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BUĞRA ÇAVDAR 
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METAMORPHIC SOLE ROCKS OF THE MERSIN OPHIOLITE, 

SOUTHERN TURKEY 

Abstract 

The Mersin ophiolite (Tauride Belt, southern Turkey) is a well-exposed Neo-Tethyan 

suprasubduction zone ophiolite that formed in the Late Cretaceous. It is underlain by 

metamorphic sole rocks (predominantly amphibolites) inferred to have formed at the top 

of the down-going plate during subduction. A recent model for exhumation of such rocks 

from peak metamorphic depths involves slab flattening caused by removal of material 

from the mantle wedge during fore-arc spreading, implying significant rotation of the sole 

after formation. Previous palaeomagnetic analysis of non-metamorphosed dykes cutting 

the Mersin sole rocks indicates a ~45° clockwise rotation of the sole and dykes around a 

NE-trending, shallowly plunging, ridge-parallel axis. This study aims to quantify any 

potential rotation of the Mersin sole rocks prior to dyke intrusion to test models of sole 

exhumation. The amphibolites carry a stable magnetization that is statistically different 

from that of the dykes, providing evidence for an earlier phase of rotation. However, 

tectonic interpretation of these data in the absence of paleohorizontal markers cannot be 

achieved by using standard palaeomagnetic tilt corrections. Therefore, a Monte Carlo 

approach was used to model potential net tectonic rotation axes after back-stripping the 

later rotation of sole-hosted dykes from the palaeomagnetic and structural data and by 

incorporating statistical uncertainties into the analysis. Results suggest that the sole 

acquired its remanence while the metamorphic foliation dipped moderately (~30-40°) to 

the ENE and then underwent an early phase of anticlockwise rotation around an inclined, 

NW plunging axis. This is consistent with a two-stage model involving an earlier phase 

of exhumation by slab flattening and rotation followed by a later spreading-related 

rotation around a ridge-parallel axis after accretion of the sole to the base of the 

lithosphere (and future ophiolite). These rotations around different axes are consistent 

with a tectonic setting similar to the modern Andaman Sea subduction zone system, where 

spreading in the suprasubduction zone environment occurs obliquely to the direction of 

subduction of the down-going plate.  
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Chapter 1- Introduction 

1.1 Aims and objectives 
Most ophiolites have geological, geochemical and geophysical signatures that point to their 

formation by supra-subduction seafloor spreading and it is believed that they are generally 

underlain by the metamorphic sole rocks which have formed at the top of the undergoing plate 

and accreted below the supra-subduction zone lithosphere immediately following ophiolite 

formation. 

The main aim of this Masters project is to research and study the metamorphic sole rocks of the 

Mersin ophiolite of southern Turkey by using palaeomagnetic, magnetic fabric, structural and 

petrographic data to address the following scientific objectives: 

1- To establish the magnetic carriers and magnetic remanence characteristics of the metamorphic 

sole rocks, and explain how their magnetisation was acquired 

2- To determine the nature and magnitude of any early phase of rotation experienced by the 

Mersin ophiolite metamorphic sole rocks prior to intrusion by dykes related to the overlying 

ophiolite, to test models for metamorphic sole exhumation 

3- To determine the nature of microstructures in the sole rocks and interpret their structural 

evolution  

4-To interpret the pressure-temperature conditions at the time when the sole rocks have formed 
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1.2 Ophiolites 
Ophiolites are remnants of ancient oceanic crust and underlying mantle that have been uplifted 

and exposed above sea level. When complete, their crustal sequences consist of layered and 

isotropic gabbros at the base, overlain by upper crustal sections of sheeted dykes and extrusive 

igneous rocks (including pillow lavas) (Fig. 1.1). At the broadest level they may be subdivided 

into two types based on their geochemical compositional signatures: mid-oceanic ridge (MOR) 

type and supra-subduction zone (SSZ) type (Fig. 1.2). MOR-type ophiolites have mid-oceanic 

ridge basalts and lavas whereas SSZ type ophiolites have island arc tholeiites, forearc basalts, 

back-arc basin basalt and possibly boninites (Dilek and Furnes, 2014). Additionally, boninites 

can be observed in SSZ type ophiolites because of the ultra-depletion of the mantle wedge 

resulting from fluid assisted melting (Pagé et al., 2009; van Hinsbergen et al., 2015). The 

existence of the podiform chromite deposits and crystallisation of clinopyroxene before 

plagioclase are other features of SSZ type ophiolites (Dilek and Furnes, 2014; Pearce et al., 1984). 

 

Figure 1.1. Generalized succession of the ophiolites (from Mosier et al., 2012) 
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Figure 1.2. Illustration of the supra-subduction zone origin of ophiolites (in this case, for the Oman ophiolite) (from 

Searle, 2014) 

The most known, best-exposed ophiolitic sequences are the Semail ophiolite (Oman), Troodos 

ophiolite (Cyprus), Bay of Islands ophiolite (Newfoundland), Yakuno, Horokanai, and Poroshiri 

ophiolites (Japan). Some of the units are missing for the other ophiolites observed in different 

locations as shown below (Fig. 1.3). The existence of cumulate complexes and/or sheeted dykes 

in the ophiolite determines the nature of the spreading centre regarding the chemistry or 

mineralogy. 
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Figure 1.3. Comparison of some of the well-known ophiolites around the world and Penrose sequence (From Moores, 

1982) 

Recent studies (e.g. Stern et al., 2012) have suggested that formation of supra-subduction zone 

ophiolites takes place during phases of subduction initiation. Hence, as well as providing insights 

into processes of seafloor spreading, ophiolites also provide the best environment in which to 

understand this poorly understood component of the plate tectonic system. In this context, the 

metamorphic soles that are associated with many ophiolites are now considered to form at the top 

of the down-going plate in a newly initiated subduction zone and are then exhumed from peak 

metamorphic depths to be accreted to the base of ophiolites prior to final emplacement upon 

continental margins (van Hinsbergen et al., 2015). This thesis explores whether the 

palaeomagnetism of metamorphic sole rocks may be used to help constrain this tectonic process 

of exhumation. 
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Chapter 2- Scientific Background 

2.1 General overview of Turkish terranes and suture zones 
The tectonic blocks that comprise Turkey were located between the two stable and ancient 

continents of Laurasia in the north and Gondwana in the southern part, separated by the Tethys 

Ocean in the Paleozoic-Mesozoic and Early Tertiary. In this period, while Laurasia was the active 

continental margin, Gondwana was the passive margin. Some continental fragments separated 

from Gondwana and these fragments accreted to Laurasia during Paleozoic-Mesozoic time. 

Present-day Turkey is formed of six major lithospheric fragments or terranes which have 

separated from Gondwana and continent at different times: Sakarya zone, İstanbul zone, the 

Strandja zone, the Anatolide-Tauride Block, the Central Anatolian Crystalline Complex (Kırşehir 

Massif) and the Arabian platform (Bozkurt and Mittwede, 2001; Şengör and Yilmaz, 1981; Moix 

et al., 2008; Okay and Kelley, 1994; Okay, 1989; Okay and Whitney, 2010; Robertson, 1998; 

Robertson et al., 2012; Robertson et al., 2013). The last collision occurred between the Anatolian 

Plate and Arabian Plate during Late Tertiary time. The Sakarya, İstanbul, and Strandja zones are 

classified as the Pontides (Western), and they show the Laurasian features (Bozkurt and Mittwede, 

2001; Okay and Whitney, 2010). The Pontides are separated from the Anatolide-Tauride block 

and the Kırşehir Massif by the İzmir-Ankara-Erzincan suture. The suture zone formed after the 

collision of Anatolian and Arabian platforms is called as Assyrian-Zagros suture. Also, the 

boundary between the Sakarya and İstanbul zones is represented as the Intra-Pontide suture (Fig. 

2.1).  
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Figure 2.1. The suture zones located in Turkey with surrounding suture zones and main continental fragments (from 

Okay and Whitney, 2010) 

The Anatolide-Tauride block represents the platform between İzmir-Ankara-Erzincan Ocean to 

the north and the southern branch of Neo-Tethys to the south. The Anatolides form the western 

part of the present Anatolide-Tauride block, and Taurides form the eastern part of the block. The 

Tauride Platform consists of generally non-metamorphosed nappes whereas the Anatolides 

consist of the Menderes Massif to the west and the Central Anatolian Crystalline Complex to the 

east representing the central metamorphic part and the Kütahya-Bolkardağ Belt representing the 

northern margin of the platform (Göncüoglu et al., 2010). However, the reason why they are 

classified as one block is that they share some common features, i.e. Pan-African crystalline 

basement, a discontinuous Cambrian to Devonian succession dominated by siliciclastic rocks, a 

Permian-Carboniferous sequence of intercalated limestones, shales and quartzites, and a thick 

Late Triassic to Late Cretaceous carbonate sequence (Okay and Tüysüz, 1999; Okay and Whitney, 

2010). 
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The Kırşehir massif is also interpreted as a metamorphosed margin of Northern Anatolide-Tauride 

Block (Kaymakci et al., 2009; Yaliniz et al., 1996). This massif experienced multiple deformation 

stages during and after the closure of the surrounding oceans. (Cinku et al., 2016; Seymen, 1983). 

The Pontides form the northernmost part of present-day Turkey with its different zones and 

geologic complexities. They consist of an E-W trending orogenic belt that is divided into the 

western, central and eastern Pontides that show different stratigraphical and structural 

characteristics (Robinson, 1997; Ustaomer and Robertson, 1998) 

The northern part of the Arabian Platform forms the south-eastern region of Turkey. This platform 

was separated from the Anatolide-Taurides as a southern branch of Neo-Tethys in the Mesozoic 

and Tertiary. In consequence of the collision in the Miocene between the Arabian and Anatolian 

platforms, all traces of the intact oceanic crust were gone (Robertson and Grasso, 1995; Şengör 

et al., 1985; Yilmaz, 1993). Eventually, the present shape of Turkey was constructed after this 

collision. 

2.2 Ophiolites in Turkey 
The Tethyan ophiolites of Turkey are divided into five main belts: Northern belt comprising 

Pontide ophiolites, Tauride ophiolite belt, Anatolian ophiolite belt, Southeast Anatolian ophiolite 

belt and the peri-Arabian ophiolite belt (Bağci et al., 2005; Rizaoğlu et al., 2006) (Fig. 2.2).  

 

Figure 2.2. Distribution of the ophiolites located in Turkey and main suture zones , the Mersin ophiolite is shown in 

the red square; DgO—Denizgören ophiolite; GmO—Geyve meta-ophiolite; AO—Almacık ophiolite; KuO—Küre 

ophiolite; YDK—Yusufeli dike complex). IAESZ—İzmir-Ankara-Erzincan suture zone (BFZ—Bornova flysch zone; 

OR—Orhaneli ophiolite; TO—Tavşanlı ophiolite; DO—Dağküplü ophiolite; EO—Eldivan ophiolite; KO—Kargı 

ophiolite; CO— Çicekdağ ophiolite; AOM Ankara mélange; RO—Refahiye ophiolite; KOP—Kop ophiolite; SO—
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Şahvelet ophiolite; KKO—Kırdağ-Karadağ ophiolite; KaO—Kağızman ophiolite; MuO—Muğla ophiolite). ITSZ—

Inner-Tauride suture zone (YO—Yunak ophiolite; AhO Alihoca ophiolite; MO—Mersin ophiolite; AdO—Aladağ 

ophiolite; PO—Pınarbaşı ophiolite; DvO—Divriği ophiolite). BZSZ—Bitlis-Zagros suture zone (KzO—Kızıldağ 

ophiolite; GO—Göksun ophiolite; IO—Ispendere ophiolite; KhO Kömürhan ophiolite; GuO—Guleman ophiolite; 

KcO— Koçali ophiolite; GvO—Gevaş ophiolite; CiO—Cilo ophiolite (from Sarıfakıoğlu et al., 2017) 

Most formed in a supra-subduction zone (SSZ) setting according to petrologic and geochemical 

evidence (Aktaş and Robertson, 1984; Al-Riyami et al., 2002; Collins and Robertson, 1998; Floyd 

et al., 2000; Lytwyn and Casey, 1993; Parlak et al., 1996a; Parlak et al., 2002; Parlak et al., 2000; 

Pearce et al., 1984; Robertson, 2002; Yaliniz et al., 1996). 

The Hatay, Baer Bassit , Troodos, Cilo, Güleman, Zagros, and Oman ophiolites form the peri-

Arabic belt (Ricou, 1971), and have been extensively studied because almost all of the ophiolitic 

units crop out clearly. Bağcı et al. (2005) stated that Kızıldağ ophiolite is one of the best example 

to observe the seafloor spreading mechanics, structures and related processes, i.e. magmatic and 

hydrothermal activities as the area did not experience large scale deformation (Dilek and Eddy, 

1992). These ophiolites are believed to have formed in a supra-subduction zone system during 

the Late Cretaceous, and this ophiolitic belt was emplaced onto the Arabian platform during the 

Campanian-Maastrichtian (Yilmaz, 1993). Late Cretaceous ophiolites also occur along the 

Tauride tectonic belt in Lycian nappes, Ali Hoca complex, Beyşehir-Hoyran nappes, Pozanti-

Karsantı and the Mersin ophiolite, and are primarily made of tectonized mantle rocks, mafic-

ultramafic cumulates and gabbros and lack sheeted dyke complexes and volcanic rocks of the 

complete sequence. Furthermore, mafic dykes intruded into the metamorphic sole rocks 

associated with these ophiolites (Dilek et al., 1999; Parlak, 1996), demonstrating that the soles 

were emplaced beneath the ophiolites while SSZ magmatism was on-going. Pontide ophiolites 

trending in E-W direction along Northern belt are the remnants of the İzmir-Ankara Ocean, and 

formed after the closure of the Northern branch of Neo-Tethys Ocean. The Orhaneli, Harmancık 

(Bursa), Tavşanlı (Kütahya) and Dağküplü-Mihalicik (Eskişehir) ophiolites are the best examples 

of Pontide ophiolites (Sarıfakıoğlu et al., 2017). 
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2.3 Geological Setting of the Mersin ophiolite 

2.3.1 General overview to Mersin ophiolite 
The Mersin ophiolite in the southern part of Turkey covers 1500 square kilometers. It formed in 

a SSZ environment after the closure of Neo-Tethyan Ocean during the Late Cretaceous and was 

then uplifted and exposed above sea level. The approximate thickness of the ophiolite complex is 

6 km (Parlak et al., 1996). The complex is separated from the Eastern Tauride Belt by the Ecemiş 

Fault to the east (Parlak, 1996; Parlak and Delaloye, 1999; Parlak et al., 2000), the Bolkardağ 

metamorphic rocks to the north and the Miocene carbonates to the west (Parlak et al., 1996a). 

Ophiolitic melange, metamorphic sole rocks, and ophiolitic units are observed from the bottom 

of the sequence upwards (Fig. 2.3). Although the Mersin ophiolite is one of the best preserved 

and exposed Neo-Tethyan ophiolites, the sequence does not present a complete Penrose sequence, 

and it lacks a sheeted dyke complex and deep marine sediments.  

 

Figure 2.3. Simplified geological map of Mersin ophiolite, its related units and main ophiolites around the Eastern 

Mediterranean (Modified from Tekin et al., 2016) 

2.3.2 Emplacement of the ophiolite 
The Mersin ophiolite formed during the Late Cretaceous. Radiometric dating of the metamorphic 

sole rocks yielded ages ranging from 93 to 91 Ma (Çelik, 2008; Çelik et al., 2006; Dilek et al., 
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1999; Parlak and Delaloye, 1999; Parlak et al., 1995). After formation, Robertson (2002) argued 

that Mersin ophiolite was thrust over the Bolkar carbonate platforms (Fig. 2.4). Koç et al. (2013) 

showed that post-Danian is the period for the ophiolite emplacement based on ages of planktonic 

foraminifera found in the ophiolitic melange. Emplacement took place from the southern part of 

the platform in NW direction, and thrust-related fold structures in the melange and sole rocks also 

support a top to the NNW emplacement direction over the platform (Parlak et al., 1996a). 

Furthermore, non-metamorphosed dykes cutting the metamorphic sole rocks intruded after the 

end of metamorphism, but before the emplacement (Çelik, 2008; Dilek and Eddy, 1992; Dilek 

and Whitney, 1997). 

 

Figure 2.4. The sketch map showing the relationship of the Mersin ophiolite to the Bolkar Platform (from Robertson, 

2002) 

Robertson (2000) suggested collection of more data to test the emplacement direction onto the 

carbonate platform that Parlak (1996) proposed. Parlak and Robertson (2004) argued that 

kinematic evidence in the metamorphic sole rocks (before dyke intrusions) and the ophiolite 

showed transportation in an E-W or W-E direction in an intraoceanic setting. However, it has 
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been noted that this direction might be affected by possible rotations (Parlak and Robertson, 

2004). 

2.3.3 Units in the Mersin Ophiolite 
From top to bottom, the Mersin ophiolite consists of ophiolitic units, metamorphic sole rocks and 

underlying ophiolitic melange (Fig. 2.5). 

 

Figure 2.5. Columnar section of Mersin ophiolite (modified from Parlak, 1996) 

2.3.3.1 Basaltic units 

There are two basaltic sections showing different geochemical characteristics in this part of the 

ophiolite. One of them indicates tholeiitic basalts features whereas other suggests alkaline basalts 

(Parlak, 1996). The diabase dykes with dolerite texture beneath these basaltic units have same 

mineralogical compositions with tholeiitic basalts. All of these volcanic rocks were exposed to 

low-grade metamorphism, and some of the primary minerals altered (Parlak, 1996). Some of these 
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secondary minerals were also observed in pillow lavas which were overturned in the field (Omer, 

2014). 

2.3.3.2 Cumulates 

The majority of the ophiolite consists of cumulate gabbroic rocks observed between basaltic units 

and tectonized harzburgites cut by diabase dykes, with a total thickness of 3 km (Parlak et al., 

1996). Ultrabasic cumulates form the bottom part of the section whereas gabbroic rocks (two-

third of the cumulates) form the top of the section (Parlak et al., 1996). The U-Pb age of gabbroic 

cumulates was determined as 82.8 ± 4.0 Ma (Parlak et al., 2013). 

The ultramafic portion is composed of dunite with stratiform chromite, clinopyroxenite and 

wehrlite. Crystallization order of the minerals was determined as olivine, clinopyroxene, 

plagioclase, orthopyroxene, respectively. In the mafic portion, olivine gabbro forms the bottom 

part of this section. Gabbro, leucogabbro and anorthosite composes the upper part from bottom 

to up, respectively. There are some small-scale plagiogranite intrusions observed in the upper 

parts of cumulates. Some gravity controlled structures were also observed in the cumulates 

(Parlak et al., 1996). 

2.3.3.3 Dykes cutting cross mantle section and soles 

The metamorphic sole rocks, mantle sequence and cumulates are cut by non-metamorphosed 

dykes. Some of the dyke thickness are up to five meters (Omer, 2014). Ar39-Ar40 dating indicates 

that these dykes range from 91 Ma to 86 Ma (Dilek et al., 1999; Parlak and Delaloye, 1996). K-

Ar ages of 88.8 ± 2 Ma to 84.4 ± 3 Ma were determined by (Çelik, 2008). The dykes show island 

arc basaltic characteristics based on cooling age technique (Çelik, 2008; Parlak and Delaloye, 

1996). Since there is no metamorphism in the dykes, it is suggested that dykes intruded into the 

sole after metamorphic activity and before the emplacement of the ophiolite onto the Bolkar 

carbonate platforms (Çelik and Delaloye, 2004; Dilek et al., 1999; Parlak and Delaloye, 1996). 

Dolerite dykes cutting cross the sole rocks are composed of amphiboles, pyroxene, plagioclase 

and some secondary minerals with sub-ophitic or microgranular texture. Some dykes were 

exposed to hydrothermal alteration, with plagioclase, epidote, and kaolinite observed as alteration 
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minerals. Also, some of the dykes have chilled margins. It is broadly accepted that dyke 

emplacement in the mantle section and sole rocks was generated by either roll-back of the 

subducting plate or delamination of the subducting plate resulting in asthenospheric inflow (Çelik 

et al., 2006; Morris et al., 2017; Parlak et al., 2006; van Hinsbergen et al., 2015). 

2.3.3.4 Metamorphic sole rocks 

The Mersin ophiolite is underlain by metamorphic 

sole rocks which are mainly composed of 

amphibolites in the upper parts, and mica schists, 

calcschists, marble and quartzite in the lower parts 

(Fig. 2.6). Mica-schist lenses are observed in the 

amphibolites. Foliation is common through the 

amphibolites and granoblastic, nematoblastic and 

granonematoblastic textures are frequent in the 

rocks (Çelik, 2008). Amphiboles are defined as 

calcic amphiboles based on geochemistry data 

and the amphibolites most probably originated by 

metamorphism of mafic igneous rocks (basalts or 

gabbro) (Çelik, 2008). On the other hand, the 

origin of the mica schists is probably sedimentary 

(Çelik, 2008). Geochemical analysis of the sole 

rocks indicate that they are the metamorphosed 

equivalents of island arc tholeiites, ocean island 

basalts, and enriched mid-oceanic ridge basalts, 

and that the protoliths were formed in a SSZ environment like the other Tauride belt ophiolites 

(Çelik, 2008). There are some different studies to determine the pressure and temperature 

conditions. Parlak and Delaloye (1999) suggested that sole rocks cooled below 510℃±25℃. 

Çelik (2008) determined that the average metamorphic temperature was 522℃±15℃ and the 

pressure less than 5 kbar during the metamorphism, which is more precise than previous studies. 

Figure 2.6. Synthetic log of the metamorphic sole rocks 

of the Mersin Ophiolite from tectonites (top) to 

ophiolitic melange (bottom) (modified from Çelik, 

2008). Note that it is not in scale. 
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The age of the metamorphic sole rocks ranges between 96 ± 0.7 Ma and 91.6 ± 0.3 Ma (Parlak 

and Delaloye, 1999), based on 40Ar/39Ar results. Dilek et al. (1999) determined an age of 91.3±0.4 

Ma. The most recent study in terms of dating the generation of the soles, Çelik (2008) suggested 

a range from 91 to 93 Ma, which is consistent with all other previous studies. Also, according to 

the ages of Tauride ophiolites and their metamorphic sole rocks, spreading and sole rock 

exhumation were almost coincident events (Morris et al., 2017).  

Dilek et al. (1999) suggested that the dykes cutting cross the metamorphic sole rocks have 

geochemical affinities (from basalts to andesites) showing origins from the depleted mantle 

wedge and the dyke intrustions are simultaneous with, or just after, the initiation of an intraoceanic 

subduction zone. Therefore, sole rocks should have been above the generated melt at the time of 

the dyke intrusions, which implies that there must have been a mechanism to exhume the sole 

rocks from deeper sections to the top of the mantle wedge (Morris et al., 2017; Parlak, 2016). 

Çelik (2008) suggested two different models to explain the generation of the metamorphic sole 

rocks for the Tauride Belt ophiolites. The first one implies that protoliths of the alkaline basaltic 

rocks formed at the overriding plate and oceanic island basalts over the subducting plate 

experienced amphibolite facies 

metamorphism while the plate was 

subducting. The other model suggests the 

existence of a second subduction zone or 

thrusting of another hot and young oceanic 

lithosphere that triggered the metamorphic 

activity. Parlak (2016) proposed another 

model (Fig. 2.7) involving N-dipping 

subduction inititation along a fracture zone, 

not at an active spreading ridge, based on the 

different protoliths of the sole rocks which 

formed due to the metamorphism of 

basaltic rocks (OIB-like alkaline and MORB-type) accreted to the bottom part of the overriding 

Figure 2.7. Tectonic model for the Tauride ophiolites, 

generation of the sole rocks and dyke intrusions (from Parlak, 

2016) 
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plate. The old dense lithosphere rolled back, which caused the exhumation of the sole rocks and 

the welding to the base of the overriding plate. The most recent model for metamorphic sole 

formation and exhumation (in general) is that of van Hinsbergen et al. (2015) (Fig. 2.8). In this 

model, metamorphic sole rocks (predominantly amphibolites) are inferred to form at the top of 

the down-going plate during subduction initiation. The exhumation of these rocks from peak 

metamorphic depths involves slab flattening caused by the removal of material from the mantle 

wedge during fore-arc spreading. After sole rocks were welded to beneath SSZ lithosphere, the 

slab started steepening because of eclogitization resulting in negative buoyancy effect. 

 

Figure 2.8. Intraoceanic subduction initiation and formation of the ophiolite with its related metamorphic sole rocks 

(from van Hinsbergen et al., 2015) 
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For each model, it is accepted by all authors that the dolerite dykes intruded into the metamorphic 

sole rocks after the metamorphism is finished (e.g. Dilek et al., 1999; Parlak and Delaloye, 1996; 

Çelik, 2008; Morris et al., 2017; van Hinsbergen et al., 2015; Parlak, 2016). 

2.3.3.5 Ophiolitic mélange 

The Mersin ophiolitic mélange strikes SW-NE and dips southwards at a steep angle. The mélange 

is located between the metamorphic sole rocks and continental margin units. The outcrop of the 

unit is 600 km2 (40 km length and 15 km wide) and overlies pelagic carbonates (Parlak and 

Robertson, 2004). Four different assemblages have been observed in the mélange by Parlak and 

Robertson (2004): shallow-water carbonate association, volcanogenic-terrigenous-pelagic 

association, basalt-radiolarite-pelagic limestone association, and ophiolite-derived association. 

The units in different locations consist of shales, sandstones, conglomerates, mudstones, 

radiolarites, limestone blocks, gabbro, basalts, serpentinized harzburgite, fragments of sole rocks 

and granitic blocks (Fig. 2.9) (Parlak, 1996; Parlak and Delaloye, 1999; Parlak and Robertson, 

2004). The matrix of the mélange formed during Late Cretaceous because of the sedimentary 

activities and tectonic developments (Parlak and Robertson, 2004). 

 

Figure 2.9. Tectonostratigraphic setting of the Mersin melange (from Parlak and Robertson, 2004) 
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2.4 Previous palaeomagnetic analysis of the Mersin ophiolite 
Omer (2014) and Morris et al. (2017) presented the results of a palaeomagnetic study of the 

Mersin ophiolite, that focussed on sampling of the lower crustal gabbroic cumulates and the 

doleritic dykes that cut the mantle sequence and the metamorphic sole. The palaeomagnetic data 

were analysed using a net tectonic rotation approach  (Allerton and Vine, 1987; Morris et al., 

1998) that yielded estimates of the inclined axes and angles of tectonic rotation of each sampled 

unit.  Results from the non-metamorphosed dykes cutting the sole rocks indicated a 45° clockwise 

rotation of the sole and dykes around an NE-trending, shallowly plunging, ridge-parallel axis. 

Also, palaeomagnetic analyses of the cumulate section and mantle-hosted dykes indicate larger 

rotations around similar shallowly plunging NE-SW directed axes (Fig. 2.10) (Morris et al., 

2017).  

 

Figure 2.10. Net tectonic rotation results from the Mersin ophiolite, combining site-level preferred solutions from each 

lithostratigraphic unit. (a) Histograms of rotation angles; (b) contoured equal area stereographic projections of 

rotation axes; and (c) rose diagrams of restored initial dyke strikes (from Morris et al., 2017) 
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These palaeomagnetic results and net rotation analyses showing rotation around ridge-parallel, 

shallowly-plunging axes were interpreted as evidence for rotation of the cumulates and mantle 

section in the footwall of an oceanic detachment fault during detachment-mode SSZ seafloor 

spreading. Sole rocks were then separated from the subducting plate and welded to the bottom 

part of the overriding lithospheric plate because of depletion of the mantle wedge (van Hinsbergen 

et al., 2015). Later dykes cutting the metamorphic sole rocks experienced rotation around the 

same axis but with lower magnitude than cumulate rocks (Morris et al., 2017). These rotations 

occurred via a common mechanism in a pre-obduction, fore-arc setting, and are best explained by 

combining (hyper)extension resulting from detachment-mode, amagmatic supra-subduction zone 

spreading in a fore-arc environment with a recently proposed mechanism for the exhumation of 

metamorphic soles driven by upper plate extension (Morris et al., 2017). 

2.5 Fundamentals of magnetism, magnetic terms and parameters 

2.5.1 Earth’s magnetic field 
The Earth’s magnetic field is generated by the motion of the electrically conducting liquid iron of 

the outer core via a self-exciting dynamo process (McElhinny and McFadden, 1999). This 

produces a simple external field geometry that approximates that of an axial geocentric dipole, 

when averaged over time periods > 105 years (Fig. 2.11). 

 

Figure 2.11. Convection currents in the Earth’s outer core generate a dipolar geomagnetic field (from Reeve, 2010) 
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At the Earth’s surface, the geometry of the geomagnetic field is described by the declination 

which is the angle from geographic north to the horizontal field component (ranging from 0° to 

360°) and the inclination that is the angle between the horizontal and the geomagnetic field lines 

(ranging from -90° to 90°) (Butler, 1992). These angles are also used to specify the direction of 

the palaeomagnetic record of past field directions preserved in studied rocks (Fig. 2.12). 

 

Figure 2.12. Diagram illustrating the geometry of the geomagnetic field (from Butler, 1992) 

On shorter timescales, the geomagnetic field varies from that of a simple dipole as a result of 

palaeosecular variation (PSV) related to the presence of non-dipole field components. 

Palaeomagnetic studies need to average out PSV in order to determine magnetization directions 

that can be interpreted using the longer-term geocentric axial dipole (GAD) model (Fig. 2.13). 

According to this model, the inclination (I) of the field is related to the latitude (λ) by the equation: 

tan (I) = 2tan (λ) (Butler, 1992).  
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Figure 2.13. Diagram showing the geocentric axial dipole model (from Butler, 1992) 

Studies at the beginning of the 20th century showed that the natural remanent magnetization 

(NRM) of some samples from lava flows had inclinations of the opposite sign to that expected 

from their hemisphere of formation, indicating that the geomagnetic field had reversed its polarity 

periodically in the geological past (McElhinny and McFadden, 1999). Normal polarity is defined 

as the field geometry that we see during the present day with the north/south geomagnetic poles 

near to the north/south geographical poles (rotation axis of the Earth), whereas reversed polarity 

periods are marked by an inversion of the geomagnetic poles relative to the geographical ones 

(Fig. 2.14). 

 

Figure 2.14. Normal and reversed magnetic polarity  
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2.5.2 Magnetic Behaviours 
The origin of magnetism is based on orbital and spin movements of the electrons and their 

interactions. The best way to distinguish the different types of magnetism is understanding the 

reactions of materials to applied magnetic fields. All materials show magnetic behaviour at the 

atomic level but some materials respond more than the others to applied fields due to stronger 

interactions between atomic magnetic moments. These responses are classified into three main 

different categories (Butler, 1992): 

1. Diamagnetism 

2. Paramagnetism 

3. Ferromagnetism 

Magnetic susceptibility, χ or k, is the constant that relates the induced magnetization (J) in a 

substance to intensity of the applied inducing field (H), such that J = χH. Diamagnetic materials 

(such as quartz and calcite) acquire a very weak induced magnetization in the presence of an 

applied field in the opposite direction to the field. They therefore have a negative magnetic 

susceptibility (χ) (i.e. a negative gradient in Fig. 2.15). This magnetization is not permanent and 

disappears in the absence of an inducing field (Butler, 1992). 

Paramagnetic materials have a positive magnetic susceptibility and respond to an applied field by 

acquiring an induced magnetization parallel to the field direction, that again disappears in the 

absence of an inducing field (Fig. 2.15) (Butler, 1992). Hornblende, biotite, pyroxene and fayalite 

are some examples of paramagnetic minerals (Tarling and Hrouda, 1993).  

https://en.wikipedia.org/wiki/Chi_(letter)
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Figure 2.15. Magnetization (J) vs. magnetizing field (H); (left) negative susceptibility (diamagnetic materials), (middle) 

positive susceptibility (paramagnetic materials), (right) magnetic susceptibility is not constant (ferromagnetic 

minerals) (from Butler, 1992). 

Unlike paramagnetic substances, ferromagnetic materials produce strong interactions between the 

atomic moments of adjacent atoms. These interactions are produced by powerful electron 

exchange interaction forces. Even in the absence of a magnetic field, these substances produce 

large net magnetizations, which means that magnetization does not return to zero after removal 

of the magnetic field. Fe, Ni and Co elements and their alloys are typical ferromagnetic elements. 

Of these, the iron oxides magnetite and hematite are the two most important minerals in 

palaeomagnetism, recording the direction of the geomagnetic field at the time of their formation. 

If ferromagnetic grains are abundant enough in the volume of the whole rock, they become 

dominant and control the magnetic characteristics, including the anisotropy of magnetic 

susceptibility. 

2.5.3 Magnetic Domains 
In grains of ferromagnetic materials, the internal magnetization organizes itself into regions of 

uniform magnetization known as domains, in order to minimize the magnetic energy of each 

grain. The domain state is principally controlled by grain size but also by shape (Butler, 1992). 

Single domain (SD) grains have a uniform internal saturation magnetization, that is aligned along 

the long axes of non-equant grains as a result of shape anisotropy. In larger grains a critical level 

is reached that causes internal magnetization to reorganise into two domains via the nucleation of 

a domain wall (McElhinny and McFadden, 1998). If the domains are aligned oppositely after 
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division, the magnetostatic energy (the self-energy of the grain produced by its magnetization) 

decreases and the grain obtains a minimum energy state. 

 

Figure 2.16. Schematic diagram illustrating formation of domains. Arrow shows the direction of magnetization (from 

Moskowitz, 1991) 

This subdivision may continue as long as the energy required to form a new wall is lower than 

the consequent reduction in magnetostatic energy. SD magnetite particles of cubic shape have 

diameters < 0.1µm, and the elongated ones might be 1 µm in length (Butler, 1992). Multi-domain 

(MD) magnetite grains have diameters > 10 µm (Butler, 1992). Between these size limits, grains 

have more complex pseudo single domain (PSD) structures (Butler, 1992). 

2.5.4 Curie temperature  
Temperature is one a key factor that affects most characteristics of matter, including a loss of 

magnetization. If the temperature of a solid matter is increased, the magnitude of thermal vibration 

of atoms increases, reducing their ability to interact magnetically to produce stable 

magnetizations. Eventually, magnetic moments are no longer able to interact and all 

magnetization is lost at a critical temperature known as the Curie temperature. Above the Curie 

temperature, materials behave paramagnetically (Butler, 1992). All ferromagnetic minerals and 

elements have characteristic Curie temperature values greater than 0 K (Table 2.1).  
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Table 2.1. Curie temperature values of some of the magnetic minerals that occur in rocks together with their magnetic 

state (modified from McElhinny and McFadden, 1999) 

Mineral Composition Magnetic state Curie temperature TC (°C) 

Magnetite Fe3O4 Ferrimagnetic 580 

Titanomagnetite Fe2.4Ti0.6O4 Ferrimagnetic 150 

Hematite αFe2O3 Canted 

antiferromagnetic 

675 

Ilmenite FeTiO3 Antiferromagnetic -233 

Maghemite γFe2O3 Ferrimagnetic 590-675 

Pyrrhotite Fe1-xS 

(0<x≤1/8) 

Ferrimagnetic 320 

Goethite αFeOOH Antiferromagnetic 

with defect 

ferromagnetism 

120 

Iron Fe Ferromagnetic 765 

Cobalt Co Ferromagnetic 1131 

Nickel Ni Ferromagnetic 358 

2.5.5 Relaxation time and blocking temperature 
Magnetic relaxation is the decay of remanent magnetization of grains within time. SD grains with 

short relaxation time are called superparamagnetic and are magnetically unstable. Every material 

has different critical relaxation time (τs). For magnetite, a grain with a width:length ratio is 0.2, 

length is 0.04 µm, and relaxation time is 100 seconds, is at the superparamagnetic threshold 

(Butler, 1992).  

When magnetite grains reach at 575°C, the relaxation time is less than 1 microsecond. If τs.=100 

s is considered as critical time, grains begin to behave as stable single domain rather than 

superparamagnetic at 550°C (Butler, 1992). Between the Curie point and this blocking 
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temperature, the material behaves superparamagnetic. The material is considered as stable single 

domain if T<TB (Fig. 2.17). 

 

Figure 2.17. log10 τ(s) vs Temperature(C°) plot of single domain magnetite grain ; Superparamagnetic behaviour 

when T>550℃ and stable τ>100s while T<TB (from Butler, 1992) 

 

2.6 Magnetic minerals 
Magnetic minerals are accessory minerals in rocks. Magnetite and hematite form members of 

solid solution series that may be represented on a ternary diagram displaying proportions of iron 

oxides and titanium oxides with apexes of FeO (Wüstite), TiO2 (Rutile), and Fe2O3 (Hematite) 

(Fig. 2.18). 
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Figure 2.18. Ternary diagram displaying the series between FeTi Oxides, also showing the Curie temperatures for 

different compositions (modified from McElhinny and McFadden, 1999) 

The most common magnetic mineral in rocks is magnetite (1/3 Fe3O4). Increase or decrease in 

the Fe and Ti proportions causes variations in the solid solution series. There are two important 

series in the system, which are titanomagnetite and titanohematite series. Curie points of 

intermediate members of these solid solution series decrease as the titanium content increases 

(Butler, 1992). Both titanohematites and titanomagnetites form solid solution series at high-

temperature levels, but exsolve into intergrowths of different phases low temperatures (Merrill 

and McFadden, 1999). If magnetite is oxidized at low-temperature grades (less than 200℃; 

Merrill and McFadden, 1999), maghemite formation can be observed (Tarling, 1971).  

Titanomagnetite and titanohematite series form in the early crystallization of igneous rocks at 

1300°C and cooling rate plays a fundamental role for grain size distribution of Fe-Ti oxides. For 

example, grain sizes are less than 1 µm in pillow lavas (usually the ones with titanomagnetites) 
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due to rapid cooling after the lava comes across to water (Butler, 1992). 100 µm grains can be 

observed in the rocks which formed with slow cooling rates. 

2.7 Acquisition of magnetization 
Rocks usually acquire a magnetization parallel to the ancient geomagnetic field at the time of 

formation and this is called a primary magnetization. The conditions during the formation of the 

rock and acquisition of magnetization determine the kind of remanence. Igneous rocks acquire a 

thermoremanent magnetization (TRM) during cooling through the Curie and blocking 

temperatures. Metamorphic rocks may acquire a TRM during cooling from peak metamorphic 

temperatures, but may also acquire a chemical remanence (CRM) during growth of new 

ferromagnetic grains. Sedimentary rocks acquire a depositional remanent magnetization (DRM) 

during or shortly after initial deposition. In addition, rocks may also acquire secondary 

components of magnetization during their subsequent history, e.g. because of the alteration 

affecting the ferromagnetic minerals, lighting strikes or long-term exposure to the geomagnetic 

field (Butler, 1992). Hence, the natural remanent magnetization (NRM) of a rock is the vector 

sum of the primary and secondary components.  

TRM is the natural remanent magnetism formed after cooling from above the Curie temperature. 

It is observed in most igneous rocks. Spontaneous magnetization is acquired during the cooling 

at the Curie point, however, individual ferromagnetic grains behave superparamagnetically until 

they cool below their blocking temperatures, when they experience a drastic increase in relaxation 

time and their magnetization is locked in (Butler, 1992; McElhinny and McFadden, 1999). 

Distributions of ferromagnetic grain sizes in the cooling rock result in distributions of grain 

blocking temperatures, which means that not all of the thermoremanent magnetization is acquired 

at the Curie temperature. This acquired magnetization stays stable over the million years as long 

as the acquisition is due to primary cooling (Butler, 1992). Below Curie temperature, 

magnetization is acquired within cooling intervals. Every interval is called partial 

thermoremanent magnetization (PTRM). Because the PTRM acquired in each interval is not 

affected by the field applied at the following intervals on cooling, the total net thermoremanent 

magnetization is equal to the sum of partial thermoremanent magnetizations. Thellier (1938) 
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called  this the law of additivity (McElhinny and McFadden, 1999). This process is of fundamental 

importance for palaeomagnetism. During the conditions of T<Tc, heating a rock to a temperature 

T in a zero field environment in the laboratory results in unblocking of grains with blocking 

temperature < T and these grains become effectively demagnetized. This allows the progressive 

thermal demagnetization of samples to remove secondary magnetizations that typically have 

unblocking temperatures less than the primary TRM. 

Chemical remanent magnetism (CRM) is acquired when new ferromagnetic minerals form in a 

rock in the presence of a magnetic field because of alteration, metamorphism or precipitation of 

ferromagnetic minerals from solution (Butler, 1992; Tauxe et al., 2013). Each individual grain 

starts growing from zero volume at constant temperature. Grains with smaller volume have lower 

relaxation times, with relaxation time significantly increasing during grain growth. In this way, 

superparamagnetic grains become stable single domain grains and acquire stable magnetizations 

as a CRM when they reach a blocking volume (Butler, 1992). Also, almost all of the CRM 

formation is related to applied field (McElhinny and McFadden, 1999). The main problem could 

be faced with CRM is that coercivities generally overlap with the unblocking temperatures.  

Finally, isothermal remanent magnetization (IRM) is acquired when rocks are exposed to applied 

fields higher than the coercive force of their ferromagnetic grains. This can occur naturally if 

lightning strikes close to a rock formation, causing partial or entirely remagnetization of the rock 

(Tauxe et al., 2013). In the laboratory, IRMs may be imparted to specimens by exposing them to 

a pulsed direct magnetic field, providing information on the nature of remanence carrying 

minerals in the rocks. 

2.8 Anisotropy of magnetic susceptibility  
Anisotropy of magnetic susceptibility (AMS) is a measure of the directional dependency of 

magnetic susceptibility (Morris, 2003). There are two factors affecting the magnetic anisotropy 

of rocks. These are: (1) lattice preferred alignment of crystals with magneto-crystalline 

anisotropy; and (2) shape anisotropy of ferromagnetic grains. Hence AMS reflects the preferred 

alignment of grains in a rock and can provide information about the geological processes 
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operating during their formation and deformation. This can be the direction of emplacement in 

lavas, the palaeocurrent direction in sediments or ductile deformation patterns in metamorphic 

rocks (Morris, 2003; Tarling and Hrouda, 1993). The rocks are called anisotropic if the 

susceptibility differs in the separate directions. These differences are described by a second order 

tensor that may be represented by an anisotropy ellipsoid with three orthogonal principal axes as 

maximum, intermediate and minimum. If Kmax=Kint=Kmin, the magnetic susceptibility is isotropic 

and no fabric is present. If Kmax≥Kint>Kmin, the ellipsoid is oblate (disc-shaped). If Kmax>Kint≥Kmin, 

the ellipsoid is prolate (cigar-shaped). The magnetic foliation is represented by the plane 

containing Kmax and Kint, with Kmin representing the pole to the magnetic foliation plane. 

Furthermore, Kmax represents the magnetic lineation (Mamtani et al., 2017). For example, oblate 

shaped susceptibility ellipsoids are generally found in sedimentary rocks and highly foliated 

metamorphic rocks, which implies Kmin is perpendicular to the foliation or bedding plane. Also, 

prolate shaped susceptibility ellipsoids are commonly observed in lava flows and sedimentary 

current deposits, where Kmax alignment is parallel to palaeo-flow direction (Morris, 2003). When 

Kmax>Kint>Kmin this represents a triaxial ellipsoid shape (Fig. 2.19). 

 

Figure 2.19.  Schematic figures illustrating the prolate shape (Kmax>Kint=Kmin), oblate shape (Kmax=Kint>Kmin) and 

triaxial shape (Kmax>Kint>Kmin) ellipsoids (from O driscoll, 2006) 
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Chapter 3- Methodologies 

3.1 Magnetic methodologies 

3.1.1 Sampling and palaeomagnetic sampling 
For this study, the Fındıkpınarı road section where the metamorphic sole rocks of the Mersin 

ophiolite are well-exposed was chosen for sampling. Instead of collecting samples using a 

portable drill with a water-cooled diamond bit (requiring transportation of bulky field equipment 

to Turkey), oriented block hand samples were collected that were later drilled and cut using 

equipment in the laboratory. Two samples from metamorphic sole hosted dykes and 30 samples 

from metamorphic sole rocks were collected at a series of sites distributed along the exposed 

section (Fig 3.1). The dip and dip direction data were also collected for each sample during the 

fieldwork. Strike and lineation lines (if observed) were drawn on the top surface in the field (Fig. 

3.2a). During the laboratory preparation, lines perpendicular to the strike lines were drawn on the 

field oriented surface, with tick marks pointing in the up-dip direction (Fig. 3.2b). The block 

samples were drilled (Fig. 3.2c) perpendicular to the surface. Fiducial lines were then drawn along 

the length of the cores by extending the parallel lines. The hade (angle from the vertical) of the 

core fiducial line is then the same as the dip of the top surface and the core azimuth is the 

specimen’s dip direction ± 180°. Cores were then finally cut by using a dual blade rock saw to 

produce standard specimens ~22 mm in length (Fig. 3.2d, f). Off-cuts of cores were retained for 

use in rock magnetic experiments (Fig. 3.2e). Eventually, 111 core specimens (14 from dykes and 

97 from the metamorphic sole rocks) were obtained (Fig. 3.2f). The orientation system for 

specimens is shown in figure 3.3.  
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Figure 3.1. Google Earth image indicating the sampling locations at the Fındıkpınarı road cut section
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Figure 3.2. (a) Hand sampling from Fındıkpınarı road cut section, (b) Lines perpendicular to the strike and arrows 

showing the up-dip direction, (c) Used drilling equipment, (d) Dual blade rock saw, (e) Weathered surfaces removed, 

(f) Core specimens after necessary practises 

 

Figure 3.3. Illustration of the orientation of cores drilled from hand samples. First drawing illustrates the red lines 

drawn parallel to dip direction with arrows pointing up-dip. Second drawing shows the relationship between core 

azimuth and hade angles 

  

a b c 

d e f 
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3.1.2 Natural remanent magnetization (NRM) measurements  
NRM is the vector summation of 

magnetization components 

acquired during different times 

because of various geological 

processes. After acquiring a 

primary NRM during the 

formation of a rock, secondary 

NRM components might be 

subsequently acquired because of 

processes such as metamorphism, 

hydrothermal alteration, and long-

exposure to the geomagnetic field. 

NRM measurements were 

performed by using an AGICO JR-

6 dual speed spinner magnetometer 

in the University of Plymouth Palaeomagnetic Laboratory (Fig. 3.4) that can measure in the range 

of 10-6-104 A/m.  

3.1.3 Anisotropy of magnetic susceptibility (AMS) measurements 

AMS measurements were conducted by using an AGICO KLY-3 Kappabridge (Fig. 3.5) in the 

University of Plymouth Palaeomagnetic Laboratory, before the demagnetization process. The 

SUSAR program was used to collect and process the data. The azimuth and hade of each specimen 

was inputted into the SUSAR software before initializing the measurement. Each specimen was 

measured in three different positions in order to collect data to define the complete anisotropy 

ellipsoid (Fig. 3.6). The bridge is automatically zeroed after putting the specimen into the 

measuring coil. Then, susceptibility variations are measured by spinning the specimen in each 

position, which provides sensitive determination of each anisotropic component of the 

susceptibility tensor. The complete AMS tensor was found by the combination of three 

Figure 3.4. JR-6 Dual speed spinner magnetometer 
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measurements in different directions and one bulk susceptibility measurement. The SUSAR 

software then combined the results and calculated the AMS ellipsoid for each core specimen. The 

results gave the principal directions (maximum, intermediate, and minimum) of the AMS 

ellipsoid in both specimen and geographic reference frames. The software also calculated 

anisotropy factors and parameters for each specimen. These are lineation (L=Kmax/Kint), foliation 

(F=Kint/Kmin), Pj (anisotropy degree) and T (shape parameter).  

 

Figure 3.5. AGICO KLY-3 Kappabridge 
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Figure 3.6. Three different positions for the AMS measurement of each specimen 

The corrected anisotropy degree (Pj) (Jelinek, 1981) indicates the strength of the anisotropy. Pj = 

1.0 represents an isotropic susceptibility. Pj values greater than 1.0 indicate presence of 

anisotropy, with, for instance, Pj = 1.14 indicating 14% anisotropy. For the Pj calculation, the 

equation used by the program is; 
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The shape parameter (T) describes the shape of the ellipsoid, which is oblate (disc-shaped) when 

0 < T ≤ 1 and prolate (cigar-shaped) when -1 ≤ T < 0. If T is close to zero, the shape is a neutral 

ellipsoid (plane-strain). For the T calculation, this equation used by the program is; 

𝑇𝑇 =
ln(𝐿𝐿) − ln (𝐹𝐹)
ln(𝐿𝐿) + ln (𝐹𝐹)

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹 =
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖
𝐾𝐾𝑚𝑚𝑖𝑖𝑖𝑖

 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿 =
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖
 

Both of the equations show that all of the principal directions are used to calculate the parameters, 

which makes results reliable. AGICO-ANISOFT v. 4.2 and 5.0 softwares were used to plot all 

the measurements obtained from the Kappabridge device i.e. principal directions, T and Pj plots . 
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The Jelinek plot (Fig. 3.7) indicating the relationship between the corrected anisotropy degree and 

shape parameter is given below with an example from the metamorphic sole-hosted dykes of the 

Mersin ophiolite.  

 

3.1.4 Demagnetization techniques and procedures 
As described above, the natural remanent magnetization (NRM) of a rock represents the sum of 

all magnetic components during a rock’s history. However, the main aim of palaeomagnetic 

analyses is to find the earliest component, defined as the characteristic remanent magnetization 

(ChRM), for geological interpretation. That direction represents the geomagnetic field at the time 

of acquisition of the magnetization. Therefore, low stability secondary magnetizations (usually 

carried by the lowest coercivity or blocking temperature grains) needed to be removed. For this 

purpose, there are two different techniques. One of them is alternating field (AF) demagnetization 

and the other one is thermal demagnetization. It is quite important to choose the best one for the 

demagnetization process. Mineralogy and magnetic history are the most important controlling 

factors to decide the technique (Butler, 1992). For example, the average coercivity values of 

magnetite and titanomagnetite minerals are less than hematite. Magnetite has a maximum 

coercivity of 0.3 T whereas hematite grains have coercivities of 1.5 – 5.0 T and goethite grains 

have coercivities in excess of 5.0 T (McElhinny and McFadden, 1999). For that reason, AF 

demagnetization is most useful for analysing rocks that have mainly magnetite and 

Figure 3.7. Degree of anisotropy (Pj) vs. Shape parameter (T) and an example from Mersin ophiolite sole-hosted 

dykes indicating mostly oblate shape for the magnetic carriers 
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titanomagnetite as ferromagnetic carriers (Morris, 2003). In contrast, rocks with remanences 

carried by hematite cannot be fully demagnetized using the AF method and are best treated 

thermally. 

3.1.4.1 Thermal demagnetization  

Thermal demagnetization is conducted by heating samples in an oven that is magnetically 

shielded to produce a zero-field environment in the heating chamber, and then cooling them to 

room temperature. This removes the magnetization carried by ferromagnetic grains with 

unblocking temperatures less than the oven temperature. Demagnetization experiments are 

conducted by repeatedly treating samples at progressively higher temperatures, measuring the 

magnetization remaining after each step.  

This study used a Magnetic Measurements Ltd Thermal Demagnetizer –MMTD oven (Fig. 3.8). 

Since the NRM intensities presented in metamorphic sole rocks are low, only 12 specimens were 

thermally demagnetized initially to test whether this method gave good results. The temperature 

steps used were 100, 150, 200, 250, 300, 350, 400, 425, 450, 475, 500, 520, 540, 560 and 580°C. 

Before cooling to room temperature, specimens were held in the oven for 40 minutes at each step. 

After cooling, the remanent magnetizations were measured using the AGICO-JR6 spinner 

magnetometer. Bulk susceptibilities were also measured after each temperature step to monitor if 

heating had affected the mineral composition and caused alteration, for example, pyrite may alter 

to magnetite at 350℃-500℃ (Morris, 2003).  

 

Figure 3.8.Magnetic Measurements Ltd Thermal Demagnetizer – MMTD ovens 
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3.1.4.2 Alternating field (AF) demagnetization 

In AF demagnetization, specimens are tumbled in an alternating field within a zero direct 

magnetic field environment produced by magnetic shielding. Grains having smaller coercivity 

values than the applied field track the alternating field direction as the specimen is tumbled, and 

as the field is gradually reduced to zero the magnetization of these grains becomes randomized 

and cancel each other out. This effectively removes secondary magnetization components carried 

by grains with coercivities less than the peak applied field. In this study, an AGICO LDA-3 AF-

demagnetizer (Fig. 3.9) that can reach at maximum peak field of 100 mT was used. Each specimen 

was put individually within the specimen holder. Alternating fields were applied in 5 mT steps 

from 5 mT to 100 mT. After each step, remanent magnetizations were measured using an AGICO 

JR6 spinner magnetometer. Initially, 24 specimens from both sole rocks and sole-hosted dykes 

(at least one specimen per site) were chosen to see if the results would be reliable since the 

metamorphic sole rocks have low NRM intensity values. Because the results were somewhat 

better than the ones demagnetized thermally, nine more specimens were AF demagnetized. 

However, many of the results were considered as noisy and not usable data since the 

magnetometer could not measure the remanent magnetizations accurately enough.  

 

Figure 3.9. AGICO LDA-3 Alternating field demagnetizer 
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Because of this, the remaining 66 specimens were demagnetized and measured using a 2G-

Enterprises DC Cryogenic SQUID (Superconducting Quantum Interference Device) 

Magnetometer (Fig. 3.10) housed in a magnetically shielded room at the University of 

Southampton. This equipment (noise level= 5 x 10-6 A/m) is more sensitive than the AGICO 

spinner magnetometer in terms of measuring low-intensity magnetizations. Also, the other 

advantage is that the measurement takes only about three minutes per each demagnetization step. 

Unlike the AGICO demagnetizer, it was possible to put eight different specimens in the equipment 

during each step. The applied field was increased 5 mT at each step up to 110 mT (the maximum 

field that the 2G system can reach). After each measurement following the different cleaning 

steps, Long core software automatically calculated the remanent magnetization. One of the 

samples (BC0701C3) could not be demagnetized since it was slightly too large to enter the 

demagnetizer. 

 

Figure 3.10. 2G-Enterprises DC Cryogenic SQUID (Superconducting Quantum Interference Device) Magnetometer, 

at the University of Southampton. 

3.1.4.3 Displaying the stepwise demagnetization data 

There are two different ways to represent the stepwise demagnetization data. The first and most 

common one is to use an orthogonal projection known as a Zijderveld diagram (Zijderveld, 1967) 

to show both the direction of remanent magnetization and intensity values after each step by 

projecting the data onto a two dimensional view (Fig. 3.11).  
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N–S vertical plane 

tan(𝐼𝐼) = tan�𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎� |cos (𝐷𝐷)| 

E–W vertical plane 

tan(𝐼𝐼) = tan�𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎� |sin (𝐷𝐷)| 

 

Figure 3.11. Zijderveld plot displaying the demagnetization of specimen with two remanent components, also showing 

the declination and inclination. Steps NRM-3 yield the secondary magnetization whereas steps 3-6 represent the 

primary magnetization of the specimen (from Morris, 2003). 

The second method is to use equal area projections to show directional changes combined with 

plots of intensity against demagnetization step (Fig. 3.12). In either case, principal component 

analysis (PCA; Kirschvink, 1980) is used to statistically determine the direction of the 

components of magnetization isolated by demagnetization experiments, by least squares best fit 

lines through the data. 
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Figure 3.12. The equal area projection indicates the demagnetization results, 3-6 direction indicates constant direction 

and the direction keeps changing between 0-3 interval. The graphic at the right shows the intensity of the remanent 

magnetization after each step demagnetization step (from Butler, 1992)  

The decrease in the magnetization towards origin does not always follow a straight line as in the 

step 3-6 interval in Figure 3.11. Instead, magnetization may follow a path within a plane 

(represented by a great circle in an equal area projection) because of overlapping of the 

unblocking temperature or coercivity spectra of two or more components (McFadden and 

McElhinny, 1988). When the NRM consists of more than one component, there are three different 

scenarios. In the first and most optimistic scenario (Fig. 3.13), there is no overlap of the 

coercivities/unblocking temperatures of the components and they are demagnetized in different 

intervals. Thus, the primary magnetization will be revealed after erasing the low stability 

secondary magnetization. 
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Figure 3.13. JA component is erased between 1-6 intervals whereas JB component (more stable) is erased between 6-

9 intervals. This figure indicates that there is no overlapping between two components of natural remanent 

magnetization (from Butler, 1992). 

In the second scenario (Fig. 3.14), there is an overlap in stability at some point in both 

components. When the less stable one is not totally demagnetized, the removal of the 

magnetization of the more stable one starts. Therefore, the transition between two components 

might be observed along a great circle. Nonetheless, it is still possible to get the final 

magnetization i.e. in interval 7-9 in figure 3.14. 

 

Figure 3.14. JA component is erased between 1-6 intervals whereas JB component (more stable) is erased between 4-9 

intervals. This figure indicates a small interval of overlap between 4-7 demagnetization intervals. The curve shape 

between 4-7 intervals is clearly seen in the Zijderveld plot (from Butler, 1992). 

The most difficult scenario (Fig. 3.15) is where there is almost complete overlapping of the 

stability of both components, which means that they might start being demagnetized at the same 
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temperature levels or AF steps. Thus, both components might be totally erased at the same levels 

and so there is no way to separate the vector components.  

 

When demagnetization data follow a path along a great circle with no stable end point (i.e. no 

straight line towards the origin in a Zijderveld diagram), the direction of the ChRM is hidden. To 

overcome this, a great circle analysis method was suggested by McFadden and McElhinny (1988) 

to be able to find the final palaeomagnetic direction. The method can combine data from great 

circle demagnetization paths from different samples at a site with any end point directions found 

by PCA. An initial estimate of the final direction is made (using the end point directions if 

available) and the nearest point along each great circle to this estimate are calculated. These points 

are then combined with the end point directions to calculate a new, revised estimate of the final 

direction, and this process is repeated iteratively to establish the maximum likelihood estimate of 

the final direction (McFadden and McElhinny, 1988).  

  

Figure 3.15. JA and JB components of NRM are almost completely overlapping because of the similar blocking 

temperature or coercivity values. The resulting vector component diagram does not indicate linear relations and two 

components cannot be separated from each other (from Butler, 1992). 
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3.1.5 Rock magnetic experiments 

3.1.5.1 Isothermal remanent magnetization (IRM) and back field IRM analyses 

After alternating field demagnetization of the specimens, it is common to perform isothermal 

remanent magnetization (IRM) acquisition experiments to aid identification of the ferromagnetic 

minerals in samples. These experiments are performed by applying increasing direct magnetic 

fields along Z-axis of specimens, measuring the resulting IRM after each field step. In this study, 

the direct fields were applied using a Molspin pulse magnetizer (Fig. 3.16). 

 

Figure 3.16. Molspin pulse magnetizer 

Remanences were then measured with the JR6 magnetometer. The applied fields were 0, 10, 20, 

30, 40, 50, 80, 100, 200, 300, 500 and 800 mT. Data were represented by plotting IRM intensities 

against applied field (after normalising intensities by dividing by the maximum intensity of each 

sample) Back field IRM experiments were then performed by applying the same fields along the 

minus Z-direction (Fig. 3.17) to find the coercivity of remanence (BCr), i.e. the backfield that 

reduced the forward IRM to zero.  
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Figure 3.17. Diagram illustrating orientation of specimens relative to the applied field direction during IRM and back 

field IRM experiments. 

IRM acquisition in specimens containing magnetite reach saturation at maximum applied fields 

around 0.3 T. However, hematite and goethite rich samples do not saturate until very high applied 

field values because of their higher coercivities (Table 3.1).  

Table 3.1.Maximum coercivities and unblocking temperatures for some common magnetic minerals (from Lowrie, 

1990) 

Magnetic Mineral Maximum coercivity (T) Maximum blocking 

 temperature °C 

Magnetite 0.3 580 

Maghemite 0.3 ~350 

Titanomagnetite x=0.3 0.2 ~350 

Titanomagnetite x=0.6 0.1 150 

Pyrrhotite 0.5-1 325 

Hematite 1.5-5 675 

Goethite >5 80-120 
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3.1.5.2 Thermal demagnetization of three-component IRMs 

IRM acquisition data are not always unequivocal. For example, magnetite, maghemite and 

titanomagnetite have similar coercivity values, so they become saturated around same values. In 

addition to IRM results, therefore, the same specimens were subject to thermal demagnetization 

of three-component IRMs, following the method of (Lowrie, 1990). An IRM was first imparted 

by applying an 800 mT field along the specimen Z-direction. This was followed by a 300 mT 

IRM along the Y-direction and by a 50 mT IRM along the X-direction (Fig. 3.18). This allows 

the unblocking temperature characteristics of each coercivity window (0-50, 50-300 and 300-800 

mT) for each sample to be determined using thermal demagnetization (in steps of 50°C from 100-

400°C, 25°C from 400-500°C, and 20°C from 500-680°C). Each component’s IRM intensity was 

measured after each demagnetization step by using the JR6 spinner magnetometer and the 

analyses were performed by using the Remasoft30 software. Eventually, the data obtained from 

IRM experiments and thermal demagnetization of three component IRMs were combined to make 

ferromagnetic mineral identifications (Lowrie, 1990). 

 

Figure 3.18. Applied fields along X (50 mT), Y (300 mT) and Z (800 mT) directions to find thermal elements of three 

components of isothermal remanent magnetization. These fields were applied after AF demagnetization at 100 mT and 

before thermal demagnetization.  

3.1.5.3 Anisotropy of isothermal remanent magnetization (AIRM) 

Anisotropy of isothermal remanent magnetization (AIRM) measurements were performed on 

seven specimens that had already been demagnetized to determine if any inverse magnetic fabrics 
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exists. These can result from the presence of SD magnetite grains that have a maximum 

susceptibility along their short axes because of shape anisotropy. In a normal magnetic fabric, 

Kmax is parallel to X and Kmin is parallel Z whereas Kmax is parallel to Z and Kmin is parallel X in 

an inverse magnetic fabric (Ferré, 2002) (Fig. 3.19). AIRM experiments were performed by 

applying a 50 mT field was applied along each specimen axis and measuring IRM intensities. 

 

Figure 3.19. Illustration of normal and reverse AMS fabric on lower hemisphere (from Ferré, 2002) 

Between field applications the specimens were AF demagnetized in a 100 mT field and measured 

to determine the residual remanence in the demagnetized state, and these values were subtracted 

from the IRM values and these data were used to calculate AIRM ellipsoids for each direction 

(AIRMmax, AIRMint and AIRMmin) using a Basic program written by A. Stephenson. Specimen 

principal axes for AMS and AIRM were compared on stereonets to detect the possible existence 

of inverse fabrics. 

3.1.5.4 Thermomagnetic analyses for Curie temperature 

Curie point is the temperature that ferromagnetic minerals lose their ferromagnetic behaviour and 

become paramagnetic. Each ferromagnetic mineral has a specific Curie point, at which the 

increase in interatomic distances due to thermal energy causes a decrease in the strength of the 

exchange coupling between magnetic moments (Butler, 1992; Morris, 2003). This point is also 

marked by a drastic reduction in low field magnetic susceptibility. 
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To be able to determine Curie points, specimens were crushed to powder to perform experiments 

within a furnace attachment of AGICO KLY-3S Kappabridge. As a first step for the analyses, the 

empty furnace of the equipment was measured to determine the background signal. Specimens 

were then heated in argon gas to reduce alteration during the heating process, with susceptibility 

measured continuously from room temperature to 700℃ and followed by cooling back to room 

temperature. The data were then input into AGICO Cureval8 software to find the Curie points of 

each specimen by using the method from Petrovský and Kapička (2006), which shows the 

determination the of the Curie temperature on a graph of 1/k vs. temperature. 

3.1.6 Net tectonic rotation (NTR) method 
Net tectonic rotation method of analysing palaeomagnetic data was originally developed by 

Allerton and Vine (1987) in for use in the sheeted dyke complex of the Troodos ophiolite (Cyprus) 

and it has been used in many studies to understand rotation histories (Inwood et al., 2009b; 

Maffione et al., 2017; Morris and Anderson, 2002; Morris et al., 2017; Morris et al., 1998; Morris 

et al., 1990; Morris and Maffione, 2016). This method is applicable for both palaeo-vertical and 

palaeo-horizontal cases, and restores the observed magnetization vector at a site or locality to a 

reference magnetization vector and present day pole to the geological structure (bedding or dyke 

margin) to its initial orientation at the time of formation i.e. to the vertical for initially horizontal 

sedimentary rocks, or to the horizontal for initially vertical dykes. These restorations are achieved 

simultaneously by a single net rotation around an inclined axis. Some assumptions of the method 

are: 

1- That angle, β, between the direction of magnetization and the pole to the 

structure does not change during structural deformation (Allerton and Vine, 

1987; Morris et al., 1998) (Fig. 3.20). 

2- That a reference magnetization vector for the area can be found that represents 

the geomagnetic field direction at the time of acquisition of magnetization. 
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Figure 3.20. Illustration of the angle β between the pole to foliation and the magnetization vector. 

In this study, the orientation of the foliation in the metamorphic sole rocks at the time of 

magnetization acquisition is unknown initially (in contrast to all previous applications of the NTR 

approach), and so a modification to the method is needed to allow tectonic interpretation of 

metamorphic sole remanence directions. Three input vectors into the NTR calculation are the 

observed magnetization direction (in present day geographic coordinates), a reference 

magnetization direction, and the present-day pole to the metamorphic foliation. Each of these 

vectors has an associated statistical uncertainty that can be taken into account during the 

calculation of potential rotation parameters (as documented in Chapter 4). The NTR method is 

then combined with a Monte Carlo modelling approach and used to determine all potential initial 

orientations of the pole to the foliation (with no a priori conditions on the orientation) that 

maintain the angle β, and the associated sets of rotation parameters. The full Monte Carlo 

approach is described in Chapter 4, but figure 3.21 outlines the NTR method for a single estimate 

of rotation parameters.  
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Figure 3.21. Example for net tectonic analysis (Allerton and Vine, 1987) by using one of iterations of the Monte Carlo 

method employed in Chapter 4. 

Plotting; 

RMV: 000°/039° (Reference magnetization vector) 

SMV: 320.6°/19.5° (Site magnetization vector) 

PPF: 265.6°/86.2° (Present pole to foliation) 

β: Angle between SMV and PPF: 68.4° 

The intersection of the great circles that bisect 

the vector pairs of the SMV/RMV and PPF/IPF 

represents the rotation pole (RP). After finding 

the rotation pole, the sense and angle of rotation 

around this axis were found. 

In this example, rotation 52.7° around a rotation 

pole (RP) of 286.1°/62.2° in a CCW sense. 

After inputting the data, the circle of radius β 

centred on the reference magnetization vector 

(RMV) is drawn. This circle shows the locus of 

possible poles to foliation at the time of 

magnetization. A single initial pole to the 

foliation (IPF) is selected along this locus at 

random to use in the next step. 

IPF=229.2°/66° (For this chosen random point) 
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3.2 Petrographic and structural methodologies 

3.2.1 Thin section analyses  
Thin section analyses using a polarizing light microscope were performed on 10 samples from 

nine different sites chosen to be representative of the whole road cut section of metamorphic sole 

rocks. Samples were chosen from rocks that exhibited a clear lineation, foliation or other 

structural feature i.e. the ones with stretching lineation to be able to perform kinematic analyses. 

Samples were cut parallel to lineation and perpendicular to foliation, which is the most appropriate 

method to be able to understand the kinematics and microstructures. The markings were done “U” 

for upside and “D” for down of the sample, depending on the facing of the surface on which the 

sample orientation had been marked.  

3.2.2 Scanning electron microscope (SEM) analysis preparations 
For SEM analyses, polished thin sections from two samples that were thought to be the most 

representative ones from the field were observed in the Plymouth Electron Microscopy Centre 

using a calibrated JEOL 7001 FE SEM model. A third prepared section was not observed under 

SEM due to lack of kinematic and structural indicators under polarizing light microscope. 

Sections were coated with carbon, and mineral imaging, mineral and kinematic analyses were 

performed during the SEM sessions. Many spot analyses were done within the minerals as much 

as possible. The variations in the amphibole minerals were observed. Furthermore, textural 

analyses were carried out. P-T conditions at the time of formation of the metamorphic sole rocks 

were estimated by analysing the plagioclase in contact with the amphibole minerals and what 

conditions caused zonation in some amphibole minerals. For further P-T estimations, the 

geothermobarometer using “edenite+albite=richterite+anorthite” equation published by Holland 

and Blundy (1994), in the absence of quartz, was used for both of the polished thin sections. The 

plagioclase with highest anorthite concentrations were used to increase the accuracy of the results. 

The error estimate for temperatures using this method is stated as ±35-40°C by the authors 

(Holland and Blundy, 1994), however, typical uncertainty values for pressure and temperature 

(±50C° and ±1 kbar) were assumed in this study. The pressure values are based on Anderson and 

Smith (1995). In order to understand variations in metamorphism grade, chemical profiles were 
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made from core to rim of zoned amphiboles with 4 to 8 points. Geochemical mapping was also 

performed for the images to observe elemental differences within minerals. 
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Chapter 4- Results 

4.1 Petrographic results and structural data 

The petrography and mineralogy of the metamorphic sole rocks of the Mersin ophiolite have been 

already described in detail by Çelik (2008) and Parlak (1996). In this study, the main aim is to 

understand the shear sense direction by using kinematic indicators observed under the 

microscope, to combine this with the palaeomagnetic studies and the pressure and temperature 

estimates. During the thin section analyses, the petrography and mineralogy of the rocks were 

also studied. Additionally, it should be noted that the geochemical data from SEM the analyses 

are semi-quantitative.  

4.1.1 Mineralogy and petrography 

The sole rocks are observed between ophiolitic melange to the NW and the Mersin ophiolite to 

the SE as a thrust slice. The upper part of the sole rocks (towards SE) is mainly composed of 

amphibolites whereas mainly phyllitic rocks and foliated metabasalts form the lower regions. 

However, amphibolites are also clearly observed in the lower sections as slices, or lenses. 

Foliation is typical in the amphibolites, and it is well defined by amphiboles which mostly show 

~60° and ~120° cleavage angles. The size range of the amphiboles is fine to medium grained. 

SEM observations show that the change in mineral size are not accompanied by any geochemical 

variations. Furthermore, the data indicate the amphiboles are calcic based on the Leake et al. 

(1997) classification (Fig. 4.1). The amphiboles are classified as mostly edenite, and ferro-edenite 

in site BC12 and magnesihornblende in site BC07.  

The plagioclases are albitic in composition (3-7% anorthite) and altered. Therefore, polysynthetic 

twinning is not common. Epidote minerals are abundant and chlorite minerals are also observed 

as a secondary phase. Calcite minerals are observed with thick and straight twins. Pyroxene 

minerals are observed in sample BC0701 as boudinage. Lineations in the sections are largely 

defined with parallel alignment of the hornblende, mica and chlorite minerals. Some of the veins 

are filled with feldspars with potassium. Additionally, some opaque minerals observed in site 

BC05 are probably ilmenite indicating high temperature values. 
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Figure 4.1. Diagrams showing the classification of the amphiboles with calcic characteristic for BC07 and BC12, 

according to Leake et al. (1997). Note that every point indicates the average chemical composition of an individual 

grain. 
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4.1.2 Pressure and temperature estimations 
Zonation within the amphibole may be observed because of variations in crystallizing setting 

during metamorphism. These zonations may be the key to understand the pressure and 

temperature changes which are recorded in the minerals. Many researches have indicated that 

decreasing Ti, Al, Na, K concentrations and increasing Si content within the Ca rich amphiboles 

are associated with a decrease in metamorphism grade (e.g. Holland and Blundy, 1994; Miri et 

al., 2016). Zones were particularly observed within two of the amphibole minerals in BC1201 

thin section as two different zonations i.e. core and rim (Fig. 4.2). In order to understand the 

variations in the metamorphic grade through the zones, chemical profiles were made from core to 

rim of zoned amphiboles with 4 to 8 points. Even if the boundaries between the zones are not 

clear to identify (no optical zonation), the SEM data showed the variations through the key 

elements. According to these data, the core to rim increase in Si, Mg and decrease of Na-K (A 

site), Fe, and Al in zoned amphiboles is consistent with a decrease in metamorphic grade (Fig. 

4.3). The results used for the analyses of the zonations are given in Table 4.1. 

 

Figure 4.2. SEM image highlighting one of the amphibole minerals showing zonation from core to rim in BC1201 thin 

section
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Table 4.1. Chemical compositions of two amphibole grains to study zonation. The calculations are based on 23 oxygen. 

Note that Ed=Edenite , Fe-Ed= Ferroedenite). 
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Although more amphibole minerals were analysed to see possible changes towards rim regions 

during the SEM sessions, they, unfortunately, did not indicate any variations apart from in a few 

examples. Only for the Fe2+ against Si comparison, a few spots in the rim region of the amphibole 

mineral do not indicate any variations. Apart from this element, all of the others suggest different 

pressure and temperature conditions for the rim zone during the metamorphism. Furthermore, an 

increase in the Mg/(Mg+Fe2+) ratio from core to rim points to a transition from ferroedenite to 

edenite composition (Fig. 4.4). 
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Figure 4.3. Chemical zonation of the samples with regards to Fe, Al Total, Mg, (Na+K) vs. Si and Al (iv) vs. Al (vi) as 

a function of metamorphism grade decreasing towards rims. Note that each point indicates random point inside the 

regions of Amphibole-1 and Amphibole-2. 

 

Figure 4.4. The classification of the core and rim regions in two different amphibole minerals according to Leake et 

al. (1997). 

  



59 

 

In this study, four amphibole-plagioclase feldspar couples in contact from BC12 and four from 

BC07 were chosen for pressure and temperature estimations. Since quartz is absent within the 

amphibolites, it was essential to use the edenite + albite = richterite + anorthite thermometer 

published by Holland and Blundy (1994), who suggested that this thermometer should be used in 

the temperature range of 500-900°C, consistent with amphibolite facies conditions. Because of 

the existence of anorthite in the equation, some plagioclase feldspars with pure albitic 

composition (0% An) in contact with amphiboles were not included in the calculations to make 

the equation work. Also, the publishers of the thermometer strictly argued that anorthite should 

be within the range of 0.1<ΧAn<0.9. Therefore, examples with the highest anorthite concentrations 

in the feldspars were chosen. Also, the results giving lower than 2 kbar pressure were excluded 

because amphibolites are not expected to be formed around very low pressure values. The final 

results show that the average temperature values obtained from both of the samples are quite close 

to each other around ~530°C. Unlike the temperature results, the pressure estimates at site BC12 

(~3 kbar) are lower than at site BC07 (~5.30 kbar). For the uncertainty of temperature and pressure 

values, typical uncertainty values (±50°C and ±1 kbar) were used (Fig. 4.5). The thermobarometer 

results (Table 4.2) and amphibole-plagioclase couples (Tables 4.3 & 4.4) used for the 

thermobarometer are given below.  
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Figure 4.5. Pressure vs. temperature results with the uncertainty limits. 

 

Table 4.2. Thermobarometer results of the studied amphiboles and average results for each sample. T-HB: 

temperatures based on Holland and Blundy (1994), P: pressures based on Anderson and Smith (1995).   
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Table 4.3. The chemical compositions of the amphiboles used in the thermobarometer. The formulae based on 23 

oxygen and all iron concentration is taken as FeO. 
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Table 4.4. The chemical compositions of the plagioclase feldspars used in the thermobarometer and the percentages 

of anorthite, albite and orthoclase for each plagioclase contact with amphibole grain. 

 

4.1.3 Structural results 
In the field, the metamorphic sole rocks outcrop in different places e.g. Fındıkpınarı, Şahna, and 

Arslanköy. This research is based only on the sole rocks in the Fındıkpınarı road cut section. 

According to the observations in wider region, sole rocks are imbricated in five different 

packages. All of the packages show a southerly dipping foliation that formed during regional 

metamorphism in a SSZ environment. The foliation is associated with a mostly NW-SE trending 

lineation within the foliation plane (Fig. 4.7). Only site BC07 shows a NE-SW trending lineation. 

The plunge and trend of the mean lineation is 49.5°/139.6° (α = 15.8°, kappa = 9.3). It is defined 

by the parallel alignment of mainly amphibole minerals in the amphibolites whereas mainly 

biotite defines the lineation in calcschists and chlorite in the metabasalts. A high angle shear zone 

(dip/dip direction = 84°/251°) is also observed in the amphibolites close to the overlying mantle 

tectonites.  
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Figure 4.6. The contact between the Mersin metamorphic sole rocks and structurally overlying mantle tectonites of the 

Mersin ophiolite in the Fındıkpınarı road cut section (field notebook for scale). 

 

 

Figure 4.7. Equal area stereographic projection illustrating the foliation and lineation data collected in the field  

NW SE 

Mantle tectonites 

Metamorphic sole rocks 
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Small-scale asymmetric fold structures have been also observed in some of the units, i.e. phyllite 

and amphibolites, rather than large-scale and intense folding structures. These can be classified 

as open and isoclinal folds. One of the fold structures observed in the amphibolite (site BC06) 

caused an overturning of the unit. The dip and dip direction of the overturned limb on the foliation 

plane and other limb were measured as 104°/230° and 59°/213°, respectively (Fig 4.8). The 

direction of the axial plane of the fold is 81°/222°. 

 

Figure 4.8. Small-scale fold structure at site BC06, where the foliation in the amphibolite is observed as overturned 

with 104°/230° orientation 

More folds were observed towards NW of the section. Two samples were collected from the limbs 

of one of these folds. According to the fold analysis, the sampled fold is an open asymmetric 

syncline, with a steeply SE-dipping axial plane (84°/154°) and an inter-limb angle of 95°.  

Shear sense indicators were observed at thin section scale. Some ductile structures have been 

observed during the fieldwork and studied further under the microscope. As a main aim, 

asymmetric indicators of shearing sense were searched for. Some structures indicate a top-to-the-

104°/230° 

59°/213° 

SW NE 

Looking NW 
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SE sense of shear whereas some kinematic indicators imply a top-to-the-NW sense of shear. On 

the other hand, most of the structures suggest a coaxial deformation, which makes the final shear 

direction even more unclear. In the site BC05 calcschist thin section, the mica fish structures 

(group 1 classification) (Fig. 4.9) along with biotites indicate top-to-the-SE, sinistral shearing. 

However, the opposite direction is represented in site BC16 with chlorite and micas indicating 

top-to-the-NW, non-coaxial deformation (Fig. 4.10).  

 

 

Figure 4.9. Schematic drawings of the different types of mica fish. Group 1, lenticular mica fish; Group 2, lenticular 

fish with points inclined in the direction of the foliation; Group 3, rhomboidal shaped fish with (001) parallel to longest 

side of the fish; group 4, rhomboidal shaped fish with (001) parallel to the shortest side of the fish; group 5, fish with 

small aspect ratio and curved tails; group 6, mica fish with high aspect ratio and inverted stair stepping; if considered 

out of their context, these structures could lead to an erroneous shear sense determination (from Ten Grotenhuis et al., 

2003) 
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Figure 4.10. Different microstructural shear sense indicators from metamorphic sole rocks of Mersin ophiolite. a) 

Biotite minerals in calc-schist indicating top-to-the-SE shearing. b) Chlorite and mica minerals in metabasalt showing 

top-to-the-NW shearing.  
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4.2 Rock magnetic and palaeomagnetic results 

4.2.1 Rock magnetic results 

4.2.1.1 Isothermal remanent magnetization (IRM) results 

Twenty-four specimens from 12 sites (including the dykes) that had already been AF 

demagnetized were used in IRM acquisition and backfield IRM experiments. Results are shown 

in Figure 4.11. 

The dyke specimens reached saturation below 300 mT with average coercivities of remanence 

(defined as the backfield required to reduce the forward IRM to zero) of 70 mT. These data 

indicate that the magnetic remanence carrier in the dykes is most likely magnetite and/or 

titanomagnetite with medium coercivity.  

Although some metamorphic sole rocks showed IRM increasing up to 500 mT, most samples 

become saturated around 300 mT with coercivities of remanence between 25-118 mT (with the 

highest coercivities of ~118 mT seen in two specimens from site BC04). Also, the specimens 

from sites BC11 and BC13 did not reach saturation by the maximum applied field of 800 mT and 

had coercivities of remanence >170 mT. This indicates the presence of two different magnetic 

carriers with high and low coercivity. The high coercivity mineral could be either hematite or 

goethite. In order to investigate this further, specimens BC1101B, BC1101E, BC1301A and 

BC1301C were exposed to an 800 mT field along the Z-direction and their IRMs were measured. 

Then they were thermally demagnetized at 150°C and the magnetizations measured again. A 25-

45% decrease in IRM intensity was observed after thermal demagnetization. These values might 

have indicated that the mineral that becomes demagnetized at 150°C is goethite, which has a Curie 

temperature of 120°C (Lowrie, 1990). To test this further, the sample was then subjected to a 

backfield experiment. If the mineral with high coercivity was goethite, its remanence would have 

been removed by the thermal treatment and coercivities of remanence in the subsequent backfield 

experiment would reflect only the lower coercivity magnetite and/or titanomagnetite fraction. 

However, the results were instead more or less same as those obtained before thermal 

demagnetization. Hence, the phase that thermally demagnetizes at 150°C is considered to be 

titanomagnetite with the high coercivity signal attributed to minor hematite and/or titanohematite.  
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There was one more experiment performed to test for viscous remanent magnetization (VRM) in 

these rocks. To do this, an 800 mT field was again applied along Z-direction again. The remanence 

of the specimens was then measured repeatedly every 15 minutes for an hour and 30 minutes. 

However, no significant change in the magnetization was observed, which means VRM is not 

being acquired by these rocks. 

Overall, all of the results from IRM and backfield IRM experiments show that ferromagnetic 

minerals in the specimens are in most likely pseudo single domain (PSD) or single domain (SD) 

or elongated single domain (ESD) magnetite and/or titanomagnetites with low to medium 

coercivity values. The existence of goethite was not observed. However, the presence of a high 

coercivity phase (not goethite, possibly hematite and/or titanohematite) is noted at two sites (Fig 

4.11). 
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Additionally, saturation IRM intensity, bulk susceptibility and coercivity of remanence data 

together were used to determine the domain state of the magnetic carriers, using the variation of 

the ratio of SIRM/k to coercivity of remanence, (B0)CR, following the method of Thompson and 
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Figure 4.11. Isothermal remanent magnetization curves and back field values for 24 specimens from 12 sites of the 

Mersin ophiolite metamorphic sole rocks 
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Oldfield (1986). These data suggest that ferromagnetic grains in these rocks are mainly in the 

pseudo-single and elongate single domain grain sizes (Fig. 4.12). 

 

Figure 4.12. SIRM/k (kA/m) vs(B0)CR  graph (modified from Thompson and Oldfield, 1986) 

4.2.1.2 Thermal demagnetization of three-component IRMs 

This experiment was conducted on 12 AF demagnetized specimens from seven sites (BC01-x2, 

BC02-x1, BC03-x1, BC04-x2, BC07-x2, BC08-x2 and BC12-x2). After applying an 800 mT 

pulsed field along the Z direction, 300 mT along the Y direction and 50 mT along the X direction, 

they were thermally demagnetized until 680°C and measured at each temperature step. The 

identification of the magnetic carriers was found by the sudden slope changes in the plots obtained 

from the remanent magnetization results (Lowrie, 1990). Characteristic differences between the 

coercivity and unblocking temperature of ferromagnetic minerals were utilized to identify 

remanence carriers.  

All three coercivity fractions show a progressive decrease in remanence intensity to 500°C, with 

magnetization continuing to decrease slightly along all axes between 500°C and 580°C. These 

results again clearly indicate the presence of magnetite. Only site BC08 (Figure 4.13) shows an 

additional stepped decrease in intensity between 100°C-150°C steps. In conjunction with 
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evidence from the IRM and backfield experiments, this probably results from presence of minor 

titanomagnetite with relatively high titanium content.  

 

Figure 4.13. Some remanent magnetization results during thermal demagnetization of IRM acquired by applying field 

along the axes (X-direction:50 mT, Y-direction:300 mT and Z-direction:500 mT) 

4.2.1.3 Thermomagnetic analyses for Curie points 

High temperature susceptibility experiments were performed on five sole rock specimens to 

determine the Curie temperatures of the magnetic carriers. Each specimen was heated up to 700°C 

and then cooled to room temperature in an argon gas environment to minimize the risk of possible 

alteration or new mineral formation. Data from the metamorphic sole rocks (BC0201B, 

BC0201B, BC0302A, BC0401B and BC0701E) suggest presence of two different magnetic 

behaviours. The ferro/para resolution graphics clearly show that one of them is due to a 

paramagnetic susceptibility signal based on the low field susceptibility variations depending on 

temperature (Fig. 4.14) whereas the other one is ferromagnetic. Paramagnetic minerals are most 

likely amphibole (based on the petrography), and the decrease in susceptibility at around 560-
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580°C indicates the presence of magnetite. No bumps or abnormal changes during the heating or 

cooling phases were observed, hence there is no other evidence for any other magnetic carriers 

within the sole rocks. Plots from Cureval8 software with hyperbola fittings (Fig. 4.15) for a 

paramagnetic signal on the heating cycle in the sole rocks are given below. An average error 

margin of 0.3% was obtained while fitting the hyperbolas and the average consistence of 

hyperbola fitting to the ideal paramagnetic state was 85%. 

 

Figure 4.14. Schematic illustration of the variations of low field susceptibility with temperature for different magnetite 

states and compositions. Results from sole rocks (see Figure 4.15) indicate the same variation as that of paramagnetic 

phases (from Thompson and Oldfield, 1986) 
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Figure 4.15. High temperature vs. susceptibility results from thermomagnetic experiments of five metamorphic sole 

rock specimens to determine the Curie points. The red curves indicate the results during the heating, blue curves 

indicate the results during the cooling and green lines indicate the hyperbola fittings for a paramagnetic state. 

4.2.2 Magnetic fabric results 

AMS data were determined using an AGICO KLY-3 Kappabridge for 110 specimens (96 from 

metamorphic sole rocks). Only specimen BC0301B could not be measured because of its small 

size. Processing yielded determinations of a range of anisotropy factors, the principal axes of the 

AMS ellipsoids and bulk susceptibility values.  

Pj implies strength of anisotropy i.e. Pj=1.03 implies 3% anisotropy and T parameter where T>0; 

Oblate (disc) shape, T<0; Prolate (cigar) indicates shape parameter (Tarling and Hrouda, 1993). 
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These parameters were shown in Jelinek plots using the Anisoft42 software and also plotted on 

Borradaile (1987) plots.  

4.2.2.1 Anisotropy parameters and bulk susceptibility results 

Bulk susceptibility values range between 0.38 x 10-3 SI and 7.85 x 10-3 SI for the metamorphic 

sole rocks whereas dyke specimens range between 4.83 x 10-4SI and 6.54x10-4 SI. Hrouda (2010) 

argued that if the bulk susceptibility is higher than 5x10-3 SI (strongly magnetic rocks), 

paramagnetic and diamagnetic minerals can be neglected and ferromagnetic minerals effectively 

control the AMS. On the other hand, AMS is controlled by both paramagnetic and ferromagnetic 

minerals if the bulk susceptibility ranges between 0.5 x 10-3 and 5 x 10-3 (Hrouda, 2010). 

Susceptibilities of metamorphic sole rock samples in this study are concentrated in the region 

around 1 x 10-3 SI as seen in the histogram of Figure 4.16. These values suggest that the bulk 

susceptibilities are dominated by paramagnetic minerals, i.e. amphibole, with a more limited 

signal from magnetite (Fig. 4.17). In addition to bulk susceptibilities, other experiments i.e. 

thermomagnetic analyses also indicate the existence of both paramagnetic and ferromagnetic 

minerals. The bulk susceptibility distribution of the metamorphic sole rocks is also consistent 

with the range reported for amphibolites by Hrouda (2010) (Fig. 4.18). 

The bulk susceptibility range of the dykes hosted by the metamorphic sole rocks was presented 

by Omer (2014). According to that study, the bulk susceptibility range was 0.70 x 10-3 - 4.35 x 

10-3 (based on analysis of 82 specimens from four different dykes). The bulk susceptibility results 

in this study are quite similar these values.  
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Figure 4.16. Histogram of bulk susceptibilities of metamorphic sole rocks compared to values predicted from different 

common mineral assemblages (from Tarling and Hrouda, 1993). 

 

Figure 4.17. Bulk susceptibility against corrected anisotropy degree (Pj) for the Mersin metamorphic sole rocks. Most 

of the samples indicate that AMS is most likely controlled by both paramagnetic and ferromagnetic minerals. 
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Figure 4.18. Generalized bulk susceptibility values for different metamorphic rocks. The amphibolite is consistent with 

the samples from this study (modified from Hrouda, 2010). 

The measured mean anisotropy parameters and AMS principal axis orientations at all sites are 

reported in Table 4.5. 

 

For the anisotropy parameters, Pj values of dyke specimens ranging between 1.007 and 1.009, 

which suggests low anisotropy degrees for the dykes cutting cross the sole rocks. Shape 

parameters (T) show a range between -0.061 and 0.096, indicating both prolate and oblate shapes 

Table 4.5. Magnetic fabric results (AMS directions and parameters) of dyke specimens and sole rocks. Note: two 

specimens from the folded region at site BC10 are not included in mean value. 
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of ellipsoids (Fig. 4.19). These results are entirely consistent with the data reported previously 

from the metamorphic sole hosted dykes of the Mersin ophiolite (Omer, 2014). 

 

Figure 4.19.Kmean vs. Pj and Pj vs. T graphs of the gabbroic dyke from the Mersin ophiolite. 

Metamorphic sole rocks show a wider range of magnetic fabrics than the dykes. Pj values are 

between 1.028 and 1.383 which suggest low to high degrees of anisotropy. All of the shape 

parameter (T) values are positive in the sole rocks, indicating that AMS ellipsoids are oblate (disc-

shaped) (Fig. 4.20).  

  

Figure 4.20. Corrected anisotropy (Pj) vs. Shape parameter (T) diagram for the metamorphic sole rocks of the Mersin 

ophiolite. All specimens indicate oblate (disc shaped) AMS ellipsoids. 
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Overall, these results from both dyke and sole rocks neither show a correlation between Pj and 

mean bulk susceptibility nor imply a relationship between T and Pj. Therefore, it can be 

interpreted that ferrimagnetic concentration does not affect the degree of anisotropy. Moreover, 

it is suggested that magnetic anisotropy degree and deformation increase as long as 

metamorphism intensity raises (Hrouda and Janák, 1976). The gradual increase of the magnetic 

anisotropy degree through the specimens is randomly distributed however, and even at the site 

level magnetic anisotropy may vary from low to high, i.e. in site BC09. Therefore, excessive 

variations in metamorphism degree at the time of the formation of sole rocks is not implied. 

4.2.2.2 Distribution of AMS principal axes 

If all AMS data from the metamorphic rocks are examined, they are consistent across all sites and 

clearly related to the structure. The eigenvalue method of Woodcock (1977) was used to specify 

the fabric shape distributions of the different principal axes (Kmax, Kint and Kmin). After obtaining 

eigenvalues for each direction [v1,v2,v3] from Stereonet10 (Allmendinger, 2018), normalised 

values [S1,S2,S3] and the ratios ln(S2/S3) and ln(S1/S2) were determined. Two other parameters (C 

and Kx) were also used to be able to specify the distributions. The C [= ln(S1/S3)] parameter 

indicates the strength of the preferred orientation and if this value is <1 , the strength is considered 

as weak. However, if it is greater than three, it indicates strong preferred orientation. On the other 

hand, Kx [= ln(S1/S2)/ln(S2/S3)] describes the girdle/cluster tendency of the data. In order to 

understand the relationship between the AMS axes and foliation plane, the mean foliation was 

calculated as 42°/148° (dip/dip direction), α95=6.8°, to represent whole road cut section where 

sole rocks uniformly dip towards SE. Some local measurements not representing the mean 

foliation i.e. around small folds, high angle shear zones etc. are not included in this calculation.  
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Figure 4.21. Logarithmic plot of the ratios of normalized eigenvalues of each AMS principal direction (after Woodcock, 

1977). 

Kmax axes (Kx ≈ 1 and C ≈ 3) lie close to the transition from girdle to clustered distributions and 

are oriented close to the foliation plane and generally dip towards the east (Figs. 4.21 and 4.22). 

Kint axes (Kx >1 and C>2) are also lie close to or in the foliation plane and plunge shallowly to the 

SW. Kmin axes have a strongly clustered distribution (Kx >3 and C>3) dipping towards the NW 

close to the pole to the foliation plane (Fig. 4.22). Overall, for all of the results, Kmax directions 

represent a magnetic lineation in the plane of the foliation and Kmin directions coincide with the 

pole to the metamorphic foliation in the sole rocks. These results show that the AMS ellipsoids 

in metamorphic sole amphibolites are coaxial to the main structural elements (Fig. 4.22) and 

provide an accurate proxy for structural fabrics. 
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Figure 4.22. The distribution of principal directions of AMS (Kmax, Kint and Kmin) for metamorphic sole rocks and 

associated contoured distributions. The average foliation plane of the sole rocks and its pole are also given. Kmax and 

Kint are generally distributed along the foliation plane, whereas Kmin axes mostly lie perpendicular to the foliation 

plane. 

There are some inconsistencies between AMS and structural orientations in some hand samples 

however (Fig. 4.23). In sample BC0201, Kmax is perpendicular to the foliation unlike at other sites 

and Kint is steeply plunging. Since this hand sample was collected from the high angle shear zone 

in the amphibolite, localised deformation might have affected the AMS directions. In addition, 

Kint principal directions in hand sample BC0204 lie close to the structural lineation, instead of the 

Kmax axes as in most other sites, suggesting swapping of maximum and intermediate axes. 

Dyke specimens collected from fracture surfaces at site BC01 show and overall oblate fabric but 

with a poor correlation with the dyke orientation. 
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Figure 4.23. Stereoplots of AMS ellipsoid principal axes, together with foliation planes of the metamorphic sole rocks. 

Note that the hollow symbols indicate the mean values, L=Lineation, F= Foliation, I=Intrusion 

BC01(Dyke) 

BC13 BC14 

BC11 BC12 



86 

 

4.2.2.3 Anisotropy of isothermal remanent magnetization (AIRM) results 

AIRM experiments were performed on seven specimens representing most of the sites to 

determine if any inverse fabrics exist. According to the results (Fig. 4.24), almost all of them 

show normal magnetic fabrics where the principal axes of the AMS ellipsoids are close to the 

orientation of the AIRM principal axes. This indicates that the AMS fabrics are normal and that 

Kmax may be interpreted as the magnetic lineation, with no evidence for inverse fabrics. However, 

one sample (BC0701E3) showed different data to the others. In this case, maximum and 

intermediate principal directions of the two forms of anisotropy appear to be exchanged, 

suggesting presence of an intermediate fabric (Fig. 4.24). 
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Figure 4.24. Comparison of orientation of principal axes of AMS and AIRM ellipsoids from seven samples from the 

metamorphic sole rocks of the Mersin ophiolite. Note that the ones with negative plunge are shown in the lower 

hemisphere. 

4.2.3 Palaeomagnetic results 

4.2.3.1 NRM results 

Natural remanent magnetization intensities and directions for the specimens were measured by 

JR6 magnetometer before the demagnetization process. All of the dyke specimens were able to 

be measured but three of the metamorphic sole rocks could not be measured because they were 

not stable inside the holder of the equipment during spinning due to their small size. NRM 

intensities for dyke specimens ranging between 7.2–12.7 mA/m. These are similar to values 

reported previously by Omer (2014). Metamorphic sole rocks have intensities between 0.07 and 

69.2 mA/m. This is significantly lower than the other rock units such as cumulates and lavas in 

the Mersin ophiolite. Low intensities of NRM are not easy to measure and approach the noise 

level of the magnetometer. Therefore, some of the specimens were measured twice or even three 
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times till the lowest error values were obtained. Histograms illustrating the NRM intensity data 

of the dykes and metamorphic sole rocks are given below (Fig. 4.25). 

 

 

Figure 4.25. Histograms showing the NRM intensities in the Mersin dyke and metamorphic sole rocks. 
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4.2.3.2 Thermal demagnetization results 

Thermal magnetization data might be more useful than AF demagnetization because unblocking 

temperatures may (under ideal conditions) provide information about the thermal history of the 

rocks. To test if sole rocks provide usable thermal demagnetization data, 12 specimens (1 dyke, 

11 metamorphic sole rocks) were thermally demagnetized with standard steps (100℃-580℃). 

The specimens having higher NRM values were chosen. Specimens were held within the oven 

for 40 minutes after reaching the set peak temperatures. Remanent magnetizations were then 

measured after cooling to room temperature. Most specimens show stable demagnetization 

behaviour at low treatment levels. However, directions either start to show scattered results at 

higher temperatures because intensities become close to or lower than the noise level or all 

demagnetization steps resulted in random directions which cannot be subjected to principal 

component (PCA) or great circle analysis (Fig. 4.26). As a result, thermal demagnetization was 

not used for the remaining specimens.  
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Figure 4.26. Zijderveld diagrams after stepwise thermal demagnetization for some of the specimens (BC0202B, BC0301F, 

BC0401F3, BC1001A, and BC1402A) with intensity decay plots. 
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After each thermal demagnetization step, the bulk magnetic susceptibility of each specimen was 

measured to observe alteration and/or chemical changes within the ferromagnetic minerals that 

might affect the demagnetization path. The measurements of bulk susceptibilities indicate that 

most of the specimens did not experience any alteration until the end of the thermal 

demagnetization process (Fig. 4.27). However, progressive decreases in bulk susceptibility during 

thermal demagnetization is observed in specimens BC1201B and BC0902A1, whereas specimen 

BC0202B started experiencing changes susceptibility over 400℃ and a sharp increase at 500℃. 

The bulk susceptibility of specimen BC1301B showed a dramatic increase at 540℃ (Fig. 4.27). 

These results suggest that ferromagnetic minerals in these specimens experienced chemical 

changes or formation of new minerals a higher temperatures.  

 

Figure 4.27. Graph illustrating changes in bulk susceptibility with temperature during thermal demagnetization for 12 

specimens from 12 different sites. 
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4.2.3.3 Alternating field (AF) demagnetization results and palaeomagnetic directions 

After the unsuccessful results from the thermal demagnetization, AF demagnetization became 

essential to make progress. A selection of samples were AF treated in the University of Plymouth 

laboratory, but again almost none of them yielded clear enough data to allow determination of 

ChRM directions (Fig. 4.28).  

     

 

 

Figure 4.28. Some impracticable results from both of the AF demagnetizers (AGICO and 2G), BC0202A, BC1201C, 

BC0203C1, BC0204A, respectively. The coloured ones are from Anisoft (JR6) and the other ones are from Puffin Plot 

(2G) 
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Therefore, a more sensitive 2G Cryogenic magnetometer (at the University of Southampton) was 

used to get more reliable and useful data for the remaining specimens (56 from the metamorphic 

sole, 10 from the dykes). This system allowed a very detailed demagnetization scheme to be used, 

using applied fields increasing in 5 mT steps up to 110 mT. PuffinPlot (Lurcock and Wilson, 

2012) software was used to analyse the resulting data. Stable, NNW-directed ChRMs with 

shallow positive inclinations (in geographic coordinates) were identified in three specimens (see 

Fig. 4.29). However, demagnetization of the most specimens yielded great circle paths that 

converge in the SE quadrant, rather than ending in stable ChRM directions. Such paths occur 

when two components with overlapping coercivity spectra are present in a rock, and the direction 

progressively moves away from the least stable component towards the higher coercivity 

component. In analysing the data, individual specimens having maximum angular deviations 

(MAD) of the best fitting great circle or stable end point >10° were excluded. The great circle 

analysis method (McFadden and McElhinny, 1988) was then used to combine the best fit great 

circles from individual specimens with the stable end point data to identify the final magnetization 

vector for the metamorphic sole rocks. (n = 42 specimens from 6 sites) (Fig. 4.30). Data from 14 

specimens, unfortunately, could not be used because of lack of coherence during demagnetization. 

The stable end point data have shallowly inclined, NNW-directed ChRMs and are interpreted as 

normal polarity magnetizations. The great circle paths for other specimens, however, converge in 

the SE quadrant in the lower hemisphere, opposite the ChRM components. It is very unlikely that 

this SE direction results from very large rotation and instead this direction is interpreted as a 

reversed polarity magnetization, suggesting that the magnetization of the metamorphic sole rocks 

was acquired across more than one geomagnetic polarity chron. To facilitate joint analysis of the 

end point and great circle data, the end point directions were first inverted to a reversed polarity 

SE direction. The combined McFadden and McElhinny (1988) analysis then yielded a mean 

direction of Dec = 157.3° Inc = 14.3° (α95 = 7.5°) (Table 4.6). This was then inverted to a northerly 

(normal polarity) direction of Dec = 337.3° Inc= -14.3° prior to tectonic analysis to allow 

comparison with a normal polarity reference direction. 
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This remanence direction is statistically different to that of the dykes cutting the metamorphic 

sole, reported by Omer (2014) and Morris et al. (2017), which have a mean direction of Dec = 

006.8°, Inc = 17.2°, α95 = 10.4°, k = 79.2, N = 4 sites. This indicates significant tectonic rotation 

between the time of acquisition of magnetization by the metamorphic sole rocks and the intrusion 

of the dykes. In the net tectonic rotation analysis of data from the metamorphic sole, therefore, 

the effects of the net rotation of the dykes documented by Morris et al. (2017) will be back-

stripped from the palaeomagnetic and structural data from the sole in order to quantify this earlier 

phase of rotation.  

 

 

  

Figure 4.29. The end points obtained by PCA in PuffinPlot for BC0201A2 (left) and BC0201B2 (right). Solid/open 

symbols represent the projection onto the horizontal/vertical planes, respectively. Axis units on the Zijderveld plots 

are in mA/m. 
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Figure 4.30. Great circle analyses for each site (BC02, 03, 04, 07, 08, and 14, respectively) and all combined within 

one plot. The given values represent the α95 and kappa values respectively. The last plot indicates the result that is the 

combination of all acceptable great circles paths. 

 

ALL 
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Table 4.6. Palaeomagnetic data from the metamorphic sole rocks of the Mersin ophiolite, combination of great circles and end points. 
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4.2.4 Net tectonic rotation analysis of the palaeomagnetic data 

4.2.4.1 Input vectors and potential solutions 

The essentials for the net tectonic rotation (NTR) analysis have been already described in Chapter 

3. The technique involves finding the poles and angles of permissible net rotations that 

simultaneously restore the site magnetization vector (SMV) to the reference magnetization vector 

(RMV) and the present pole to foliation (PPF) to an initial pole to foliation (IPF).  

The reference direction was selected from Morris et al. (2017) for analysis of the palaeomagnetic 

data from the Mersin ophiolite. This has a declination of 000°. The inclination was determined 

from palaeolatitude estimates based on kinematic reconstructions (van Hinsbergen et al., 2016) 

placed in the palaeomagnetic reference frame of Torsvik et al. (2012). Uncertainties in the 

reference inclination relate to the reconstructed width of the Neotethys Ocean and the A95 error 

of the reference global apparent polar wander path. Reconstructions for the Late Cretaceous at 

100–90 Ma place the Neotethyan SSZ spreading axis between the southern margin of Eurasia at 

33 ± 3°N and the northern margin of Gondwana at 16 ± 3°N. No other constraints on 

palaeolatitude exist, and therefore a palaeolatitude of 24.5 ± 11.5°N is used to encompass this 

range. Assuming a geocentric axial dipole field, this converts to a reference inclination of 40.2 ± 

15.4° (Morris et al., 2017). 

Hence the input data required for the NTR analysis are (Fig. 4.31a): 

• Present pole to the foliation, PPF = 328°/48°, α95 = 6.8°, k = 20.9 

• Site magnetization vector, SMV = 337.3°/-14.3°, α95 = 7.5, k = 8.1 

• Reference magnetization vector, RMV = 000°/40.2° ± 15.4°  

To allow uncertainties in these input vectors to be propagated through the NTR calculation using 

a Monte Carlo modelling approach, 1000 randomly selected estimates of each input vector were 

calculated that lie within the confidence limits (Fig. 4.31b). Prior to NTR interpretation, the sets 

of 1000 PPF and SMV vectors were back stripped by removing the effect of the late rotation of 

the dykes in metamorphic sole rocks documented by Morris et al. (2017), which was a clockwise 

rotation of 45° around an inclined axis of 039.8°/31.3°. This gave mean back-stripped input 



99 

 

vectors of PPF = 346.6°/84.7° and SMV = 313.9°/22.7°, retaining the same confidence intervals 

(Fig. 4.31c). The reference direction input vectors remain the same.  

Each of the 1000 pairings of SMV and PPF vectors yields a slightly different estimate of the angle 

β between the magnetization and the pole to the structure (which is assumed to remain constant 

in the NTR approach). Each β estimate was then assigned to one of the 1000 RMV vectors, and 

the pole to the foliation at the time of magnetization acquisition (called the initial pole to foliation, 

IPF) for that combination of input vectors then must lie β degrees from the selected RMV. To 

position the IPFs, each was assigned a random azimuth away from its associated RMV, giving a 

broad distribution of IPFs shown in Figure 4.32.  

 

Figure 4.31. (a) Input vectors for the NTR analysis with 95% confidence limits; (b) 1000 points within the confidence 

intervals of each vector; (c) the directions after removing the effect of late rotation of dykes cutting the sole rocks. 
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Figure 4.32. Potential initial poles to foliation during acquisition of the magnetization 

These steps resulted in a set of 1000 estimates for the four vectors needed to calculate potential 

rotation angles (i.e. the initial and final directions of the magnetization and the pole to the 

structure). The great circle bisectrix of each pair of vectors (e.g. the SMV and RMV) represents 

the locus of all of the infinite number of potential rotation axes capable of rotating the initial to 

the final vector (e.g. rotating the RMV to the SMV). The intersection of the bisectrixes of the 

SMV/RMV and PPF/IPF pairs, however, represents the only rotation axis capable of restoring 

both vectors to their initial positions. Each of the 1000 sets of input vectors generates its own 

estimate of these inclined axes, and the associated angles of rotation are readily calculated. These 

are illustrated in the stereonet and histogram of Figure 4.33. 
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Figure 4.33. Possible rotation poles and angles. Angles with negative values suggest a CW sense of rotation and 

positive values suggest a CCW sense of rotation. 

  

N  
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4.2.4.2 Filtering using geological constraints 

Unlike using NTR analysis on dykes and lavas, in the case of the metamorphic sole rocks it is 

impossible to know in advance what the initial orientation of the foliation in these rocks was at 

the time when they acquired their magnetization. The analysis so far yields 1000 widely 

distributed estimates of this orientation (IPF; Fig. 4.32), and hence 1000 widely varying estimates 

of the rotation parameters (Fig. 4.33). These 1000 estimates represent the range of rotation 

solutions permissible when the 95% confidence limits on the input vectors are fully taken into 

account using the Monte Carlo modelling. Not all of these solutions, however, are geologically 

plausible despite being geometrically possible, and so additional geological constraints need to 

be used to filter the possible solutions to come up with a set of realistic and acceptable solutions. 

There are three geological constraints that may be used: 

1. The most recent palaeogeographic reconstructions of the eastern Mediterranean region 

during the formation of the ophiolites in the Late Cretaceous (Maffione et al., 2017) 

indicates that the Mersin and other ophiolites (e.g. Hatay, Troodos) formed over a 

suprasubduction zone system dipping towards the east (Fig. 4.34). For metamorphic sole 

rocks to be formed at the top of a downgoing, easterly-dipping subducted slab and then 

exhumed from depth requires a counterclockwise rotation. Therefore, the solutions 

indicating clockwise rotations (negative angles) (n=340) are discarded to be consistent 

with the regional tectonic framework of a subduction zone dipping to the east. 



103 

 

 

Figure 4.34. Palaeographic reconstruction of the Eastern Mediterranean Neo-Tethys soon after subduction initiation 

(~95 Ma) showing the main subduction zones (from Maffione et al., 2017). 

2. Some of the solutions (n=320) indicate that the sole rocks have been inverted, but there 

is no reasonable way that this could have happened geologically. Therefore, solutions 

involving IPF with negative plunges are also discarded to maintain way-up. 

3. Solutions suggesting >90° (n=253) rotation are discarded because rotation by more than 

90° would imply a reversal of the dip direction of the subduction zone (i.e. to be “bent” 

back on itself prior to exhumation). 

It must be noted that some of the solutions might be rejected because of at least two different 

constraints i.e. a solution indicating a rotation greater than 90° and having IPF with negative 

plunge. Omitting the infeasible solutions (846 out of 1000 solutions) leaves 154 geologically 

plausible NTR solutions for the initial poles to foliation (at the time of acquiring the 

magnetization) and the rotation axes and angles.  
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The acceptable IPFs imply that the sole rocks were most likely dipping towards the ENE at a 

moderate angle at the time of acquiring the magnetization. The associated rotation solutions 

indicate that sole rocks experienced 70°±12° counterclockwise rotation around a moderately to 

steeply plunging, NW-directed axis (Fig. 4.35). These results are entirely consistent with 

exhumation of these rocks involving tectonic rotation of the subducted slab, as in the model of 

van Hinsbergen et al. (2015). 

 

  

 

Figure 4.35. Acceptable final solutions of the net tectonic analysis, showing (left) net rotation poles with angles and 

(right) initial poles to foliation at the time of acquiring the magnetization. 
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Chapter 5- Discussion 

5.1 Pressure & temperature conditions and interpretations 
To understand the P-T conditions during the metamorphism, Holland and Blundy (1994) 

thermometry was used for the amphibolites to estimate the temperature and Anderson & Smith 

(1995) barometry was used for pressure estimations. The results show that sole rocks were 

metamorphosed in the interval of 500-570C° and 2.0-5.6 kbar (±50C° and 1 kbar, standard 

uncertainties), suggesting relatively low pressure and relatively high temperature conditions. The 

average temperature results of both samples indicate more or less the same values (~530C°). On 

the other hand, a ~2 kbar difference between the pressure results can be considered as large. The 

main reasons may be either different oxidation states of Fe in the amphibole minerals during the 

metamorphism activity (Holland and Blundy, 1994) or very low proportion of the anorthite (~3-

7%) which is most likely because of disequilibrium. Also, for this geobarometry method to work 

it has been stated by the authors that anorthite must be in the range of 10-90%, which is not 

possible for the amphibolites in this study. Some different P-T results have been also documented 

from previous studies of other metamorphic sole rocks of Tauride belt ophiolites, i.e. southern 

Beyşehir ophiolite nappes: 550-600C°/<5 kbar (Çelik and Delaloye, 2006), Lycian nappes 

(Köyceğiz area): 500-600C°/4.8-5.4 kbar (Çelik and Delaloye, 2004), Beyşehir-Hoyran ophiolite: 

630-770C°/6.0 ± 1.5 kbar (Elitok and Drüppel, 2008), Kızıltepe ophiolite: 300-550C°/8.0-12.0 

kbar (Dilek and Whitney, 1997), Yeşilova ophiolite: 600-700C°/4.7-5.0 kbar (Çelik and Delaloye, 

2004) and Tavşanlı ophiolite: 300-800C°/8.0-10.0 kbar (Plunder et al., 2013) (Fig. 5.1). The 

results are in a broad range and this can be explained by the P-T conditions depending on the 

depths where the metamorphism activity takes place. The pressure values of the studied 

metamorphic sole rocks of the Mersin ophiolite imply depths of ~ 17-18 km, whereas some results 

from other sole rocks, i.e. the Kızıltepe ophiolite, indicate depths up to 40 km for peak 

metamorphic conditions. 

According to petrographic observations made during this study, there are no signs indicating 

retrograde P-T paths for the sole rocks, i.e. a transition from amphibolite facies to blueschist facies 

conditions (Dilek and Whitney, 1997; Plunder et al., 2013). Therefore, three different possible 
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paths are considered that the metamorphic sole rocks of the Mersin ophiolite might have followed 

(Fig. 5.1). They all involve a decrease in the temperature and pressure resulting from exhumation 

from depth during the fore-arc spreading. The first, most probable situation involves a slight 

decrease in temperature while the pressure progressively decreases as the rocks are exhumed to 

shallower depths. This path implies a hot subduction zone since the temperature does not change 

much towards structurally lower sections while the pressure changes. It has been already proposed 

that temperatures higher than expected at given depths in a mature subduction zone imply that the 

mantle portion of an ophiolite should have been hot just as its metamorphic  sole rocks started 

forming (van Hinsbergen et al., 2015). The second situation implies a similar decrease in pressure 

and while the temperature also decreases. The third one suggests a slight decrease in pressure 

whereas some relatively large decrease in the temperature may also occur during the 

metamorphism (Fig. 5.1). 

 

Figure 5.1. P (kbar)-T (C°)-Depth (km) values of some sole systems from Tauride ophiolites located in southern part 

of Turkey. The possible paths indicating the different levels of the metamorphic sole rocks of the Mersin ophiolite are 

shown with light green colour. A (with a red rectangle)-In this study-Mersin ophiolite; B = Elitok and Drüppel (2008)-

Beyşehir–Hoyran ophiolite; C = Çelik and Delaloye (2004)-Yeşilova ophiolite (Lycian Ophiolites), D = Çelik and 

Delaloye (2004)- Köyceğiz ophiolite (Lycian Nappes), E = Çelik and Delaloye (2004)-Pozantı-Karsantı ophiolite;, 
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F=Dilek and Whitney (1997)-Kızıltepe ophiolite; G = Plunder et al. (2013) Tavşanlı ophiolite (modified from van 

Hinsbergen et al., 2015). 

Schistose lenses within the amphibolites and amphibolite layers in the phyllite rocks indicate that 

greenschist and amphibolite facies conditions characterise the sole rocks. In the absence of rocks 

formed at granulite and eclogite facies and any sign of an amphibolite-granulite transition, very 

high P-T (+700C° and +12 kbar) conditions are precluded. The zonation within some minerals 

may also be an indicator for the P-T regime through the sole rocks. The zonation indicating slight 

decreases in P-T conditions towards rim regions may result from slight decreases in the P-T 

conditions during the exhumation of the sole rocks following the formation over the subducting 

plate at higher P-T conditions. 

5.2 Structural interpretations  
The aim is to understand the emplacement and transportation direction of the ophiolite by using 

the structural elements of the metamorphic sole rocks i.e. lineation, folds, shear indicators. 

However, the existence of asymmetric and symmetric indicators together and fold data are 

insufficient to find the exact direction of transport. It has been already reported that the 

emplacement took place in a NW direction onto the passive platform in the central Taurides 

(Parlak et al., 1996a). However, this direction is not clearly represented in microstructures with 

shearing indicators. Most of the analyses under the microscope imply a flattening event was the 

dominant structural style and asymmetric indicators are mostly absent in the samples observed. 

Therefore, it is difficult to be accurate regarding the emplacement direction. 

According to observations during the fieldwork along the Fındıkpınarı road cut section, the units 

are imbricated and cut by non-metamorphosed diabase dykes. However, there is no evidence of 

large-scale folding along the road cut section, but small-scale folds are present. The sole rocks 

are mostly deformed by both normal and reverse brittle and ductile faults. Nevertheless, it must 

be remembered that the absence of large-scale folds does not indicate that the sole rocks were not 

pervasively deformed. Thus, three different interpretations were made by considering each 

structure that has been observed during the field and the results of the laboratory analyses. In all 

interpretations, there are four foliated packages forming the sole rocks along the road cut and 
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dipping towards SE. The units at the bottom close to the mélange below are phyllites and may 

indicate a relatively lower grade of metamorphism than that seen close to the ophiolite contact 

i.e. amphibolite. Also marble units (relatively HT-HP) occur towards the ophiolite but are not 

observed at the bottom of the section. This decrease in P-T conditions may be explained by the 

exhumation of the sole rocks to beneath the SSZ lithosphere due to flattening of the subducting 

plate resulted from thinning of the mantle wedge in the spreading environment. The three 

interpretations and their discussions are given below (Figs. 5.2-5.4). 
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Figure 5.2. Possible cross-section of the ophiolitic metamorphic sole rocks at Fındıkpınarı road cut section as imbricated and successive repetition of the units separated by the faults 

(modified from Parlak et al., 1996a) 
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Figure 5.3. Possible cross-section of the ophiolitic metamorphic sole rocks at Fındıkpınarı road cut section as folded in the package 4 because of the shearing during the metamorphism 

activity (modified from Parlak et al., 1996a)
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Figure 5.4. Possible cross-section of the ophiolitic metamorphic sole rocks at Fındıkpınarı road cut section indicating that package 4 is mainly imbricated as a whole package rather than 

existence of the faults separating the units (modified from Parlak et al., 1996a)
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The differences in the cross-sections are mainly within the phyllite units that have multiple layers 

of amphibolite. According to the first interpretation (Fig. 5.2), possible north directed thrust 

stacking might have formed the repeated layers of amphibolite, probably during the emplacement 

of the ophiolite to the passive platform. However, it is also possible that the small-scale folds 

might be an indicator of larger-scale folding that might have formed during the deformation of 

sole rocks in the SSZ environment (Fig. 5.3). The last interpretation (Fig. 5.4) implies that 

repetitive layers of amphibolite in the phyllite may be explained by the possible changes in the 

physiochemical conditions i.e. P-T while the subduction is active, which affects the grade of the 

metamorphism, and units might have then been thrust as a whole package. 

5.3 Rock magnetic and AMS analyses  
Results indicate that the magnetic properties of the metamorphic sole rocks of the Mersin 

ophiolite are effectively controlled by paramagnetic (amphibole) minerals and also low content 

of ferromagnetic (mostly PSD and ESD magnetite). Furthermore, results from the metamorphic 

sole-hosted dykes suggest the presence of low to medium coercivity SD or PSD magnetite. These 

results are consistent with the previous study of the ophiolite (Morris et al., 2017). 

All of the specimens display reasonably consistent principal directions and results in terms of 

AMS data. AMS principal axes are coplanar with the metamorphic foliation observed in the field, 

and the magnetic lineations (Kmax axes) also correlate with the stretching lineation seen in the 

field (Fig. 5.5). This suggests that the AMS fabrics are predominantly controlled by the preferred 

orientation of paramagnetic amphibole minerals in these rocks. The dominance of oblate (disk-

shaped) magnetic fabrics is consistent with the structural evidence for pure shear flattening during 

formation and exhumation of the amphibolites.  
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Figure 5.5. Figure illustrating the distributions of AMS principal axes on equal-area stereographic projections. (A): 

The maximum axes mostly lie on the average foliation of the sole rocks and plunging towards mainly SE, close to the 

metamorphic lineation observed in the field. (B): intermediate principal directions also mainly lie on the average 

foliation plane. (C): minimum principal axes dip towards the NW and coincide with the pole to average foliation plane. 

Note that red point indicates pole to average foliation plane. 

5.4 Interpretation of the palaeomagnetic data and rotation analysis 
The rotation analyses after removing the late rotation of the dykes cutting the metamorphic sole 

(reported by Morris et al., 2017) indicate that metamorphic sole rocks of the Mersin ophiolite 

acquired their weak remanent magnetization when the foliation was moderately dipping towards 

the ENE and then underwent a rotation around a NW-plunging axis before accretion to the base 

of the ophiolite. This is consistent with exhumation by slab shallowing during SSZ spreading, as 

proposed by van Hinsbergen et al. (2015). According to their model, metamorphic sole rocks start 

forming over a subducting plate in the early stages of initiation of an intra-oceanic subduction 
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zone and then reach peak metamorphic conditions. However, results of this study show that the 

sampled metamorphic sole rocks did not reach depths of c. 40 km. This is consistent with the 

moderate dip of c. 30-40° of the metamorphic foliation at the time of magnetization revealed by 

the NTR analysis. Metamorphic temperatures of ~530C° obtained in this study imply that most 

of the rotation experienced by these rocks is recorded by their remanence, as this is carried by 

magnetite that has a maximum unblocking temperature of 580C°. Hence, the subduction zone 

probably initiated at dips of 30-40°.  

Combined with the results from the Mersin ophiolite reported by Morris et al. (2017), the results 

of this study indicate that the Mersin metamorphic sole rocks experienced a two-stage rotation 

history, involving: 

1. An early c. 70° counterclockwise rotation around a NW, steeply-inclined axis prior to 

intrusion of the cross-cutting dykes, as documented here. 

2. a c. 45° clockwise rotation around a moderately inclined NE axis after dyke intrusion. 

Note that restoring the dykes to vertical using this NTR solution restores the metamorphic 

foliation in the sole rocks to a sub-horizontal orientation at the time of dyke intrusion, 

indicating that the first phase of rotation occurred entirely prior to the emplacement of 

the sole to the base of the SSZ lithosphere. 

This rotation history is broadly compatible with that inferred by Morris et al. (2017) in the absence 

of palaeomagnetic data from the sole rocks (Fig. 5.6). This involves: (i) early rotation of the sole 

due to shallowing of the down-going slab in response to removal of material from the overlying 

mantle wedge during SSZ spreading; (ii) this rotation is responsible for exhumation of the sole 

rocks and their emplacement along the base of the SSZ lithosphere by slab flattening; (iii) slab 

flattening is followed by decoupling and steepening of the slab because of negative buoyancy 

forces caused by density increase and dehydration activities in the nascent slab (i.e. eclogitization) 

(van Hinsbergen et al., 2015); (iv) intrusion of dykes that cross-cut the sole rocks; and (v) late 

rotation of the sole rocks, dykes and overlying SSZ ophiolite as a result of detachment-mode 

seafloor spreading.  



115 

 

 

Figure 5.6. Conceptual model for the rapid and extreme rotation of a suprasubduction zone ophiolite and its 

metamorphic sole in fore-arc environment (from Morris et al., 2017). The details are given in the text. 

However, the model illustrated in Figure 5.6 provides only a two-dimensional view of these 

processes, wherein all rotations are assumed to occur around similar NE trending axes. The results 

of this study, in contrast, indicate that this is a more complex three-dimensional system. For 

instance, subduction zones are generally curved in geometry rather than simple planar structures, 

and NTR results presented here indicate that the early rotation of the sole took place around a 

very different NW axis than the late, seafloor spreading-related rotation event (around a NE one). 

These results are best explained by the 3D model shown in Figure. 5.7. Early rotation of the sole 

around a NW plunging inclined axis is accommodated in this model by a combination of slab 

flattening and roll-back of the subducting slab. Importantly, this mechanism allows the net 70° of 

rotation of the metamorphic sole to produce only 30-40° of flattening of the slab during 

exhumation. 
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Figure 5.7 3D conceptual model for the rotation history of the Mersin metamorphic sole rocks and ophiolite in a SSZ setting. Differential subduction zone roll back contributes a vertical axis component 

of rotation that combines with a horizontal axis component due to slab shallowing to produce an early net rotation of the slab and sole rocks around an inclined axis. After rotation and exhumation of the 

sole rocks to the base of the lithosphere, a late rotation around a ridge parallel axis took place, as documented by Morris et al. (2017).  
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These rotations around different axes are compatible with a tectonic setting like the modern 

Andaman Sea subduction zone system (Fig. 5.8), where spreading in the suprasubduction zone 

environment occurs obliquely to the direction of subduction of the down-going plate.  

5.5 Importance of using palaeomagnetism on metamorphic rocks  
The processes controlling spreading in SSZ systems have been widely investigated by 

palaeomagnetic studies of the sheeted dyke complexes, cumulates and sedimentary rocks 

covering the ophiolite (e.g. Clube and Robertson, 1986; Inwood et al., 2009b; Maffione et al., 

2017; Morris and Anderson, 2002; Morris et al., 2017; Morris et al., 1998). The history of 

metamorphic sole rocks has in contrast been largely investigated using their geochemical and/or 

petrographic characteristics (e.g. Çelik, 2008; Parlak et al., 1995). However, this study represents 

the first time that palaeomagnetism has been applied to metamorphic sole rocks. The study clearly 

demonstrates the potential for net tectonic rotation analysis of remanence data from metamorphic 

rocks to contribute to understanding their geodynamic evolution. The techniques employed here 

may also now be applied to some of the other Tauride Belt ophiolites i.e. Göksun ophiolite, 

Divriği ophiolite, Ali Hoca ophiolite, formed above the same ~N-S to ~NE-SW striking 

subduction zone system in the Late Cretaceous period (Fig. 4.34). 

  

 

Figure 5.8. Tectonic setting of Andaman Sea region (from Moores et al., 1984). 
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Chapter 6- Conclusions 
The Mersin ophiolite formed in a SSZ environment during the evolution of the Neo-Tethyan 

Ocean in the Late Cretaceous (Parlak, 1996). Metamorphic sole rocks of the ophiolite formed at 

the top of the down-going plate (Çelik, 2008; Parlak, 2016) and their magnetization was acquired 

by magnetite under predominantly amphibolite facies conditions just after subduction initiation.  

Amphibolites of the metamorphic sole have a pronounced foliation and well-developed lineation. 

AMS data reveal oblate shaped ellipsoids and the principal AMS axes of the sole rocks are 

consistent with the foliation and lineation observed in the field. Kmax generally lie on the foliation 

plane forming magnetic lineation and Kmin coincides to the pole to the foliation plane. 

Stepwise AF demagnetization of most metamorphic sole specimens results in great circle 

demagnetization paths indicating overlap of coercivities of two magnetic components. Combining 

best fitting great circles with more limited stable end point components results in an overall mean 

magnetization direction for the sole of 337.3°/-14.3°. This is statistically different from the 

direction of magnetization of dykes cutting the sole, reported by Morris et al. (2017), suggesting 

rotation of the sole rocks prior to dyke intrusion. 

The palaeomagnetic data may be analysed using a net tectonic rotation approach involving Monte 

Carlo modelling of uncertainties. After removing the effect of late rotation of the dykes cutting 

the sole rocks (documented by Morris et al., 2017) and discarding geologically unfeasible 

solutions, the results show that the sole rocks acquired their magnetization while the foliation 

dipped towards the ENE and then experienced an early phase of ~70° CCW rotation around an 

inclined, NW plunging axis.  

This rotation can be explained by a combination of slab flattening of the subducting plate because 

of the decrease in the volume of the mantle wedge during the fore-arc spreading and roll-back of 

the subduction trench. This led to shallowing and exhumation of the sole rocks formed at the top 

of the subducting plate. 
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Zonations in the amphibolite minerals implies a decrease in the metamorphic grade towards rim 

regions, which is also linked to the shallowing of the sole rocks causing lower P-T conditions. 

The P-T estimates from geothermobarometric analyses suggest that the temperature was ~530℃ 

during the metamorphism and the pressure was ~4 kbar (±50℃ and ±1 kbar, standard 

uncertainties). These results indicate depths of ~17-18 km for the metamorphism activity prior to 

exhumation and rotation resulting in decreasing of the P-T conditions. 
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Chapter 7- Future recommendations  
Many previous studies have showed that geometry of the subduction zone systems and seafloor 

spreading processes can be interpreted with palaeomagnetism tool by using sheeted dyke 

complexes, cumulates, even sedimentary covers. This study suggests that palaeomagnetic 

analyses of the metamorphic sole rocks of related ophiolite are also quite useful to estimate the 

tectonic development in SSZ environment. The Fındıkpınarı road cut section was the region that 

the samples were collected, however, some samples from other outcrops might have been 

practical. The further palaeomagnetic studies with the sole rocks from Tauride ophiolites of the 

eastern Mediterranean region i.e. Alihoca ophiolite, Divriği ophiolite, Beyşehir ophiolite, Lycian 

ophiolite formed due to closure of the Neo-Tethyan Ocean will definitely contribute to the 

understanding of the generation of the sole rocks and also formation and generation of the 

ophiolites in SSZ environment. Also, the vertical and horizontal rotations may be calculated 

individually to be able to simulate the early rotations in fore-arc environment.  
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APPENDICES 

Table A1. Possible rotation points out of 1000 points after back-stripping the late rotation effect of the dykes and discarding 846 potential rotations based on the geological constraints. 

SMV=Sole magnetization vector; PF=Present pole to foliation; RMV=Reference magnetization vector; IPF=Initial pole to foliation; RP=Rotation pole; Beta=β angle between the 

magnetization vector and pole to foliation. 

  
SMV 

Dec 
SMV Inc PF Dec 

PF 

Inc 

RMV 

dec 
RMV inc IPF dec IPF inc Beta RP dec RP inc Angle Sense 

1 310.00 22.40 326.50 82.60 0.00 54.70 245.20 51.85 60.52 292.51 56.63 88.52 CCW 

2 318.20 19.60 327.10 81.70 0.00 37.20 267.80 53.27 62.21 315.85 53.95 75.24 CCW 

3 309.50 20.10 330.70 81.00 0.00 32.70 250.59 78.92 61.55 292.94 71.04 60.25 CCW 

4 313.60 16.00 325.80 84.60 0.00 44.00 209.15 64.92 68.73 270.51 58.94 61.10 CCW 

5 318.80 25.20 320.30 84.60 0.00 26.10 288.76 71.44 59.40 336.66 68.87 53.35 CCW 

6 319.60 27.00 2.00 80.40 0.00 41.20 273.00 54.21 56.13 322.92 54.71 82.77 CCW 

7 321.40 21.30 342.10 85.30 0.00 39.80 248.09 62.29 64.31 306.26 58.11 62.55 CCW 

8 320.60 19.50 265.60 86.20 0.00 39.00 229.18 66.05 68.35 286.10 62.24 52.71 CCW 

9 306.50 22.50 358.70 84.40 0.00 53.80 211.39 59.28 64.14 272.95 60.16 75.54 CCW 

10 314.90 19.90 329.30 80.00 0.00 32.40 270.91 65.56 60.44 314.01 61.07 66.02 CCW 

11 319.30 20.20 358.60 83.70 0.00 26.30 139.58 88.32 64.98 275.25 80.63 42.47 CCW 

12 315.30 16.10 312.30 82.50 0.00 53.30 236.95 49.66 66.41 287.47 51.96 79.76 CCW 

13 311.80 18.80 335.00 85.50 0.00 47.50 237.60 54.46 67.07 291.97 56.95 77.53 CCW 

14 312.90 19.70 320.50 82.30 0.00 37.70 225.76 75.94 62.67 277.91 67.50 56.89 CCW 

15 307.60 22.00 28.00 81.80 0.00 51.40 231.80 53.06 66.87 292.60 58.18 86.81 CCW 

16 309.60 19.50 351.20 86.10 0.00 54.30 223.22 52.20 67.61 280.22 56.33 79.52 CCW 
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SMV 

Dec 
SMV Inc PF Dec 

PF 

Inc 

RMV 

dec 
RMV inc IPF dec IPF inc Beta RP dec RP inc Angle Sense 

17 310.60 22.00 16.90 81.60 0.00 37.20 207.97 76.59 64.85 286.95 69.56 60.30 CCW 

18 316.20 18.30 345.50 84.00 0.00 25.40 265.41 76.04 66.50 315.69 69.22 53.75 CCW 

19 311.80 16.90 166.90 89.00 0.00 35.20 254.74 47.21 73.92 316.23 51.86 86.56 CCW 

20 308.00 21.60 69.00 86.30 0.00 44.20 201.56 64.14 70.34 270.30 65.79 63.95 CCW 

21 312.50 21.20 331.10 86.70 0.00 33.40 268.06 51.30 65.68 319.85 56.61 78.63 CCW 

22 313.00 22.80 350.00 79.00 0.00 35.20 253.13 79.05 58.61 301.55 68.35 60.43 CCW 

23 309.10 24.30 310.50 80.40 0.00 36.40 258.91 80.04 56.10 285.53 73.65 59.08 CCW 

24 317.80 23.20 14.90 81.70 0.00 42.60 259.86 52.92 62.49 315.59 54.22 82.62 CCW 

25 320.00 20.80 266.50 86.80 0.00 36.50 228.19 70.81 67.32 285.38 66.68 49.75 CCW 

26 314.50 22.90 37.50 85.50 0.00 51.80 237.56 50.60 66.63 296.95 56.44 81.77 CCW 

27 316.90 19.00 261.10 85.50 0.00 38.20 269.14 37.41 68.51 318.38 50.69 85.80 CCW 

28 310.40 28.60 343.30 81.80 0.00 30.60 288.86 57.64 54.62 332.35 59.71 80.25 CCW 

29 316.50 21.40 356.80 79.30 0.00 31.90 266.84 72.63 60.63 315.83 63.07 61.89 CCW 

30 312.60 20.80 22.10 87.90 0.00 33.60 234.56 71.08 68.48 299.00 68.55 59.53 CCW 

31 313.50 29.50 332.80 87.30 0.00 31.60 284.29 48.16 57.96 334.18 56.47 83.76 CCW 

32 315.10 19.80 348.10 83.10 0.00 34.00 255.21 66.86 64.46 309.42 61.72 64.78 CCW 

33 313.30 22.20 30.30 86.30 0.00 44.20 257.76 45.48 67.01 311.80 54.50 89.10 CCW 

34 313.70 20.70 8.90 81.00 0.00 51.50 226.71 57.64 64.36 289.55 56.37 77.28 CCW 

35 312.90 27.10 337.30 83.90 0.00 30.60 282.22 65.97 57.38 329.33 64.77 67.65 CCW 

36 314.00 23.50 338.40 85.40 0.00 50.50 221.14 62.59 62.33 280.77 60.09 67.12 CCW 
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SMV 

Dec 
SMV Inc PF Dec 

PF 

Inc 

RMV 

dec 
RMV inc IPF dec IPF inc Beta RP dec RP inc Angle Sense 

37 311.60 22.00 357.50 81.50 0.00 28.00 273.29 74.46 62.23 320.93 67.54 62.86 CCW 

38 311.10 19.70 26.00 85.10 0.00 37.20 251.68 55.54 69.10 310.18 57.96 77.91 CCW 

39 313.20 25.30 316.50 87.30 0.00 42.90 265.15 48.57 62.00 314.60 56.95 85.86 CCW 

40 312.50 24.10 33.80 81.60 0.00 50.70 227.70 57.54 64.90 293.80 59.03 78.32 CCW 

41 313.20 24.50 314.50 84.70 0.00 26.60 287.14 42.56 60.20 334.33 52.33 84.86 CCW 

42 314.00 22.70 356.30 79.60 0.00 29.90 277.93 65.22 59.82 325.34 59.54 70.97 CCW 

43 314.80 26.10 355.10 83.70 0.00 41.10 257.25 63.29 59.17 311.21 61.46 72.29 CCW 

44 313.50 30.10 328.90 83.40 0.00 41.20 248.22 79.11 53.55 294.19 72.81 57.36 CCW 

45 313.50 19.20 345.10 84.20 0.00 55.50 207.73 56.37 65.89 270.67 54.17 70.00 CCW 

46 318.20 23.30 74.80 86.00 0.00 41.90 243.27 55.95 68.54 308.94 58.17 70.79 CCW 

47 311.30 25.40 338.10 81.00 0.00 27.50 289.69 55.40 56.65 332.79 57.56 78.76 CCW 

48 312.50 22.50 13.60 88.30 0.00 40.00 262.11 46.71 66.69 315.35 55.45 85.93 CCW 

49 311.40 21.10 348.50 82.50 0.00 27.30 277.06 60.99 63.00 325.83 59.63 72.38 CCW 

50 318.90 18.30 346.50 84.50 0.00 53.70 216.72 55.35 66.85 279.39 52.27 68.17 CCW 

51 315.60 21.50 5.60 79.30 0.00 39.00 213.78 77.24 61.89 288.57 65.67 57.64 CCW 

52 314.40 23.30 286.20 83.70 0.00 55.00 236.97 54.24 61.19 285.05 56.97 75.48 CCW 

53 312.40 26.30 335.50 84.70 0.00 35.50 279.48 47.23 58.85 325.80 55.30 88.10 CCW 

54 312.70 23.70 344.90 83.30 0.00 28.90 283.21 46.92 60.69 330.66 52.99 85.31 CCW 

55 314.00 22.70 49.70 86.10 0.00 36.20 231.26 69.70 67.74 301.23 66.96 60.66 CCW 

56 315.10 29.70 289.10 82.10 0.00 25.60 314.48 72.99 53.27 0.74 77.85 50.91 CCW 
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SMV 

Dec 
SMV Inc PF Dec 

PF 

Inc 

RMV 

dec 
RMV inc IPF dec IPF inc Beta RP dec RP inc Angle Sense 

57 313.90 22.80 300.00 82.80 0.00 32.80 273.67 60.16 60.22 318.37 62.06 68.16 CCW 

58 311.80 17.80 34.50 89.30 0.00 40.60 235.46 56.67 72.11 294.96 59.72 70.72 CCW 

59 318.70 24.60 337.20 79.30 0.00 51.80 254.65 56.92 55.31 302.70 55.61 80.64 CCW 

60 316.20 28.20 330.30 81.30 0.00 46.70 261.42 62.25 53.39 307.31 60.71 74.86 CCW 

61 310.50 22.40 339.10 82.10 0.00 29.10 275.10 74.13 60.72 317.21 69.19 62.79 CCW 

62 314.40 23.60 306.80 88.20 0.00 45.00 230.30 63.30 64.62 288.38 62.94 64.29 CCW 

63 308.50 23.50 300.70 81.60 0.00 42.90 243.67 69.86 58.18 285.45 66.51 67.18 CCW 

64 312.80 22.30 336.20 85.70 0.00 28.90 262.12 76.54 63.77 312.88 72.51 56.70 CCW 

65 318.00 23.90 37.50 83.70 0.00 32.50 264.35 59.53 65.10 326.74 56.34 72.74 CCW 

66 311.90 25.80 336.70 85.40 0.00 31.40 281.42 47.77 60.04 329.40 55.32 85.26 CCW 

67 313.70 22.00 331.50 82.60 0.00 37.40 260.68 63.36 60.98 309.43 61.00 70.26 CCW 

68 318.20 24.00 283.50 86.80 0.00 49.10 216.89 63.87 63.38 275.33 60.16 57.71 CCW 

69 312.10 27.80 349.40 84.80 0.00 31.20 280.29 61.56 58.11 330.25 62.20 73.28 CCW 

70 317.60 18.60 51.90 85.40 0.00 32.80 227.61 69.76 71.81 301.57 64.68 56.09 CCW 

71 314.50 22.60 261.60 87.40 0.00 36.30 232.17 71.90 65.85 287.76 70.25 54.93 CCW 

72 313.90 22.70 2.30 84.60 0.00 26.70 273.28 71.22 63.78 327.30 66.47 61.16 CCW 

73 316.00 20.20 346.30 84.70 0.00 41.60 263.06 46.42 65.25 314.08 52.67 85.47 CCW 

74 314.50 23.20 74.20 86.20 0.00 40.80 259.86 44.49 68.72 318.37 53.54 89.46 CCW 

75 315.30 21.20 59.30 88.60 0.00 34.20 233.69 69.59 69.14 300.24 67.49 57.38 CCW 

76 308.40 19.20 345.50 84.30 0.00 39.40 222.30 70.08 66.29 282.84 65.79 65.44 CCW 
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RMV 
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RMV inc IPF dec IPF inc Beta RP dec RP inc Angle Sense 

77 313.70 23.30 11.80 86.80 0.00 42.20 256.57 51.86 65.04 311.58 57.06 81.61 CCW 

78 314.50 25.80 307.00 84.90 0.00 44.70 252.69 61.02 59.15 302.04 61.89 71.08 CCW 

79 320.50 27.30 352.00 88.00 0.00 34.30 268.09 62.04 61.00 327.05 61.05 63.83 CCW 

80 321.00 26.70 108.30 88.30 0.00 35.10 268.82 49.57 64.73 329.34 55.09 74.75 CCW 

81 314.50 24.30 30.20 84.40 0.00 43.00 241.87 61.20 64.44 304.83 60.64 72.42 CCW 

82 321.40 20.90 312.00 80.90 0.00 29.10 278.32 83.08 60.13 285.04 76.15 42.34 CCW 

83 316.40 24.20 311.60 81.60 0.00 32.00 276.60 82.04 57.43 292.52 76.74 48.83 CCW 

84 313.90 22.20 269.60 89.10 0.00 33.70 237.22 71.97 67.16 297.59 70.62 56.29 CCW 

85 319.40 25.10 2.70 85.00 0.00 26.80 286.92 37.36 61.31 338.19 47.04 88.71 CCW 

86 315.90 17.40 314.50 81.60 0.00 51.80 236.15 54.15 64.20 286.91 53.37 75.48 CCW 

87 313.70 23.90 350.60 83.40 0.00 45.40 246.57 60.91 60.89 301.34 59.83 75.03 CCW 

88 311.80 18.40 355.80 82.40 0.00 40.00 254.65 54.25 66.22 307.63 55.65 81.26 CCW 

89 314.00 23.00 353.90 80.90 0.00 26.50 50.08 84.68 60.17 274.84 85.03 47.01 CCW 

90 315.60 17.80 348.60 84.30 0.00 33.40 215.04 77.06 67.45 281.25 68.56 52.56 CCW 

91 310.70 19.00 312.10 85.80 0.00 30.10 269.43 52.74 66.80 319.68 57.32 76.67 CCW 

92 306.50 21.90 18.80 80.60 0.00 30.50 268.72 56.77 65.54 322.34 57.42 84.87 CCW 

93 313.90 24.70 13.60 80.40 0.00 37.50 193.74 81.52 60.76 285.34 72.02 54.54 CCW 

94 313.80 21.60 266.30 85.80 0.00 29.50 271.34 54.59 65.60 323.74 59.86 69.87 CCW 

95 313.10 15.60 337.20 79.10 0.00 39.50 262.72 50.71 64.51 309.38 52.10 84.42 CCW 

96 312.40 22.90 344.30 84.40 0.00 27.10 277.06 68.18 62.38 326.93 65.50 64.33 CCW 
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97 314.70 24.80 338.20 85.00 0.00 54.60 213.67 61.79 60.63 274.94 58.59 66.51 CCW 

98 313.70 21.50 313.00 89.00 0.00 30.10 269.70 50.25 67.50 325.18 56.18 76.31 CCW 

99 313.30 21.50 49.60 89.10 0.00 31.00 254.94 63.94 68.60 317.33 63.49 65.70 CCW 

100 317.30 23.80 349.10 82.80 0.00 34.10 197.09 85.57 60.14 275.21 75.42 46.91 CCW 

101 313.90 22.50 305.90 84.60 0.00 27.20 284.81 39.76 62.15 332.12 50.84 85.71 CCW 

102 316.00 25.40 38.20 85.70 0.00 35.50 274.20 42.60 64.09 327.86 52.07 89.84 CCW 

103 308.90 28.60 36.40 82.90 0.00 51.20 206.15 65.76 61.33 279.15 65.60 69.22 CCW 

104 315.60 19.00 21.50 81.80 0.00 39.70 250.62 55.05 67.83 310.56 54.65 78.08 CCW 

105 311.10 20.70 19.80 84.90 0.00 43.80 203.26 67.28 67.52 274.10 64.04 62.18 CCW 

106 314.10 15.20 310.70 85.70 0.00 46.90 227.59 54.99 70.51 283.44 55.12 70.56 CCW 

107 313.20 23.00 327.00 87.30 0.00 24.80 283.11 41.58 64.38 334.69 51.28 84.26 CCW 

108 317.40 19.80 338.30 84.40 0.00 27.70 256.30 80.31 64.98 304.43 73.15 49.59 CCW 

109 312.20 18.90 353.20 84.20 0.00 28.10 272.40 52.10 66.77 324.48 54.54 78.31 CCW 

110 313.20 27.30 36.60 83.20 0.00 46.00 243.68 59.87 62.13 306.39 61.00 77.94 CCW 

111 310.80 18.00 352.80 83.90 0.00 41.70 206.16 69.10 67.52 273.21 63.42 61.96 CCW 

112 312.60 27.50 19.60 84.90 0.00 49.00 207.64 68.61 60.61 277.79 65.38 62.62 CCW 

113 310.30 26.10 335.00 80.10 0.00 26.50 10.92 81.32 54.99 326.64 86.86 51.09 CCW 

114 311.30 21.80 355.60 80.10 0.00 34.90 250.34 74.84 61.31 304.43 66.33 64.84 CCW 

115 318.10 26.30 297.10 82.50 0.00 35.70 272.89 65.65 56.73 316.57 65.37 60.14 CCW 

116 312.10 25.70 336.30 84.00 0.00 48.00 243.53 62.10 58.86 296.05 61.59 74.83 CCW 
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117 319.20 22.50 339.10 85.10 0.00 30.60 280.82 40.90 62.90 331.57 49.03 84.57 CCW 

118 309.50 18.30 11.80 82.00 0.00 40.40 250.39 53.83 68.14 306.43 56.03 84.04 CCW 

119 316.00 15.70 335.90 87.30 0.00 32.80 235.84 66.89 71.76 296.58 62.99 58.23 CCW 

120 318.80 18.40 346.40 84.80 0.00 28.90 259.27 68.62 67.01 315.65 62.46 57.25 CCW 

121 313.40 19.70 344.60 83.50 0.00 37.20 254.96 60.70 64.78 308.17 59.00 72.23 CCW 

122 314.90 22.40 28.10 86.60 0.00 24.90 271.63 66.44 66.66 332.28 63.29 62.74 CCW 

123 315.00 23.60 331.30 79.80 0.00 45.50 257.80 60.73 56.65 303.90 58.39 76.42 CCW 

124 317.70 17.80 35.80 87.20 0.00 33.30 255.01 53.75 71.64 316.25 55.05 70.39 CCW 

125 312.40 21.50 26.20 80.50 0.00 52.20 235.27 51.75 66.15 296.72 55.66 86.47 CCW 

126 314.60 22.00 14.30 85.30 0.00 46.10 257.37 45.88 65.69 310.43 53.94 89.26 CCW 

127 313.80 23.60 344.20 84.70 0.00 43.30 258.04 54.59 61.86 309.33 57.74 80.28 CCW 

128 315.00 21.80 340.60 85.40 0.00 29.80 279.27 42.19 64.07 329.29 50.73 85.72 CCW 

129 311.80 19.00 322.30 81.00 0.00 39.00 230.39 73.88 62.16 280.94 65.42 60.67 CCW 

130 312.80 25.30 343.80 84.30 0.00 50.10 234.57 61.95 59.85 290.80 60.90 73.34 CCW 

131 317.90 25.30 306.40 83.50 0.00 31.20 284.30 47.56 58.34 331.58 54.30 77.58 CCW 

132 314.30 19.30 12.20 83.60 0.00 25.80 252.39 80.51 67.40 313.12 72.31 53.97 CCW 

133 307.80 24.60 116.20 88.90 0.00 38.90 209.91 72.71 66.48 273.55 73.25 59.37 CCW 

134 306.80 23.30 331.90 79.40 0.00 35.70 275.68 59.06 57.19 315.64 60.10 82.96 CCW 

135 310.30 21.60 300.60 84.80 0.00 31.90 234.69 81.46 63.28 275.78 76.75 54.02 CCW 

136 307.20 22.00 28.50 83.80 0.00 27.30 269.79 58.08 67.20 325.97 59.29 79.16 CCW 
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137 312.50 24.60 347.40 84.80 0.00 27.40 328.50 88.32 61.17 301.06 84.21 49.66 CCW 

138 318.10 24.80 326.20 82.70 0.00 50.50 248.25 58.08 57.98 298.68 57.41 74.50 CCW 

139 320.90 26.90 328.40 83.00 0.00 51.00 219.26 69.46 56.16 279.02 60.13 56.36 CCW 

140 309.50 22.10 34.80 89.50 0.00 30.80 270.78 46.07 67.86 324.20 55.76 84.15 CCW 

141 316.10 20.50 59.80 86.20 0.00 37.20 213.27 69.61 70.44 287.66 66.39 55.58 CCW 

142 308.00 18.40 44.50 86.40 0.00 29.80 196.73 77.68 72.04 274.95 75.87 56.52 CCW 

143 314.20 22.60 348.40 85.00 0.00 40.70 227.89 70.86 63.30 289.22 65.49 60.55 CCW 

144 316.10 26.20 343.40 87.80 0.00 26.30 281.29 60.25 61.85 337.87 60.83 66.56 CCW 

145 314.40 23.90 348.70 83.90 0.00 38.00 243.30 72.76 61.11 300.24 66.73 61.02 CCW 

146 316.50 22.50 326.00 80.00 0.00 41.00 250.96 70.35 57.65 296.69 62.73 62.28 CCW 

147 310.50 20.20 0.00 86.50 0.00 29.20 271.87 48.05 67.55 324.57 54.39 82.77 CCW 

148 319.60 17.90 334.30 79.50 0.00 25.00 287.00 38.33 61.97 333.39 44.65 84.25 CCW 

149 316.60 28.50 341.50 82.70 0.00 40.10 268.18 65.21 54.93 316.87 62.49 69.73 CCW 

150 307.90 26.60 5.10 87.00 0.00 45.00 241.48 62.61 61.80 297.78 64.78 75.74 CCW 

151 315.80 25.10 348.50 84.70 0.00 43.10 246.07 64.86 60.48 302.59 62.05 67.83 CCW 

152 314.30 21.80 346.30 84.70 0.00 49.10 242.34 54.80 63.74 296.88 56.90 78.49 CCW 

153 313.70 26.90 328.40 87.20 0.00 28.30 283.06 83.31 60.39 326.08 81.23 50.67 CCW 

154 314.10 22.50 345.70 84.40 0.00 54.60 235.84 53.18 62.76 290.61 56.09 80.83 CCW 
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              Figure A1 Non-metamorphosed diabase dyke cutting cross the metamorphic sole rocks 
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Figure A2.Melange contact with sole rocks at NW portion of the road cut section. The sedimentary cover can also be seen in the upper left. 
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             Figure A3. Amphibolite-calcschist-marble intercalation uniformly dipping towards SE 
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     Figure A4. SEM image from BC1201. White ones are amphibole minerals, grey ones are calcite minerals and black region is plagioclase feldspar. 
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    Figure A5. BC0204 illustrating lineation along NW-SE direction. The lineation is represented by amphibole minerals. (DD/D=135°/46°) 


