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ABSTRACT
Real-world portfolio optimisation problems are often NP-hard, their efficient fron-
tiers (EFs) in practice being calculated by randomised algorithms. In this work,
a deterministic method of decomposition of EFs into a short sequence of sub-EFs
is presented. These sub-EFs may be calculated by a quadratic programming algo-
rithm, the collection of such sub-EFs then being subjected to a sifting process to
produce the full EF. Full EFs of portfolio optimisation problems with small cardi-
nality constraints are computed to a high resolution, providing a fast and practical
alternative to randomised algorithms. The method may also be used with other
practical classes of portfolio problems, complete with differing measures of risk. Fi-
nally, it is shown that the identified sub-EFs correspond closely to local optima of
the objective function of a case study evolutionary algorithm.

KEYWORDS
Portfolio selection; cardinality constraint; deterministic methods; quadratic
programming; evolutionary algorithm; operational research

1. Introduction

The portfolio optimisation problem is a ubiquitous real-world problem in financial
mathematics and combinatorial optimisation. Simply put, the problem states that
given asset returns over some time period, an investor must decide upon which as-
sets to invest in, and in which proportions, to maximise portfolio return or minimise
portfolio risk. This is subject to certain constraints which often add to the computa-
tional complexity. In particular, the difficulty of the cardinality constrained portfolio
optimisation problem - where the maximum number of assets that may be chosen is
restricted - is on a spectrum. It is well-known that for large cardinalities the problem is
equivalent to the unconstrained portfolio optimisation problem. This problem is solved
via quadratic programming. Conversely, for small cardinalities and large numbers of
assets the problem is NP-hard (Bach, Ahipaşaoğlu, & d’Aspremont, 2010; Mansini &
Speranza, 1999; Moral-Escudero, Ruiz-Torrubiano, & Suárez, 2006). Problems with
this level of difficulty may be efficiently approximated (rather than solved exactly)
using metaheuristics such as evolutionary algorithms (EAs).

Work to approximate solutions to such problems via metaheuristics abound. For ex-
ample, the seminal work of Chang, Meade, Beasley, and Sharaiha (2000) compared a
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genetic algorithm, tabu search algorithm and simulated annealing on the cardinality-
constrained problem with minimum asset proportions. In another example of this
approach, Lwin, Qu, and Kendall (2014) used ‘MODEwAwL’ - a hybrid of differen-
tial evolution and machine learning - on the problem with additional constraints im-
posed and compared the approach with NSGA-II and other standard EAs. The same
problems, and others, were examined by the work of Anagnostopoulos and Mamanis
(2011), which compared five benchmark EAs (NPGA2, NSGA-II, PESA, SPEA2 and
e-MOEA). Each of the above works used the OR-Library (Beasley, 1990) standard
benchmark indices. There have been approaches using other kinds of datasets also (for
example, the work of Duran, Cotta, and Fernández-Leiva (2012) (European mutual
funds market), Lin and Liu (2008) (Taiwan mutual fund data), Mansini and Speranza
(1999) (Milan stock exchange), and Craven and Graham (2019) (datasets derived from
the S&P 500 index - more information is given in Section 4.1)).

However, EAs (more generally, metaheuristics) are not necessarily a panacea for
such problems. Such methods are often complex and have a long runtime, exhibit-
ing accuracy that increases with run time. Small cardinalities, in particular, typically
result in a high EA computational cost due to the difficulty in finding ‘good’ solu-
tions, indicating an alternative method may be more suitable for these cases. The
work of Cesarone, Scozzari, and Tardella (2013) formulated a heuristic ‘increasing
set’ algorithm to solve the problem, reporting efficient frontiers for the OR-Library
benchmark instances (Beasley, 1990). There are also other examples of exact methods
such as branch-and-bound (Gao & Li, 2013) and cutting-plane methods (Bertsimas &
Cory-Wright, 2019). In the present work, an alternative, intuitively simpler approach
is adopted that not only solves the portfolio optimisation problem but which also
sheds light upon results obtained using evolutionary algorithms to solve such prob-
lems. Building upon the preliminary work of Craven and Graham (2017), ‘cardinality
constrained’ efficient frontiers (CCEFs) of the portfolio optimisation problem are cal-
culated. These EFs are constructed by reducing the problem to a sequence of quadratic
programming problems, attempting to minimise the length of this sequence by iden-
tification of applicable non-dominated partial (sub-) EFs. The final constrained EF is
then produced by a process of sifting from this pooled collection of sub-EFs (see Sec-
tion 3 for details). Comparisons of the solutions with (modified) solutions of Cesarone
et al. (2013) are provided. The contributions of this work are as follows:

(1) The work provides an efficient and practical method of constructing CCEFs,
each from a union of non-dominated sub-EFs, as benchmark optimal solutions
for EAs. This is illustrated on the benchmark datasets of Beasley (1990) and
two datasets produced from the S&P 500 index.

(2) These CCEFs are calculated to a high accuracy, comparing well with Cesarone
et al. (2013).

(3) The work demonstrates a practical alternative to using metaheuristics such as
EAs for small cardinality constraints in such problems, providing solutions to a
higher degree of accuracy than those methods.

(4) A visualisation of EA evolution and local objective function optima as part of a
full solution is provided. This is used to, firstly, display explicitly where the final
CCEFs come from and, secondly, in conjunction with the benchmark optimal
solutions above, identify typical local optima locations of EAs and hence where
such approaches are likely to struggle.

(5) Finally, a substantial applied mathematical analysis of portfolio problems under
the given constraints is provided.
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The work proceeds thus. In Section 2, the formulation of the problem is briefly
stated. An explanation and listing of the approach of this work is provided in Sec-
tion 3, followed in Section 4 by results and observations of the approach applied to
the discussed datasets. Numerous plots are presented - these plots show excellent cor-
respondence of the CCEFs produced with those of Cesarone et al. (2013). Section 5
links the non-dominated sub-EFs produced by the current approach with local minima
solutions produced by metaheuristics, giving an insight into properties of those solu-
tions. This is followed in Section 6 by a comparison of the work with other methods. A
conclusion is then provided in Section 7, highlighting the practicality of the approach,
its generalisation and further use on associated optimisation problems.

2. Formulations of the Problem

In a financial market, suppose an investor wishes to invest in a set of assets of size n. As
a proportion of their total investment, each asset i = 1, . . . , n is assigned a proportion
or weight xi giving a portfolio vector of weights x = (x1, . . . , xn). Short-selling is not
allowed and thus the elements of this vector are assumed to be non-negative and sum
to 1. Over a given period suppose that µi is the expected return of asset i and σij
is the covariance between the returns of assets i and j. The expected return of the
portfolio x is given by

R =

n∑
i=1

µixi, (1)

with the variance (risk) being written as

V =

n∑
i=1

n∑
j=1

σijxixj . (2)

The Markowitz problem (in this mean-variance model) of minimising portfolio risk
V for a given return level R > R0 is a quadratic problem and so may be solved
by quadratic programming (QP). However, to be more real-world relevant, traders
commonly impose additional constraints (examples include cardinality constraints and
minimum proportions). The cardinality constrained portfolio optimisation problem is
when the investor wishes to restrict their investment to a subset of k ≤ n assets. This
is often done to mitigate transaction costs. The formulation that will be studied is
the following one-objective formulation, an equivalent λ-parameterised version of the
above two-objective formulation. The parameter λ represents aversion to risk. The
formulation is stated as follows:

Find a portfolio x such that λV − (1− λ)R is minimised subject to:

n∑
i=1

xi = 1

xi ≥ 0 for i = 1, . . . , n (3)

#{j : xj 6= 0} ≤ K
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Note that the final constraint is an inequality rather than an equality. This is
the constraint followed by many practitioners (e.g., Chang et al. (2000)). It is well
known that the problem is NP-hard, via various reductions (Mansini & Speranza,
1999; Moral-Escudero et al., 2006) and thus analytical solutions are not available
in many practical situations. Finding an approximate solution to the problem is ef-
ficiently done with a metaheuristic algorithm (Anagnostopoulos & Mamanis, 2011;
Chang et al., 2000; Craven & Graham, 2019; Lwin et al., 2014). Typically, the longer
such algorithms are run, the more (asymptotically) accurate the approximation. The
Cardinality Constrained Efficient Frontier (CCEF) is the set of all optimal solutions to
(3). It is non-quadratic and, in fact, highly unpredictable for certain ranges of returns
Cesarone et al. (2013). The above formulation allows parameterisation of the CCEF
by λ ∈ [a, b] ⊆ [0, 1] (with λ = 0 being the point at which return is maximised and
λ = 1 the point at which risk is minimised). However, in some cases, e.g., for small K,
it will be shown that a good approximation to the CCEF may be found in an analytic
manner. The next section describes the method.

3. The Algorithm

3.1. Explanation

In finding the EF for a subset of K assets from n using QP techniques, each of the(
n
K

)
possible combinations of assets is considered separately. Even for moderate n,

this can represent a very large number of cases. In principle, the full CCEF for each
of these cases (i. e., for each value of λ) must be found and then the best (risk,
return) combination for each λi identified by collating information at the end of the
computation. For large datasets, this would be prohibitively costly and most of the
information generated would be jettisoned at the end of the calculation. To make such
computations feasible, it has been necessary to identify and eliminate ‘dominated’
subsets, where the CCEF generated from this subset would lie ‘below and to the right
of’ previously-computed CCEFs and would therefore not contribute to the overall EF.
By re-ordering the data in order of decreasing return (with corresponding re-ordering
of the covariance matrix) the vast majority of subsets are indeed dominated, allowing
very large overall numbers of cases to be computed. This re-ordering is essential for
efficient removal of dominated cases.

This efficient removal is performed by consideration and exploitation of dominance
(building upon the preliminary work of Craven and Graham (2017)). Dominance is
defined intuitively as follows. Figure 1 (a) (left) shows curve C2 (the ‘test EF’) and a
potentially dominating curve C1. Observe that the grey triangle emitting from a point
on C2 to two points C1 has ‘positive area’ (i.e., the triangle emits in a north-west
direction). If this holds for every point on C2 and every pair of distinct points on C1

then C2 is said to be dominated by C1. On the contrary, on the right of the same
subfigure, C2 is not dominated by C1 at all points since there is a triangle emitting
from a point of C2 with ‘negative area’. Hence C2 is non-dominated; indeed, it can
be seen that the portion of C1 lying above C2 and the majority of C2 lying to the
left of C1 gives the non-dominated front. Subfigure (b) shows a sample of dominated
sub-EFs in red, with some final (dominating) CCEF points in green.

The formulation requires constrained minimisation of the risk. The risk is a
quadratic form as a function of the asset weights and the constraints are linear. Such
problems (i.e. minimisation of quadratic form subject to linear constraints) can be
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(a) An illustration of two curves where C1 dominates

C2 (left), and where C1 does not dominate C2 (right).

(b) Dominated sub-EFs for the S&P 493 dataset

with K = 2 (see Section 4.1).

Figure 1.: Illustrations of dominance.

solved using quadratic programming. An overview of the algorithm follows.
Firstly, create the EF for the sub-portfolio of renumbered assets 1, 2, . . . , k. Then

test whether the sub-EF generated by a given sub-portfolio would be dominated. This
is done by calculating three points on the ‘sub-EF’. The first point gives the maximum
return Rmax, with corresponding risk Vmax (corresponding to λ = 0). Rmax and Vmax

are provided as input data. A second point minimises the risk Vmin (at λ = 1) and
has associated return Rmin. Rmin and Vmin are calculated using QP. For the sake of
efficiency, rather than compute the whole sub-EF, instead choose a third point with
coordinate (12(Vmax+Vmin), 14(3Rmin+Rmax)). This assumes that the sub-EF is closely
approximated by a quadratic and is exact for K = 2. The choice of this ‘third point’
is discussed further in Section 4.4. It is then tested whether any of these three points
is not dominated. A point is dominated if the gradient of the line joining that point
to any point (Vi, Ri) (where i = 1, . . . , nλ) on the current full EF is greater than the
gradient of the current full EF at that point. Note that vector products are used to
evaluate this condition in the algorithm. Its effectiveness relies upon the fact that,
in the cost-minimisation version of the Markowitz problem, the full EF is a concave
function (see, e.g., (Chang et al., 2000, pp. 1274-1275), Craven and Graham (2019)).
The test EF is not dominated if any of the three test points is not dominated in this
way, and is dominated otherwise. If the test EF is not dominated then calculate, via
the R function Solve.QP, and store the full sub-EF for this sub-portfolio. The collection
of all computed full sub-EFs will then be sifted at the conclusion of the computation.

3.2. Listing

The method is simple and effective for lower cardinalities (e.g., K = 2 or K = 3)
since the number of combinations (sub-portfolios) that are checked by the algorithm
is manageably small. The method also provides solutions to a high degree of accuracy.
The method consists of two distinct phases. In the first phase, non-dominated sub-
EFs are identified as described above. This can be described as the elimination of
‘curvewise-dominated’ sub-EFs. In the second phase the sub-EFs are collated and
sifted by identifying and eliminating individual points as described below. Sifting starts
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with the point of highest return R and sifts out all points ‘pointwise dominated’ by
this point (here, point (A) pointwise dominates point (B) iff both R(A) ≥ R(B) and
V (A) ≤ R(B)). From the remaining points, find the point with the next highest return
and sift out any points dominated by it. This process is repeated until all pointwise
dominated points are eliminated.

Algorithm 1 QP Algorithm for the One-Variable Formulation

input: returns vector R(1, . . . , n) and covariance matrix σn×n;
total number of assets, n, and in sub-portfolio, K, parameter ‘tol’.

output: T = {(Vj , Rj) : j = 1, . . . , nλ}, the set of risk-return pairs on the EF;
mincost(λj): minimum cost for points on EF; nnd: the number of non-dominated
sub-EFs;
S = {(Vi,j , Ri,j) : i = 1, . . . , nnd, j = 1, . . . , nλ} the set of non-dominated sub-EFs;
Weights vectors {Wi,j : i = 1, . . . , nnd, j = 1, . . . , nλ};
Costs {Ci,j : i = 1, . . . , nnd, j = 1, . . . , nλ}.

1: re-order returns vector and covariance matrix to give returns in descending order
2: set mincost (1, . . . , nλ) = 1000 and nnd = 0
3: count number of cases: ncases =

(
n
K

)
4: for all case = 1, . . . , ncases do
5: find maximum return and corresponding variance Rmax, Vmax

6: find minimum variance and corresponding return Vmin, Rmin

7: dominated = TRUE
8: for all j=1,. . . ,nλ − 1 do
9: for each point (Vj , Rj) on the current EF, compute

10: p1 = (Vj − Vmax)(Rj+1 −Rmax)− (Vj+1 − Vmax)(Rj −Rmax)
11: p2 = (Vj − Vmin)(Rj+1 − (3/4Rmin + 1/4Rmax))

−(Vj+1 − Vmin)(Rj − (3/4Rmin + 1/4Rmax))
12: p3 = (Vj − Vmin)(Rj+1 −Rmin)− (Vj+1 − Vmin)(Rj −Rmin)
13: if case = 1 or min (p1, p2, p3) < tol then
14: dominated = FALSE
15: end if
16: end for
17: if dominated = FALSE then
18: nnd = nnd + 1:
19: for all j = 1, . . . , nλ do
20: define Vj = W T

j σWj ;Rj = W T
j R, where Wj(1, . . . , k) is the weights

vector to be found for each portfolio component
21: find the QP solution for Wj by minimising the cost function

C(case, λj) = (λjVj − (1− λj)Rj)
22: store Snnd

= {(Vnnd,j , Rnnd,j)}
23: store weights vector as Wnnd

, j and cost as Cnnd
, j for λj

24: if Cnnd,j < mincost(λj) then
25: mincost(λj) = Cnnd,j

26: update ‘current EF’ Tj = (Vj , Rj), volatility and return pair for λj
27: end if
28: end for
29: end if
30: end for
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Algorithm 1 provides a complete solution to the 1-variable Markowitz formulation.
Note that nλ denotes the number of points on each non-dominated sub-EF, with nnd
being the number of such sub-EFs found by the algorithm.

As can be seen from Figure 2 and as noted elsewhere (Chang et al., 2000) this
formulation leaves significant gaps in the final CCEF. This is due to the necessary
concavity of the solution; i.e., the gradient of the final [risk,return] EF in this formu-
lation is (strictly) decreasing. These gaps are not present in the two-objective formu-
lation of the problem. It is possible to fill in many of the gaps on the final CCEF
by using a sifting process (Algorithm 2) on the full (pooled) set of non-dominated
sub-EFs generated by Algorithm 1, thereby treating the computed CCEF as a union
of non-dominated sub-EFs. The resulting CCEF then contains all the non-pointwise-
dominated points of the non-curvewise-dominated sub-EFs. As denoted in Algorithm
2, there are nmax ≤ nnd × nλ points in the final (sifted) CCEF.

(a) (b)

Figure 2.: Production of a CCEF with dataset (D4) and cardinality K = 3. Subfigure
(a) shows the output from Algorithm 1 (non-dominated points shown in green, and
the 54 non-dominated sub-EFs in red), with (b) showing the result of the sifting from
Algorithm 2. Note the ‘gaps’ and ‘bunching’ at several return values.

The resulting weights may be extracted from the final CCEF. In principle, the ‘tol’
parameter (which determines whether or not a given sub-EF is ‘below and to the left’
of all points on the ‘current’ efficient frontier) should be set to zero. However, setting
tol to zero generates an excessive number of sub-EFs identified as being curvewise
non-dominated but which the sifting process actually identifies as being pointwise
dominated, and thus not contributing to the final CCEF. Setting tol to a small positive
value avoids this problem. A value of tol = 10−25 was found to be suitable for the
current study. Note that the value of ‘tol’ is likely to depend both upon the precision
of the arithmetic used in floating-point calculations and upon the magnitudes of the
returns observed in a given dataset. A reasonable strategy in the general case would
be to start from a relatively large value of ‘tol’ that identifies too few non-dominated
sub-EFs (e.g., 10−10 for the datasets considered here), then decrement in powers of
ten until the number of sub-EFs is stable.

The code was extended in R from the original Maple code detailed in the prelimi-
nary work of Craven and Graham (2017), and is available at https://github.com/
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Algorithm 2 Pooling/sifting

input: pooled nnd × nλ points from non-dominated sub-EFs
output: updated nmax: number of non-dominated EF points

1: i← 1
2: while i < nmax do
3: find maxj R(j), j = i, . . . , nmax

4: swap (V (maxj), R(maxj)) with (V (i), R(i))
5: for all j = i+ 1, . . . , nmax do
6: remove (V (j), R(j)) if V (j) ≥ V (i)
7: re-index remaining points j > i+ 1
8: nmax ← nmax − 1
9: end for

10: i← i+ 1
11: end while

MJCraven/SiftedQP. All experiments are run on an Intel Xeon E5-2683v4 proces-
sor at 2.10 GHz with a relatively low amount of memory needed. The approach is
deterministic. The next section gives results and observations from the method.

4. Results and Observations

4.1. Datasets Used

To demonstrate the approach, the standard benchmark instances (D1)–(D5) of OR-
Library (Beasley, 1990) will be used. These instances cover returns data over the
period March 1992 to September 1997 for 31, 85, 89, 98 and 225 assets (encompassing
the Hang Seng, DAX 100, FTSE 100, S&P 100 and Nikkei 225 indices) respectively.
In addition, two further datasets will be used. Dataset 389 is from the daily prices of
all assets in the S&P500 index for the period 18/11/1999–09/08/2013 and dataset 493
is from the S&P500 index over the shorter period 10/08/2012–09/08/2013 (Craven
& Graham, 2019). In each case, assets were excluded if they were not constituents of
the index for the full period under consideration, hence the the inclusion of a larger
number of assets for the shorter period. Table 1 gives the effective ranges of λ used for
experiments; the lower limit, λ0, is non-zero in many cases since for 0 ≤ λi < λ0 the
co-ordinates

(
ri, Ri

)
may be identical. That is, the lower limit on each interval gives

the value of λ corresponding to the point with maximal return (top right of the EF),
and the upper limit λ1 = 1 the point with minimal risk (bottom left of the EF).

Table 1.: λ ranges used for each dataset (from Craven and Graham (2019)).

Instance (D1) (D2) (D3) (D4) (D5) 389 493
[λ0, λ1] [0.342,1] [0.149,1] [0.426,1] [0.107,1] [0.115,1] [0,1] [0.489,1]

In the following results, the time to compute the estimated sub-EFs for the identified
cases and also the time to sift the sub-EF collection to produce the CCEF are given.
As the algorithm is deterministic, the sub-EFs produced are constant over that set of
ten runs. All times are mean times over ten runs with each set of parameters n, K and
nλ. In various cases, the solutions obtained are compared with those of Cesarone et al.
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(2013). In most cases (e.g., Figure 3) the comparison is excellent. In some instances,
however, there are slight discrepancies (see Figure 9 and related discussion in Section
4.4 for further details).

4.2. Test of Scalability

The first experiments run were with instance (D1), K = 2, 3, 4, 5, 6, 8 and varying
nλ = 10, 50, 100, 200, 500 to observe the scaling behaviour of the algorithm (Table 2).
Various data were taken from the runs: the number of non-dominated sub-EFs (also
referred to as the identified cases), the number of final CCEF points after sifting, the
computation time and the sifting time. Computation time is taken without the sifting
process. The number of sub-portfolios,

(
n
K

)
, is also recorded for comparison purposes.

Table 2.: Scalability test. Observe that the number of sub-EFs does not strictly in-
crease; this may be due to the locations λ values are placed along the CCEF.

K nλ # CCEF pts # ND Sub-EFs # Sub-PFs Comp. Time (s) Sift Time (s)

2

10 41 6

465

0.08 0.24
50 197 9 0.16 0.31
100 389 9 0.27 0.51
200 756 9 0.49 1.22
500 1869 9 1.14 6.14

3

10 33 7

4495

0.59 0.23
50 137 12 1.25 0.31
100 248 12 2.07 0.55
200 460 13 3.76 1.46
500 1107 13 8.70 7.52

4

10 36 8

31465

4.01 0.22
50 155 15 8.51 0.37
100 297 17 14.16 0.85
200 547 17 25.35 2.51
500 1318 17 58.75 13.93

5

10 46 10

169911

22.05 0.21
50 206 19 46.90 0.46
100 401 21 76.49 1.26
200 711 22 137.45 4.32
500 1708 22 315.28 24.70

6
100 468 24

736281
336.37 1.58

200 865 24 594.21 5.23
500 2048 24 1370.64 30.35

8
100 589 23

7888725
3820.53 1.69

200 1103 23 6488.53 5.63
500 2557 23 14840.66 32.09

Some observations on the results of Table 2 are as follows. Increasing the value of
K uniformly results in computational time increasing, expected due to the increased
number of sub-portfolios. However, for K < 5, computation time takes under one
minute even for large numbers of points. Fixing nλ = 200, analysis of the K = 8 case
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suggests that around 105 million combinations may be analysed in one day with no
use of parallel computing.

Assuming K is fixed, increasing the value nλ seems to imply that the number of
non-dominated sub-EFs converges. For example, the algorithm seems to converge to
nine non-dominated sub-EFs for K = 2 and twenty-four for K = 6. In addition,
the number of points on the final CCEF increases in line with nλ, producing high
resolutions of over 2000 points for nλ = 500. Unsurprisingly, sifting takes longer for
larger values of nλ, due to having to sift nλ points on each non-dominated sub-EF.
As an example, Figure 3 shows the contrast in solution quality between fifty and five
hundred λ-values for K = 3.

(a) nλ = 50 (b) nλ = 500

Figure 3.: Approximation of the (D1) CCEF of Cesarone et al. (2013) (blue lines) by
the computed non-dominated CCEF (red dots). As in Table 2, 137 dots are present
on the left subfigure and 1107 on the right.

Hence, by the above, an excellent approximation to the CCEF (via the sifted CCEF)
may be made by consideration of only a small fraction of the number of sub-EFs, indi-
cating the efficiency of the approach. The next subsection details similar experiments
on the remaining datasets.

4.3. Experiments on Other Datasets

In this subsection, experiments are performed on the remaining datasets with values
of K such that the number of sub-portfolios is less than ten million. Two hundred
points (nλ) on each sub-EF were used as this provided a resolution of at least 500
points on the final CCEF after sifting. The results are given in Table 3 and, together
with those from Table 2, are available at Graham and Craven (2019).

It is well-known that the CCEF becomes closer to the unconstrained EF as the value
of K increases (Chang et al., 2000). That is, even though the number of non-dominated
sub-EFs is a small fraction of the total number of sub-portfolios, the CCEF and the
unconstrained EF will coincide for sufficiently large K (or become close enough for the
difference to become largely irrelevant). At this point the method is outperformed by
traditional QP. There is a clear correspondence between the computation time and the
number of sub-portfolios, and between the sift time and the number of non-dominated
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Table 3.: Results for datasets (D2)–(D5), 389 and 493, all with nλ = 200.

Instance K # CCEF pts # ND Sub-EFs # Sub-PFs Comp. Time (s) Sift Time (s)

(D2)
2 552 13 3570 3.14 1.58
3 838 17 98770 81.69 2.77
4 1286 19 2024785 1690.17 4.73

(D3)
2 592 10 3916 3.45 1.26
3 670 24 113564 94.81 4.24
4 837 44 2441626 2048.02 12.15

(D4)
2 1218 27 4753 4.31 6.95
3 1073 54 152096 127.92 16.91
4 1231 63 3612280 3061.69 22.13

(D5)
2 767 14 25200 23.19 2.04
3 769 31 1873200 1709.75 6.16

389
2 1393 48 75466 75.70 16.88
3 1707 51 9735114 9894.78 21.78

493 2 614 61 121278 124.78 17.09

sub-EFs. Except for k = 2 for the smaller datasets, the sift time is relatively small as
a proportion of the computation time.

Figure 4 shows results from instance (D3) with cardinality K = 3. Subfigure (a)
gives an analogue of Fig 2(a), comprising the 24 non-dominated sub-EFs found in red,
with (b) giving a comparison of the non-dominated CCEF (670 points) obtained with
the CCEF of Cesarone et al. (2013). Note the presence of a portion of the solution
with negative returns, which is not found in the results of the aforementioned authors.
Finally, (c) gives a heatmap for the asset proportions of a sample of final CCEF
points. In this heatmap, every tenth point is sampled and non-negligible proportions
are represented by colours. The horizontal axis is ordered by the ranks of the utilised
assets from highest return (left) to lowest return (right); the non-utilised assets are
omitted. The vertical axis corresponds to the index of each of the nmax points of the
final CCEF. Index 1 represents the ‘top-right’ point of maximum return of the CCEF
corresponding to a portfolio containing only the single highest-returning asset. Index
nmax represents the ‘bottom-left’ point of minimum risk, corresponding to a portfolio
with contributions from several assets. The heatmap shows a clear progression of
contributions moving away from the highest-returning asset towards a blend of lower-
returning assets as return and risk decrease along the CCEF.
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(a) (b)

(c)

Figure 4.: Plots of results from instance (D3) with K = 3. Plot (a) shows the 24 non-
dominated sub-EFs in red, and (b) the full converage of the CCEF by the approach.
The sampled heatmap is shown in (c), white denoting weight zero.

Figures 5-8 give plots produced by the approach for other instances. In some cases,
the approach finds points not on the CCEF of Cesarone et al. (2013), noting that most
of these are negative in return (e.g., Figs 5 and 6).
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(a) (b)

(c)

Figure 5.: Solution comparison of the (D5) instance with K = 2. Note the presence of
two negative parts of the solution with the present approach. The non-coverage of the
branch of the comparison solution (blue) around return levels of 0.0014 and below is
present since the branch is dominated by the red dot immediately above.
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(a) (b)

(c)

Figure 6.: Results from (D5) with K = 3, plot (a) being the non-dominated sub-EF
visualisation, (b) being the comparison of the CCEFs produced by the approach (red)
and the method of Cesarone et al. (2013) (blue), and (c) the sampled heatmap.
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(a) (b)

(c)

Figure 7.: Solutions of the S&P 389 dataset with K = 2. In (b), the CCEF is compared
with the unconstrained EF since the true CCEF is unknown.
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(a) (b)

(c)

Figure 8.: Solutions of the S&P 493 dataset with K = 2. In (b), the CCEF is compared
with the unconstrained EF since the true CCEF is unknown.

For all cases in this work, the vast majority of sub-portfolios are clearly dominated.
This is clear from the plots shown and means that only a very small fraction of the
total number of sub-portfolios need to be computed. Further, from the computation
times given in Tables 2 and 3, the sub-portfolios are computable within a short time.

4.4. Identification of Non-Dominated Sub-EFs

Final efficient frontiers computed with the approach are determined from non-
dominated sub-EFs. For a given sub-EF, the endpoints corresponding to λ =
0 and λ = 1 are (Vmin, Rmin) and (Vmax, Rmax) respectively, where (Vmin, Rmin) is
the minimum risk and its associated return and (Vmax, Rmax) is the maximum return
and the associated risk for the sub-EF in question. As noted in Section 3.1 above,
these points are either known from the data [(Vmax, Rmax)] or computed using QP
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[(Vmin, Rmin)]. We then test for pointwise-dominance these two points, together with a
third point located at (12(Vmin +Vmax), 14Rmax + 3

4Rmin). The choice of the third point
rests upon the assumption that, for the sub-EF, the return R is a quadratic function
of the risk V . This is exact for K = 2 but is otherwise an approximation. Results are
slightly sensitive to the choice of this ‘third point’. For example, Figure 9 (c) shows
that the final EF computed using the approach for the case K = 2 for portfolio (D4)
coincides with that from Cesarone et al. (2013) except for return values between 0.0055
and 0.0065, where the approach slightly under-performs.

(a) Non-dominated sub-EFs α = 0.75. (b) Non-dominated sub-EFs α = 0.85. Additional sub-
EFs are coloured black.

(c) Final CCEF α = 0.75. (d) Final CCEF α = 0.85.

Figure 9.: Enlarged comparisons of non-dominated sub-EFs (a), (b) and final CCEF
(c), (d) results for (D4) with K = 2 using α = 0.75 (a), (c) and α = 0.85 (b), (d).

However, locating the third point at (12(Vmin + Vmax), (1 − α)Rmax + αRmin) for
α = 0.85 identifies two further non-dominated sub-EFs compared with the standard
choice (12(Vmin + Vmax), 14Rmax + 3

4Rmin) (compare 9 (a), (b), with the two additional
sub-EFs coloured black in 9 (b)). This results in an exact match with the data from
Cesarone et al. (2013) - (compare 9 (c), (d)). Higher values of α could be used, but this
may result in the generation of a greater number of non-dominated sub-EFs and thus
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increased computation times. It has been found that there is no universally-acceptable
value for α other than the standard 0.75 obtained using the quadratic assumption
and the standard value generally offers a reasonable compromise between acceptable
accuracy and acceptable computation times. An alternative strategy would be to vary
α incrementally from a starting value of 0.75. At some stage, the number of sub-EFs
may become excessively high and thus the final value of α could be set as the maximum
value at which the number of sub-EFs is not excessive.

This section concentrated upon the generation of CCEFs for a number of datasets.
As stated previously, it is known that the CCEF may be efficiently approximated by
metaheuristics such as EAs for reasonable values of K. It turns out that visualisation
of the non-dominated sub-EFs found by the approach in this work may shed light on
the evolution process of EAs. This is exposed next.

5. Relation to EA Solution Processes

This work has given an overview of the approach being an alternative to EAs on the
cardinality constrained problem, especially for small cardinalities (values of K). How-
ever, the analysis can be related to the results generated by EAs for such problems.
EAs are driven by objective functions, which encapsulate key pieces of information
from the problem and which must be optimised in the process of finding as optimal
a solution as possible. It turns out that the approach and EAs have commonalities.
Corresponding to the one-objective formulation of the problem, only the case of a
single-objective EA is considered in this work. It is also assumed that an EA is at-
tempting to minimise its objective function (clearly, the EA maximises if the objective
function is negated).

A well-known disadvantage of using an EA (and similar methods) on a problem
of this complexity is the presence of local objective minima in the evolution solution
process (Michalewicz & Fogel, 2013). The following shows that, for the efficient fron-
tier problem, this phenomenon can be understood in terms of the EA solution being
trapped on non-optimal (i.e. dominated) sub-EFs. The EA solution process appears
to select a particular sub-EF, or a portion thereof, after which use of a mutation oper-
ator corresponds to the solution tracing along that sub-EF as the K portfolio weights
are perturbed. The EA’s crossover operation allows the process to jump between sub-
EFs. For example, Figure 10 (a, b, c, d) shows such a picture for portfolios of sizes
n = 85,K = 2 (a), n = 98,K = 2 (b), n = 389,K = 15 (c) and n = 493,K = 30 (d).
The unfilled dots are the original values of risk and return from the individual assets
and the blue filled dots give the points on the EF generated by the EA of Craven
and Graham (2019). The red curves are sub-EFs associated with the particular sub-
portfolios identified from the weights matrix generated by the EA. Each row of this
matrix contains non-zero weights from up to K assets and the sub-EFs are generated
(using QP; i.e., independently of the EA) from these assets. It is clear that any given
point of the EF computed from the EA lies upon the sub-EF associated with the same
subset of K assets as used by the EA.
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(a) (D2) with K = 2.
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(b) (D3) with K = 2.
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(c) 389 with K = 15.
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(d) 493 with K = 30.

Figure 10.: Relation between points computed by EA (blue) and QP-generated sub-
EFs using the same assets (red). Note that the S&P389 dataset seems to be distinct
to the other treated datasets since there is a large part of the plot that has a very
small gradient.
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This indicates that possible enhancements of the EA could be found by utilising a
crossover process that uses this knowledge of the topography of the solution space to
allow more rapid exploration of this space, enabling the EA to be more likely to land
upon non-dominated sub-EFs and hence optimal solutions. Comparing the approach
described in this paper with other existing approaches, thoughts turn to other exact
methods and metaheuristics. This is discussed in the next section.

6. Comparison of the Current Approach with Other Works

6.1. Metaheuristics

To the best knowledge of the authors, there are no metaheuristics that exhibit solutions
to the benchmark cardinality constrained problems (D1)-(D5) for K < 5. Typically,
many works consider these instances with K = 10 (Anagnostopoulos & Mamanis,
2011; Chang et al., 2000; Lwin et al., 2014), although some works consider cardinalities
K = 5 and K = 15 (mentioned in the work of Lwin et al. (2014), with details available
in the PhD thesis of the first author, and Anagnostopoulos and Mamanis (2011) use
K = 5 and K = 10 with a non-benchmark dataset). This paucity of results for
K < 5 suggests that good quality solutions for such values of K are hard to achieve
for metaheuristics. Also, the current approach is not used with K = 10 since the
dominating term,

(
n
K

)
, makes the search inherent in this work impractical. Hence a

comparison of metaheuristics and the current approach, where typically K < 5, is
believed to be also impractical.

On a methodological level, metaheuristics are algorithms which specialise in finding
approximate solutions quickly and are essentially stochastic in nature. The current
approach is, by contrast, deterministic. Hence the current approach is very different
from metaheuristics, methodologically as well as quantitatively.

6.2. Exact Methods

In this subsection, the current approach is compared with other exact methods. The
first comparison algorithm is that of Cesarone et al. (2013), with which a graphical
comparison was conducted in Section 4. In terms of time complexity and efficiency, the
work of Cesarone et al. (2013) studies the problem with 1% minimum asset proportion
and finds 500 CCEF points, fewer in many cases than the current approach. However,
the computation environment on which that work was conducted, reported as an Intel
Core2 Duo T7500 CPU at 2.2 GHz, is at least a computational generation apart
from the current environment and hence time comparisons are not made. Cesarone
et al. (2013) point out that their method exhibits “exponential complexity in the
worst case”, but through modification “can achieve polynomial time complexity”. As
explained below, the current approach runs in polynomial time in n for small K. It was
reported that, for K = 5 and K = 10, computation times using their method were
generally smaller than those found using the CPLEX solver. CPLEX computation
times for K = 5 were larger than for K = 10.

The following two works examine the problem from a different point of view, relating
to its solution at one return value rather than a selection of values across the CCEF.
The work of Gao and Li (2013) analyses a variation of a branch-and-bound algorithm
on the problem under a Lagrangian relaxation. The return value is restricted to “the
median of the expected returns of the given pool of stocks”. Results are presented
from a 2.8 GHz CPU, giving numbers of examined nodes and execution times that
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outperform CPLEX for a selection of problem sizes. Contrary to the above work, the
K = 5 cases are computed more rapidly than those for K = 10. The OR-Library
instances are not used, but some broadly equivalent problem sizes are presented (n =
80 and n = 100).

The work of Bertsimas and Cory-Wright (2019) discusses a cutting-plane method
ran on an Intel i9 2.9 GHz CPU and 16 GB RAM using the OR-Library instances. The
return value is set to be 0.3 of the way up the CCEF, the times reported comparing
well with a reformulation solved in CPLEX. As in the work of Cesarone et al. (2013),
K = 10 computation times are generally larger than those for K = 5.

Computation times for both these works are given in Table 4, where (as stated) the
dataset size of Gao and Li (2013) is equated to the nearest OR-Library instance in size.
Although these works used different CPUs, both solve the problem for a single point
on the CCEF and minimum cardinality K = 5, whereas the current work is designed
to compute the full CCEF. To offer a per-point time comparison the approach was
ran on the three instances (D2)–(D4) with K = 5. The time for (D1) with K = 5 is
produced from Table 2. Instance (D5) was not ran with K = 5 since there are over 4.5
billion sub-portfolios. Observe that the mean per-point computation times compare
well with those of Bertsimas and Cory-Wright (2019) as well as those of Gao and
Li (2013), whilst noting that direct comparisons are not completely reliable due to
differences in computational environment.

Table 4.: Stated computation times for K = 5 from the work of Gao and Li (2013)
[GL] and Algorithm 3 of Bertsimas and Cory-Wright (2019) [BC-W], compared with
the current approach point-by-point. The number of non-dominated sub-EFs and the
number of CCEF points generated by the current approach are also presented.

Instance [GL] [BC-W] # ND Sub-EFs # CCEF points Comp. time (pt.)
(D1) 0.22 22 711 0.19
(D2)

178.7
48.29 24 3157 19.76

(D3) 175.20 56 2262 35.21
(D4)

492.2
2690.00 76 3919 33.23

(D5) 0.85 N/A N/A N/A

It is clear that the cutting-plane and branch-and-bound approaches are more effi-
cient for larger K than the current method, which is specialised to small K. Hence,
for the reasons stated, a direct comparison of the current method with those works
referred to above proves difficult but the current method appears competitive, as well
as being conceptually simpler.

6.3. A Complexity Estimate for the Current Approach

A full time complexity analysis of the algorithm is out of scope of this work. However,
a brief approximation is given as follows. There are three main factors contributing to
the computation time of the approach. Firstly, there are the

(
n
K

)
combinations of assets

the algorithm processes. By a standard result,
(
n
K

)
≤ nK

K! for 1 ≤ K ≤ n. Subsequently,
the complexity of the QP procedure is bounded above by the complexity of multiplying
K ×K matrices (which is O(K3) at worst). The final factor is the number of points
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in each sub-EF tested. Thus a crude upper bound on time complexity of

O

(
nK

K!
K3nλ

)
(4)

is suggested. It is clear that nK

K! ≤ n
K and so the approach runs in polynomial time in

n for small K. The data in Tables 2–4 are broadly consistent with this estimate.

7. Conclusion

This work presented an efficient method for construction of small-cardinality con-
strained efficient frontiers of portfolio problems by the solution of a sequence of smaller
QP problems (to produce ‘sub-EFs’), followed by the application of a sifting proce-
dure to the pooled data to produce the final CCEF. These CCEFs are highly accurate,
comparing very well to those of Cesarone et al. (2013) for the OR-Library instances
of Beasley (1990), and so form a method to efficiently calculate benchmark optimal
solutions for EAs and other optimisation algorithms. It has also been shown that the
approach performed very well on datasets extracted from the S&P 500 index (the 389-
and 493-datasets). The above implies that the approach is an excellent alternative to
using the above metaheuristic algorithms to solve portfolio problems for small car-
dinality constraints. The detailed approach may be performed for any cardinality K
until the user runs out of allocated time budget. Note, however, that (i) cost rises
quickly as K increases, and (ii) for larger values of K a metaheuristic could approx-
imate the problem efficiently (or QP could be used if K is sufficiently large and the
problem is effectively unconstrained).

Via Section 5, it was shown for a range of datasets tackled that the sub-EFs identi-
fied in the solution process served as local minima cost curves of the EA. It has been
shown that by using only a small number of λ-values a large number of points on
the accurate CCEFs may be found (ranging from 552, compared with Cesarone et al.
(2013) solutions of 500 points resolution, to over 1700 points - Table 3 for nλ = 200).
Further, a visualisation of not only CCEF-formation but also EA solution formation
processes has been demonstrated. This enables a ready and fast realisation of where
final CCEFs come from and, also, in association with the benchmark solutions pro-
duced, identification of some EA local optima (although by no means all). This gives
insight into where such approaches exhibit difficulties in finding optimal solutions.

A comparison between the current work, metaheuristics and exact methods was
given in Section 6. Methodological differences were detailed, as well as computational
complexity for exact methods. Despite these methodological differences, it was found
that the computation time of the current work compares well with that of state-of-
the-art works such as Bertsimas and Cory-Wright (2019). In terms of solution quality,
highly accurate optimal solutions are produced; these typically are more accurate than
those of metaheuristics (see Figures 10(a), (b) for an example of an EA solution of
two small-cardinality problems - several blue points are on sub-optimal non-dominated
sub-EFs). Finally, the approach offers a more intuitively simple (and thus more gen-
eralisable) solution than that of Bertsimas and Cory-Wright (2019), Cesarone et al.
(2013) and Gao and Li (2013). However, the approach does have limitations: the main
limitation is the size of the search space that is enumerated (albeit quickly). If a dom-
ination criterion which reduces the computational effort required in this search can
be found then this limitation becomes less serious, allowing the production of CCEFs
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for larger K than in the present study. However, the strengths of the approach do
outweigh the limitations in that there are several avenues of further work that will be
pursued.

The first avenue of further work is to generalise the methodology to include different
risk measures, especially non-quadratic risk measures. For alternative risk measures to
be workable, it is observed that a definition (possibly entirely distinct from the current
definition) of curvewise dominance with respect to the risk measure would be required.
In addition, a fast nonlinear optimisation method, depending upon risk measure em-
ployed, to replace QP minimisation would be required. Related to this are different
versions of portfolio problems, with modifications to the approach as required. This
includes the possibility of two- or more objective versions of portfolio problems being
tackled, to enable finding the ‘kinks’ and highly non-linear parts of the corresponding
EFs. In this case, an increase in computational complexity is anticipated.

There is also a desire to improve metaheuristics with the introduction of opera-
tions informed by the approach described in this study. Employing some aspects of
the approach may provide a metaheuristic with a good indication of information that
may be exploited in order to adapt itself or evolve more effective operators via hyper-
heuristics, which exploit the implied efficiency in the solution process. In summary,
the approach is a fast, intuitively simple and practical tool for finding CCEFs for
cardinality-constrained portfolio problems with potential to generalise to other prob-
lems. The approach forms a useful framework for decision-makers to exploit modern
computational power at their disposal.
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