
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2019-11-28

Identifying Good Algorithm Parameters

in Evolutionary Multi- and

Many-Objective Optimisation: A

Visualisation Approach

Walker, David

http://hdl.handle.net/10026.1/15177

10.1016/j.asoc.2019.105902

Applied Soft Computing

Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Identifying good algorithm parameters in evolutionary multi- and
many-objective optimisation: a visualisation approach

David J. Walker and Matthew J. Craven

School of Engineering, Computing and Mathematics, University of Plymouth, UK.

Abstract

Evolutionary algorithms are often highly dependent on the correct setting of their parameters, and

benchmarking different parametrisations allows a user to identify which parameters offer the best

performance on their given problem. Visualisation offers a way of presenting the results of such

benchmarking so that a non-expert user can understand how their algorithm is performing. By

examining the characteristics of their algorithm, such as convergence and diversity, the user can

learn how effective their chosen algorithm parametrisation is. This paper presents a technique

intended to offer this insight, by presenting the relative performance of a set of EAs optimising

the same multi-objective problem in a simple visualisation. The visualisation characterises the

behaviour of the algorithm in terms of known performance indicators drawn from the literature,

and is capable of visualising the optimisation of many-objective problems also. The method is

demonstrated with benchmark test problems from the popular DTLZ and CEC 2009 problem

suites, optimising them with different parametrisations of both NSGA-II and NSGA-III, and it

is shown that known characteristics of optimisers solving these problems can be observed in the

visualisations resulting.

Keywords: Benchmarking, Parametrisation, Visualisation, Multi-Objective, Many-Objective,

Optimisation.

1. Introduction

Nature-inspired search algorithms are complex systems that are capable of optimising a great

range of scientific and industrial problems. Though various approaches have been proposed,

methods generally draw on the principles of natural selection and generate one or more solutions

to a given problem. Such methods are comprised of operators that mimic a process observed in

the natural world, which when assembled in a certain way result in a nature-inspired algorithm

(such as an evolutionary algorithm (EA), particle swarm optimiser (PSO) or differential evolution

(DE) algorithm). For example, the solution generation mechanism of a genetic algorithm (GA)

usually comprises a crossover operation, combining genetic material from two or more solutions,

followed by a mutation operation, in which a genetic change is introduced to a single solution.

PSO requires the updating of position vectors of the members of a swarm to move the swarm

Preprint submitted to Applied Soft Computing November 25, 2019

(representing a set of solutions) to a better part of the space, while DE requires the setting of

a crossover rate and a step size. All of these example operators use parameters to control their

operation, which the algorithm user must set in order to obtain the best possible results with their

algorithm.

Parametrising an algorithm can be a significant challenge [6, 11], and can require expert

knowledge about the use of nature-inspired techniques that is often not found in industry. This

requirement of expert knowledge is likely to reduce the ease with which non-experts in indus-

try can utilise cutting edge optimisation methods. This stems from the characterisation of many

nature-inspired methods as black-box methods, meaning that the user cannot easily observe their

operation in solving an optimisation problem. With this in mind, an obvious approach to making

such techniques more readily understandable to people outside of the Evolutionary Computa-

tion (EC) field is to visualise the operation of the algorithms on a given problem in such a way

that the user can identify operation characteristics that will assist them in the setting of param-

eters. Specifically, the aim of this paper is to visualise the benchmarking of different algorithm

parametrisations so that the algorithm user can identify which parametrisations offer best perfor-

mance for their problem.

As a subfield within EC, visualisation has been relatively active in recent years. Much of this

activity stems from the fact that the visualisation of solution quality is often a non-trivial matter.

Solution quality is quantified using an objective function – a mathematical formulation of solution

quality. Problems comprising one such function are called single-objective problems, while those

with more than one function are called multi-objective. A subset of these are termed many-

objective problems, and comprise four or more objective functions. A considerable amount of

research has been dedicated to visualising solutions to many-objective problems, as their objective

values cannot be easily mapped into the two or three dimensions that a human decision maker can

comprehend [30]. Some methods exist for visualising the search process itself [15, 19]; however,

work in this area is much less advanced.

A method [27, 28] was recently proposed in which the performance of an EA operating un-

der different parametrisations was visualised using performance indicators and colour to convey

different aspects of algorithm performance. The method was demonstrated on simple continuous

[27] and discrete [28] test problems, and it was shown that the method was able to convey known

properties about the algorithm used on those problems. This paper presents an extension of these

pilot studies, in which a more thorough characterisation of the visualisation method is made, and

the information about performance that it can convey is enhanced. Specifically, the paper offers

the following novel contributions:

1. The method is used to visualise the evolutionary behaviour of a greater range of algorithms.

Both initial studies operated with a simple GA and illustrated the operation of its mutation

operator; herein, the visualisation is expanded to show both crossover and mutation, and

the problems are optimised with NSGA-II and NSGA-III.

2

2. Both initial studies considered multi-objective problems (comprising two and three objec-

tives). This paper presents the example of many-objective problems, comprising five.

3. The initial studies used a limited set of performance measures (hypervolume and crowd-

ing distance). In this work, four indicators from the literature are examined – including

indicators that characterise decision space as well as objective space.

The test problems used in this work are drawn from the well-known DTLZ problem suite [9] as

well as the newer CEC 2009 suite [32]. The problems offered by the suite are scalable in the

number of objectives, and provide a range of problem characteristics on which to test algorithms.

The remainder of the paper is structured as follows. Some relevant background material is

discussed in Section 2, providing a brief introduction into multi- and many-objective optimisation

and an overview of existing methods for visualising evolutionary processes. Section 3 introduces

the visualisation method itself, before the experimental setup followed is outlined in Section 4

and results are discussed in Section 5. Concluding remarks are made in Section 6, as well as

some pointers towards future avenues of research resulting from this work.

2. Background

The problems considered in this paper are continuous multi-objective problems, though it is

noted that the visualisation method can generalise to discrete domain problems too [28]. Given a

set of solutions to such a problem, the i-th solution is denoted by a D-dimensional vector of real

numbers xi. This decision space component of a solution maps to an objective space component,

an objective vector of M real values denoting solution quality. For a problem comprising M

objectives, objective vectors are written as

yi = (f1(xi), . . . , fM(xi)), (1)

where yim is the value of the i-th solution on the m-th objective. Relative quality between multi-

objective individuals is compared using the dominance relation. Under dominance, solution xi is

superior to x j if it is no worse than x j on any objective and wholly better on at least one. Assuming

a minimisation problem, xi dominates x j (yi ≺ y j) if

yi ≺ y j ⇐⇒ ∀m (yim ≤ y jm) ∧ ∃m (yim < y jm). (2)

If neither yi ≺ y j nor y j ≺ yi then the two solutions are called mutually non-dominating. If

yi has no dominating solutions then the solution xi is said to be non-dominated. As a multi-

objective problem comprises a set of objectives which are usually in conflict (meaning that an

optimal solution under one objective has a poor fitness under another objective), there is no single

solution that simultaneously optimises all M objectives. Rather, the goal of optimising a multi-

objective problem is to locate (or approximate) the Pareto set. This is the set of feasible solutions

3

that maps to a set of non-dominated solutions in objective space, called the Pareto front. Solutions

lying on the Pareto front are mutually non-dominating.

Evolutionary methods have long been proposed that can generate a close approximation to

the Pareto front, and cover the full extent of the front. More recently, a subclass of problems

have been widely discussed in the EC literature – many-objective problems. These problems

are characterised by four or more objectives, which cause several issues to affect standard multi-

objective EAs (MOEAs). Of most relevance here is that the solutions generated by MOEAs have

high-dimensional objective vectors, which cannot be visualised in the three spatial dimensions a

human decision maker can comprehend using standard visualisation methods. Various approaches

to resolving this have been discussed in recent years [30]. Another issue is that standard MOEA

techniques cannot differentiate between high-dimensional objective vectors using dominance as

the probability of generating a mutually non-dominating individual within the objective space,

assuming a uniform distribution of objective vectors, increases rapidly with the number of objec-

tives [12]. Algorithms such as MOEA/D [31] and NSGA-III [7] have been developed to optimise

many-objective problems; NSGA-III is used later in this paper.

2.1. Benchmarking MOEAs and MaOEAs

Since the inception of multi-objective evolutionary algorithms, efforts have been made to

benchmark them by reporting their performance on test problems against indicators. In a com-

mon workflow, a proposed new algorithm is run on several test problems, and its performance on

those problems is assessed according to one or more indicators to describe, for example, the rate

of convergence, coverage of the true Pareto front, and the extent to which diversity is preserved

in decision space. Much of the early MOEA research was based on the use of test problems

developed in isolation, before suites of test problems designed to expose algorithms to differ-

ent problem features. The ZDT problems [33] provided researchers with a suite of 2-objective

problems, before being surpassed by the DTLZ problem suite [9], which has become ubiquitous

in MOEA research. Used herein, these problems are scalable in the number of objectives, and

have underpinned the advent of MaOEAs (many objective EAs) in recent years. Other problem

suites and frameworks have appeared, building on the strengths of their predecessors and provid-

ing problems that covered a greater range of problem features. Various reviews of problem suites

have been published in the literature (e.g., [16]).

2.2. Visualising Evolution in Nature-inspired Methods

The identification of correct parameters for an EA operating on a specific problem instance

has received considerable attention in the EC literature over the years. Important reviews have

been published in [6, 10], and a myriad of approaches have been proposed to work with specific

algorithms and on specific problems. A large majority of these methods are based on techniques

such as parameter sweeping and the a priori identification of a tuning process such as the set-

ting of an annealing schedule in a simulated annealing algorithm. In addition to selecting and

4

generating low-level heuristics, some hyper-heuristics also include parameter tuning elements,

such as that proposed in [21]. While this paper is concerned with EAs, other parameter tuning

in other types of metaheuristics has also been explored (for example, [26] discusses approaches

to parameter tuning within ant colony optimisation). All of these approaches are automatic in

nature – either an offline decision is made a priori that determines a parameter tuning policy that

the algorithm follows, or an online parameter tuning approach is taken. These approaches differ

to that taken in this work in that herein the aim is to include a decision maker – for example, the

algorithm developer or a problem owner – such that they are tasked with identifying good algo-

rithm parametrisations over poor ones using the visualisation proposed in this work. The purpose

of this is to allow a decision maker to bring their own intuition about how the problem works so

that they can better inform the optimisation process through interaction.

Of the work published on visualisation within EC, most focus falls on methods for visualising

sets of solutions. As many-objective algorithms, capable of generating populations of solutions

that are difficult to visualise, have matured it has been necessary to develop methods for present-

ing such populations to decision makers. Generally, population visualisation methods fall into

three categories. The first includes techniques for presenting solutions in terms of the original

objective vectors, such that objective values can be read from the visualisation. Examples include

parallel coordinate plots [17] and heatmaps [23, 30]. In the second category, visualisations are

constructed in terms of the full set of objectives, but the objective values are not observable from

the visualisation [29]. Finally, objective vectors can be projected into a new low-dimensional co-

ordinate space that can be presented with a standard visualisation tool such as a scatter plot [30].

Whatever category is employed, these visualisations are concerned with assisting the decision

maker to navigate the trade-off between objectives, and therefore are not constructed in terms of

the evolutionary processes used to generate solutions.

Various approaches have been taken to visualise algorithm operation. An example of them

presented a visualisation of algorithm operation of an EA optimising the water distribution net-

work design problem [19]. That problem requires the identification of a set of pipe diameters that

provide optimality in terms of the overall cost of a water distribution network, and its hydraulic

operation. Their approach coloured pipes according to the frequency with which they had been

mutated, showing the user which regions of the network the algorithm had finished working on

and which pipes were still being optimised.

Early visualisation work examined the visualisation of a single algorithm. An early example

is [22], in which a set of tools for visualising algorithm state was proposed. Among the tools were

visualisations for: displaying the history of a single run, showing all objective function values at

all generations during the optimisation process; visualising the distance between decision vec-

tors; and visualising the convergence properties of the algorithm. They also proposed using the

Sammon Mapping [24] to execute a multidimensional scaling of the search space so that the rela-

tive locations of good solutions found during the search can be displayed. That work considered

5

only single-objective problems. GAVEL [15], also demonstrated on single-objective problems,

provided another suite of tools with which evolutionary properties can be visualised. As well as

providing the standard fitness visualisations showing convergence (or lack thereof) to the optimal

point over time, GAVEL provides the ability to view the lineage of individual genes, as well as

illustrating what type of evolutionary operators went into the construction of the solution. An-

other method proposed a tool called EAVis, which was applied to single-objective instances of the

0/1 Knapsack problem [20]. This enabled the user to view ranked solutions, in displaying both

objective values for the population and individual decision vectors. Other information displayed

included the origin of the fittest individual, including the ability to see all of the solutions from

which it was derived.

Another sub-field within evolutionary computation in which lineage is important is that of

genetic programming (GP). An example in which GP was visualised used a graph-based structure

to visualise the origin of genetic material in the fittest final solution [3]. This enabled the algorithm

user to identify which crossover operations (their algorithm did not perform mutation) generated

useful solutions. Another study offered a similar capability, including mutation operations too

[5].

One aspect relevant to this work is the study of algorithm parameter stability [4]. It is well

known that various classes of optimisers are sensitive to changes in parametrisation, in that such

changes may have either a productive or detrimental effect on algorithm success. In particular,

a bad parametrisaton may result in no usable results at all. The work introduced a visualisation

where, against a metric in parameter space mapped to a distance in the visualisation, algorithm

performance is represented by colour. The visualisation acted as a tool to determine if an optimiser

on a cryptology problem is stable or not with regards to perturbation size. The authors explored

the question of how perturbing a parametrisation according to some metric changes algorithm

performance, and provided some results about the boundary of stability in parameter space, i.e.,

the point at which algorithm performance “falls off a cliff”.

3. The Proposed Visualisation

This paper demonstrates the use of a visualisation that displays algorithm parameters in com-

bination with the performance of the algorithm, characterised in terms of the convergence and

diversity of the search population. It does so in such a way that multiple algorithms are displayed

alongside each other in order to aid their comparison, enabling them to be benchmarked by a non-

expert user. The method is not concerned with solution representation; two pilot studies have been

published, one demonstrating its use on continuous problems and a discrete industrial benchmark

problem [27]; the other presented a lightly modified version of the original method and applied it

to visualising the performance of MOEAs optimising water distribution system designs [28].

The original method operated in terms of individual solutions within a population, and placed

them within a circle; the position of an individual within the visualisation is determined by its

6

θ

r

O

Figure 1: A schematic showing the placement of a single solution within the original visualisation method proposed.

[27]

parametrisation, and its score against a chosen indicator of performance. The placement of a

solution is shown in Figure 1. The single grey dot indicates a solution generated by one of the

algorithms being benchmarked. The radius of the solution indicates the parametrisation; in the

initial work, solutions were generated using a GA that operated with an additive Gaussian mu-

tation which added a value drawn from a Gaussian distribution N(0, σ) to a randomly chosen

decision variable. The value of σ was chosen uniformly in the range [0, 1], and was the parameter

shown using the radius of the solution. The parameter was fixed for an optimisation run, so a

population of solutions was shown by a trail of dots at the same distance from the centre of the

circle. The angle of the dot is determined by an indicator that conveys the quality of a solution.

Standard approaches for evaluating the quality of an MOEA’s operation are to consider its con-

vergence and diversity properties, enabling the user to understand how close the population is to

the true Pareto front, and whether there is sufficient diversity in the search population to allow it

to properly search the feasible space, rather than collapsing in on a potentially sub-optimal region

of the space.

The original studies measured convergence in terms of the hypervolume [13] (a rolling aver-

age was taken for the solution in question), while diversity was evaluated in terms of the crowding

distance used to preserve diversity within NSGA-II [8]. That work considered small populations

(10 solutions), which were found to produce good approximations to the Pareto front. When

moving to consider the discrete benchmark problem, larger populations were required and the

visualisation became cluttered. As such, a simple strategy was employed to “declutter” the visu-

alisation. To this end, rather than displaying each solution, the extent of the arc occupied by a

population was shown, along with the median indicator value. This was shown to substantially

enhance the clarity of the visualisation.

The method proposed in this work is an extended version of the original method, and has

been adjusted in two ways. First, in order to consider algorithms that have more than a single

algorithm parameter the method has been extended to display multiple parameters. Secondly, an

individual actor in the visualisation is now an entire population, rather than a solution. Figure

7

r1

r2

O

Figure 2: A schematic showing the placement of population within the extended visualisation proposed in this work.

2 demonstrates these extensions. As can be seen, whereas an individual was shown by a single

dot, a population is shown by a shaded region. The region fills an arc of the circle, the extent of

which illustrates the best and worst hypervolume score of any member of the population. The

“front” of the population’s region represents the best hypervolume, and the “back” of the region,

which has moved the smallest distance from the origin line, represents the worst value. Two

points are illustrated at the front of the region – these indicate the two parameter values (r1 and

r2). Most of the visualisations herein do not explicitly highlight these, to prevent the visualisation

becoming cluttered, however an interactive mode in which they can be activated is demonstrated.

It is important to note that while this paper deals with an algorithm’s requiring the setting of two

parameters, any number of parameters could be shown in this way with the region defined in terms

of the maximum and minimum parameter values used, with any other parameters being displayed

on a continuum between them. The parameter value itself is read in the same way as was done in

the original work, such that the distance from the centre of the visualisation shows the parameter

value (all of the examples herein lie between 0 and 1, so an arc close to the centre has a parameter

value of close to 0 and one near the perimeter of the circle has a value of close to 1).

3.1. Notation

In this work the following notation is used. In objective space, the aim of an optimisation

algorithm is to create as small a distance, however measured, between an approximation set and

a Pareto front. Though the true Pareto front is known for the test problems used in this work,

it is demonstrated that the visualisation method can be used for real-world problems. To that

end, assume that the true Pareto front is unknown and generate sample sets (which will be used

as an “idealised” Pareto front). We note that in order to demonstrate the ability of the proposed

visualisation to work with problems for which no Pareto front is known, we ignore the fact that

the true front is known for the test problems used herein.

In order to generate sample sets, it is noted that R optimisation processes (in the results shown

later in this paper, R = 50 simultaneous runs are used) are solving the same problem simultane-

ously, meaning that at any given generation g there are R populations of solutions. To generate a

8

sample set S g, all R populations are combined and those individuals within this combined pop-

ulation that are non-dominated are identified. Those form the sample set for generation g. A

set of solutions generated by an algorithm is denoted by Rg. An objective approximation set for

generation g is denoted Ag (related to Rg via Ag = f (Rg)) and containing a given number of

(approximations to) the objective vectors yi, each vector, of course, having M components.

Algorithm 1 Visualisation construction
1: for g ∈ (1, . . . ,G) do
2: for r ∈ (1, . . . ,R) do
3: for i ∈ (1, . . . ,N) do
4: I1

i = indicator1(yi)

5: I2
i = indicator2(yi)

6: end for
7: end for
8: render visualisation

(
maxI1 ,minI1 , Ī2, p1, p2

)
9: end for

The construction of a visualisation is summarised in Algorithm 1. For each g of the G gener-

ations a visualisation is produced that represents all R algorithm instances at generation g. Each

of the N individuals in a population is assessed according to the two indicators, and the visualisa-

tion is rendered by providing the relevant information (the maximum and minimum values of the

indicator controlling the position of the icon, the average of the second indicator that defines the

icon’s colour, and the two parameter values.)

3.2. Performance Indicators

One of the advantages alluded to in [27, 28] is the flexibility of the proposed method. As

has been outlined above, the method requires the selection of two performance indicators – in the

initial pilot studies this was restricted to the hypervolume and crowding distance. While it was

shown that these measures provide a good indication of quality, other measures can be used in

their stead. This paper considers four metrics.

Hypervolume: The hypervolume indicator [13] is a well-known indicator used to evaluate the

comparative performance of MOEAs. It was used in the original demonstrations of the

proposed visualisation method. Therein, the results were computed in terms of a reference

point that was computed from the globally worst point found during any of the optimisers’

execution. In this work, the initial populations of the algorithms are initialised so that the

global worst point [14] can be used as the reference point and hypervolume scores can be

normalised against it as the algorithms execute.

Crowding Distance: Crowding distance is a component of the NSGA-II algorithm, where it is

used to break ties between members of the same non-dominated rank (i.e., solutions that are

9

incomparable under dominance) during selection. It operates by identifying the distance to

its nearest neighbour in each objective, therefore providing a notion of diversity. While

being used for selection, solutions with a large crowding distance are typically preferred as

they reside in more diverse parts of the search space.

Objective Space Spread: This indicator was proposed in [1] to compute the spread of an ap-

proximation set (i.e., an approximation to the Pareto front) in objective space. Recall that

the number of objectives in the optimisation problem is M. In this work the objective space

spread is calculated for each generation g by the following:

Is(g) =

M∑

m=1

(
max
yi∈Ag

(yim) − min
yi∈Ag

(yim)
)2

M∑
m=1

(
max
z∈S g

(zm) −min
z∈S g

(zm)
)2

1/2

(3)

The scaling achieved by the denominator of (3) is performed with respect to the idealised

Pareto front (Section 3.1). The resulting ratio Is > 0 may be seen as simply the Euclidean

length of the approximation set divided by that of the desired Pareto front in objective

space. According to the authors, as Is is effectively a multiplicative factor, a value of one

represents the “best” diversity whereas a value of less than or greater than one represents

“low” or “high” diversity, respectively.

Decision space diversity: Decision space diversity refers to the variety of solution in the search

population, and is essential to ensuring a proper search of the problem search space. Var-

ious approaches have been taken to evaluate decision space diversity, though it tends to

feature less in MOEAs and MaOEAs than measures for evaluating objective space diver-

sity [18]. In terms of visualising diversity, a benchmark test problem was proposed that

enabled the diversity of solutions to a many-objective problem to be considered [18]. In

this work, a simple diversity measure is used wherein a scaled Euclidean distance between

the individuals within the population is considered [25]. Diversity is computed as

D =
2

E · N(N − 1)

∑
i, j

‖xi − x j‖, (4)

where E is the maximum Euclidean distance between any pair of solutions, and recall that

xi, x j are decision vectors and N is the population size. A high value indicates good diver-

sity, and a low value indicates poor diversity. Note that herein decision vectors are formed

of real numbers, which would not be the case for some other problem domains (such as

discrete problems, for example). This method would easily adapt to such domains by re-

placing the Euclidean distance measure with an appropriate measure for the representation

at hand.

10

4. Experimental Setup

The proposed visualisation method is demonstrated on benchmark multi- and many-objective

optimisation problems from the literature, and visualises the optimisation of a GA. This section

outlines the experimental setup followed.

In order to demonstrate the potential of the visualisation tool, it is demonstrated with data de-

scribing the optimisation of continuous test problems of differing complexity. Each test problem

has its own characteristics that are designed to make the problem challenging (or not) in a specific

way for an optimiser to solve. Test problems are used in the same way in this work: problems are

selected that will show the optimiser working well in some cases, and poorly in others, so that the

reader can observe the difference. The discussion around the example visualisations presented in

Section 5 is structured in such a way that the visual properties of the visualisation are explained

in the context of what they say about the optimisation process. The problems chosen are from

the DTLZ problem suite [9], which were originally proposed to provide the EC community with

test problems that were scalable in the number of objectives. It is important to note that the usage

of this proposed visualisation method is not restricted to the DTLZ problem suite, but that it can

be used with any multi-objective problem. The DTLZ problems were chosen for their extensive

use in the literature. Herein, a 2-objective instance of the DTLZ2 test problem, 3-objective in-

stances of DTLZ1 and DTLZ2, and a 5-objective instance of DTLZ2 are examined. Both DTLZ1

and DTLZ2 are continuous problems with decision variables lying in the region [0, 1]. The sug-

gested number of decision variables is D = k + M − 1, where k = 5 for DTLZ1 and k = 10 for

DTLZ2. The last k decision variables control the solution’s distance from the Pareto front, and by

construction the optimal value for these variables is 0.5. Thus, the true Pareto front is known.

In the same way as the proposed visualisation method can be used to illustrate the performance

of an algorithm solving any problem, the method is also not restricted to use with a specific al-

gorithm. The performance of any multi- or many-objective algorithm requiring the setting of

parameters can be shown with this method. In this work, the efficacy of the proposed visualisa-

tion is demonstrated by optimising the problems described above with a GA. The initial study

presented in [27] will be extended by considering the effect of different multiple perturbation op-

erators – where the initial study focused on an additive Gaussian mutation operator, this paper

illustrates the operation of a GA using both SBX crossover and Polynomial mutation.

As was the case in the initial pilot study, three variants of a GA are considered. While the same

base algorithm is used for all three variants, with each using the same crossover and mutation

strategy to generate solutions, each algorithm has a different selection operator. The algorithm

begins by initialising a random population of solutions, which are evaluated under the problem

objectives and used to initialise an archive of solutions. The archive will be used to store the

current approximation of the Pareto front, and is unbounded in size. Each generation of the

algorithm begins with the creation of a child population. This is done by creating child solutions

with the SBX crossover operator that are then subjected to mutation with the Polynomial mutation

11

operator. In the case of both operators, the probability of perturbation (the crossover probability

in SBX and the mutation probability in Polynomial mutation) are varied. The distribution index,

controlling the size of the perturbation, in both cases is fixed (15 for SBX, 7 for polynomial

mutation). Having generated a child, it is evaluated under the problem objectives and the archive

is updated. If the child dominates any members of the archive then those members are deleted,

and if the child is not dominated by any member of the archive then the new solution is added to

it.

At the end of the generation, the parent population for the next generation is selected from

the combined parent and child population of the current generation. As above, three selection

operators are employed. The intention of this is to demonstrate different known characteristics

for the chosen selection methods when applied to the benchmark problems used herein. The

first uses non-dominated sorting, as is used in NSGA-II [8]. The population of objective vectors

are sorted into non-dominated shells. In an iterative procedure, the non-dominated members

of the population are identified, added to the next available non-dominated shell, and then are

temporarily discarded from the population of objective vectors. This leaves a new set of non-

dominated individuals, which become the next non-dominated shell, and so on until enough new

parents have been selected. If the current non-dominated shell contains more solutions than are

required to fill the population then the required number is sampled uniformly from that shell.

This is included as a selection method that provides reasonable convergence to the Pareto front,

as well as covering the front’s full extent. The second method uniformly samples the combined

parent and child populations, essentially reducing the selection pressure of the algorithm to that

of a random walk through the space. This demonstrates an algorithm that does not converge in a

reasonable time. The final method ranks the population with the average rank method [2]. Under

average rank, the objective vectors of the combined parent and child populations are ranked by

first converting the objective vectors to rank coordinates, by ranking the population M times, once

by each objective. This places each objective on the scale 1, . . . ,M, effectively normalising them,

so that the rank of the i-th objective vector may be computed as

r̂i =
1
M

M∑
m=1

rim, (5)

where rim is the rank of the i-th solution on the m-th objective.

5. Results

5.1. Genetic Algorithm

Figure 3 presents a visualisation of the performance of 50 algorithm instances optimising a

2-objective instance of DTLZ2. These figures show three snapshots taken during the execution of

the optimiser – the first at generation 1, the second at generation 10, and the final one at generation

12

0 0.5 1

(a) Generation 1

0 0.5 1

(b) Generation 10

0 0.5 1

(c) Generation 49

Figure 3: Visualisations of the performance of NSGA-II optimising DTLZ2 in two objectives. The angle of the

populations shown indicates convergence, as shown by the hypervolume while colour indicates population diversity,

as shown by the crowding distance.

49. The optimiser was run for 5,000 function evaluations, which is known to be sufficient to opti-

mise DTLZ2 in three objectives. Each block represents one of the 50 algorithm parametrisations

used to optimise the problem and, as was explained in Section 3, the extent of the circle covered by

an experiment’s block indicates how well it has converged. As can be seen in generation 1, many

of the parametrisations encompass approximately half of the extent of the circle. This indicates

poor convergence, as would be expected at this phase of the optimisation process when the search

population is comprised of random solutions. By generation 10, when 1,000 function evaluations

have taken place, the populations have moved into the southern hemisphere of the circle, with

many of them in the south-eastern quarter. This indicates that the optimisation process is driving

the search population towards the true Pareto front as the hypervolume is increasing. In the final

generation, shown in the right-hand plot, the search populations are almost exclusively in this

south-eastern quarter. Those solutions with both low probabilities of crossover and mutation have

converged particularly closely, and it can be seen that parametrisations wherein at least one of the

algorithm parameters is large have performed less well. Colour indicates the crowding distance

between solutions in the population – the median crowding distance is shown. As can be seen,

there is a steady progression from a mixture of blue and red (indicating some solutions have a

very small crowding distance and some have a larger crowding distance) indicating a preservation

of diversity.

A potential issue with the visualisations shown in Figure 3 is that they could be cluttered and

difficult to use for a non-expert user. To address this, Figure 4 illustrates a use case in which two of

the algorithm instances have been highlighted. At the right-hand edge of the algorithm instances’

region is a pair of icons, which represents the parametrisation of the algorithm instance. The plus

icon indicates the crossover probability while the triangle indicates the mutation probability. As

can be seen, the instance with the lower probabilities of crossover and mutation is doing much

13

0 0.5 1

(a) Generation 1

0 0.5 1

(b) Generation 10

Figure 4: Two snapshots showing the visualisation in an interactive mode, in which two algorithm instances have been

highlighted.

better than the other instance. The solutions are better converged, and the diversity is better than

that of the other instance. This is an example of the visualisation’s use in an interactive setting –

the user has identified two algorithm instances of interest and is now further exploring them using

the tool. This facility could be easily expanded to include, for example, the selection of parameter

ranges to view.

0 0.5 1

(a) UF2, Generation 1

0 0.5 1

(b) UF2, Generation 499

0 0.5 1

(c) UF6, Generation 1

0 0.5 1

(d) UF6, Generation 499

Figure 5: Visualisations of the optimisation of UF2 and UF6.

Results shown so far for the DTLZ2 test problem have illustrated a simple test problem. The

method proposed is not dependent on a specific problem or suite of problems, and as Figure

14

5 illustrates its performance on problem drawn from a different problem suite. The CEC 2009

problem suite [32] was proposed to facilitate the benchmarking of algorithms on problems with

more complicated search spaces than had previously been available to researchers. Two problems

are shown used herein, both of which comprise 2-objectives. The top row illustrates the start-

ing population and the final population of the UF2 problem, while the bottom row illustrates the

corresponding generations of the optimiser solving the UF6 problem. UF2 comprises a search

space in which the optimal solution set is difficult to locate and UF6’s complexity is induced by

a disconnected Pareto front. Both problems were optimised for 50,000 function evaluations. In

the case of UF2, the algorithm has not converged. A substantial portion of the solutions are in

the lower left-hand portion of the visualisation in generation 499, which indicates that the popu-

lations have not properly converged. The diversity measure (crowding distance) indicates that the

algorithm instances are maintaining diversity. The results for UF6 show better convergence to the

true Pareto front.

Figure 6 presents a set of results for the GA optimisation of a 3-objective instance of DTLZ1.

The top row shows a set of optimisation runs for an algorithm using Pareto sorting selection;

the middle row shows corresponding runs for an algorithm with average rank selection, and the

bottom row shows an algorithm with a random selection operator. Each of the three algorithms

has fifty algorithm instances (defined by a different parametrisation of the mutation operator).

Four different points during the optimisation (generations 1, 100, 350 and 499) are shown. In the

case of each algorithm, the generation 1 case is relatively similar; no optimisation has occurred at

this point, so the populations are gathered above the origin line. By generation 100, shown in the

second column, the Pareto sorting algorithm has begun to optimise the problem. This is shown by

a set of populations that have moved into the southern hemisphere of the visualisation, showing

that the hypervolume score increases for all of the algorithm instances. It can be seen from the

visualisation that those algorithm instances with a smaller probability of crossover an mutation

(i.e., those closer to the centre of the visualisation) are progressing faster around the extent of

the visualisation than those at the outside – in all cases the worst performing algorithm instance

is again one with high values for both parameters, seen by the lagging block at the periphery of

the circle. This shows that, in the case of this problem, there is a slight advantage to optimising

with smaller perturbations and exploiting good solutions rather than making large perturbations

away from them. By generation 350, the search has progressed into the south-eastern quarter of

the visualisation, indicating good convergence. Note that the search appears to have stagnated

between generations 350 and 499, with little progress between the two. The change in colour

between the two generations indicates that the population has stopped searching (it has converged

as far as it will towards the Pareto front) and has then exploited this position to cover the full extent

of the front, causing the crowding distance to become more uniform and eliminating extremely

close solutions. At first glance, it appears that the population has not converged to the Pareto

front; this is not so. In fact, this is a symptom of the premature convergence that is known to occur

15

0 0.5 1

(a) PS (Gen 1)

0 0.5 1

(b) PS (Gen 100)

0 0.5 1

(c) PS (Gen 350)

0 0.5 1

(d) PS (Gen 499)

0 0.5 1

(e) AR (Gen 1)

0 0.5 1

(f) AR (Gen 100)

0 0.5 1

(g) AR (Gen 350)

0 0.5 1

(h) AR (Gen 499)

0 0.5 1

(i) RS (Gen 1)

0 0.5 1

(j) RS (Gen 100)

0 0.5 1

(k) RS (Gen 350)

0 0.5 1

(l) RS (Gen 499)

Figure 6: Optimisation traces for three optimisers solving a 3-objective instance of DTLZ1. Convergence is shown by

the populations’ hypervolume while diversity is shown by the crowding distance.

when using average rank as a selection operator on its own. The average rank operator prefers

solutions that are highly ranked on multiple objectives – these solutions occur in the corners of the

population, and the search therefore concentrates in those areas, leaving the majority of the true

Pareto front unexplored [14]. This problem is exacerbated by the DTLZ problems’ bias towards

the top of the Pareto front. Therefore, in this case, the rapid convergence toward the Pareto front is

shown by the populations’ quick movement through the extent of the circle, and the population’s

diversity collapse is indicated by the early change in colour from blue to red, which persists for

the remainder of the optimisation. This problem might be partially addressed by constructing

visualisations in terms of the archive rather than the search population, however it is important to

16

note that the archive is often unbounded, and as such can potentially contain a substantially larger

number of solutions than are found in the bounded population. While this is not necessarily a

problem in this work, recall that the eventual aim is to include this method within an optimisation

process to visualise the process online. In such a case, it would be computationally inefficient

to render the large number of solutions in an archive. Additionally, while the archive maintains

a wider range of solutions, these are the solutions that have not been dominated by any others

generated by the optimisation process, and since the bias induced by the problem and selection

operator quickly move the search away from these additional points they are likely to be somewhat

suboptimal.

From examining the central row, showing average rank optimisation, it can be seen that the

populations have converged rapidly, with all populations residing in the south-eastern quadrant

by generation 100. Interestingly, the crowding distance indicates that the solutions have spread

as far as they will during the search as the progression from blue to red is much more rapid.

This indicates premature convergence, which is a known artefact of utlising an average rank-

based selection operator wherein the operator ranks corner solutions highly and a bias is therefore

induced that ignores a substantial part of the rest of the Pareto front [14]. Considering the central

row, the random selection operator (unsurprisingly) does not optimise the problem at all. At each

generation, a set of child solutions are generated from the current parent population, and then

the parent population for the next generation is selected by choosing N (in this case, N = 100)

from the union of the current parent and child populations. As such, there is no selection pressure

exerted by the selection operator, and the search process never really begins.

5.2. Visualising diversity

Throughout the examples shown so far diversity has been demonstrated with the crowding

distance measure. Figure 7 illustrates four snapshots during the execution of NSGA-II (using

Pareto sorting for selection) for a 3-objective instance of DTLZ2. Diversity is shown in three

ways. The top row illustrates crowding distance, as has been shown previously. The second

row shows the objective space spread indicator described earlier, while the bottom row shows

the decision space diversity measure. As before, population angles are determined according

to hypervolume. The crowding distance results follow a similar pattern to those shown earlier

– the diversity within the population normalises as the optimisation procedure progresses. An

interesting artefact of the objective space spread measure is that as the objective values reduce

(as the solutions minimise) so the diversity measure is shown to reduce. This can be seen as

the colour progresses from red to yellow in later generations. A similar effect can be seen when

considering decision space diversity, though to a lesser extent. This reduced change over time

indicates that the decision space diversity does not alter significantly during the optimisation

process, which is intuitively correct as the search space for DTLZ2 is known to be relatively

simple. Revealing different characteristics with different metrics highlights the importance of

17

0 0.5 1

(a) CD, Gen 1

0 0.5 1

(b) CD, Gen 100

0 0.5 1

(c) CD, Gen 350

0 0.5 1

(d) CD, Gen 499

0 0.5 1

(e) OSS, Gen 1

0 0.5 1

(f) OSS, Gen 100

0 0.5 1

(g) OSS, Gen 350

0 0.5 1

(h) OSS, Gen 499

0 0.5 1

(i) DSD, Gen 1

0 0.5 1

(j) DSD, Gen 100

0 0.5 1

(k) DSD, Gen 350

0 0.5 1

(l) DSD, Gen 499

Figure 7: Visualisations of the 3-objective DTLZ2 optimisations, this time coloured according to different measures

of diversity. The top row (a)–(d) are coloured according to crowding distance. The middle row (e)–(h) are coloured

according to the objective space spread measure, while the bottom row (i)–(l) are coloured according to the decision

space diversity metric.

having a suite of metrics available for the user to explore their data with. The effect of switching

between the metric used to colour solutions is computationally inexpensive, and so can be done

interactively as the optimisation progresses.

5.3. Many-objective Problems

The examples presented so far have been multi-objective – problems comprising two or three

objectives. As many-objective problems have been explored, so algorithms capable of optimising

them have been proposed. The final examples shown herein demonstrate the use of the proposed

18

0 0.5 1

(a) Gen 1

0 0.5 1

(b) Gen 20

0 0.5 1

(c) Gen 45

0 0.5 1

(d) Gen 65

Figure 8: Visualisations of the performance of NSGA-III optimising a 5-objective instance of DTLZ2.

method for visualising the performance of NSGA-III for optimising a 5-objective instance of

DTLZ2. Part of the motivation behind the design of DTLZ2 is to demonstrate an algorithm’s

ability to scale, so it is well suited to use in this way.

Figure 8 illustrates the result of visualising the performance of using NSGA-III to generate

a set of solutions to the problem. The results are of interest in two ways. First, despite being

run for longer (up to 65 generations are shown) the optimiser has failed to converge. At the end

of the procedure the majority of search populations are still encompassing the entire southern

hemisphere of the circle. Secondly, the diversity is shown to be dropping much more markedly

than has been seen in the results shown elsewhere in the paper. This indicates that the optimiser

is preferring specific areas of the Pareto front; NSGA-III is a decomposition-based optimiser, so

this makes intuitive sense, and the visualisation therefore provides a view on how the optimiser is

functioning.

6. Conclusions

Visualisation of algorithm operation is an important aspect of research within the EC commu-

nity, as it will help to lower the amount of information required by an algorithm user to employ

EAs within real-world scenarios. This paper has presented an example of such a visualisation,

allowing a user to observe different parametrisations of their algorithm. The method extends a

visualisation tool proposed recently by expanding the number of algorithm parameters that can be

visualised with it. Additionally, a greater range of performance indicators have been considered,

the lightweight nature of which is better suited to the online visualisation that is the eventual goal

of this work. The extension of the work to include many-objective optimisation further extends

the applicability of the proposed method.

A principle advantage of the proposed method is its flexibility; the method will operate with

solutions of any representation. As has been demonstrated, the method can work with any perfor-

mance indicator that results in a single value evaluating the quality of a population. Due to that,

the user can replace the indicators shown herein with any indicator that better suits their purpose.

19

This is particularly beneficial given the different representations that the method can be used with,

as the user might wish to select, for example, a diversity measure that describes the behaviour of

the algorithm in decision space. Other types of indicator that might be used include generational

distance and inverted generational distance. We note that both would require the presence of a

reference set, which may preclude their use with real-world problems for which no reference set

is available. It may be possible to use a strategy such as that employed herein with the objective

space spread measure proposed by Adra [1]. An additional element of flexibility is that, in its

redesigned form, the method does not require a fixed number of algorithm parameters. Examples

shown herein have been for algorithms comprising two parameters, though there is no computa-

tional reason that more could not be included. That said, the resulting visualisations are likely to

become cluttered and difficult to read. Despite the potential to address this with interaction, al-

lowing the user to disregard extraneous information and enhancing the clarity of the visualisation

in the areas they are particularly concerned with, it is for that reason the method is currently likely

to be more beneficial for algorithms with small numbers of parameters.

The method in its current form provides a useful way in which the value of different algorithm

parametrisations can be observed. In its offline state, the method offers some utility, however its

worth will be greatly expanded by facilitating its inclusion in an online tool. This will offer al-

gorithm users the ability to observe which parametrisations are not generating strong solutions as

the algorithm executes, and those instances that are not useful can be stopped – releasing valuable

computing resources that can potentially be better spent on instances that are showing promise.

An important aspect of this work will be to consider the performance of an interactive optimiser

that utilises this approach compared to the automatic parameter tuning approaches discussed in

Section 2. Work is ongoing to this end; at the moment, the visualisation tool is reasonably light-

weight, however used in its current form the tool would use up the resources that it is designed

to save. As such, an avenue of current investigation is the method’s redevelopment to use GPUs,

alleviating the additional work that would otherwise be done by the machines performing the

optimisation itself. This is particularly important in the case of many-objective problems, where

the number of solutions required to cover the extent of a high-dimensional Pareto front means

that the performance indicator evaluation is slower. Additional further work entails exploring po-

tential approaches to incorporating more information into the visualisation, both in terms of the

algorithm parameters that can be shown and the number of performance indicators that can be

used to illustrate performance.

7. Acknowledgements

The authors would like to thank Dr Alma Rahat for useful discussions on aspects of this work.

20

References

References

[1] S. F. Adra and P. J. Fleming. Diversity management in evolutionary many-objective optimization. IEEE

Transactions on Evolutionary Computation, 15(2):183–195, April 2011.

[2] P. J. Bentley and J. P. Wakefield. Finding acceptable solutions in the Pareto-optimal range using multiobjective

genetic algorithms. Soft Computing in Engineering Design and Manufacturing, pages 231–240. Springer, 1998.

[3] B. Burlacu, M. Affenzeller, M. Kommenda, S. Winkler, and G. Kronberger. Visualization of genetic lineages

and inheritance information in genetic programming. Proceedings of Visualisation in Genetic and Evolutionary

Computation (VizGEC 2013), held at GECCO 2013, pages 1351–1358. ACM, 2013.

[4] M. J. Craven and H. C. Jimbo. EA stability visualization: Perturbations, metrics and performance. Proceedings

of Visualisation in Genetic and Evolutionary Computation (VizGEC 2014), held at GECCO 2014, pages 1083–

1090. ACM, 2014.

[5] A. Cruz, P. Machado, F. Assunção, and A. Leitão. Elicit: Evolutionary computation visualization. Proceedings

of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages

949–956. ACM, 2015.

[6] Kenneth De Jong. Parameter Setting in EAs: a 30 Year Perspective, pages 1–18. 2007.

[7] K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using reference-point-based non-

dominated sorting approach, part i: Solving problems with box constraints. IEEE Transactions on Evolutionary

Computation, 18(4):577–601, Aug 2014.

[8] K Deb, A Pratap, S Agarwal, and T Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE

Transactions on Evolutionary Computation, 6(2):182–197, Apr 2002.

[9] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective optimization test problems. volume 1

of Proceedings of IEEE Congress on Evolutionary Computation, pages 825–830. ACM, May 2002.

[10] A Eiben, Zbigniew Michalewicz, and Marc Schoenauer. Parameter control in evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 3:19–46, 2007.

[11] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms. IEEE Transactions

on Evolutionary Computation, 3(2):124–141, July 1999.

[12] M. Farina and P. Amato. On the optimal solution definition for many-criteria optimization problems. Proceedings

of the 2002 Annual Meeting of the North American Fuzzy Information Processing Society, pages 233 – 238.

IEEE, 2002.

[13] M Fleischer. The Measure of Pareto Optima. Applications to Multi-objective Metaheuristics. EMO 2003 - 2nd

International Conference in Evolutionary Multi-Criterion Optimization, pages 519–533. Springer, 2003.

[14] M. Garza-Fabre, G. Toscano-Pulido, and C. A. Coello Coello. Two novel approaches for many-objective opti-

mization. Proceedings of IEEE Congress on Evolutionary Computation, pages 4480–4487. ACM, July 2010.

[15] E. Hart and P. Ross. GAVEL - a new tool for genetic algorithm visualization. IEEE Transactions on Evolutionary

Computation, 5(4):335–348, Aug 2001.

[16] Simon Huband, Phil Hingston, Luigi Barone, and Lyndon While. A review of multi-objective test problems and

a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10(5):477–506, October 2006.

[17] A. Inselberg. Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer, 2009.

[18] H. Ishibuchi, N. Akedo, and Y. Nojima. A many-objective test problem for visually examining diversity main-

tenance behavior in a decision space. Proceedings of the 13th Annual Conference on Genetic and Evolutionary

Computation, pages 649–656. ACM, 2011.

[19] E. Keedwell, M. Johns, and D. Savić. Spatial and temporal visualisation of evolutionary algorithm deci-

sions in water distribution network optimisation. In Proceedings of Visualisation in Genetic and Evolutionary

Computation (VizGEC 2015) held at GECCO 2015, GECCO Companion ’15, pages 941–948, 2015.

21

[20] A. Kerren and T. Egger. EAVis: A Visualisation Tool for Evolutionary Algorithms. Proceedings of 2005 IEEE

Symposium on Visual Languages and Human-Centric Computing, pages 299–301. IEEE, 2005.

[21] A. Kheiri and E. Keedwell. A sequence-based selection hyper-heuristic utilising a hidden markov model. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), 2015.

[22] H. Pohlheim. Visualization of evolutionary algorithms – set of standard techniques and multidimensional visu-

alization. Proceedings of Genetic and Evolutionary Computation Conference (GECCO 1999), pages 533–540.

ACM, 1999.

[23] A. Pryke, S. Mostaghim, and A. Nazemi. Heatmap visualization of population based multi objective algorithms.

Evolutionary Multi-Criterion Optimization (EMO 2006), pages 361–375. Springer, 2006.

[24] J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans. Comput., 18(5):401–409, 1969.

[25] O. M. Shir, M. Preuss, B. Naujoks, and M. Emmerich. Enhancing decision space diversity in evolutionary

multiobjective algorithms. Proc. EMO 2009, pages 95–109. Springer, 2009.

[26] Thomas Stützle, Manuel López-Ibán ez, Paola Pellegrini, Michael Maur, Marco Montes de Oca, Mauro Birattari,

and Marco Dorigo. Parameter adaptation in ant colony optimization. Technical Report TR/IRIDIA/2010-002,

IRIDIA, January 2010.

[27] D. J. Walker and M. J. Craven. Toward the online visualisation of algorithm performance for parameter selection.

International Conference on the Applications of Evolutionary Computation, pages 547–560. Springer, 2018.

[28] D. J. Walker and M. J. Craven. Visualising the operation of evolutionary algorithms optimising water distribution

network design problems. Proceedings of the 13th International Conference on Hydroinformatics, pages 2250–

2258. 2018.

[29] D. J. Walker, R. M. Everson, and J. E. Fieldsend. Ordering and visualising many-objective populations. 2010

Congress on Evolutionary Computation, pages 3664–3671. IEEE, 2010.

[30] D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualising mutually non-dominating solution sets in many-

objective optimization. IEEE Transactions on Evolutionary Computation, 17(2), April 2013.

[31] Q. Zhang and H. Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE

Transactions on Evolutionary Computation, 11(6):712–731, Dec 2007.

[32] Qingfu Zhang, Aimin Zhou, Shizheng Zhao, Ponnuthurai Nagaratnam Suganthan, Wudong Liu, and Santosh

Tiwari. Multiobjective optimization test instances for the cec 2009 special session and competition. Technical

Report CES-487, University of Essex, UK, Nanyang Technological University, Singapore and Clemson Univer-

sity, USA, 2008.

[33] E Zitzler, K Deb, and L Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results.

Evolutionary Computation, 8(2):173–195, 2000.

22

