
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2018-01-01

POSH-SHARP: A lightweight toolkit for

creating cognitive agents

Gaudl, Swen

http://hdl.handle.net/10026.1/15091

Proceedings of AISB Annual Convention 2018

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

POSH-SHARP:
A Lightweight ToolKit for Creating Cognitive Agents

Swen E. Gaudl1

Abstract. Agent design is an intricate process requiring skills from
different disciplines. Thus experts in one domain are not necessarily
experts in the others. Supporting the design of agents is important
and needs to address varying skill and expertise as well as varying
handling the design of complex agents. In this paper, a new agent
design toolkit –POSH-SHARP– for intelligent virtual agents (IVAs)
and cognitive embodied agents is presented. It was designed to ad-
dress the need for a robust agent development framework in highly
restrictive environments such as the web or smartphones while being
useful to both novice and expert users. It includes advanced func-
tionality such as debug support, explicit design rules using a related
design methodology and a simple set-up and distribution mechanism
to reduce the authoring burden for large iteratively developed agents.
The new framework was implemented in C# and contains sample
code for different game environments to offer novice users a starting
point.

1 Introduction
This paper presents a new agent modelling toolkit and framework
for designing intelligent virtual agents (IVAs) in games which offers
affordances such as an easy set-up and distribution within industrial
game environments, support for debugging and a low computational
overhead.

Non player characters (NPCs) in games can range from simple
entities that respond with a pre-determined reply such as giving the
player a quest from a stack of quests to embodied cognitive agents
that respond based on the players behaviour and the state of the
world. In the first instance —the simple agent— finite state machines
(FSMs) can be sufficient for modelling the behaviour of such entities.
The agent does only select from a stack of quests an item and returns
it to the player and might vary the reply sentence based on a list of
pre-written replies. However, when the game world and the response
patterns have to be more complex, more sophisticated approaches
might be required. State machines present a very visual, easy way
of modelling behaviour, which makes them appealing to designers in
contrast to decision tables or rule-based approaches. The downside f
a state machine is that the number of transitions and changes to the
underlying model do not scale well for large systems. Hierarchical
state machines (HFSMs) aid in this situation marginally as they offer
levels of abstraction and detail to model the behaviour of an entity on
different granularities. Based on HFSMs, BehaviorTree (BT) [5, 7]
became a dominant approach in the games industry as the approach
scales well, can be visualised well and has a low computational over-
head. In academia, more experimental approaches were developed
such as ways to model more expressive agents using ABL[16] or

1 MetaMakers Institute, UK, email: swen.gaudl@gmail.com

to model cognitive processes more closely in FATIMA [8]. Due to
the increasing capabilities of personal computers, existing cognitive
frameworks were also used to model agent behaviour such Soar [20].
A similar approach to BT for modelling behaviour was developed by
Bryson [3] with a focus on agent-based modelling in Science. Bryson
integrated a design methodology with a LISP-like language –posh–
and planner to allow novice programmers to model complex agent
processes in a more guided way.

A novel framework and planner –POSH-SHARP– for design-
ingPOSH agents is presented which extends the capabilities of its
predecessor JYPOSH and offers new mechanisms of building and
maintaining complex cognitive agents for virtual environments.

The rest of this paper is organised as follows. In Section 2, the con-
text of the new system and how it positions itself within similar ap-
proaches is given. The system and its core components are described
in Section 3 which included examples from existing agent imple-
mentations. The paper is finalised by a discussion of future work and
open challenges.

2 Background & Related Work

Digital Games are more than software systems, they are cultural arte-
facts and artworks as well and are often highly interactive. Thus, de-
signing and building games requires support beyond software engi-
neering. SCRUM for Games [13] was developed to aid the design
of games from a technical perspective but stays at a high abstrac-
tion level not supporting the design of its components, e.g. the AI
system controlling characters. Agile Behaviour Design (A-Bed) [9]
discusses an approach for aiding the design process of character AI
and supplies a process model for developing agents, addressing this
need for more fine-grained support. The presented toolkit uses but is
not limited to A-Bed as a design method.

For games driven by a story or relying on the interaction between
player and agent, agent design is a crucial part requiring a deep un-
derstanding of the game mechanics as well as the intended plot of
the game. If done badly, agents can destroy the entire experience of
a game by being either boring, too repetitive, obviously cheating, or
un-responsive. One mechanism to develop less rigid agents is the use
of planning systems such as GOAP [17]. Planners require expert au-
thors to design the initial restrictions for a given domain. The planner
then at runtime uses domain knowledge to predict ad plan possible
behaviours to achieve the designed goal. This reduces the interde-
pendence of nodes and the amount of manual checking transition
for an author as they do not need to check all possible combinations
when designing agent goals. This allows the resulting agent to scale
well when designing separate goals incrementally. Mateas proposed
an approach for writing complex, branching interactive drama for

games using a planning system — ABL[15]. In Façade this system
monitors the responses and actions of the player and directs the story
based on story beats in a certain way to create a novel and inter-
esting experience. [19] uses the same approach to control a set of
managers to create an agent for real-time strategy games. The ad-
vance of using a planning approach is that the system can respond
to unforeseen changes and is very customisable and scales well even
for highly complex agents. The downside of ABL is that the setup
is complex and it requires a high level of skill to develop and main-
tain agents as the author needs to be both an expert in the domain
of the game as well as an expert in planning systems. Due to the
runtime creation of the agent and its changing representation, agents
designed with able are hard to debug or inspect. An alternative to de-
signed and planned behaviours is the use of cognitive approaches to
model agents and then use those to drive to the story. This approach
produces more IMPROV-style games or art installations such as Al-
phaWolf [12], an installation which simulates the behaviour of a wolf
pack offering player interaction. Cognitive agent approaches offer an
entirely new opportunity for scalable agent design as the designer
only models individual agents in terms of their motivations and how
they perceive and interact with the environment and other agents.
Thus, the agents have to reason individually of how to achieve their
goal reducing partially the complexity of pre-specifying each inter-
action. However, cognitive systems such as Isla et al.’s c4 system, or
Sorts[20], a cognitive real-time strategy player, require a lot of com-
putation resources as well as a thorough understanding of cognitive
modelling. Because of these two reasons more sophisticated systems
never transitioned into actual practice.

After introducing BT as a way of designing and structuring agent
behaviour beyond state machines, Isla worked on a more applicable
system working – the F.E.A.R. system [6]. Their system integrates
a reactive planning system with lazy evaluation of memory2 to al-
low for more performance but still heavily relies on experts when
designing plans but offers better support in terms of tool support and
computational resources.

3 POSH-SHARP

POSH is a lightweight reactive planning language offering a similar
way to structuring behaviours to BT. However, it uses a separation
between plan and agent implementation to decouple the platform-
independent design of the plan with the platform-dependent imple-
mentation of the agent’s actions, senses and memory within a given
system or game.

POSH, as a lightweight planner allows local design by modifying
existing Competences due to the ability to nest Competences and the
hierarchical structure of the drive collection. As Competences are re-
used and handled by the planner, the amount of connections which
need to be adjusted is similarly low compared to other reactive plan-
ners. In combination with the proposed Agile Behaviour Design (A-
Bed), it is possible to work on smaller sections of an agent by focus-
ing on Drives and Competences while the dependencies between de-
signer and programmer are reduced. Similar to BT design tools such
as SKILL STUDIO3, DI-LIB4 and BRAINIAC DESIGNER5,POSH used
the ABODE editor to support designers when writing plan flies.

2 In F.E.A.R. sensory information and memory is only updated every few
frames to amortise the computational costs. When not updated the previous
information is presented instead requiring no computation.

3 https://skill.codeplex.com/
4 http://dilib.dimutu.com/
5 http://brainiac.codeplex.com/

To enhance the support of game AI development, a new arbitration
architecture is proposed – POSH-SHARP– which alters the structure
of the existing JYPOSH system and contains four major enhance-
ments: multi-platform integration, behaviour inspection, behaviour
versioning and the Behaviour Bridge.

The new system switches the implementation language from
Java&Python to Microsoft’s C#– a platform-independent language
which in contrast to Oracle’s Java is fully open-source. Additionally,
a resulting agent can be integrated better into most commercial prod-
ucts based on the usage of a new deployment model of the system—
the dynamic libraries (DLL). The POSH-SHARP DLLs allow a de-
veloper to integrate the POSH behaviour arbitration system into any
system which supports external libraries. The strength of this method
in contrast to JYPOSH is the removal of the dependency on a JAVA
virtual machine or a Python installation as all required libraries are
dynamically linked. This reduces the configuration time and poten-
tial problems with incompatibilities or wrong setups. POSH-SHARP
was designed to work on computationally less powerful devices such
as smartphones or in the web-browser emphasising the lightweight
nature of POSH. To guarantee this POSH-SHARP is mono 2.0 com-
pliant6. The POSH-SHARP architecture is separated into different
distinct modules to allow the developer, similar to the node collaps-
ing in plans, to focus on smaller pieces of source-code and fewer
files. The previous JYPOSH7 system required a complex setup for in-
dividual machines and relied on access to system variables of the op-
erating system. It also required the developer to maintain a complex
folder structure which contained all sources and compiled code for
both POSH and the behaviour library. To support and extend the sep-
aration of logic and implementation most languages use some form
of container format. In JAVA modules are clustered and distributed
in Jar files and in Python egg files. This helps reduce the burden of a
programmer to maintain a manageable code base.

Figure 1: The POSH-SHARP architecture once the modules have
been integrated into an environment, e.g. the integration with a game
engine such as Unity.

6 The Mono project provides a free C# platform-independent library sup-
ported by Microsoft. Mono 2.0 is the language level used for mobile devices
and in the Unity game engine is used for full cross-platform compatibility.
Mono is available at: http://www.mono-project.com

7 http://www.cs.bath.ac.uk/˜jjb/web/pyposh.html

3.1 POSH-SHARP Modules

Figure1 illustrates a view of the new layout of POSH-SHARP mod-
ules within a system and includes a view of how it integrates into an
environment such as a game engine.

• The launcher is the smallest module. It is responsible for select-
ing which plan to load, to tell the planner to construct a POSH

tree based on a serialised plan and finally to connect the core to
the environment. The launcher receives upon start a set of param-
eters containing an agent definition and link to the environment.
The launcher then calls the core and specifies which agent is con-
nected to which plan. It additionally makes the behaviour library
in the form of dlls accessible to the core. The launcher is plat-
form dependent and is available for Mac and Windows and can be
re-compiled based on the project’s needs. For the Unity game en-
gine8 a specific launcher exists and integrates fully into the game
engine.

• The core module is platform independent and can be used “as-is”
as it does not rely on other modules, see POSH SHARP(POSH
Structure) in Figure 1. As a first step, the core instantiates a POSH

agent responsible for enveloping the POSH tree and the connected
behaviour objects with their contained short-term memory. After
creating an agent shell, the planner uses the serialised plan file
to instantiate a POSH tree for the agent. For that, it inspects the
behaviour libraries and instantiates all behaviours for the agent
which contain primitives required by the serialised plan. This pro-
cess is done for each agent. After all agents embed a live POSH

tree, the core links the agent to the environment exposing the sen-
sory primitives to receive information and the action primitives to
interact with it. The core also contains a monitor for each agent
that allows live debugging and tracing of agent behaviour.

• A behaviour library is a self-contained set of behaviour classes
wrapped in a dynamic library file (DLL). They are coded by a
programmer and implement the functionality used in conjunction
with a POSH plan. The behaviour classes contain POSH action and
senses, as illustrated in Figure 2. The advantage over JYPOSH
is that the core automatically inspects all behaviours and loads
only those who are correctly annotated. Thus, there is no need
to specify a list of actions and senses within the header of a be-
haviour. Additionally, behaviour primitives can be ”versioned”, a
new feature in POSH-SHARP which offers the programmer a way
to develop an agent incrementally without overriding and deleting
working functionality.

• The last component of POSH is the plan library which contains
a collection of POSH plans. The POSH-SHARP plans are identi-
cal to the JYPOSH plans allowing users to migrate their plans to
different systems. The plans are in a Lisp-like syntax and can be
interpreted as serialised POSH trees that are used by the planner.

3.2 Behaviour Inspection & Primitive Versioning

In previous versions of POSH, behaviours had to contain lists of string
names referencing behaviour primitives to be used upon loading the
class. Additionally, all behaviours had to be in a behaviour library
folder in source format. This behaviour folder was inside the same
folder hierarchy as the POSH system, also as source files. This project
structure forces developers to maintain and manage more files than

8 Unity is a fully featured commercial game engine which supports the
cross-platform development of games and is available at http://
unity3d.com/

1 [ExecutableAct ion (” a charge ” , 0.01 f)]
2 p u b l i c vo id Recharging ()
3 {
4 / / Set an appropr ia te speed f o r the

NavMeshAgent .
5 Loom . QueueOnMainThread (() =>
6 {
7 i f (nav . speed != patrolSpeed)
8 nav . speed = patrolSpeed ;
9

10 / / Set the d e s t i n a t i o n to the charging
WayPoint .

11 navDest ina t ion = charging . chargerLocat ion .
p o s i t i o n ;

12

13 i f (nav . d e s t i n a t i o n != navDest ina t ion)
14 {
15 nav . d e s t i n a t i o n = navDest ina t ion ;
16 nav . Resume () ;
17 }
18 / / I f near the next waypoint or there i s no

d e s t i n a t i o n . . .
19 i f (nav . remain ingDistance < nav .

s topp ingDis tance && nextToCharger)
20 {
21 nav . Stop () ;
22 / / asynchron charge b a t t e r i e s
23 Loom . RunAsync (() =>
24 {
25 charging . Charging () ;
26 }) ;
27 }
28 }) ;
29 }

Figure 2: A behaviour primitive for recharging a robot within the
STEALTHIER POSH Android game. The action uses a NavMesh
to determine the position of the agent and then charger the robot
once the agent is close enough to the charger. To allow for thread-
ing a scheduler (Loom) is used to outsource specific tasks into
Unity’s internal update thread. The action is set to version 0.01
which allows later actions to override the behaviour and the ac-
tion links to the plan name a chargeMore details on the game
are available at https://play.google.com/store/apps/
details?id=com.fairrats.POSH

necessary, it reduces the visibility of own behaviours and increases
the chance of modifying or removing essential parts of POSH unwill-
ingly. POSH-SHARP introduces the packaged POSH core, combin-
ing the planner and the entire structure of the system into a 111kB
sized dynamic library file. Behaviour files are also compiled into be-
haviour library DLLs. This is supported by free tools such as Xa-
marin’s Monodevelop9. Upon starting POSH-SHARP, the core re-
ceives as a parameter a list of dynamic libraries which should be
inspected.

Once the POSH plan is loaded, POSH-SHARP inspects all libraries
and loads all that contain annotated primitives which are referred
to by the currently active serialised plan. Using dynamic libraries
reduces the number of files developers and users have to handle and
reduces the risk of erroneous handling of files.

The behaviour inspection uses the specific POSH annotations to
identify primitives within a behaviour library file. There are two
standards annotation classes ExecutableAction and ExecutableSense

9 Monodevelop is an open-source Mono/C# IDE available at http://
www.monodevelop.com/

Figure 3: The STEALTHIERPOSH Android game illustrating the us-
age of the logging mechanism on the upper left side of the screenshot.
The output contains 10 lines which update every seconds by adding
new content ad the top and fading out old information at the bottom.

, both augment a method and attach a name reference allowing the
planner to search for them by the name and a version number. In Fig-
ure 2 an example action from the STEALTHIER POSH Android game,
see Figure 3,is given which is using POSH-SHARP. The primitive is
called by the planner when the robot agent needs to recharge the bat-
tery and uses a NavMesh[18] to identify if the agent is spatially close
to a charger. To follow AB-ED, primitives should be as independent
as possible and use their perception to reduce interdependencies. In
this case, checking the internal state of the NavMesh. By offering the
planner to inspect and search for possible primitives instead of pro-
viding them as a list when coding a behaviour library, a potential risk
of mistakes is removed from the development process. The usage of
the extra name tag allows the usage of names which would otherwise
break the naming convention of C# and allows for more descriptive
and customised names.

The behaviour primitive versioning uses the second parameter of
the annotation. The planner in default mode always selects at run-
time the primitive with the highest version number. This mechanism
allows the planner to exchange primitives during execution if needed.
Dynamic primitive switching is a complex process and needs fur-
ther investigation and feedback from the user community. However,
overloading existing primitives at design-time is a powerful process
which allows developers to extend functionality by following the idea
of Brook’s SUBSUMPTION idiom in a real-time manner. It also of-
fers more customisation option to a designer as behaviours can be
swapped in and out.

3.3 Memory & Encapsulation
Similar to architectures such as ACT-R[1] and Soar[14], POSH-
SHARP provides a centralised way to store and access perceptual
information about the environment. Game environments have strong
restrictions on computation. Thus, polling sensors which require
computation or perform continuous checks should be as rarely used
as possible. The usage of a fair amount of polling sensors reduces
the time the agent has to undertake the actual reasoning. The Be-
haviour Bridge illustrated in Figure 1 provides centralised access to
perceptual information acquired from the game environment. Each

individual behaviour is able to access and share this information
and use it internally. In a sense, the Behaviour Bridge is to some
degree similar in its function to the corpus callosum in the mam-
malian brain. It offers an interface between parts which are spatially
separated due to their distance in the brain and provides a fast and
efficient means of information exchange. It is designed around the
software Listener Pattern, making game information available to all
subscribed behaviours. When removed or damaged most of the brain
still functions, however, some functions are then erroneous or slower.
The same applies to the Behaviour Bridge as it allows information
exchange but does not undertake actual communication or computa-
tion.

Memory, same as in other POSH versions, is contained within in-
dividual behaviours. There is a strong argument for self-contained
behaviours and their internal memory which is, that their usage sup-
ports lower inter-dependencies between behaviours and fosters the
modularisation & exchange of behaviours. POSH-SHARP supports
this exchange through behaviour library files which offer easy ex-
change by swapping out individual dynamic library files. Thus, a
general focus on a specific class in a library outside the core could
break the entire agent.

A global blackboard as part of the architecture is currently not
supported by POSH-SHARP, even though the integration would be
easy using the Behaviour Bridge. The usage of a blackboard or long-
term memory, similar to the memory types by [17] or the Working
Memory Elements of ABL, introduces extra complexity into the de-
sign process which may not be desirable for a light-weight novice-
oriented architecture. Behaviour designers using a blackboard need
to take potential memory into account when designing behaviours.
This means that the memory emerges and changes over the course of
the experience, requiring additional careful design and anticipation
of behaviours interacting with it.

Instead of a global blackboard which offers reading and writing
complex information from it, POSH-SHARPprovides the Behaviour
Bridge. Using the Behaviour Bridge, POSH-SHARP provides a cen-
tralised way for perceptual information to be exchanged and ac-
cessed as proposed in Figure 1. The bridge stores similar to the cX
system[12], perceptual information about the agent and the state of
the environment. That information is not available at the planning
level and is currently only intended to remove redundant or reduce
the number of costly calls to the environment. The bridge, in con-
trast to a blackboard, only provides access to a domain and problem-
specific set of information and no general purpose memory which
could be realised through a hashmap-type data structure. The main
strength of the bridge is that it inserts its interface into all instantiated
behaviours and offers an uncluttered interface to shared information.
Additionally, the approach does not incorporate the idea of percep-
tual honestly as described by [4] and implemented in the cX system.
Thus, the system allows full access to the environmental informa-
tion, and the designer and programmer can decide which information
to use. The focus with POSH-SHARP is on being a flexible, light-
weight architecture and hiding information should not be handled in
the agent system but designed carefully.

3.4 Monitoring Execution

As identified by Grow et al.[11] in their analysis of three intelligent
agent frameworks the need for logging and debugging functional-
ity is integrated into POSH-SHARP; the analysis also includes the
previous POSH systems.The usage of such functionality would, ac-
cording to the users, aid the understanding of the execution flow and

support the identification of potential problems, both on the design
level and the program level. The problem described by the users is
that when developing complex agents, the agent is not always crash-
ing or stopping when problems occur. With increasing complexity,
it becomes harder to tell apart intended behaviour from faulty one10.
Additionally, the usage of a software debugger, included in most in-
tegrated development environments (IDEs), is not always ideal be-
cause it pauses the application for inspection which is undesirable
for understanding IVAs. To identify mistakes during the execution,
POSH-SHARP offers live logging using a logging interface deeply
integrated into the POSH-SHARP core. The logging uses an internal
event listener which receives events from each POSH element that is
executed. The events contain a time code and the result of triggering
the element. From the developer, this procedure is completely hidden
to reduce the amount of visible code they have to touch and memo-
rise. Nonetheless, they can access the log manager and add extra in-
formation which gets stored in the log. To allow the easy extension of
different developer needs, the log management can be altered using a
pre-compile statement for the core. This allows the system to switch
between two modes of logging. The full log support using LOG411

or no logging which is useful for distributing the core with a final
product when recording large amounts of data is undesirable.

The log structure uses a millisecond time-code and logs the entire
execution in the following form for all agents ai:

S(t) = [t] L ai.plan(DC(t, ai))− return(e(t, ai))
plan(DC(t, ai)) = top(Dactive, ai) = e(t, ai)

The drive collection (DC) has only one drive active (Dactive)for
each agent ai at any given time, and the Drives maintain an execu-
tion stack over multiple cycles. L identifies the log mode which is
currently active the modes include: INFO, DEBUG, ERROR.

To limit the stack of possible behaviours which want to execute
in size [2] introduced the slip-stack. At each cycle, the slip-stack re-
moves the current element (top(stack, agent)) from the execution
stack and executes it, replacing it with its child, which upon revisit-
ing the drive in the next cycle continues with the child node instead
of checking the parent again. This method reduces the traversal of the
tree nodes drastically and fixes the upper bound of the stack. POSH-
SHARP integrates the same concept but instead of maintaining a
stack a marker in the internal tree representation is kept and the ex-
ecution shifts it further down the tree when a drive is called. Instead
of pushing a stack this mechanism reduces the allocation costs of
spawning unneeded pointers.

As the plan unfolds and elements get revisited the log incremen-
tally represents the execution chain of the POSH tree such as the first
line will be the check of the goal for the drive collection, the sec-
ond line contains the check for the highest priority drive and so on.
The action and sense primitives are referenced in the log by their
canonical method name including the class namespace. This allows
for the identification of methods including their annotation name and
version number.

The time resolution of the logs can be adjusted based on the de-
veloper’s needs but to monitor a real-time plan for games; it grows
quite quickly due to the fast call times within the tree. To be able to

10 This issue leads game developers to be cautious when using new ap-
proaches or approaches which allow for learning.

11 Apache’s Log4Net provides a standardised, configurable monitor support
in the form of a modular logging architecture. Using XML based con-
figuration files, it is possible to set up monitor logs handling even large
amounts of data. It is available at https://logging.apache.org/
log4net/

analyse multiple runs of a long execution, POSH-SHARP writes a
continuous-rolling log to manage the individual file sizes better, and
it additionally creates a parallel ”current” log file which is replaced
each time POSH-SHARP get launched again.

The new logging mechanism has a low computational footprint
allowing it to log large amounts of data without impacting the per-
formance. It offers a way to understand the arbitration process by
going through the logs line by line. Due to the standardised format,
the processing of the logs can be automated or streamed to other ap-
plications for a live representation of the agent’s reasoning process.
The STEALTHIERPOSH game offers a way to visualise the reason-
ing process by outputting the goals of all agents in the log format on
screen12.

4 Future Work
The current POSH-SHARP toolkit has been tested in multiple sce-
narios ranging from StarCraft agents [10] to mobile games such
as the previously mentioned STEALTHIER POSH. However, further
feedback from professional developers in combination with exper-
iments in industrial settings are still required to examine potential
weaknesses of the system. The dynamic primitive switching of prim-
itives which was introduced into POSH-SHARP is a complex pro-
cess and needs further investigation and feedback from designers and
testers to make it as useful as possible without affecting the creative
freedom of an author. Visual representations of what agents do and
how their reasoning process can be represented are crucial to the
development of complex behaviour. The current visualisation and
other forms of using the log provide potential directions for future
research. The current approach to editing and visualising plan files
using ABODE is an already identified shortcoming of the toolkit be-
cause the editor does not offer support beyond plan creation and visu-
alisation. Additionally, a new approach for modelling and presenting
parallel drive collections and their impact on each other is required,
if the planner wants to compete with more sophisticated cognitive
approaches. The current memory model provided by the Behaviour
Bridge is a first step towards more cognitive and scalable models for
agents. Nonetheless, this model is not able to compete with complex
memory models in ACT-R and SOAR when using learning mecha-
nisms to alter and evolve posh plans. A new version of memory that
can be inspected by a designer might be a possible direction for fu-
ture work as well.

5 Conclusion
To aid the development and to focus on multi-platform development
the new POSH-SHARP arbitration architecture was proposed which
is based on Bryson’s original concept of POSH and extends it by four
new features: multi-platform integration, behaviour inspection, be-
haviour versioning and the Behaviour Bridge. The idea behind POSH-
SHARP is similar to the original concept of POSH still and addition-
ally aims to provide a light-weight, flexible and modular approach to
designing cognitive agents but increases the usability of the software
by reducing potential problem points. POSH-SHARP introduces the
behaviour library DLL, the core library and the launcher, which re-
duces the number of files to three and creates an easier to maintain a
project. It simplifies the design process by automatically inspecting
library files and extracting all behaviours and behaviour primitives
requested by an agent. This reduces the impact of typos or wrongly

12 An illustration of the visual logging mechanism in STEALTHIERPOSH is
available in Figure 3, page 4.

associated/non-existing primitives in behaviours. POSH-SHARP in-
troduces a modular logging and debugging mechanism which al-
lows a developer to trace the flow of information through the POSH

graph aiding the developer while debugging and helping them cre-
ate a robust agent system. The internal mechanisms such as the Be-
haviour Bridge and the behaviour versioning increase the capabilities
of POSH and remove inter-dependencies between behaviours, The
new mechanisms support robust incremental changes to behaviours.
Future research directions for the toolkit have been identified and of-
fer potential to expand the capabilities of the framework in different
directions.

The combination of POSH-SHARP and AGILE BEHAVIOUR DE-
SIGN is intended to support novice developers by guiding their design
and giving them a robust and helpful set of development tools. The
approach also allows expert developers to profit from explicit design
steps and advanced support which can be used to verify the progress
of a current project.

REFERENCES

[1] John Robert Anderson, Rules of the mind, Psychology Press, 1993.
[2] Joanna J. Bryson, Intelligence by Design: Principles of Modularity and

Coordination for Engineering Complex Adaptive Agents, Ph.D. disser-
tation, MIT, Department of EECS, Cambridge, MA, June 2001. AI
Technical Report 2001-003.

[3] Joanna J. Bryson, ‘The Behavior-Oriented Design of modular agent in-
telligence’, in Agent Technologies, Infrastructures, Tools, and Applica-
tions for e-Services, eds., R. Kowalszyk, Jörg P. Müller, H. Tianfield,
and R. Unland, 61–76, Springer, Berlin, (2003).

[4] Robert Burke, Damian Isla, Marc Downie, Yuri Ivanov, and Bruce
Blumberg, ‘Creature smarts: The art and architecture of a virtual brain’,
in Proceedings Game Developers Conference, pp. 1–20, (2001).

[5] Alex J. Champandard, AI Game Development, New Riders Publishing,
2003.

[6] Alex J. Champandard. Assaulting f.e.a.r.s ai: 29 tricks to arm your
game. http://aigamedev.com/open/review/fear-ai/,
10 2007. last visited: 3. November 2015.

[7] Alex J. Champandard and Philip Dunstan, ‘The behavior tree starter
kit’, in Game AI Pro: Collected Wisdom of Game AI Professionals, ed.,
Steve Rabin, Game Ai Pro, 72–92, A. K. Peters, Ltd., (2013).

[8] Joao Dias, Samuel Mascarenhas, and Ana Paiva, ‘Fatima modular: To-
wards an agent architecture with a generic appraisal framework’, in
Emotion Modeling, 44–56, Springer, (2014).

[9] Swen Gaudl, ‘Agile behaviour design: A design approach for struc-
turing game characters and interactions’, in Internation Conference on
Digital Storytelling: Authoring Tool Workshop, (2017).

[10] Swen E. Gaudl, Simon Davies, and Joanna J. Bryson, ‘Behaviour ori-
ented design for real-time-strategy games – an approach on iterative de-
velopment for starcraft ai’, in Proceedings of the Foundations of Digital
Games, pp. 198–205. Society for the Advancement of Science of Digi-
tal Games, (2013).

[11] April Grow, Swen E. Gaudl, Paulo F. Gomes, Michael Mateas, and
Noah Wardrip-Fruin, ‘A methodology for requirements analysis of ai
architecture authoring tools’, in Foundations of Digital Games 2014.
Society for the Advancement of the Science of Digital Games, (2014).

[12] Damian Isla, Robert Burke, Marc Downie, and Bruce Blumberg, ‘A lay-
ered brain architecture for synthetic creatures’, in International Joint
Conference on Artificial Intelligence, volume 17, pp. 1051–1058. IJ-
CAI, (2001).

[13] Clinton Keith, Agile Game Development with Scrum, Addison-Wesley
Signature Series (Cohn), Pearson Education, 2010.

[14] John E. Laird, Allen Newell, and Paul S. Rosenbloom, ‘Soar: An archi-
tecture for general intelligence’, Artif. Intell., 33(1), 1–64, (1987).

[15] Michael Mateas, Interactive Drama, Art, and Artificial Intelli-
gence, Technical report cmu-cs-02-206, School of Computer Science,
Carnegie Mellon University, December 2002.

[16] Michael Mateas and Andrew Stern, ‘A behavior language for story-
based believable agents’, Intelligent Systems, IEEE, 17(4), 39–47,
(2002).

[17] Jeff Orkin, ‘Agent architecture considerations for real-time planning in
games.’, in Proceedings of the First Artificial Intelligence and Inter-
active Digital Entertainment Conference, eds., Michael R. Young and
Laird John, pp. 105–110, Menlo Park, CA, (2005). AAAI Press.

[18] Greg Snook, ‘Simplified 3d movement and pathfinding using naviga-
tion meshes’, Game Programming Gems, 1, 288–304, (2000).

[19] B.G. Weber, P. Mawhorter, M. Mateas, and A. Jhala, ‘Reactive plan-
ning idioms for multi-scale game ai’, in Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on, pp. 115–122, (2010).

[20] Sam Wintermute, Joseph Xu, and John E Laird, ‘Sorts: A human-level
approach to real-time strategy ai’, Ann Arbor, 1001(48), 109–2121,
(2007).

