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Abstract 

 

In the period 2000-2006 occasional instances of serious service cracking in galvanized 

structural steelwork were detected.  At the time it was suggested that the cracks had occurred 

during the galvanizing process, been covered up by the zinc coating and then opened up 

during service.  Several significant European-wide research projects were initiated to identify 

and understand the mechanisms that control LMAC during hot dip galvanizing.  However, 

experience in the UK has shown that the frequency of cracking of structural steel during 

galvanizing is very low, and that when it does occur it is almost invariably due to known factors 

that influence the propensity for weld cracking and that are also influential during the 

galvanizing process, e.g. distortion cracking, hydrogen embrittlement and strain age 

embrittlement.  This paper reports, for the first time, the results of a systematic attempt to 

examine, identify and record the possible presence and type of any pre-existing defects 

present in some one million tonnes of steelwork prior to the galvanizing process and their 

contribution to any cracking observed after galvanizing. 
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1. Introduction 

 

In the period 2000-2006, as noted in reference  [1], occasional instances of serious cracking 

in galvanized structural steelwork were detected.  At the time, it was suggested that the cracks 

had occurred during the galvanizing process and been either filled with, or covered up by, the 

zinc coating and then subsequently opened up under loading.  However, there is also a 

possibility that crack initiation had occurred as a result of fabrication prior to galvanizing and 

that this had not been detected until a larger crack existed. Reference [1] notes that these 

observations were coincident with the fabrication of steel components with larger sizes, 

characterised by greater plate thickness, higher strength steel alloys, new zinc alloy 

compositions in the galvanizing bath, and various dipping processes.  In particular, the use of 

higher concentrations of tin in the melt was identified as a factor in the reported cracking, in 

combination with other elements intended to obtain thinner zinc coats with a better surface 

appearance.  Although tin had been present at varying levels in European general galvanising 

for many years because of the common use of zinc that had been recycled from roofing 

material with soldered joints, it had not previously been associated with elevated risks of 

cracking when galvanizing steels.  The levels of tin identified as present in these new instances 

were significantly higher than had previously been used in established practice.  

Consequently, it became a focus of attention. 
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Such cracks were attributed to the phenomenon of liquid metal assisted cracking (LMAC).  

Consequently, major investigations were initiated and the extensive work done by RWTH 

Aachen and other universities was described in a report produced by the EU Joint Research 

Committee (JRC) [1].  This was similar to the investigations previously carried out in Japan 

and later published as the Tomoe Report in 2001 [2].  This identified the possibility of zinc-

related LMAC and looked at factors in product design, steel analysis and quality, welding and 

galvanizing techniques that influenced cracking, particularly in welds and Heat Affected Zones 

(HAZ).  However, it did not identify the galvanizing bath constituents as potentially causal. 

 

A major European research project (FAMEGA – Failure Mechanisms during Galvanizing [3]) 

was also initiated to identify and understand the mechanisms that control LMAC during hot dip 

galvanizing.  This work was intended to enable galvanizing of higher strength steel 

components and fabrications without risk of cracking.  The conclusions section of reference 

[3] provided recommendations for guidelines for the avoidance of LMAC during hot dip 

galvanizing of steel structural components.  Based on the results obtained from these 

investigations, the Deutsche Ausschuß für Stahlbau (DASt), produced Richtlinie R022 that set 

guidelines for galvanizing structural steelwork [4].  The Richtlinie R022 guideline [4] is the 

basis for current German practice in hot dip galvanizing of structural steelwork and has stricter 

limits in terms of tin content (0.10%) in the galvanizing bath than the 0.30% limit specified in 

the guidance issued by the British Constructional Steelwork Association and Galvanizers 

Association (BCSA-GA) in 2005 [5]. 

 

However, it is worth noting that the higher tin limit of 0.30% is supported by the results obtained 

in recent work published by Carpio et al [6] who propose a model for the failure 

micromechanisms of structural steels during hot-dip galvanizing, and conclude that “Sn and 

Bi must be eliminated or at least reduced to less than 0.1% of Bi and 0.3% Sn in order to avoid 

failures. (This is the recommendation given by this model, 0.5% of Sn, plus a security factor). 

Lower Sn and Bi contents increase incubation time to failure, and make it easier to suppress 

cracking.” 

 

Feldmann et al [1] note that cracking sensitivity is associated with particular details in the 

steelwork, e.g. at the end of steel beams with large depth, with this category including half-

depth end plates, flame cut surfaces or flame cut surfaces with subsequent grinding or drilling 

of cope holes; in the vicinity of welds in thick plates; at the nodes of latticed structures, in 

particular those with hollow sections; and at drainage holes in corner areas.  These regions of 

sensitivity correlate with the four factors identified by Kinstler [7] as necessary in his review of 

the cracking of steels during galvanizing.  Figure 1 shows these four factors as a Venn diagram 

that identifies the critical intersection region for LMAC in red.  The FAMEGA report [3] provides 

a useful Table identifying the factors that contribute to LMAC, drawn from the Kinstler 

document [7].  This table is duplicated below as Table 1 with some additions (shown in bold) 

from the experience of the present authors. 

 

However, the data on Sn limits given in Table 1 appears to derive from a single study by Poag 

and Zervoudis [8], reported by Kinstler [7] in which the experimental work focused on the 

susceptibility to cracking of hollow structural steel tubing during galvanizing, and the crack 

response of pre-stressed steel specimens immersed in various molten zinc bath compositions.  

The hollow steel used by Poag and Zervoudis appears to be square section ⅜ inch (9.5 mm) 

thick and the corner microstructures reproduced by Kinstler in his report demonstrate the 
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existence of small defects (up to 50 μm) on the inner surface of the corners.  Kinstler notes 

that “The findings of the study beyond those related to the smoothness of the inner corner 

surface and the heat treatment to reduce cracking incident are that alloy additions to the SHG 

Zinc bath did have an effect on the occurrence and severity of cracking, but only on susceptible 

tubes”.  Kinstler further notes that “The central value of the study is to identify that galvanizing 

bath chemistry is only one of the factors influencing cracking of galvanized structural steels. 

The predominant variable has been found to be in the steel. For example, the presence of any 

alloy addition including tin up to 1.0% could not cause Tube B to crack. On the other hand, 

Tube A (in the absence of stress relieving) cracked under all bath chemistry variable 

conditions, including Special High Grade Zinc with no alloy additions.” 

 

Kinstler amplifies the importance of steel condition by stating that “All of the many research 

programs which have studied hardness of flame-cut edges and their associated heat affected 

zones (HAZ), and cracking in molten zinc are in agreement that: 

• There is a threshold hardness value above which the steel is susceptible to cracking in 

molten zinc. 

• The threshold value is between about 250 and 300 HV (VHN) depending on the 

thickness of the steel, and possibly other steel-related variables. 

• Re-attainment of a hardness below the threshold value, in previously harder steel 

reduces susceptibility of the steel to molten zinc cracking.” 

 

Experience in the UK has shown that the frequency of cracking of structural steel is very low, 

and that when it does occur it is almost invariably due to known factors that influence the 

propensity for weld cracking and that are also influential during the galvanizing process, e.g. 

distortion cracking, hydrogen embrittlement and strain age embrittlement [9].  In its 

conclusions, reference [9] observes that LMAC requires the presence of a susceptible steel 

alloy; a stress/strain concentration site (often already associated with pre-existing surface 

cracks); high levels of residual stress in the fabrication, developed for instance through rolling, 

finishing (at the steel mill), welding, hardened surfaces, movement of the fabricated elements, 

pre-treatment, galvanizing or forging, as well as the presence of molten zinc during the 

galvanizing operation.  However, the first three of these factors also directly influence 

susceptibility to other cracking mechanisms associated with structural steelwork. The fourth 

factor may also indirectly enhance the potential for other forms of cracking of a structure 

through differential thermal expansion, which will depend on factors like structural component 

size and dipping speed.  The net result of these various influences in particular and rare 

circumstances is that small, fine cracks may develop in a structural component prior to the hot 

dip galvanizing process and these may initiate further cracking during galvanizing.  

 

However, to the best knowledge of the present authors, there has been no systematic attempt 

to examine, identify and record the possible presence and type of any pre-existing defects 

present in structural steelwork prior to the galvanizing process and their contribution to any 

cracking observed after galvanizing.  With this in mind, a study of galvanizing of both general 

and structural steelwork was initiated to objectively establish the true risk of cracking for hot 

dip galvanized steel.  The study was based on the UK experience where the risk of cracking 

is primarily controlled by the bath metallurgy and was intended to investigate whether the 

existing guidance is appropriate.  It therefore did not address all the factors that are included 

in some European guidelines, e.g. DASt R022, and had the following aims: 
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i) to establish the true frequency of cracking events during galvanizing. 

ii) to identify the causative factors underlying any observed cracking events. 

iii) to determine the number of such events that could be ascribed to LMAC. 

iv) to ascertain whether existing UK guidance on galvanizing remains appropriate. 

 

This paper reports the results from this study of 1,011,458 tonnes of steel galvanized in various 

UK plants over a 5-year period, of which some 560,000 tonnes comprised structural steelwork 

(defined in this paper as covering building frames (including single and multi-storey and 

agricultural buildings), angles and flats for buildings, towers, masts, joists, and channels).  The 

steelwork was subjected to high standards of visual inspection before and after galvanizing 

and the galvanizing conditions were inside the scope of the BCSA-GA guidance [5].  In this 

respect, all of the steel galvanized in this project was processed in galvanizing baths that used 

zinc melts complying with the limits set out in the BCSA-GA guidance, i.e. satisfying the criteria 

that: 

 

Σ (Sn + Pb) ≤ 1.3 wt% and  

 

Bi ≤ 0.1 wt% 

 

The melt compositions used also fell inside the DASt R022 guidelines [4] for Class 1 standard 

zinc alloys given in Table 8 of that guide with Sn ≤ 0.1 wt%.  Traditionally, UK general 

galvanizing baths had been operated with tin at low levels anyway and so there was nothing 

new in this.  As noted above,  a higher tin limit of 0.30% is supported by the results obtained 

in recent work published by Carpio et al [6] who proposed a model for the failure 

micromechanisms of structural steels during hot-dip galvanizing. 

 

2. Results 

 

This investigation of more than one million tonnes of steel galvanized over 5 years supports 

the view expressed in references [4] and [10] that, when correctly implemented, current 

guidance on galvanizing structural steelwork leads to an extremely low incidence of cracking 

that can be attributed to LMAC.  The other main conclusions from the present study are that: 

 

• Only two instances (each involving one crack) were reported by the steelwork users 

that had not been previously found by inspection at the galvanizing plants. 

• The overall cracked tonnage found by galvanizers was 0.033%.  Note that this figure 

includes any cracks extending from pre-existing cracks that might not have been 

detected by either the fabricator or on arrival at the galvanizing plant. 

• The cracked tonnage in the structural steelwork was 0.026% and that in the non-

structural category was 0.043%.  These data indicate that the risk of cracking in 

steelwork that was classified as structural was actually 40% lower than the risk for non-

structural steelwork.  This finding may reflect a higher or more consistent standard of 

fabrication in structural steelwork. 

• The incidence of cracking in S355 grade structural steel was not observed to be any 

higher than that in S275 grade steel. 
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• Particularly notable was the lack of practical evidence to support the high level of focus 

within DASt R022 placed on beam section height in determining risk characterisation 

and control criteria, as a basis of ranking.  Within the whole of this project during which 

beams were routinely galvanised in depths up to 1.5 m, there was not a single case of 

cracking regardless of the end detail.  This risk is heavily emphasised in the JRC report 

with a photograph showing severe longitudinal cracking in a beam, leading to the 

conclusion that there is a significant risk.  This was not proven by events during this 

project lasting more than five years. 

 

In this study, most of the rare cracking events found were related to controllable design or 

fabrication issues and the small number of problems discovered were all repairable.  

Importantly, there were no reports of any cracks being observed under the galvanized coating 

and it was clear that LMAC was not an issue in galvanizing baths with tin (Sn) contents and 

melts that comply with the BCSA-GA guidance [4]. 

 

In addition, a more detailed analysis of cracking events was carried out during the last two 

years of the project.  During this period, there were 102 instances of cracking that occurred 

during the galvanizing process, involving 219 cracks in 127 tonnes of steelwork, with 46 events 

(45%) classified as occurring in structural steelwork and 56 (55%) as non-structural.  The 

average weight of cracked components was 0.58 tonnes with 19 weighing ≤ 0.10 tonnes and 

33 weighing > 1 tonne.  This figure of 127 tonnes represents 0.032% of the total galvanized 

steelwork over 2 years (395,000 tonnes).  Within these data, the highest number of cracking 

instances occurred in rectangular or square hollow sections (48 events) with rolled-steel joists 

comprising the second highest category (26 events) and rolled channels the third (17 events).  

A very high level of correlation between cracking and welded details was observed, with 177 

cracks being associated with welds.  Many of the cracks identified prior to galvanizing were 

also associated with welds, and the total number where there was an identified sub-standard 

of fabrication issue was 56 out of the total of 102. 

 

Table 2 summarises the crack locations observed in this more detailed two-year analysis of 

cracking.  It is worth noting that only 5% of the cracks associated with either weld zones or 

parent steel could be assigned solely to LMAC, i.e. with no likely precursor crack existing 

before the galvanizing process was carried out.  In this respect it is important to note that such 

cracks were identical to those otherwise associated with weld defects and this study leads to 

the conclusion that LMAC should not be described as a root cause of cracking during 

galvanizing, but rather as a factor in further crack propagation where an incipient crack-like 

defect or crack-susceptible region already exists. 

 

Equally, the study found no correlation between risk of cracking and the size or weight of the 

steelwork being galvanized, with the contributory factors for the observed occasional cracking 

being uniform across all steelwork.  However, as noted in reference [9], where cracking is 

associated with welds that are coincident with high level of residual stresses, e.g. the 

termination of end-plates on large I-beams, or with certain cold-rolled hollow sections, then 

increasing component size is likely to lead to increased levels of residual stress and the risk 

of cracking is therefore higher.  

 

The remaining sections of the present paper will present an outline and categorisation of the 

various types of crack observed. 
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3. Examples of Cracking Detected Before Galvanizing  

 

The types of crack identified as existing after fabrication were usually related to detail types 

with known susceptibility to cracking, and can hence usually be ascribed to sub-optimum 

design.  Figure 2 shows one example of such cracking associated with a tubular insert in a 

hollow section, where the weld run is too close to the edge of the component and the welding-

induced residual stresses have combined with those existing from the fabrication at the corner 

of the hollow section to initiate cracking.  Figure 3 shows another example of cracking that 

occurred during fabrication arising from the superposition of welding residual stress and 

hardness gradients with other pre-existing fabrication stresses.  Figure 4 shows cracking 

observed in steel checker or tread plate, which is more susceptible to cracking during bending 

than a plane component because of the raised tear drop shapes.  If the usual minimum bend 

radius is perhaps 1.5t, where t is the plate thickness, then checker plate would require a larger 

inner radius of at least 3t. 

 

4. Examples of Steelwork Susceptible to Cracking During Galvanizing 

 

Figure 5 shows an interesting example of cracking that occurred during galvanizing and that 

is similar to a cope hole.  A weld crack has initiated at a cut-out intended to avoid the defect-

prone intersection of multiple welds.  Cope holes and ‘snipes’, i.e. vent or drain holes and 

openings, are a common cause of cracking problems during fabrication and galvanizing and 

Figure 6 shows fabrication cracking induced at flame-cut snipe that was introduced to facilitate 

making a multipass weld.  This crack would generally be ascribed to LMAC, rather than having 

its root cause as poor fabrication practice.   

 

Complex welded fabrications involving the joining of plates of significantly different thickness 

can lead to cracking during galvanizing because of the differential cooling rates, hardness 

values and stress concentrations associated with such joints.  Figure 7 shows one such 

example where discussions between the fabricator and the galvanizer would have enabled a 

minor change to fabrication to be made, perhaps utilising bolting together of the two 

assemblies, and the problem would have been eliminated.  Figure 8 illustrates another c 

problem sometimes encountered during galvanizing of relatively heavy and complex welded 

fabrications.  The square box section shown in Figure 8b has welds coincident with regions of 

high residual stress at high constraint corners.  The interplay among geometric stress 

concentrations, hardness gradients and residual stresses can very easily either initiate micro-

cracks that extend during galvanizing, or initiate LMAC in the galvanizing bath (Figure 8c).  

Possible design changes that could be implemented to avoid this problem include the use of 

hot formed seamless tube. 

 

The stresses induced in highly constrained steelwork can combine with poor welding practice, 

such as partial penetration, to create cracking problems during galvanizing.  Figure 9 shows 

one example of this where partial weld penetration and subsequent weld grinding have led to 

cracking.  A number of instances of cracking arising from insufficient weld thickness as a result 

of weld dressing and/or partial penetration were observed in other components during this 

investigation into galvanizing of steelwork. 
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High levels of distortion-induced stresses can occur during galvanizing and an example of 

cracking induced by distortion is shown in Figure 10, where distortion in a smaller and highly 

constrained member has combined with additional stress localisation at an off-centre hole to 

initiate cracking.   Distortion of members can also occur due to inadequate venting in steelwork 

intended for galvanizing.  This problem is illustrated in Figure 11, where smaller and properly 

vented members were welded onto a larger section that was not adequately vented.  Trapped 

internal gases have led to local bulging of the main member in the thermally-affected weld 

zone and hence initiated cracking at its junction with the cross-members. 

 

As a final example of the range of problems sometimes experienced during galvanizing, Figure 

12 shows cracking in a cold formed rectangular hollow section.  The residual stresses induced 

in either cold-rolled or welded hollow sections at the corners, tend to increase with increase in 

length of the component.  Cracking can initiate or extend during galvanizing from either small 

defects at the weld ends or local stress concentrations/hard spots at flame cut edges.  The 

high levels of tensile residual stress that existed in the outer surface are evidenced in the 

deformation seen in the plate after cracking. 

 

5. Conclusions 

 

This review of cracking events observed either after fabrication or after hot dip galvanizing, in 

>1,000,000 tonnes of steelwork with 560,000 tonnes falling into a structural classification, has 

unequivocally demonstrated that such occurrences are extremely rare.  The total overall 

cracked tonnage was found to be 0.033%, with 0.026% of the structural steel tonnage having 

cracks and 0.043% of the non-structural category containing cracks.  A visual investigation of 

the observed cracking events, as described in this paper, further indicated that the large 

majority of cracks were associated with weld zones. 

 

The underlying causes of cracking fell into well-known categories of sub-optimum design, 

involving either weld details or design for galvanizing, many of which have already been 

described in more detail in reference [9].  This work supports two important conclusions, firstly, 

that LMAC cannot accurately be described as a root cause of cracking during galvanizing, but 

is rather a factor in further crack propagation where an incipient crack-like defect or crack-

susceptible region already exists in the steelwork to be galvanized; and, secondly, that LMAC 

is not an issue when using galvanizing baths with tin (Sn) contents and melts that comply with 

the BCSA-GA guidance [5].  Finally, it is clear that liaison with the galvanizing plants during 

the design process would eliminate a number of potential cracking problems that can arise 

from sub-optimum design for the galvanizing process. 
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Tensile Stress Specific Material Condition Liquid Metal 

Stress concentration 
(especially welds) 

Strength/hardness > 250-290 
HV 
Hydrogen cracking 

• Pickling and fluxing of 
high strength steels 

• Flux containing Fe > 
10 g/l 

• Weld regions with HV 
> 300-350 

Pb: increases incidence and 
severity of cracking 
 
Ni: No effect 
 
Sn and Bi > 0.2% increases 
crack size 
 
Sn > 0.3% increases crack size 

Residual stress 

• Straightening 

• Thermal cutting 

• Welding 

• Cold work 

Thermal stress 

• Component size 

• Dipping speed and 
angle 

 

 

Table 1 Factors contributing to the occurrence of liquid metal assisted cracking LMAC. 

After Kinstler [7] and as given in reference [3].  Factors in bold are additions 

added by the authors. 

 

Location of Crack % % LMAC 

Cope hole cut-out and other 
design issues 

10 0 

Steel plate, e.g. distortion or 
material defect 

12 

5 

Weld zone 78 

 

Table 2 Proportion of cracks found in the final 2-year analysis of galvanized steelwork in 

terms of their location and the percentage considered to involve LMAC. 
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Figure 1 Venn diagram showing the critical intersection region (red) of the four necessary 

conditions defined by Kinstler [7] for the occurrence of LMAC during galvanizing. 

 

  

Tensile stress

Time

Bath Environment

Specific 
Sensitivity 
Condition

Residual Stress 
Stress Concentrator 
Thermal Gradients 

Steel Composition 
Thermal History 
Mechanical History 
 

Galvanizing Time 

Alloy Type 
Alloy Concentration 
Temperature 
Additives (flux) 
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Figure 2 Weld run around an insert that was too close to an existing fabrication-induced 

region of plasticity/residual stress. 

 

Figure 3 This crack is probably again due to a combination of the welding process 

(residual stress and hardness gradients) and the stresses induced during 

forming of the cylindrical casing. 
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Figure 4 The cracking seen here is due to the steel checker plate having too tight a bend 

radius. 

Figure 5 Weld cracking initiated from a small cut-out intended to avoid the problem of 

intersecting welds in fabrication of a hollow section. 
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Figure 6 A crack that has initiated at a flame-cut ‘snipe’ intended to facilitate making a 

multipass weld.  Cracking is due to the high local hardness and stress 

concentrations induced during flame cutting.  

 

 

Figure 7 Cracking at the highly constrained joint between a smaller sub-assembly and a 

large I-beam.  Separate fabrication of the two components and subsequent 

bolting would have eliminated the problem. 
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Figure 8 The complex fabrication shown in a) has square box sections b) where several 

welds are coincident at the highly constrained corners.  The interplay among 

geometric stress concentrations, hardness gradients and residual stresses can 

very easily either initiate micro-cracks that extend during galvanizing, or initiate 

LMAC in the galvanizing bath 

 

 

 

  

  

a) b) 

c) 
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Figure 9 In this complex welded fabrication, partial weld penetration and subsequent 

weld grinding have led to cracking occurring during galvanizing from the under-

sized weld.  

 

Figure 10 Significant distortion has occurred in the highly constrained smaller cross-

members in this steel fabrication, and the off-centre hole has led to an additional 

localisation of stress, causing cracking to occur during galvanizing. 
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 Figure 11 Inadequate venting provision has led to bulging of the main member in the 

thermally weakened zone where the cross-members were welded to it, causing 

cracking. 

 

Figure 12 Cracking in a cold formed steel section that has initiated from one end due to 

the high levels of residual stresses existing in the cold formed section at the 

corners. 


