to December
2010.

The fractional Heston Model when ρ = 0

In this section, we will apply the fractional Heston Model with ρ = 0, as defined though

(4.16) and (4.17) in Section 4.5.1, to the SP350 data shown in Figure 4.11.

The values of the parameters are set to µ = 0.2, α = 2.497, β = 11.35, σ = 0.618,

Hs = 0.6 and Hv = 0.4, obtained from maximum likelihood estimation as it seems to

coincide with some of the features that you see in the data. Figure 4.12 shows the results

of applying the particle filter to the fractional Heston model with ρ = 0, assuming that

the other θ parameters are known. In particular, the posterior mean representing the

estimation of the fractional volatility process together with approximate 90% credible

intervals are shown across time. In general, we can say that the estimated fractional vt

136



process is sensible when the other parameters are estimated using maximum likelihood

estimation.

Figure 4.13 shows the results of estimating the θ parameters of the fractional Heston

model with ρ = 0 across time t, using the auxiliary particle filter. In particular, the

posterior mean and approximate 90% credible intervals of each parameter are presented

together.

Figure 4.14 shows the results of the auxiliary particle filter for the estimated fractional

volatility process when the parameters are unknown. In particular, the estimated posterior

mean of the fractional volatility process and approximate 90% credible intervals are

shown across time t. We note from Figure 4.13 that the posterior distribution for Hs does

not contain 0.5 suggesting that the fractional Heston model provides some advantage over

the standard Heston model discussed in Chapter 3.
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Figure 4.12: Estimation of the fractional volatility process vt from the SP350 data using the
particle filter for the fractional Heston model with ρ = 0 with the other θ parameters
set to their maximum likelihood estimates. The approximate posterior mean of the
fractional volatility process is represented by the dashed red line and the associated
90% credible intervals are in light blue.
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Figure 4.13: Estimation of the parameters of the fractional Heston model with ρ = 0 across time t,
using the auxiliary particle filter applied to the SP350 data. In each graph, the
posterior mean is shown using the black trace, while the associated approximate 90%
credible intervals are shown by the outer traces. The first graph is for the parameter
µ, the second graph is for the parameter α, the third graph is for the parameter β and
the fourth graph is for the parameter σ , the fifth graph is for the parameter Hs and
the final graph is for the parameter Hv.
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Figure 4.14: Estimation of the fractional volatility process vt of SP350 data in the fractional
Heston model with ρ = 0 when the other θ parameters are unknown. The estimated
posterior mean of the volatility process is represented by the red line and the
associated 90% credible intervals are in light blue.
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The fractional Heston model with ρ

We will now include the non-zero correlation coefficient ρ in the fractional Heston model,

as defined in equations (4.14) and (4.15) in Section 4.5.1. Again, we will use the SP350

data shown in Figure 4.11. The number of observation is T = 308.

Figure 4.15 shows the results of applying the particle filter to the fractional Heston model

with non-zero ρ, assuming the other θ parameters are known. In particular, the posterior

mean, representing the estimation of the fractional volatility process, and approximate

90% credible intervals are shown across time. The values of the parameters are set to

µ = 0.2, α = 2.497, β = 11.35, σ = 0.618, ρ =−0.2, Hs = 0.6 and Hv = 0.4.

Figure 4.16 shows the results of applying the particle filter to the fractional Heston model

with non-zero ρ, assuming the other θ parameters are known. The only difference is that

in this figure the value of ρ is set to 0.2.

We can say that the fractional vt process is a sensible estimate as it coincides with some

of the features that we see in the data.

Figure 4.17 shows the results of estimating the θ parameters of the fractional Heston

model with a uniform prior distribution with negative support for ρ, across time t, using

the auxiliary particle filter. In these plots the posterior mean and approximate 90%

credible intervals of each parameter are shown.

Figure 4.18 shows the results of the auxiliary particle filter for the estimated fractional

volatility process of the fractional Heston model with a uniform prior distribution with

negative support for ρ. In particular, the estimated posterior mean of the fractional volatility

process and approximate 90% credible intervals are shown across time.

Figure 4.19 shows the results of estimating the θ parameters of the fractional Heston

model with a uniform prior distribution with positive support for ρ, across time t, using

the auxiliary particle filter. In these plots the posterior mean and approximate 90%

credible intervals of each parameter is shown.

Figure 4.20 shows the results of the auxiliary particle filter for the estimated fractional

volatility process of the fractional Heston model with a uniform prior distribution with

positive support for ρ.
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Again, the auxiliary particle filter for the estimated fractional vt process provides a sensible

estimate as it coincides with some of the features that we see in the data.
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Figure 4.15: Estimation of the fractional volatility process vt from the SP350 data using the
particle filter for the fractional Heston model with a negative value of ρ, i.e.,
ρ =−0.2, and with the other θ parameters set at their maximum likelihood estimates.
The approximate posterior mean of the fractional volatility process is represented by
the dashed red line and the associated 90% credible intervals are in light blue.
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Figure 4.16: Estimation of the fractional volatility process vt from the SP350 data using the
particle filter for the fractional Heston model with a positive value of ρ, i.e., ρ = 0.2,
and with the other θ parameters set at their maximum likelihood estimates. The
approximate posterior mean of the fractional volatility process is represented by the
dashed red line and the associated 90% credible intervals are light blue.
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Figure 4.17: Estimation of the parameters of the fractional Heston model with a uniform prior
distribution for ρ with negative support, across time t, using the auxiliary particle
filter applied to the SP350 data. In each graph, the posterior mean is shown using
the black trace, while the associated approximate 90% credible intervals are shown
by the outer traces. The first graph is for the parameter µ, the second graph is for
the parameter α, the third graph is for the parameter β , the fourth graph is for the
parameter σ , the fifth graph is for the parameter ρ, the sixth graph is for the parameter
Hs and the final graph is for the parameter Hv.
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Figure 4.18: Estimation of the fractional volatility process vt from the SP350 data in the fractional
Heston model with a uniform prior distribution for ρ with negative support, using the
auxiliary particle filter when the θ parameters are unknown. The estimated posterior
mean of the volatility process is represented by the red line and the associated 90%
credible intervals are in light blue.
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Figure 4.19: Estimation of the parameters of the fractional Heston model with a uniform prior
distribution for ρ with positive support, across time t, using the auxiliary particle
filter applied to the SP350 data. In each graph, the posterior mean is shown using
the black trace, while the associated approximate 90% credible intervals are shown
by the outer traces. The first graph is for the parameter µ, the second graph is for
the parameter α, the third graph is for the parameter β , the fourth graph is for the
parameter σ , the fifth graph is for the parameter ρ, the sixth graph is for the parameter
Hs and the final graph is for the parameter Hv.
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Figure 4.20: Estimation of the fractional volatility process vt from the SP350 data in the fractional
Heston model with a uniform prior distribution for ρ with positive support, using
the auxiliary particle filter when the other θ parameters are unknown of SP350. The
estimated posterior mean of the fractional volatility process is represented by the red
line and the associated 90% credible intervals are in light blue.
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4.8.1 Forecasting

In this section, we consider forecasts based on the Heston and the fractional Heston

models with non-zero ρ . Our forecasts are generated according to the the method outlined

in Section 4.6. We will forecast within and beyond the observed stock price s1:T of the

SP350 data. The number of forecasting points is 58 in our cases.

4.8.1.1 Forecasting with negative prior support for ρ

As mentioned, we will consider both the Heston and the fractional Heston models. The

posterior parameter distribution will be obtained using the auxiliary particle filter, with a

uniform prior distribution with negative support for ρ. Forecasts will be generated in the

way described in Section 4.6.

Figure 4.21 shows forecasting based on the Heston model beyond the final point of the

SP350 data. The number of forecasts beyond the final point is 58. Figure 4.22 shows the

weighted mean and the associated 90% forecast intervals beyond the final point.

Figure 4.23 shows forecasting based on the fractional Heston model beyond the final

point of the SP350 data, while Figure 4.24 shows the weighted mean and associated 90%

forecast intervals.

Figure 4.25 shows forecasting based on the Heston model of the last 58 points of the

SP350 data, while Figure 4.26 shows the weighted mean and associated 90% forecast

intervals.

Figure 4.27 shows forecasting based on the fractional Heston model of the last 58 points of

the SP350 data, while Figure 4.28 shows the weighted mean and associated 90% forecast

intervals.

Figure 4.29 provides a comparison between the forecasting of stock prices using the

weighted mean and approximate 90% forecast intervals based on the Heston model and

the actual data, namely the last 58 points of the SP350 series. Figure 4.30 provides a

similar comparison based on the fractional Heston model.

We will use equations (4.23) and (4.24) to quantify the accuracy of the SP350 forecasts

based on the Heston and the fractional Heston models when a uniform prior with negative
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support for ρ is used. Table 4.1 shows the values of the Absolute and Square Root

differences between the weighted mean of the forecasts and the observed data SP350

data for the Heston and the fractional Heston models with a uniform prior with negative

support for ρ.

We conclude from Table 4.1 that the differences are smaller for the fractional Heston

model than for the Heston model. This indicates that the fractional Heston model may

offer an advantage when forecasting a real financial time series. As we would expect, the

forecast intervals based on the fractional Heston model are wider than those based on the

Heston model. This is because the fractional Heston model involves more parameters and

is therefore more flexible than the Heston model.

Absolute difference Square Root difference
Heston model 2442.2 2240.9

Fractional Heston model 1655.3 1010.8

Table 4.1: The Absolute and Square Root differences between the weighted mean of the forecast
paths within the SP350 data and the actual data for the Heston and fractional Heston
models with a negative prior support for ρ.
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Figure 4.21: The Standard & Poor’s European 350 Index together with forecast sample paths
beyond the end of the data based on the Heston model. The number of points that
have been forecast is 58. A uniofrm prior with negative support is used for ρ.
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Figure 4.22: The Standard & Poor’s European 350 Index together with the weighted mean of
the forecast paths beyond the end of the data (blue line) and upper and lower 90%
forecast interval based on the forecast sample paths shown in Figure 4.21. A uniform
prior with negative support is used for ρ.
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Figure 4.23: The Standard & Poor’s European 350 Index together with forecast sample paths
beyond the end of the data based on the fractional Heston model. The number of
points that have been forecast is 58. A uniform prior with negative support is used
for ρ.
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Figure 4.24: The Standard & Poor’s European 350 Index together with the weighted mean of
the forecast paths beyond the end of the data (blue line) and upper and lower 90%
forecast interval based on the forecast sample paths shown in Figure 4.23. A uniform
prior with negative support is used for ρ.
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Figure 4.25: The Standard & Poor’s European 350 Index together with forecast sample paths
within the data based on the Heston model. A uniofrm prior with negative support is
used for ρ.
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Figure 4.26: The Standard & Poor’s European 350 Index together with the weighted mean of the
forecast paths within the data (blue line) and upper and lower 90% forecast intervals
based on the forecast sample paths shown in Figure 4.25. A uniform prior with
negative support is used for ρ.
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Figure 4.27: The Standard & Poor’s European 350 Index together with forecast sample paths
within the data based on the fractional Heston model. A uniform prior with negative
support is used for ρ.
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Figure 4.28: The Standard & Poor’s European 350 Index together with the weighted mean of the
forecast paths within the data (blue line) and upper and lower 90% forecast intervals
based on the forecast sample paths shown in Figure 4.27. A uniform prior with
negative support is used for ρ.
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Figure 4.29: The forecast region of Figure 4.26 together with the observed data. The weighted
mean forecast path together with 90% forecast intervals are based on the Heston
model. A uniofrm prior with negative support is used for ρ.
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Figure 4.30: The forecast region of Figure 4.28 together with the observed data. The weighted
mean forecast path together with 90% forecast intervals are based on the fractional
Heston model. A uniform prior with negative support is used for ρ.
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4.8.1.2 Forecasting with a positive prior support ρ

Next, we will use the auxiliary particle filter to forecast the stock price within and beyond

the SP350 data. We consider both the Heston and the fractional Heston models with a

positive support for ρ . The posterior parameter distribution is obtained using the auxiliary

particle filter, with a uniform prior with positive support for ρ. Forecasts will be generated

in the way described in Section 4.6.

Figure 4.31 shows forecasting based on the Heston model beyond the final point of the

SP350 data. The number of forecasts beyond the final point is 58. Figure 4.32 shows the

weighted mean and the associated 90% forecast intervals beyond the final point.

Figure 4.33 shows forecasting based on the fractional Heston model beyond the final point

of the SP350 data, while Figure 4.34 shows the weighted mean and the associated 90%

forecast intervals.

Figure 4.35 shows forecasting based on the Heston model of the last 58 points of the

SP350 data, while Figure 4.36 shows the weighted mean and 90% forecast intervals.

Figure 4.37 shows forecasting based on the fractional Heston model of the last 58 points

of the SP350 data, while Figure 4.38 shows the weighted mean and 90% forecast intervals.

Figure 4.39 provides a comparison between the forecasting of stock price using the weighted

mean and approximate 90% forecast intervals based on the Heston model and the actual

data, namely the last 58 points of the SP350 series. Figure 4.40 provides a similar

comparison based on the fractional Heston model.

We will use equations (4.23) and (4.24) to quantify the accuracy of the SP350 forecasts

based on the Heston and the fractional Heston models when a uniform prior with a positive

support for ρ.

Table 4.2 shows the values of Absolute and Square Root differences between the weighted

mean of the forecasting and the observed SP350 data for the Heston and the fractional

Heston models with a uniform prior with positive support for ρ is used.

We conclude from Table 4.2 that the differences are smaller for the fractional Heston

model than for the Heston model. This indicates that the fractional Heston model may

offer an advantage when forecasting a real financial time series.
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Absolute difference Square Root difference
Heston model 2476.6 2258.6

Fractional Heston model 1466.7 782.1

Table 4.2: The Absolute and Square Root differences between the weighted mean of the forecast
paths within the SP350 data and the actual data itself for the Heston and fractional
Heston model with a positive prior support for ρ.

We can compare Table 4.2 and Table 4.1, we see that the Absolute difference and Square

Root difference for the Heston model are smaller when adopt a uniform prior for ρ with

positive support than they are when the prior for ρ has negative support. On the other

hand, for the fractional Heston model the differences are larger when the prior for ρ has

positive support than when it has negative support.

We conclude form there and other experiments that the fractional Heston model is more

flexible than the Heston model and that it may provide us with better forecasts of real

financial time series data. The prior density adopted for the parameter ρ can have some

effect on forecast quality.
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Figure 4.31: The Standard & Poor’s European 350 Index together with forecast sample paths
beyond the end of the data based on the Heston model. The number of points that
have been forecast is 58. A uniform prior with positive support is used for ρ .
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Figure 4.32: The Standard & Poor’s European 350 Index together with the weighted mean of
the forecast paths beyond the end of the data (blue line) and upper and lower 90%
forecast interval based on the forecast sample paths shown in Figure 4.31. A uniform
prior with positive support is used for ρ .
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Figure 4.33: The Standard & Poor’s European 350 Index together with forecast sample paths
beyond the end of the data based on the fractional Heston model. The number of
points that have been forecast is 58. A uniform prior with positive support is used
for ρ .
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Figure 4.34: The Standard & Poor’s European 350 Index together with the weighted mean of
the forecast paths beyond the end of the data (blue line) and upper and lower 90%
forecast interval based on the forecast sample paths shown in Figure 4.33. A uniform
prior with positive support is used for ρ .
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Figure 4.35: The Standard & Poor’s European 350 Index together with forecast sample paths
within the data based on the Heston model. A uniform prior with positive support is
used for ρ .
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Figure 4.36: The Standard & Poor’s European 350 Index together with the weighted mean of the
forecast paths within the data (blue line) and upper and lower 90% forecast intervals
based on the forecast sample paths shown in Figure 4.35. A uniform prior with
positive support is used for ρ .
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Figure 4.37: The Standard & Poor’s European 350 Index together with forecast sample paths
within the data based on the fractional Heston model. A uniform prior with positive
support is used for ρ .
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Figure 4.38: The Standard & Poor’s European 350 Index together with the weighted mean of the
forecast paths within the data (blue line) and upper and lower 90% forecast intervals
based on the forecast sample paths shown in Figure 4.37. A uniform prior with
positive support is used for ρ .
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Figure 4.39: The forecast region of Figure 4.36 together with the observed data. The weighted
mean forecast path together with 90% forecast intervals are based on the Heston
model. A uniform prior with positive support is used for ρ .
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Figure 4.40: The forecast region of Figure 4.38 together with the observed data. The weighted
mean forecast path together with 90% forecast intervals are based on the fractional
Heston model. A uniform prior with positive support is used for ρ .
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4.9 Summary

In this chapter, we have discussed:

1. The fractional Heston model with ρ = 0 and with non-zero ρ , where ρ is the

correlation between the driving stochastic processes, and we have presented a discrete

time version of the model.

2. Maximum likelihood estimation and Bayesian inference using particle filter based

algorithms.

3. Forecasting

4. Applications to simulated and real data.

In Chapter 5 we briefly present our conclusion and discuss how we can extend our model

into a fractional Lévy Heston model that allows jumps in the underlying stochastic processes.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we have discussed inference techniques for the unknown quantities of standard

and fractional stochastic differential equation models within the Bayesian framework.

Our main contribution has been to extend the Heston model to the fractional Heston

model by replacing Brownian motion by fractional Brownian motion in the definition

of the model so allowing for a more flexible correlation structure across time. Particle

filter based methodologies have been developed to perform inference about the unknown

quantities of the fractional Heston model, sequentially across time as new data arrive. In

addition to making inference about the model parameters, our methodology sequentially

estimates the fractional volatility process.

Our fractional Heston model offers an advantage over the standard Heston model when

there is limited posterior support for the additional parameters Hs and Hv used in the

definition of the fractional Brownian motion processes being 0.5, a value that corresponds

to standard Brownian motion. This can indeed be the case for financial time series data.

In addition, we have shown that the fractional Heston model can offer an advantage when

forecasting a real financial series.

Here is a summary of what has been covered in this thesis:

In Chapter 2 we have made comparisons between some sequential importance sampling

methods. In particular we have implemented and experimented with particle filter based
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methodologies. We have applied these methods to the Vasicek Interest Rate model and to

Taylor’s formula for stochastic volatility as a Hidden Markov model. We have computed

sequentially posterior inferences for the underlying volatility process and the model parameters.

Then, we have assessed the sensitivity of those posterior inferences to our prior assumptions.

For example, for the Vasicek Interest Rate model we have explored the effect of choosing

different prior distribution for the parameters θ1,θ2 and θ3 or β1,θ1 and θ3 that define the

model and that control particular features of interest rate behaviour.

Next we have extended the methodology to make sequential inference for processes

defined using more than one stochastic differential equation. One such process is the

Heston model where stock price and volatility are each assumed to follow a stochastic

differential equation.

In Chapter 3 we have performed inference for the parameters and the volatility process

of the Heston model when the correlation ρ between the driving stochastic processes is

zero and when ρ 6= 0 using Markov chain Markov Carlo (MCMC) techniques and particle

filter based methodologies.

We discussed by means of a simulation study that unsurprisingly the MCMC method

provides better estimation of the model parameters θ = (µ,α,β ,σ) or θ = (µ,α,β ,σ ,ρ)

when the volatility is known than when it is unknown. Moreover, when the particle filter is

applied to the Heston model with ρ = 0, good estimation of the volatility process results.

When ρ is non-zero, the volatility process can often be better estimated when ρ is positive

than when it is negative.

Next, when the auxiliary particle filter is applied to the Heston model when ρ = 0, the

model parameters are well estimated, although it can be more difficult to make inference

about the parameter σ that controls the variability of the volatility process than about the

other parameters. When the auxiliary particle filter is applied to the Heston model with

non-zero ρ, better results were obtained when the prior density for ρ had positive support

than when it had negative support. Sensible estimates of the underlying volatility process

and the model parameters can be achieved.

In Chapter 4 we have extended the Heston model to the fractional Heston model by
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replacing Brownian motion in the driving stochastic equations by fractional Brownian

motion. The resulting model allows for a more flexible correlation structure across time.

We have performed inference for the parameters of the fractional Heston model and the

fractional volatility process when ρ = 0 and when ρ 6= 0 using our particle filter based

methodologies.

In particular, we have applied the particle filter to the fractional Heston model to estimate

the fractional volatility assuming the other parameters are known. Better estimation can

be achieved when ρ is negative than when ρ is zero or positive.

Next, we have applied the auxiliary particle filter to the fractional Heston model when ρ =

0. Good estimation of the model parameters and of the fractional volatility process can be

achieved.

Moreover, we have found that when ρ 6= 0 better inference for the fractional Heston model

can be achieved when the prior density for ρ has positive support than when it has negative

support. Sometimes better inference can be achieved for the fractional Heston model than

for the original model.

A core finding of this thesis is that for real data the posterior density of the Hurst indices Hs

and Hv that control correlation across time do not support 0.5, a value which corresponds

to standard Brownian motion and hence to the original Heston model. Moreover, we have

implemented forecasting methodology for the fractional Heston model, and have obtained

better forecasts than with the Heston model for real stock price data.
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5.2 Future work

We have recently found that it can be very useful to extend the fractional Heston model

to the fractional Lévy Heston model.

A fractional Lévy process is a generalization of fractional Brownian motion. In particular,

a fractional Lévy process is a linear term which consists of a fractional Brownian part and

a jump part.

Mathematically, in our case a fractional Lévy process can be written as follows:

W f L
t =W f

t +Lt ,

where

W f L
t is a fractional Lévy process,

W f
t is a fractional Brownian process,

Lt is a Lévy process as defined in Korn et al. (2010).

A fractional Lévy process has the same properties as fractional Brownian motion as

explained in Sections 4.2 and 4.3. The only difference is that a jump is allowed between

two increments sometimes called a pure jump. These jumps can be modelled by the

symmetric α−stable Lévy process, where

α ∈ (0,2] (Tsoi et al., 2011). Once again the idea is to produce a more flexible model

that can take better account of some of the features of real financial time series data and

indeed other data such as environmental or weather data.

In our future work we will generalize the Heston model so that it is driven by a fractional

Lévy processes instead of by fractional Brownian motion. We will attempt to estimate the

parameters and the fractional Lévy volatility process using particle filter based methodologies.

Forecasts will be produced and compared using real data.
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Wűrzburg, http://phobos.informatik.uni-wuerzburg.de/TR/tr137.pdf.

172

http://hal.archives-ouvertes.fr/docs/00/41/10/01/PDF/lavancier-etal- pfractionnaire-v2.pdf
http://hal.archives-ouvertes.fr/docs/00/41/10/01/PDF/lavancier-etal- pfractionnaire-v2.pdf
http://phobos.informatik.uni-wuerzburg.de/TR/tr137.pdf


Tsoi, A., D. Nualart, and G. Yin (2011). Stochastic Analysis, Stochastic Systems,

and Applications to Finance. USA: World Scientific Publishing. ISBN-13
978–981–4355–70–4.

Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of

Financial Economics 5, 177–188.

White, S. I. (2006, July). Stochastic Volatility: Maximum Likelihood Estimation and

Specification Testing. Ph. D. thesis, Economic and Finance, Queensland University of
Techology, Brisbane, Australia.

173


