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Abstract

In this paper we introduce a novel Bayesian data augmentation approach for estimating
the parameters of the generalised logistic regression model. We propose a Pólya-Gamma
sampler algorithm that allows us to sample from the exact posterior distribution, rather
than relying on approximations. A simulation study illustrates the flexibility and accuracy
of the proposed approach to capture heavy and light tails in binary response data of
different dimensions. The methodology is applied to two different real datasets, where
we demonstrate that the Pólya-Gamma sampler provides more precise estimates than the
empirical likelihood method, outperforming approximate approaches.
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1 Introduction

Data augmentation (DA) is undoubtedly one of the most popular Markov Chain Monte Carlo

(MCMC) methods. The idea is to consider the target distribution as the marginal of a joint

distribution in an augmented space. Assuming it is easy to sample from the conditional distribu-

tions, the algorithm is a straightforward two steps procedure which makes use of a simple Gibbs

sampling. Since the seminal work of Tanner and Wong (1987), data augmentation has been

extensively studied, developed and used in different contexts. For instance, Meng and van Dyk

(1999), Liu and Wu (1999), van Dyk and Meng (2001) developed strategies to speed up the

basic DA algorithm. Hobert and Marchev (2008) studied the efficiency of DA algorithms. Re-

cently, Leisen et al. (2017) use a DA approach to perform Bayesian inference for the Yule-

Simon distribution. The idea is used in the context of infinite hidden Markov models by

Hensley and Djurić (2017). The literature on DA is vast and it is difficult to list all the contri-

butions to the field. A review of DA algorithms can be found in Brooks et al. (2011), Chapter

10.

In the context of binary regression, the article of Albert and Chib (1993) sets a milestone

in the use of DA algorithms. The authors develop exact Bayesian methods for modeling cate-

gorical response data by introducing suitable auxiliary variables. In particular, they use a DA

approach to estimate the parameters of the probit regression model. However, although some

valid approaches have been proposed (Holmes et al., 2006), Bayesian inference for the logistic

regression was not satisfactorily addressed until the paper of Polson et al. (2013). The authors

proposed an elegant DA approach which makes use of the following identity:

(eψ)a

(1 + eψ)b
= 2−beκψ

∫

e−ωψ
2/2p(ω)dω (1)

where κ = a − b/2, a > 0, b > 0 and p(ω) is the density of a PG(b,0) distribution. The

distribution PG(b,0) is a Pólya-Gamma distribution with parameters b and 0; we refer to the
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article of Polson et al. (2013) for details about Pólya-Gamma distributions. When ψ = xTβ

is a linear function of predictors, the integrand is the kernel of a Gaussian likelihood in β.

This naturally suggests a DA scheme which simply requires to be able to sample from the

multivariate normal and the Pólya-Gamma distributions. This algorithm is called the Pólya-

Gamma sampler. A theoretical study of the algorithm can be found in Choi and Hobert (2013).

In this paper, we propose a Pólya-Gamma sampler to estimate the parameters of the gen-

eralized logistic regression model introduced in Dalla Valle et al. (2019). The authors studied

immigration in Europe employing a novel regression model which makes use of a generalized

logistic distribution. Their work is motivated by the need of a logistic model with heavy tails.

The distribution considered in the paper has the following density function:

f(x) =
1

B(p, p)

epx

(1 + ex)2p
x ∈ R. (2)

The parameter p controls the tails of the distribution. The standard logistic distribution can

be recovered with p = 1. Compared with the standard logistic distribution, p > 1 means lighter

tails and 0 < p < 1 means heavier tails, as shown in Figure 1. Unfortunately, the distribution

function is not explicit:

F (x) =
1

B(p, p)
B

(

ex

1 + ex
; p, p

)

x ∈ R (3)

where B(t; p, p) =
∫ t

0
xp−1(1−x)p−1dx, with 0 < t < 1, is the incomplete Beta function. There-

fore, a straightforward use of the methodology of Polson et al. (2013) is not possible. To over-

come the problem, Dalla Valle et al. (2019) use an approximate Bayesian computational method

that relies on the empirical likelihood (see Mengersen et al. (2013) and Karabatsos and Leisen

(2018)). However, since the empirical likelihood approach is based on an approximation of the

posterior distribution, this method may lead to wide credible intervals and sometimes ambigu-

ous estimates, especially for the tail parameter.
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In this paper, we propose a novel approach for estimating the generalised logistic regression,

that allows us to draw samples from the exact posterior distribution and is able to overcome

the drawbacks of the empirical likelihood method. We show how to set a DA scheme for the

generalized logistic regression which makes use of the Pólya-Gamma identity in equation (1).

We test the performance of the proposed approach on simulated data and on two different real

dataset: the first dataset regards people’s opinions towards immigration in Europe; the second

contains information about the recidivism of criminals detained in Iowa. We show that the

Pólya-Gamma sampler yields accurate results in high-dimension and outperforms the empirical

likelihood algorithm providing a more precise estimation of the model parameters.

The rest of the paper is organised as follows. In Section 2, we introduce the generalized

logistic regression framework in a Bayesian setting. In Section 3, we provide the details of

the Pólya-Gamma sampler for this model. Section 4 and Section 5 illustrate the algorithm

performance with simulated and real data. Section 6 concludes.
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Figure 1: Probability density function of the generalized logistic with p = 1, p = 0, 3, p = 0, 7,

p = 2 and p = 5.
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2 The Generalized Bayesian Logistic Regression

Consider a binary regression set-up in which Y1, . . . , Yn are independent Bernoulli random

variables such that Pr(Yi = 1|β) = H(xTi β) where xi is a k × 1 vector of known covariates

associated with Yi, i = 1, . . . , n, β is a k × 1 vector of unknown regression coefficients, and

H : R → (0, 1) is a distribution function. In this case, the likelihood function is given by

L(β) =

n
∏

i=1

[H(xTi β)]
yi [1−H(xTi β)]

1−yi (4)

If H(x) = Φ(x) is the distribution function of a Gaussian, then we are in the probit regression

framework. If H(x) = ex(1 + ex)−1, then we are in the special case of the standard logistic

regression. Albert and Chib (1993) proposed a DA approach for sampling from the posterior

distribution of the probit regression model. Their method makes use of auxiliary variables

which allow an easy implementation of the Gibbs sampler. Polson et al. (2013) proposed an

elegant algorithm for tackling the logistic regression case.

The generalized logistic distribution in equation (2) has mean zero and scale one. Consider

now a generalized logistic with mean xTi β and scale one, i.e. with probability density function:

f(x) =
1

B(p, p)

ep(x−x
T

i
β)

(

1 + e(x−x
T

i
β)
)2p x ∈ R (5)

We denote the above distribution with GLog(xTi β, 1). Mimicking Albert and Chib (1993),

suppose to sample Zi from a GLog(xTi β, 1), i = 1, . . . , n, and set Yi = 1 if Zi > 0. Otherwise,

if Zi ≤ 0, then set Yi = 0. It is easy to see that

P (Yi = 1) =
1

B(p, p)
B

(

ex
T

i
β

1 + ex
T

i
β
; p, p

)

.

The joint posterior distribution is

π(β, p,Z|y) ∝ π(β)π(p)

n
∏

i=1

{I (Zi > 0) I(yi = 1) + I (Zi ≤ 0) I(yi = 0)}
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×
1

B(p, p)

ep(Zi−xTi β)

(

1 + e(Zi−xTi β)
)2p (6)

where π(β) and π(p) are the prior distributions of β and p, respectively. With the probit model,

the technique of Albert and Chib (1993) works because the full conditional distributions can be

resorted to normal distributions (or truncated normal distributions) which are easy to sample

from. In our case, the usual normal prior would lead to a full conditional on β which is not

explicit, requiring the use of a Metropolis step (or alternative algorithms). The Pólya-Gamma

identity in (1) allows to overcome this problem. In particular, we get

ep(Zi−xTi β)

(

1 + e(Zi−xTi β)
)2p = 2−2p

∫ +∞

0

e−ωi(Zi−xTi β)2/2p(ωi)dωi,

where p(ω) is a Pólya-Gamma, PG(2p, 0), distribution. Note that e−ω(x
T

i
β)2/2p(ω) is the un-

normalized density of a PG(2p, xTi β) random variable. Therefore, the augmented posterior

distribution is

π(β, p,Z,ω|y) ∝ π(β)π(p)

n
∏

i=1

{I (Zi > 0) I(yi = 1) + I (Zi ≤ 0) I(yi = 0)}

× 2−2pe−ωi(Zi−xTi β)2/2p(ωi). (7)

3 Inference Sampling Strategy

The algorithm proposed in Dalla Valle et al. (2019) makes use of an approximate likelihood,

which relies on an approximation of the posterior distribution (see Mengersen et al. (2013)

and Zhu and Leisen (2016)). The algorithm presented in this paper allows us to sample from

the true posterior distribution, making it more appealing to perform the Bayesian inferential

exercise.
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Starting from the augmented posterior distribution in (7), this Section introduces the full

conditional distributions required to run the algorithm. The variables involved are

Z,ω,β, p,

where Z = (Z1, . . . , Zn), ω = (ω1, . . . , ωn) and β = (β1, . . . , βk).

Full conditional for Zi. The random variables Z1, . . . , Zn are independent with full condi-

tional distributions:

π(Zi|y,β,ω, p) ∝ {I (Zi > 0) I(yi = 1) + I (Zi ≤ 0) I(yi = 0)} e−ωi(Zi−x
T

i
β)2/2

∝ {I (Zi > 0) I(yi = 1) + I (Zi ≤ 0) I(yi = 0)} e−
ωi

2
(Z2

i
−2ZixTi β)

which are truncated normal distributions. More precisely,

• if yi = 1, then π(Zi|y,β,ω, p) is distributed as a N (xTi β, ω
−1
i ) truncated to the left by 0;

• if yi = 0, then π(Zi|y,β,ω, p) is distributed as a N (xTi β, ω
−1
i ) truncated to the right by

0;

Full conditional for ωi. Following Polson et al. (2013), it is easy to see that the full conditional

distribution of ωi is:

π(ωi|p,β,Z,y) ∝ e−ωi(Zi−xTi β)2/2p(ωi) ∼ PG
(

2p, Zi − xTi β
)

An efficient method for sampling Pólya-Gamma random variables is implemented in a modified

version of the R package BayesLogit (Windle et al., 2016).

Full conditional for β. Assuming a multivariate N (β∗, B∗) prior for β, the full conditional

distribution of β is

π(β|Z,y,ω, p) ∝ π(β)

n
∏

i=1

exp
{

−
ωi
2
(Zi − xTi β)

2
}
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= exp

{

−
1

2

[

βT
(

XTΩX +B∗−1
)

β − 2βT
(

XTΩZ +B∗−1β∗
)]

}

∼ N (β̃∗, Ṽ ∗

β )

where

β̃∗ =
(

XTΩX +B∗−1
)

−1 (
XTΩZ +B∗−1β∗

)

Ṽ ∗

β =
(

XTΩX +B∗−1
)

−1
.

Full conditional for p. The full conditional for p is:

π(p|β,Z,ω,y) ∝ π(p)
n
∏

i=1

2−2p

B(p, p)
p(ωi)

where p(ωi) is a PG(2p, 0). In our approach we assume a Gamma prior for p and we integrate

out the ω’s in (7). This leads to the following full conditional distribution for p:

π(p|β,Z,ω,y) ∝ π(p)
1

B(p, p)n

n
∏

i=1

ep(Zi−x
T

i
β)

(

1 + e(Zi−xTi β)
)2p

= π(p)
1

B(p, p)n

n
∏

i=1

(

e(Zi−x
T

i
β)

(

1 + e(Zi−xTi β)
)2

)p

.

In order to sample from p, we use the slice sampling of Neal (2003). This algorithm requires

the computation of the inverse of the above full conditional distribution. We used the function

uniroot available in R to compute the numerical inverse. The next sections illustrate the

performance of the algorithm with simulated and real data.

4 Simulation Studies

In this section, we assess the performance of the algorithm by implementing different simulation

experiments. In particular, we use four different values of the tail parameter p: p = 0.3 and

p = 0.7 (heavy tails) and p = 1.5 and p = 3 (light tails). We focus on three scenarios:
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1. β = (0.5,−2, 1), with k = 3;

2. β = (1,−1,−3, 1, 3), with k = 5;

3. β = (2.3, 1,−2, 1.5,−2.7, 0.2,−1.4, 3,−0.6,−1.2), with k = 10.

We assume a standard normal distribution for the explanatory variables. For each scenario

and each value of p, we generate 20 different datasets of sample sizes n = 100 and n = 250,

respectively. Regarding the prior choice, we consider vague priors for β and p. In particular,

a multivariate normal distribution, N (ν, B), is chosen for β with prior mean vector ν =

0 and prior covariance matrix B = 5 · Ik. For p we choose a gamma prior, Ga(a, b) with

hyperparameters a = b = 1. For each of the 20 different simulated datasets, we run 3, 000

iterations of the MCMC algorithm and discard the first 1, 000 iterations as burn-in period.

In Table 1 we show the posterior means of the different values of p and n for the three-

dimensional β of scenario 1. The values in brackets show the standard deviations over the

20 simulations. We notice that the posterior means of p are very close to the true values,

and increasing the dimensionality of n from 100 to 250 leads to a better estimation of the p

parameter. This good performance is also confirmed for the posterior means of the vector of

unknown coefficients β = (β0, β1, β2). We note an improvement of the results as the sample

size increases.

Tables 2 and 3 show the posterior mean and the posterior standard deviations for the five-

and ten-dimensional scenarios, respectively. These results are in line with the three-dimensional

case, thus leading us to conclude that increasing the number of covariates is not an issue in

terms of estimation accuracy. Moreover, the posterior standard deviations in Tables 1, 2 and 3

substanstially decrease for all the different scenarios and p values when we move from n = 100

to n = 250.
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p β0 β1 β2

true values 0.3 0.5 -2 1

n = 100 0.299 0.389 -1.772 0.926

(0.002) (0.467) (0.513) (0.543)

n = 250 0.299 0.472 -1.929 1.092

(0.001) (0.263) (0.390) (0.256)

true values 0.7 0.5 -2 1

n = 100 0.702 0.519 -2.163 1.138

(0.005) (0.249) (0.402) (0.398)

n = 250 0.699 0.453 -2.018 1.012

(0.003) (0.203) (0.275) (0.270)

true values 1.5 0.5 -2 1

n = 100 1.491 0.544 -2.129 1.016

(0.014) (0.283) (0.645) (0.293)

n = 250 1.495 0.505 -2.078 1.109

(0.007) (0.163) (0.193) (0.182)

true values 3 0.5 -2 1

n = 100 2.910 0.542 -2.114 1.095

(0.033) (0.169) (0.492) (0.343)

n = 250 2.964 0.494 -2.079 1.028

(0.014) (0.094) (0.234) (0.129)

Table 1: Posterior means over the 20 different simulated datasets for n equal to 100 and 250

compared with the true values of p = 0.3 (first panel), p = 0.7 (second), p = 1.5 (third) and

p = 3 (forth) and (β0, β1, β2) = (0.5,−2, 1). The values in brackets are the standard deviations

over the 20 different simulations.
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p β0 β1 β2 β3 β4

true values 0.3 1 -1 -3 1 3

n = 100 0.304 0.872 -0.876 -2.877 0.853 2.720

(0.003) (0.509) (0.495) (0.700) (0.751) (0.504)

n = 250 0.301 0.953 -1.058 -3.066 0.988 3.260

(0.001) (0.331) (0.388) (0.405) (0.419) (0.427)

true values 0.7 1 -1 -3 1 3

n = 100 0.710 0.999 -0.988 -3.053 1.058 2.914

(0.011) (0.351) (0.432) (0.602) (0.401) (0.343)

n = 250 0.704 0.947 -0.987 -3.053 0.961 3.142

(0.005) (0.319) (0.355) (0.357) (0.265) (0.451)

true values 1.5 1 -1 -3 1 3

n = 100 1.523 0.988 -1.373 -3.422 1.127 3.233

(0.028) (0.373) (0.459) (0.493) (0.337) (0.506)

n = 250 1.501 0.989 -1.067 -3.139 0.952 3.003

(0.013) (0.194) (0.288) (0.334) (0.202) (0.337)

true values 3 1 -1 -3 1 3

n = 100 2.962 1.023 -1.182 -3.475 1.214 3.329

(0.053) (0.234) (0.300) (0.623) (0.428) (0.597)

n = 250 2.990 1.048 -1.037 -3.161 1.080 3.173

(0.024) (0.214) (0.201) (0.758) (0.256) (0.714)

Table 2: Posterior means over the 20 different simulated datasets for n equal to 100 and 250

compared with the true values of p = 0.3 (first panel), p = 0.7 (second), p = 1.5 (third) and

p = 3 (forth) and (β0, β1, β2, β3, β4) = (1,−1,−3, 1, 3). The values in brackets are the standard

deviations over the 20 different simulations.
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p β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

true values 0.3 2.3 1 -2 1.5 -2.7 0.2 -1.4 3 -0.6 -1.2

n = 100 0.300 2.419 0.955 -1.926 1.147 -2.796 0.254 -1.214 2.982 -0.238 -0.906

(0.007) (0.631) (0.607) (0.707) (0.830) (0.698) (0.664) (0.622) (0.903) (0.689) (0.589)

n = 250 0.299 2.198 0.922 -1.985 1.527 -2.682 -0.024 -1.437 3.387 -0.594 -1.253

(0.002) (0.564) (0.513) (0.545) (0.500) (0.583) (0.555) (0.351) (0.650) (0.431) (0.456)

true values 0.7 2.3 1 -2 1.5 -2.7 0.2 -1.4 3 -0.6 -1.2

n = 100 0.701 2.333 1.070 -2.079 1.627 -2.814 0.187 -1.467 3.128 -0.684 -1.074

(0.016) (0.653) (0.676) (0.645) (0.536) (0.568) (0.569) (0.488) (0.837) (0.629) (0.650)

n = 250 0.700 2.437 1.085 -2.095 1.740 -2.918 0.234 -1.469 3.135 -0.625 -1.286

(0.006) (0.433) (0.374) (0.423) (0.455) (0.398) (0.329) (0.344) (0.567) (0.267) (0.306)

true values 1.5 2.3 1 -2 1.5 -2.7 0.2 -1.4 3 -0.6 -1.2

n = 100 1.502 2.475 1.290 -2.090 1.545 -2.874 0.346 -1.501 3.144 -0.587 -1.160

(0.027) (0.519) (0.464) (0.585) (0.424) (0.568) (0.447) (0.569) (0.718) (0.417) (0.340)

n = 250 1.502 2.518 1.077 -2.134 1.647 -2.916 0.185 -1.498 3.379 -0.658 -1.374

(0.020) (0.471) (0.243) (0.441) (0.307) (0.559) (0.284) (0.360) (0.566) (0.245) (0.400)

true values 3 2.3 1 -2 1.5 -2.7 0.2 -1.4 3 -0.6 -1.2

n = 100 2.933 2.713 1.159 -2.295 1.788 -3.114 0.286 -1.867 3.228 -0.741 -1.345

(0.065) (0.590) (0.509) (0.546) (0.494) (0.661) (0.534) (0.756) (0.679) (0.386) (0.517)

n = 250 2.972 2.462 1.080 -2.089 1.601 -2.901 0.147 -1.561 3.247 -0.669 -1.253

(0.036) (0.305) (0.257) (0.327) (0.309) (0.398) (0.202) (0.211) (0.466) (0.229) (0.259)

Table 3: Posterior means over the 20 different simulated datasets for n equal to 100 and 250 compared

with the true values of p = 0.3 (first panel), p = 0.7 (second), p = 1.5 (third) and p = 3 (forth) and

(β0, β1, β2, β3, β4, β5, β6, β7, β8, β9) = (2.3, 1,−2, 1.5,−2.7, 0.2,−1.4, 3,−0.6,−1.2). The values in brackets

are the standard deviations over the 20 different simulations.
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In order to illustrate the complete inferential procedure, we show how all the parameters

of the model are estimated. Figure 2 displays the posterior chains for a specific dataset with

sample size n = 250, where p = 0.3 and β = (β0, β1, β2, β3, β4) = (1,−1,−3, 1, 3). As shown in

Figure 2, the chains, after a burn-in of 1, 000 iterations, converge quickly to the true values of

all parameters and give an excellent representation of the real parameter values.
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Figure 2: Sample chains of the posterior distribution of the parameters for the simulated data

with sample size n = 250 and with true parameter values p = 0.3 and β = (β0, β1, β2, β3, β4) =

(1,−1,−3, 1, 3).

We also performed a convergence analysis for scenario 1, with three-dimensional β1. The

analysis was carried out using the R coda package (Plummer et al., 2006). In particular, we

used single datasets of sample sizes n = 100 and n = 250, respectively, where we fixed p = 0.3.

We computed Geweke’s convergence tests and the autocorrelation and partial autocorrelation

1We performed other convergence tests for the five- and ten-dimensional cases. These results are omitted for

lack of space but are available on request.
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functions for the values of p and β. Table 4 reports the results of Geweke’s convergence test

(Geweke, 1992), that indicate no issues since the test statistics values are all lower than 1.96. As

a final check, in Figures 3 and 4 we plotted the autocorrelation and the partial autocorrelation

functions for the three-dimensional scenario with n = 100 and n = 250, respectively. From

these Figures, there is no indication of serious convergence problems.

Variables Test Statistic Variables Test Statistic

n = 100 p = 0.3 0.604 n = 250 p = 0.3 0.8352

β0 = 0.5 0.7215 β0 = 0.5 -0.2248

β1 = −2 -0.3355 β1 = −2 0.6250

β2 = 1 1.4029 β2 = 1 -0.6288

Table 4: Geweke’s test statistics for the posterior chain of the tail parameter p and of the

unknown coefficients, β = (β0, β1, β2) for a simulated dataset of sample size n = 100 (left

panel) and n = 250 (right panel).

5 Real Data Applications

In this Section, we present two different real data applications to illustrate the accurate and

efficient performance of the Pólya-Gamma sampler for estimating the generalized logistic re-

gression. The applications analyse novel datasets of different dimensions, which are related to

current and topical problems in the social sciences. In the first application, we consider data se-

lected from the European Social Survey (ESS), that were previously analysed in Dalla Valle et al.

(2019) to identify the determinants of public opinions towards immigration. The second ap-

plication analyses the motives behind the recidivism of offenders released from prison between

15



0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Autocorrelation function for p = 0.3

5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

P
ar

tia
l A

C
F

Partial Autocorrelation function for p = 0.3

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Autocorrelation function for β0 = 0.5

5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

P
ar

tia
l A

C
F

Partial Autocorrelation function for β0 = 0.5

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Autocorrelation function for β1 = −2

5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

P
ar

tia
l A

C
F

Partial Autocorrelation function for β1 = −2

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Autocorrelation function for β2 = 1

5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

P
ar

tia
l A

C
F

Partial Autocorrelation function for β2 = 1

Figure 3: Autocorrelation (left) and partial autocorrelation (right) functions for the simulated

dataset of sample size n = 100, with true parameter values p = 0.3 (first row) and β =

(β0, β1, β2) = (0.5,−2, 1) (second, third and forth row).
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Figure 4: Autocorrelation (left) and partial autocorrelation (right) functions for the simulated

dataset of sample size n = 250, with true parameter values p = 0.3 (first row) and β =

(β0, β1, β2) = (0.5,−2, 1) (second, third and forth row).
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2016 and 2018 in the State of Iowa, USA.

5.1 Immigration in European Countries

The first dataset focuses on people’s attitudes towards immigration. The data was selected

from the ESS and was collected following hour-long face-to-face interviews. We focused on

questions regarding immigration from the ESS8 edition 1.0 published in October 2017 and

collected between August 2016 and March 2017 (ESS8, 2016, 2018) for Great Britain (GB),

Germany (DE) and France (FR), respectively. For these three countries, the total number of

observations is 5, 354, of which 1, 419 are for GB; 2, 284 for DE and 1, 651 for FR.

The dependent variable is immig, that indicates whether the respondent would allow im-

migrants from poorer countries outside Europe. More precisely, if immig = 1 the respondent

is against immigration, if immig = 0 the respondent is in favor of immigration. Following

Dalla Valle et al. (2019), we considered as covariates the variables: pplfair, trstep, trstun,

happy, agea, edulvlb and hinctnta. The first three variables include answers to question

ranging from 0 (most negative) to 10 (most positive): do you think that most people try to

take advantage of you (pplfair)? Do you trust the European parliament (trstep)? Do you

trust the United Nations (trstun)? The happy variable takes values from 0 (unhappy) to 10

(extremely happy). The last three variables are subject-specific and include the age, ranging

from 15 to 100 (agea); the highest level of education, from primary education to doctoral degree

(edulvlb) and the household’s total net income (hinctnta).

For this dataset, we run 3, 000 iterations of the Pólya-Gamma sampler algorithm and we

discarded the first 1, 000 iterations as burn-in. We used the MLE estimates of β and p as

starting points of the algorithm and we employed vague priors, as in the simulated examples.

In order to assess the performance of the Pólya-Gamma sampler, we report the results ob-

tained using the empirical likelihood approach on the same dataset, adopting a similar setting.
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Table 5 lists the results of the Pólya-Gamma sampler (left-hand side) and the empirical likeli-

hood approach (right-hand side). For each European country (GB, DE and FR) and for each

parameter, Table 5 shows the posterior means, the 2.5% and 97.5% quantiles of the posterior

distributions, the credible interval (CI) widths and the difference between the CIs of the Pólya-

Gamma and the empirical likelihood methods. The effects of the parameters are similar across

countries and suggest that the higher the level of education, the higher the probability for peo-

ple to be favourable towards immigration. Also, trustful people and individuals with a strong

confidence in the European parliament tend to be in favour of immigration. The posterior

mean estimates obtained with the Pólya-Gamma method are in line with those obtained with

the empirical likelihood. However, the CIs calculated with the first approach are narrower than

those calculated with the second approach. This is illustrated in the last column of Table 5,

where the negative values show that the Pólya-Gamma CI widths are smaller than those of the

empirical likelihood method. For some of the covariates, such as pplfair, trstep, agea and

hinctnta, the empirical likelihood approach assigns posterior support to the value zero, while

the corresponding Pólya-Gamma CIs do not include zero. In addition, although the estimates

of the p parameter for all countries suggest heavy tails for the generalised logistic regression, the

empirical likelihood CIs cover the value 1, which correspond to the standard logistic regression.

On the contrary, the results of the Pólya-Gamma method give no posterior support to the value

1 for DE and FR data, and very limited support for BG data, clearly suggesting the need for

the generalised logistic regression model. Therefore, the Pólya-Gamma sampler outperforms

the empirical likelihood method for the estimation of the generalised logistic regression, since

it provides more precise parameter estimates as for the β as well as for the p parameters.
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Pólya-Gamma Sampler Empirical Likelihood

Country Parameters post. mean 2.50% 97.50% CI width post. mean 2.50% 97.50% CI width CI difference

GB

const -0.6437 -1.6623 0.294 1.9563 -0.4202 -2.4377 1.4487 3.8864 -1.9301

pplfair -0.1463 -0.233 -0.0567 0.1763 -0.1822 -0.3176 0.0113 0.3289 -0.1526

trstep -0.2265 -0.3275 -0.1311 0.1964 -0.1731 -0.3796 0.0447 0.4243 -0.2279

trstun -0.0423 -0.1282 0.0407 0.1689 -0.0372 -0.2354 0.1409 0.3763 -0.2074

happy 0.0343 -0.0581 0.1269 0.185 -0.0133 -0.2892 0.1209 0.4101 -0.2251

agea 0.009 -0.002 0.0206 0.0226 0.0094 -0.0139 0.0358 0.0497 -0.0271

edulvlb -0.0023 -0.0034 -0.0011 0.0023 -0.0021 -0.0039 -0.0006 0.0033 -0.001

hinctnta 0.012 -0.0613 0.0892 0.1505 -0.044 -0.1856 0.1228 0.3084 -0.1579

p 0.928 0.8508 1.008 0.1572 0.8218 0.4284 1.5696 1.1412 -0.984

DE

const -0.9217 -1.9118 0.0194 1.9312 -1.1452 -2.4617 0.6941 3.1558 -1.2246

pplfair -0.1683 -0.2549 -0.0721 0.1828 -0.1612 -0.3291 -0.0093 0.3198 -0.137

trstep -0.211 -0.3203 -0.1095 0.2108 -0.1524 -0.2839 -0.0107 0.2732 -0.0624

trstun -0.0441 -0.1488 0.0535 0.2023 -0.0112 -0.2115 0.1847 0.3962 -0.1939

happy -0.0796 -0.1767 0.0174 0.1941 -0.0873 -0.2438 0.0659 0.3097 -0.1156

agea 0.0194 0.0081 0.0305 0.0224 0.0124 -0.0061 0.0375 0.0436 -0.0212

edulvlb -0.0001 -0.0013 0.0014 0.0027 -0.0007 -0.0026 0.0016 0.0042 -0.0015

hinctnta -0.1009 -0.1857 -0.0189 0.1668 -0.1171 -0.2352 0.0414 0.2766 -0.1098

p 0.7903 0.739 0.843 0.104 0.7338 0.2955 1.7036 1.4081 -1.3041

FR

const 0.692 -0.3783 1.7869 2.1652 0.8442 -0.3443 1.4314 1.7757 0.3895

pplfair -0.0824 -0.1648 0.004 0.1688 -0.0921 -0.1898 0.0193 0.2091 -0.0403

trstep -0.2489 -0.3561 -0.1394 0.2167 -0.1912 -0.3592 -0.0114 0.3478 -0.1311

trstun -0.0895 -0.1829 0.0042 0.1871 -0.0514 -0.2047 0.1417 0.3464 -0.1593

happy 0.029 -0.0673 0.1256 0.1929 0.0191 -0.0609 0.1545 0.2154 -0.0225

agea -0.0006 -0.0111 0.0103 0.0214 -0.0043 -0.0155 0.0091 0.0246 -0.0032

edulvlb -0.0037 -0.0052 -0.0024 0.0028 -0.0038 -0.0056 -0.0027 0.0029 -0.0001

hinctnta -0.0666 -0.1403 0.013 0.1533 -0.1061 -0.239 0.0286 0.2676 -0.1143

p 0.7317 0.6745 0.7905 0.116 0.7845 0.3991 1.2809 0.8818 -0.7658

Table 5: EU immigration data results for Great Britain (GB), Germany (DE) and France (FR),

obtained with the Pólya-Gamma (left-hand side) and the empirical likelihood (right-hand side)

methods. For each parameter, columns 3 and 7 show the posterior means, columns 4 and 8 show

the 2.5% quantiles of the posterior distribution, columns 5 and 9 show the 97.5% quantiles of

the posterior distribution, columns 6 and 10 show the credible interval (CI) widths and column

11 shows the difference between the CIs of the Pólya-Gamma and the empirical likelihood

methods.
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5.2 Recidivism of Offenders Released from Prison in Iowa

The second dataset contains information about the recidivism of offenders released from prison

between 2016 and 2018 in Iowa2. Recidivism happens when a prisoner is released from jail and

he or she relapses back into criminal behavior and returns to jail. We applied the generalised

logistic regression to determine whether a prisoner is likely to recidivate based on his or her

characteristics.

After removing missing values, the data consists of 13, 644 records corresponding to offenders

detained in prison and released from 2016 to 2018. The dependent variable is recidivism,

which is equal to 1 if the prisoner is arrested again within a 3-year tracking period after being

released, and it is equal to 0 if he or she has not returned to prison within the tracking period.

We model the probability of being recidivist using a subsample of all the explanatory vari-

ables present in the original database: the sex of the offender (sex, which is equal to 1 for

men and 0 for women); the age when released from prison (age); whether an offender commit-

ted a felony or misdemeanor (felony, which is equal to 1 for felony and 0 for misdemeanor);

whether an offender was charged with a drug crime (drug); whether an offender was charged

with a public order crime (puborder); whether an offender was charged with a violent crime

(violent); and whether an offender was released on discharge or parole (discharge, which is

equal to 1 for discharge and 0 for parole).

In this second example, we run the MCMC algorithm using 2, 000 iterations and discarding

the first 500 iterations. As in the immigration example, we adopted vague priors and we stated

the initial values of β and p based on the corresponding MLE estimators. Figure 5 shows the

posterior chain of the tail parameter p, which demonstrates a good convergence performance.

As we did with the immigration data, we compared the performances of the Pólya-Gamma

2See the following website for details: https://data.iowa.gov/Correctional-System/3-Year-Recidivism-for-Offenders-Released-from-Pris/mw8r-vqy4.
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Pólya-Gamma Sampler Empirical Likelihood

Parameters post. mean 2.50% 97.50% CI width post. mean 2.50% 97.50% CI width CI difference

const -0.1096 -0.2295 0.0154 0.2449 -0.4278 -0.9341 0.1719 1.1060 -0.8611

sex 0.2252 0.1349 0.3154 0.4503 0.1371 -0.2583 0.4574 0.7157 -0.2654

age -0.0002 -0.0003 -0.0002 0.0001 -0.0003 -0.0005 -0.0002 0.0003 -0.0002

felony -0.0678 -0.1471 0.0137 0.1608 -0.0974 -0.4457 0.0999 0.5456 -0.3842

drug -0.0268 -0.1020 0.0464 0.1484 -0.0996 -0.4009 0.1912 0.5921 -0.4437

puborder -0.2000 -0.2949 -0.0998 0.1951 -0.0694 -0.3384 0.2261 0.5645 -0.3694

violent -0.4118 -0.4958 -0.3204 0.1754 -0.4743 -0.9779 -0.2638 0.7141 -0.5387

discharge -0.4085 -0.4959 -0.3209 0.1750 -0.4654 -0.6726 -0.1936 0.4790 -0.3040

p 1.3048 1.2656 1.3450 0.0794 0.5679 0.3409 1.0905 0.7496 -0.6702

Table 6: Criminal recidivism data results obtained with the Pólya-Gamma (left-hand side) and

the empirical likelihood (right-hand side) methods. For each parameter, columns 2 and 6 show

the posterior means, columns 3 and 7 show the 2.5% quantiles of the posterior distribution,

columns 4 and 8 show the 97.5% quantiles of the posterior distribution, columns 5 and 9 show

the credible interval (CI) widths and column 10 shows the difference between the CIs of the

Pólya-Gamma and the empirical likelihood methods.
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Figure 5: Posterior chain for the tail parameter p for the recidivism dataset.

sampler and the empirical likelihood approaches, using the same settings for both algorithms.

The results for the parameters β and p are listed in Table 6, that displays the Pólya-Gamma

results on the left-hand side and the empirical likelihood results on the right-hand side. Table

6 illustrates the posterior means, the 2.5% and 97.5% quantiles of the posterior distributions,

the credible interval (CI) widths and the difference between the CIs of the Pólya-Gamma and

the empirical likelihood methods.

The results suggest that men are more likely to recidivate than women, younger prisoners

are more likely to become repeat offenders than older prisoners, there is a lower probability

that the criminal is a recidivist if he or she was charged with a public order or violent crime and

offenders released on parole are more likely to return to jail than those released on discharge.

The sign of the posterior means for both approaches is the same, suggesting a similar

direction for the effects obtained using the Pólya-Gamma and the empirical likelihood method.

However, the CIs of the first approach are again narrower than those of second approach, as
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shown by the CIs differences in the last column of Table 6 , which are all negative. Moreover,

the Pólya-Gamma method, unlike the empirical likelihood, does not give posterior support to

zero to the variables sex and puborder, suggesting that the inclusion of these variables in the

model is appropriate.

The posterior estimates of p are different for the two approaches. The posterior mean

estimated with the Pólya-Gamma method is greater than one, denoting light tails for the

generalised logistic model, and there is no posterior support for the value one, suggesting that

the tails need to be appropriately modelled. On the contrary, the posterior mean estimated

with the empirical likelihood is lower than one and the CI is wide and includes the values one,

denoting estimation inaccuracy and uncertainty.

In agreement with our findings with the immigration data, the results obtained with the

recidivism dataset demonstrate that the Pólya-Gamma sampler method yields a higher esti-

mates precision and accuracy compared to the empirical likelihood method, as for the covariate

parameters β as well as for the tail parameter p. In particular, a more precise estimation of p

leads to more clarity on the tail behaviour of the generalised logistic regression.

6 Conclusions

This paper introduces a novel DA scheme for the generalized logistic regression model. This

model is particularly flexible since it is able to accommodate both light and heavy tails in

dichotomous response data. The proposed DA scheme makes use of the Pólya-Gamma identity

and it is strongly related to the slice sampler algorithm. The Pólya-Gamma sampler allows us to

implement a Bayesian method able to draw samples from the exact posterior distribution. On

the contrary, other methods, such as the empirical likelihood approach, are based on approxi-

mations of the posterior and may lead to low precision in the estimation of the parameters. Our
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simulation study demonstrates the estimation accuracy of the newly proposed Pólya-Gamma

sampler with datasets of different dimensions. We compared the performances of the Pólya-

Gamma and the empirical likelihood methods for modelling new interesting datasets regarding

the opinion on immigration in European countries and the probability of being recidivist for

prisoners in Iowa, USA. Our results demonstrate the superiority of the Pólya-Gamma sampler

over the empirical likelihood in terms of parameter precision. The Pólya-Gamma method al-

lows a more accurate estimation of the tail parameter for the generalised logistic regression

compared to approximate methods.
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