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Abstract

In this paper we propose a flexible class of multivariate nonlinear non-Gaussian state
space models, based on copulas. More precisely, we assume that the observation equation
and the state equation are defined by copula families that are not necessarily equal. For
each time point, the resulting model can be described by a C-vine copula truncated after the
first tree, where the root node is represented by the latent state. Inference is performed
within the Bayesian framework, using the Hamiltonian Monte Carlo method, where a
further D-vine truncated after the first tree is used as prior distribution to capture the
temporal dependence in the latent states. Simulation studies show that the proposed
copula-based approach is extremely flexible, since it is able to describe a wide range of
dependence structures and, at the same time, allows us to deal with missing data. The
application to atmospheric pollutant measurement data shows that our approach is suitable
for accurate modeling and prediction of data dynamics in the presence of missing values.
Comparison to a Gaussian linear state space model and to Bayesian additive regression
trees shows the superior performance of the proposed model with respect to predictive
accuracy.

Keywords: Time Series, Bayesian Inference, Hamiltonian Monte Carlo, Vine Copulas

1 Introduction

State space models, also called dynamic models, originated in the field of system theory and
were introduced by Kalman (1960) and Kalman and Bucy (1961), with early applications in
aerospace-related research (Hutchinson (1984)). Since then, state space models have gained
popularity in a number fields and have been applied in different areas, such as economics
(Kitagawa and Gersch (1984); Shumway and Stoffer (1982)), medicine (Myers et al (2007); Liu
and Guo (2015)) and ecology (Frühwirth-Schnatter (1994)). Durbin and Koopman (2000, 2002,
2012) provide a thorough illustration of state space models for time series analysis.

Linear Gaussian state space models are the most popular models in this class, with several
contributions in the literature, including, for example, Ippoliti et al (2012) who applied these
approaches to environmental data and Van den Brakel et al (2010), to official statistics. How-
ever, the strong assumptions of linear Gaussian state space models prevent their applicability to
data showing departures from linearity and normality. In order to overcome these limitations,
Chen et al (2012) applied nonlinear state space models to an epidemiological study on measles
infection, relaxing the linearity assumptions, yet assuming normality for the model equations.
Johns and Shumway (2005) proposed a spatio-temporal model for the analysis of censored dust
particle concentrations which overcomes the linearity and normality assumptions, but assumes
conditional Gaussian equation errors.

Copula-based approaches have proven to be particularly suitable for modeling data show-
ing departures from multivariate normality. Copulas allow us to model separately the marginals
from the dependence structure, and the use of different copula families, particularly Archimedean
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copulas such as the Clayton and Gumbel, are suitable to accommodate asymmetric tail depen-
dence. The literature of copula applications is vast. For environmental, actuarial and financial
applications, see, for example, Genest and Favre (2007), Patton (2006), Jondeau and Rockinger
(2006), Cherubini et al (2004), among others. A detailed overview of copulas and their proper-
ties is given by Joe (1997) and Nelsen (2007).

A rich class of parametric copula families is available in the bivariate case. However, in
higher dimension the applicability of copulas is mostly limited in practice to the multivariate
Gaussian or Student t. Vines, constructed using bivariate copulas as building blocks, provide
a flexible alternative in the multivariate case. Vine copulas were first introduced by Joe (1996)
and organised in a systematic way using graphical model structures by Bedford et al (2002). A
thorough introduction to vines is provided by Aas et al (2009) and Czado (2019). Special types
of vine copulas are C-vines, where one variable plays the role of the root node in each level,
and D-vines, constructed as sequences of bivariate copulas. D-vines were employed by Smith
et al (2010) to model the dependence structure of longitudinal data.

Hafner and Manner (2012) and Almeida and Czado (2012) suggest a bivariate state space
model, with a bivariate copula in the observation equation and a Gaussian autoregressive process
of order one, which describes the time evolution of the copula parameter, in the state equation.
Kreuzer et al (2019) propose a univariate nonlinear non-Gaussian state space model, where both
the observation and the state equation, are defined in terms of copula specifications. However,
the copulas describing the observation and the state equation belong to the same family.

We propose a multivariate nonlinear non-Gaussian state space model, which extends the
approach introduced by Kreuzer et al (2019) to multivariate observations, which we assume to
be related to an underlying latent variable. This approach allows us to capture cross-sectional
as well as temporal dependence in a very flexible way, since the copulas specifying the model
can be all different. For each time point, the proposed model can be described as a C-vine
truncated at the first tree, with the latent state being the root node. The latent states are
treated as parameters, with prior distribution given by a D-vine truncated after the first tree
to capture temporal dependence. An advantage of our approach is that missing values are
handled in a natural way, since they are treated as latent variables. For model estimation, we
cannot rely on the standard Kalman filter approach developed for linear state space models.
Therefore, we suggest a Bayesian approach implemented using the Hamiltonian Monte Carlo
(HMC) method (Neal et al (2011), Carpenter et al (2017)), where we introduce an indicator
variable for the copula families specifying the state space model equations.

We demonstrate the usefulness of our method in a data set containing different air pollutant
measurements. Three different pollutants are considered, and for each pollutant, measurements
from a high-cost and from a low-cost sensor are utilized. In addition, covariates such as the
temperature are available. To model this data we follow a flexible two-step modeling approach,
motivated by Sklar’s Theorem (Sklar (1959)). First we model the marginal distributions with
generalized additive models (Hastie and Tibshirani (1987)) and in the second step we model
dependencies with the novel copula state space model. We utilize our model to reconstruct
high-cost measurements from low-cost measurements as in De Vito et al (2008) and show that
the copula-based state space model, in combination with marginal generalized additive models,
does a good job at predicting high-cost measurements. We show that it outperforms a Gaussian
state space model and Bayesian additive regression trees with respect to the continuous ranked
probability score (Gneiting and Raftery (2007)).

The rest of the paper is organized as follows: Section 2 introduces the novel multivariate
copula state space model, Section 3 discusses Bayesian inference for the novel approach, Section
4 is devoted to the air pollutant measurements application and Section 5 concludes.

2 The Model

Copula approaches are very flexible since they can be combined with different marginal distri-
butions. For the air pollution measurements data with additional covariates, as analyzed in
Section 4, we propose generalized additive models (GAMs) for the margins in combination with
the novel copula state space model to capture dependencies. The GAM explains the effect of
the covariates, while the copula-based state space model handles temporal and cross-sectional
dependence. In this section, we first introduce the marginal models (Section 2.1), which yield
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data on the copula scale. Then, we review the linear Gaussian state space model (Section 2.2)
and show an equivalent formulation in terms of Gaussian copulas (Section 2.3). In Section 2.4
we finally introduce the multivariate copula state space model as a generalization of the linear
Gaussian state space model. The behavior of this model is illustrated with simulated data in
Section 2.5.

2.1 Marginal Models

Consider a multivariate time series Yt = (Yt1, . . . , Ytd)
′ corresponding to d-dimensional con-

tinuous data, observed at the time points t = 1, . . . , T , that may depend on a q-dimensional
covariate vector xt = (xt1, . . . , xtq)

′.
In order to allow for more flexibility, we consider Box-Cox transformations (Box and Cox

(1964)) of the response variables, i.e. we consider the transformed variables

BC(Ytj , λj) =

Y
λj
tj −1
λj

, for λj 6= 0

ln(Ytj), for λj = 0
. (1)

The relationship between the Box-Cox-transformed variables and the covariates can be ex-
pressed in various ways, e.g. using linear or nonlinear regression models. We assume a GAM
(Hastie and Tibshirani (1987)) such that

BC(Ytj , λj) = fj(xt) + σjεtj ,

where fj(·) is a smooth function of the covariates, expressing the mean of the GAM, and
εtj∼N(0, 1). Let us define the standardized errors of the GAM as

Ztj =
BC(Ytj , λj)− fj(xt)

σj
. (2)

Note that Ztj∼N(0, 1) holds.
We aim at modeling the errors Zt = (Zt1, . . . , Ztd)

′ as a multivariate nonlinear non-Gaussian
state space model based on copulas.

2.2 Linear Gaussian State Space Models

State space models relate observations of a response variable to unobserved latent variables or
“states”. Gaussian linear state space models are defined by a linear observation model and
a linear Markovian transition equation (Durbin and Koopman (2000), Durbin and Koopman
(2002), Durbin and Koopman (2012)).

Suppose that we model the errors Zt, with t = 1, . . . , T , extracted from the GAM as
explained in Section 2.1, as a linear Gaussian state space model. Here, the variables Ztj ,
j = 1, . . . , d, are connected to a common continuous state variable Wt. Hence, the model can
be formulated as

Ztj = ρobs,tjWt + σobs,tj ηobs,tj (3)

Wt = ρlat,tWt−1 + σlat,t ηlat,t, (4)

where ηobs,tj ∼ N(0, 1), ηlat,t ∼ N(0, 1) are independent i.i.d. sequences, ρobs,tj , ρlat,t, σobs,tj
and σlat,t are model parameters and W0 ∼ N(µlat,0, σlat,0), with µlat,0 and σlat,0 generally
known. Equation (3) is called observation equation, while Equation (4) is called state equation.

The linear Gaussian state space model can also be expressed using conditional distributions
as

Ztj |Wt = wt ∼ N
(
ρobs,tj wt; σ

2
obs,tj

)
Wt |Wt−1 = wt−1 ∼ N

(
ρlat,t wt−1; σ2

lat,t

)
.

We assume time stationarity, i.e. ρobs,tj = ρobs,j , for j = 1, . . . , d, and ρlat,t = ρlat. Since
the model is applied to standardized errors with unit variance we also set σ2

obs,tj = 1 − ρ2obs,j
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and σ2
lat,t = 1− ρ2lat. In addition, we assume that µlat,0 = 0 and σlat,0 = 1. These assumptions

imply that Ztj ∼ N(0, 1) unconditionally. Hence, the model expressed through conditional
distributions becomes

Ztj |Wt = wt ∼ N
(
ρobs,j wt; 1− ρ2obs,j

)
Wt |Wt−1 = wt−1 ∼ N

(
ρlat wt−1; 1− ρ2lat

)
.

Thus, the state space model induces the following bivariate Gaussian distribution(
Ztj
Wt

)
∼ N2

((
0
0

)
,

(
1 ρobs,j

ρobs,j 1

))
(5)

(
Wt

Wt−1

)
∼ N2

((
0
0

)
,

(
1 ρlat
ρlat 1

))
. (6)

Therefore, we obtain the joint distribution

(Z11, . . . , Zd1,W1;Z12, . . . , Zd2,W2; . . . , Z1T , . . . , ZdT ,WT ) ∼ N(d+1)T (0,Σ)

with covariance matrix Σ (see supplementary material). Thus, the joint distribution of Ztj and
Zt−1j is given by (

Ztj
Zt−1j

)
∼ N2

((
0
0

)
,

(
1 ρ2obs,jρlat

ρ2obs,jρlat 1

))
.

2.3 Copula Formulation of a Gaussian State Space Model

The linear Gaussian state space model in equations (5) and (6) can be equivalently expressed
in the copula space using Gaussian copulas as follows

(Utj , Vt) ∼ CGaussUj ,V ( · , ·; τobs,j)

(Vt , Vt−1) ∼ CGaussV2,V1
( · , ·; τlat),

(7)

where
Utj = Φ (Ztj) , Vt = Φ (Wt) , j = 1, . . . , d, t = 1, . . . , T, (8)

with Φ denoting the standard normal cumulative distribution function. The variables Utj and
Vt are uniformly distributed as Utj ∼ U (0, 1) , Vt ∼ U (0, 1), while the variables Ztj and Wt

are normally distributed as Ztj ∼ N (0, 1) , Wt ∼ N (0, 1). The Gaussian copulas in (7) are
parametrized by Kendall’s τ , such that τobs,j = 2

π arcsin(ρobs,j), τlat = 2
π arcsin(ρlat).

2.4 Multivariate Nonlinear Non-Gaussian Copula State Space Model

The multivariate nonlinear non-Gaussian copula state space model allows the copula families in
(7) to be different from the Gaussian, thus gaining a much greater flexibility to accommodate
a wide range of dependence structures.

More precisely, the proposed model can be expressed, in the copula scale, as follows

(Utj , Vt) ∼ C
mobs,j
Uj ,V

( · , ·; τobs,j)

(Vt , Vt−1) ∼ CmlatV2,V1
( · , ·; τlat),

(9)

where the copula families mobs,j , for j = 1, . . . , d, and mlat are not necessarily equal and belong
to a set M of single parameter copula families, parametrized by τobs,j = gmobs,j (θ

mobs,j
obs,j ) and

τlat = gmlat(θ
mlat
lat ). The functions gmobs,j , gmlat are one-to-one transformation functions and

θ
mobs,j
obs,j and θmlatlat are the parameters of the bivariate copulas C

mobs,j
Uj ,V

and CmlatV2,V1
, respectively.

For example, for the Gumbel copula gGumbel(θ
Gumbel
obs,j ) = 1− 1

θGumbelobs,j

holds.

The proposed model can also be specified in terms of conditional distribution functions as
follows

(Utj |Vt = vt) ∼ C
mobs,j
Uj |V ( · | vt; τobs,j)

(Vt |Vt−1 = vt−1) ∼ CmlatV2|V1
( · | vt−1; τlat),

(10)
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Vt−1

Ut−1,1

C
mobs,1
U1V

Ut−1,2

C
mobs,2
U2V

. . .

Ut−1,d

C
mobs,d
UdV

Ut,1

Ut,2. . .Ut,d

Vt

C
mlat
V2V1

C
mobs,1
U1V

C
mobs,2
U2V

C
mobs,d
UdV

Figure 1: Graphical visualization of the multivariate state space copula model as specified in
(9).

Figure 1 shows a graphical representation of the multivariate state space copula model.
Each observed variable Utj is linked to the latent state variable Vt via a copula C

mobs,j
UjV

and

the dependence between the latent states is modeled by the copula CmlatV2V1
. In the following we

denote by c
mobs,j
Uj ,V

and cmlatV2,V1
the density functions of C

mobs,j
Uj ,V

and CmlatV2,V1
, respectively.

2.5 Illustration of the Copula State Space Model with Simulated Data

We visualize bivariate dependence structures that are obtained from our model with normalized
contour plots (see, for example, Czado (2019), Chapter 3). We consider three scenarios which
differ in the choice of the family mlat of the latent copula. The parameters are chosen as follows

T = 1000

d = 6

mobs = (Gaussian, Gaussian, Clayton, Clayton, Gumbel, Gumbel)

τobs = (0.5, 0.7, 0.5, 0.7, 0.5, 0.7)

τlat = 0.7

mlat =


Gaussian, Scenario 1

Clayton, Scenario 2

Gumbel, Scenario 3

(11)

We consider one symmetric bivariate copula (Gaussian) and two asymmetric bivariate copulas
(Gumbel, Clayton). We investigate two types of dependence: cross-sectional and temporal. For
the cross-sectional dependence, we consider the pairs (Utj , Utj′) with corresponding bivariate
copula density

c(utj , utj′) =

∫ 1

0

c
mobs,j
UjV

(utj , vt)c
mobs,j′

Uj′V
(utj′ , vt)dvt. (12)

The bivariate marginal density of (Utj , Utj′) given in (12) is neither affected by the time t nor
by the copula CmlatV2V1

. So the cross-sectional dependence is not affected by the copula CmlatV2V1
and
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the corresponding theoretical contour plots are the same for all three scenarios. The empirical
normalized contour plots for pairs (Utj , Utj′) are shown in Figure 2 for Scenario 1. The contour
plots are constructed from 5000 independent simulations of the density in (12) for a fixed
t ∈ {1, . . . , T}.

We see that if both linking copulas C
mobs,j
UjV

and C
mobs,j′

Uj′V
are Gaussian, the contour of

(Utj , Utj′) looks Gaussian as well (see the panel in the second row and the first column in
Figure 2). In this case C(utj , utj′) is indeed a Gaussian copula. If we mix a Gaussian and an
asymmetric linking copula (see the entries below row 2 in columns 1 and 2 in Figure 2) or if we
combine two asymmetric linking copulas (see the lower triangular entries in columns 3, 4 and
5 in Figure 2) we can obtain a variety of different asymmetric contour shapes.

For the temporal dependence, we consider the pairs (Utj , Ut−1j) with bivariate copula density

c(utj , ut−1j) =

∫
(0,1)2

c
mobs,j
UjV

(utj , vt)c
mlat
V2V1

(vt, vt−1)c
mobs,j
UjV

(ut−1j , vt)dvtdvt−1. (13)

This dependence is affected by three copulas. Figure 3 shows normalized contour plots of the
density in (13) obtained from 5000 independent simulations. We can see that if at least one of
these copulas is asymmetric we may obtain an asymmetric dependence structure.

z1

z 2

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.37

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.25

0.36

z1

z 2

z1

z 2

z1

z 2

0.36

0.59

0.38

z1

z 2

z1

z 2

0.24

0.37

0.22

0.35

z1

z 2

0.36

0.58

0.35

0.57

0.35

Figure 2: This plot is based on independently simulated data (urtj)r=1,...,5000,j=1,...,6 from Sce-
nario 1 for a fixed t ∈ {1, . . . , T}. The lower triangular part shows contour plots of all pairs
of (zrt1, . . . , z

r
t6), r = 1, . . . , 5000, where zrtj = Φ−1(urtj). The upper triangular part shows cor-

responding scatter plots and the empirical Kendall’s τ for each pair (utj , utj′). The diagonal
shows the histogram of the univariate marginals. More precisely, the plot in the i-th row and
j-th column shows the contour plot for the pair (zrti, z

r
tj) if i > j, the scatter plot of (urti, u

r
tj) if

i < j, or the histogram of urti, if i = j, with r = 1, . . . , 5000.
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Z t−1;1

Scenario 1

Z t−1;2

Z
 t2

Z t−1;3

Z
 t3

Z t−1;4

Z
 t4

Z t−1;5

Z
 t5

Z t−1;6

Z
 t6

Z t−1;1

Scenario 2

Z t−1;2
Z

 t2
Z t−1;3

Z
 t3

Z t−1;4

Z
 t4

Z t−1;5

Z
 t5

Z t−1;6

Z
 t6

Z t−1;1

Scenario 3

Z t−1;2

Z
 t2

Z t−1;3
Z

 t3
Z t−1;4

Z
 t4

Z t−1;5

Z
 t5

Z t−1;6

Z
 t6

Figure 3: This plot is based on independently simulated data (urt−1j , u
r
tj)r=1,...,5000,j=1,...,6 from

Scenarios 1–3 for a fixed t ∈ {2, . . . , T}. The data is transformed to the normalized scale as
zrt′j = Φ−1(urt′j), t

′ = t − 1, t. Contour plots of the pairs (zrtj , z
r
t−1j)r=1,...,5000 are shown for

j = 1, . . . , 6. The plot in row m and column j shows the contour plot for (zrtj , z
r
t−1j)r=1,...,5000,

simulated from the parameter specification of Scenario m.

3 Bayesian Inference for the Multivariate Copula State
Space Model

For the type of data we are dealing with, missing values are common. We denote the set of
time indices of observed/non-missing values for dimension j by T obsj and the set of missing

values by T missj = {1, . . . , T} \ T obsj , j = 1, . . . , d. Further, we call Uobs = (utj)t∈T obsj ,j=1,...,d

the observed and Umiss = (utj)t∈Tmissj ,j=1,...,d the missing values. The missing values can be

treated as latent variables. Integrating out the missing values yields the following likelihood for
the observed values Uobs

`(v, τobs,mobs|Uobs) =

∫
(0,1)|Umiss|

d∏
j=1

T∏
t=1

c
mobs,j
UjV

(utj , vt; τobs,j)dU
miss =

=

d∏
j=1

 ∏
t∈T obsj

c
mobs,j
UjV

(utj , vt; τobs,j)
∏

t∈Tmissj

∫
(0,1)

c
mobs,j
UjV

(utj , vt; τobs,j)dutj


=

d∏
j=1

∏
t∈T obsj

c
mobs,j
UjV

(utj , vt; τobs,j).

(14)

Here the latent variable Vt is treated as a parameter vt, and v = (v1, . . . , vT ), τobs =
(τobs,1, . . . , τobs,d), mobs = (mobs,1, . . . ,mobs,d). In contrast to a complete case analysis, infor-
mation from all observed components is utilized in (14). The last equality in (14) uses the fact
that in a copula the margins are uniform.

As mentioned above we use a D-vine truncated after the first tree to capture temporal
dependence among the latent states, i.e.

π(v|τlat,mlat) =

T∏
t=2

cmlatV2V1
(vt, vt−1; τlat) (15)

with Kendall’s τ parameter τlat and copula family indicator mlat ∈ M. This is a general
Markov model of order 1 and collapses to a Gaussian AR(1) process if the Gaussian copula is
used.

We restrict τobs,1 ∈ (0, 1) to be positive to ensure identifiability. This restriction corresponds
to restricting the diagonal entries of the factor loading matrix in conventional Gaussian factor
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models to be positive (see e.g. Lopes and West (2004)). For the Kendall’s τ values of the
remaining components we use a vague uniform prior on (−1, 1), reflecting the fact that we do
not have prior knowledge about these quantities. The following prior densities are used

τobs,1 ∼ Beta(10, 1.5), τobs,j ∼ U(−1, 1), j = 2, . . . , d, τlat ∼ U(−1, 1). (16)

For the copula family indicators we use discrete uniform priors, i.e.

π(mobs,j) = π(mlat) =
1

|M|
(17)

for j = 1, . . . , d. Further we assume that the Kendall’s τ values and the copula family indicators
are a priori independent such that the joint prior density is proportional to

π(τobs,mobs, τlat,mlat,v) ∝

(
T∏
t=2

cmlatV2V1
(vt, vt−1; τlat)

)
π(τobs,1),

where π(τobs,1) is the prior density specified in (16). This prior density is a joint density of
continuous and discrete parameters. For discrete parameters δdisc and continuous parameters
δcont the joint density is defined as

f(δcont, δdisc) = f(δcont|δdisc)f(δdisc)

where f(δcont|δdisc) is a conditional probability density function and f(δdisc) is a joint proba-
bility mass function.

The set of parameters can be summarized as P ={τlat, τobs,mlat,mobs,v}. The posterior
density of our model is proportional to

f(P|Uobs) ∝

 d∏
j=1

∏
t∈T obsj

c
mobs,j
UjV

(utj , vt, τobs,j)

( T∏
t=2

cmlatV2V1
(vt, vt−1; τlat)

)
π(τobs,1). (18)

As in Kreuzer et al (2019), sampling from the posterior in (18) is not straightforward, e.g.
Kalman filter recursions cannot be applied. Since the No-U-turn sampler of Hoffman and Gel-
man (2014) has shown good performance for the univariate copula state space model (Kreuzer
et al (2019)), we also use it here. The No-U-Turn sampler is an extension of Hamiltonian Monte
Carlo (HMC, Neal et al (2011)) with adaptively selected tuning parameters. To run the sampler
we use STAN (Carpenter et al (2017)).

Updating Continuous Parameters

Since HMC cannot deal with discrete variables we integrate over the discrete family indicators
which corresponds to summing over them, i.e.

f(τlat, τobs,v|Uobs) =
∑

(mlat,mobs)∈Md+1

f(τlat, τobs,mlat,mobs,v|Uobs)

∝
d∏
j=1

 ∑
mobs,j∈M

∏
t∈T obsj

c
mobs,j
UjV

(utj , vt; τobs,j)

 ·
·

( ∑
mlat∈M

T∏
t=2

cmlatV2V1
(vt, vt−1; τlat)

)
π(τobs,1)

(19)

To sample from this density we use STAN’s No-U-Turn sampler.

Updating the (Discrete) Copula Family Indicators

In f(mobs,mlat|τlat, τobs,v, Uobs), all components of (mobs,,mlat) are independent. We have
that

f(mobs,j |τlat,τobs,v,mobs,−j ,mlat, U
obs) =

f(τlat, τobs,mlat,mobs,v|Uobs)∑
m′obs,j∈M

f(τlat, τobs,mlat,mobs,−j ,m′obs,j ,v|Uobs)
,

(20)
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where mobs,−j is equal to mobs with the j-th component removed. Therefore we obtain

f(mobs,j |τlat, τobs,v,mobs,−j ,mlat, U
obs) =

∏
t∈T obsj

c
mobs,j
UjV

(utj , vt; τobs,j)∑
m′obs,j∈M

∏
t∈T obsj

c
m′obs,j
UjV

(utj , vt; τobs,j)
(21)

Similarly we obtain

f(mlat|τlat, τobs,v,mobs, U
obs) =

∏T
t=2 c

mlat
V2V1

(vt, vt−1; τlat)∑
m′lat∈M

∏T
t=2 c

m′lat
V2V1

(vt, vt−1; τlat)
(22)

Obtaining Updates for the Joint Posterior Density

To obtain R samples from the posterior density given in (18) we first obtain R samples of
τlat, τobs,v from the density given in (19) using STAN. We denote the samples by τ rlat, τ

r
obs,

vr, r = 1, . . . , R. Then we sample mobs,j from f(mobs,j |τ rlat, τ r
obs,v

r, Uobs) (see (21)) to ob-
tain mr

obs,j , for r = 1, . . . , R and j = 1, . . . , d. Further, mr
lat is obtained by sampling from

f(mlat|τ rlat, τ r
obs,v

r, Uobs) (see (22)) , for r = 1, . . . , R.

Predictive Distribution (In-Sample Period)

The predictive density of a new value unewtj for margin j at time t ∈ {1, . . . , T} is the conditional

density of unewtj given Uobs, obtained as

f(unewtj |Uobs) =

∫
domain(P)

f(unewtj ,P|Uobs)dP =

∫
domain(P)

f(unewtj |P, Uobs)f(P|Uobs)dP

with f(unewtj |P, Uobs) = c
mobs,j
UjV

(unewtj , vt; τobs,j) and domain(P) is the domain of the parameter
space P. Note that for the discrete indicator variables the integral is a sum.

To obtain samples from the predictive distribution we sample from the following density

f(unewtj ,P|Uobs) = f(unewtj |P, Uobs)f(P|Uobs).

We proceed as follows:

• We first simulate R samples of P from f(P|Uobs) as described above.

• The r− th sample of unewtj , denoted by (unewtj )r, is simulated from C
mrobs,j
Uj |V (·|vrt ; τ robs,j), for

r = 1, . . . , R.

For t ∈ T missj , we can obtain simulated values for the missing values.

Predictive Distribution (Out-of-Sample Period)

To obtain samples from the predictive distribution of a new value unewtj for margin j at time
t ∈ {T + 1, T + 2, . . .} we consider the following density

f(unewtj ,P|Uobs) = f(unewtj |P, Uobs)f(P|Uobs)

with

f(unewtj |P, Uobs) =

∫
(0,1)t−T

c
mobs,j
UjV

(unewtj , vt; τobs,j)

t∏
t′=T+1

cmlatV2V1
(vt′ , vt′−1; τlat)dvT+1 . . . , dvt.

We proceed as follows to obtain samples from this density

• We first simulate R samples of P from f(P|Uobs) as described above.

• For r = 1, . . . , R and for t′ = T + 1, . . . , t:

Sample vt′ from C
mrlat
V2V1

(·|vrt′−1; τ rlat) and denote the sample by vrt′ .

• For r = 1, . . . , R: Sample unewtj fromC
mrobs,j
Uj |V (·|vrt ; τ robs,j) and denote the sample by (unewtj )r.

Note that the recursive sampling avoids the evaluation of the t− T dimensional integral.
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4 Data Analysis

4.1 Data Description

We consider a subset of the data set available at http://archive.ics.uci.edu/ml/datasets/
Air+Quality (De Vito et al (2008, 2009, 2012)). The data set contains hourly averaged con-
centration measurements for different atmospheric pollutants obtained at a main road in an
Italian city. Here we analyze measurements from June to September 2004, which result in
2928 observations. The measurements for the pollutants were taken from two different sensors,
standard (high-cost) sensors and new low-cost (lc) sensors. We refer to a value measured with
the standard (high-cost) sensor as a ground truth (gt) value. Ground truth values are available
for CO (mg/m3), NOx (ppb) and NO2 (µg/m3) and the aim is to predict these values. For
each ground truth value we are given a corresponding value obtained from a low-cost sensor,
resulting in six different pollution measurements for one time point. The measurements in July
for the pollutant CO are visualized in Figure 4. We see that the measurements of the ground
truth sensor for CO are missing for several days, i.e. missing observations are present in this
data set. The missing values per pollutant range from 4% to 24%, whereas ground truth values
have a higher portion of missing values. In addition to the pollution measurements, hourly
measurements of the temperature and of relative humidity are also available.
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80
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00
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00
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1 4 7 10 13 16 19 22 25 28 31

Figure 4: Hourly observed values of one pollutant (CO) from the ground truth (gt) and low-cost
(lc) sensors in July 2004. When missing values are present no observations are drawn for the
corresponding time points.

In the following, the data containing the pollutant measurements is denoted by ytj , j =
1, . . . , 6, t = 1, . . . , T , where T = 2928 is the length of the time series. As before, T obsj is the
set of time indices for which observed values are available for the j-th marginal time series.
The measurements of relative humidity and temperature are denoted by TEMPt and RHt,
respectively for t = 1, . . . , T .

4.2 Marginal models

We fit a generalized additive model (GAM) for each pollutant, where temperature, relative
humidity, the hour at time t, Ht ∈ {0, . . . , 23}, and the day at time t, Dt ∈ {0, . . . , 6} are used
as covariates. We denote the covariates by xt = (TEMPt,RHt,Ht,Dt). As explained in Section
2.1, we allow for Box-Cox transformations (Box and Cox (1964)) and assume that

BC(Ytj , λj) = fj(xt) + σjεtj (23)

with εtj ∼ N(0, 1) for t = 1, . . . , T, j = 1, . . . , 6 and BC(Ytj , λj) as in (1).
For estimating the conditional mean function fj and σj we assume that the errors εtj are

independent. Later the dependence among the errors will be modeled with the proposed state
space model. We estimate a GAM for different values of λj and then choose the model which
maximizes the likelihood for given data ytj , t ∈ T obsj , j = 1, . . . , 6. For each GAM we remove
the corresponding missing values and rely on the R package mgcv of Wood and Wood (2015) for

parameter estimation. We obtain estimates f̂j , σ̂j and λ̂j for j = 1, . . . , 6. From Table 1, we see
that the estimates for λj deviate from 1, which indicates that the Box-Cox transformations are
necessary. Figure 5 shows the smooth components of the GAM for four different pollutants. We
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see for example a nonlinear effect of the Hour on the pollution measurement. The pollution is
high at around 8 am and at around 6 pm, which may correspond to the hours with the highest
traffic due to commuting workers.
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Figure 5: Estimated smooth components of the GAMs for four Box-Cox transformed pollutants:
CO(gt), CO(lc), NO2(gt), NO2(lc) (top to bottom row). Each GAM has four covariates, TEMP,
RH, D and H. The dashed lines represent a pointwise 95% confidence band.

CO(gt) CO(lc) NOx(gt) NOx(lc) NO2(gt) NO2(lc)

λ̂j 0.15 -1.25 0.05 0.05 0.55 -0.70

Table 1: Estimates of λ1, . . . , λ6 for the six GAMs fitted to the six pollution measurements.

4.3 Dependence Model

Recall the standardized errors Ztj , defined in (2), as

Ztj =
BC(Ytj , λj)− fj(xt)

σj

which are N(0, 1) distributed. Pseudo observations of Ztj can be obtained from the estimates

f̂j , σ̂j and λ̂j as

ẑtj =
BC(ytj , λ̂j)− f̂j(xt)

σ̂j
(24)
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for t = 1, . . . , T, j = 1, . . . 6. To visualize cross-sectional dependencies among the variables Ztj
we examine bivariate contour plots for all pairs of (ẑt1, . . . , ẑt6), t = 1, . . . , T in Figure 6, ignoring
serial dependence. In addition, we examine contour plots of pairs (ẑtj , ẑt−1j), t = 2, . . . , T for
j = 1, . . . , 6 in Figure 7 to visualize temporal dependence. We observe temporal and cross-
sectional dependence. Further, the dependence structures seem to be different from a Gaussian
one since we observe asymmetries in the contour plots. For example, the contour plot in the
bottom left corner of Figure 6 indicates stronger dependence in the upper right corner than in
the bottom left corner. Therefore, a linear Gaussian state space model might not be appropriate
here, but the proposed copula-based state space model can be a good candidate for this data.
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0.52

0.39

0.47

0.47

Figure 6: The lower triangular part shows contour plots of all pairs of (ẑt1, . . . , ẑt6), t = 1, . . . , T
ignoring serial dependence. The upper triangular part shows corresponding scatter plots of all
pairs of (ût1, . . . , ût6), t = 1, . . . , T with ûtj = Φ(ẑtj) and the empirical Kendall’s τ for each
pair. The diagonal shows the histograms of the univariate marginals. More precisely, the plot
in the i-th row and j-th column shows the contour plot for the pair (ẑti, ẑtj) if i > j, the scatter
plot of (ûti, ûtj) if i < j, or the histogram of ûti, if i = j. The variables are ordered as follows:
1: CO(gt), 2: CO(lc), 3: NOx(gt), 4: NOx(lc), 5: NO2(gt), 6: NO2(lc).
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Figure 7: Contour plots of pairs (ẑtj , ẑt−1j)t=2,...,T for j = 1, . . . , 6 ignoring serial dependence.

Since our multivariate copula state space model operates on marginally uniform(0,1) dis-
tributed data, we obtain uniform(0,1) distributed random variables as follows

Utj = Φ(Ztj) (25)

with corresponding pseudo observations

ûtj = Φ(ẑtj) (26)

for t ∈ T obsj , j = 1, . . . , 6. The proposed multivariate copula-based state space model is fitted

to the data ûtj , t ∈ T obsj , j = 1, . . . , 6. Plots of the estimated posterior densities and trace plots
are shown in the supplementary material. These plots indicate proper mixing of the Markov
Chain. Table 2 shows the selected copula families corresponding to the estimated posterior
modes of mobs,j or mobs. We see that four Gaussian, one Student t and two Gumbel copulas
were selected. In particular, our model features an asymmetric dependence structure, since the
Gumbel copula is included. Simulations of the in-sample period predictive distribution can be
obtained as explained in Section 3. Transforming these simulations with the standard normal
quantile function, we obtain predictive simulations for the standardized errors, i.e. we obtain
draws from the predictive distribution of the error as

εrtj = Φ−1(urtj), (27)

for r = 1, . . . , 3000, where urtj is a draw from the in-sample predictive distribution on the copula
scale (see Section 3). These simulations are compared to the observed standardized residual of
the GAM (ẑtj) to assess how well our model fits the data. In particular, we want to asses if a
single factor structure is appropriate or if it is too restrictive. According to Figure 8, the model
seems to be appropriate. The single factor structure is able to capture the time dynamics of
the residuals. The ground truth values for CO are missing from day 26 to day 30. We see that
within this period the time dynamic is learned from other series where data is available within
this period. While Figure 8 shows plots for two pollutants in July, plots for different pollutants
in different months looked similar.

m̂obs,1 m̂obs,2 m̂obs,3 m̂obs,4 m̂obs,5 m̂obs,6 m̂lat

Copula family Gu Gu Ga S Ga Ga Ga

Table 2: The marginal posterior mode estimates of the copula family indicators mobs,mlat.
(Ga: Gaussian, S: Student t(df=4), C: Clayton, Gu: Gumbel).
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Figure 8: This plot is based on data for July. We show the estimated posterior mode of
the predictive distribution of the standardized error εtj plotted against time t for j = 1, 2,
corresponding to CO(gt) and CO(lc). Draws of the predictive distribution of the error are
obtained as εrtj = Φ−1(urtj), where urtj is a sample from the predictive distribution on the
copula scale. The observed standardized residual from the GAM is added in red (dashed). In
addition, we show the estimated posterior mode of wt = Φ−1(vt) plotted against t in the third
row. To all plots we add a 90% credible region constructed from the estimated 5% and 95%
posterior quantiles.

4.4 Predictions

We evaluate the proposed model’s ability to predict the ground truth values. Therefore we
compare the copula state space model to a Gaussian state space model and to Bayesian additive
regression trees (Chipman et al (2010)), as a representative for a popular machine learning
algorithm. Compared to other machine learning techniques, Bayesian additive regression trees
have the advantage that a predictive distribution is obtained instead of a single point estimate.
Therefore we can compare models with respect to their forecast distribution, for which we
utilize the continuous ranked probability score (Gneiting and Raftery (2007)). The continuous
ranked probability score (CRPS) for an observed value y ∈ R and a univariate forecast CDF F
is defined as

CRPS =

∫
R

(F (z)− 1y≤z)
2dz. (28)

For each of the ground truth values we remove the observations in the last month of the
data set and treat them as missing values, which yields the training set. Based on the training
set we proceed similarly to what we described above, i.e. we first estimate the GAMs, and
then estimate the state space model on the copula scale. Here two state space models are
estimated: the copula state space model where the family set M is chosen as in Section 4.3
and the Gaussian state space model where we restrict the family set to M = {Gaussian}. For
each of the two state space models we obtain 2000 simulations from the in-sample predictive
distribution urtj , r = 1, . . . , 2000, whereas our MCMC approach of Section 3 is run for 3000
iterations and the first 1000 draws are discarded for burn-in. Here t is a timepoint which is
among the newly selected missing values for the ground truth value that corresponds to margin
j. Based on these simulations we obtain simulations from the predictive distribution of the
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Box-Cox transformed response as follows

(ybctj )r = f̂j(xt) + σ̂jΦ
−1(urtj) (29)

for r = 1, . . . , 2000.
Since Bayesian additive regression trees rely on the normal distribution, we expect that

Box-Cox transformations might also improve the fit for this model. We assume that

BC(Ytj , λj) = gj(x
BART
tj ) + σjεtj , (30)

where xBART
tj are the covariates, gj(·) is a sum of regression trees and εtj ∼ N(0, 1). In

addition to the covariates used for the GAM model, all pollutant measurements except the one
corresponding to margin j are included in the covariate vector xBART

tj . For λj we use the
same value as for the previously fitted GAM. We have seen that this transformation improves
the performance of the Bayesian additive regression trees. McCulloch et al (2018) implement
a MCMC sampler in the R package BART which we use to obtain draws grj , σ

r
j , r = 1, . . . , 10000

from the corresponding posterior distribution. We discard the first 5000 of these draws and
then 5000 simulations of the predictive distribution of the response are obtained as

(ybctj )r ∼ N(grj (x
BART
tj ), (σrj )

2) (31)

for r = 1, . . . , 5000.
Based on the simulations (ybctj )r, r = 1, . . . , 5000 we calculate the empirical CDF and use this

to approximate the CRPS (this is implemented in the R package scoringRules of Jordan et al
(2017)) for the different time points and sum them up to obtain the cumulative CRPS. For each
of the three methods, we obtain a cumulative CRPS for each the three ground truth indices.
In addition, we consider reduced bivariate data sets, where each data set consists of the ground
truth value of a pollutant, the corresponding low-cost value and the covariates as in Section 4.2.
This yields three reduced data sets, each associated with one of the three pollutants. For each
of the reduced data sets we proceed as above, i.e. we first remove ground truth observations in
the last month, fit the three different models and calculate the CRPS values.

We refer to the models fitted to the reduced data as bivariate state space models and reduced
Bayesian additive regression trees. The models estimated with the full data are referred to as
joint models. We want to investigate how the bivariate state space models compare to the six-
dimensional ones. The cumulative CRPS values are shown in Table 3. For the pollutant NOx,
the state space approach seems not to be the best choice. We have seen (see supplementary
material) that for this pollutant, the dependence between the ground truth and the low-cost
values varies more over time than for the other pollutants. Relaxing the assumption of a time-
constant Kendall’s τ , might improve the predictive accuracy for this pollutant. This model
extension is subject to future research. Overall, the copula state space model is the best
performing model within this comparison, since it outperforms the Gaussian state space model
and the Bayesian additive regression trees in two out of three cases.

CO NOx NO2
joint copula state space model 74.27 594.50 569.03
bivariate copula state space model 84.92 559.22 845.95
joint Gaussian state space model 76.91 594.30 570.55
bivariate Gaussian state space model 87.90 559.18 844.64
joint Bayesian additive regression trees 183.49 379.31 1330.90
reduced Bayesian additive regression trees 89.39 520.93 1095.40

Table 3: Cumulative CRPS for the three ground truth values (CO, NOx, NO2) obtained from six
different models: joint/bivariate copula state space model, joint/bivariate Gaussian state space
model, joint/reduced Bayesian additive regression trees. The best, i.e. the lowest, cumulative
CRPS value in marked in bold.

5 Concluding Remarks

We proposed a multivariate nonlinear non-Gaussian copula-based state space model. The model
is very flexible: the observation and the state equation are specified with copulas and the
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model can be combined with different marginal distributions. We illustrated the model with
air pollution measurements data and have shown that the novel copula state space model
outperforms a linear Gaussian state space model and Bayesian additive regression trees. As
we have seen in Section 4.4, the assumption of a time-constant dependence structure might
not always be appropriate. A first extension of the model could allow for dynamic dependence
parameters. For this, ideas of the dynamic bivariate copula model of Almeida and Czado (2012)
might be used. Another area of future research is the extension to multiple factors.
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Frühwirth-Schnatter S (1994) Data augmentation and dynamic linear models. Journal of Time
Series Analysis 15(2):183–202

16



Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but
were afraid to ask. Journal of Hydrologic Engineering 12(4):347–368

Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. Journal
of the American Statistical Association 102(477):359–378

Hafner CM, Manner H (2012) Dynamic stochastic copula models: Estimation, inference and
applications. Journal of Applied Econometrics 27(2):269–295

Hastie T, Tibshirani R (1987) Generalized additive models: some applications. Journal of the
American Statistical Association 82(398):371–386

Hoffman MD, Gelman A (2014) The No-U-turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research 15(1):1593–1623

Hutchinson CE (1984) The Kalman filter applied to aerospace and electronic systems. IEEE
Transactions on Aerospace and Electronic Systems (4):500–504

Ippoliti L, Valentini P, Gamerman D (2012) Space–time modelling of coupled spatiotemporal
environmental variables. Journal of the Royal Statistical Society: Series C (Applied Statistics)
61(2):175–200

Joe H (1996) Families of m-variate distributions with given margins and m (m-1)/2 bivariate
dependence parameters. Lecture Notes-Monograph Series pp 120–141

Joe H (1997) Multivariate models and multivariate dependence concepts. CRC Press

Johns CJ, Shumway RH (2005) A non-linear and non-Gaussian state-space model for censored
air pollution data. Environmetrics: The official journal of the International Environmetrics
Society 16(2):167–180

Jondeau E, Rockinger M (2006) The copula-GARCH model of conditional dependencies: An in-
ternational stock market application. Journal of International Money and Finance 25(5):827–
853
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Supplementary material

1 Additional Material for Section 2.2

The covariance matrix Σ of the joint distribution

(Z11, . . . , Zd1,W1;Z12, . . . , Zd2,W2; . . . , Z1T , . . . , ZdT ,WT ) ∼ N(d+1)T (0,Σ)

takes the form

Σ =



A ρlat(A+B) ρ2lat(A+B) . . . ρT−1lat (A+B)

ρlat(A+B) A ρlat(A+B) . . . ρT−2lat (A+B)

ρ2lat(A+B) ρlat(A+B) A . . . ρj−2lat (A+B)

ρ3lat(A+B) ρ2lat(A+B) ρlat(A+B)
. . .

...

...
...

...
...

...

ρT−1lat (A+B) ρT−2lat (A+B) ρT−3lat (A+B) . . . A



where the matrices A and B take the following forms

A =



1 ρobs,1ρobs,2 ρobs,1ρobs,3 . . . ρobs,1ρobs,d ρobs,1
ρobs,1ρobs,2 1 ρobs,2ρobs,3 . . . ρobs,2ρobs,d ρobs,2
ρobs,1ρobs,3 ρobs,2ρobs,3 1 . . . ρobs,3ρobs,d ρobs,3

...
...

...
. . .

...
...

ρobs,1ρobs,d ρobs,2ρobs,d ρobs,3ρobs,d . . . 1 ρobs,d
ρobs,1 ρobs,2 ρobs,3 . . . ρobs,d 1



B =



ρ2obs,1 − 1 0 0 . . . 0 0

0 ρ2obs,2 − 1 0 . . . 0 0

0 0 ρ2obs,3 − 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ρ2obs,d − 1 0

0 0 0 . . . 0 0


.
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2 Additional Material for Section 4.3
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Figure 9: Estimated posterior distribution of the copula family indicatorsmobs1, . . . ,mobs,6,mlat

obtained from 2000 iterations after a burn-in of 1000.
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Figure 10: Trace plots of 2000 draws after a burn-in of 1000 for selected parameters of the
copula state space model. The variables are ordered as follows: 1: CO(gt), 2: CO(lc), 3:
NOx(gt), 4: NOx(lc), 5: NO2(gt), 6: NO2(lc).
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Figure 11: Estimated posterior density for selected parameters of the copula state space model.
The posterior density is estimated as the kernel density estimate based on 2000 draws after a
burn-in of 1000. For better comparability we multiplied the draws of τobs,4 by −1. The variables
are ordered as follows: 1: CO(gt), 2: CO(lc), 3: NOx(gt), 4: NOx(lc), 5: NO2(gt), 6: NO2(lc).
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Figure 12: Contour plots for pairs (ẑtj , ẑtj′)t∈Pi , i = 1, 2, 3 where j corresponds to a ground
truth and j′ to the corresponding low-cost value within a time period Pi (P1 : 1, . . . , 1000,
P2 : 1001, . . . , 2000, P3 : 2001, . . . , 2928). For example the top row shows contour plots for the
(CO(gt), CO(lc)) pair for the three different time periods. In the top left corner we added the
corresponding empirical Kendall’s τ , based on the data (ẑtj , ẑtj′)t∈Pi .
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