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ANALYSIS AND DESIGN OF CASTELLATED BEAMS 

Sahar Sahib Elaiwi, Doctor of Philosophy, 2019 

School of Engineering, University of Plymouth 

ABSTRACT 

The castellated beam is one of the steel members which uses less material, but has equal 

performance as the I-beam of the same size. Most of the castellated beams are fabricated from 

a standard universal I-beam or H-column, by cutting the web on a half hexagonal line down 

the centre of the beam, then these two halves are moved directly across by a half unit of 

spacing and re-joined by welding. This process leads to increasing the beam’s depth and thus 

the bending strength and stiffness about the major axis, without adding additional materials. 

This allows castellated beams to be used in long-span applications with light or moderate 

loading conditions for supporting floors and roofs. In addition, the fabrication process creates 

openings on the web, which can be used to accommodate services.  

 

Existing studies have shown that the resistance of the castellated beam is influenced by shear 

stresses, particularly those around web openings and under the T-section, which could cause 

the beam to have different failure modes. Therefore, web openings may reduce the shear 

resistance of the castellated beam. However, previous studies confirm that the method of 

analysis and design for the solid beam, may not be suitable for the castellated beam. Design 

guidance on the strength and stiffness for castellated beams is available in most countries, but 

also, some of them do not take into account the shear effect because as far as the bending 

strength is concerned, neglecting the shear effect may not cause direct problems. However, 

for the buckling and calculation of serviceability, the shear weakness due to web openings in 

castellated beams, could affect the performance of the beams and thus needs to be carefully 

reconsidered. 

 

The aims of this study are, firstly to investigate the effect of web openings on the transverse 

deflection and lateral-torsional buckling of castellated beams, by using both analytical and 

numerical methods, whilst also adopting some of the previous studies for validating the 



 

ii 

 

analytical results. The second aim, is to focus on the effect of both the geometric nonlinear 

and material inelasticity on castellated beams, under uniformly distributed load within 

different boundary conditions, through investigating the load-deflection curve and predicting 

the value of lateral-torsional buckling moment capacity, by using nonlinear numerical 

analysis method. The third aim, is to study the free vibration, static buckling and dynamic 

instability of castellated beams, w subjected to transverse periodic loading by developing 

analytical solutions.  

 

The purpose of developing analytical solutions, which adopt the classical principle of 

minimum potential energy, is for the design and practical use; while the numerical solutions 

developed using the commercial software ANSYS are for the validation of the analytical 

solutions. By examining the results of analytical and numerical solutions obtained, a number 

of important features of the castellated beams are identified. This study has contributed to 

enhancing the knowledge of the effect of web openings on the performance of castellated 

beams subjected to uniformly distributed transverse loads with/or without being exposed to 

elevated temperatures. Data provided in these studies, can essentially be used by structural 

designers for providing better, economical and safe structures. 

 

Keywords: castellated beam; shear effect, transvers deflection; lateral torsional buckling; 

dynamic analysis; finite element; linear and nonlinear; energy method; uniformly distributed 

loads; non-uniform temperature; simply supported; pinned-fixed supported. 
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1. INTRODUCTION 

1.1. Motivation and background 

Technological developments in all areas of construction are encouraging researchers 

and engineers as well as designers in the field to improve the performance of structural 

members of construction. This requires the development of detailed specifications for 

various individual structural members to be used in construction. The purpose of 

developing such high-quality standards is to improve the durability, safety, and 

serviceability of the structure as well as to reduce the materials and construction costs. 

Figure 1-1 shows two images of the application examples of castellated beams used in 

the construction of Exchange House in London (photos were taken by Sahar Elaiwi).  

 

 

Figure 1-1 Images of application examples of castellated beams in building construction in 

Exchange House in London  
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Steel is widely utilized in the structural field because of its advantages in material and 

mechanical properties as well as time saving in construction, which makes it preferable 

in most structures, particularly those used in high-rising buildings. However, due to the 

rapidly gaining appeal for steel construction especially in recent years, the steel cost 

becomes higher. Owing to the fact that the steel materials have poor fire resistance, 

buildings made from steel structures require the use of high-quality fireproof materials 

to protect steel members from fire, which further increases its cost. 

  

Engineers and researchers have tried various methods to reduce the material and 

construction costs to help optimise the use of the steel structural members. The 

castellated beam is one of the steel members, which uses less material but has equal 

performance as the I-beam of the same size (Harper, 1991). In some of the publications 

(Altifillisch et al., 1957), the castellated beam is also referred to as the open-web 

expanded, perforated steel beam with web openings. The castellated beam is fabricated 

from a standard universal I-beam or H-column by cutting the web on a half hexagonal 

line down the centre of the beam. The two halves are moved across by a half unit of 

spacing and then re-joined by welding. This process increases the depth of the beam and 

hence the bending strength and stiffness about the major axis without adding additional 

materials. This allows castellated beams to be used in long span applications with light 

or moderate loading conditions for supporting floors and roofs. In addition, the 

fabrication process creates openings on the web, which can be used to accommodate 

services (see Figure 1-2). As a result, the designer does not need to increase the 

finished floor level. Thus, despite the increase in the beam depth the overall building 

height may actually be reduced. When compared with a solid web solution where 

services are provided beneath the beam, the use of castellated beams could lead to 

savings in the cladding costs. Moreover, because it is light-weight, the castellated beam 

is more convenient in transportation and installation than the normal I-beam.  

 

The web openings in the castellated beam, however, may reduce the shear resistance of 

the beam. Existing studies have shown that the resistance of the castellated beam is 

influenced by shear stresses (Redwood and Demirdjian, 1998), particularly those around 

web openings and under the T-section, which could cause the beam to have different 

failure modes. There is evidence (Boyer, 1964; Kerdal and Nethercot, 1984; 
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Demirdjian, 1999) that the method of analysis and design for the solid beam may not be 

suitable for the castellated beam. Design guidance on the strength and stiffness for 

castellated beams is available in some countries. However, again, most of them do not 

take into account the shear effect. As far as the bending strength is concerned, 

neglecting the shear effect may not cause problems. However, for the buckling and for 

the calculation of serviceability, the shear weakness due to web openings in castellated 

beams could affect the performance of the beams and thus need to be carefully 

considered.  

 

The previous researches showed that the responsibility of flange is to resist a large part 

of the flexural forces. In contrast, according to (Anupriya and Jagadeesan, 2014), most 

of the shear forces are carried by the web. The web openings will not only lead to a 

decrease of web in carrying shear forces, but also a decrease in torsional stiffness of 

castellated beams; the latter is concerned in relation to lateral torsional buckling.        

Clause 4.15.4.5 of BS 5950-4 demonstrates some guidance for the determination of the 

lateral–torsional buckling moment of members with web openings. It states that the 

method used to determine the lateral buckling resistance moment of solid web beams 

can be used for beams with web openings using the section properties at the centreline 

of an opening, i.e. the reduced cross-section properties. Therefore, the calculations of 

the safe design of castellated beams should take into account the influence of the lateral-

torsion buckling which depends on cross-sectional properties and the depth of the beam 

such as the consideration of the effect of flexural and shear capacity. 

 

The design of castellated beams requires the consideration of the lateral-torsion 

buckling in addition to the flexural and shear capacity. The previous studies explained 

that the cross-sectional properties and the depth of the beam can affect the lateral-

torsional buckling. The castellated beam is more sensitive to lateral-torsional buckling 

because it is deeper and more slender than traditional I-beam and the presence of web 

openings reduces the torsional stiffness of the web. Note that for long span beams, it is 

the beam stiffness that dominates the loading capacity of the beam. 
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1.2. The problem statement and objectives  

The transverse deflection and lateral-torsional buckling of structural members are 

usually caused by dead loads and live loads such as the weight of the building and 

human activities. In castellated beams’ structure, the problem associated with transverse 

deflection and lateral-torsional buckling is also influenced by the web openings. 

Traditionally, the main serviceability criteria are to limit deflection under a design load 

as a percentage of the length of the beam (i.e., for example, l/250 where l is the beam 

length). Therefore, the designing procedure of beam needs to consider three different 

issues. The first issue is the strength, the second is the deflection and the last one is the 

lateral torsional buckling. 

    

 

Figure 1-2 A typical castellated beam 

 

 

At the present time, three different methods (Pritykin, 2015) are used to determine the 

deflections of castellated beams; one is based on the theory of composed bars, one is 

using the theory of Vierendeel truss, and one is the finite element method (FEM). The 

first two are the simplified empirical methods; whereas the last one is the numerical 

method which could provide more accurate results. However, the use of FEM is quite 

complicated and needs to have skills and experience. The FEM software are also 

expensive, the use of which requires some training. In contrast, the analytical solution is 

simple, easy to use and can be used directly and its key for validating FEM model.  
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The aim of this study is firstly to investigate the effect of web openings on the 

transverse deflection and lateral-torsional buckling of castellated beams by using both 

analytical and numerical methods. The second aim is to focus on the effect of both the 

geometric nonlinearity and material inelasticity on castellated beams under uniformly 

distributed loads with different boundary conditions, through investigating the load-

deflection curve and predicting the value of lateral-torsional buckling moment capacity 

by using nonlinear numerical solution. The third aim is to study the free vibration, static 

buckling and dynamic instability of castellated beams subjected to transverse periodic 

loading by developing analytical solutions.  

The purpose of developing analytical solutions is for the design and practical use, while 

the numerical solutions to be developed are for the validation of the analytical solutions. 

The analytical solution will be developed using the classical principle of minimum 

potential energy, whereas the numerical solutions will be obtained using the commercial 

software ANSYS. The detailed objectives of the research are as follows: 

 

 To investigate the effect of web openings on the transverse deflection of 

castellated beams subjected to a uniformly distributed transverse load. 

 To develop analytical solutions of transverse deflection of castellated beams 

subjected to a uniformly distributed transverse load with/without non-uniform 

temperature. 

 To evaluate the shear-induced transverse deflection of castellated beams subjected 

to a uniformly distributed transverse load. 

 To perform linear and nonlinear finite element stress analyses of castellated beams 

using 3D linear 4-Node thin shell elements (SHELL181) and to validate the 

analytical solutions. 

 To enhancing the knowledge of the effect of web openings on the lateral-torsional 

buckling of castellated beams subjected to a uniformly distributed transverse load. 

 To develop analytical expressions for the critical load of lateral-torsional buckling 

of castellated beams subjected to a uniformly distributed transverse load. 
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 To perform linear and nonlinear finite element also inelastic behaviour lateral-

torsional buckling analyses of castellated beams using three-dimensional shell 

elements and to validate the analytical expressions of the critical load of lateral-

torsional buckling. 

 To develop analytical expressions for the free vibration (frequency of the lateral-

torsional vibration), static buckling and dynamic instability of castellated beams 

subjected to transverse periodic loading by developing analytical solutions. 

1.3. Methodology 

The main focus of the present study is on the castellated beam for providing economical 

and safe design to prevent the beams from the shear, flexural and buckling failures. The 

outline of the research program was summarized in Figure 1-3. 

 

The first term of the research program is to calculate the maximum deflection of the 

castellated beam subjected to a uniformly distributed load by developing the linear 

analytical solution, which is derived, based on the principle of minimum potential 

energy. Moreover, linear 3D finite element method is performed by adopting program 

ANSYS Mechanical 17.2 software for validation the results of analytical solution. 

 

In the second term, the second order of total potential energy principle is presented to 

develop the analytical method for calculating the critical load of lateral-torsional 

buckling of the castellated beam subject to a uniformly distributed load. In addition, 

linear finite element method is used in the numerical analysis where a commercial 

program ANSYS Mechanical 17.2 software package is used to model the castellated 

beam in 3D for the validation of the analytical solutions.  

 

Nonlinear finite element method is also used in this thesis to enhance different research 

objectives and to understand the behaviours of castellated beams subjected to a 

uniformly distributed load in linear elastic and nonlinear performance. Nonlinear 

analysis, which takes into account the effect of both the geometric nonlinearity and 

material inelastic, was conducted by using a commercial program ANSYS Mechanical 

17.2 software package. 
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Another aim of the thesis is to investigate the free vibration, static and dynamic 

instability of castellated beams subjected to transverse periodic loading. Bolotin’s 

method is used to perform the dynamic instability analysis. 

 

Furthermore, this thesis has presented a tool called ‘solution Tools’ that enhances the 

efficiency of the solution process during stages of analytical and numerical analysis. 

The 'solution Tools’ includes some of the mathematical programming, such as Maple, 

and MS Excel spread sheets.  

The analytical results are compared and discussed. The details of research methods used 

are listed below: 

 The principle of minimum potential energy theory is used to develop the analytical 

method for determining the maximum deflection of castellated beams subjected to a 

uniformly distributed load with/without non-uniform temperature distribution. 

 Second order of the total potential energy theory is used to develop the analytical 

method for determining the critical load of lateral-torsional buckling of castellated 

beams subjected to a uniformly distributed transverse load. 

 Bolotin’s method is used to perform the dynamic instability analysis of castellated 

beams subjected to transverse periodic loading. By assuming the instability modes, 

the mass, stiffness, and geometric stiffness, matrices are derived using the kinetic 

energy, the strain energy and the potential of applied loads. 

 Maple mathematical program is used for solving and simplifying the equations of 

analytical solution and coupled to MS Excel, which is used to collect characters’ 

analysis input (load cases, lengths, dimensions of cross-sections, moment of inertia 

and area of the section) to find the results and show it in tables and figures. 

 Linear and nonlinear finite element method (FEM) is used for validating the 

analytical solutions. 
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Figure 1-3 Methodology and research program 

 

1.4. Organization of thesis  

The thesis is organized into seven main chapters (see Figure 1-4). Chapter 1 provides a 

brief background about the castellated beam, the general assumptions used for this study 

and the motivation of the research. 

 

Chapter 2 contains a literature review of castellated beams, which presents a complete 

overview of failure modes, analysis and design methods of castellated beams. This 

chapter focuses on several previous studies about castellated beams and theoretical 
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analysis methods of castellated beams. Internet search engines (Google scholar, TU 

Delft repository, American Institute of Steel Construction (AISC), Science Direct etc.) 

are used to find the resources of relevant studies. The knowledge gap and context for 

the contributions of this research are also presented at the end of this chapter. 

 

Chapter 3 introduces the approach of the analytical method, which is used in this study. 

The calculation of maximum deflection of the castellated beam subjected to uniformly 

distributed loads, with/without non-uniform temperature distribution, with different 

boundary conditions, takes into account the shear effect of web openings. The 

comparison of results obtained from the analytical and numerical methods are also 

provided in this chapter.  

 

Chapter 4 covers a literature review of lateral-torsional buckling castellated beams that 

discusses a complete overview of factors that influence lateral-torsional buckling, and 

current design philosophy of lateral-torsional buckling resistance of I-beam with web 

openings. This chapter focuses on several previous studies about the calculation 

methods of lateral-torsional buckling resistance of castellated beams. In addition, the 

focuses are on the second-order elastic analysis to develop a simple method to predict 

the critical load of lateral-torsional buckling of castellated beams subjected to a 

uniformly distributed transverse load. The comparison of results obtained from the 

analytical and numerical methods are also provided in this chapter. 

  

Chapter 5 presents the nonlinear finite element numerical analyses of castellated beams 

subjected to a uniformly distributed transverse load. Moreover, the nonlinear results are 

compared with the linear analytical and linear numerical solutions given in Chapter 4 

for investigating the load–deflection relation characteristics and lateral-torsional 

buckling of castellated beams under uniformly distributed transverse load.  

 

Chapter 6 discusses the dynamic instability of castellated beams. In addition, analytical 

solutions for calculating the free vibration, static buckling and dynamic instability of 

castellated beams subjected to transverse periodic loading, are developed. Some 

important features of the castellated beams in association with dynamic loading are 

highlighted in this chapter. 
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Chapter 7 presents the main conclusions that are drawn from this study and provides 

the suggestions and recommendations for future study. 

 

Figure 1-4 Organisation diagram of thesis 
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CHAPTER TWO 

 

2. LITERATURE REVIEW 

2.1. History of development of fabrication method 

It was reported by Seimaini and Das in 1978 (Bake, 2010), that the first use of the 

castellated beam was in 1910 in USA by Horton, who was working on the Chicago 

Bridge and Iron Works. This process consisted of cutting the web of the beam and 

re-joining the two parts by welding to get a beam that has more strength. However, 

the more general concept of fabricating a castellated beam was adopted in 1935 by 

the engineer Boyd, who was working in the British Structural Steel Company, 

Argentina (Knowles, 1991). According to Knowles, Boyd found a solution to 

strengthen a beam by using a simple way; that is to cut the beam web and weld 

another, which he cut and welded in the same method. As a result, the new beam has 

the capacity of flexural resistance more than the original beam by approximately   

20-30% because of increasing the depth by about 50% according (Sherbourne and 

Van Oostrom, 1972). In 1940, this product was marketed in the UK and known as 

the Boyd beam. Later, this beam's name was replaced by ‘castle-like’ or 

‘battlemented’, which refers to the pattern of cutting along the centreline of the web 

in a zigzag. (Knowles, 1991) 

 

After the Second World War, the castellated beam was used throughout Europe 

because the cost of manufacture was not expensive where the cost of labour was 

cheap and the price of material was high. In other words, the ratio of labour cost to 

material cost is low. The number of sections of beams, which were available in 

European factories, was also limited at that time. 
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Increasing demand for castellated beams led to finding a way to make the fabrication 

process more accurate and fast. Litzka Stahlbau Boyer (1964) developed a process 

called the Litzka process, which is very efficient using equipment that gives the 

designers more suitable design requirements such as the depth of beam, the 

dimensions of openings, the angle of openings, the shape of the opening and the 

spacing between the openings (Bradley, 2003). 

 

Nowadays the fabrication method of castellated beams is done by cutting the web of 

hot rolled I-sections according to a regular alternating pattern along the web by using 

either oxy cutting or plasma cutting and then welding teeth of the tee-sections of 

halves after one of the halves is shifted. The whole process is controlled 

automatically by a computer. Figure 2-1 shows a typical example of the process of a 

castellated beam.  

 

 

Figure 2-1 Fabrication of a castellated beam starting from a plain-webbed parent 

section.(Sonck,2014) 

 

2.2. The failure modes of castellated beams 

For many years, castellated beams have been used in construction because the 

responsibility of a construction engineer is to design the structure according to safety 

and serviceability considerations, while considering functional requirements 

according to the use for which the construction is intended. Extensive study has been 

carried out by researchers who are working in the construction field to identify the 

behaviour of castellated beams when they are loaded with different types of loads. It 

was found that the castellated beam could fail in various different modes depending 

on the dimensions of the beam and the type of loading as well as the boundary 
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conditions of the beams. Kerdal and Nethercot (1984) informed the potential failure 

modes, which possibly take place in castellated beams. Also, they explained the 

reasons for the occurrence of these failure modes. For instance, shear force and web 

weld rupture cause a Vierendeel mechanism and web post-buckling. Additionally, 

they pointed out that any other failures whether caused by a flexural mechanism or a 

lateral-torsional instability is identical to the equivalent modes for beams without 

web opening. 

 

2.3. Local failure modes 

The aim of this section is to highlight the failure modes of castellated beams 

occurred due to web openings, which is normally located near the opening in the 

web posts of the beam. These failures are called local failure modes (Verweij, 2010), 

which have been observed and documented in existing studies. In a study done by 

Sonck (2014) four different failure modes were defined, namely, the Vierendeel 

mechanism caused by web opening, the web post failure also caused by web 

opening, the shear and flexural failure caused by beam shear force, and the flexural 

failure by bending moment.  

 

2.3.1. Vierendeel failure mode 

Altifillisch et al. (1957) and Toprac and Cooke (1959) explained the Vierendeel 

failure mode of the castellated beam. This failure mode occurs when a castellated 

beam is subjected to high shear forces, which generate the primary moment that is 

the conventional bending moment and the secondary moment that is called a 

Vierendeel moment. These loads are carried by parts of the beam, which are located 

between the openings where they behave as an assembly of individual structural 

components, consisting of vertical web posts, upper and lower horizontal T-sections. 

Halleux (1967); Hosain and Spiers (1973); (Chung et al. (2001); Liu and Chung 

(2003); (Durif et al. (2011); Tsavdaridis and D’Mello (2012) and (Durif et al. 2013) 

also discussed the Vierendeel failure mechanism of beams with various different 

shapes of openings.  
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In the castellated beam, the global bending moment is redistributed as two axial 

forces over the horizontal upper and lower T-sections. The global shear force is 

divided into two shear forces over the upper and lower T-sections. The location of 

these forces in the components is determined by supposing an inflection point in the 

middle of each horizontal T-section, where the local bending moment is zero 

assuming that the shear forces in both part sections are equal. According to the static 

equilibrium equation, the results of local forces in the upper, lower and middle of the 

T-section will be a Vierendeel moment at both T-sections. Therefore, the increase of 

horizontal opening length causes an increase in the Vierendeel moment. 

 

Because of the arrival of the T-sections around an opening to the maximum 

resistance against the local forces and secondary bending, the castellated beam will 

fail by the Vierendeel mechanism which is dominant in the section openings due to 

the formation of plastic hinges in the four corners of these openings. Figure 2-2 

illustrates Vierendeel Truss Analogy and Vierendeel effect. 

 

Kerdal and Nethercot (1984) investigated the Vierendeel failure mechanism by using 

both analytical and experimental methods. They identified the parameters that are 

related to the Vierendeel failure mode, such as members with short spans (for which 

shear dominates), wide openings (with large secondary bending moments) or 

shallow tee sections (low plastic resistance of the tees), etc. 

 

 

Figure 2-2 Vierendeel failure (a) Vierendeel Truss Analogy, (b) Local failure - Vierendeel 

effect (Hosain and Spiers 1973) 
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2.3.2. Web post failure 

Slender web-posts in association with deep I-sections present instability in regions 

between web openings, which are called web posts. Web post failure is the 

consequence of the presence of the axial and shear forces due to the global moment 

and global shear force as well as the local Vierendeel moments that encourage 

compression in the web post. 

 

2.3.3. Web post buckling 

The possibility of the buckling of the web post occurring between web openings of 

castellated beams (Zaarour and Redwood, 1996) is due to the presence of the couple 

of the horizontal shear forces effective at mid-depth of the web-post, which is 

combined with double curvature bending over the height of the post, leading to a 

complex failure mode, which is called web post buckling. The technique of the web 

post buckling failure mode thought to be caused by one of opening edge of the web 

will behave under tension stress but the opposite edge in compression stress. In other 

words, the buckling will happen across the compression line, as shown in        

Figure 2-3. At a result, the buckling will cause a twisting effect of the web-post 

across its height. Kerdal and Nethercot (1984) stated that shear force and web weld 

rupture can cause the Vierendeel failure mode and also web post-buckling.  

 

 

Figure 2-3 Web buckling due to shear (Badke-Neto et al., 2015) 

 

Pourbehi and Pirmoz (2015) also reported the web-post buckling is due to the shear 

response and presented some important factors used for the design of castellated 

beams. Their data was collected from a numerical study on 300 castellated beam 



CHAPTER TWO                                                                   LITERATURE REVIEW 

16 

models. Besides the work mentioned above, the web post buckling failure mode in 

castellated beams has also been investigated by other researchers. Hosain and Spiers 

(1973); Redwood and Demirdjian (1998) and Tsavdaridis and D'Mello (2011) also 

investigated the web post buckling failure mode occurred in castellated beams. 

 

2.3.3.1. Compression buckling of web post  

In 1990 Ward (Sonck, 2014) stated that – in order to reduce the effect of bearing and 

buckling, stiffeners should be used at the reaction location and stress concentrated 

points, which can be applied directly at the web post of the castellated beams. Hosain 

and Spiers (1973) did an investigation on 12 simple castellated beams and reported 

that because of the action of concentrated load, web buckling causes premature 

failure (see Figure 2-4). This failure can occur in local loading areas or reaction 

force region (Kerdal and Nethercot, 1984). While the buckling behaviour of the 

beam of solid web is not affected by the loaded region size, the buckling behaviour 

of the castellated beam is affected by the concentrated loads (Okubo and Nethercot, 

1985). 

 

Figure 2-4 Web buckling due to compressive stress (Hosain and Spiers, 1973). 

 

2.3.3.2. Bending of web post failure due to moments in web-posts 

Bending of web posts failure has investigated by a number of researchers and have 

obtained that this failure occurs in castellated beams because the in-plane bending 

resistance of the web post of castellated beams will be reduced by the present 
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bending moment in the web post (Müller et al, 2006). He found that the web posts 

bending failure can be avoided by increasing the web post width. 

 

2.3.3.3. Web welds failure 

Hosain and Spiers (1971) investigations are concerned about the failure at weld joint 

area between two segments of a web post in castellated beams (Kerdal and 

Nethercot, 1984). Practically, the horizontal shear stresses located in the web post 

may potentially exceed the yield strength of the welded throat, which can thus cause 

the web welds to fail within a web-post. Note that the web weld failure becomes 

more vulnerable if the length of weld throat is short (Maalek, 2004). Figure 2-5 

shows the web welds failure, which occurred during an experimental test, carried out 

by Hosain and Spiers (1973). 

 

 

Figure 2-5 Web welds failure (Erdal and Saka, 2013). 

 

2.3.4. Shear resistance 

2.3.4.1. Shear failure 

Reduction of the local carrying capacity of web posts causes shear failure of the 

beam (Müller et al., 2006) and (Tsavdaridis and D'Mello, 2011). It has been reported 

that the shear resistance of castellated beams can be determined by the sum of the 

vertical shear capacity of top and bottom flanges. However, this state of failure is 
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affected by the cross section of web openings and Vierendeel effects (Demirdjian, 

1999). 

 

2.3.4.2. Web shear buckling  

Aglan and Redwood (1974) discussed the effect of the spacing between web 

openings on the appearance of web shear buckling failure. Redwood and Demirdjian 

(1998) reported that high shear forces in a castellated beam could cause the web 

shear buckling failure. Demirdjian (1999) also carried out similar investigation. 

 

2.3.4.3. Flexural failure 

Toprac and Cooke (1959) and Halleux (1967) discussed the flexural failure mode of 

castellated beams (see Figure 2-6). It was reported that applying high bending 

moment on the castellated beam can lead to flexural failure. 

 

 Figure 2-6  Flexure mechanism (Halleux, 1967). 

 

2.4. Global failure modes 

The global failure modes are those caused by global buckling such as flexural 

buckling, lateral-torsional buckling, and lateral buckling of the beams (Verweij, 

2010).  
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2.4.1. Lateral-torsional buckling 

It was reported that the castellated beam with long span often leads to buckling 

laterally prior to reaching maximum flexural strength, when sufficient lateral support 

is not provided (Demirdjian, 1999). Lateral-torsional buckling failure of slender 

beams has been studied extensively since 1980 (Kim et al., 2016). Kerdal and 

Nethercot (1984); Korrani et al., (2010) and Sonck et al., (2014) explained the 

lateral-torsional buckling mechanism. The fact that the castellated beam has a large 

bending stiffness around one axis and a small bending stiffness around other axis 

leads the castellated beam to be vulnerable to lateral-torsional buckling unless some 

restraints are provided.  

 

Additionally, the presence of web openings causes a decrease of the overall sectional 

torsional stiffness, which further decreases the resistance of the beam to lateral-

torsional buckling failure. Kerdal (1982) and Demirdjian (1999) reported that the 

torsional stiffness of the web is affected by deeper and more slender section 

properties. Figure 2-7 illustrates the shape of castellated beams at lateral-torsional 

buckling failure. Mohebkhah and Showkati (2005) used finite element method to 

investigate the effects of slenderness on the moment-gradient factor and of elastic 

lateral bracing stiffness on the flexural torsional buckling. Zirakian and Showkati 

(2006) carried out an investigation by using experimental and finite elements method 

to examine the lateral torsional or distortional buckling behaviour of castellated 

beams. Sonck and Belis (2016) determined the weak-axis flexural buckling 

resistance of castellated beams and cellular beams. The modified diagrams of 

castellated beams and cellular beams and the modified residual stress pattern effect 

are examined. In this study, critical buckling load and the buckling resistance of 

simply support castellated beams and cellular beams are studied using a numerical 

method. 
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Figure 2-7 Lateral-torsional buckling (Kerdal, 1982). 

  

2.4.2. Lateral buckling failure due to moments in web-posts 

A beam that has a large slenderness and significant web openings, like the long span 

castellated beam, can easily fail in a form called lateral buckling of web posts 

(Radić. and Markulak, 2007). A number of researchers have investigated the lateral 

buckling of web posts of castellated beams and obtained corresponding critical 

moments to cause the lateral buckling of web posts. Hosain and Spiers (1973); 

Pattanayak and Chesson (1974) and Aglan and Redwood (1974) found that, for most 

castellated beams the lateral buckling of web posts comes after the yielding starts in 

the web, which indicates that the failure is a combined one of material yield and 

buckling. Müller et al. (2006) found that the lateral buckling of the web posts could 

be avoided by increasing the web post width. Figure 2-8 shows the shape of lateral 

buckling failure of castellated beam (Showkati et al., 2012).   

 

 

Figure 2-8 Lateral buckling (Showkati, et al. 2012). 
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2.5. The studies about deflection and shear effect  

Sherbourne and Van Oostrom (1972) developed a numerical computer program for 

the analysis of castellated beams considering both elastic and plastic deformations by 

using practical lower limit relationships for shear, moment and axial force interaction 

of plasticity.  

 

Hosain et al. (1974) demonstrated that the finite element method is a suitable method 

for calculating the deflection of symmetrical section castellated beams. They divided 

the castellated beams into an assemblage of elements, which are used to get the 

stiffness matrix.  

 

Srimani and Das (1978) conducted an analysis on five experimental groups of 

castellated beams to determine the deflection by using finite element method. 

Because of symmetry, only one half of the beam was modelled. The numerical 

results obtained were compared with experimental data obtained by other 

researchers. 

 

Knowles (1991) clarified the previous methods, which have been adopted to 

determine design ultimate load and deflection by performing elastoplastic analysis. 

He also discussed the design curves used for the castellated beam design.  

 

Zaarour and Redwood (1996) carried out experiments on 12 simply supported 

castellated beams with a concentrated load applied at the mid of span which gives a 

low moment-to-shear ratio. It demonstrated the possibility of the occurrence of the 

buckling of the web posts between web openings. Nonlinear finite element analysis, 

taking into account plastic deformation, was conducted to calculate the buckling 

loads. A comparison was made between the results they obtained and the results of 

previous studies.  

 

Maalek (2004) calculated the shear deflection of the straight-sided tapering 

cantilever of the rectangular cross section by using a theoretical method. The 

formulae he used were based on Timoshenko’s beam theory and virtual work 
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method. His results were compared with the results obtained from finite element 

analysis.  

 

El-Sawy et al. (2009) mentioned that the influence of shear deformation on 

castellated beams is directly proportional to the web openings depth and inversely 

proportional to the length of the castellated columns and web post width. The wide 

range of castellated columns with different cross sections, lengths, and restricted 

conditions are examined to estimate the resistance of buckling about the major axis 

by using a simplified procedure which is presented in his study. The analytical 

results were validated with results obtained by finite element analysis. 

 

Gholizadeh (2011) utilized artificial intelligence technologies called back-

propagation (BP) neural network and adaptive neuro fuzzy inference system 

(ANFIS) methods to build a program for predicting the critical load of castellated 

beams susceptible to web-post buckling. To validate his results, he also carried out 

the nonlinear finite element analysis using NASTAN software and examined the 

failure load and failure mode of the beams. It was found that the BP network and 

ANFIS methods are able to predict accurate results for the web-post buckling of 

castellated beams. 

 

Aminian et al. (2012) proposed new design formulas for calculating the load 

carrying capacity of castellated beams by using linear genetic programming and 

integrated search algorithms. It was found that the use of machine learning system is 

an active method to validate the failure load of castellated beams.  

 

Soltani et al. (2012) studied the effect of nonlinearity in material and/or geometry on 

the failure model prediction of castellated beams. Their study was done by using 

MSC/NASTRAN software to find out bending moments and shear load capacity, 

which are compared with those published in literature.  

 

Erdal and Saka (2013) analysed the cellular beams with different numbers of web 

openings and spacings by using nonlinear finite element method, which was carried 

out by using ANSYS software. It was found that the combined local buckling, web-
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post buckling, and Vierendeel failure occur on cellular beams due to the externally 

applied loads in different positions and the lateral supports. They also conducted the 

experimental tests on 12 cellular beams and the experimental results were used to 

validate the numerical results. 

 

Based on Vierendeel failure, Panedpojaman and Rongram (2014) conducted a study 

to predict the load carrying capacities by using SCI P100’s method and Chung et 

al.’s formula. The results were compared with those obtained from the finite element 

analysis method. The load carrying capacities were presented in terms of the 

moment-shear interaction curve for studying Vierendeel’s effect on the overall 

behaviour of the cellular beams. Moreover, the investigations that were carried out 

on 120 non-linear finite element models of cellular beams with beam section sizes 

and opening ratios of 0.5 and 0.8 are reported. The results showed that the FE 

interaction curve’s shape is slightly affected by the sizes of the steel sections. The 

study suggested a simple quadratic equation to estimate the interaction based on 

Vierendeel failure. 

 

Recently, Wang et al. (2014) conducted a parametric study on the large deflection 

analysis of castellated beams at high temperatures. They used finite element method 

to calculate the growth of the end reaction force, the middle span deflection, and the 

bending moments at susceptible sections of castellated beams. The results were 

compared with those of corresponding solid beams to examine the effect of web 

openings.  

 

Axial compression buckling of castellated columns was investigated by Yuan et al. 

(2014), who derived an analytical solution for critical load based on stationary 

potential energy and considering the effect of the web shear deformations on the 

flexural buckling of simply supported castellated column. The analytical solution 

was validated by using the numerical results obtained from finite element analysis. 

  

Menkulasi et al. (2015) analysed 30 models of castellated beams subjected to 

concentrated loads with different cross sections and loading positions for evaluating 

the resistance of castellated beams to the concentrated load with and without 
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stiffeners. The study was carried out by employing nonlinear finite element analysis 

method. 

 

Morkhade and Gupta (2015) discussed the effect of the dimensions and positions of 

web holes and locations of stiffeners around the holes on the behaviour of the 

perforated steel I beam with rectangular web holes. The study showed that the load 

carrying capacity of the beam is affected by the positions of holes. Experimental and 

finite element analysis methods were employed in this study. The nonlinear finite 

element analysis was carried out by using ANSYS software. 

 

More recently, Sonck et al. (2015) presented a comprehensive comparison between 

the deflection results of cellular and castellated beams obtained from numerical 

analysis and those obtained from different simplified design codes. The beams 

studied involve various web opening dimensions, different parent sections and 

different span lengths. The comparison showed that the design codes are not accurate 

for short span beams and conservative for long span beams.  

 

Yuan et al. (2016) adopted the principle of minimum potential energy to derive an 

analytical method to calculate the deflection of castellated/cellular beams with 

hexagonal/circular web openings, subjected to a uniformly distributed transverse 

load. The analytical results were validated by using numerical results obtained from 

finite element analysis using ANSYS software.  

 

Lei et al. (2017) investigated the buckling behaviour of castellated columns exposed 

to a fire when they were also subjected to axial compression. In their study, an 

analytical equation was developed based on the web opening shear effect and the 

non-uniform cross-section temperature distribution for predicting the critical 

buckling load of castellated columns. 

 

Martins et al. (2017) investigated the lateral-torsional buckling of cellular beams. 

Nonlinear geometric and material analyses were developed for modelling the 

behaviour of cellular beams with different restricted conditions and different loading 

cases, which are achieved by using ABAQUS 6.12 software. In their study, the 
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numerical results, which took into account geometric imperfections, were compared 

with those obtained by using ABNT NBR 8800:2008 standards and by Abreu et al. 

(2010). 

 

2.6. Research gaps 

The goal of the literature review is to identify the research fields, which are needed 

to further study and investigate. As a result of the previous research efforts, the 

general behaviour of castellated beams and understanding different failure modes, 

which occur during the construction and/or loading, were discussed. Due to the 

geometric particulars of the beam, however, it was remarkable to note that most of 

the theoretical approximate methods are interested in design calculations of the 

castellated beams for long span beams where the shear effect is negligible. However, 

the castellated beams/columns are used not only for long span beams/columns but 

also for short beams/columns. Owing to the complexity of section profile of the 

castellated beams, the shear-effect caused by the web opening on the calculation is 

not fully understood.  

 

In addition, the static load still dominates the current designing of structures for 

castellated beams, in spite of the significance of the dynamic response to machinery 

loading and to extreme environmental loads. Actually, there are no accurate 

calculation methods available in the literature to perform these analyses.  

 

Also, it seems that the significant problem of the castellated beam has remained 

unresolved. European building standards do not have formulas for design 

calculations of castellated beams, which include shear deformations at the static and 

dynamic state. 

 

In literature, researchers have adopted the finite element method to predict the 

calculations design of castellated beams by using different software programs such 

as (MS/NASTRAN, ABAQUS, and ANSYS). However, these programs need to be 

used efficiently because any error could lead to significant distortions in results. In 
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spite of the potential programs, only the case of simply supported castellated beams 

has been discussed in most of the studies. 

 

The development of the analytical methods to predict the static and dynamic 

calculations of the castellated beam took place in the present research. The equations 

of the analytical solutions are developed based on the principle of minimum potential 

energy. In order to improve the accuracy and efficiency of this method, shear rigidity 

factor is determined by using suitable numerical techniques. 
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CHAPTER THREE  

 

3. DEFLECTION CALCULATION OF CASTELLATED BEAMS  

3.1. Introduction 

This chapter firstly puts emphasise on the development of an approximate method of 

deflection calculation of castellated beams subjected to a uniformly distributed 

transverse load with/without temperature effect. The method is developed based on the 

principle of minimum potential energy. The analytical method developed here considers 

the shear effect of web openings. To demonstrate the analytical method, comparisons 

between the analytical results, previous studies from the literature, and linear FEA 

numerical computations are also provided. 

 

3.2. Analytical philosophy of deflection analysis of castellated beams 

An approximate method of deflection analysis of castellated beams under a uniformly 

distributed transverse load is presented in this chapter. The method is developed based 

on the principle of minimum potential energy. 

 

Because of the presence of web openings, the cross-section of the castellated beam is 

now decomposed into three parts to calculate the deflection and stress, two of which 

represent the top and bottom T-sections, one of which represents the mid-part of the 

web. The analysis model for this study is illustrated in Figure 3-1 (a). 

 

In this study, the cross-section of the castellated beam is assumed to be doubly 

symmetric, with the flange width and thickness as bf  and tf, the web depth and thickness 

as hw and tw, and the half depth of hexagons as a. The half of the distance between the 
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centroids of the two T-sections is e and the hexagonal opening height is 2a. For a 60° 

cutting angle the side length of the hexagonal opening is (
2a

√3
) and the width of one 

sloping edge of hole S0  is calculated from (
orignal depth of beam

tan60
), in which 𝑆0  is (

a

√3
). 

Hence the distance from the centreline to the centreline of adjacent castellation holes 

can be found according to this formulae S = 2 (
2a

√3
+ S0), which equals to (

6a

√3
) 

(Demirdjian, 1999). 

  

 
 

Figure 3-1 (a) Notations used in castellated beams, (b) displacements and (c) internal forces 

 

Under the action of a uniformly distributed transverse load, the beam section will have 

axial and transverse displacements as shown in Figure 3-1 (b), where (u1, w) and      

(u2, w) are the axial displacements and the transverse displacements of the centroids of 

the upper and lower T-sections. All points on the section have the same transverse 
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displacement according to the use of beam model (Yuan et al., 2014). The 

corresponding axial strains ε1x in the upper T-section and ε2x in the lower T-section are 

assumed to be linearly distributed, and so do the displacements. Thus, the displacements 

can be expressed as follows: 

In the upper T-section： − (
hw

2
+ tf) ≤ z ≤ −a 

 𝑢(𝑥, 𝑧) = 𝑢1(𝑥) − (𝑧 + 𝑒)
𝑑𝑤

𝑑𝑥
 3-1 

In the lower T-section：𝑎 ≤ 𝑧 ≤ (
ℎ𝑤

2
+ 𝑡𝑓) 

 𝑢(𝑥, 𝑧) = 𝑢2(𝑥) − (𝑧 − 𝑒)
𝑑𝑤

𝑑𝑥
 3-2 

For the middle part between the two T-sections: −𝑎 ≤ 𝑧 ≤ 𝑎 

 𝑢(𝑥, 𝑧) =
𝑢1(𝑥) + 𝑢2(𝑥)

2
−

𝑧

𝑎
(
𝑢1(𝑥) − 𝑢2(𝑥)

2
− (𝑒 − 𝑎)

𝑑𝑤

𝑑𝑥
) 3-3 

The corresponding axial strains in the two T-sections can be determined by using the 

strain-displacement relation as follows: 

For the upper T-section: 

 𝜀1(𝑥, 𝑧) =
𝑑𝑢1

𝑑𝑥
− (𝑧 + 𝑒)

𝑑2𝑤

𝑑𝑥2
 

3-4 

For the lower T section, 

 𝜀2(𝑥, 𝑧) =
𝑑𝑢2

𝑑𝑥
− (𝑧 − 𝑒)

𝑑2𝑤

𝑑𝑥2
 

3-5 

The shear strain 𝛾𝑥𝑧  in the middle part between the two T-sections can also be 

determined using the shear strain-displacement relation as follows: 

in which, 

 𝛾𝑥𝑧(𝑥, 𝑧) =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= −

𝑢1 − 𝑢2

2𝑎
+

𝑒

𝑎

𝑑𝑤

𝑑𝑥
 3-6 

 𝑒 =
𝑏𝑓𝑡𝑓 (

ℎ𝑤+𝑡𝑓
2 )+𝑡𝑤 (

ℎ𝑤

2 − 𝑎) (
ℎ𝑤 + 2𝑎

4 )

𝑏𝑓𝑡𝑓+𝑡𝑤 (
ℎ𝑤

2 − 𝑎)

 3-7 
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For simplicity of presentation, the following two new functions are used: 

For the conservative system in the equilibrium state, the effect of a uniformly 

distributed transverse load on castellated beams will lead to internal forces. To 

determine the distribution of internal forces at an opening, Lawson and Hicks (2011) 

reported that each of the T-sections is subjected to combined axial force, bending and 

shear. According to Figure 3-1 (b) these internal forces can be obtained as follows: 

 𝑁1 = 𝐸𝑏𝑓 ∫ 𝜀1𝑥

−ℎ𝑤/2

−(𝑡𝑓+
ℎ𝑤
2

)

𝑑𝑧 + 𝐸𝑡𝑤 ∫ 𝜀1𝑥

−𝑎

−
ℎ𝑤
2

𝑑𝑧 = 𝐸𝐴𝑡𝑒𝑒

𝑑𝑢1

𝑑𝑥
 3-10 

 

 𝑀1 = 𝐸𝑏𝑓 ∫ (𝑧 + 𝑒)𝜀1𝑥

−ℎ𝑤/2

−(𝑡𝑓+
ℎ𝑤
2

)

𝑑𝑧 + 𝐸𝑡𝑤 ∫ (𝑧 + 𝑒)𝜀1𝑥

−𝑎

− 
ℎ𝑤
2

𝑑𝑧 = −𝐸𝐼𝑡𝑒𝑒

𝑑2𝑤

𝑑𝑥2
 3-11 

 

 𝑄3 = 𝐺𝑡𝑤 ∫ 𝛾𝑥𝑧

𝑎

−𝑎

𝑑𝑧 = 2𝐺𝑡𝑤(𝑒
𝑑𝑤

𝑑𝑥
−

𝑢1 − 𝑢2

2
) 3-12 

 

 𝑁2 = 𝐸𝑡𝑤 ∫ 𝜀2𝑥

ℎ𝑤/2

𝑎

𝑑𝑧 + 𝐸𝑏𝑓 ∫ 𝜀2𝑥

𝑡𝑓+ℎ𝑤/2

ℎ𝑤
2

𝑑𝑧 = 𝐸𝐴𝑡𝑒𝑒

𝑑𝑢2

𝑑𝑥
 3-13 

 

 𝑀2 = 𝐸𝑡𝑤 ∫ (𝑧 + 𝑒)𝜀2𝑥

ℎ𝑤/2

𝑎

𝑑𝑧 + 𝐸𝑏𝑓 ∫ (𝑧 + 𝑒)𝜀2𝑥

𝑡𝑓+ℎ𝑤/2

 
ℎ𝑤
2

𝑑𝑧 = −𝐸𝐼𝑡𝑒𝑒

𝑑2𝑤

𝑑𝑥2
 3-14 

 

where E is the Young's modulus and G is the shear modulus, 𝐴𝑡𝑒𝑒 and  𝐼𝑡𝑒𝑒 are the area 

and the second moment of area of the T-section, which are determined in their own 

coordinate system as follows: 

 𝐴𝑡𝑒𝑒 = 𝑏𝑓𝑡𝑓 + 𝑡𝑤 (
ℎ𝑤

2
− 𝑎) 3-15 

 

 𝑢𝛽 =
𝑢1 + 𝑢2

2
 3-8 

 𝑢𝛽 =
𝑢1 − 𝑢2

2
 3-9 
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 𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
𝑏𝑓(ℎ𝑤 + 2𝑡𝑓)

3

12
−

(2𝑎)3𝑡𝑤
12

−
(ℎ𝑤)3(𝑏𝑓 − 𝑡𝑤)

12
 3-17 

 

Because the upper and lower T-sections behave according to Bernoulli's theory, the 

strain energy of the upper T-section U1 and the lower T-section U2 caused by a 

transverse load can be expressed as follows: 

 

𝑈1 =
𝐸𝑏𝑓

2
∫ ∫ 𝜀1𝑥

2 𝑑𝑧𝑑𝑥

−
ℎ𝑤
2

−(𝑡𝑓+
ℎ𝑤
2

)

+

𝑙

0

𝐸𝑡𝑤
2

∫ ∫ 𝜀1𝑥
2 𝑑𝑧𝑑𝑥

−𝑎

−(
ℎ𝑤
2

)

𝑙

0

=
1

2
∫ [𝐸𝐴𝑡𝑒𝑒 (

𝑑𝑢1

𝑑𝑥
)

2

+ 𝐸𝐼𝑡𝑒𝑒 (
𝑑2𝑤

𝑑𝑥2
)

2

]

𝑙

0

𝑑𝑥 

3-18 

 

 

𝑈2 =
𝐸𝑡𝑤
2

∫ ∫ 𝜀2𝑥
2 𝑑𝑧𝑑𝑥

(
ℎ𝑤
2

)

𝑎

+

𝑙

0

𝐸𝑏𝑓

2
∫ ∫ 𝜀2𝑥

2 𝑑𝑧𝑑𝑥

(𝑡𝑓+
ℎ𝑤
2

)

ℎ𝑤
2

𝑙

0

=
1

2
∫ [𝐸𝐴𝑡𝑒𝑒 (

𝑑𝑢2

𝑑𝑥
)
2

+ 𝐸𝐼𝑡𝑒𝑒 (
𝑑2𝑤

𝑑𝑥2
)

2

]

𝑙

0

𝑑𝑥 

3-19 

 

Hence, the total of strain energy of the upper and lower T-sections can be expressed as 

follows: 

 𝑈𝑇 =
𝐸𝐴𝑡𝑒𝑒

2
∫ [(

𝑑𝑢1

𝑑𝑥
)

2

+ (
𝑑𝑢2

𝑑𝑥
)

2

]

𝑙

0

𝑑𝑥 + 𝐸𝐼𝑡𝑒𝑒 ∫(
𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥

𝑙

0

 3-20 

The mid-part of the web of the castellated beam, which is illustrated in Figure 3-1 (a), 

is assumed to behave according to Timoshenko’s theory (Yuan et al., 2014). Therefore, 

its strain energy due to the bending and shear Ub can be expressed as follows: 

 𝑈𝑏 =
1

2
∑𝐾𝑏 ∆2 3-21 

 

 

 
𝐼𝑡𝑒𝑒 =

𝑏𝑓𝑡𝑓
3

12
+ 𝑏𝑓𝑡𝑓 (

ℎ𝑤+𝑡𝑓

2
− 𝑒)

2

+
𝑡𝑤
12

(
ℎ𝑤

2
− 𝑎)

3

+ 𝑡𝑤 (
ℎ𝑤

2
− 𝑎) (

ℎ𝑤 + 2𝑎

4
− 𝑒)

2

 

3-16 
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where ∆ is the relative displacement of the upper and lower T-sections due to a pair of 

shear forces and can be expressed as(∆= 2𝑎𝛾𝑥𝑦), while Kb is the combined stiffness of 

the mid part of the web caused by the bending and shear, and is determined in terms of 

Timoshenko beam theory as follows: (Timoshenko and Gere,1961) 

 

where (𝐴𝑏 = 𝑡𝑤√3𝑎) is the equivalent cross-sectional area of the mid part of the web,    

(𝐼𝑏 = 𝑡𝑤(√3𝑎)
3
/12) is the second moment of area, and (𝑙𝑏 = 2𝑎) is the length of the 

Timoshenko beam; herein representing the web post length. Note that, the Young's 

modulus of the two T-sections is (𝐸 = 2(1 + 𝑣)𝐺) and the Poisson’s ratio is taken as   

v =0.3, the value of the combined stiffness of the mid part of the web caused by the 

bending and shear can be determined as follows: (Yuan et al., 2014) 

 𝐾𝑏 =
√3𝐺𝑡𝑤

4
 3-23 

As a result, for castellated beam the total shear strain energy of the mid-part of the 

web, 𝑈𝑠ℎ due to the shear strain 𝛾𝑥𝑦 can be calculated as follows:  

 𝑈𝑠ℎ =
√3

2
𝐺𝑡𝑤𝑎2 ∑ 𝛾𝑥𝑧

2

𝑛

𝑘=1

≈
√3𝐺𝑡𝑤𝑎2

2 ×
6𝑎

√3

∫𝛾𝑥𝑧
2 𝑑𝑥 =

𝑙

0

𝐺𝑡𝑤𝑎

4
∫𝛾𝑥𝑧

2 𝑑𝑥

𝑙

0

 3-24 

Letting the shear rigidity factor 𝑘𝑠ℎ =
1

4
 (Yuan et al., 2014) and substituting Eqs. (3-6) 

into (3-24), it gives the total shear strain energy of the mid-part of the web: 

 𝑈𝑠ℎ =
𝐺𝑡𝑤𝑒2𝑘𝑠ℎ

𝑎
∫(

𝑑𝑤

𝑑𝑥
−

𝑢𝛽

𝑒
)
2

𝑙

0

𝑑𝑥 3-25 

Note that, in the calculation of shear strain energy of Eq. (3-24) one uses the concept of 

smear model, in which the shear strain energy was calculated first for web without 

holes. Then by assuming the ratio of the shear strain energies of the webs with and 

without holes is proportional to the volume ratio of the webs with and without holes, the 

shear strain energy of the web with holes was evaluated, in which (𝐾𝑠ℎ =
1

4
)  was 

obtained. However, by using a two-dimensional linear finite element analysis        

 
1

𝐾𝑏
=

3𝑙𝑏
2𝐺𝐴𝑏

+
𝑙𝑏
3

12𝐸𝐼𝑏
 3-22 
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(Yuan et al., 2016) the value of the combined stiffness of the mid part of the web of the 

castellated beam caused by the bending and shears was found to be:  

 
𝐾𝑏 = 0.78 ×

√3𝐺𝑡𝑤
4

 
3-26 

which is smaller than that above-derived from the smear model. This leads to the shear 

rigidity factor(𝐾𝑠ℎ = 0.78 ×
1

4
). The reason for this is probably due to the smear model 

used for the calculation of the shear strain energy for the mid-part of the web in          

Eq. (3-24). 

 

However, it should be mentioned that the factor of (0.78) in Eq. (3-26) was obtained for 

only one specific section of a castellated beam. It is not known whether this factor can 

also be applied to other dimensions of the beams. A finite element analysis model for 

determining the shear rigidity factor 𝐾𝑠ℎ is therefore developed (see Figure 3-2 (c)), in 

which the length and depth of the unit are (4𝑎/√3) and(2𝑎 + 𝑎/2), respectively. In the 

unit the relative displacement (∆) can be calculated numerically when a unit load F is 

applied (see Figure 3-2 (c)). Hence, the combined rigidity (𝐾𝑏 =
1

∆
) is obtained. Note 

that in the unit model all displacements and rotation of the bottom line are assumed to 

be zero, whereas the line where the unit load is applied is assumed to have zero vertical 

displacement. The calibration of the shear rigidity for beams of different section sizes 

shows that the use of the expression below gives the best results and therefore            

Eq. (3-27) is used in the present analytical solutions:  

  𝐾𝑠ℎ = (0.76 −
𝑏𝑓

𝑙
) ×

1

4
 3-27 

Hence the value of the combined stiffness of the mid part of the web of the castellated 

beam caused by the bending and shear which is adopted in this thesis is: 

 𝐾𝑏 = (0.76 −
𝑏𝑓

𝑙
) ×

√3𝐺𝑡𝑤
4

 3-28 

where l is the length of the beam. Thus, the total potential energy of the castellated 

beam U is expressed as follows: 
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 𝑈 = 𝑈𝑇 + 𝑈𝑠ℎ 3-29 

The potential of the uniformly distributed load due to the transverse displacement can 

be expressed as follows: 

 𝑊 = 𝑞𝑚𝑎𝑥 ∫𝑤

𝑙

0

𝑑𝑥 3-30 

where 𝑞𝑚𝑎𝑥 is the uniformly distributed load, is calculated according to the maximum 

moment, which can be expressed in terms of design stress 𝜎𝑦 =
𝑀𝑦(ℎ𝑤+2𝑡𝑓)

2𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑
, as follows: 

 𝑞𝑚𝑎𝑥 = 16
𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑙2(ℎ𝑤 + 2𝑡𝑓)
 3-31 

where 𝜎𝑦 is the yield stress of castellated beam. 

In summary, the total potential energy of the castellated beam subjected to a uniformly 

distributed load can be expressed as follows: 

 

∏ = 𝐸𝐴𝑡𝑒𝑒 ∫(
𝑑𝑢𝛽

𝑑𝑥
)

2

𝑑𝑥

𝑙

0

+𝐸𝐼𝑡𝑒𝑒 ∫(
𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥

𝑙

0

+
𝐺𝑡𝑤𝑒2𝑘𝑠ℎ

𝑎
∫(

𝑑𝑤

𝑑𝑥
−

𝑢𝛽

𝑒
)
2

𝑑𝑥 − 𝑊

𝑙

0

 

3-32 

 

 

Figure 3-2 Shear strain energy calculation model: (a) unit considered, (b) shear deformation 

calculation model and (c) finite element model of 4a/√3 length unit and (2a+a/2) depth, loaded 

by a unit force F. 
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3.2.1. Deflection of simply supported castellated beam with uniformly distributed 

loads 

For a simply supported castellated beam: uα(x), uβ(x) and w(x) can be assumed as 

follows: 

 𝑢𝛽(𝑥) = ∑ 𝐵𝑚 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 3-34 

 

 𝑤(𝑥) = ∑ 𝐶𝑚 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 
3-35 

 

where 𝐴𝑚  , 𝐵𝑚, and 𝐶𝑚 (𝑚 = 1,2, … ) are the constants to be determined. It is obvious 

that the displacement functions assumed in Eqs. (3-33), (3-34) and (3-35) satisfy the 

simply support boundary conditions, that are  𝑤 =
𝑑2𝑤

𝑑𝑥2 = 0 , and 
𝑑𝑢𝛼

𝑑𝑥
=

𝑑𝑢𝛽

𝑑𝑥
= 0 at x =0  

and x = l.  

 

Substituting Eqs. (3-33), (3-34) and (3-35) into (3-32), according to the principle of 

minimum potential energy: (Timoshenko, 1961) 

 𝛿(𝑈𝑇 + 𝑈𝑠ℎ − 𝑊) = 0 3-36 

The variation of Eq. (3-36) with respect to 𝐴𝑚 , 𝐵𝑚  and 𝐶𝑚  results in the following 

three algebraic equations: 

 
𝐸𝐴𝑡𝑒𝑒 (

𝑚𝜋𝑥

𝑙
)
2

𝐴𝑚 = 0 
3-37 

 

 [𝐸𝐴𝑡𝑒𝑒 (
𝑚𝜋

𝑙
)
2

+
𝐺𝑡𝑤𝑘𝑠ℎ

𝑎
]𝐵𝑚 − [

𝐺𝑡𝑤𝑒𝑘𝑠ℎ

𝑎
(
𝑚𝜋

𝑙
)] 𝐶𝑚 = 0 3-38 

 

   𝑢𝛼(𝑥) = ∑ 𝐴𝑚 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 3-33 
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[𝐸𝐼𝑡𝑒𝑒 (
𝑚𝜋

𝑙
)
4

+
𝐺𝑡𝑤𝑒2𝑘𝑠ℎ

𝑎
(
𝑚𝜋

𝑙
)
2

] 𝐶𝑚

− [
𝐺𝑡𝑤𝑒𝑘𝑠ℎ

𝑎
(
𝑚𝜋

𝑙
)] 𝐵𝑚

[1 − (−1)𝑚]𝑞𝑚𝑎𝑥

𝑚𝜋
 

3-39 

 

Mathematically Eqs. (3-37) - (3-39) lead to:  

 
𝐶𝑚 =

1 − (−1)𝑚

(𝑚𝜋)5

𝑞𝑙4

𝐸𝐼𝑡𝑒𝑒 +
𝑒2𝐸𝐴𝑡𝑒𝑒

1 +
𝐸𝐴𝑡𝑒𝑒𝑎(𝑚𝜋)2

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2

 3-42 

 

Cm can be further simplified as: 

 

𝐶𝑚 =
𝑞𝑙4

𝐸(𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒)

1 − (−1)𝑚

(𝑚𝜋)5
[1 +

𝑒2𝐴𝑡𝑒𝑒

𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒
×

𝐸𝐴𝑡𝑒𝑒𝑎(𝑚𝜋)2

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2

× (1 −
𝐸𝐼𝑡𝑒𝑒𝑎(𝑚𝜋)2

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2𝑒2
)] 

3-43 

Therefore, the expression of castellated beam deflection is as follows: 

 

𝑤(𝑥) =
𝑞𝑙4

𝐸(𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒)
∑

2

(𝑚𝜋)5
[1 +

𝑒2𝐴𝑡𝑒𝑒

𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒
𝑚=1,2,..

×
𝐸𝐴𝑡𝑒𝑒𝑎(𝑚𝜋)2

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2
× (1 −

𝐸𝐼𝑡𝑒𝑒𝑎(𝑚𝜋)2

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2𝑒2
)] sin

𝑚𝜋𝑥

𝑙
 

3-44 

The maximum deflection of the beam is at  𝑥 =
𝑙

2
，and thus can be can be expressed 

as follows: 

 

𝑤|𝑥=𝑙/2 =
𝑞𝑙4

𝐸(𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒)
[ ∑

2

𝜋5

(−1)𝑘+1

(2𝑘 − 1)5
+

𝑒2𝐴𝑡𝑒𝑒

𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒
×

𝐸𝐴𝑡𝑒𝑒𝑎

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2
𝑘=1,2,..

× ( ∑
2

𝜋2

(−1)𝑘+1

(2𝑘 − 1)3
−

𝐸𝐼𝑡𝑒𝑒𝑎

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2𝑒2

𝑘=1,2,..

∑
2

𝜋

(−1)𝑘+1

(2𝑘 − 1)
𝑘=1,2,..

)] 

3-45 

Note that: 

 𝐴𝑚 = 0 3-40 

 𝐵𝑚 =
[
𝐺𝑡𝑤𝑒𝑘𝑠ℎ

𝑎 (
𝑚𝜋
𝑙

)]

[𝐸𝐴𝑡𝑒𝑒 (
𝑚𝜋
𝑙

)
2

+
𝐺𝑡𝑤𝑘𝑠ℎ

𝑎 ]
𝐶𝑚 3-41 
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 ∑
2

𝜋5

(−1)𝑘+1

(2𝑘 − 1)5

𝑘=1,2,..

=
5

2 × 384
 3-46 

 

 ∑
2

𝜋3

(−1)𝑘+1

(2𝑘 − 1)3

𝑘=1,2,..

=
1

16
 3-47 

 

 ∑
2

𝜋

(−1)𝑘+1

(2𝑘 − 1)
𝑘=1,2,..

=
1

2
 3-48 

Substituting Eqs. (3-46), (3-47) and (3-48) into (3-45) gives the maximum deflection: 

 

𝑤|𝑥=𝑙/2 =
5𝑞𝑙4

384𝐸(2𝐼𝑡𝑒𝑒 + 2𝑒2𝐴𝑡𝑒𝑒)
+

𝑞𝑙2𝑎

16𝐺𝑘𝑠ℎ𝑡𝑤
× (

𝑒𝐴𝑡𝑒𝑒

𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒
)
2

× (1 −
2𝐸𝐼𝑡𝑒𝑒𝑎

𝐺𝑘𝑠ℎ𝑡𝑤𝑙2𝑒2
) 

3-49 

 

 

It is clear from Eq. (3-49) that the first part indicates the deflection generated by the 

bending load, which is deemed as that given by Bernoulli-Euler beam, while the second 

part provides the deflection generated by the shear. Moreover, Eq. (3-49) shows that the 

shear-induced deflection is proportional to the cross-section area of the two T-sections 

but inversely proportional to the beam length.  

 

To determine the approximate deflection, the calculation does not consider webs’ shear 

effect, and this is shown in Eq. (3-50). 

 

3.2.2. Deflection of pinned-fixed castellated beam with uniformly distributed 

loads 

For pinned-fixed castellated beam uα(x), uβ(x) and w(x) can be assumed as follows: 

 

 
𝑢𝛼(𝑥) = ∑ 𝐹𝑘 [(2𝑘 − 1) sin (

(2𝑘 − 1)𝜋(𝑙 − 𝑥)

2𝑙
)

𝑚=1,2,..

− (2𝑘 + 1) sin (
(2𝑘 + 1)𝜋(𝑙 − 𝑥)

2𝑙
)] 

3-51 

 𝑤|𝑥=𝑙/2 =
5𝑞𝑙4

384𝐸𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑
 3-50 
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𝑢𝛽(𝑥) = ∑ 𝐸𝑘 [(2𝑘 − 1) sin (

(2𝑘 − 1)𝜋(𝑙 − 𝑥)

2𝑙
)

𝑚=1,2,..

− (2𝑘 + 1) sin (
(2𝑘 + 1)𝜋(𝑙 − 𝑥)

2𝑙
)] 

3-52 

 

 
𝑤(𝑥) = ∑ 𝐷𝑘 sin (

𝑘𝜋(𝑙 − 𝑥)

𝑙
) sin (

𝜋(𝑙 − 𝑥)

2𝑙
)

𝑚=1,2,..

 

 

3-53 

where 𝐹𝑘   , 𝐸𝑘, and 𝐷𝑘  (𝑘 = 1,2, …) are the coefficients to be determined. It is obvious 

that the displacement functions assumed Eqs. (3-51), (3-52) and (3-53) to satisfy the 

pinned-fixed support boundary conditions, that is 𝑤 =
𝑑2𝑤

𝑑𝑥2 = 0, and 
𝑑𝑢𝛽

𝑑𝑥
= 0 at x = 0 

and 𝑤 =
𝑑𝑤

𝑑𝑥
= 𝑢𝛼 = 𝑢𝛽= 0 at x = l.  

 

Substituting Eqs. (3-51), (3-52) and (3-53) into (3-32), and according to the principle of 

minimum potential energy at Eq. (3-36) it yields: 

 

𝐸𝑘   =
128𝑞𝑘𝑙5 𝐺𝑘𝑠ℎ𝑡𝑤e cos(𝑘𝜋) (1 + 4𝑘2)

𝜋4(16𝑘4 + 24𝑘2 + 1)(4𝑘2 − 1)

×

(

  
 1

[
4(4𝑘2 + 1)𝐸𝐺𝑘𝑠ℎ𝑡𝑤𝑙2(𝐴𝑡𝑒𝑒𝑒2 + 𝐼𝑡𝑒𝑒)

+ (2𝑘2 + 3 +
1

8𝑘2) 8𝐸𝐴𝑡𝑒𝑒𝐸𝐼𝑡𝑒𝑒𝜋2𝑎𝑘2
]
)

  
 

 
3-54 

 

 𝐷𝑘 =
−128𝑞𝑘𝑙4 cos(𝑘𝜋) 𝑍

𝜋5(16𝑘4 + 24𝑘2 + 1)(4𝑘2 − 1)
 3-55 

where: 

 𝑍 =
((2𝑘2 + 3 +

1
8𝑘2)8𝐸𝐴𝑡𝑒𝑒𝜋

2𝑎𝑘2 + (4𝑘2 + 1)4𝐺𝑘𝑠ℎ𝑡𝑤𝑙2)

[4(4𝑘2 + 1)𝐸𝐺𝑘𝑠ℎ𝑡𝑤𝑙2(𝐴𝑡𝑒𝑒𝑒
2 + 𝐼𝑡𝑒𝑒) + (2𝑘2 + 3 +

1
8𝑘2) 8𝐸𝐴𝑡𝑒𝑒𝐸𝐼𝑡𝑒𝑒𝜋

2𝑎𝑘2]
 3-56 

Therefore, the deflection of pinned-fixed castellated beam can be expressed as: 

 w(𝑥) = ∑
−128𝑞𝑘𝑙4 cos(𝑘𝜋) 𝑍 sin (

𝑘𝜋(𝑙 − 𝑥)
𝑙

) sin (
𝜋(𝑙 − 𝑥)

2𝑙
)

𝜋5(16𝑘4 + 24𝑘2 + 1)(4𝑘2 − 1)
𝑘=1,2,3

 3-57 
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Clearly, the denominator of Eq. (3-57) is very complicated, and the position of the 

maximum deflection point is at (x= 0.375l ) away from the pinned support end, which is 

obtained by using the zero derivative of the deflection function with respect to 

coordinate as described in the bending theory of beams (Timoshenko, 1961).The        

Eq. (3-57) is not easy to simplify but it is regarded as Bernoulli-Euler beam with 

modifications. 

To determine the approximate deflection, the calculation does not consider webs’ shear 

effect, but rather can be employed Eq. (3-58):  

 𝑤𝑚𝑎𝑥 =
 𝑞𝑙4

185𝐸𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑
 3-58 

 

Figure 3-3.Pinned-fixed beam. 

 

3.2.3. Deflection of non-uniform temperature distribution simply supported 

castellated beam with uniformly distributed loads  

Consider a castellated beam that is used in the external floor and wall, in which the 

beam can be bent about its major axis but is restrained in its lateral direction. When 

there is fire inside the building, the castellated beam is exposed to a fire on one side. 

During the fire, the heat will be transferred from the fire into the beam, which causes 

the beam to have a non-uniform temperature distribution on its cross-section. 

Consequently, the material properties that depend on the temperature will also not be 

uniform in the cross-section.  

 

Since the heat is transferred from one flange to another through the web, it is reasonable 

to assume that the temperature is uniformly distributed in each T-section, although the 

two T-sections may have different temperatures at the same time. 
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Note that the thermal expansion induced by temperature was not considered in this 

study. This is because when a simply support boundary is involved in the beam the axial 

displacement can be freely expanded so there will be no thermal stresses in the beam. 

All thermal strains are converted into displacement and thus the thermal expansion does 

not cause significant deflection 

 

Figure 3-4 Definition of temperature, Young’s modulus and displacement component in the 

cross-section (Lei et al., 2017). 
 

 

Let (u1, w) and (u2, w) be the axial and transverse displacements at the centroid points of 

the two T-sections (see Figure 3-4) The strain energy of the two T-sections of 

castellated beams U1 and U2 due to transverse loads can be expressed as follows: 

 𝑈1 =
1

2
∫[𝐸1𝐴1 (

𝑑𝑢1

𝑑𝑥
)
2

+ 𝐸1𝐼1 (
𝑑2𝑤

𝑑𝑥2
)

2

]

𝑙

0

𝑑𝑥 3-59 

 

 𝑈2 =
1

2
∫ [𝐸2𝐴2 (

𝑑𝑢2

𝑑𝑥
)
2

+ 𝐸2𝐼2 (
𝑑2𝑤

𝑑𝑥2
)

2

]

𝑙

0

𝑑𝑥 3-60 

 

where A1 and A2 are the areas of the two T-sections, E1 and E2 are the Young's modulus 

of the two T-sections and I1 and I2 are the second moments of areas of the two             

T-sections about their own centroid axes, and l is the length of the beam. 

The average shear strain of the mid-part of the web 𝛾𝑥𝑧is expressed as follows: 

 𝛾𝑥𝑧(𝑥, 𝑧) =
𝑒

𝑎

𝑑𝑤

𝑑𝑥
−

𝑢1 − 𝑢2

2𝑎
 3-61 
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Thus the shear strain energy of the mid-part of the web Ush is expressed as follows: 

 𝑈𝑠ℎ =
𝑡𝑤𝑒2(𝐸1 + 𝐸2)𝑘𝑠ℎ

4(1 + 𝑣)𝑎
∫(

𝑑𝑤

𝑑𝑥
−

𝑢1 − 𝑢2

2𝑒
)

2
𝑙

0

𝑑𝑥 3-62 

 

 

∏ =
1

2
∫[𝐸1𝐴1 (

𝑑𝑢1

𝑑𝑥
)

2

𝐸1𝐼1 (
𝑑2𝑤

𝑑𝑥2
)

2

] 𝑑𝑥

𝑙

0

+
1

2
∫ [𝐸2𝐴2 (

𝑑𝑢2

𝑑𝑥
)
2

 𝐸2𝐼2 (
𝑑2𝑤

𝑑𝑥2
)

2

]

𝑙

0

𝑑𝑥

×
𝑡𝑤𝑒2(𝐸1 + 𝐸2)𝑘𝑠ℎ

4(1 + 𝑣)𝑎
∫(

𝑑𝑤

𝑑𝑥
−

𝑢1 − 𝑢2

2𝑒
)
2

𝑙

0

𝑑𝑥 − 𝑊 

3-63 

 𝛿(𝑈𝑇 + 𝑈𝑠ℎ − 𝑊) = 0 3-64 

 

For a simply supported castellated beam:𝑢α(𝑥) ,  𝑢β(𝑥), and w(x) can be assumed as 

follows: 

 𝑢α(𝑥) = ∑ 𝐴𝑚cos
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 
3-65 

 

 𝑢𝛽(𝑥) = ∑ 𝐵𝑚cos
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 
3-66 

 

 𝑤(𝑥) = ∑ 𝐶𝑚sin
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 
3-67 

 

where 𝐴𝑚, 𝐵𝑚, and 𝐶𝑚 (𝑚 = 1,2, … ) are the constants to be determined, it is obvious 

that the displacement functions assumed Eqs. (3-65), (3-66) and (3-67) satisfy the 

simply support boundary conditions, that are 𝑤 =
𝑑2𝑤

𝑑𝑥2 = 0, and 
𝑑𝑢𝛼

𝑑𝑥
=

𝑑𝑢𝛽

𝑑𝑥
= 0 at x = 0 

and x = l.  

Substituting Eqs. (3-65)- (3-67) into (3-63) by using Eqs. (3-8) and (3-9), according to 

the principle of minimum potential energy, it yields, 

Note that for castellated beams or columns, A1 = A2 = Atee and, I1 = I2 = Itee. Thus: 

 𝐴𝑚 = −
𝐸2

𝐸1
𝐵𝑚 3-68 
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 𝐵𝑚 =
[
(𝐸1 + 𝐸2)𝐼𝑡𝑒𝑒(𝑚𝜋)5

𝑙4
] 𝐶3 − 2𝑞(1 − (−1)𝑚)

2𝐸2𝐴𝑡𝑒𝑒𝑒(𝑚𝜋)4

𝑙3

 3-69 

Eq. (3-70) can be further simplified as: 

 

Therefore, the expression of the castellated beam deflection is expressed as follows: 

 

𝑤(𝑥) =
2𝑞𝑙4

(𝐸1 + 𝐸2) [𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒2𝐸1𝐸2

(𝐸1 + 𝐸2)2 ]

(1 − (−1)𝑚)

(𝑚𝜋)5
[1

+
4𝐴𝑡𝑒𝑒𝑒

2𝐸1𝐸2

𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒2𝐸1𝐸2

(𝐸1 + 𝐸2)2

×
8𝑎𝐸1𝐸2(1 + 𝑣)(𝑚𝜋)2𝐴𝑡𝑒𝑒

(𝐸1 + 𝐸2)2𝑙2𝑡𝑤𝑘𝑠ℎ

×
1

(𝐸1 + 𝐸2)2
] 𝑠𝑖𝑛

𝑚𝜋𝑥

𝑙
 

3-72 

As the maximum deflection of uniformly loaded simply supported beam takes place at      

 𝑥 =
𝑙

2
 , the maximum deflection can be expressed as follows: 

 Cm =
2𝑞(1 − (−1)𝑚)𝑙4

(𝑚𝜋)5

[
 
 
 
 
 
 
 
 
 
 

1

(𝐸1 + 𝐸2)𝐼𝑡𝑒𝑒 +

(
4𝐸2𝐴𝑡𝑒𝑒𝑒

2(𝐸1 + 𝐸2)𝐸1𝐸2

(𝐸1 + 𝐸2)2 (1 +
8𝑎𝐸1𝐸2(1 + 𝑣)(𝑚𝜋)2𝐴𝑡𝑒𝑒

(𝐸1 + 𝐸2)2𝑙2𝑡𝑤𝑘𝑠ℎ

)
)

]
 
 
 
 
 
 
 
 
 
 

 3-70 

 

𝐶𝑚 =
2𝑞𝑙4

(𝐸1 + 𝐸2) [𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒

2𝐸1𝐸2

(𝐸1 + 𝐸2)2 ]

(1 − (−1)𝑚)

(𝑚𝜋)5
[1

+
4𝐴𝑡𝑒𝑒𝑒

2𝐸1𝐸2

𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒2𝐸1𝐸2

(𝐸1 + 𝐸2)2

×
8𝑎𝐸1𝐸2(1 + 𝑣)(𝑚𝜋)2𝐴𝑡𝑒𝑒

(𝐸1 + 𝐸2)2𝑙2𝑡𝑤𝑘𝑠ℎ

×
1

(𝐸1 + 𝐸2)2
] 

3-71 
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𝑤|𝑥=𝑙/2 =
2𝑞𝑙4

(𝐸1 + 𝐸2) [𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒2𝐸1𝐸2

(𝐸1 + 𝐸2)2 ]
[ ∑

2(−1)𝑘+1

𝜋5(2𝑘 − 1)5

𝑘=1,2,..

+
4𝐴𝑡𝑒𝑒𝑒

2𝐸1𝐸2

𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒2𝐸1𝐸2

(𝐸1 + 𝐸2)2

×
8𝑎𝐸1𝐸2(1 + 𝑣)(𝑚𝜋)2𝐴𝑡𝑒𝑒

(𝐸1 + 𝐸2)2𝑙2𝑡𝑤𝑘𝑠ℎ

×
1

(𝐸1 + 𝐸2)2
× ∑

2(−1)𝑘+1

𝜋3(2𝑘 − 1)5

𝑘=1,2,..

] 

3-73 

 

Substituting Eqs. (3-46), (3-47) and (3-48) into (3-73) gives the maximum deflection: 

 

Eq. (3-74) reflects the influence of non-uniform material properties caused by the non-

uniform temperature on the maximum deflection of the castellated beam when the shear 

effect is considered. 

It is obvious that, the first part of Eq. (3-74) indicates the deflection generated by the 

bending load but affected by temperature, while the second part provides the deflection 

generated by the shear load also affected by temperature. Moreover, Eq. (3-74) shows 

that rising or reducing shear effect depends on the cross-section area of major axis as 

well as the difference in temperatures between the two T- sections.  

  

3.2.4. Deflection of non-uniform temperature distribution roller- fixed supported 

castellated beam with uniformly distributed loads. 

Note that the thermal expansion induced by temperature was not considered in this 

study because the axial displacement can be freely expanded at the side of roller 

boundary in the beam; so there will be no thermal stresses in the beam. All thermal 

strains are converted into displacement and thus the thermal expansion does not cause 

significant deflection. 

 

𝑤|𝑥=𝑙/2 =
5𝑞𝑙4

384(𝐸1 + 𝐸2) [𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒2𝐸1𝐸2

(𝐸1 + 𝐸2)2 ]
+

𝑞𝑙2

(𝐸1 + 𝐸2)
×

𝑎(1 + 𝑣)

𝑡𝑤𝑘𝑠ℎ

× [
2𝑒𝐴𝑡𝑒𝑒𝐸1𝐸2

𝐼𝑡𝑒𝑒 +
4𝐴𝑡𝑒𝑒𝑒2𝐸1𝐸2

(𝐸1 + 𝐸2)2 (𝐸1 + 𝐸2)2

]

2

 

3-74 



CHAPTER THREE                                                       DEFLECTION CALCULATION 

44 

 For roller-fixed castellated beam uα(x), uβ(x) and w(x) can be assumed as follows: 

 

𝑢𝛽(𝑥) = ∑ 𝐸𝑘 [(2𝑘 − 1) sin (
(2𝑘 − 1)𝜋(𝑙 − 𝑥)

2𝑙
)

𝑚=1,2,..

− (2𝑘 + 1) sin (
(2𝑘 + 1)𝜋(𝑙 − 𝑥)

2𝑙
)] 

3-76 

 

 𝑤(𝑥) = ∑ 𝐷𝑘 sin (
𝑘𝜋(𝑙 − 𝑥)

𝑙
) sin (

𝜋(𝑙 − 𝑥)

2𝑙
)

𝑚=1,2,..

 3-77 

 

where Fk, Ek, and Dk (k = 1, 2 …) are the constants to be determined. It is obvious that 

the displacement functions assumed satisfy the pinned-fixed support boundary 

conditions, that are 𝑤 =
𝑑2𝑤

𝑑𝑥2 = 0, and 
𝑑𝑢𝛽

𝑑𝑥
= 0 at x = 0 and 𝑤 =

𝑑𝑤

𝑑𝑥
= 𝑢𝛼 = 𝑢𝛽 = 0    

at x = l.  

Substituting Eqs. (3-75), (3-76) and (3-77) into (3-63), and according to the principle of 

minimum potential energy, it yields: 

 𝐷𝑘 =
−256𝑞𝑘𝑙4𝑍 cos(𝑘𝜋)

𝜋5(16𝑘4 + 24𝑘2 + 1)(4𝑘2 − 1)(𝐸1+𝐸2)
 3-78 

where 

 
𝑍 =

[16𝐴𝑡𝑒𝑒𝐸1𝐸2𝜋
2𝑎𝑘2(1 + 𝑣) (2𝑘2 + 3 +

1
8𝑘2) + 𝑘𝑠ℎ𝑡𝑤𝑙2(𝐸1+𝐸2)

2(4𝑘2 + 1)]

[
(16𝐴𝑡𝑒𝑒𝐸1𝐸2𝐼𝑡𝑒𝑒𝜋

2𝑎𝑘2(1 + 𝑣) (2𝑘2 + 3 +
1

8𝑘2) + 𝐼𝑡𝑒𝑒𝑘𝑠ℎ𝑡𝑤𝑙2(𝐸1+𝐸2)
2(4𝑘2 + 1))

+4(4𝑘2 + 1)𝐴𝑡𝑒𝑒𝑘𝑠ℎ𝑡𝑤𝑙2𝐸1𝐸2𝑒
2

]
 3-79 

 

 w(𝑥) = ∑
−256𝑞𝑘𝑙4 cos(𝑘𝜋) 𝑍 sin (

𝑘𝜋(𝑙 − 𝑥)
𝑙

) sin (
𝜋(𝑙 − 𝑥)

2𝑙
)

𝜋5(16𝑘4 + 24𝑘2 + 1)(4𝑘2 − 1)(𝐸1+𝐸2)
𝑘=1,2,3

 3-80 

 

Eq. (3-80) reflects the influence of non-uniform material properties caused by the non-

uniform temperature on the maximum deflection of pinned-fixed castellated beam when 

the shear effect is considered. 

 

𝑢𝛼(𝑥) = ∑ 𝐹𝑘 [(2𝑘 − 1) sin (
(2𝑘 − 1)𝜋(𝑙 − 𝑥)

2𝑙
)

𝑚=1,2,..

− (2𝑘 + 1) sin (
(2𝑘 + 1)𝜋(𝑙 − 𝑥)

2𝑙
)] 

3-75 
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Clearly, the denominator of Eq. (3-80) is very complicated, and the position of the 

maximum deflection point is at (x= 0.375l ). The Eq. (3-80) is not easy to simplify but it 

is regarded as Bernoulli-Euler beam with modifications. 

 

3.3. Numerical analysis  

Finite Element Analysis (FEA) is a numerical method that has been implemented to 

simulate any physical phenomenon for finding out new concepts. Essentially, it was 

used for solving cases of structural mechanics, sometimes instead of experimental 

techniques as well as to validate versus the experimental or analytical solution. 

  

In general, FEA suits for solving the problems such as heat transfer, fluid mechanics, 

and manufacturing modelling in engineering fields by solving mathematical equations 

numerically and therefore is named as numerical method. 

 

At present, the accuracy and flexibility of this method have led to it becoming 

commonplace in the analysis and design of steel structures consisting of thin-walled 

members with web openings exposed to various types of loading and different boundary 

conditions. 

 

The ANSYS software is the finite element analysis tool that is adopted in this study for 

numerical analysis of castellated beams to verify the accuracy of the analytical solutions 

of transverse deflection of castellated beams subjected to uniformly distributed 

transverse load.  

 

3.3.1. The modeling of castellated beams 

ANSYS software library has different types of elements for the analysis of different 

types of structures. Previous studies have shown that the use of three-dimensional (3D) 

finite element model was successful in idealizing the structural behaviour of castellated 

beams (El-Sawy et al., 2009).  
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The modelling of castellated beams is carried out by using 3D linear 4-Node Thin Shell 

Elements (SHELL181) depicted in Figure 3-5. It is designed for modelling thin-walled 

members because one dimension of the element is very small compared with another 

two dimensions; also for linear, large rotation, and/or large strain nonlinear applications. 

This element presents four nodes with six DOF per node, i.e., translations and rotations 

on the X, Y, and Z-axis, respectively.  

 

Figure 3-5 Shell element ANSYS library. 

 

3.3.2. Meshing consideration and material model 

With regard to the mesh size of the model, the short length beams were meshed by 

using element size of 5 mm, whereas for the long length beams the element size of 10 

mm was used. A typical mesh configuration for castellated beam is shown in         

Figure 3-6. The material model of the castellated beam uses linear elastic material with 

Young’s modulus E = 2.1 × 105 MPa, Poisson’s ratio v =0.3 and yield stress σy=275 

MPa. 

 

 

Figure 3-6 A typical mesh configuration 
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3.3.3. Boundary conditions and loading 

3.3.3.1. Simply supported castellated beam 

For simply supported beam, a half-length analysis model is used because of the 

symmetry. Therefore, it has led to reducing the number of elements and nodes, also 

saving time. The displacement boundary conditions are applied to all nodes at the two 

ends, as shown in Figure 3-7. The lateral and transverse deflections and rotation are 

restrained (uy=uz=0 and θx=0) at the simply supported end, while the symmetric 

boundary condition is applied at the other end by restricting the axial displacement and 

rotations about the two axes within the cross-section (ux=0 and θy=θz=0). 

 

A line load is used to model the uniformly distributed transverse load, which acts on the 

junction of the flange and the web. The uniformly distributed load (𝑞𝑚𝑎𝑥) is considered 

after multiplying with beam’s half-length and then divided by the numbers of the nodes 

on the line defining the junction of the flange and the web nodes, which gives the load 

applying on each node. 

 

3.3.3.2. Pinned-fixed supported castellated beam  

The boundaries of one end simply supported and another fixed are applied in the model. 

Full length of the castellated beam is used. The displacement boundary conditions are 

applied to all nodes at the two ends, as shown in Figure 3-7. The lateral and transverse 

deflections and rotation are restrained (uy=uz=0 and θx=0) at the simply supported end, 

while the fixed support boundary condition is applied at the other end by restraining the 

axial displacement, transverse deflections and rotations around the three axes within the 

cross-section (ux=uy=uz=0 and θx=θy=θz=0).  

 

The uniformly distributed load is also applied at the junction between the flange and 

web as a line load, which is similar to the simply supported beam as described above.  
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Figure 3-7 The typical loading method and boundary conditions in finite element model of 

castellated beam. 

 

3.3.4. The dimensions of parameter study and the value of load 

Ten groups of selected beams with different lengths are analysed, each of them having 

different cross sections. The (hw/tw) ratio of the selected sections is (37.5) and the (bf /tf) 

ratio of the selected sections ranges from 10 to 25, as tabulated in Table (3-1). 

Table 3-1 Parameters of castellated beams groups considered

 

Group 

Name   

of      

beam 

the 

opening          

panel 

(unit) 

l 

mm 

l/2 

mm 

bf 

mm 

tf 

mm 

hw 

mm 

tw 

mm 

a 

mm 

qmax 

N/mm 

A 

A1 2 692.82 346.41 100 10 300 8 100 1739.76 

A2 2 692.82 346.41 150 10 300 8 100 2428.21 

A3 2 692.82 346.41 200 10 300 8 100 3116.67 

A4 2 692.82 346.41 250 10 300 8 100 3805.12 

B 

B1 4 2078.46 1039.23 100 10 300 8 100 193.31 

B2 4 2078.46 1039.23 150 10 300 8 100 269.80 

B3 4 2078.46 1039.23 200 10 300 8 100 346.30 

B4 4 2078.46 1039.23 250 10 300 8 100 422.79 

C 

C1 10 3464.16 1732.05 100 10 300 8 100 69.59 

C2 10 3464.16 1732.05 150 10 300 8 100 97.13 

C3 10 3464.16 1732.05 200 10 300 8 100 124.67 

C4 10 3464.16 1732.05 250 10 300 8 100 152.20 

  



CHAPTER THREE                                                       DEFLECTION CALCULATION 

49 

 

Group 
Name   

of      

beam 

the 

opening          

panel 

(unit) 

l 

mm 

l/2 

mm 

bf 

mm 

tf 

mm 

hw 

mm 

tw 

mm 

a 

mm 

qmax 

N/mm 

D 

D1 12 4156.92 2078.46 100 10 300 8 100 48.33 

D2 12 4156.92 2078.46 150 10 300 8 100 67.45 

D3 12 4156.92 2078.46 200 10 300 8 100 86.57 

D4 12 4156.92 2078.46 250 10 300 8 100 105.69 

E 

E1 14 4849.74 2424.87 100 10 300 8 100 35.50 

E2 14 4849.74 2424.87 150 10 300 8 100 49.55 

E3 14 4849.74 2424.87 200 10 300 8 100 63.60 

E4 14 4849.74 2424.87 250 10 300 8 100 77.65 

F 

F1 16 5542.56 2771.28 100 10 300 8 100 27.18 

F2 16 5542.56 2771.28 150 10 300 8 100 37.94 

F3 16 5542.56 2771.28 200 10 300 8 100 48.69 

F4 16 5542.56 2771.28 250 10 300 8 100 59.45 

G 

G1 18 6235.38 3117.69 100 10 300 8 100 21.48 

G2 18 6235.38 3117.69 150 10 300 8 100 29.97 

G3 18 6235.38 3117.69 200 10 300 8 100 38.48 

G4 18 6235.38 3117.69 250 10 300 8 100 46.98 

H 

H1 26 9006.66 4503.33 100 10 300 8 100 10.29 

H2 26 9006.66 4503.33 150 10 300 8 100 14.37 

H3 26 9006.66 4503.33 200 10 300 8 100 18.44 

H4 26 9006.66 4503.33 250 10 300 8 100 22.51 

I 

I1 36 12470.77 6235.38 100 10 300 8 100 5.37 

I2 36 12470.77 6235.38 150 10 300 8 100 7.49 

I3 36 12470.77 6235.38 200 10 300 8 100 9.62 

I4 36 12470.77 6235.38 250 10 300 8 100 11.74 

J 

J1 42 14549.23 7274.61 100 10 300 8 100 3.95 

J2 42 14549.23 7274.61 150 10 300 8 100 5.51 

J3 42 14549.23 7274.61 200 10 300 8 100 7.07 

J4 42 14549.23 7274.61 250 10 300 8 100 8.63 
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3.3.5. Comparison of results and discussion  

The details of comparisons between the analytical results and finite element analysis 

results are given in the tables and plotted in the figures. These results indicate the shear 

effect of web openings on the transverse deflection. It can be noticed from the 

comparisons that the present analytical solution, taking into account shear, agrees well 

with the result provided by the finite element analysis.  

 

3.3.5.1. Maximum deflections of simply supported beams subjected to uniformly 

distributed loads  

Table (3-2) shows the results of maximum deflections of simply supported castellated 

beams with a uniformly distributed load for different lengths with various cross-section 

dimensions, obtained using Eq. (3-49). In the results, T1 is based on Eq. (3-28); T2 

uses(𝐾𝑠ℎ = 0.78 ×
1

4
); T3 uses(𝐾𝑠ℎ =

1

4
); T4 is obtained from Eq. (3-50); and T5 is the 

finite element analysis results. The results are also plotted in Figure 3-8.  

  

Table (3-3) shows the relative errors of the maximum deflections of simply supported 

castellated beam with a uniformly distributed load, which are obtained based on the 

finite element numerical solutions that are described in Table (3-2), between analytical 

solutions using different shear rigidity factors obtained by Eq. (3-49), including one 

with zero shear factor obtained by Eq. (3-50) for four castellated beams of different 

flange widths.  

 

Figure 3-8 shows a comparison of the maximum deflections between analytical 

solutions using different shear rigidity factors including one with zero shear factor and 

FEA numerical solution for different beam lengths with various flange widths. It can be 

seen from the figure that, the analytical solution using the proposed shear factor is 

closest to the numerical solution, whereas the analytical solutions using other shear 

factors is not as good as the present one. This demonstrates that the shear factor is also 

affected by the ratio of the flange width to the beam length. In addition, it can be seen 

from the figure that, the longer the beam, the closer the analytical solution to the 

numerical solution; and the wider the flanges, the closer the analytical solution to the 
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numerical solution. Figure 3-9 shows the relative error of each analytical solution when 

it is compared with the finite element solution. From the figure it is evident that the 

error of the analytical solutions using the present shear rigidity factor does not exceed 

5.0% for all of discussed four sections in all the beam length range (l >3 meters). For 

beams less than 3 meters the error is about 11.0% which is quite big. However, for most 

practically used beams the length will be longer than 3 meters. In contrast, the analytical 

solution ignoring the shear effect or considering the shear effect by using smear model 

or by using the length-independent shear rigidity factor, will have large error, 

particularly when the beam is short. 

 

3.3.5.2. Maximum deflection of pinned-fixed castellated beam due to uniformly 

distributed loads 

Table (3-4) shows the results of maximum deflections of pinned-fixed castellated 

beams with a uniformly distributed load for different lengths with various cross-section 

dimensions, obtained using Eq. (3-57). In the results, T1 is based on Eq. (3-28); T2 

uses(𝐾𝑠ℎ = 0.78 ×
1

4
); T3 uses(𝐾𝑠ℎ =

1

4
); T4 is obtained from Eq. (3-58); and T5 is the 

finite element analysis results. The results are also plotted in Figure 3-10.  

 

Table (3-5) shows the relative errors of the maximum deflections of pinned-fixed 

castellated beam with a uniformly distributed load, which are obtained based on the 

finite element numerical solutions that are described in Table (3-4), between analytical 

solutions using different shear rigidity factors obtained by Eq. (3-57), including one 

with zero shear factor obtained by Eq. (3-58) for four castellated beams of different 

flange widths.  

 

Figure 3-10 shows a comparison of the maximum deflations between analytical 

solutions using different shear rigidity factors, including one with zero shear factor and 

FEA numerical solution for different beam lengths with various flange widths. It can be 

seen from the figure that, the analytical solution using the proposed shear factor again is 

closest to the numerical solution, whereas the analytical solutions using other shear 

factors is not as good as the present one. This demonstrates that the shear factor is also 
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affected by the ratio of the flange width to the beam length. In addition, it can be seen 

from the figure that, the longer the beam, the closer the analytical solution to the 

numerical solution; and the wider the flanges, the closer the analytical solution to the 

numerical solution. Figure 3-11 shows the relative error of each analytical solution 

when it is compared with the finite element solution. From the figure it is evident that 

the relative error of the analytical solutions using the present shear rigidity factor does 

not exceed 23% for all of discussed four sections in all of the beam length range                  

(l >3 meter) . In contrast, the analytical solution ignoring the shear effect, or considering 

the shear effect by using smear model or by using the length-independent shear rigidity 

factor will have large error, particularly when the beam is short. Compared to the 

simply supported beams, the error of the analytical solution of the pinned-fixed beams 

seems to be larger. This is probably due to the deflection functions assumed for pinned-

fixed beams that have slow convergence.   
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Table 3-2 Comparison of results of maximum deflections of simply supported castellated beam 

with a uniformly distributed load obtained using different approaches 
 

 

bf 

mm 

Name 

of 

beam 

T1 

mm 

T2 

mm 

T3 

mm 

T4 

mm 

T5 

mm 

100 

A1 2.66 2.21 1.86 0.41 3.00 

B1 5.74 5.56 5.19 3.68 6.12 

C1 12.24 12.12 11.74 10.23 12.35 

D1 16.77 16.62 16.24 14.74 16.65 

E1 22.04 21.89 21.46 20.06 21.71 

F1 28.00 28.03 27.70 26.19 27.60 

G1 35.13 34.99 34.66 33.15 34.60 

H1 70.80 71.00 70.67 69.16 69.00 

150 

A2 3.84 2.86 2.39 0.41 4.18 

B2 6.71 6.24 5.73 3.68 7.11 

C2 13.02 12.79 12.28 10.23 13.40 

D2 17.50 17.30 16.78 14.74 17.75 

E2 22.80 22.62 22.11 20.05 22.88 

F2 28.92 28.76 28.24 26.19 28.81 

G2 35.87 35.71 35.20 33.15 35.50 

H2 70.89 71.73 71.21 69.16 70.00 

200 

A3 5.53 3.50 2.85 0.41 5.31 

B3 7.74 6.91 6.21 3.68 8.10 

C3 13.85 13.47 12.76 10.23 14.43 

D3 18.29 17.98 17.26 14.74 18.80 

E3 23.57 23.30 22.58 20.05 23.91 

F3 29.69 29.44 28.72 26.19 29.94 

G3 36.63 36.40 35.681 33.15 36.69 

H3 72.59 72.41 71.69 69.16 71.74 

250 

A4 7.33 4.23 3.43 0.41 6.90 

B4 8.50 7.69 6.81 3.68 9.10 

C4 14.68 14.25 13.37 10.23 15.42 

D4 19.11 18.76 17.87 14.74 19.80 

E4 24.50 24.08 23.19 20.05 25.20 

F4 30.48 30.22 29.33 26.19 31.00 

G4 37.40 37.18 36.29 33.15 37.80 

H4 73.35 73.29 72.30 69.16 72.99 
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Figure 3-8 Maximum deflections of simply supported castellated beam with a uniformly 

distributed load between analytical solutions using different shear rigidity factors obtained by 

Eq. (3-49), including one with zero shear factor obtained by Eq. (3-50) and FEA numerical 

solution for different beam lengths with various flange widths. (a) bf =100mm,  (b) bf =150mm, 

(c) bf =200mm and (d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and a=100mm) 
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Table 3-3 The relative errors of maximum deflections of simply supported castellated beam 

with a uniformly distributed load obtained based on the finite element numerical solutions 

 

 
bf 

mm 

Name  

of  

beam 

T1 T2 T3 T4 

100 

A1 0.11 0.26 0.38 0.86 

B1 0.06 0.09 0.15 0.40 

C1 0.01 0.02 0.05 0.17 

D1 -0.01 0.00 0.02 0.11 

E1 -0.02 -0.01 0.01 0.08 

F1 -0.01 -0.02 0.00 0.05 

G1 -0.02 -0.01 0.00 0.04 

H1 -0.03 -0.03 -0.02 0.00 

150 

A2 0.08 0.32 0.43 0.90 

B2 0.06 0.12 0.19 0.48 

C2 0.03 0.05 0.08 0.24 

D2 0.01 0.03 0.05 0.17 

E2 0.00 0.01 0.03 0.12 

F2 0.00 0.00 0.02 0.09 

G2 -0.01 -0.01 0.01 0.07 

H2 -0.01 -0.02 -0.02 0.01 

200 

A3 0.00 0.34 0.46 0.92 

B3 0.04 0.15 0.23 0.55 

C3 0.04 0.07 0.12 0.29 

D3 0.03 0.04 0.08 0.22 

E3 0.01 0.03 0.06 0.16 

F3 0.01 0.02 0.04 0.13 

G3 0.00 0.01 0.03 0.10 

H3 -0.01 -0.01 0.00 0.04 

250 

A4 -0.01 0.39 0.50 0.94 

B4 0.07 0.15 0.25 0.60 

C4 0.05 0.08 0.13 0.34 

D4 0.04 0.05 0.10 0.26 

E4 0.03 0.04 0.08 0.20 

F4 0.02 0.03 0.05 0.16 

G4 0.01 0.02 0.04 0.12 

H4 0.00 0.00 0.01 0.05 
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Figure 3-9 Relative errors of maximum deflections of simply supported castellated beam with a 

uniformly distributed load between analytical solutions using different shear rigidity factors 

obtained by Eq. (3-49), including one with zero shear factor obtained by Eq. (3-50) and FEA 

numerical solution for different beam lengths with various flange widths. (a) bf =100mm,                  

(b) bf =150mm, (c) bf =200mm and (d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and 

a=100mm) 
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Table 3-4 Comparison of results of maximum deflections of pinned-fixed castellated beam with 

a uniformly distributed load obtained using different approaches 

 

bf 

mm 

Name 

of 

beam 

T1 

mm 

T2 

mm 

T3 

mm 

T4 

mm 

T5 

mm 

100 

B1 3.30 3.05 2.71 1.47 4.36 

C1 5.80 5.69 5.35 4.09 6.99 

D1 7.60 7.50 7.15 5.88 8.80 

E1 9.73 9.64 9.29 8.01 10.91 

F1 12.18 12.10 11.75 10.46 13.33 

G1 14.97 14.89 14.54 13.24 16.08 

H1 29.41 29.34 28.99 27.62 30.36 

I1 54.86 54.80 54.45 52.95 55.48 

150 

B2 4.10 3.62 3.15 1.47 5.39 

C2 6.46 6.27 5.79 4.09 8.06 

D2 8.24 8.08 7.60 5.88 9.92 

E2 10.36 10.21 9.74 8.01 12.06 

F2 12.82 12.68 12.20 10.46 14.52 

G2 15.60 15.47 14.99 13.24 17.30 

H2 30.03 29.92 29.44 27.62 31.78 

I2 55.46 55.37 54.89 52.95 57.23 

200 

B3 4.88 4.19 3.60 1.47 6.42 

C3 7.14 6.84 6.24 4.09 9.12 

D3 8.91 8.65 8.05 5.88 11.00 

E3 11.02 10.79 10.19 8.01 13.18 

F3 13.46 13.25 12.65 10.46 15.67 

G3 16.24 16.04 15.44 13.24 18.46 

H3 30.65 30.50 29.89 27.62 33.05 

I3 56.08 55.34 55.34 52.95 58.69 

250 

B4 5.80 4.76 4.04 1.47 7.50 

C4 7.85 7.41 6.69 4.09 10.18 

D4 9.60 9.22 8.50 5.88 12.08 

E4 11.70 11.36 10.63 8.01 14.28 

F4 14.13 13.83 13.10 10.46 16.79 

G4 16.90 16.62 15.89 13.24 19.60 

H4 31.29 31.07 30.34 27.62 34.26 

I4 56.70 56.52 55.79 52.95 60.20 
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Figure 3-10 Maximum deflections of pinned-fixed castellated beam with a uniformly 

distributed load between analytical solutions using different shear rigidity factors obtained by 

Eq. (3-57), including one with zero shear factor obtained by Eq. (3-58) and FEA numerical 

solution for different beam lengths with various flange widths. (a) bf =100mm, (b) bf =150mm,         

(c) bf =200mm and (d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and a=100mm) 
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Table 3-5 The relative errors of maximum deflections of pinned-fixed castellated beam with a 

uniformly distributed load obtained based on the finite element numerical solutions 
 

bf 

mm 

Name  

of  

beam 

T1 T2 T3 T4 

100 

B1 0.24 0.30 0.38 0.66 

C1 0.17 0.19 0.24 0.42 

D1 0.14 0.15 0.19 0.33 

E1 0.11 0.12 0.15 0.27 

F1 0.09 0.09 0.12 0.22 

G1 0.07 0.07 0.10 0.18 

H1 0.03 0.03 0.04 0.09 

I1 0.01 0.01 0.02 0.05 

150 

B2 0.24 0.33 0.41 0.73 

C2 0.20 0.22 0.28 0.49 

D2 0.17 0.19 0.23 0.41 

E2 0.14 0.15 0.19 0.34 

F2 0.12 0.13 0.16 0.28 

G2 0.10 0.11 0.13 0.23 

H2 0.06 0.06 0.07 0.13 

I2 0.03 0.03 0.04 0.07 

200 

B3 0.24 0.35 0.44 0.77 

C3 0.22 0.25 0.32 0.55 

D3 0.19 0.21 0.27 0.47 

E3 0.16 0.18 0.23 0.39 

F3 0.14 0.15 0.19 0.33 

G3 0.12 0.13 0.16 0.28 

H3 0.07 0.08 0.10 0.16 

I3 0.04 0.06 0.06 0.10 

250 

B4 0.23 0.37 0.46 0.80 

C4 0.23 0.27 0.34 0.60 

D4 0.21 0.24 0.30 0.51 

E4 0.18 0.20 0.26 0.44 

F4 0.16 0.18 0.22 0.38 

G4 0.14 0.15 0.19 0.32 

H4 0.09 0.09 0.11 0.19 

I4 0.06 0.06 0.07 0.12 
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Figure 3-11 Relative errors of maximum deflections of pinned-fixed castellated beam with a 

uniformly distributed load between analytical solutions using different shear rigidity factors 

obtained by Eq. (3-57), including one with zero shear factor obtained by Eq. (3-50) and FEA 

numerical solution for different beam lengths with various flange widths. (a) bf =100mm,                  

(b) bf =150mm, (c) bf =200mm and (d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and 

a=100mm) 
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3.3.5.3. Deflection of simply supported castellated beam due to three fire scenarios 

with a uniformly distributed load 

Table (3-6) shows three fire scenarios with defined temperatures and material 

properties that were applied on castellated beams. 

 
Table 3-6 Temperatures and Young’s modulus in two T- sections (Eo is the Young’s modulus at 

ambient temperature) (BSEN1993-1-2:2005) 

 

Parameter Case 1 Case 2 Case 3 

Temperature, T1 550 
o
C 450 

o
C 350 

o
C 

Temperature, T2 100 
o
C 200 

o
C 300 

o
C 

Young’s modulus, E1 0.5Eo 0.6Eo 0.7Eo 

Young’s modulus, E2 Eo 0.9Eo 0.8Eo 

    

 
 

Table (3-7) describes the results of maximum deflections of simply supported 

castellated beams due to the three fire scenarios with a uniformly distributed load for 

different beam lengths with various flange widths. These results are determined by     

Eq. (3-74), including one without fire scenarios obtained by Eq. (3-49) based on        

Eq. (3-28) for various flange widths: (a) bf =100mm, (b) bf =150mm, (c) bf =200mm 

and  (d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and a=100mm). 

 

Figure 3-12 shows the maximum deflections of simply supported castellated beam due 

to the three fire scenarios defined in Table (3-6) with a uniformly distributed load 

between analytical solutions obtained by Eq. (3-74), including one without fire 

scenarios obtained by Eq. (3-49) based on Eq. (3-28) for various flange widths:            

(a) bf =100mm, (b) bf =150mm, (c) bf =200mm and (d) bf =250mm. (hw=300mm, 

tf=10mm, tw=8mm and a=100mm). 

 

The figure reflects the shear effect due to web opening on the deformation of the beam 

in different fire scenarios when subjected to a uniformly distributed load. It can be seen 

from the figure that, in each group of flange width, the curves of the maximum 

deflection have a similar variation pattern. However, the maximum deflection of the 
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three examined cases is different, in spite of the average temperatures of them being the 

same. The increase in the deflection is directly proportional to the amount of difference 

in temperatures between the two T-sections. Thus, case one, which has the largest 

temperature difference, is the worst case 

  

Table 3-7 Comparison of results of maximum deflections of simply supported castellated beam 

due to three fire scenarios with a uniformly distributed load 
  

 

bf 
mm 

Name 

of 

beam 

Max. deflection  (mm) due to  

 (case 1+qmax) (case 2+qmax)  (case 3+qmax)  ( qmax ) 

100 

C1 15.32 14.20 13.70 12.24 

E1 30.04 27.84 26.85 22.04 

G1 49.65 46.02 44.39 35.13 

H1 103.59 96.02 92.62 71.12 

150 

C2 15.33 14.20 13.70 13.02 

E2 30.04 27.84 26.85 22.80 

G2 49.67 46.02 44.39 35.87 

H2 103.62 96.02 92.62 71.85 

200 

C3 15.33 14.21 13.70 13.83 

E3 30.05 27.84 26.85 23.57 

G3 49.68 46.02 44.39 36.63 

H3 103.64 96.03 92.62 72.59 

250 

C4 15.33 14.21 13.70 14.68 

E4 30.05 27.84 26.85 24.38 

G4 49.68 46.03 44.39 37.40 

H4 103.66 96.03 92.62 73.35 
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Figure 3-12 Maximum deflections of simply supported castellated beam due to three fire 

scenarios with a uniformly distributed load between analytical solutions obtained by Eq. (3-74), 

including one without fire scenarios obtained by Eq. (3-49) for different beam lengths with 

various flange widths. (a) bf =100mm, (b) bf =150mm, (c) bf =200mm and (d) bf =250mm. 

(hw=300mm, tf=10mm, tw=8mm and a=100mm). 
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3.3.5.4. Deflection of roller-fixed castellated beam due to three fire scenarios with 

a uniformly distributed  

Table (3-8) gives the results of maximum deflections of roller-fixed castellated beams 

in three different fire scenarios with a uniformly distributed load for different beam 

lengths with various flange widths. These results are determined by Eq. (3-80), 

including one without fire scenarios obtained by Eq. (3-57) based on Eq. (3-28) for 

various flange widths: (a) bf =100mm, (b) bf =150mm, (c) bf =200mm and                   

(d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and a=100mm). 

 

Figure 3-13 plots the maximum deflections of roller-fixed castellated beams due to the 

three fire scenarios as given in Table (3-6), with a uniformly distributed load, obtained 

from the analytical solutions presented by Eq. (3-80), including one without fire 

scenarios obtained by using Eq. (3-57) based on Eq. (3-28) for various flange widths: (a) 

bf =100mm, (b) bf =150mm, (c) bf =200mm and (d) bf =250mm. (hw=300mm, tf=10mm, 

tw=8mm and a=100mm). 

 

The figure reflects the shear effect due to web opening on the maximum deflection of 

castellated beam in different fire scenarios. It can be seen that, in each group of flange 

width, the curves of the maximum deflection have a similar variation pattern. Moreover, 

it can be seen that, the maximum deflection of the three examined cases is different, in 

spite of the average temperatures in them being the same, where the increase in the 

deflection of the castellated beam is directly proportional to the amount of difference in 

temperatures between the two T- sections. Thus, case one, which has the largest 

temperature difference, is the worst case, which reflects that the increase of deflection is 

influenced by the reduction of Young's modulus.  
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Table 3-8 Comparison of results of maximum deflections of roller- fixed castellated beam due 

to three fire scenarios with a uniformly distributed load 
 

bf 
mm 

Name 

of 

beam 

Max. deflection  (mm) due to  

 (case 1+qmax) (case 2+qmax)  (case 3+qmax)  ( qmax ) 

100 

C1 8.73 8.27 8.06 5.80 

E1 14.79 13.89 13.48 9.73 

G1 22.89 21.39 20.72 14.97 

H1 45.19 42.06 40.66 29.41 

150 

C2 9.66 9.20 8.99 6.46 

E2 15.70 14.79 14.38 10.36 

G2 23.79 22.28 21.61 15.60 

H2 46.07 42.93 41.53 30.03 

200 

C3 10.63 10.17 9.96 7.14 

E3 16.63 15.72 15.31 11.02 

G3 24.70 23.19 22.52 16.24 

H3 46.96 43.82 42.41 30.65 

250 

C4 11.64 11.17 10.97 7.85 

E4 17.58 16.68 16.27 11.70 

G4 25.63 24.12 23.45 16.90 

H4 47.87 44.72 43.31 31.29 
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Figure 3-13 Maximum deflections of roller-fixed castellated beam due to three fire scenarios 

with a uniformly distributed load between analytical solutions obtained by Eq. (3-80), including 

one without fire scenarios obtained by Eq. (3-57) for different beam lengths with various flange 

widths. (a) bf =100mm, (b) bf =150mm, (c) bf =200mm and (d) bf =250mm. (hw=300mm, 

tf=10mm, tw=8mm and a=100mm). 
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3.4. Conclusions  

In this chapter, a number of equations have been presented for determining the 

maximum transverse deflection of simply support and pinned–fixed support castellated 

beams subjected to a uniformly distributed load with/without non-uniform temperature. 

These equations are derived based on the principle of minimum potential energy. In 

order to evaluate the analytical results, ANSYS software is used. From these equations 

and the evaluation, the main conclusions that can be summarized as follows:  

 The shear-induced deflection caused due to web openings is proportional to the 

cross-section area of the two T-sections but inversely proportional to the beam 

length.  

 The present analytical results are in excellent agreement with those obtained from 

the finite element analysis, which demonstrates the appropriateness of proposed 

approach. 

 Shear effect on the deflection of castellated beams is very important, particularly 

for short and medium length beams with narrow or wide section. Ignoring the shear 

effect could lead to an under-estimation of the deflection.  

 The relative errors between analytical calculation and numerical calculation do not 

exceed (24%) even for short span castellated beam with narrow or wide section for 

pinned-fixed. 

 The effect of web shear on the deflection reduces when castellated beam length 

increases. 

 Despite that the numerical solution based on FEA has been widely used in the 

analysis of castellated beams, it is usually time consuming and limited to specific 

geometrical dimensions. Thus, a simplified calculation solution that is able to 

deliver reasonable results but requires less computational effort would be helpful 

for both researchers and designers. 
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 For the same average temperatures, the maximum deflection of the castellated beam 

under non-uniform temperature distribution with transverse distributed load is 

directly proportional to the amount of difference in temperatures between the two 

T- sections of the beam. 



CHAPTER FOUR                                               LATERAL-TORSIONAL BUCKLING 

69 

 

 

CHAPTER FOUR 

 

4. LATERAL-TORSIONAL BUCKLING  

4.1. Introduction 

In some cases, castellated beams may undergo a lateral-torsional buckling before they 

reach to their ultimate limit state. Recent evidence explains that due to applying 

transverse loads on the major axis of the castellated beam, the cross section of the beam 

is affected by compression and tension stress. Compression stress on the top flange 

causes the vertical movement of the beam that is in the same direction as the load, 

which causes lateral moment and thus creating the horizontal movement when the 

vertical stiffness is bigger than the lateral stiffness. Meanwhile, tension stress that is 

created on the bottom flange tries to reduce the vertical deflection, which leads to 

twisting around the major axis when the load exceeds the limit state, as well as causing 

a torsional moment, in addition to the existing bending moment. The combinations of 

these effects are prone to produce an instability state called lateral-torsional buckling. 

Kerdal and Nethercot (1984) indicated that the behaviour of castellated beams is similar 

to the plain beam but the properties of the cross section should be considered to evaluate 

the lateral-torsional buckling (see Figure 4-1). 

 

This chapter will firstly present the factors affecting the lateral-torsional buckling, and 

review the current design philosophy that has been adopted for determining the lateral-

torsional buckling resistance of I-beams with web openings under bending loads. 

Secondly, the analytical methods will be presented for elastic critical lateral-torsional 

buckling loads of castellated beam under a uniformly distributed transverse load on the 

top flange for two common boundary conditions. The analytical approach will be 

developed based on the principle of minimum potential energy. Moreover, the linear 
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FEA numerical computations will be provided for verifying the accuracy of the 

analytical solutions. 

 

Figure 4-1 The mechanism of Lateral-Torsional Buckling 

 

4.2. Factors influencing lateral-torsional buckling  

Numerous experimental, theoretical and numerical investigations have pointed out that 

some factors have an impact on castellated beam’s vulnerability to lateral-torsion 

buckling (http://www.scirp.org/journal/ojce). The factors include: the distance between 

the lateral supports to the compression of the flanges; boundary conditions; loading type 

and position, section type; material properties; magnitude and distribution of the 

residual stresses and geometric imperfections (Martins et al., 2017). 

  

4.2.1. Effective length (the distance of castellated beam between two laterals 

supports) 

Effective length indicates the distance of castellated beam between two lateral supports; 

(Korrani et al., 2010) noted that the potential of lateral-torsional buckling occurring is 

reduced when the effective length is small which leads to prevent the buckling where 

this occurred because of the instability of compression flange. Therefore, this distance 

should not exceed the limitations. 

http://www.scirp.org/journal/ojce


CHAPTER FOUR                                               LATERAL-TORSIONAL BUCKLING 

71 

4.2.2. Boundary conditions 

Actually, the lateral-torsional buckling failure is reduced if the buckling moment is 

increased which leads to reducing the lateral buckling of the beam, owing to the fact 

that the lateral buckling consists of three deformation types, namely lateral bending, 

warping, and twisting, where these deformations are affected by the beam boundary 

conditions. Hence, the kinds of boundary conditions should be considered to increase 

the resistance of beam and prevent all these deformations. In BS5950-1:2000 the 

effective length of beam takes into account the effect of the boundary conditions on 

lateral-torsional buckling (Sehwail, 2013; Ahnlén. and Westlund, 2013 and New steel 

construction technical report, 2006).  

 

4.2.3. Loading location 

The lateral-torsional buckling is affected by the vertical line extended between the 

location of applying load and the shear canter of the cross-section of the beam.         

New steel construction technical report (2006) pointed out that the applying load above 

the shear centre makes the beam vulnerable to destabilizing load situation, which 

indicated that the beam is more sensitive to the lateral-torsional buckling failure. On the 

other hand, the applying load at the shear centre or down leads to decrease the 

occurrence of this failure which is called non-destabilizing load. The previous research 

found that applying loading below or above the shear centre can change the load of 

buckling by ± 40% (Sehwail, 2013). 

 

4.2.4. Loading type 

The influence of loading type on the occurrence of a lateral-torsional buckling failure 

for steel beams is addressed in BS5950-1:2000 by using the equivalent uniform moment 

factor. The previous researchers pointed out that, where the cross-section is subjected to 

a uniformly bending moment that is distributed on the length of beam, it resists the 

buckling less than the same cross section subjected to different bending moment 

distribution. For this reason, the designers use the equivalent uniform moment factor to 

modify the design procedure.  
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4.2.5. Imperfections 

Initial imperfections are the lateral displacements and twists along the beam length. 

The previous investigations stated that these imperfections appear in structural steel 

sections due to the fabrication process. In addition, the process of loading could be 

eccentric which urges continuous increase in the lateral deflection and twist at the first 

stage of loading because the elastic critical moment will be less than yield moment. 

Unfortunately, another reason for these imperfections occurring, is that the section’s 

properties of beam might change because of distortions and cracks during beam 

transportation. However, residual stresses may increase because of imperfections 

(Sehwail, 2013 and Jovi, 2015). 

 

4.2.6. Residual stress  

Some previous studies stated that the process of manufacture of steel sections and 

fabricating castellated beams such as cutting, shifting, and welding could cause a 

significant lack of beam strength. This phenomenon is called residual stress. It is clear 

that these stresses can affect physical and mechanical properties of the beams. In other 

words, the large changes in the temperature during the fabrication process, or erection 

could affect the residual stresses, and then the section will start to undergo stress at 

lower moments. Therefore, the yielding will extend through the cross section of the 

beam concurrently with increased moment. According to the experiments of         

Sonck et al. (2014), the castellated beams have compressive residual stresses at the 

flanges more than the original parent does. As a result, ignoring these stresses possibly 

leads to obtaining unsafe lateral-torsional buckling resistance values (Sehwail, 2013 

and Sonck, 2014) 

 

4.2.7. The slenderness 

New steel construction technical report (2006) indicates that the slenderness of section 

is one of the important conditions that should be considered in the steel structural 

design check for lateral-torsional buckling to provide safe structures. Some of the 

factors could affect the slenderness of section such as the beam length and the stiffness 
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of both flange lateral bending and the section torsional. However, the castellated beam 

is more exposed to the lateral-torsional buckling failure than the I-beam of the same 

size due to increasing the depth and the web openings. 

 

4.3. Current design philosophy of lateral-torsional buckling resistance of I-beam 

with web openings 

Currently, two basic design philosophies have been adopted for determining the lateral-

torsional buckling resistance of I-beam with web openings under bending loads. 

 

The first design philosophy indicates that for I-beam with web openings, the design 

check of lateral-torsional buckling is decreased to be a lateral flexural buckling check of 

the compressed T-section at web opening. ArcelorMittal (2008) reports this design 

philosophy. According to Nseir et al. (2012), this philosophy is conservative because 

the tension effect of the flange and the stiffness of torsional of the full cross-section are 

completely ignored. 

 

Nethercot and Kerdal (1982) elicit the other design philosophy. They performed 

experiments on eight castellated beams and noticed that the lateral-torsional buckling 

resistance is not affected by the web openings of the beam. Hence the design philosophy 

of lateral-torsional buckling for I-beam without web openings could be used to the        

I-beam with web openings, taking into consideration that the properties of the cross-

sectional should be calculated at the centre of the castellation. 

 

Now today, the design specifications such as BSEN1993-1-1:2005; BS5950-1:2000; 

Australian standards AS4100 and American standard AISC provide methods, which are 

derived, based on the above philosophies, to determine the lateral-torsional buckling 

resistance for I-beams with web openings. Many articles found in the literature have 

used this design specification.  
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4.4. The calculation methods of lateral-torsional buckling resistance of castellated 

beam 

Mohebkhah (2004) developed a nonlinear finite element method for simulating inelastic 

castellated beams with various loading cases to examine lateral–torsional buckling. The 

work also discussed the influence of moment gradient on the lateral-torsional buckling 

of castellated beams. The FEA results of inelastic castellated beams with different 

slenderness were compared with the results obtained according to the design 

specifications AISC-LRFD. Mohebkhah reported that the design specifications AISC-

LRFD is unsafe because the values of moment gradient factors for inelastic beams 

provided in AISC are bigger than those determined by nonlinear FEA method. 

 

Zirakian and Showkati (2006) carried out an experimental investigation to examine 

lateral-distortional buckling mode and discussed the interaction between local buckling 

and lateral-torsional buckling. In their work, six tests were performed on simply 

supported castellated beams exposed to a concentrated load. They reported that the 

interaction of different buckling modes would lead to a distortion of the cross-section of 

the castellated beam due to lack of strength as assumed during lateral-torsional 

buckling. The experimental results were compared with the analytical results of the 

elastic and inelastic lateral buckling loads, which were obtained by applying the South 

well, modified, and Massey extrapolation techniques to gain more accurate predictions 

of the critical buckling loads. 

 

Showkati (2008) suggested several empirical formulas to calculate the bending 

coefficient of unbraced castellated beams. The comparison was made between his 

results and published data by previous studies. The results show that the elastic-bending 

capacities of castellated beams, which are subjected to the uniform distributed loads on 

the top flange, are affected by the section properties. 

 

Kohnehpooshi and Showkati (2009) carried out the numerical investigations using finite 

element method for the evaluation of the effective flexural and torsional stiffness’s, 

shear and tension effects of castellated beams on the overall failure of the beams when 

subjected to pure bending. The finite element method was carried out using ANSYS 

software by using 3-D nonlinear Shell Elements (SHELL181). 
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Sweedan (2011) utilized ANSYS software for simulating the lateral-torsional buckling 

of simply supported circular web openings beam. This study applied different cases of 

loading on simply supported circular web openings beam which associated with wide 

variety of parameters such as cross-sectional dimensions, lengths of beams and 

arrangement of web openings to find critical moment values and the moment-gradient 

factor. According to numerical results, this study reported that the moment-gradient 

factor is affected by the beam geometry and slenderness. In addition, a simplified 

approach was proposed to enable accurate determination of a moment modification 

factor KLB for the cellular beams. 

 

Ellobody (2011) utilized analytical and experimental methods to investigate the 

interaction of buckling modes in castellated beams. Nonlinear finite element method 

was utilized to simulate 96 models of the castellated beam by using ABAQUS software. 

The effects of various characteristics such as cross section dimensions and length of the 

beam on the failure mechanisms of the castellated beams were examined. It was 

reported that web distortional buckling occurs on castellated beam because of high 

strength, but lateral-torsional buckling failure due to the normal strength of castellated 

beam. 

 

Nseir et al. (2012) used both the experimental and numerical methods to examine the 

lateral-torsional buckling resistance of circular web opening beams. In addition, they 

suggested an analytical design method. Three tests were conducted to make a 

comparison between the experimental and numerical results. Their study used a wide 

variety of parametric factors, including cross-sectional shape, bending moment 

distribution, the relative size of the openings, and yield stress.  

 

The design methods provided in the design specifications BS5950-1, 3.1, 4:1985 and 

1988 are adopted by Pachpor et al. (2014) to examine the behaviour of circular web 

opening beams to predict the lateral-torsional buckling resistance.  

 

Panedpojaman (2015) made efforts to calculate the lateral-torsional buckling resistance 

of I-beams with web openings under a constant bending moment. Two methods, namely 

General Method and Specific Method, were used. In addition, the section properties for 
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the calculation were adopted according to Nethercot and Kerdal (1982)’s design 

principle. 

 

Kim et al. (2016) presented an analytical study with focussing on the web shear effects 

on the lateral–torsional buckling of simply supported castellated beams liable to pure 

bending and/or a uniformly distributed load. They performed this study by using the 

classical principle of minimum potential energy. They also reported that to increase the 

accuracy of the critical moments' value and loads, the average torsional constant of the 

full and reduced sections should be considered in calculations, instead of simply taking 

the average of the critical moments or loads. 

 

Sonck and Belis (2016) presented a nonlinear numerical study to examine the behaviour 

of the lateral-torsional buckling of doubly symmetric castellated beams subjected to a 

constant bending moment. For calculations, the study took into account the modified 

residual stresses and the cross-sectional properties at the centre of the web opening. The 

calculations for lateral-torsional buckling were based on the design specification 

BSEN1993-1-1: 2005. The results of the numerical study have been compared with 

experimental results to assess the effects of geometric imperfections, elastic-plastic 

material behaviours, and residual stresses. 

 

 Kwani and Wijaya (2017) presented a paper to investigate the lateral-torsional buckling 

of castellated beams. AISC specifications have no equation to determine the critical 

moment for lateral-torsional buckling for design purposes of castellated beams. 

Therefore, they adopted the collapse analysis by using finite element method to modify 

the correction factor of AISC formula for determining the critical moment of the 

castellated beam.  

 

4.5. Analytical philosophy of lateral-torsional buckling of castellated Beam 

The condition of changing the beam from straight stability state to lateral deflection and 

twist state occurs at the critical loads. A calculation method of elastic critical loads of 

castellated beams when the beam has a lateral–torsional buckling is presented in this 

chapter. The method is derived based on the principle of the total potential energy.  

http://www.sciencedirect.com/science/article/pii/S1877705817303806#!
http://www.sciencedirect.com/science/article/pii/S1877705817303806#!
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According to the model illustrated in, Figure 4-2 (a) the beam shear centre will have 

lateral and transverse displacements, respectively v(x), w(x). Furthermore, the cross-

section has an angle of twist ϕ(x). In the linear situation, the strain energy stored in the 

beam involves two parts; the energy caused by the deflection and the energy caused by 

the twist, which can be written as follows: 

where 𝑈𝑠  is the strain energy, 𝑙 is the beam length, 𝐸 is the Young's modulus, 𝐺 is the 

shear modulus and 𝐽 is the torsional constant; 𝐼𝑦 and 𝐼𝑧 are the second moments of the 

cross-sectional area about the y and z axes respectively, 𝐼𝑤  is the warping constant. 

Because of web openings 𝐼𝑦 , 𝐼𝑧 , 𝐼𝑤  and 𝐽 are introduced as a function of x. 

 

In order to consider the web shear influence to determine the elastic critical lateral-

torsional buckling loads in castellated beams, it is assumed that the cross-section of the 

castellated beam is decomposed into three parts, two of which represent the top           

T-section and bottom T-section, one of which represents the middle-part of the web. 

The analysis model for this study is illustrated in Figure 4-2 (a). The second 

assumption is that the displacements at the shear centres of the top and bottom tee-

sections are small. The third assumption is that the warping constants of the top and 

bottom T-sections and the mid-part of the web are so small and therefore can be ignored. 

The displacements of the three parts in the castellated beam can thus be expressed as 

follows (see Figure 4-2 (b)) (Kim. et al., 2016): 
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where 𝑣1 and 𝑣2 are the lateral displacements of the shear centre of the top and bottom 

T-section, 𝑤1 and 𝑤2 are the transverse displacements of the shear centre of the top and 

bottom T-section, (ℎ)  is the distance between the shear centres of top and bottom         

T-sections. Hence, the strain energy of the castellated beam based on the three parts can 

be written as follows: 
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where  𝐼𝑦1 = 𝐼𝑦2 and 𝐼𝑧1 = 𝐼𝑧2 are the second moments of the T- sectional area about 

the y and z axes. 𝐽1 = 𝐽2 is the torsional constant of the tee-section, 𝐼𝑦3 and 𝐼𝑧3 are the 

second moments of the cross-sectional area of the mid-part of the web about the y and z 

axes respectively, and 𝐽3 is the torsional constant of the mid-part of the web. 

 

Hence, the formula of the strain energy of castellated beam (top T- section, bottom      

T- section and mid-part of the web), which is susceptible to deflection and twist due to 

uniformly distributed load at the top T- sections, can be obtained by substituting       

Eqs. (4-2)– (4-5) into Eq. (4-6): 
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According to Figure 4-2 (c), 𝐼𝑦1 , 𝐼𝑧1  and 𝐽1 are constants,while 𝐼𝑦3 , 𝐼𝑧3  and 𝐽3  are 

depending upon the location of the web openings, therefore they are function of x. 

Hence, from the comparison between Eqs. (4-7) and (4-1), it can be obtained, that: 

 𝐼𝑦 = 2𝐼𝑦1 + 𝐼𝑦3 4-8 
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 𝐽 = 2𝐽1 + 𝐽3 4-11 

 

Note from Eq. (4-10) the warping strain energy cannot be ignored because the 

displacement compatibility occurs when the two T-sections assemble. 

 

The potential energy, which is the negative value resulting from the applied loads when 

the lateral-torsional buckling occurs, can be written as follows: 
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where  az refers to the z-coordinate of the loading point, which is the vertical distance 

between the loading point and the shear centre of the beam, in this case,  az =
hw

2
+ 𝑡𝑓 

because the uniformly distributed load is applied on the top flange of the beam. 

 

In summary, by using Eqs. (4-7) and (4-12), the equation of the total potential energy of 

the castellated beam considering lateral-torsional buckling deflection can be expressed 

as follows: 

 

∏ =
1

2
∫ [2𝐸𝐼𝑦1 (

𝑑2𝑤1

𝑑𝑥2 )

2

+ 2𝐸𝐼𝑧1 (
𝑑2𝑣1

𝑑𝑥2 )

2

                           
𝑙

0

+
ℎ2

2
𝐸𝐼𝑧1 (

𝑑2𝜙

𝑑𝑥2)

2

+ 2𝐺𝐽1 (
𝑑𝜙

𝑑𝑥
)
2

] 𝑑𝑥

+
1

2
∫ [𝐸𝐼𝑦3 (

𝑑2𝑤2

𝑑𝑥2 )

2

+ 𝐸𝐼𝑧3 (
𝑑2𝑣2

𝑑𝑥2 )

2

+ 𝐺𝐽3 (
𝑑𝜙

𝑑𝑥
)
2

]
𝑙

0

𝑑𝑥

− ∫ [𝑀𝑦 (
𝑑2𝑤

𝑑𝑥2) + 𝑀𝑦𝜙 (
𝑑2𝑣

𝑑𝑥2) +
𝑎𝑧𝑞𝑧

2
𝜙2]

𝑙

0

𝑑𝑥 

4-13 
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Figure 4-2 (a) Notations used in castellated beams. (b) Loading and displacements of web and 

displacement of flanges when lateral–torsional buckling occurred (c) Section properties of 

middle-part of web in four different regions. 𝐼𝑦3 = 𝐼𝑦3
∗ ,  𝐼𝑧3 = 𝐼𝑧3

∗ , 𝐽3 = 𝐽3
∗ in region 2, in region 

4, 𝐼𝑦3 = 𝐼𝑧3 = 𝐽3 = 0 , section properties vary with x in regions 1 and 3. 

 

4.5.1. Determining the elastic critical buckling loads of simply supported, doubly 

symmetric castellated beam subjected to uniformly distributed loads 

The critical moment Mcr  of a simply supported castellated beam under a uniformly 

distributed load applied on the top flange of the beam can be obtained from Eq. (4-14) 

as follows (Kim et al., 2016), 

 
Mcr =

−(
ℎ𝑤

2
+ 𝑡𝑓) + √(

ℎ𝑤

2
+ 𝑡𝑓)

2

+ (
𝜋2

6
+

1
2
)

2

[𝐼𝑤 +
𝐺(2𝐽1 + 𝑘𝐽3

∗)𝑙2

𝜋2𝐸
]

1
(2𝐼𝑧1 + 𝑘𝐼𝑧3

∗ )

(
1
3

+
1
𝜋2)

2

×
𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3

∗ )

𝑙2
 

4-14 

where  
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 Mcr = (
𝑞𝑧𝑙

2

8
)

𝑐𝑟

 4-15 

 

𝐼𝑧3
∗  is negligible because in most of castellated beams  𝐼𝑧3

∗ << 2𝐼𝑧1. Thus, Eq. (4-14) 

can be simplified as (Kim et al., 2016) 

 
(
𝑞𝑧𝑙

2

8
)

𝑐𝑟

=

−(
ℎ𝑤

2
+ 𝑡𝑓) + √(

ℎ𝑤

2
+ 𝑡𝑓)

2

+ (
𝜋2

6
+

1
2
)

2

[
𝐼𝑤

2𝐼𝑧1
+

𝐺(2𝐽1 + 𝑘𝐽3
∗)𝑙2

2𝐼𝑧1𝜋
2𝐸

]

(
1
3

+
1
𝜋2)

2 ×
2𝐼𝑧1𝐸

𝑙2
 

4-16 

 

 
(𝑞𝑧)𝑐𝑟 =

− (
ℎ𝑤

2
+ 𝑡𝑓) + √(

ℎ𝑤

2
+ 𝑡𝑓)

2

+ (
𝜋2

6
+

1
2
)

2

[
𝐼𝑤

2𝐼𝑧1
+

𝐺(2𝐽
1
+ 𝑘𝐽

3
∗)𝑙2

2𝐼𝑧1𝜋
2𝐸

]

(
1
3

+
1

𝜋2)
2

×
16𝐼𝑧1𝐸

𝑙4
 

4-17 

 

4.5.2. Determining the elastic critical buckling loads of pinned-fixed castellated 

beam, doubly symmetric castellated beam subjected to uniformly 

distributed loads 

The buckling displacements of a pinned-fixed castellated beam can be assumed as 

follows: 

 𝑤(𝑥) = 𝐴 sin(
𝑘𝜋(𝑙 − 𝑥)

𝑙
) sin(

𝜋(𝑙 − 𝑥)

2𝑙
) 4-18 

 

 𝑣(𝑥) = 𝐵 sin(
𝑘𝜋(𝑙 − 𝑥)

𝑙
) sin(

𝜋(𝑙 − 𝑥)

2𝑙
) 4-19 

 

 𝜙(𝑥) = 𝐶 sin(
𝑘𝜋(𝑙 − 𝑥)

𝑙
) sin(

𝜋(𝑙 − 𝑥)

2𝑙
) 4-20 

 

where A, B, and C are the constants to be determined. It is obvious that the above 

displacements functions satisfy the boundary conditions, that are 𝑤 = 𝑣 = 𝜙 =
𝑑2𝑤

𝑑𝑥2
=

𝑑2𝑣

𝑑𝑥2
=

𝑑2𝜙

𝑑𝑥2
= 0 at x = o and 𝑤 = 𝑣 = 𝜙 =

𝑑𝑤

𝑑𝑥
=

𝑑𝑣

𝑑𝑥
=

𝑑𝜙

𝑑𝑥
= 0  at  x =l .   
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Substituting Eqs. (4-18), (4-19) and (4-20) into Eq. (4-7) yields 

 

According to Kim.et al. (2016) k refers to the fraction of the volume of the solid and 

holes in the mid-part of the web beam. For most castellated beams, because of matching 

of the solid areas and holes in the mid-part of the web have equal area this leads to the 

value of k=0.5. 

 

The internal bending moment for a pinned-fixed castellated beam subject to a uniformly 

distributed load can be written as follows: 

 𝑀𝑦(𝑥) =
3

8
𝑞𝑧𝑙𝑥 −

1

2
𝑞𝑧𝑥

2 4-22 

 

Substituting Eq. (4-22) into Eq. (4-12) yields an expression for the potential energy of 

the external loads as: 

 𝑊 =
4𝑙𝑞𝑧

3𝜋
𝐴 +

𝑞𝑧𝜋
2𝑙

20
(
1

3
+

1

𝜋2
)𝐵𝐶 −

𝑎𝑧𝑙𝑞𝑧

8
𝐶2 4-23 

 
Combining Eqs. (4-21) and (4-23) yields an expression for the total potential energy: 

 
∏ =

41

128

𝜋4

𝑙3
[𝐸(2𝐼𝑦1 + 𝑘𝐼𝑦3

∗ )𝐴2 + 𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3
∗ )𝐵2 + 𝐸𝐼𝑤𝐶2

+
16

41
(1 +

1

𝜋2
)𝐺(2𝐽1 + 𝑘𝐽3

∗) (
𝑙

𝜋
)
2

𝐶2] +
4𝑙𝑞𝑧

3𝜋
𝐴

+
𝑞𝑧𝜋

2𝑙

20
(
1

3
+

1

𝜋2
)𝐵𝐶 −

𝑎𝑧𝑙𝑞𝑧

8
𝐶2 

4-24 

 

The variation of Eq. (4-24) with respect to A, B and C results in the following three 

algebraic equations: 

 

 
41𝑙

128
(
𝜋

𝑙
)
4

[2𝐸(2𝐼𝑦1 + 𝑘𝐼𝑦3
∗ )𝐴] +

4𝑙𝑞𝑧

3𝜋
= 0 4-25 

 

 
41𝑙

128
(
𝜋

𝑙
)
4

[2𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3
∗ )𝐵] = −

𝑞𝑧𝜋
2𝑙

20
(
1

3
+

1

𝜋2
) 𝐶 4-26 

 

𝑈𝑠 =
41

128

𝜋4

𝑙3
[𝐸(2𝐼𝑦1 + 𝑘𝐼𝑦3

∗ )𝐴2 + 𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3
∗ )𝐵2 + 𝐸𝐼𝑤𝐶2

+
16

41
(1 +

1

𝜋2
)𝐺(2𝐽1 + 𝑘𝐽3

∗) (
𝑙

𝜋
)
2

𝐶2] 

4-21 
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41𝑙

128
(
𝜋

𝑙
)
4

[2𝐸𝐼𝑤𝐶 +
16

41
(1 +

1

𝜋2
) 2𝐺(2𝐽1 + 𝑘𝐽3

∗) (
𝑙

𝜋
)

2

𝐶]

=
𝑎𝑧𝑙𝑞𝑧

4
𝐶 −

𝑞𝑧𝜋
2𝑙

20
(
1

3
+

1

𝜋2
)𝐵   

4-27 

 

The second-order variation of the total potential energy equation, with respect to A, B 

and C should be equal to zero, from which the critical moment/load is obtained 

 𝛿2 ∏ = 𝛿2(𝑈𝑠 + 𝑊) = 0 4-28 

 

Eq. (4-28) leads to: 

 

 𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3
∗ ) (

𝜋

𝑙
)
2

𝐵 =
8𝑞𝑧𝑙

2

20
(
1

3
+

1

𝜋2
) 𝐶 4-30 

 

 

 [(
𝜋

𝑙
)
2

(
41

8
)
2

𝐸𝐼𝑤 + 𝐺(2𝐽1 + 𝑘𝐽3
∗)] 𝐶 =

8𝑞𝑧𝑙
2

20
(
1

3
+

1

𝜋2
)𝐵 +

41𝑎𝑧𝑙
2𝑞𝑧

4𝜋2
𝐶 4-31 

 

 

Eliminating B in Eqs. (4-30) and (4-31), it yields  

 

 

 

[
8𝑞𝑧𝑙

2

20
(
1

3
+

1

𝜋2
)]

2

+
41𝑎𝑧𝑙

2𝑞𝑧

4𝜋2
(𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3

∗ ) (
𝜋

𝑙
)
2

)

= [(
𝜋

𝑙
)
2

(
41

8
)
2

𝐸𝐼𝑤 + 𝐺(2𝐽1 + 𝑘𝐽3
∗)] (𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3

∗ ) (
𝜋

𝑙
)
2

) 

4-32 

 

Solving for 𝑞𝑧 from Eq. (4-32), it yields 

 
(
𝑞𝑧𝑙

2

8
)

𝑐𝑟

=

−(
ℎ𝑤
2

+ 𝑡𝑓) + √(
ℎ𝑤
2

+ 𝑡𝑓)
2

+
64𝜋2

20
(

1
𝜋2 +

1
3
)
2

[
𝐼𝑤
64

+
𝐺(2𝐽1 + 𝑘𝐽3

∗)𝑙2

412𝜋2𝐸
]

1
(2𝐼𝑧1 + 𝑘𝐼𝑧3

∗ )

64𝜋2

20
(

1
𝜋2 +

1
3
)
2

×
41𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3

∗ )

𝑙2
 

4-33 

 

Again, if 𝐼𝑧3
∗   is neglected, Eq. (4-33) can be simplified as follows: (Kim et al., 2016) 

 𝐴 = 0 4-29 
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(
𝑞𝑧𝑙

2

8
)

𝑐𝑟

=

−(
ℎ𝑤
2

+ 𝑡𝑓) + √(
ℎ𝑤
2

+ 𝑡𝑓)
2

+
64𝜋2

20
(

1
𝜋2 +

1
3
)
2

[
𝐼𝑤
64

+
𝐺(2𝐽1 + 𝑘𝐽3

∗)𝑙2

412𝜋2𝐸
]

1
(2𝐼𝑧1)

 

64𝜋2

20
(

1
𝜋2 +

1
3
)
2

×
41𝐸(2𝐼𝑧1)

𝑙2
 

4-34 

 

 
(𝑞𝑧)𝑐𝑟 =

−(
ℎ𝑤

2
+ 𝑡𝑓) + √(

ℎ𝑤

2
+ 𝑡𝑓)

2

+
64𝜋2

20
(

1
𝜋2 +

1
3
)

2

[
𝐼𝑤
64

+
𝐺(2𝐽1 + 𝑘𝐽3

∗)𝑙2

412𝜋2𝐸
]

1
(2𝐼𝑧1)

64𝜋2

20
(

1
𝜋2 +

1
3
)

2

×
328𝐸(2𝐼𝑧1)

𝑙4
 

4-35 

4.6. Numerical analysis lateral-torsional buckling of castellated beams due to 

uniformly distributed load 

The main objective herein is to validate the equations of analytical solutions developed 

in sec 4.6 for calculating critical moment of lateral-torsional buckling of castellated 

beams subjected to uniformly distributed load on top flange. A linear 3D finite element 

analysis is carried out by employing ANSYS mechanical (APDL) software for 

conducting Eigenvalue analysis to determine the critical moment 

 

4.6.1. Modelling consideration, material model and loading 

The FEA modelling of castellated beams is done by using 3D linear 4-Node Thin Shell 

Elements (SHELL181) depicted in Figure 3-5, which is suitable for linear and large 

rotation. This element presents four nodes with six DOF per node, i.e., translations and 

rotations on the X, Y, and Z-axis, respectively. The beams are meshed using element 

sizes not exceeding 10 mm. A typical mesh configuration is shown in Figure 3-6. The 

mechanical properties used are the elastic material with Young’s modulus E = 2.1 × 105 

MPa, Poisson’s ratio v =0.3, and yield stress σy=275 MPa. 

The external load is the uniformly distributed load (𝑞𝑚𝑎𝑥 = 16
𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑙2(ℎ𝑤+2𝑡𝑓)
) acting on the 

junction of the upper flange and web. (see Figure 3-7) 
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4.6.2. Boundary conditions  

4.6.2.1. Simply supported castellated beam 

The displacement boundary conditions are applied to all nodes at the two ends of the 

beam, as shown in Figure 3-7. The lateral and transverse deflections and rotation are 

restrained (uy=uz=0, and θx=0) at two ends of the simply supported beam. Moreover, 

another boundary condition is applied by restricting the axial displacement (ux=0) at one 

node of one end of the simply supported beam. 

 

4.6.2.2. Pinned-fixed castellated beam  

The displacement boundary conditions are also applied to all nodes at the two ends of 

the beam, as shown in Figure 3-7. The lateral and transverse deflections and rotation 

are restrained (uy=uz=0 and θx=0) at the simply supported end, while the fixed support 

boundary condition is applied at the other end by restricting the axial displacement, 

transverse deflections and rotations around the three axes within the cross-section 

(ux=uy=uz=0 and θx=θy= θz=0).  

 

4.6.3. Comparison of results and discussion  

4.6.3.1. Linear lateral-torsional buckling stress results of simply supported due to 

uniformly distributed load act on top flange  

Table (4-1) shows a comparison of the critical loads of lateral-torsional buckling of 

simply support castellated beam subjected to the uniformly distributed transverse load 

applying on its top flange between analytical solution and numerical analysis. The 

analytical solution was obtained directly from Eqs. (4-16) and (4-17), whereas the 

numerical result was obtained by using linear buckling analysis built in ANSYS 

software (APDL). The yield moment was calculated by using Myield =
2𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

ℎ𝑤+2𝑡𝑓
 with 

𝜎𝑦 = 275
𝑁

𝑚𝑚2
  and 𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑  was calculated using Eq. (3-17). The results of different 

castellated beam lengths with various flange widths (see Section 3.3.4) shown in          

Table (4-1) are also plotted in Figures 4-3, 4-4 and 4-5, respectively  
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It can be seen from the figures that, in each group of flange width, the curves of the 

analytical solution and numerical analysis have a similar variation pattern. The 

analytical solution is in excellent agreement with the numerical analysis. This indicates 

that the analytical model developed above for the castellated beam is appropriate for 

calculating the critical load of lateral-torsional buckling. Moreover, the latter reflects the 

influence of ignoring the value of the second moment of the cross-sectional area of the 

mid-part of the web about the z-axis (𝐼𝑧3
∗ ) , and taking account the torsional constant of 

the cross-sectional area of the mid-part of the web, this is comparable to that of the two 

T- sections(𝑘𝐽3
∗)   (Kim et al., 2016). 



CHAPTER FOUR                                               LATERAL-TORSIONAL BUCKLING 

87 

Table 4-1 Comparison of results linear critical lateral-torsional buckling load (𝑞𝑐𝑟 , Mcr) of 

simply supported castellated beams with a uniformly distributed act on top flange 

 

bf 

mm 

Name 

of 

beam 

Myield 
N.mm 

x10
7
 

Linear buckling     
Analytical analysis 

Linear buckling  

Numerical analysis 

(Ansys) 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

100 

C1 10.44
 

35.50 5.33 0.51 34.54 5.18 0.50 

E1 10.44 12.23 3.59 0.34 12.10 3.56 0.34 

G1 10.44 5.68 2.76 0.26 5.40 2.63 0.25 

H1 10.44 1.90 1.93 0.18 1.88 1.90 0.18 

I1 10.44 0.73 1.41 0.14 0.72 1.41 0.13 

J1 10.44 0.45 1.20 0.11 0.45 1.18 0.11 

150 

C2 14.57
 

91.28 13.69 0.94 90.56 13.58 0.93 

E2 14.57 28.44 8.36 0.57 28.29 8.32 0.57 

G2 14.57 12.64 6.14 0.42 12.74 6.19 0.42 

H2 14.57 3.99 4.05 0.28 3.86 3.92 0.27 

I2 14.57 1.51 2.94 0.20 1.58 3.07 0.21 

J2 14.57 0.96 2.53 0.17 0.96 2.53 0.17 

200 

C3 18.70
 

192.00 28.80 1.54 185.71 27.86 1.49 

E3 18.70 57.11 16.79 0.90 56.04 16.47 0.88 

G3 18.70 23.97 11.65 0.62 23.67 11.51 0.62 

H3 18.70 7.18 7.28 0.39 7.04 7.14 0.38 

I3 18.70 2.61 5.07 0.27 2.61 5.07 0.27 

J3 18.70 1.64 4.33 0.23 1.61 4.26 0.23 

250 

C4 22.83 356.67 53.50 2.34 317.97 47.70 2.09 

E4 22.83 101.70 29.90 1.31 100.22 29.46 1.29 

G4 22.83 41.15 20.00 0.88 40.79 19.82 0.87 

H4 22.83 11.70 11.86 0.52 11.59 11.76 0.51 

I4 22.83 4.09 79.61 0.35 4.10 7.98  0.35 

J4 22.83 2.53 67.06 0.29 2.51 6.64 0.29 
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Figure 4-3 Critical elastic lateral-torsional buckling load (𝑞𝑐𝑟) of simply supported castellated 

beam subjected to a uniformly distributed load between analytical solutions and FEA numerical 

solution for different beam lengths with various flange widths (a) bf =100mm, (b) bf=150mm,           

(c) bf=200mm and (d) bf =250mm (hw=300mm, tf=10mm, tw=8mm and a=100mm)  

 

 



CHAPTER FOUR                                               LATERAL-TORSIONAL BUCKLING 

89 

 

Figure 4-4 Critical elastic lateral-torsional buckling moment (Mcr)  of simply supported 

castellated beam subjected to a uniformly distributed load between analytical solutions and FEA 

numerical solution for different beam lengths with various flange widths (a) bf =100mm,                   

(b) bf=150mm, (c) bf=200mm and (d) bf =250mm (hw=300mm, tf=10mm, tw=8mm and 

a=100mm)  
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Figure 4-5 Critical elastic lateral-torsional buckling moment (Mcr/Myield) of simply supported 

castellated beam subjected to a uniformly distributed load between analytical solutions and FEA 

numerical solution for different beam lengths with various flange widths (a) bf =100mm, (b) 

bf=150mm, (c) bf=200mm and (d) bf =250mm (hw=300mm, tf=10mm, tw=8mm and a=100mm) 
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4.6.3.2. Linear lateral-torsional buckling stress results of pinned-fixed castellated 

beam due to uniformly distributed load act on top flange  

Table (4-2) shows a comparison of the critical loads of lateral-torsional buckling of 

pinned-fixed castellated beams subjected to a uniformly distributed transverse load 

applying on its top flange between analytical solution and numerical analysis. The 

analytical solution was obtained directly from Eqs. (4-34) and (4-35), whereas the 

numerical result was obtained by using linear buckling analysis built in ANSYS 

software (APDL). The yield moment was calculated by using Myield =
2𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

ℎ𝑤+2𝑡𝑓
 with 

𝜎𝑦 = 275
𝑁

𝑚𝑚2
  and 𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑 was calculated using Eq. (3-17). The results of different 

castellated beam lengths with various flange widths (see Section 3.3.4) shown in         

Table (4-2) are also plotted in Figures 4-6, 4-7 and 4-8, respectively  

 

It can be seen from the figures that, in each group of flange width, the curves of the 

analytical solution and numerical analysis have a similar variation pattern. The 

analytical solution is in very good agreement with the numerical analysis for beams 

longer than 4.8 m. This indicates that the analytical model developed here for the 

castellated beam is appropriate for calculating the critical load of lateral-torsional 

buckling. In the case that the beam is shorter, the critical load obtained from the 

analytical solution is found to be larger than that obtained from the numerical analysis. 

This is because the critical mode of buckling for the shorter beam is not dominated by 

the lateral-torsional buckling. This is demonstrated by the critical buckling mode shown 

in Figure 4-9 which was obtained from the numerical analysis for the beam of length   

(l = 3.5 m) and flange width (bf = 200 mm). It is obvious that the critical buckling mode 

of this short beam not only involves the lateral-torsional buckling mode but also 

contains the modes of local buckling of compressed flange and shear buckling of web. 

The latter disappears with the increase of the beam length or the decreases of beam 

flanges (Kerdal and Nethercot, 1984). In the case that the beam is shorter (l < 3.5 m) 

and its flanges are wider (bf =250mm), the critical buckling mode is no longer controlled 

by the lateral-torsional buckling and thus the difference between the analytical solution 

and numerical analysis becomes large (Ellobody, 2011). 
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Table 4-2 Comparison of results linear critical lateral-torsional buckling load (𝑞𝑐𝑟, Mcr) of 

pinned-fixed castellated beams with a uniformly distributed act on top flange 

 

bf 

mm 

Name 

of 

beam 

Myield 
N.mm 

x10
7
 

Linear buckling     

Analytical analysis 

Linear buckling  

Numerical analysis 

(Ansys) 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

100 

C1 10.44
 

80.43 12.06 1.16 79.31 11.90 1.14 

E1 10.44 25.79 7.58 0.73 26.02 7.65 0.73 

G1 10.44 11.55 5.61 0.54 11.78 5.73 0.55 

H1 10.44 3.80 3.89 0.40 4.12 4.17 0.41 

I1 10.44 1.49 2.89 0.28 1.59 3.13 0.30 

J1 10.44 0.92 2.43 0.23 0.91 2.40 0.23 

150 

C2 14.57
 

232.88 34.93 2.40 207.30 31.09 2.13 

E2 14.57 68.16 20.03 1.38 66.07 19.42 1.33 

G2 14.57 28.40 13.80 0.95 28.31 13.76 0.94 

H2 14.57 8.47 8.60 0.59 8.84 8.96 0.62 

I2 14.57 3.10 6.01 0.41 3.15 6.12 0.42 

J2 14.57 1.94 5.15 0.35 1.94 5.13 0.35 

200 

C3 18.70
 

523.73 78.55 4.20 372.75 55.91 3.00 

E3 18.70 146.39 43.04 2.30 134.80 39.63 2.12 

G3 18.70 58.30 28.33 1.52 56.53 27.48 1.47 

H3 18.70 16.17 16.39 0.88 16.57 16.80 0.90 

I3 18.70 5.58 10.84 0.58 5.60 10.88 0.58 

J3 18.70 3.44 9.10 0.49 3.43 9.07 0.48 

250 

C4 22.83 1000.72 150.11 6.57 391.17 58.67 2.60 

E4 22.83 272.99 80.25 3.52 230.52 67.77 2.97 

G4 22.83 105.84 51.44 2.25 101.64 49.40 2.16 

H4 22.83 27.89 28.27 1.24 28.11 28.51 1.25 

I4 22.83 9.16 17.80 0.78 9.12 17.73 0.78 

J4 22.83 5.53 14.63 0.64 5.75 15.21 0.67 
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Figure 4-6 Critical elastic lateral-torsional buckling load (𝑞𝑐𝑟) of pinned-fixed castellated beam 

subjected to a uniformly distributed load between analytical solutions and FEA numerical 

solution for different beam lengths with various flange widths (a) bf =100mm, (b) bf=150mm,           

(c) bf=200mm and (d) bf =250mm (hw=300mm, tf=10mm, tw=8mm and a=100mm) 
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Figure 4-7 Critical elastic lateral-torsional buckling moment (Mcr) of pinned-fixed castellated 

beam subjected to a uniformly distributed load between analytical solutions and FEA numerical 

solution for different beam lengths with various flange widths (a) bf =100mm, (b) bf=150mm,           

(c) bf=200mm and (d) bf =250mm (hw=300mm, tf=10mm, tw=8mm and a=100mm) 
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Figure 4-8 Critical elastic lateral-torsional buckling moment (Mcr/Myield)  of pinned-fixed 

castellated beam subjected to a uniformly distributed load between analytical solutions and FEA 

numerical solution for different beam lengths with various flange widths (a) bf =100mm,                   

(b) bf=150mm, (c) bf=200mm and (d) bf =250mm (hw=300mm, tf=10mm, tw=8mm and 

a=100mm) 
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Figure 4-9 Combined modes failure of pinned-fixed castellated beam with a uniformly 

distributed load act on top flange for beam (C3 and C4) with two various flange widths 

bf=200mm and bf=250mm, obtained from the linear lateral-torsional buckling 3D finite element 

analysis using ANSYS software (hw=300mm, tf=10mm, tw=8mm and a=100mm). 

 

4.7. Conclusions  

In this chapter, the behaviour of lateral-torsional buckling of castellated beams 

subjected to a uniformly distributed load has been investigated using both analytical and 

numerical methods. The analytical study provides simplified equations for predicting 

the elastic critical load of lateral-torsional buckling. These equations have taken into 

account the web shear effect. FEA numerical analysis has been conducted using 

ANSYS commercial software to verify the analytical solution. From the comparison it 

can be concluded that:  

 The torsional constant adopted for determining the critical lateral–torsional 

buckling load of castellated beams should be calculated by using the average 

torsional constant of the full and reduced section properties.  

 The analytical solution and numerical solution have a similar variation pattern with 

the beam length. The analytical solution is in excellent agreement with the 

numerical analysis for middle and long length beams.  
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 For pinned-fixed castellated beams lateral-torsional buckling occurs only in long 

length beams. For beams shorter than 3.5 m with wider flanges, the buckling mode 

involves other modes and thus the critical load obtained from the lateral-torsional 

buckling analysis cannot represent the critical load of coupled buckling modes.   
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CHAPTER FIVE 
 

5. NONLINEAR ANALYSIS OF CASTELLATED BEAMS 

5.1. Introduction 

This chapter is focusing on the effect of both the geometric and material nonlinearities 

on the bending and buckling behaviour of castellated beams under uniformly distributed 

transverse loads. The analysis is performed using finite element method with the use of 

ANSYS (APDL) commercial software. 

 

Moreover, detailed comparisons of results obtained from the linear finite element 

analysis shown in Chapter three, the linear buckling analysis shown in chapter four, and 

the nonlinear finite element analysis shown in this Chapter are provided. 

 

5.2. Nonlinear finite element analysis of castellated beam 

The analysis of using elastic and small deflection theory provides a linear solution, in 

which any deflection is proportional to the externally applied load. This kind of analysis 

is correct only when the load is very small or the deflection is small. When the beam is 

subjected to a large external load, it may not behave linearly, in this case geometric 

nonlinearity and/or material nonlinearity may need to be considered. In general, when 

the beam has a large deflection, the geometric nonlinearity have to be considered; 

whereas when the stress occurred in the beam is near to the yield stress of the beam 

material the material nonlinearity has to be considered. In this section, we use the 

nonlinear analysis by considering both geometric and material nonlinearities. In the 

former large deflection is considered; while in the latter a bi-linear material model is 

employed for the constitutive relationship of the steel material.   
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Nonlinear finite element analysis is described in this section on the castellated beams 

that were considered in the analytical study in the previous chapters. The aim of this 

analysis is to study the large deflection and inelastic behaviour of castellated beams 

when subjected to a uniformly distributed load. The results of the nonlinear analysis are 

presented by using the load-deflection response curve, from which the failure load of 

the beam is also obtained. Moreover, an evaluation will be conducted of the critical 

value of load obtained by analytical buckling analysis and the critical load obtained by 

linear buckling analysis using finite element method. 

 

ANSYS mechanical (APDL), that has technical potential, is employed to carry out both 

geometric and material nonlinear analysis of castellated beams. The geometric 

nonlinearity is to take into account the large deflection/displacement of the beams. The 

material nonlinearity is to consider the plasticity of steel material in which a bi-linear 

isotropic material model is used. The material properties used in the present nonlinear 

analysis are the modu1us of elasticity, E=2.1x105 MPa, yield stress, σy= 275 MPa, 

Poisson’s ratio, v = 0.3, and the tangent modulus after the yield, Et=0, that is the elastic-

perfectly plastic material model is used (see Figure 5-1). 

 
Figure 5-1 Elastic-perfectly plastic material model  

 

5.2.1. Modelling, and boundary conditions 

The modelling of castellated beams is carried out by using 3D 4-Node Thin Shell 

Elements (SHELL181) depicted in Figure 3-5. This element presents four nodes with 

six DOF per node, i.e., translations and rotations on the X, Y, and Z-axis, respectively.  



CHAPTER FIVE              NONLINEAR ANALYSIS OF CASTELLATEDBEAMS 

100 

 

The geometry of castellated beams is meshed by using 4-noded elements with 

maximum size not exceeding 10 mm. Two types of boundary conditions are considered 

herein; one is the simply support and the other is pinned-fixed, which are the same as 

those shown in Section 4.7.2 

 

5.2.2. Apply loads gradually (incremental solution) 

Similar to Chapter four, the external load is applied uniformly on the line between web 

and upper flange. This is done by applying the load to each node on the line. The nodal 

load applied is equal to the loading density multiplied by beam length and divided by 

the number of nodes on that line. In the early 1980’s, the arc-length method was 

developed to improve Newton-Raphson method to make sure the convergence can be 

achieved for various different nonlinear problems (Crisfield, 1981). Note that, the 

Newton-Raphson method divides the load into a series of load increments to be applied 

over several load steps then evaluates convergence between the internal force and the 

applied loads; if the criteria of convergence are not convinced, the program attempts to 

resolve with a smaller load increment until the case converges. However, this method is 

suitable only for either load controlled, or displacement controlled nonlinear analysis. 

For a general nonlinear problem, the arc-length should be used as it combines the load 

and displacement increments in each iterative procedure. As a result, in the present 

study the equations of nonlinear equilibrium are solved by using the procedure of the 

Newton–Raphson method, in conjunction with Arc-Length Method. 

 

5.3. Serviceability limit state 

Structural serviceability indicates the limit states that are considered in the design of the 

structure. Therefore, to ensure that a building is safe, these conditions should be 

followed. The current standard serviceability design has different deflection limits 

which depend on the purpose of service as it is intended, and the material of the 

structure. The aim of this section is to validate the results of deflection that are 

calculated from the analytical linear method, linear, and nonlinear finite element 
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methods. In this study, the value of deflection under the serviceability load that was 

considered is l/250 because the structure is steel. 

 

5.4. Investigating load-deflection response curve for castellated beams with 

different boundary conditions.   

5.4.1. Investigating load-deflection response curve of simply supported beams with 

uniformly distributed loads  

Figures 5-2, 5-3, 5-4, and 5-5 show a comparison of the curves of load versus 

deflection of simply supported castellated beam with a uniformly distributed load. This 

comparison involves the results of linear analytical solutions, which are developed in 

chapter three, nonlinear 3D finite element analysis using ANSYS software, and the 

deflection limit (l/250) to groups C, D, E, G, H, and I with different flange widths (see 

Section 3.3.4). The load is presented as the increments of load calculated following         

Eq. (3-31).  

 

From these figures it can be noticed that the nonlinear behaviour of castellated beams, 

for the same flange width, drops continuously with the increase of beam length, whereas 

the behaviour of the beam towards linear behaviour progresses gradually. In contrast, 

the nonlinear behaviour of the castellated beams, for the same beam length, increases 

continuously with the increase of the flange width, thus the castellated beams will reach 

the yield point in the early stages of the loading process. 

 

As expected, the reason for this is that the dimensions of castellated beams and the 

value of yield stress were taken account for calculating the value of uniformly 

distributed load, which was applied in this work (see Eq. (3-31)), where the yield stress 

value is constant for all groups of castellated beams, thus the load capacity of the beams 

is affected by changing the beam dimensions. Note that the uniformly distributed load 

with the same beam length increases when the flange width increases, which leads to 

being more susceptible to yielding in the early stages of the loading process. In contrast, 

the uniformly distributed load with the same flange width reduces when the beam length 
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increases, which leads to being less susceptible to yielding in the early stages of the 

loading process. 

 

Table (5-1) presents the comparison of the critical value of loads (𝑞𝑐𝑟/𝑞𝑦𝑖𝑒𝑙𝑑) with the 

different beam lengths with various flange widths. The results are also plotted in  

Figure 5-6. For the purpose of comparison, the results obtained from the linear 

analytical solutions and the nonlinear 3D finite element analyses are evidence that the 

critical value of load is influenced by geometry, web openings and material beam. As a 

result, the designer should consider a nonlinear analysis of short castellated beams with 

wide flange width for the design.  
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Figure 5-2 Comparison of the curves of load versus deflection of simply supported castellated 

beam with a uniformly distributed load obtained from linear analytical solutions, nonlinear 3D 

finite element analysis, and deflection limit (l/250) for beams C1, D1, E1, G1, H1, and I1.  
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Figure 5-3 Comparison of the curves of load versus deflection of simply supported castellated 

beam with a uniformly distributed load obtained from linear analytical solutions, nonlinear 3D 

finite element analysis, and deflection limit (l/250) for beams C2, D2, E2, G2, H2, and I2.  
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Figure 5-4 Comparison of the curves of load versus deflection of simply supported castellated 

beam with a uniformly distributed load obtained from linear analytical solutions, nonlinear 3D 

finite element analysis, and deflection limit (l/250) for beams C3, D3, E3, G3, H3, and I3.  
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Figure 5-5 Comparison of the curves of load versus deflection of simply supported castellated 

beam with a uniformly distributed load obtained from linear analytical solutions, nonlinear 3D 

finite element analysis, and deflection limit (l/250) for beams C4, D4, E4, G4, H4, and I4. 
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Table 5-1 Comparison of results (𝑞𝑐𝑟/𝑞𝑦𝑖𝑒𝑙𝑑) between linear analytical solution and nonlinear 

3D finite element analysis of simply supported castellated beams subjected to a uniformly 

distributed for groups C, D, E, G, H, and I with different flange widths. 

 

bf 

mm 

Name         

of beam 

𝑞𝑦𝑖𝑒𝑙𝑑  

N/mm 

Linear analytical 

solution 

Nonlinear 3D finite 

element analysis  by 

Ansys 

𝑞𝑐𝑟  
N/mm 

𝑞𝑐𝑟

qyield
 𝑞𝑐𝑟  

N/mm 

𝑞𝑐𝑟

qyield
 

100 

C1 69.59 69.59 1.00 59.94 0.86 

D1 48.33 48.33 1.00 47.85 0.99 

E1 35.51 35.51 1.00 35.51 1.00 

G1 21.48 21.48 1.00 21.48 1.00 

H1 10.29 10.29 1.00 10.29 1.00 

I1 5.37 5.37 1.00 5.37 1.00 

150 

C2 97.13 97.13 1.00 73.03 0.75 

D2 67.45 67.45 1.00 61.74 0.91 

E2 49.56 49.56 1.00 48.67 0.98 

G2 29.98 29.98 1.00 29.98 1.00 

H2 14.37 14.37 1.00 14.37 1.00 

I2 7.49 7.49 1.00 7.49 1.00 

200 

C3 124.67 124.67 1.00 75.99 0.61 

D3 86.57 86.57 1.00 66.06 0.76 

E3 63.61 63.61 1.00 56.66 0.89 

G3 38.48 38.48 1.00 38.48 0.99 

H3 18.44 18.44 1.00 18.44 1.00 

I3 9.62 9.62 1.00 9.62 1.00 

250 

C4 152.21 152.21 1.00 73.66 0.50 

D4 105.70 105.70 1.00 67.20 0.64 

E4 77.66 77.66 1.00 60.40 0.78 

G4 46.98 46.98 1.00 43.40 0.92 

H4 22.52 22.52 1.00 22.52 1.00 

I4 11.74 11.74 1.00 11.74 1.00 
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Figure 5-6 Critical values of simply supported castellated beams subjected to a uniformly 

distributed load, obtained from linear analytical solution and nonlinear 3D finite element 

analysis for groups C, D, E, G, H, and I with different flange widths (a) bf =100mm,                

(b) bf =150mm, (c) bf =200mm and (d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and 

a=100mm)  
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5.4.2. Investigating load-deflection response curve of pinned-fixed beams 

subjected to uniformly distributed loads  

Figures 5-7, 5-8, 5-9 and 5-10 show a comparison of the curves of load versus 

deflection of pinned-fixed castellated beams subjected to a uniformly distributed load. 

The comparison involves the results of linear analytical solutions, which is developed in 

chapter three, nonlinear 3D finite element analysis using ANSYS software, and 

deflection limit (l/250) for groups C, D, E, G, H, and I with different flange widths (see 

Section 3.3.4). The load is presented as the increments of load calculated following          

Eq. (3-31).  

 

From these figures it can be seen that the nonlinear behaviour of castellated beams, with 

the same flange width, drops continuously with the increase of beam length, whereas 

the behaviour of the beam towards linear behaviour progresses gradually. In contrast, 

the nonlinear behaviour of the castellated beams with the same beam length increases 

continuously with the increase of the flange width, thus the castellated beams will reach 

the yield point in the early stages of the loading process. 

 

As expected, the reason for this is that the dimensions of castellated beams and the yield 

stress were taken account for calculating the load capacity of the beams, which was 

applied in this work (see Eq. (3-31)), where the yield stress is identical for all groups of 

castellated beams. Thus, the loading capacity of the beams is affected by the change of 

the beam dimensions. Note that, the load for the same beam length increases when the 

flange width increases, which leads to being more susceptible to yielding in the early 

stages of the loading process. In contrast, the load with the same flange width reduces 

when the beam length increases, which leads to being less susceptible to yielding in the 

early stages of the loading process.  

 

Table (5-2) presents the comparison of the critical value of loads (𝑞𝑐𝑟/𝑞𝑦𝑖𝑒𝑙𝑑)  for 

beams with the different length for four groups with various flange widths. The results 

are also plotted in Figure 5-11. For the purpose of comparison, which include the 

results obtained from the linear analytical solutions and from the nonlinear 3D finite 

element analyses. It is evidence from the figure that the critical value of load is 

influenced by geometry, web openings and material beam. As a result, the designer 
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should consider to use a nonlinear analysis for short castellated beams with wide flange 

for design calculations.  

 

For short beams or the beams with wide flanges, the overall deflections of these beams 

are rather small. Before the deflection of the beam reaches to the critical value of l /250, 

the material has already yielded, and in this case the material nonlinearity must be 

considered and the relationship between the deflection and the externally applied load is 

NOT linear. 

 

Compare the results of the beams with simply support boundary, it is noted that the 

nonlinearity of the beams with pinned-fixed boundary is more sever because the 

deflection of simply supported beams is more than the deflection of the pinned-fixed 

beam.   
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Figure 5-7 Comparison of the curves of load versus deflection of pinned-fixed castellated 

beams subjected to a uniformly distributed load, obtained from linear analytical solutions, 

nonlinear 3D finite element analysis, and deflection limit (l/250) for beams C1, D1, E1, G1, H1, 

and I1.  



CHAPTER FIVE              NONLINEAR ANALYSIS OF CASTELLATEDBEAMS 

112 

 

Figure 5-8 Comparison of the curves of load versus deflection of pinned-fixed castellated beam 

subjected to a uniformly distributed load, obtained from linear analytical solutions, nonlinear 

3D finite element analysis, and deflection limit (l/250) for beams C2, D2, E2, G2, H2, and I2. 
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Figure 5-9 Comparison of the curves of load versus deflection of pinned-fixed castellated beam 

subjected to a uniformly distributed load, obtained from linear analytical solutions, nonlinear 

3D finite element analysis, and deflection limit (l/250) for beams C3, D3, E3, G3, H3, and I3. 
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Figure 5-10 Comparison of the curves of load versus deflection of pinned-fixed castellated 

beam subjected to a uniformly distributed load, obtained from linear analytical solutions, 

nonlinear 3D finite element analysis, and deflection limit (l/250) for beams C4, D4, E4, G4, H4, 

and I4. 
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Table 5-2 Comparison of results (𝑞𝑐𝑟/𝑞𝑦𝑖𝑒𝑙𝑑) between linear analytical solution and nonlinear 

3D finite element analysis of pinned-fixed castellated beams subjected to a uniformly 

distributed load, for groups C, D, E, G, H, and I  beams with different flange widths. 
 

bf 

mm 

Name         

of beam 

𝑞𝑦𝑖𝑒𝑙𝑑  

N/mm 

Linear analytical 

solution 

Nonlinear 3D finite 

element analysis  by 

Ansys 

𝑞𝑐𝑟  
N/mm 

𝑞𝑐𝑟

qyield
 𝑞𝑐𝑟  

N/mm 

𝑞𝑐𝑟

qyield
 

100 

C1 69.59 69.59 1.00 48.40 0.70 

D1 48.33 48.33 1.00 41.49 0.86 

E1 35.51 35.51 1.00 33.92 0.96 

G1 21.48 21.48 1.00 21.48 1.00 

H1 10.29 10.29 1.00 10.29 1.00 

I1 5.37 5.37 1.00 5.37 1.00 

150 

C2 97.13 97.13 1.00 54.09 0.56 

D2 67.45 67.45 1.00 48.27 0.72 

E2 49.56 49.56 1.00 40.91 0.83 

G2 29.98 29.98 1.00 28.05 0.94 

H2 14.37 14.37 1.00 14.37 1.00 

I2 7.49 7.49 1.00 7.49 1.00 

200 

C3 124.67 124.67 1.00 54.54 0.44 

D3 86.57 86.57 1.00 50.40 0.58 

E3 63.61 63.61 1.00 42.51 0.67 

G3 38.48 38.48 1.00 31.03 0.81 

H3 18.44 18.44 1.00 17.96 0.97 

I3 9.62 9.62 1.00 9.62 1.00 

250 

C4 152.21 152.21 1.00 57.43 0.38 

D4 105.70 105.70 1.00 50.40 0.48 

E4 77.66 77.66 1.00 44.71 0.57 

G4 46.98 46.98 1.00 33.90 0.72 

H4 22.52 22.52 1.00 21.02 0.93 

I4 11.74 11.74 1.00 11.74 1.00 
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Figure 5-11 Critical values of pinned-fixed castellated beams subjected to a uniformly 

distributed load, obtained from linear analytical solution and nonlinear 3D finite element 

analysis for groups C, D, E, G, H, and I with different flange widths (a) bf =100mm,                

(b) bf =150mm, (c) bf =200mm and (d) bf =250mm. (hw=300mm, tf=10mm, tw=8mm and 

a=100mm) 
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5.5. Nonlinear lateral-torsional buckling of castellated beams due to a uniformly 

distributed load 

A nonlinear inelastic finite-element analysis is provided to examine inelastic lateral-

torsional buckling behaviour of castellated beams subjected to uniformly distributed 

load act on the top flange. In this section, the analyses are carried out by using ANSYS 

mechanical (APDL) commercial software, which consider the effect of both the 

geometric nonlinear and material inelasticity of castellated beams for calculating the 

critical lateral-torsional buckling moment.  

 

The analysis procedure is performed throughout two parts. Firstly, the manufacturing 

method of castellated beams causes initial geometrical imperfections that lead to the 

initial deformation. Therefore, linear lateral-torsional buckling is employed from which 

the lateral-torsional buckling mode is used as the initial geometric imperfection of the 

beam for the subsequent nonlinear analysis. Secondly, Newton-Raphson method with 

the large deflection method, in conjunction with Arc-Length Method is utilized for 

nonlinear lateral-torsional buckling analysis. The nonlinear analysis procedure used is 

exactly the same as that described in previous sections and thus is not provided here 

again.  

 

5.5.1. Modelling, loading and boundary conditions 

The modelling of castellated beams is carried out by using 3D 4-Node Thin Shell 

Elements (SHELL181) depicted in Figure 3-5. This element presents four nodes with 

six DOF per node, i.e. translations and rotations on the X, Y, and Z-axis, respectively. 

The geometric models of castellated beams are meshed by using elements with size not 

exceeding10 mm for both the pinned-pinned and pinned-fixed castellated beams. The 

load is applied at the junction line between the web and upper flange of the beam. The 

nodal load is calculated by the load density multiplied by beam length and divided by 

the number of nodes on that line. The mechanical properties and boundary conditions 

are the same as those described in the nonlinear analysis sections above.  
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5.5.2. Comparison of critical lateral-torsional bucking moment of simply 

supported beams due to uniformly distributed loads  

Table (5-3) gives the comparison of critical moments of lateral-torsional buckling of 

simply supported castellated beams. This comparison involves the results of  linear 

analytical solutions, which are developed in chapter four, linear buckling 3D finite 

element analysis using ANSYS, and nonlinear 3D finite element analysis (geometric 

nonlinear and material inelasticity) using ANSYS software for groups C, E, G, H, I, and 

J beams with different flange widths (see Section 3.3.4), in which the value of linear 

critical lateral-torsional buckling moment (Mcr) was obtained by Eq. (4-16), tabulated 

under term linear lateral-torsional buckling analytical analysis. The results that are 

determined by linear finite element analysis are tabulated under term linear lateral-

torsional buckling analysis by ANSYS software and the results that are determined by 

nonlinear finite element analysis are tabulated under term nonlinear lateral-torsional 

buckling analysis by ANSYS software. Moreover, the yield moment is obtained by         

 Myield =
2𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

ℎ𝑤+2𝑡𝑓
, (𝜎𝑦 = 275

𝑁

𝑚𝑚2   , 𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑  is obtained by following Eq. (3-17)), 

where it is tabulated under term.( Myield) For the purpose of comparison, the results 

shown in the table is also plotted in Figures 5-12 and 5-13 respectively. 

 

From these figures, it can be seen that in each group of flange width, the curves of the 

analytical solution and numerical analysis of both linear and nonlinear have a similar 

variation pattern. In other words, the analytical solution is in excellent agreement with 

numerical analysis by ANSYS for all models of castellated beams. However, it is 

observed from these figures that in the case of nonlinear analysis of castellated beams, 

the critical lateral torsion buckling load (Mcr/Myield) drops with the increase the flange 

width and the decrease of beam length. The previous studies mentioned that the reasons 

for this are because lateral-torsional buckling load of castellated beam is influenced by 

the lateral flexural and warping rigidities (Mohebkhah, 2011). In this study, the 

increasing flange width leads firstly to increase lateral flexural and warping rigidities, 

and secondly to increase applying moments on castellated beams. These issues indicate 

that the geometric nonlinear and material nonlinear lateral-torsional buckling resistance 

of castellated beams with short beam length is limited to the ultimate load carrying 

capacity, in which no lateral-torsional buckling occurs. In practice, Mcr ≫ Myield will 
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not happen (it’s not real) because the beam will fail by yield. When the  Mcr is close to 

the Myield  there are some interactions between Myield  and Mcr , in which case         

Mcr ≫ Myield needs to be considered. This is why in the plots the part of                     

Mcr ≫ Myield curves is included. 

  

Figure 5-14 shows a comparison of the load-deflection curves of simply supported 

castellated beam subjected to a uniformly distributed load. This comparison involves 

the results of nonlinear 3D finite element analysis using ANSYS software, and 

deflection limit (l/250) to groups C, E, G, H, I and J beams with different flange widths 

(see Section 3.3.4). The load is presented as the increments of load calculated following 

by Eq. (3-31). This latter reflects that the critical lateral-torsional buckling for short 

beam length with wide flange is influenced by geometry, web openings and material 

beam. As a result, the designer should consider a nonlinear analysis for short castellated 

beam with wide flange width for design calculations.  

 

Figure 5-15 presents the failure mode of the beam length (l = 3.5 m) with wide flange 

width (bf =250mm) obtained from the numerical analysis. It can be observed that in the 

nonlinear analysis, the failure load is controlled by the plastic/buckling load, while the 

linear solution is controlled purely by the elastic buckling which is much higher than the 

yield load 
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Table 5-3 Comparison of lateral-torsional buckling results of simply supported castellated 

beams subjected to a uniformly distributed load obtained from linear and nonlinear analysis  

 

bf 

mm 

Name 

of 

beam 

Myield 
N.mm 
x10

7
 

Linear buckling 

analytical analysis 

Linear buckling 

analysis by Ansys 

Nonlinear buckling 

analysis by Ansys 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

100 

C1 10.44 35.50 5.33` 0.51 34.54 5.18 0.50 27.50 4.12 0.40 

E1 10.44 12.23 3.59 0.34 12.10 3.56 0.34 10.80 3.18 0.30 

G1 10.44 5.58 2.76 0.26 5.40 2.63 0.25 5.34 2.60 0.25 

H1 10.44 1.90 1.93 0.18 1.88 1.90 0.18 1.93 1.96 0.19 

I1 10.44 0.73 1.41 0.14 0.72 1.41 0.13 0.77 1.73 0.15 

J1 10.44 0.45 1.20 0.11 0.45 1.18 0.11 0.45 1.19 0.11 

150 

C2 14.57 91.28 13.69 0.94 90.56 13.58 0.93 58.00 8.70 0.60 

E2 14.57 28.44 8.36 0.57 28.29 8.32 0.57 23.22 6.83 0.47 

G2 14.57 12.64 6.14 0.42 12.74 6.19 0.42 11.60 5.64 0.39 

H2 14.57 3.99 4.05 0.28 3.86 3.92 0.27 3.98 4.04 0.28 

I2 14.57 1.51 2.94 0.20 1.58 3.07 0.21 1.67 3.24 0.22 

J2 14.57 0.96 2.53 0.17 0.96 2.53 0.17 1.04 2.75 0.19 

200 

C3 18.70 192.00 28.80 1.54 185.71 27.86 1.49 93.55 14.23 0.76 

E3 18.70 57.11 16.79 0.90 56.04 16.47 0.88 40.97 12.05 0.64 

G3 18.70 23.97 11.65 0.62 23.67 11.51 0.62 20.19 9.79 0.52 

H3 18.70 7.18 7.28 0.39 7.04 7.14 0.38 6.96 7.05 0.38 

I3 18.70 2.61 5.07 0.27 2.61 5.07 0.27 2.50 4.86 0.26 

J3 18.70 1.64 4.33 0.23 1.61 4.26 0.23 1.72 4.54 0.24 

250 

C4 22.83 356.67 53.50 2.34 317.97 47.70 2.09 96.35 14.45 0.63 

E4 22.83 101.70 29.90 1.31 100.22 29.46 1.29 60.59 17.81 0.78 

G4 22.83 41.15 20.00 0.88 40.79 19.82 0.87 31.60 15.36 0.67 

H4 22.83 11.70 11.86 0.52 11.59 11.76 0.51 11.10 11.26 0.49 

I4 22.83 4.09 79.61 0.35 4.10 7.98 0.35 3.94 7.66 0.34 

J4 22.83 2.53 67.06 0.29 2.51 6.64 0.29 2.71 7.17 0.31 
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Figure 5-12 Comparison of critical moments (Mcr/Myield)  of lateral-torsional buckling of 

simply supported castellated beam subjected to a uniformly distributed load, obtained from 

linear analytical solutions, linear 3D finite element analysis using ANSYS, and nonlinear 3D 

finite element analysis (geometric nonlinear and material inelasticity) for groups C, E, G, H, I, 

and J beams with various flange widths (a) bf =100 mm , (b) bf =150 mm , (c) bf =200 mm , and 

(d) bf =250 mm) 



CHAPTER FIVE              NONLINEAR ANALYSIS OF CASTELLATEDBEAMS 

122 

  

Figure 5-13 Comparison of critical moments (Mcr/Myield)  of lateral-torsional buckling of 

simply supported castellated beam subjected to a uniformly distributed load, obtained from 

linear analytical solutions, linear 3D finite element analysis using ANSYS, and nonlinear 3D 

finite element analysis (geometric nonlinear and material inelasticity) using ANSYS software 

for groups C, E, G, H, I, and J beams with various flange width.  
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Figure 5-14 Comparison of the load-deflection curves of simply supported castellated beams 

subjected to a uniformly distributed load, obtained from nonlinear 3D finite element analysis 

and deflection limit (l/250) for groups C, E, G, H, I and J beams with various flange widths. 
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Figure 5-15 Failure mode of simply support castellated beam subjected to a uniformly 

distributed load (C4) with flange widths bf=250mm obtained from the nonlinear lateral-torsional 

buckling 3D finite element analysis using ANSYS software (hw=300mm, tf=10mm, tw=8mm 

and a=100mm) 

 

5.5.3. Comparison of critical moments of lateral-torsional bucking of pinned-fixed 

beams subjected to uniformly distributed load  

Table (5-4) shows the comparison of critical moments of lateral-torsional buckling of 

pinned-fixed castellated beams subjected to uniformly distributed load. This comparison 

involves the results of  linear analytical solutions, which are developed in chapter four, 

linear 3D finite element analysis using ANSYS, and nonlinear 3D finite element 

analysis (geometric nonlinear and material inelasticity) using ANSYS software for 

groups C, E, G, H, I, and J beams with different flange widths (see Section 3.3.4), in 

which the value of linear critical lateral-torsional buckling moment (Mcr) was obtained 

by Eq. (4-34), tabulated under term linear lateral-torsional buckling analytical analysis. 

The results that are determined by linear finite element analysis are tabulated under term 

linear lateral-torsional buckling analysis by ANSYS software, and the results that are 

determined by nonlinear finite element analysis are tabulated under term nonlinear 
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lateral-torsional buckling analysis by ANSYS software. Moreover, the yield moment is 

obtained by  Myield =
2𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

ℎ𝑤+2𝑡𝑓
, (𝜎𝑦 = 275

𝑁

𝑚𝑚2  , 𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑  is obtained by following  

Eq. (3-17)), where it is tabulated under term (Myield).The results shown in table are 

plotted in Figures 5-16 and 5-17, respectively. 

 

From these figures, it can be seen that in each group of flange width, the curves of the 

analytical solution and numerical analysis of both linear and nonlinear have a similar 

variation pattern. In other words, the analytical solution is in excellent agreement with 

numerical analysis by ANSYS for all models of castellated beams. However, it is 

observed from these figures that in the case of nonlinear analysis of castellated beams, 

the critical lateral-torsional buckling load (Mcr/Myield) drops with the increase of the 

flange width and the decrease of beam length. The previous studies mentioned that the 

reason for this is that lateral-torsional buckling load is influenced by the lateral flexural 

and warping rigidities (Mohebkhah, 2011). In this study, the increasing flange width 

leads firstly to increase lateral flexural and warping rigidities, and secondly to increase 

the moments on castellated beams. These items indicate that the nonlinear lateral-

torsional buckling resistance of castellated beams with short beam length is limited by 

the ultimate load carrying capacity, in which no lateral-torsional buckling occurs. In 

addition, the web opening under high loads makes the castellated beam more prone to 

compression buckling of web; and failure can occur in local loading areas or reaction 

force region (Kerdal and Nethercot, 1984). 

 

Figure 5-18 shows a comparison of the load-deflection curves of pinned-fixed 

castellated beams. The comparison involves the results of nonlinear 3D finite element 

analysis using ANSYS software, and deflection limit (l/250) for groups C, E, G, H, I 

and J beams with different flange widths (see Section 3.3.4). The load is presented as 

the increments of load calculated following by Eq. (3-31). This latter reflects that the 

critical lateral-torsional buckling for short beam length with wide flange is influenced 

by geometry, web openings, boundary conditions, and material properties of the beam. 

As a result, the designer should consider a nonlinear analysis for short castellated beams 

with wide flange for design calculations. The failure mode of short castellated beams is 

dominated by the plastic failure, whereas the failure mode of long castellated beams is 

dominated by the lateral-torsional buckling failure mode, that is observed in         
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Figure 5-19  which obtained from the numerical analysis for the beam of length            

(l = 3.5 m) with wide flange width (bf = 200 mm and bf =250mm). 

 

The figures show there is a significant difference between the linear solution and 

nonlinear solution, particularly for short beams. The reason for this is because for the 

short beams the failure load predicted by the linear solution is controlled purely by the 

elastic buckling which is much higher than the yield load. While in the nonlinear 

analysis, the failure load is controlled by the plastic/buckling load. While the long 

beams usually fail by elastic buckling (the stress is lower than the yield stress) and this 

is why the linear and nonlinear solutions give almost the same result for long beams but 

not for the short beams. 
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Table 5-4 Comparison of lateral-torsional buckling results of pinned-fixed castellated beams 

subjected to a uniformly distributed load obtained from linear and nonlinear analysis  

 

bf 

mm 

Name 

of 

beam 

Myield 
N.mm 
x10

7
 

Linear buckling 

analytical analysis 

Linear buckling 

analysis by Ansys 

Nonlinear buckling 

analysis by Ansys 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

qcr 
N/mm 

Mcr 
N.mm 

x10
7
 

Mcr

Myield
 

100 

C1 10.44 80.43 12.06 1.16 79.31 11.90 1.14 50.85 7.63 0.73 

E1 10.44 25.79 7.58 0.73 26.02 7.65 0.73 22.10 6.50 0.62 

G1 10.44 11.55 5.61 0.54 11.78 5.73 0.55 11.64 5.66 0.54 

H1 10.44 3.80 3.89 0.40 4.12 4.17 0.41 4.34 4.40 0.42 

I1 10.44 1.49 2.89 0.28 1.59 3.13 0.30 1.99 3.86 0.29 

J1 10.44 0.92 2.43 0.23 0.91 2.40 0.23 1.20 3.18 0.25 

150 

C2 14.57 233.13 34.97 2.40 207.30 31.09 2.13 81.97 12.30 0.84 

E2 14.57 68.29 20.08 1.38 66.07 19.42 1.33 41.66 12.25 0.84 

G2 14.57 28.47 13.84 0.95 28.31 13.76 0.94 22.47 10.90 0.75 

H2 14.57 8.50 8.62 0.59 8.84 8.96 0.62 8.41 8.53 0.59 

I2 14.57 3.10 6.03 0.41 3.15 6.12 0.42 3.10 6.03 0.41 

J2 14.57 1.95 5.17 0.35 1.94 5.13 0.35 1.98 5.24 0.36 

200 

C3 18.70 522.91 78.44 4.19 372.75 55.91 3.00 85.71 12.85 0.69 

E3 18.70 146.00 42.92 2.30 134.80 39.63 2.12 58.37 17.16 0.92 

G3 18.70 58.07 28.22 1.51 56.53 27.48 1.47 35.16 17.09 0.91 

H3 18.70 16.07 16.30 0.87 16.57 16.80 0.90 13.98 14.18 0.76 

I3 18.70 5.53 10.75 0.57 5.60 10.88 0.58 5.92 11.51 0.62 

J3 18.70 3.41 9.02 0.48 3.43 9.07 0.48 3.52 9.32 0.50 

250 

C4 22.83 998.80 149.82 6.56 391.17 58.67 2.60 87.40 13.11 0.57 

E4 22.83 272.04 79.98 3.50 230.52 67.77 2.97 69.84 20.53 0.90 

G4 22.83 105.29 51.17 2.24 101.64 49.40 2.16 48.11 23.38 1.02 

H4 22.83 27.64 28.03 1.23 28.11 28.51 1.25 22.36 22.67 0.99 

I4 22.83 9.04 17.57 0.77 9.12 17.73 0.78 9.29 18.06 0.79 

J4 22.83 5.55 14.68 0.64 5.75 15.21 0.67 5.18 13.71 0.60 
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Figure 5-16 Comparison of critical moments (Mcr/Myield)  of lateral-torsional buckling of 

pinned-fixed castellated beams subjected to a uniformly distributed load, obtained from linear 

analytical solutions, linear 3D finite element analysis using ANSYS, and nonlinear 3D finite 

element analysis (geometric nonlinear and material inelasticity) using ANSYS software for 

groups C, E, G, H, I, and J beams with various flange widths (a) bf =100 mm ,(b) bf =150 

mm ,(c) bf =200 mm , and (d) bf =250 mm 
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Figure 5-17 Comparison of critical moments (Mcr/Myield)  of lateral-torsional buckling of 

pinned-fixed castellated beams subjected to a uniformly distributed load, obtained from linear 

analytical solutions, linear 3D finite element analysis using ANSYS, and nonlinear 3D finite 

element analysis (geometric nonlinear and material inelasticity) using ANSYS software for 

groups C, E, G, H, I, and J beams with various flange widths.  
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Figure 5-18 Comparison of the load-deflection curves of pinned-fixed castellated beams 

subjected to a uniformly distributed load, obtained from nonlinear 3D finite element analysis, 

and deflection limit (l/250) for groups C, E, G, H, I and J beams with various flange widths. 
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Figure 5-19 Combined failure modes of pinned-fixed castellated beams subjected to a 

uniformly distributed load (C3 and C4) with two flange widths bf=200mm and bf=250mm 

obtained from the nonlinear lateral-torsional buckling 3D finite element analysis using ANSYS 

software (hw=300mm, tf=10mm, tw=8mm and a=100mm) 

 

5.6. Conclusions 

In this chapter, geometric nonlinear and material nonlinear analysis by using finite 

element method has been carried out to investigate the behaviour of pinned-pinned and 

pinned-fixed castellated beams subjected to uniformly distributed load at the inelastic 

range. Comparison has been made between the result of the linear and nonlinear 

analyses. The main conclusions can be summarized as follows: 

 The load carrying capacity of castellated beams obtained by nonlinear 3D finite 

element analysis is influenced by the geometry, web openings, boundary 

conditions, and material properties of the beams. 

 The load carrying capacity of castellated beams obtained by using the nonlinear 3D 

finite element analysis is generally less than that obtained by using the linear 

analysis method. This reflects that the elastic range is unsafe for short length beams 

with wide flange width.   

Beam C3 Beam C4 
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 The critical moments of lateral-torsional buckling of castellated beams obtained by 

using nonlinear 3D finite element analysis are influenced by the geometry, web 

openings, boundary conditions, and mechanical properties of the beams. 

 The critical moment of lateral-torsional buckling of castellated beams obtained by 

using nonlinear 3D finite element analysis are generally less than those obtained 

using the linear analysis methods. This indicates that the elastic range is unsafe for 

short length beams with wide flange. 

 The nonlinear lateral-torsional buckling resistance of castellated beam with the 

short beam length under high loads is limited by the ultimate load carrying capacity 

of the beams, in which case no lateral-torsional buckling occurs. 

 In nonlinear analysis, increasing castellated beam length leads to beam behaviour 

that will be similar to that in the linear analysis, and the lateral-torsional buckling 

mode will dominate the failure mode. 

 When the serviceability is also considered, the deflection limit seems to be the 

dominant criterion in controlling the load in most of the beam length regions. 
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CHAPTER SIX 
 

6. DYNAMIC INSTABILITY OF CASTELLATED BEAMS UNDER 

TRANSVERSE PERIODIC LOADING  

6.1. Introduction 

In this chapter, an analytical solution is developed to investigate the free vibration, static 

buckling and dynamic instability of castellated beams subjected to transverse periodic 

loading. Bolotin’s method is used to perform the dynamic instability analysis that is 

utilized in this study. By assuming the instability modes, the mass, stiffness, and 

geometric stiffness matrices are derived using the kinetic energy, strain energy and 

potential of applied loads. Analytical equations for determining the free vibration 

frequency, critical buckling moment, and excitation frequency of castellated beams are 

derived, In addition, the influences of the flange width of the castellated beam and the 

static part of the applied load on the variation of dynamic instability zones are discussed. 

 

6.2. The studies about dynamic instability  

Literature survey on structural members shows that little research has been carried out 

on the dynamic instability of castellated beams when the applied load varies with time. 

In many countries, the static load still dominates the current designing of structures for 

castellated beams, in spite of the significance of the dynamic response to machinery 

loading and to extreme environmental loads, for example wind and earthquakes, that 

have been considered for some time. It is acknowledged that applying static load can 

lead to free vibration behaviour of the structural members, which causes a decrease in 

the critical load of buckling of the members. For this reason, we should understand the 

effect of applying the dynamic load on the structure behaviour to avoid resonance 

disasters due to the dynamic instability. 
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As a result, limited research and studies exist on the dynamics, especially the dynamic 

instability of the castellated beams subjected to transverse loading. Since 1960 research 

has been carried out on the vibration-induced buckling of beams. For instance:  

 

Morris (1965) investigated the nonlinear vibration problem of a two hinged beam-

column subjected to a harmonic load of any space distribution 

 

In 1966, Hsu carried out the investigation of the dynamic stability of the elastic body 

with given initial conditions and reported the necessary and sufficient stability criteria 

in terms of trajectories in the phase space of finite dimension. 

 

 Huang (1980) and Chen et al. (1991) used the Bolotin’s method to examine the 

dynamic instability of generally orthotropic beams and thick bi-modulus beams 

subjected to periodic axial loads, respectively. 

 

Huang and Hung (1984) used the averaging method and the Routh-Hurwitz stability to 

study the dynamic instability of a simply supported beam under periodic axial excitation. 

The coupling of the first two modes was considered to investigate the instability regions 

and vibration amplitudes.  

 

Gürgöze (1985) conducted an investigation into the instability behaviour of a pre-

twisted beam subjected to a pulsating axial force. They used the Mettler method and 

derived the equations describing the instability regions that could be applied with 

various different boundary conditions.  

 

A finite element dynamic instability model of Timoshenko beams was introduced by 

Park (1987) that adopted the extended Hamilton's principle to build the equation of the 

beam transverse motion in the plane.  

 

Kar and Sujata (1991) examined the dynamic instability of rotating beams with various 

different boundary conditions, subjected to a pulsating axial excitation. As well, they 

also discussed the effects of the boundary conditions, rotational speed on the static 

buckling loads and the regions of parametric instability. 
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Numerous of the papers Uang, and. Fan (2001); Yoon, and. Kim (2002) have been 

presented to study the influence of various different supporting boundary conditions on 

the dynamic instability behaviour of beams 

 

Yeh et al. (2004) used both the finite element method and the harmonic balance method 

to present a study of the dynamic instability problem of a sandwich beam with a 

constrained layer and an electro rheological fluid core subjected to an axial dynamic 

force. Moreover, this study discussed the influences of the natural frequencies and static 

buckling loads on the dynamic instability behaviour. 

 

Zhu et al. (2017) conducted an analytical solution to examine the free vibration, static 

buckling and dynamic instability of laterally-restrained zed-section purlin beams under 

uplift wind loading. They used the classical principle of minimum potential energy 

which assumed the instability modes, the kinetic energy and strain energy of the beam 

and the loss of the potential energy of the applied load are evaluated, from which the 

mass, stiffness and geometric stiffness matrices of the system are derived. 

 

More recently, Zhu et al. (2018) presented a study on the dynamic buckling of cold-

formed steel channel section beams under the action of uniformly distributed loading.  

 

Gao et al. (2019) provided a nondeterministic dynamic stability assessment of Euler–

Bernoulli beams using Chebyshev surrogate model. 

 

6.3. Governing equations for dynamic instability analysis of castellated beams 

The analysis model used for this study is illustrated in Figure 6-1 (a). The cross-section 

of the castellated beam is assumed to be doubly symmetric, with the flange width and 

thickness as bf and tf, the web depth and thickness as hw and tw, and the half depth of 

hexagons as a. The half of the distance between the centroids of the two T-sections is e. 

The side length of the hexagonal opening is(
2a

√3
), and the hexagonal opening height is 

2a, respectively. 
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According to Figure 6-1 (b), the lateral and transverse displacements of the beam are 

assumed to be v(x), w(x), respectively, and the angle of twist of the cross-section is ϕ(x). 

In the linear situation, the strain energy of the beam involves two parts; the strain 

energy generated by the bending and the energy generated by the twist. 

 

In order to consider the warping influence, the cross-section of the castellated beam is 

decomposed into three parts, two of which represent the top and bottom T-section, one 

of which represents the middle-part of the web. It is assumed that the displacements at 

the shear centers of the top and bottom T-sections are small and can be expressed as 

follows (see Figure 6-1) :( Kim et al., 2016) 

 𝑣1(𝑥) = 𝑣(𝑥) +
ℎ

2
𝜙(𝑥) 6-1 

 

 𝑣2(𝑥) = 𝑣(𝑥) −
ℎ

2
𝜙(𝑥) 6-2 

 

 𝑤1(𝑥) = 𝑤 +
ℎ

2
(1 − 𝑐𝑜𝑠𝜙) ≈ 𝑤 6-3 

 

 𝑤2(𝑥) = 𝑤 +
ℎ

2
(1 − 𝑐𝑜𝑠𝜙) ≈ 𝑤 6-4 

 

where 𝑣1 and 𝑣2are the lateral displacements of the shear centre of the top and bottom 

T-section, 𝑤1 and 𝑤2 are the transverse displacements of the shear centre of the top and 

bottom T-section, h is the distance between the shear centres of top and bottom            

T-sections. Hence, the kinetic energy T of castellated beam due to the transverse 

displacement, lateral displacement and rotation thus can be expressed as: 

The kinetic energy for the top T- section: 

 𝑇𝑡𝑜𝑝 =
𝜌𝐴𝑡𝑒𝑒

2
∫ ( 𝑣1

2̇
𝑙

0

 +  𝑤1
2̇ )𝑑𝑥 +

𝜌𝐼𝑝𝑡𝑜𝑝

2
∫  𝜙2̇

𝑙

0

𝑑𝑥 6-5 

The kinetic energy for the bottom T- section:      

 𝑇𝑏𝑜𝑡 =
𝜌𝐴𝑡𝑒𝑒

2
∫ ( 𝑣2

2̇
𝑙

0

 +  𝑤2
2̇ )𝑑𝑥 +

𝜌𝐼𝑝𝑏𝑜𝑡

2
∫  𝜙2̇

𝑙

0

𝑑𝑥 6-6 

The kinetic energy for the middle part between the two T- sections 
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 𝑇𝑤𝑒𝑏 =
𝜌2𝑎𝑡𝑤

2
∫ ( 𝑣2̇

𝑙

0

+  𝑤2̇ )𝑑𝑥 +
𝜌𝐼𝑝𝑤𝑒𝑏

2
∫  𝜙2̇

𝑙

0

𝑑𝑥 6-7 

Hence, the total kinetic energy of the beam is: 

 

𝑇 =
𝜌

2
[𝐴𝑡𝑒𝑒 [∫ ( 𝑣1

2̇
𝑙

0

 +  𝑤1
2̇ )𝑑𝑥 + ∫ ( 𝑣2

2̇
𝑙

0

 +  𝑤2
2̇ )𝑑𝑥]       

+  𝑎𝑡𝑤 ∫ ( 𝑣2̇
𝑙

0

+  𝑤2̇ )𝑑𝑥 + 𝐼𝑝 ∫  𝜙2̇
𝑙

0

𝑑𝑥] 

6-8 

 

where ρ the density, l is the beam length, Atee=bftf + tw (
hw

2
− a) is the cross-section 

area of the T-section, Ip = Iptop + Ipweb + Ipbot  is the polar moment of inertia. Note 

that the dot above a symbol in above equations represents the derivative of the symbol 

with respect to time. 

 

The strain energy of castellated beam that is determined based on the three parts due to 

the transverse displacement, lateral displacement and rotation. It thus can be written as 

follows:  

 

𝑈𝑠 =
1

2
∫ [𝐸𝐼𝑦1 (

𝑑2𝑤1

𝑑𝑥2 )

2

+ 𝐸𝐼𝑧1 (
𝑑2𝑣1

𝑑𝑥2 )

2

+ 𝐺𝐽1 (
𝑑𝜙

𝑑𝑥
)
2

]
𝑙

0

𝑑𝑥

+
1

2
∫ [𝐸𝐼𝑦2 (

𝑑2𝑤2

𝑑𝑥2 )

2

+ 𝐸𝐼𝑧2 (
𝑑2𝑣2

𝑑𝑥2 )

2

+ 𝐺𝐽2 (
𝑑𝜙

𝑑𝑥
)
2

]
𝑙

0

𝑑𝑥

+
1

2
∫ [𝐸𝐼𝑦3 (

𝑑2𝑤3

𝑑𝑥2 )

2

+ 𝐸𝐼𝑧3 (
𝑑2𝑣3

𝑑𝑥2 )

2

+ 𝐺𝐽3 (
𝑑𝜙

𝑑𝑥
)
2

]
𝑙

0

𝑑𝑥 

6-9 

where 𝑈𝑠 is the strain energy, E is the Young's modulus, G is the shear modulus.     

𝐼𝑦1 = 𝐼𝑦2 and 𝐼𝑧1 = 𝐼𝑧2 are the second moments of the T- sectional area about the y and z 

axes. 𝐽1 = 𝐽2  is the torsional constant of the tee-section, 𝐼𝑦3  and 𝐼𝑧3  are the second 

moments of the cross-sectional area of the mid-part of the web about the y and z axes 

respectively, and 𝐽3 is the torsional constant of the mid-part of the web. 

 

Hence, the formula of the strain energy of castellated beam (top T- section, bottom      

T- section and mid-part of the web) can be written as follows:  
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𝑈 =
1

2
∫ [2𝐸𝐼𝑦1 (

𝑑2𝑤1

𝑑𝑥2 )

2

+ 2𝐸𝐼𝑧1 (
𝑑2𝑣1

𝑑𝑥2 )

2𝑙

0

+
ℎ2

2
𝐸𝐼𝑧1 (

𝑑2𝜙

𝑑𝑥2)

2

+ 2𝐺𝐽1 (
𝑑𝜙

𝑑𝑥
)
2

] 𝑑𝑥

+
1

2
∫ [𝐸𝐼𝑦3 (

𝑑2𝑤2

𝑑𝑥2 )

2

+ 𝐸𝐼𝑧3 (
𝑑2𝑣2

𝑑𝑥2 )

2

+ 𝐺𝐽3 (
𝑑𝜙

𝑑𝑥
)
2

]
𝑙

0

𝑑𝑥 

6-10 

According to Figure 6-1, 𝐼𝑦1  , 𝐼𝑧1 and 𝐽1  are constants, whereas 𝐼𝑦3  , 𝐼𝑧3  and 𝐽3  are the 

function of x and depending upon the location of the web openings. Hence, from the 

comparison between equation of the strain energy of an I-beam without web openings 

and Eq. (6-10), the following relations can be obtained: 

 𝐼𝑦 = 2𝐼𝑦1 + 𝐼𝑦3 6-11 

 𝐼𝑧 = 2𝐼𝑧1 + 𝐼𝑧3 6-12 

 𝐼𝑤 = (
ℎ

2
)
2

𝐼𝑧 ≈
ℎ2

2
𝐼𝑧1

 6-13 

 𝐽 = 2𝐽1 + 𝐽3 6-14 

 𝐼𝑝 = 𝐼𝑦 + 𝐼𝑧 = 2𝐼𝑦1 + 2𝐼𝑧1 + 𝑘𝐼𝑦3 + 𝑘𝐼𝑧3 6-15 

 

According to Kim.et al. (2016) k refers to the fraction of the volume of the solid and 

holes in the mid-part of the web. In castellated beams, because of matching of the areas 

and holes in the mid-part of the web, the value of k=0.5. 

 

Assume that the transverse load is the periodic load applying on the top flange of 

castellated beam when the sheeting is fixed with the top flange (e.g. for wind-induced 

vibration). In this case, the loss of potential energy 𝑉 of the transverse load 𝑞𝑧 can be 

expressed as follows: 

 𝑉 = ∫ [𝑀𝑦𝜙 (
𝑑2𝑣

𝑑𝑥2
) +

𝑎𝑧𝑞𝑧

2
𝜙2]

𝑙

0

𝑑𝑥 6-16 
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where 𝑞𝑧 is the distribution load, 𝑀𝑦 is the pre-buckling internal bending moment, and 

a𝑧 refers to the z-coordinate of the loading point, which is equal to the distance between 

the loading point and the shear centre of the beam. In the present case,  𝑎𝑧 =
ℎ𝑤

2
+ 𝑡𝑓 

because the uniformly distributed load is applied on the top flange of the beam. The 

second term in Eq. (6-16) is attributed to the effect of loading position, which, in the 

present case, has a positive effect on the stability of the beam and thus will increase the 

critical buckling load. 

According to the Lagrange method, the equations of motion describing the lateral-

torsional buckling of the beam can be expressed as follows: (Massachusetts Institute of 

Technology, 2003) 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇
) −

𝜕𝐿

𝜕𝑞
= 0 6-17 

where 𝐿 = 𝑇 − (𝑈 − 𝑉) is the Lagrangian function and 𝑞 = {𝑞1, 𝑞2, 𝑞3}
𝑇 is the general 

displacement vector. Substituting Eqs (6-1)-(6-4), (6-8), (6-10) and (6-16) into (6-17), 

the governing equation for the dynamic instability analysis of a castellated beam is 

obtained, as follows: (Kratzig and Nawrotzki, 1991; Li, 1991; and Patel et al., 2006). 

 [𝐌]{𝐪̈} + [𝐊]{𝐪} − λ[𝐊𝐠]{𝐪} = {𝟎} 6-18 

where [M] is the mass matrix, [K] is the elastic stiffness matrix, [Kg] is the geometric 

stiffness matrix, {𝐪̈} is the generalized acceleration vector, is the general displacement 

vector, and λ is the loading factor. The mass, stiffness, and geometric stiffness matrices 

are expressed as follows: 

 [𝐌] =

[
 
 
 
 
 
 

𝜕2𝑇

𝜕𝑞̇1
2

𝜕2𝑇

𝜕𝑞1̇𝜕𝑞2̇

𝜕2𝑇

𝜕𝑞1̇𝜕𝑞3̇

𝜕2𝑇

𝜕𝑞2̇𝜕𝑞1̇

𝜕2𝑇

𝜕𝑞̇2
2

𝜕2𝑇

𝜕𝑞2̇𝜕𝑞3̇

𝜕2𝑇

𝜕𝑞3̇𝜕𝑞1̇

𝜕2𝑇

𝜕𝑞3̇𝜕𝑞2̇

𝜕2𝑇

𝜕𝑞̇3
2 ]

 
 
 
 
 
 

 6-19 
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 [𝐊] =

[
 
 
 
 
 
 
 

𝜕2𝑈

𝜕𝑞1
2

𝜕2𝑈

𝜕𝑞1 𝜕𝑞2

𝜕2𝑈

𝜕𝑞1 𝜕𝑞3

𝜕2𝑈

𝜕𝑞2 𝜕𝑞1

𝜕2𝑈

𝜕𝑞2
2

𝜕2𝑈

𝜕𝑞2 𝜕𝑞3

𝜕2𝑈

𝜕𝑞3 𝜕𝑞1

𝜕2𝑈

𝜕𝑞3 𝜕𝑞2

𝜕2𝑈

𝜕𝑞3
2

]
 
 
 
 
 
 
 

 6-20 

 [𝐊𝒈] =

[
 
 
 
 
 
 
 

𝜕2𝑉

𝜕𝑞1
2

𝜕2𝑉

𝜕𝑞1 𝜕𝑞2

𝜕2𝑉

𝜕𝑞1 𝜕𝑞3

𝜕2𝑉

𝜕𝑞2 𝜕𝑞1

𝜕2𝑉

𝜕𝑞2
2

𝜕2𝑉

𝜕𝑞2 𝜕𝑞3

𝜕2𝑉

𝜕𝑞3 𝜕𝑞1

𝜕2𝑉

𝜕𝑞3 𝜕𝑞2

𝜕2𝑉

𝜕𝑞3
2

]
 
 
 
 
 
 
 

 6-21 

Assume that the externally applied load 𝑞𝑧 is periodic, in which case the loading factor 

can be divided into two parts as expressed as follows:  

 𝜆 = 𝜆𝑠 + 𝜆𝑡 𝑐𝑜𝑠Ω𝑡 6-22 

Where 𝜆𝑠 and 𝜆𝑡 are the amplitudes of the static and dynamic parts, respectively, Ω is 

the excitation frequency of the dynamic part of the load, and 𝑡 is the time.   

 

The dynamic instability regions of the structure described by Eq. (6-18) can be 

calculated by investigating periodic solutions with the periods of T=2π/Ω and 2T=4π/Ω. 

The solution with the period of 2T is of particular importance, representing the primary 

instability region of the structure, which can be expressed using the form of 

trigonometric series given by: 

 {𝒒} = ∑ [{𝒂𝒌}𝑠𝑖𝑛
𝑘Ω𝑡

2
+ {𝒃𝒌}𝑐𝑜𝑠

𝑘Ω𝑡

2
]

𝑘=1,3,…

 6-23 

where {𝒂𝒌}  and {𝒃𝒌}  are the vectors of coefficients of the assumed solution. 

Substituting Eqs. (6-22) and (6-23) into (6-18) and letting the coefficients of the series 

associated with sin (Ωt/2) and cos (Ωt/2) be zero, it yields: 

 ([𝐊] −
2λ𝑠 − λ𝑡

2
[𝐊𝒈] −

Ω2

4
[𝐌]) {𝒂𝟏} = {0} 6-24 
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 ([𝐊] −
2λ𝑠 + λ𝑡

2
[𝐊𝒈] −

Ω2

4
[𝐌]) {𝒃𝟏} = {0} 6-25 

For given values of 𝜆𝑠 and 𝜆𝑡  one can calculate the two frequencies of Ω from          

Eqs. (6-24) and (6-25), which represent the boundary of dynamic instability region of 

the castellated beams under periodic loading. 

 

6.4. Simply supported, doubly symmetric castellated beam subjected to periodic 

loads on top flange 

For the calculation due to the dynamic lateral-torsional buckling, the displacement 

functions w(x), v(x), ϕ(x) and pre-buckling internal bending moment 𝑀𝑦(𝑥) that satisfy 

the boundary conditions of a simply supported beam can be assumed as follows: 

 𝑣(𝑥) = 𝑞1(𝑡)𝑠𝑖𝑛
𝜋𝑥

𝑙
 6-26 

 

 𝑤(𝑥) = 𝑞2(𝑡)𝑠𝑖𝑛
𝜋𝑥

𝑙
 6-27 

 

 𝜙(𝑥) = 𝑞3(𝑡)𝑠𝑖𝑛
𝜋𝑥

𝑙
 6-28 

 

 𝑀𝑦(𝑥) =
𝑞𝑧𝑥(𝑙 − 𝑥)

2
 6-29 

 

where 𝑞𝑖(𝑡) (𝑖 = 1,2,3) are the functions of time.  

Therefore, the mass, stiffness, and geometric stiffness matrices for simply supported 

beam are obtained from Eqs. (6-19)- (6-21) and are expressed as follows: 

 [𝐌] = [
𝑚11 0 0
0 𝑚22 0
0 0 𝑚33

] 6-30 

 

where: 

 

𝑚11 = 𝑚22 = 𝜌𝑙(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)  ,   𝑚33 = 𝜌𝑙 (
𝐴𝑡𝑒𝑒ℎ2

4
+

𝐼𝑝

2
) 
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 [𝐊] = [

𝜅11 0 0
0 𝜅22 0
0 0 𝜅33

] 6-31 

 

where: 

𝜅11 =
𝐸𝑙(2𝐼𝑧1 + 𝑘𝐼𝑧3)

2
(
𝜋

𝑙
)
4

 

𝜅22 =
𝐸𝑙(2𝐼𝑦1 + 𝑘𝐼𝑦3)

2
(
𝜋

𝑙
)
4

 

𝜅33 =
𝐸𝐼𝑤𝑙

2
(
𝜋

𝑙
)
4

+
𝐺𝑙(2𝐽1 + 𝑘𝐽3)

2
(
𝜋

𝑙
)
2

 

 [𝐊𝒈] = [

0 0 𝜅𝑔13

0 0 0
𝜅𝑔31 0 𝜅𝑔33

] 6-32 

 

where: 

𝜅𝑔13 = 𝜅𝑔31 = −
𝑞𝑧𝑙

8
(
𝝅𝟐

𝟑
+ 1) , 𝜅𝑔33 = −

𝑎𝑧𝑞𝑧𝑙

2
 

 

6.4.1. The free vibration analysis  

The free vibration analysis frequency of the lateral-torsional vibration of the castellated 

beam can be determined using Eq. (6-33): 

 ‖[𝐊] − 𝜔2[𝐌]‖ = 0 6-33 

 

where 𝝎 is the free vibration frequency. Substituting Eqs. (6-30) and (6-31) into (6-33), 

the following frequency can be obtained:  

 𝜔1 = (
𝜋

𝑙
)
2

√
𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3)

2𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-34 

 

 𝜔2 = (
𝜋

𝑙
)
2
√

𝐸(2𝐼𝑦1 + 𝑘𝐼𝑦3)

2𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-35 
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𝜔3 = (

𝜋

𝑙
)
2 √

2(𝐸𝐼𝑤 +
𝐺𝑙2

𝜋2 (2𝐽1 + 𝑘𝐽3))

𝜌(𝐴𝑡𝑒𝑒ℎ2 + 2𝐼𝑝)
 
 6-36 

 

𝐼𝑧3
∗  can be negligible because in most of castellated beams  𝐼𝑧3

∗ << 2𝐼𝑧1 , then            

Eqs. (6-34), (6-35) and (6-36) can be simplified as follows: (Kim et al., 2016)  

 𝜔1 = (
𝜋

𝑙
)
2

√
𝐸(2𝐼𝑧1)

2𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-37 

 

 𝜔2 = (
𝜋

𝑙
)
2
√

𝐸(2𝐼𝑦1)

2𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-38 

 

 
𝜔3 = (

𝜋

𝑙
)
2 √

2(𝐸𝐼𝑤 +
𝐺𝑙2

𝜋2 (2𝐽1 + 𝑘𝐽3))

𝜌(𝐴𝑡𝑒𝑒ℎ2 + 2(𝐼𝑧1 + 𝐼𝑦1))
 
 6-39 

 

The above formulations (6-37), (6-38) and (6-39) calculate the natural frequencies, 

which are well known and can be found from many vibration textbooks. These 

equations represent the translational and rotational vibrations of castellated beams. 

Moreover, it indicates that the lateral vibration and torsional vibration modes are 

influenced by web openings.  

 

6.4.2. Buckling analysis 

The critical load of the lateral-torsional buckling of the castellated beam subjected to a 

static load can be calculated using Eq. (6-40): 

 ‖[𝐊] − λ𝑐𝑟[𝐊𝒈]‖ = 0 6-40 

where λ𝑐𝑟 is the loading factor and 𝑞𝑐𝑟 = λ𝑐𝑟𝑞𝑜 is the critical load for static buckling. 

Substituting Eqs. (6-31) and (6-32) into (6-40), the following critical load is obtained:  
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λ𝑐𝑟 = −

𝐾11𝐾𝑔33 ± √𝐾11
2𝐾𝑔33

2 + 4𝐾𝑔13
2𝐾11𝐾33

2𝐾𝑔13
2

 6-41 

 
(
𝒒𝒛𝒍

𝟐

𝟖
)

𝒄𝒓

= 

((
𝒉𝒘

𝟐
+ 𝒕𝒇) + √(

𝒉𝒘

𝟐
+ 𝒕𝒇)

𝟐

+
𝟏
𝟒(𝑰𝒘 +

𝑮(𝟐𝑱𝟏 + 𝒌𝑱𝟑)
𝑬

 (
𝒍
𝝅
)

𝟐

)(
𝝅𝟐

𝟑
+ 𝟏)

𝟐

×
𝟏

(𝟐𝑰𝒛𝟏 + 𝑰𝒛𝟑)
)

(
𝟏
𝟑

+
𝟏
𝝅𝟐)

𝟐

×
𝟐𝑬(𝟐𝑰𝒛𝟏 + 𝑰𝒛𝟑)

𝒍𝟐
 

6-42 

 

It can be noticed that Eq. (6-43) is similar to the formulation of the critical load given in 

(Kim et al., 2016) for simply supported castellated beams when the load is applied at the 

top flange. 

 

6.4.3. The dynamic instability 

The dynamic instability region of the castellated beam can be calculated using            

Eq. (6-44): 

 ‖[𝐊] −
2λ𝑠 ± λ𝑡

2
[𝐊𝒈] −

Ω2

4
[𝐌]‖ = 0 6-44 

Substituting Eqs. (6-30), (6-31) and (6-32) into (6-44), it yields: 

 
Ω2

4
=

(𝐾33
∗ 𝑚11 + 𝐾11𝑚33) ± √(𝐾11𝑚33 − 𝐾33

∗ 𝑚11)
2 + 4(

2𝜆𝑠 ± 𝜆𝑡

2
)

2

𝐾𝑔13
2𝑚33𝑚11

2𝑚33𝑚11

 
6-45 

 

where  

𝐾33
∗ = 𝐾33 −

2λ𝑠 ± λ𝑡

2
𝐾𝑔33 

 

 
(
𝒒𝒛𝒍

𝟐

𝟖
)

𝒄𝒓

=

((
𝒉𝒘

𝟐
+ 𝒕𝒇) + √(

𝒉𝒘

𝟐
+ 𝒕𝒇)

𝟐

+
𝟏
𝟒(𝑰𝒘 +

𝑮(𝟐𝑱𝟏 + 𝒌𝑱𝟑)
𝑬

 (
𝒍
𝝅
)

𝟐

)(
𝝅𝟐

𝟑
+ 𝟏)

𝟐

×
𝟏

(𝟐𝑰𝒛𝟏)
)

(
𝟏
𝟑

+
𝟏
𝝅𝟐)

𝟐  ×
𝟐𝑬(𝟐𝑰𝒛𝟏)

𝒍𝟐

 6-43 
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It can be seen, four different equations given by Eq. (6-45) which represents four 

different Ω values can be obtained, where the value of Ω2 is associated with vibration 

modes, which were illustrated in the free vibration analysis shown in Section 6.4.1. 

 

6.4.4. Comparison of the dynamic instability of simply supported beams due to 

transverse periodic loading  

Table (6-1) gives the dimensions and material properties of four various flange width, 

(bf =100 mm, bf =150 mm, bf =200 mm, and bf =250 mm) of castellated beams 

discussed herein. The analytical solution to determine the natural frequencies was 

obtained directly from Eqs. (6-37), (6-38) and (6-39) while the critical loads were 

obtained by Eq. (6-43). 

 

Furthermore, Eq. (6-45) calculated the dynamic instability regions of castellated beam 

for various span lengths (small, middle, large and very large) (see Table (6-1)) under a 

transverse periodic load applied at the top flange of the beam. The results are plotted in 

Figures 6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8 and 6-9 respectively.  

 

Figures 6-2, 6-3, and 6-4 present the variation of the frequencies of lateral vibration, 

vertical vibration and rotational vibration of the beams of different flange widths versus 

the beam length. The three figures correspond to the 1st, 2nd and 3rd vibration modes. 

 

From these figures it can be observed that, for each vibration mode, the frequency 

curves have a similar variation pattern. In addition, the beam length and the flange 

width influence the frequencies. Increasing the beam length causes reductions in the 

frequencies. In contrast, the larger flange width gives the greater frequencies. 

Furthermore, it can be seen from the figures that the frequency of the lateral vibration is 

slightly higher than the frequency of the rotational vibration of the beam but a little 

higher than the frequency of the vertical vibration of the castellated beam. 

 

Figure 6-5 plots the critical load curves of the beams of different flange widths 

subjected to the transverse static load applying on the top flange, where the critical 
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moment has been calculated using the yield moment, is obtained by                     

Myield =
2𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

ℎ𝑤+2𝑡𝑓
, ( 𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑  is obtained by following Eq. (3-17)). It can be noticed, 

as expected, that for each beam the increase of beam length causes the reduction of the 

critical moment. 

 

Figures 6-6, 6-7, 6-8, and 6-9 show the dynamic instability zones of the simply support 

castellated beam with four different flange widths, subjected to a transverse periodic 

load applied at the top flange of the beams, in which the geometric stiffness matrix is 

assessed using the static critical load, that is(𝑞yield = 𝑞𝑐𝑟), where (𝑞yield =
2𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑙2(ℎ𝑤+2𝑡𝑓)
) . 

The four figures correspond to four different beam lengths as indicated in Table (6-1). It 

can be observed from these figures that, the dynamic instability regions of the four 

beams all exhibit a “v” shape in despite of having different flange widths. With the 

increase of beam length, the dynamic instability zone not only moves towards to higher 

frequency side but its width is also expanded. In contrast, where the beam length is the 

same, the width of the dynamic instability zone decreases with the increase of the flange 

width. 

 

The figures of the variation of the frequencies, curve of the critical load and the 

dynamic instability zones of castellated beams have the same patterns with those 

computed in previous studies by Plaut (2017); Zhu et al. (2017); and Zhu et al. (2018). 

However, a quantitative comparison is not mentioned because the beams are different 

between this study (castellated beams) and previous studies (cold-formed steel beams). 

 

 

Table 6-1 Dimensions and properties of four various flange widths (bf =100 mm, bf =150 mm,  

bf =200 mm, and bf =250 mm) castellated beams* 

 

tf 

mm 

hw 

mm 

tw 

mm 

a 

mm 

E 

MPa 

ρ 

kg/m
3
 

σy  

MPa 

G 

MPa 
v 

10 300 8 100 2.1x10
5
 7800 275 78750 0.3 

Note
*
: Dynamic instability analysis uses four different beam lengths. They are 4.156m; 

6.235 m; 9.006 m and 14.549 m  
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Figure 6-1 (a) Notations is used in castellated beams. (b) Loading and displacements of web 

and displacement of flanges when lateral–torsional buckling occurred (c) Section properties of 

middle-part of web in four different regions. 𝐼𝑦3 = 𝐼𝑦3
∗ ,  𝐼𝑧3 = 𝐼𝑧3

∗ , 𝐽3 = 𝐽3
∗ in region 2, in region 

4,𝐼𝑦3 = 𝐼𝑧3 = 𝐽3 = 0 , section properties vary with x in regions 1 and 3. 

 

 

 

 

Figure 6-2 Comparison of frequencies of simply support castellated beams with different flange 

widths (1st mode) 
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Figure 6-3 Comparison of frequencies of simply support castellated beams with different flange 

widths (2nd mode) 

 

 

 

Figure 6-4 Comparison of frequencies of simply support castellated beams with different flange 

widths (3rd mode) 
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Figure 6-5 Comparison of critical buckling moments of simply support castellated beam with 

different flange widths 

 

 

 

Figure 6-6 Comparison of dynamic instability regions of simply support castellated beam 

(l = 4.156 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 
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Figure 6-7 Comparison of dynamic instability regions of simply support castellated beam 

(l = 6.235 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 

 

 

 

Figure 6-8 Comparison of dynamic instability regions of simply support castellated beam 

(l = 9.006 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 
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Figure 6-9 Comparison of dynamic instability regions of simply support castellated beam 

(l = 14.549 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 

 

6.5. Pinned–fixed doubly symmetric castellated beam subjected to periodic loads 

on top flange 

For the calculation due to the dynamic lateral-torsional buckling, the displacement 

functions w(x), v(x), ϕ(x) and pre-buckling internal bending moment 𝑀𝑦(𝑥) that satisfy 

the boundary conditions of a pinned-fixed beam can be assumed as follows: 

 𝑣(𝑥) = 𝑞1(𝑡)𝑠𝑖𝑛
𝜋(𝑙 − 𝑥)

𝑙
𝑠𝑖𝑛

𝜋(𝑙 − 𝑥)

2𝑙
 6-46 

 

 𝑤(𝑥) = 𝑞2(𝑡)𝑠𝑖𝑛
𝜋(𝑙 − 𝑥)

𝑙
𝑠𝑖𝑛

𝜋(𝑙 − 𝑥)

2𝑙
 6-47 

 

 𝜙(𝑥) = 𝑞3(𝑡)𝑠𝑖𝑛
𝜋(𝑙 − 𝑥)

𝑙
𝑠𝑖𝑛

𝜋(𝑙 − 𝑥)

2𝑙
 6-48 

 

 𝑀𝑦(𝑥) =
𝑞𝑧𝑥

2
 (

3𝑙

4
− 𝑥) 6-49 

 

where 𝑞𝑖(𝑡) (𝑖 = 1,2,3) are the functions of time.  
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Therefore, the mass, stiffness, and geometric stiffness matrices for pinned-fixed beam 

are obtained from Eqs. (6-19)- (6-21) and are expressed as follows: 

 [𝐌] = [
𝑚11 0 0
0 𝑚22 0
0 0 𝑚33

] 6-50 

 

where: 

 

𝑚11 = 𝑚22 =
𝜌𝑙(𝑎𝑡𝑤+𝐴𝑡𝑒𝑒)

2
  ,   𝑚33 =

𝜌𝑙

2
(
𝐴𝑡𝑒𝑒ℎ2

4
+ 𝐼𝑝) 

 

 [𝐊] = [
𝜅11 0 0
0 𝜅22 0
0 0 𝜅33

] 6-51 

 

where: 

 

𝜅11 =
41𝐸𝑙(2𝐼𝑧1 + 𝑘𝐼𝑧3)

64
(
𝜋

𝑙
)
4

 

𝜅22 =
41𝐸𝑙(2𝐼𝑦1 + 𝑘𝐼𝑦3)

64
(
𝜋

𝑙
)
4

 

𝜅33 =
41𝐸𝐼𝑤𝑙

64
(
𝜋

𝑙
)
4

+
5𝐺𝑙(2𝐽1 + 𝑘𝐽3)

16
(
𝜋

𝑙
)
2

 

 [𝐊𝒈] = [

0 0 𝜅𝑔13

0 0 0
𝜅𝑔31 0 𝜅𝑔33

] 6-52 

 

where: 

𝜅𝑔13 = 𝜅𝑔31 = −
𝑞𝑧𝑙

8
(
𝜋2

3
+ 1

1

8
), 𝜅𝑔33 = −

𝑎𝑧𝑞𝑧𝑙

4
 

 

6.5.1. The free vibration analysis  

The free vibration analysis frequency of the lateral-torsional vibration of the castellated 

beam can be determined using Eq. (6-53): 

 ‖[𝐊] − 𝜔2[𝐌]‖ = 0 6-53 
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where 𝝎 is the free vibration frequency. Substituting Eqs. (6-50) and (6-51) into (6-53), 

also, the following frequency can be obtained:  

 

 𝜔1 = (
𝜋

𝑙
)
2

√
41𝐸(2𝐼𝑧1 + 𝑘𝐼𝑧3)

32𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-54 

 

 𝜔2 = (
𝜋

𝑙
)
2
√

41𝐸(2𝐼𝑦1 + 𝑘𝐼𝑦3)

32𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-55 

 

 𝜔3 = (
𝜋

𝑙
)
2
√

41𝐸𝐼𝑤 + 20
𝐺𝑙2

𝜋2 (2𝐽1 + 𝑘𝐽3)

8𝜌(𝐴𝑡𝑒𝑒ℎ
2 + 2𝐼𝑝)

 6-56 

 

𝐼𝑧3
∗  can be negligible because in most of castellated beams  𝐼𝑧3

∗ << 2𝐼𝑧1  , then Eqs. (6-54),   

(6-55) and (6-56) can be simplified as follows:  

 𝜔1 = (
𝜋

𝑙
)
2

√
41𝐸(2𝐼𝑧1)

32𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-57 

 

 𝜔2 = (
𝜋

𝑙
)
2
√

41𝐸(2𝐼𝑦1)

32𝜌(𝑎𝑡𝑤 + 𝐴𝑡𝑒𝑒)
 6-58 

 

 𝜔3 = (
𝜋

𝑙
)
2
√

41𝐸𝐼𝑤 + 20
𝐺𝑙2

𝜋2 (2𝐽1 + 𝑘𝐽3)

8𝜌(𝐴𝑡𝑒𝑒ℎ
2 + 2𝐼𝑝)

 6-59 

 

The above formulations (6-57), (6-58) and (6-59) give the natural frequencies, which 

are well known and can be found from many vibration textbooks. These equations 

represent the translational and rotational vibrations of castellated beams. Moreover, it 

indicates that the lateral vibration and torsional vibration modes are influenced by web 

openings.  
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6.5.2. Buckling analysis 

The critical load of the lateral-torsional buckling of the castellated beam subjected to a 

static load can be calculated using Eq. (6-60): 

 ‖[𝐊] − λ𝑐𝑟[𝐊𝒈]‖ = 0 6-60 

where λcr is the loading factor and 𝑞𝑐𝑟 = 𝜆𝑐𝑟𝑞𝑜 is the critical moment for static 

buckling.  

Substituting Eqs. (6-51) and (6-52) into (6-60), the following critical load is obtained:  

 
λ𝑐𝑟 = −

𝐾11𝐾𝑔33 ± √𝐾11
2𝐾𝑔33

2 + 4𝐾𝑔13
2𝐾11𝐾33

2𝐾𝑔13
2

 6-61 

 

 
(
𝒒𝒛𝒍

𝟐

𝟖
)

𝒄𝒓

= 

((
𝒉𝒘

𝟐
+ 𝒕𝒇)   + √(

𝒉𝒘

𝟐
+ 𝒕𝒇)

𝟐

+ (
𝟓𝝅𝟐 + 𝟏𝟎𝟖

𝟏𝟗𝟐
)

𝟐

 (𝑰𝒘 +
𝟐𝟎𝑮(𝟐𝑱𝟏 + 𝒌𝑱𝟑)

𝟒𝟏𝑬
(
𝒍
𝝅
)

𝟐

) ×
𝟏

(𝟐𝑰𝒛𝟏 + 𝒌𝑰𝒛𝟑)
)

(
𝟓𝝅𝟐 + 𝟏𝟎𝟖

𝟗𝟔
)

𝟐

𝒍𝟐

×
𝟒𝟏𝑬(𝟐𝑰𝒛𝟏 + 𝒌𝑰𝒛𝟑)

𝟑𝟐
 

6-62 

 
(
𝒒𝒛𝒍

𝟐

𝟖
)

𝒄𝒓

= 

((
𝒉𝒘

𝟐
+ 𝒕𝒇)    + √(

𝒉𝒘

𝟐
+ 𝒕𝒇)

𝟐

+ (
𝟓𝝅𝟐 + 𝟏𝟎𝟖

𝟏𝟗𝟐
)

𝟐

 (𝑰𝒘 +
𝟐𝟎𝑮(𝟐𝑱𝟏 + 𝒌𝑱𝟑)

𝟒𝟏𝑬
(
𝒍
𝝅
)

𝟐

) ×
𝟏

(𝟐𝑰𝒛𝟏)
)

(
𝟓𝝅𝟐 + 𝟏𝟎𝟖

𝟗𝟔
)

𝟐

𝒍𝟐

×
𝟒𝟏𝑬(𝟐𝑰𝒛𝟏)

𝟑𝟐
 

6-63 

 

It can be noticed that Eq. (6-63) is similar to the formulation of the critical load given in 

this study Section 4.6.2 for pinned-fixed castellated beams when the load is applied at 

the top flange. 

 

6.5.3. The dynamic instability 

The dynamic instability region of the castellated beam can be calculated using             

Eq. (6-64): 

 ‖[K] −
2λs ± λt

2
[Kg] −

Ω2

4
[M]‖ = 0 6-64 
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Substituting Eqs. (6-50), (6-51) and (6-52) into (6-64), it yields: 

 
Ω2

4
=

(𝐾33
∗ 𝑚11 + 𝐾11𝑚33) ± √(𝐾11𝑚33 − 𝐾33

∗ 𝑚11)
2 + 4(

2λ𝑠 ± λ𝑡

2
)

2

𝐾𝑔13
2𝑚33𝑚11

2𝑚33𝑚11

 
6-65 

 

where  

𝐾33
∗ = 𝐾33 −

2λ𝑠 ± λ𝑡

2
𝐾𝑔33 

It can be seen that, there are four different equations given by Eq. (6-65), which 

represent four different Ω values, where the value of Ω2 is associated with vibration 

modes, which were illustrated in the free vibration analysis shown in Section 6.5.1 

 

6.5.4. Comparison of the dynamic instability of pinned-fixed beams due to 

transverse periodic loading  

Table (6-1) gives the dimensions and material properties of four various flange width, 

(bf =100 mm, bf =150 mm, bf =200 mm, and bf =250 mm) of castellated beams 

discussed herein. The analytical solution to determine the natural frequencies was 

obtained directly from Eqs. (6-57), (6-58) and (6-59), while the critical loads were 

obtained by Eq. (6-63). 

 

Furthermore, Eq. (6-65) calculated the dynamic instability regions of castellated beam 

for various span lengths (small, middle, large and very large) (see Table (6-1) under a 

transverse periodic load applied at the top flange of the beam. The results are plotted in 

Figures 6-10, 6-11, 6-12, 6-13, 6-14, 6-15, 6-16 and 6-17 respectively.  

 

Figures 6-10, 6-11, and 6-12 present the variation of the frequencies of lateral 

vibration, vertical vibration and rotational vibration of the beams of different flange 

widths versus the beam length of the pinned-fixed castellated beam. The three figures 

correspond to the 1st, 2nd and 3rd vibration modes. 
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From these figures it can be observed that, for each vibration mode, the frequency 

curves have a similar variation pattern. In addition, the beam length and the flange 

width influence the frequencies. Increasing the beam length causes reductions in the 

frequencies. In contrast, the larger flange width gives the greater frequencies. 

Furthermore, it can be seen from the figures that the frequency of the lateral vibration is 

slightly higher than the frequency of the rotational vibration of the beam but a little 

higher than the frequency of the vertical vibration of the castellated beam. 

 

Figures 6-13 plots the critical loads curves of the pinned-fixed castellated beam 

subjected to the transverse periodic load applying on top flange versus the beam length 

for different flange widths, where the critical moment has been normalized using the 

yield moment ,Myield =
2𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

ℎ𝑤+2𝑡𝑓
, ( 𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑  is obtained by following Eq. (3-17)). It 

can be noticed, as expected, that for each beam the increase of beam length causes the 

reduction of the critical moment. 

 

Figures 6-14, 6-15, 6-16 and 6-17 show the dynamic instability zones of the pinned-

fixed castellated beam with four different flange widths, subjected to a transverse 

periodic load applied at the top flange of the beams, in which the geometric stiffness 

matrix is assessed using the static critical load that is   (𝑞yield = 𝑞𝑐𝑟)  where                  

(𝑞yield = 16
𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑙2(ℎ𝑤+2𝑡𝑓)
) . The four figures correspond to four different beam lengths as 

indicated in Table (6-1) It can be observed from these figures that, the dynamic 

instability regions of the four beams all exhibit a “v” shape in despite of having different 

flange widths. With the increase of beam length, the dynamic instability zone not only 

moves towards to higher frequency side but its width is also expanded. In contrast, 

where the beam length is the same, the width of the dynamic instability zone decreases 

with the increase the flange width. 

 

The figures of the variation of the frequencies, curve of the critical load and the 

dynamic instability zones of castellated beams have the same patterns with those 

computed in previous studies by Plaut (2017); Zhu et al. (2017); and Zhu et al. (2018). 

However, I did not make a quantitative comparison. This is because the beams are 

different between ours (castellated beams) and others (cold-formed steel beams). 
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Figure 6-10 Comparison of frequencies of pinned-fixed castellated beams with different flange 

widths (1st mode) 

 

 

 

Figure 6-11 Comparison of frequencies of pinned-fixed castellated beams with different flange 

widths (2nd mode) 
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Figure 6-12 Comparison of frequencies of pinned-fixed castellated beams with different flange 

widths (3rd mode) 

 

 

  

Figure 6-13 Comparison of critical buckling moments of pinned-fixed castellated beam with 

different flange widths 
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Figure 6-14 Comparison of dynamic instability regions of pinned-fixed castellated beam  

(l = 4.156 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 

 

 

  

Figure 6-15 Comparison of dynamic instability regions of pinned-fixed castellated beam  

(l =6.235 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 
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Figure 6-16 Comparison of dynamic instability regions of pinned-fixed castellated beam  

(l = 9.006 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 

 

 

 

Figure 6-17 Comparison of dynamic instability regions of pinned-fixed castellated beam  

(l =14.549 m) (𝑞𝑦𝑖𝑒𝑙𝑑 = 𝑞𝑐𝑟 and 𝜆𝑠=0) 

 



CHAPTER SIX                                                                 DYNAMIC INSTABILITY 

161 

6.6. Conclusions 

This chapter has presented an analytical study on the dynamic instability of castellated 

beams subjected to transverse periodic loading at top flange. The dynamic instability 

analysis employed in the present study uses Bolotin’s method, while the mass, stiffness, 

and geometric stiffness matrices are derived using the kinetic energy, the strain energy 

and the potential of applied loads, which are used for conducting the analytical of the 

frequency of free vibration, the critical load of lateral torsional buckling, and the 

excitation frequency of dynamic instability region. 

From the obtained results the following conclusions can be drawn: 

 The free vibration, static buckling and dynamic instability analyses of castellated 

beams subjected to transverse periodic loading at the top flange are influenced by 

the coupling between the translational and rotational modes. 

 Increasing the flange width of beam leads to increase both of the frequency and 

critical buckling moment. However, increasing beam length reduces this effect. 

 The dynamic instability zone of the castellated beam will move towards to high-

frequency side and the corresponding width of the dynamic instability zone 

decreases when its flanges become wide. 

 The effect of lateral-torsional buckling on the dynamic instability zone becomes 

more significant in the short beam than in the long beam, and also in the wide 

flange beam than in the narrow flange beam. 
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CHAPTER SEVEN 
 

7. CONCLUSIONS AND FUTURE STUDIES 

7.1. Conclusions 

Despite the widespread use of castellated beams in the structural field, the current 

design specifications of steel structure do not provide design provisions for the beam. 

The designing procedure of castellated beams needs to consider three different issues. 

The first issue is the strength, the second is the deflection and the last one is the 

lateral torsional buckling. In the castellated beam, these issues are affected by web 

openings. 

 

The aims of this thesis were to investigate the effect of web openings on the 

transverse deflection and lateral-torsional buckling of castellated beams and to focus 

on the effect of both the geometric nonlinear and material inelasticity on castellated 

beams under uniformly distributed load with different boundary conditions. In 

addition, the free vibration, static buckling and dynamic instability of castellated 

beams subjected to transverse periodic loading has been also discussed by 

developing analytical solutions.  

 

Numerous researches have been conducted to investigate the castellated beams 

where various methods have been adopted such as experimental, analytical, and 

numerical methods to predict the calculations’ design of the beams. However, these 

methods differ in terms of safety and accuracy. Some of them need efficiency in 

using, and are furthermore very expensive. 

 

Both analytical and numerical methods were used to achieve the aims of this thesis. 

The purpose of developing analytical methods is for the design and practical use, 
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while the numerical methods developed are for the validation of the analytical 

methods. The analytical solution is developed using the classical principle of 

minimum potential energy, whereas the numerical solutions are obtained using the 

commercial software ANSYS. Bolotin’s method is used to perform the dynamic 

instability analysis. 

The conclusions drawn from the analytical and numerical investigations carried out 

in this research can be summarized as follows: 

 The present analytical results are in excellent agreement with those obtained 

from the finite element analysis, which demonstrates the appropriateness of 

proposed approach. 

 The shear-induced deflection is proportional to the cross-section area of the two 

T-sections but inversely proportional to castellated beam length.  

 The web shear effect on the deflection of castellated beams is very important, 

particularly for short and medium length beams. In contrast, increasing the beam 

length reduces the web shear effect on the deflection. 

 Non-uniform material properties caused by the non-uniform temperature affect 

the maximum deflection of the castellated beam when the shear effect is 

considered. 

 For the same average temperatures, the maximum deflection of the castellated 

beam under non-uniform temperature distribution with transverse distributed 

load is directly proportional to the amount of difference in temperatures between 

the two T- sections of the beam. 

 For lateral-torsional buckling of the castellated beam, one can ignore the lateral 

flexural rigidity of the web openings and use the average torsional constant of 

the full and reduced section properties in the calculation of the critical moment 

of lateral–torsional buckling of castellated beams. 
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 For linear behaviour, the lateral-torsional buckling results’ curves of the 

analytical solution and numerical analysis have a similar variation pattern. 

 The failure mode of short castellated beams is dominated by the plastic failure, 

whereas the failure mode of long castellated beams is dominated by the lateral-

torsional buckling failure mode. 

 The non-linear behaviour showed the critical load of lateral-torsional buckling 

of castellated beams is influenced by the beam size, web openings, boundary 

conditions, and material properties of the beam. 

 The critical loads of flexural and lateral-torsional buckling of castellated beams 

obtained by using nonlinear 3D finite element analysis are generally less than 

those obtained from the linear analyses, particularly for beams with short lengths 

and wide flanges. This indicates that the elastic range is unsafe for short length 

beam with wide flanges. 

 The lateral-torsional buckling resistance of castellated beams with short length 

and/or wide flanges is limited by the ultimate load carrying capacity, in which 

no lateral-torsional buckling occurs.  

 When the serviceability is also considered, the deflection limit seems to be the 

dominant criterion in controlling the load in most of the beam length regions. 

 The longer the beam, the closer the critical load obtained from the linear lateral-

torsional buckling analysis to the failure load obtained from of the full nonlinear 

analysis. 

 The longer the beam, the less importance of the nonlinearity need to be 

considered.  

 The free vibration, static buckling and dynamic instability analyses of 

castellated beams subjected to transverse periodic loading at the top flange are 

influenced by the coupling between the translational and rotational modes. 
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 The frequency and critical buckling moment load are directly proportional to the 

flange width of castellated beams. However, increasing length of the beam 

reduces this effect. 

 The dynamic instability zone of the castellated beam will move towards to high-

frequency side and the corresponding width of the dynamic instability zone 

decreases when its flanges become wide. 

 The effect of lateral-torsional buckling on the dynamic instability zone becomes 

more significant in the short beam than in the long beam, and also in the wide 

flange beam than in the narrow flange beam. 

 

7.2. Future studies 

The main conclusions that have been discussed above have presented the primary 

aims of this thesis, which clearly confirm the need for additional researches, which 

are recommended as follows:  

 The analytical method which was developed in this research to calculate the 

maximum deflections of castellated beams in three different fire scenarios with a 

uniformly distributed load, needs to enhance the understanding of the fire 

performance of castellated beams by carrying out an experimental investigation, 

also to validate the results. 

 Fire safety is an important aspect that should be considered in the design of the 

structure because it refers to the protection of the building from the risk of fire. 

Therefore, further research should focus on the method of calculation of the fire 

resistance of the castellated beam which is influenced by the cross-sectional 

geometry, depth and the material of the beam. Additionally, conduct 

investigations to identify the most suitable fire protection materials insulate of 

the castellated beam due to the effects of the high temperatures. 

 In this thesis the material model of the castellated beam is limited to grade     

275 MPa, other materials should be studied. 
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 Dynamic instability regions of a castellated beam subjected to non-uniform 

periodic bending moment with damping can be investigated in future. 

 The effect of live load on floor vibration may also can be studied.  
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APPENDIX A  

 

A.1. Web combined stiffness 

As for material model castellated beam of steel grade S275, this is assumed to be 

constructed of linear elastic material with Young’s modulus E = 2.1 × 105 MPa, 

Poisson’s ratio v =0.3 and yield stress σy=275 MPa.  

 

3D linear shell finite element (SHELL181) is adopted to calculate shear rigidity factor 

(Ksh), which was formed at Eq. (3-27).Table (A-1) presents the value of the combined 

stiffness of the mid part of the web of the castellated beam caused by the bending and 

shear for groups A,B,C,D,E,F,G,H,I and J (see Section 3.3.4) are obtained by Eq. (3-28) 

is tabulated under term (Kb1); based on: (Yuan et al, 2016) is tabulated under term (Kb2); 

(Yuan et al, 2014) is tabulated under term (Kb3). 
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Table A-1.Web combined stiffness of castellated beams considered 

 

Group 
Name of 

beam 

bf 

mm 

Kb1 

N/mm 

Kb2 

N/mm 

Kb3 

N/mm 

A 

A1 100 172257.90 218238.40 279792.80 

A2 150 152065.62 218238.40 279792.80 

A3 200 131873.32 218238.40 279792.80 

A4 250 111681.01 218238.40 279792.80 

B 

B1 100 199181.01 218238.40 279792.80 

B2 150 192450.24 218238.40 279792.80 

B3 200 185719.47 218238.40 279792.80 

B4 250 178988.70 218238.40 279792.80 

C 

C1 100 204565.62 218238.40 279792.80 

C2 150 200527.16 218238.40 279792.80 

C3 200 196488.70 218238.40 279792.80 

C4 250 192450.24 218238.40 279792.80 

D 

D1 100 205911.78 218238.40 279792.80 

D2 150 202546.39 218238.40 279792.80 

D3 200 199181.01 218238.40 279792.80 

D4 250 195815.62 218238.40 279792.80 

E 

A1 100 172257.90 218238.40 279792.80 

A2 150 152065.62 218238.40 279792.80 

A3 200 131873.32 218238.40 279792.80 

A4 250 111681.01 218238.40 279792.80 

F 

F1 100 207594.47 218238.40 279792.80 

F2 150 205070.43 218238.40 279792.80 

F3 200 202546.39 218238.40 279792.80 

F4 250 200022.35 218238.40 279792.80 

G 

G1 100 208155.37 218238.40 279792.80 

G2 150 205911.78 218238.40 279792.80 

G3 200 203668.19 218238.40 279792.80 

G4 250 201424.60 218238.40 279792.80 
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Group 
Name of 

beam 

bf  

mm 

Kb1 

N/mm 

Kb2 

N/mm 

Kb3 

N/mm 

H 

H1 100 209536.04 218238.40 279792.80 

H2 150 207982.78 218238.40 279792.80 

H3 200 206429.53 218238.40 279792.80 

H4 250 204876.27 218238.40 279792.80 

I 

I1 100 210398.96 218238.40 279792.80 

I2 150 209277.16 218238.40 279792.80 

I3 200 208155.37 218238.40 279792.80 

I4 250 207033.57 218238.40 279792.80 

J 

J1 100 210719.45 218238.40 279792.80 

J2 150 209757.93 218238.40 279792.80 

J3 200 208796.39 218238.40 279792.80 

J4 250 207834.985 218238.40 279792.80 
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