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As ocean temperatures rise, species distributions are tracking towards historically cooler regions 9 

in line with their thermal affinity1, 2. However, different responses of species to warming and 10 

changed species interactions makes predicting biodiversity redistribution and relative abundance 11 

a challenge3, 4. Here we use three decades of fish and plankton survey data to assess how warming 12 

changes the relative dominance of warm-affinity and cold-affinity species5, 6. Regions with stable 13 

temperatures show little change in dominance structure (Northeast Pacific, Gulf of Mexico), 14 

while warming sees strong shifts towards warm-water species dominance (North Atlantic). 15 

Importantly, communities whose species pools had diverse thermal affinities and narrower range 16 

of thermal tolerance show greater sensitivity, as anticipated from simulations. Composition of 17 

fish communities changed less than expected in regions with strong temperature depth gradients. 18 

There, species track temperatures by moving deeper2, 7, rather than horizontally, analogous to 19 

elevation shifts in land plants8. Temperature thus emerges as a fundamental driver for change in 20 

marine systems, with predictable restructuring of communities in the most rapidly warming 21 

areas using metrics based on species thermal affinities. The ready and predictable dominance 22 

shifts suggests a strong prognosis of resilience to climate change for these communities.  23 

Abundance and distributions of marine species are changing in response to anthropogenic climate 24 

change1 but these changes vary geographically and across taxa. Shifts in geographical range and 25 

temporal species turnover, for example, tend to be accelerated where temperature changes coincide 26 

with widely spaced isotherms1, 2. Unlike terrestrial ecosystems, marine species may be unable to shelter 27 
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from extreme temperatures, making the effect of ambient temperature immediate, unavoidable, and 28 

easier to detect. Local gain and loss of species, combined with changes in the relative abundance of 29 

species with different thermal affinities, drive change in community structure. On land, failure of 30 

species distributions to track temperature means that community thermal composition lags behind 31 

expected change, seen in communities of birds, butterflies, and plant species 5, 9, 10, 11, 12, 13, 14. 32 

Identifying the aspects of community change that can be accurately forecasted is needed to assist 33 

managers to adaptively deal with ecosystem change.  34 

We use time series of species incidence in standardised international surveys of plankton and 35 

demersal (seabed-living) species since 1985 (Supplementary Table 1) to quantify regional changes in 36 

community structure. Combined with estimates of species’ thermal affinities, these data describe 37 

regional changes in the average thermal affinity of marine communities, as measured by the 38 

Community Temperature Index (CTI, Supplementary Table 2). CTI is the community-wide average of 39 

species’ thermal affinities, which are calculated from each Species Temperature Index, STI (the median 40 

of sea surface temperatures across each species’ estimated geographical range, see Methods and Fig. 41 

1a). The variation of thermal affinities among species (Community Thermal Diversity, CTDiv) is here 42 

described by the incidence-weighted standard deviation of STIs. Low values of thermal diversity reflect 43 

communities composed of species with similar STIs, and high values reflect communities composed of 44 

a mix of warm- and cold-water species. The incidence-weighted average width of species’ thermal 45 

ranges (STRs, Fig. 1a), the Community Thermal Range (CTR), indicates whether communities are 46 

composed of broad-ranged species (eurytherms) or narrow-ranged species (stenotherms). The fact that 47 

distributions of marine ectotherms generally fill their thermal tolerances15 supports the inference that 48 

thermal range can be approximated by species’ geographic range. 49 
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The difference between CTI and local temperature (used to define STIs) is termed community 50 

thermal bias: positive where communities are dominated by species from warmer areas, implying 51 

reduced sensitivity to warming16, and negative for communities dominated by species from colder 52 

areas, implying increased vulnerability17. Less compositional change in response to temperature is 53 

expected in areas of strong vertical and horizontal gradients in ocean temperature (and low velocity of 54 

climate change18) because small shifts may allow species to remain in the same temperature as before. 55 

Thermal bias is distinct from CTI lag5 or extinction debt, since it refers to the difference in spatial 56 

patterns of temperature and average thermal affinity rather than to a perceived delay in community 57 

response to temperature change. 58 

We focused on the sensitivity of CTI to regional temperature change (sCTI), defined as the ratio of 59 

the change in CTI through time to the corresponding change in environmental temperature. We 60 

evaluated the influence of community thermal diversity and community thermal range on CTI 61 

sensitivity by developing quantitative expectations from simulations. These simulated communities 62 

comprised pools of species with a thermal diversity set by the standard deviation of STI values. Each 63 

species had incidence-temperature curves19 defined by their thermal range (Gaussian Fig. 1a, other 64 

forms in Supplementary Fig. 1), consistent with organisms more abundant near the middle of their 65 

range20, 21. While contested22, the Gaussian pattern holds for our fish and plankton datasets (Fig. 1b, 66 

Supplementary Fig. 3) when abundance and incidence data are expressed relative to thermal range 67 

location. We used species’ thermal ranges and temperature changes to simulate changes in species 68 

incidence with temperature which, when aggregated across species, produced changes in CTI. 69 

Simulated CTI sensitivity was large where thermally diverse communities were made up of narrow-70 

ranged species17 (Fig. 1c, g), but smaller where thermal ranges were broad or thermal diversity was low 71 

(Fig. 1d, f, g). For functions with declining abundance from a central maximum, simulated CTI 72 

sensitivity suggested more change in thermally diverse communities made up of small-ranged species, 73 
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and less in communities of species with similar thermal affinities and large thermal ranges 74 

(Supplementary Fig. 2, Supplementary Table 4). With Gaussian curves, CTI sensitivity was 75 

proportional to the squared ratio of thermal diversity to average range width (Fig 1g and 76 

Supplementary Table 2), independent of thermal bias. Below we explored this hypothesized 77 

relationship with empirical data. 78 

Spatial patterns in CTI for demersal species and plankton, averaged from 1985 to 2014, broadly 79 

followed patterns in surface temperatures in the HadISST1 dataset23 and seabed temperatures from the 80 

Hadley Centre EN4 dataset24 (Supplementary Figs. 5a, 9a). Community thermal diversity was highest 81 

midway along thermal gradients. Thermal ranges were larger for plankton than demersal species, with 82 

plankton thermal ranges increasing in size with latitude (Supplementary Figs. 5b, 6). Average species’ 83 

thermal affinity and range width in 2° grid cells were positively correlated in cool-temperate latitudes, 84 

where cold-affinity species having smaller thermal ranges than those from lower latitudes, and 85 

negatively correlated towards sub-tropical areas (Supplementary Fig. 6d). This pattern results from the 86 

bounds on species thermal ranges at the equator and the poles (Supplementary Figs 5, 6). 87 

For SST-derived CTIs, areas with strong vertical temperature gradients had more negative 88 

community thermal bias in demersal species (Fig. 3a), with species’ STIs more associated with cooler 89 

subsurface (50-100 m) rather than surface temperature. Plankton community thermal bias was less 90 

influenced by vertical gradients, suggesting a stronger association with surface temperatures. CTI 91 

derived from seabed temperature was more weakly associated with the spatial pattern in SBT 92 

(Methods, Supplementary Fig. 9g). 93 

Both plankton and demersal communities, aggregated over 2° areas, changed in thermal affinity 94 

from 1985 to 2014 (Fig. 2, Supplementary Fig. 8) at local (<500 km) to ocean-basin scales (10,000 95 

km). Sea surface temperatures warmed across the North Atlantic over this period by up to 0.5°C per 96 
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decade, but cooled slightly or stayed the same in the Northeast Pacific (Fig. 2a,b). Regional trends in 97 

CTI for plankton and for demersal fish and invertebrates more clearly followed trends in sea surface 98 

temperature (R2 = 0.23, Fig. 2e) than seabed temperature (R2 = 0.1 Supplementary Fig. 9g). Demersal 99 

communities shifted towards dominance by warm-water species around northeast USA and Europe, 100 

while North Pacific, southeast USA and other areas with little temperature change had stable CTIs (Fig. 101 

2c). CTI changes in plankton communities were also most pronounced in areas of greater SST change 102 

in the northwest Atlantic and the northwest European Shelf (Fig. 2d).  103 

In European waters, CTI for demersal species changed more consistently than plankton CTI (Fig. 104 

2c,d), especially in the southern North Sea, despite observed large distribution changes in plankton 105 

species25. Reduced CTI sensitivity in plankton is expected given the greater temperature ranges of 106 

plankton species compared to demersal invertebrates and fishes (Supplementary Figs 5c, 6d). The 107 

positive effect of thermal diversity and inverse effect of community thermal range (CTR) on CTI 108 

sensitivity explained much of the variability in responses of community composition to warming 109 

(R2=0.39), but the negative and near-zero response of Canadian demersal communities remained (Fig. 110 

3c). Vertical gradients in temperature (up to 7°C over the top 50m) explained much of the remaining 111 

variation in sensitivity of CTI to temperature, improving the performance of regression models (Fig. 112 

3c, Supplementary Table 4). SST-derived thermal bias in natural communities had a small positive 113 

effect on sensitivity, but this effect was lost when compared alongside vertical and horizontal gradients 114 

in regression models (Supplementary Table 4, Model R1). Horizontal spatial gradients in surface 115 

temperature had no effect on CTI sensitivity when considered with vertical gradients (Supplementary 116 

Table 4).  117 

Reduced CTI sensitivity to surface warming in areas of steep vertical temperature gradients is 118 

consistent with a redistribution of species to greater depths26. Such vertical gradients may allow 119 
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thermal niche tracking without horizontal shifts, and may provide refugia for cold-water species 120 

without significant ecological consequences, unless limited to the surface by a need for light 121 

(phytoplankton, coral, macroalgae), or habitat (intertidal organisms). The lack of influence of 122 

horizontal thermal gradients on CTI sensitivity to surface temperature change suggests that horizontal 123 

shifts in species distribution had comparatively little effect at the scale of the analysis (2° × 2° grids 124 

over 30 years).  125 

Patterns of observed CTI sensitivity matched expectations from simulations. More change in 126 

community composition was seen in communities composed of species with greater diversity of 127 

thermal affinities, narrower thermal ranges, and without access to refuges from climate change at 128 

greater depths (i.e., outside areas of steep vertical temperature gradients where observed changes do not 129 

match predictions). While negative thermal bias has been implicated as an indicator for community-130 

level vulnerability with warming17, we found instead instances of apparent negative SST-derived 131 

thermal bias (e.g. demersal species in the Canadian Atlantic Maritimes: Fig. 3a) that were better 132 

explained by vertical temperature gradients, with species’ affinities closer to temperatures experienced 133 

at depth than surface temperatures.  134 

Studies of birds, butterflies and plant communities showing smaller changes in CTI than changes 135 

in temperature have generally been interpreted as lags in response5, 9, 10, 11, 12, but thermal range width 136 

and community thermal range effects on CTI sensitivity may explain some of these apparent lags. 137 

Short-lived plankton and species of highly mobile fish and invertebrates may be more responsive to 138 

temperature change in time and space2, 6 than analogous communities on land, potentially as a 139 

consequence of living closer to their thermal limits27. Communities of long-lived, slowly dispersing 140 

species may be less responsive in thermal affinity composition when increasing in abundance, but may 141 

decline rapidly, as in the loss of cold-water kelp and influx of tropical fish in response to a recent 142 
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warming event in Western Australia28. Slower-than-expected community responses may also be caused 143 

by compensatory population dynamics29 in individual species. Replacement of cooler-affinity species 144 

by incoming warmer-affinity species is not possible in the tropics, likely resulting in the depression in 145 

species richness at the equator30. In addition, geographical barriers can also restrict routes for incoming 146 

migrants, such as in the Mediterranean31, resulting in a lowered species turnover6 and capacity for CTI 147 

change17.  148 

Our study shows the dominant effects of recent temperature change on community turnover across 149 

marine species from regional to ocean scales, regardless of other influences such as fishing impacts and 150 

ocean acidification. The prediction of temperature effects at community scales derived from species 151 

thermal performance curves32 provides a benchmark against which the pace of reorganization of global 152 

biodiversity to climate can be judged, and allows assessment of the performance of quantitative 153 

models3, 4. The predictability with which thermal diversity, average thermal range width and vertical 154 

temperature gradients directly drive patterns of sensitivity of community composition to warming gives 155 

a strong prognosis for the resilience of ocean communities to respond to climate change. In the 156 

northern temperate coastal oceans in this study, warm-tolerant species of plankton and fishes are slowly 157 

replacing their cold-tolerant counterparts over the timescales of climate change, and if those species 158 

have similar roles, suggesting a capacity for the oceans to continue to function.  159 

Methods 160 

Methods, including statements of data availability and any associated accession codes and 161 

references, are available in the online version of this paper. 162 
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Figures  280 

 281 

Fig. 1 | Simulated communities to illustrate the effects of thermal diversity and thermal range 282 
width on the sensitivity of Community Temperature Index (CTI) to temperature change. a, a 283 
Gaussian abundance-temperature distribution for Species Temperature Index (STI) = 15 and Species 284 
Thermal Range (STR) = 10. b, quantiles (a50 = 50th percentile etc.) of abundance across thermal 285 
ranges for US trawl survey species. c-f, Thermal characteristics in simulated pools of species varying in 286 
thermal diversity and thermal range, showing subsets forming communities at 15oC mean annual sea 287 
temperature. g, Sensitivity in simulated communities (symbols) of Community Temperature Index 288 
(sCTI, the ratio of CTI change to temperature change) to changing Community Thermal Diversity 289 
(CTDiv). Thermal diversity in the species pool (standard deviation of STIs) and the species thermal 290 
range were changed for each simulated community of 1000 species, with average sCTIs shown for 291 
1000 repeat runs. Grey lines and similar coloured symbols link simulated communities with the same 292 
thermal diversity, black lines linking communities with similar thermal ranges . Letters in g indicate the 293 
sensitivity of CTI associated with thermal diversity and thermal ranges in the example communities 294 
shown in c-f.  295 

 296 

Fig. 2 | Trends in temperature and composition of demersal and plankton communities shown by 297 
Community Temperature Index (CTISST) values from 1985 to 2014. a, Trend in sea surface 298 
temperature (SST) from the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST v1) 299 
where blue is colder and red warmer. b, as (a) aggregated into the 2° × 2° latitude-longitude grid cells 300 
surveyed for plankton and demersal fish. c, Trends in CTISST for bottom trawls, and d, for Continuous 301 
Plankton Recorder hauls. e, CTISST trends compared with SST trends. CTI trends are shown as 302 
bootstrap averages and standard deviations of computed regression slopes over time (n=500 using 303 
random selection of species with replacement). SST trends are shown as regression slopes ± standard 304 
errors. Symbol sizes are scaled by the number of years sampled, while colours denote the survey 305 
programme (black, CPR, Continuous Plankton Recorder; red, DFO, Department of Fisheries and 306 
Oceans, Canada; green, IBTS, International Bottom Trawl Survey; blue, NMFS, US National Marine 307 
Fisheries Service). The dependence of CTISST trend on SST trends per gridcell is shown by two 308 
regression slopes ± 95% confidence intervals: with an intercept term (solid line with grey shading, 309 
Model A, R2=0.08) and without (line with red shading, Model B, R2=0.23, Supplementary Table 4). 310 

   311 

Fig. 3 | Trends in Community Temperature Index (CTISST) for Northern Hemisphere demersal 312 
and plankton communities from 1985 to 2014 influenced by near-surface vertical and horizontal 313 
temperature gradients. a, Thermal bias (CTISST –SST) versus vertical temperature gradient (lower 314 
regression through demersal species, upper regression through plankton). b, Difference between 315 
observed CTI trends and those predicted from surface temperature trends (Model B residuals) versus 316 
local Community Thermal Diversity. c, Residuals from a regression including SST trends combined 317 
with community thermal diversity, community thermal range (Model I residuals, mapped in d) versus 318 
local vertical temperature difference. Error bars in a-c show bootstrap standard errors for CTISST trend 319 
estimates. e, Vertical temperature gradients (0-50m, 1985-2014 from Hadley Centre EN4 dataset). f, 320 
Relationships among CTI sensitivity, vertical and horizontal temperature gradients and thermal bias 321 
shown by correlation (grey arrows, round parentheses) and regression beta coefficients (black arrows, 322 
square parentheses) from regression of residuals from b (Supplementary Table 4 Model R1).  323 

324 
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Online only Methods 325 

Simulation of sensitivity of the community temperature index to temperature change.  326 

Expected effects on the response of community thermal indices to temperature change were 327 

explored in a simulation model based on species-level functions relating abundance to temperature. 328 

Four functional forms were used: (i) Gaussian, with abundance declining symmetrically away from a 329 

central optimum, (ii) a trimmed Gaussian, with a central plateau, and (iii) left- and right-skewed 330 

functions based on the gamma distribution (Supplementary Fig. 1). Pools of 1000 species were created 331 

by randomly selecting species’ thermal midpoints (STI) from a Gaussian distribution with a mean of 332 

15°C plus or minus an offset representing thermal bias 17, the degree to which the community is 333 

composed of types from warmer or colder conditions. Variation in thermal affinities in the species pool 334 

was manipulated via the standard deviation of STI values in the species pool, (sdSTI, species pool 335 

thermal diversity in Fig. 1e). Each species in the pool was assigned a thermal range (STR, species pool 336 

thermal range in Fig. 1e), as the difference between the 90th and 10th percentiles of the abundance-337 

temperature function.  338 

The four abundance-temperature functions (Supplementary Fig. 1) simulated different patterns of 339 

abundance across species ranges. The Gaussian function represented species that are more abundant, or 340 

occur in a greater proportion of samples, at the centre of the distribution range. In this form, the 341 

equivalent standard deviation for a given STR (the difference between the 10th and 90th percentiles of 342 

the distribution) was obtained by dividing STR by 2·t0.1,∞ (the number of multiples of SD percentiles of 343 

a Gaussian distribution). Simulated abundance (or incidence) of any species across the range of 344 

temperatures considered, here 0°C to 30°C, was obtained from the probability density function of the 345 

Gaussian distribution with the species’ STI as the mean and SD-equivalent range width as its standard 346 

deviation (as in Fig 1a-d). For the trimmed Gaussian function, simulated abundance between mean–SD 347 
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and mean+SD was set at the probability density value for the mean-SD and otherwise followed the 348 

standard Gaussian formulation. For the skewed functions based on the gamma distribution, simulated 349 

abundance was produced using the gamma probability density function for varying shape values, and 350 

scale factors obtained by dividing the STR by the difference between the 90th and 10th percentiles of 351 

each gamma distribution for the applicable shape value and a scale factor of 1.  352 

Simulated abundance/incidence values were used to calculate Community Temperature Index 353 

values (CTI, abundance-weighted average STI) and Community Thermal diversity (CTDiv, abundance-354 

weighted standard deviations of STI values) at different temperatures. The sensitivity of CTI to 355 

temperature change (sCTI) was measured by calculating CTI for species at temperatures 0.1°C below 356 

and above 15°C, and dividing the difference in CTI values by 0.2°C to give the ratio of CTI change to 357 

temperature change.  358 

We used linear regression analysis to analyse the response of CTI sensitivity (sCTI) to the 359 

distribution of species thermal properties in these simulated communities. For the Gaussian abundance-360 

temperature function, CTI sensitivity exactly depended on the squared ratio of CTDiv to STR 361 

(Supplementary Table 3, Model Z), with thermal bias having no meaningful effect. Adding variable 362 

Species Thermal Ranges (Supplementary Table 3, Model Z1) reduced the sensitivity of CTI to 363 

temperature at low levels of thermal diversity, but the effect was relatively small (Supplementary Table 364 

5). With a flattened response of abundance to temperature emulated by the trimmed Gaussian function, 365 

the negative effect of average species thermal range (CTR) was completely eliminated. Communities 366 

composed of narrow- or wide-ranged species for the same level of thermal diversity had the same CTI 367 

sensitivity (Supplementary Fig. 2b). This suggests that CTI metrics estimated from range information 368 

alone would not be sensitive to the average range width of the species involved for this functional form. 369 
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For the asymmetrical abundance-temperature functions represented by the gamma and reversed 370 

gamma functions (Supplementary Fig. 1), the effects of varying CTDiv, CTR and the shape of the 371 

function were similar in both cases (Models Z3 and Z4, Supplementary Fig. 2c, 2e) but the effects of 372 

thermal bias depended on the direction of the skew. For the right-skewed gamma distribution, CTI 373 

sensitivity to temperature increased with thermal bias, producing a CTI that would change more rapidly 374 

with temperature if composed of warmer-water species. The left-skewed reverse gamma abundance-375 

temperature function, with a shape more similar to physiological temperature performance curves, 376 

showed the opposite effect, with more sensitivity of CTI to temperature if the community was 377 

composed largely of species from colder waters. This behaviour suggests the rapid changes in 378 

abundance at temperatures above the optimum produce more rapid shifts in CTI than the more gradual 379 

changes in abundance below the optimum (Supplementary Fig. 1d). Notwithstanding such effects of 380 

functional form of the abundance-temperature response on the sensitivity of CTI to temperature, the 381 

observed patterns of abundance more closely followed the simple Gaussian function (see section: 382 

Average abundance and incidence across species thermal ranges). 383 

Marine community data sources.  384 

Five marine community datasets were used (Supplementary Table 1). For analysis of patterns in 385 

responses across spatially extensive time-series data, data from three bottom-trawl survey programs 386 

and one plankton sampling program were downloaded and prepared such that every taxon record in 387 

each sample (either a single trawl or section of Continuous Plankton Recorder silk) was associated with 388 

a latitude, longitude and date. The three bottom-trawl surveys were organized into different regional 389 

sampling programs, and data from each regional program were combined. US National Marine 390 

Fisheries Service (NMFS) data were obtained from the Ocean Adapt website and pre-processed using 391 

existing R code (Pinsky group, https://github.com/pinskylab/OceanAdapt downloaded February 2016). 392 
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European International Bottom Trawl Survey (IBTS) datasets were downloaded in a common format 393 

with details of sizes of species caught and of each trawl, of which only the abundance, date and 394 

location were used. Canadian Department of Fisheries and Oceans data came from the Ocean 395 

Biogeographical Information System (OBIS) web portal, with similar details of sampling. Continuous 396 

Plankton Recorder data were obtained directly from the Continuous Plankton Recorder Survey, 397 

including date of hauls, longitude and latitude alongside estimated species abundance.  398 

Each dataset recorded abundance in a different way but, for every dataset including those that 399 

lacked abundance data, analyses were possible using species incidence among samples taken in the 400 

aggregating location and period. Species incidence (the relative frequency of trawls in which the 401 

species occurred, for data aggregated by area and time period) was used as the weighting factor in all 402 

calculations of community thermal metrics (CTI, CTDiv, CTR), and was highly correlated with 403 

abundance when available (Supplementary Fig. 10).  404 

Ocean temperature data. 405 

 We used five sea-surface-temperature datasets and one layered subsurface dataset for analysis of 406 

temperature change in the study region (Supplementary Table 1). Annual sea surface temperatures per 407 

1° latitude-longitude grid cell were averaged over 1985 to 2014 for each dataset to represent long-term 408 

climate over the period of surveys.  Seabed temperatures were derived from the deepest layer in the 409 

Hadley Centre EN4 dataset and averaged over the same period. Trends in °C/yr were calculated for 1° 410 

cells using annual means from 1985 to 2014 (Fig. 2e, Supplementary Fig. 13). Vertical gradients in 411 

temperature (Fig. 3d) were calculated using the EN4 dataset25 from layer means (surface: 5.02m, 412 

“50m”: 45.4m, “100m”: 98.3m, “200m”: 207.4m) based on annual means from 1985 to 2014 .  413 
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Derivation of Species Temperature Indices (STIs) and fitted Maxent models.  414 

Global predicted distribution maps were produced using presence-only Maxent models for each 415 

species in fish and plankton datasets occurring in ten or more 1° cells, and using default parameters for 416 

a random seed, convergence threshold, maximum number of iterations, maximum background points 417 

and the regularization parameter3 (Maxent version 3.3.3k). Observations of species presence from 418 

OBIS were gridded such that 1° grid cells with observations were set as present. Only 2% of species 419 

were found in <10 1°latitude/longitude gridcells, with most species found in 10 to 100 gridcells (10-32, 420 

36%; 32-100, 37%; >100, 24%). These observations were then modelled as a function of the following 421 

environmental predictors: (1) average annual temperatures from the HadISST v1.1; (2) the logarithm of 422 

distance to the nearest coastline; (3) ocean depth from the GEBCO marine atlas; and (4) FAO major 423 

fishing areas (http://www.fao.org/fishery/area/search/en). Frequency of all records in OBIS in 1° grid 424 

cells was used as the bias correction file. Although we did not additionally spatially thin the input 425 

records as has been suggested33, the reduction of records to presence in 1° cells and inclusion of the 426 

bias file were attempts to reduce spatial bias due to uneven sampling effort. Global maps of predicted 427 

presence were produced using a threshold probability of 0.4, restricting the range of possible areas to 428 

those of high suitability4.  429 

Resulting Maxent-predicted distribution maps were used to extract sea temperature values from 430 

long-term climatology average 1985-2014 from HadISST (henceforth CTIhadsst1), EN4 surface 431 

(averaged across species to give CTIen4sst) and EN4 seabed (giving CTIen4sbt). Quantiles (0, 0.1, 432 

0.25, 0.5, 0.75, 0.9 and 1.0, area-weighted by the cosine of the latitude) of these map-extracted 433 

temperatures were used to define the thermal niche of the species. The 50th percentile (median) of 434 

temperatures in occupied areas was used as the Species Temperature Index (STI, derived separately for 435 

HadISST and EN4 SST and seabed). The difference between 10th and 90th percentile temperatures (T90 436 

– T10, Fig. 1a) defined the Species Thermal Range (STR). A Species Temperature Index derived as the 437 
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average of T90 and T10 values obtained from species presence in 1° grid cells (giving CTIhadsst2 and 438 

directly comparable to 17) was also used to compare analyses based on observation-derived thermal 439 

affinities with analyses derived from modelled distributions (CTIhadsst1). 440 

Patterns in ocean temperature were used twice in the analysis: (i) as long-term mean values 441 

matched to modelled species distributions to derive STIs and STRs, and (ii) as local trends over the 30-442 

year study period to compare with local trends in CTI values. Despite the use of information on sea 443 

temperature more than once, information flows in the derivation of species thermal affinities and 444 

analysis of spatial patterns were separate from those in the analysis of temporal patterns in community 445 

thermal composition related to temperature trends (Supplementary Fig. 4). These separate pathways 446 

allowed us to avoid circularity in reasoning. 447 

 448 

Average incidence (relative frequency of occurrence) across species thermal ranges. 449 

The form of the relationships of species incidence with range location was determined by first 450 

matching species’ incidence to local temperatures in 2° grid cells, and then locating those temperatures 451 

relative to the thermal limits of the distribution of each species (Fig. 1b, Supplementary Fig. 3). 452 

Average incidence values were calculated for every species in 2° latitude-longitude grid cells as the 453 

frequency of samples in which the species occurred, expressed as a proportion of the total number of 454 

samples across the whole period of each survey. Range location was derived from the average 455 

temperature in the cell relative to range limits (Fig. 1b, T10 and T90, equation in Supplementary Table 456 

2).. Incidence values per 2° cell were rescaled for every species to give values relative to the average 457 

incidence within the STR, so reducing the effect of prevalent species on the resulting pattern. 458 

Percentiles (50%, 75%, 90%) of scaled-incidence values were then calculated in range-location unit 459 

classes of 1/25 from -2 to 2 (Fig. 1b, Supplementary Fig. 3). To check how well incidence reflected 460 
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species abundance, calculations were repeated for abundance measures where available (average 461 

weight per trawl for NMFS data and number per haul for CPR and IBTS data) by summing numbers or 462 

biomass and dividing this sum by the total number of samples in each 2° latitude-longitude grid cell 463 

(Supplementary Fig. 3). Abundance changes across thermal ranges were calculated in the same way as 464 

incidence changes. 465 

Community Temperature Index (CTI), Thermal Diversity (CTDiv), average Species Thermal 466 

Range (CTR) and Thermal Bias in surveys. 467 

CTI values were calculated as incidence-weighted average STIs using data aggregated in 2° × 2° 468 

areas to produce maps (Supplementary Figures 4 and 9), and temporal trends (Fig. 2). Community 469 

thermal diversity, CTDiv, the spread of STI values around each CTI measure, was similarly calculated 470 

as the incidence-weighted standard deviation of the STIs for species present in the grid cell or grid cell/ 471 

year combination. Community thermal range (CTR) was the incidence-weighted average of species’ 472 

STR values. Incidence (relative frequency of species in samples per aggregation unit) was used as the 473 

weighting factor because abundance was expressed differently in each dataset (Supplementary Table 474 

1): as total numbers per trawl sample (IBTS data), biomass per haul (NMFS data), and as scores per 475 

silk (CPR data). However, incidence was strongly related to abundance in each set for which 476 

abundance data were available (Supplementary Fig. 8). Thermal bias was calculated as the CTI minus 477 

local sea temperature (using whichever temperature dataset was used to derive corresponding STIs), 478 

giving positive values where more species were from warmer areas and negative values where the 479 

species were from cooler places.  480 

Uncertainty in CTI estimation is often poorly estimated34 so, in addition to the four alternative 481 

methods of derivation of STIs, we used bootstrap resampling of species to generate standard errors and 482 

confidence intervals for means and trends in CTI and for the outcomes of more complex regression 483 
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analyses. Bootstrap sets of species were randomly selected with replacement from those in each survey 484 

scheme (141 CPR, 285 IBTS, 585 NMFS, and 285 DFO species). The frequency of each species in the 485 

bootstrap set was used as a multiplier on species incidence as the weighting factor (wi in 486 

Supplementary Table 2) to give bootstrap estimates of each of the community thermal metrics. Each 487 

metric (annual mean, anomaly, trend) and regression model was computed for 500 repeated bootstrap 488 

species selections, and summarised to give bootstrap averages, standard errors and 95% confidence 489 

intervals.  490 

For time-series analysis, the annual CTI values averaged per 2° × 2° grid cell were expressed as an 491 

anomaly from the 1985-2014 average CTI for that cell. US NMFS data had several regional series that 492 

occurred together in the same grid cell, notably in the Northeast and Southeast US spring and fall 493 

series. In this case, anomalies were calculated for each series separately then averaged to give final CTI 494 

values for that cell. Trends in CTI for each 2° × 2° cell were calculated using all years for which CTI 495 

values were available, and matching trends for SST values were calculated for the same set of years.  496 

Uncertainty in annual CTI anomalies and temporal trends: data filtering 497 

The magnitude of CTI anomalies from long-term means in 2° × 2° grid cells shows the effect of 498 

sampling effort on the uncertainty in these estimates (Supplementary Fig. 11a, b). As expected, given 499 

the standard error of the mean being proportional to the underlying standard deviation multiplied by the 500 

square root of the sample size, the magnitude of anomalies declined with the number of species records 501 

(STIs) used to compute each CTI value (Supplementary Fig. 11a). CTI anomalies were omitted from 502 

trend analysis for bottom-trawl surveys if comprising fewer than 20 species records. Similarly, annual 503 

CTI anomalies tended to be larger when composed of fewer bottom trawls or plankton samples. 504 

Estimates based on fewer than 10 bottom trawls or plankton hauls per year were also excluded from 505 

further analysis (Supplementary Fig. 11b). 506 
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Standard errors associated with trends in CTI over time in each 2° × 2° grid cell were also related 507 

to the number of years sampled and the total species records over the time series in each cell 508 

(Supplementary Fig. 11c, d). Trends based on fewer than 10 years of data and less than 1000 species 509 

records were omitted from further analysis.  510 

Analysis of trends in CTI versus community thermal traits: community thermal diversity 511 

(CTDiv), average thermal range width (CTR) and thermal bias, and predictions of sensitivity 512 

from simulated communities. 513 

Relationships between trends in Community Temperature Index (as bootstrap-mean CTISST) and 514 

trends in sea temperature (HadISST), as modified by community thermal affinities, were analyzed by 515 

fitting least-squares multiple linear regression models (Supplementary Table 4). The relative 516 

importance of models was evaluated using Akaike weights. Intercepts were omitted from models 517 

because no CTI change would be expected where the temperature trend was zero (unless there was 518 

some delayed shift from an earlier period of warming or cooling). Adding intercepts back into these 519 

models (Models A and Ci to Ni) had very little effect on model fits (as shown by ΔAICc) or the 520 

parameter value estimates, and did not result in intercepts that were significantly different from zero.  521 

Terms were introduced first as linear effects and then as squared terms, reflecting the results from 522 

the simulation model (Model Z). Modifying effects of average community thermal metrics (CTDiv, 523 

CTR, Thermal bias) and local vertical and horizontal gradients in average temperature were expressed 524 

as interactions with the temporal trend in sea surface temperature to address sensitivity of CTI to 525 

temperature. Considering effects only as interaction terms reflected the assumption that change in 526 

average thermal affinity would respond to changes in temperature, and that patterns of local average 527 

thermal diversity, species range, or thermal bias would modify that change in CTI in response to 528 

temperature. The model with the squared ratio of community thermal diversity (CTDiv) to species 529 
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thermal range (CTR, Model G) links the observational data with the simulation analysis. In simulations 530 

using the Gaussian function, regression of log CTI sensitivity on log STR (=CTR in this case, since all 531 

species in the simulation had the same STR) and CTDiv gave a perfect fit with coefficients of -2 and 2 532 

respectively, which back transforms from logs to the one-parameter equation involving the squared 533 

ratio of CTDiv to CTR (Model Z). 534 

Adding the interactive effect of thermal diversity (CTDiv) to SST trend (dSST) produced a better 535 

model (Model D vs B, AICcD - AICcB = -63.90), while adding thermal range (CTR) alone did not 536 

(Model C vs B, AICcC - AICcB = -2.52). Including both factors, either as linear predictors (E) or 537 

squared terms (F), further improved the model (Model E vs B, AICcE - AICcB = -82.62; Model F vs B, 538 

AICcF - AICcB = -77.03). Thermal diversity was negatively correlated with inverse thermal range 539 

width, resulting in large changes in parameter values when each factor was added to a model 540 

containing the other. The squared-ratio model (CTDiv2:CTR2), Model G, equivalent to the model fitted 541 

to simulation data (Z), had similar explanatory power to other models including those terms (E, F). The 542 

parameter value for this model (G, 7.63) was close to the 6.54 obtained for simulated communities (Z).  543 

Thermal bias affected CTI sensitivity in the simulations, negatively or positively depending on the 544 

direction of skew of the abundance-temperature relationship, and so was introduced as an addition to 545 

the squared ratio model. Adding thermal bias slightly improved model fit (Model H vs G, AICcH - 546 

AICcG = -1.18) and increased the sensitivity of CTI by 0.04 for each °C of thermal bias. This positive 547 

effect meant that communities comprising warm-water species showed greater change in CTI than 548 

those composed of cold-water species for the same change in temperature. The effect was also 549 

consistent with the effect of realized right-skewed (gamma) abundance-temperature distribution in the 550 

simulations, but not a left-skewed one as implied by typical physiological thermal performance 551 

curves35.  552 
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Both horizontal and vertical gradients in temperature were expected to influence CTI sensitivity. 553 

Steep vertical gradients in temperature may have a negative effect on CTI sensitivity because species 554 

may be able to shift to cooler temperatures in the same area by moving deeper. Gentle horizontal 555 

gradients in temperature, combined with temperature change through time, result in higher velocities of 556 

climate and thereby more rapid distribution shifts among species2, 18. With a greater rate of species 557 

turnover in areas of high climate velocity, we expected a negative relationship between CTI sensitivity 558 

and the magnitude of the horizontal gradient in temperature. Adding shallow vertical temperature 559 

differences (surface less 50m) improved the model with community thermal diversity and thermal 560 

range (Model I vs G, AICcI - AICcG = -33.39), albeit with no effect of vertical differences from surface 561 

to 100m (Model J) or 200m depth (Model K). Adding horizontal temperature gradient (Model L) to the 562 

basic model (G) had a smaller effect on model fit (AICcL - AICcG = -3.15) and did show the expected 563 

negative influence of the horizontal gradient. Combining vertical and horizontal gradients in 564 

temperature (Model M) did not improve model fit, and the horizontal gradient coefficient did not differ 565 

from zero. A regression model that included thermal bias effects as well as horizontal and vertical 566 

gradients in temperature (Model N) was the most parsimonious, albeit with the parameter for horizontal 567 

gradient not significantly different from zero. Residuals from the squared-ratio model proved to be 568 

related most strongly to the effect of vertical temperature gradient (Model R1, Fig. 3b).  569 

Cross validation of was used to examine the predictive skill of Model I (Supplementary Table 4, 570 

Supplementary Fig. 12). We used dataset type (bottom trawls or plankton) and latitude and longitude 571 

(giving contiguous spatial blocks) to split the data into near similar-sized training and test datasets, with 572 

each set alternately used as the training set for the other test set of data. Choices of splits for latitude 573 

(50°N) and longitude (40°W) were arbitrary, but adopted to produce adequately sized datasets for 574 

fitting. Model I fitted to the plankton subset as training data (Model Icpr) and bottom-trawl subsets 575 

(Model Idem) produced similar parameter estimates (significant P<0.05), with CTI trends for bottom 576 
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trawls explained markedly better. Splitting into plankton and demersal species gave the worst fits to the 577 

other as test data (CV rsme 0.0284), the plankton training set predicting larger CTI trends than the 578 

bottom-trawl training set. Splitting by latitude and longitude gave similar root mean squared errors to 579 

the plankton / bottom-trawl split (Supplementary Table 4), but produced non-significant parameter 580 

estimates for the vertical temperature gradient term for data west of 40°W. Model residuals for Model I 581 

showed some spatial structure (Supplementary Fig. 12a), with evidence for spatial autocorrelation in 582 

the CTI trends and in the predictor variables (Supplementary Fig. 12b-c). 583 

Of all predictors tested beyond the effects of thermal diversity and thermal range, the vertical 584 

temperature gradient effect had the largest influence on CTI sensitivity, (Fig. 3f). The apparent positive 585 

effect of thermal bias was due to the negative association with vertical gradient for demersal species 586 

(Fig. 3a), and the small negative effect of horizontal gradient was due to the weak positive association 587 

of vertical and horizontal gradients of temperature, particularly in the northwest Atlantic.  588 

Evaluation of explanatory power of alternate sea temperature datasets in explaining spatial 589 

variation in trends in CTI anomalies 590 

We fitted a subset of regression models in Supplementary Table 4 to every combination of four 591 

variants of CTI and temperature trends from nine dataset layers: five surface layers (EN4SST, 592 

COBESST, ERSST, HadISST and OISST, Supplementary Fig. 13) and four subsurface layers 593 

(EN4SBT, EN4 50m depth, EN4 100m depth and EN4 200m depth). Models were fitted for every 594 

bootstrap selection of species (n=500), with model fits and 95% bootstrap confidence intervals shown 595 

in Supplementary Fig. 14. The most variation in CTI was explained for CTISST from STIs obtained by 596 

matching modelled species distributions to surface temperature (aCTIen4sst and aCTIhadsst1), with the 597 

poorest performance of models fitted to CTISST from STIs obtained by matching 1° mapped 598 

observations of species presence in gridcells (from OBIS data summed for the period 1960 to 2009) to 599 
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surface temperatures (aCTIhadsst2). Trends in seabed temperatures did least well in terms of adjusted 600 

R2 at predicting CTISBT or CTISST. Models that included terms for the squared ratio of thermal diversity 601 

to range width fitted better when in combination with magnitude of vertical gradient and/or horizontal 602 

gradient.  603 

Data availability 604 

The data that support the findings of this study are available at the publicly accessible repositories 605 

listed in Supplementary Table 1.The Community Temperature Index (CTI) values and species thermal 606 

affinity data that support the findings of this study are available as annual values and 30 year means36 607 

(Supplementary Fig. 7) and as trends37 in 2° × 2° grid cells (Figs 2, 3, Supplementary Fig. 5). Species 608 

thermal affinities derived from models and observations are also available38. Source data for the 609 

analyses presented are available at links given in the supplementary information files. Source code for 610 

the simulation of CTI response to temperature change is available at 611 

https://github.com/michaeltburrows/ctisimulation (Fig. 1). 612 

33. Kramer‐Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, et al. The 613 
importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 614 
2013, 19(11): 1366-1379. 615 

34. Rodríguez-Sánchez F, De Frenne P, Hampe A. Uncertainty in thermal tolerances and climatic 616 
debt. Nature Climate Change 2012, 2(9): 636-637. 617 

35. Dell AI, Pawar S, Savage VM. Systematic variation in the temperature dependence of 618 
physiological and ecological traits. Proceedings of the National Academy of Sciences 2011, 619 
108(26): 10591-10596. 620 

36. Burrows MT. Community Temperature Index values for North Pacific and North Atlantic bottom 621 
trawls and plankton in 2° latitude/longitude areas annually from 1985 to 2014, 2019. 622 
(https://doi.org/10.6084/m9.figshare.9699068). 623 

37. Burrows MT. Trends in Community Temperature Index values for North Pacific and North 624 
Atlantic bottom trawl and plankton surveys for 2° latitude/longitude boxes from 1985 to 2014, 625 
2019. (https://doi.org/10.6084/m9.figshare.9699107). 626 

38. Burrows MT, Payne BL. Species Temperature Index and thermal range information forNorth 627 
Pacific and North Atlantic plankton and bottom trawl species, 2018. 628 
(https://doi.org/10.6084/m9.figshare.6855203.v1). 629 

39 Brodie, B., Mowbray, F. & Power, D. OBIS Canada Digital Collections. http://www.obis.org/ 630 
(Bedford Institute of Oceanography, Dartmouth, NS, Canada, 2013). 631 



26 

 

40 DFO. OBIS Canada Digital Collections. http://www.obis.org/ (Bedford Institute of Oceanography, 632 
Dartmouth, NS, Canada, 2016). 633 

41 Heessen, H. J., Daan, N. & Ellis, J. R. Fish Atlas of the Celtic Sea, North Sea, and Baltic Sea: 634 
Based on International Research-vessel Surveys.  (Wageningen Academic Publishers, 2015). 635 

42 ICES. https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx (ICES, 636 
Copenhagen, Denmark, 2015). 637 

43 Reid, P. C., Colebrook, J. M., Matthews, J. B. L., Aiken, J. & Team, C. P. R. The Continuous 638 
Plankton Recorder: concepts and history, from plankton indicator to undulating recorders. 639 
Progress in Oceanography 58, 117 (2003). 640 

44 Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-Scale Sea Surface Temperature Analysis and Its 641 
Uncertainty. J. Clim. 27, 57-75, doi:10.1175/jcli-d-12-00837.1 (2014). 642 

45 Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, 643 
validations, and intercomparisons. J. Clim. 30, 8179-8205 (2017). 644 

46 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical 645 
Information Theoretic Approach. 2nd edn,  (Springer Verlag, 2002). 646 

 647 

 648 

 649 

 650 



0 5 10 15 20 25 30

Temperature (°C)

d High thermal diversity, Wide thermal ranges

    e Low thermal diversity, Narrow thermal ranges

f Low thermal diversity, Wide thermal ranges

c High thermal diversity, Narrow thermal ranges g

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Simulated Community Thermal Diversity (CTDiv,°C)

C
T

I 
se

n
si

tiv
ity

 (
sC

T
I,
 °

C
 p

e
r 

°C
)

1
2

3
4

5
6

7
8

9
10

12
14

Species pool
Thermal diversity

2 4 6 8 10 12 14 1618
20

Species pool
Thermal range

e

f

c
d

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Temperature °C

A
b
u
n
d
a
n
ce

Gaussian Species 
Thermal Range

STR

T10 T90

Species Temperature Index

STI

T50

−2 −1 0 1 2

0
1

2
3

4

Location in Species Thermal Range

S
ca

le
d
 a

b
u
n
d
a
n
ce

a50
a75
a90

T10 T90

w

b

a

Community Temperature Index



−0.04 −0.02 0.00 0.02 0.04 0.06

−
0
.0

5
0
.0

0
0
.0

5
0
.1

0

Sea Surface Temperature trend (SST °C/yr)

S
S

T
 (

°C
/y

r)

CPR 10

DFO 20

IBTS 30

NMFS 60

a e

c

Trend in CTI North Atlantic planktonSST 

Trend in CTI  NW Pacific and Atlantic bottom trawlsSST

Sea surface temperature trend 

SST (°C/yr)

−0.05
−0.033
−0.017
0
0.017
0.033
0.05

Sea surface temperature trend per 2 x 2° grid cell b

d

C
T

I



0 1 2 3 4 5

−
4

−
2

0
2

4
6

8

Vertical temperature difference
(0 less 50m, °C)

T
h

e
rm

a
l B

ia
s 

(C
T

I S
S

T
 −

 S
S

T
, 

°C
)

a

d

Revised #1

Vertical 
gradient (°C/m)

Horizontal 
gradient (°C/km)

Thermal bias (°C)

CTI sensitivity
(residual °C/yr) 

(-0.30)

(+0.32)

[-0.40]

[-0.11]

[<-0.01]

2R  =0.12

0 1 2 3 4 5

−
0
.0

5
0
.0

0
0
.0

5
0
.1

0
0
.1

5

Vertical temperature difference
(0 less 50m, °C)

D
e
v
ia

ti
o
n
 f
ro

m
 p

re
d
ic

te
d
 C

T
I 
tr

e
n
d
 (

°C
/y

r)

CPR
DFO
IBTS
NMFS

cb

d

e

f

2 3 4 5 6

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Community Thermal Diversity (CTDiv, °C)

D
e
v
ia

ti
o

n
 f

ro
m

 p
re

d
ic

te
d

 C
T

I 
tr

e
n

d
 (

°C
/y

r)

CPR
DFO
IBTS
NMFS


