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Coherent quantum enhancement of pair production in the null domain

Anton Ilderton1, ∗

1Centre for Mathematical Sciences, University of Plymouth, Plymouth, PL4 8AA, UK

We present an exactly solvable example of coherent quantum interference effects in the creation
of electron-positron pairs from the collision of a photon with ultra-short laser pulses. Being char-
acterised entirely by null, or lightlike, directions, this setup realises an all-optical double-slit in the
“null” domain, and exhibits features both in common with, and distinct from, a time domain double-
slit (Ramsey interferometer). We show that by tailoring the order and amplitude of the pulses one
can control signatures of both quantum and classical physics in the produced positron spectrum.

The properties of the quantum vacuum allow for all-
optical analogues of the double-slit experiment, in which
patches of space are polarised by strong fields, effectively
creating a diffraction grating through which probe light
can be passed to exhibit quantum interference [1, 2]. As
well as such ‘spatial’ realisations, it is also possible to
realise a temporal, ‘time domain’ double-slit, or Ramsey
interferometer [3], based on the quantum vacuum; apply-
ing sequences of time-delayed electric fields [4, 5], pairs
are created from the vacuum via the Schwinger effect [6]
and their spectra exhibit coherent quantum interference.

Here we combine spatial and temporal realisations of
all-optical multiple slits, through pair production stimu-
lated by both strong fields and photonic probes. As both
the photon and field will be characterised by null, or light-
like, directions, we refer to the resulting interference as
being in the ‘null’ domain. Existing investigations of the
Schwinger effect and associated interference have used a
variety of versatile techniques, including e.g. numerical
solution of quantum kinetic equations [4] and semiclassi-
cal approximations [5, 7, 8]. Here we will give, to leading
order in the fine structure constant, results which are ex-
act in the strong field and of closed form. We can do
so by considering the limit of ultra-short field duration,
modelled though delta-function pulses. (See [9] for delta
pulses in Schwinger pair creation.) This will allow us
to clearly identify how both quantum effects, e.g. path-
interference, and classical effects, e.g. post-creation accel-
eration, appear in observables, giving insight into the im-
pact which the spacetime distribution of multiple pulses
has on the produced pair spectrum [10].

Our calculations have the advantage of supplying ex-
plicit and easily interpretable results which exhibit inter-
ference effects common in many tunnelling phenomena,
for example strong-field ionisation [11–13]. With an eye
to experiment, we remark that analogues of multiple slit
interference persist in stimulated pair production even
when pulses are not ultra-short [14], and also that short,
intense pulses of femto- and atto-second duration be con-
structed by a variety of methods [15, 16]. Further, stim-
ulated pair production is more immediately realisable,
experimentally [17], than the Schwinger effect (which re-
quires extreme field strengths even with optimisation of
the field profile [18–24]) and indeed will be investigated
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FIG. 1. Left : in an ultra-short pulse (red line), positrons cre-
ated in the rise of the field are accelerated, yielding a spectral
peak at momentum a⊥ = {mξ, 0}, while those created in the
fall of the field are not, leading to a peak at zero momentum.
Dashed lines illustrate the potential. Right : the spectrum for
l⊥ = 0, u = 1/2, ξ = 5 as a function of transverse positron
momenta {q1, q2} in units of m (q1 is the momentum in the
field polarisation direction), showing the two spectral peaks.

in upcoming experiments [25, 26].
Our starting point is the quantum mechanical prob-

ability of electron-positron pair creation from a probe
photon, momentum lµ, in the presence of classical elec-
tric and magnetic fields modelling a strong laser pulse.
This will be a plane wave travelling in the −z direction,
thus depending on ‘lightfront time’ φ := t+z. The trans-
verse electromagnetic fields of the wave are described
by the potential eAµ ≡ aµ = (0, a1(φ), a2(φ), 0) with
eE1 = eB2 = −a′1, eE2 = −eB1 = −a′2. We consider
a linearly polarised field, a2 = 0, of ultra-short dura-
tion such that the electric field becomes a delta function,
so a1 → mξH(φ), a Heaviside step function of (dimen-
sionless) height ξ. This parameterisation corresponds to
taking the simultaneous limit of high field strength and
short pulse duration [27], such that the total work done
on a particle traversing the field remains fixed – this is
mξ [28]. (As such ξ matches the usual definition of the
intensity parameter in laser-matter interactions [29, 30].)

The calculation of the pair creation probability em-
ploys the well-known Volkov solutions [31] and is given
in [27]. We also use the LSZ reduction of [32] which ac-
counts for the asymptotically nonvanishing potential a1

and has the advantage of allowing us to parameterise
the probability with the produced positron’s physical,
final momentum q⊥ ≡ {q1, q2}, transverse to the laser
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FIG. 2. Coherent quantum interference in the spectrum of positrons produced in a sequence of two delta-pulses of opposite
sign, with other parameters as for Fig. 1. The negative amplitude pulse occurs causally before that with positive amplitude,
and θ = 1 here. The two spectral peaks from the single pulse case in Fig. 1 persist (left), amplified by coherent interference
arising via two possible creation + acceleration events, illustrated on the right.

propagation direction, and its longitudinal ‘lightfront’
momentum u := n · q/n · l, where nµ = (1, 0, 0, 1).
From this we define a second on-shell momentum π̄µ :=
qµ−aµ+nµ(2q ·a−a2)/2n ·q which is, using the exact so-
lution of the Lorentz force equation, equal to the classical
initial momentum of the positron, had it traversed the
delta function and been accelerated to final momentum
qµ [28]. In terms of these momenta the pair production
probability P is, for α the fine-structure constant,

P =
αm2

4π2

∫
d2q⊥

1∫
0

du

u
(1− u)F [q, π̄, ξ] , (1)

where the key quantity F is, for h := 1/2− 1/4u(1− u),

F [q, π̄, ξ] :=
1

(l·q)2
+

1

(l·π̄)2
− 2

l·q l·π̄
(
1 + ξ2h

)
. (2)

This expression is similar to that obtained for scatter-
ing of a particle off an instantaneous kick [33], but with
additional field-dependent structure.

The produced positron momentum spectrum is given
by stripping the integrals from (1). We show the spec-
trum in Fig. 1 for l⊥ = 0, describing a head-on collision
between the photon and field, and u = 1/2, the sym-
metric point corresponding to the produced positron and
electron each carrying half of the initial photon’s light-
front momentum. The spectrum exhibits two peaks at
momenta q⊥ = 0 and q⊥ = a⊥. These arise primarily
from the first two terms in F , see (2), while the final
‘cross’ term contributes more broadly across the whole
spectrum. To explain the double-peak structure, we first
note that if the sign of the delta-pulse is swapped, then
the second peak switches to q⊥ = −a⊥. Assume then that
the dominant contribution to the spectrum comes from
particles created at zero transverse momentum. (This is
natural since the sum of the pair’s transverse momenta
is conserved [29, 30, 34] and equal to l⊥, which is zero
here.) Then positrons created in the rapid rise of an
ultra-strong, ultra-short pulse see and are accelerated by

essentially the whole field, picking up the full possible
transverse momentum a⊥ from it. Hence the spectral
peak at q⊥ = a⊥. Positrons created in the fall of the
field, on the other hand, see little of it and so acquire
little momentum after creation. Hence the spectral peak
at q⊥ = 0. This interpretation is consistent with the
change in the spectrum when the pulse changes sign, for
then the former source of positrons picks up −a⊥ when
accelerated by the field.

We remark that time-domain spectra for Schwinger
pair production in time-dependent electric fields typi-
cally exhibit only a single spectral peak at zero momen-
tum [4, 5, 7]. Since the semiclassical calculations used
there require the electric field strength to be small (much
lower than the Schwinger field ES = m2/e), we compare
by taking ξ � 1. In this case our two spectral peaks
coalesce into a single structure at q⊥ = 0, similar to the
time domain results. Thus we can make contact with
the literature by calculating perturbatively in ξ, which
will be useful below, but our calculations already reveal
structures beyond existing results.

With this, we can turn to the investigation of quantum
interference effects. Consider two delta pulses of oppo-
site sign and separated by a distance 2∆φ in lightfront
time φ. We will see that there is a strong causal aspect
to our results, so that we take the ‘positive’ delta-pulse
(as above) to lie at the larger value of φ. We can again
calculate the spectrum exactly [27]; it is given by making
the replacement, in the single pulse result (1),

F [q, π̄, ξ] −→ 4 sin2(Θ)F [q, π̄, ξ] , (3)

where Θ = ∆φ l · π̄/n · l (1 − u) arises in the calcula-
tion as an accumulated phase [5] between the two pulses.
Thus the effect of adding a second pulse of opposite
sign is, without approximation, to coherently enhance the
positron spectrum through a double slit interference pat-
tern. This is shown in Fig. 2 (left panel), for the same ξ
as in Fig. 1; the interference fringes are clearly visible
and are controlled by the combined separation/energy
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parameter θ = ∆φm2/n·l which appears in the interfer-
ence angle Θ. Now we observe that Θ may be written

Θ =
u

2(1− u)
lµ

∫ ∆φ

−∆φ

dϕ
π̄µ

n·q
≡ u

2(1− u)
l·δx . (4)

The integral δxµ is, using the Lorentz force equation,
exactly equal to the change in position of a classical
positron, created in the first pulse, during the elapsed
lightfront time between the two pulses. This suggests
that the physical origin of the interference pattern in (3)
is path-interference between trajectories of produced
positrons. Using the above physical picture, we can eas-
ily identify the dominant sources of interference. As il-
lustrated in Fig 2, positrons created in the rise of the
first peak are accelerated by the whole field, picking up
−a⊥ in transverse momentum at the first delta, but then
+a⊥ at the second, ending with zero transverse momen-
tum. Positrons created in the fall of the second peak
receive no momentum, as before. These two ‘creation
and acceleration’ events both source a spectral peak at
q⊥ = 0, and interfere. Positrons created in the fall/rise
of the first/second delta, on the other hand, pick up only
+a⊥ in transverse momentum. These are the two events
which interfere and source the second spectral peak at
q⊥ = a⊥. Further, if we exchange the signs of the deltas,
we find that the spectral peaks appear at q⊥ = 0 and,
now, q⊥ = −a⊥; this is consistent with our interpreta-
tion, because changing the signs of the pulses has the
same effect as exchanging their time ordering, and mas-
sive particles always propagate from smaller to larger
φ [35–37]. Hence the positrons created in the fall/rise
of the first/second peak now pick up −a⊥ when acceler-
ated by the field.

The interplay of quantum interference and classical dy-
namics in our results has an interesting consequence when
we consider a sequence of two pulses of the same sign.
From studies of Schwinger pair production which realise
a double-slit in the time domain, coherent enhancement
would not be expected in this case [5]. However, those
results hold in the semiclassical approximation, which we
can here go beyond to identify new effects.

We take two delta pulses of the same sign and (for rea-
sons which will become clear) each doing half the work
of the previous case, so ξ → ξ/2. There is now only
one dominant contribution to the zero momentum part
of the spectrum, namely pairs created after the second
pulse, see Fig. 3. Similarly, only pairs created before the
first pulse, and then accelerated twice, source a spectral
peak at q⊥ = a⊥. Hence we expect peaks at q⊥ = 0 and
q⊥ = a⊥ as before, without interference or enchancement.
This is as expected from the time-domain results. How-
ever, positrons created in the fall of the first pulse, or the
rise of the second, are both accelerated to a⊥/2; hence,
if our physical interpretation is correct, we should expect
a third spectral peak, between the others, with coherent
enhancement. To verify this, define π̂µ to be equal to π̄µ

θ = 1

θ = 1.5
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FIG. 3. In a sequence of two pulses with the same sign,
the spectrum exhibits three peaks (upper panel, ξ = 12, θ ∈
{1, 1.5} and q2 = 0). The outer peaks align with those of the
single pulse, and receive only mild interference effects. The
third peak lies halfway between these two and is coherently
enhanced by a 4 sin2 factor. The middle panel shows the same
spectrum as a function of q1 and q2 (θ = 1); the outer peaks
are smooth, while interference fringes clearly dominate the
middle peak. The dominant pair creation events sourcing the
peaks and interference are illustrated in the bottom panel.

but with ξ → ξ/2; the positron spectrum and produc-
tion probability in this case are now given by adding to
F [q, π̄, ξ] in (1) the term

2 sin2(Θ)
[
F [q, π̂, 1

2ξ] + F [π̄, π̂, 1
2ξ]− F [q, π̄, ξ]

]
. (5)

Writing out the term multiplying 2 sin2(Θ) explicitly, we
find the following ‘additive’ correction to the single pulse
spectrum: there is a quadratic term 2/l · π̂2, yielding a
peak at q⊥ = a⊥/2, multiplied by, overall, the coherent
interference factor 4 sin2(Θ). The remaining terms are
all ‘cross’, going like 1/(l · π̂l · q) etc, which contribute to
a lesser extent across all peaks. Thus, in agreement with
our predictions and as confirmed in Fig. 3, the single-
pulse peaks persist, showing only weak interference ef-
fects, while the new peak is coherently enhanced relative
to that in a single pulse of intensity parameter ξ/2 [38].

It follows that by changing the order and signs of sev-
eral delta pulses we can exert a degree of control on the
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spectrum (beyond simply adjusting the separation ∆φ to
change the frequency of oscillations in Θ): we can arrange
for interference to appear in one or multiple peaks, and
not others. For example, if we have two ordered pulses
characterised by −ξ/2 and +ξ, then the spectrum will
exhibit single-pulse peaks at q⊥ = 0 and a⊥/2, with little
interference, and a third peak with coherent enhance-
ment at q⊥ = a⊥. Adding further pulses can increase
the degree of enhancement and introduce additional pa-
rameters which affect the spectrum. To illustrate this
we consider a final example of four equally spaced pulses
of alternating signs (−+−+). In the time domain, this
setup yields a 4-slit interference pattern overlaying the
single peak spectrum, but here the structure is richer.
We find that the single pulse spectrum is multiplied by

42 sin2 Θ cos2(Θ + Θ0) , (6)

in which the new parameter Θ0, equal to Θ evaluated at
zero field, arises from free particle propagation between
the second and third deltas, whereas Θ arises as above
from propagation between e.g. the first and second. To
recover the time domain results we can again take the
weak field limit ξ � 1. In this limit Θ→ Θ0 and so our
4-pulse factor (6) reduces to

42 sin2(Θ0) cos2(2 Θ0) =
sin2(4 Θ0)

cos2(Θ0)
, (7)

which is precisely the expected 4-slit Fabry-Perot inter-
ference pattern. This shows nicely that multiple-slit in-
terference underlines pair production in weak fields, but
that in the strong field, ξ > 1, regime, which is experi-
mentally accessible [17, 25, 26], there is even more struc-
ture. This structure is fully explorable in our model.

To conclude, we have described quantum interference
effects in an all-optical double-slit setup, in which pairs
are produced from the quantum vacuum through the in-
teraction of a photon with ultra-short laser pulses. By
idealising the laser fields as delta-function pulses we have
been able to give exact, closed-form results for the pro-
duced positron spectrum which explicitly demonstrate
coherent quantum enhancement when multiple pulses are
present. The produced positron spectra have a depth of
structure not noted before, and which goes beyond exist-
ing semiclassical descriptions, yet admits a simple physi-
cal interpretation in terms of two-path interference [39],
and the classical physics (charge acceleration) along those
paths. It would be interesting to obtain the analogous re-
sults for the Schwinger effect in the time-domain, though
this remains challenging analytically. (See e.g. [40] for
numerical results on two spatially separated pulses of the
same sign.) We hope also that our results will be useful
in other areas – it has been shown for example that un-
derstanding path interference can resolve discrepancies
between the theory and experiment [39, 41] of tunnelling
phenomena in photoelectron holography [42, 43].

We have also shown that the location and degree
of interference effects in positron spectra can be con-
trolled [7, 10] by changing the number and amplitude
of the pulses. Armed with this understanding, it will
be interesting to establish in future work the extent to
which spectral control can be achieved at upcoming ex-
periments [25, 26]. This requires establishing the role of
e.g. transverse size effects on pairs, post creation [44];
these can be mitigated by using short pulses [45] (in
which interference does persist [14]), which would be the
goal. We also note that interference has been used, ex-
perimentally, in laser-based analogue computers [46] with
pulses of femtosecond duration, yet agreement with the-
ory based on delta-function fields was nevertheless ex-
cellent. This also hints at the possibility of using pair
production interference as an analogue computer.
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