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Summary

Skillful tool use requires knowledge of the dynamic proper-
ties of tools in order to specify the mapping between applied
force and tool motion [1-3]. Importantly, this mapping
depends on the orientation of the tool in the hand. Here we
investigate the representation of dynamics during skillful
manipulation of a tool that can be grasped at different orien-
tations. We ask whether the motor system uses a single
general representation of dynamics for all grasp contexts
or whether it uses multiple grasp-specific representations.
Using a novel robotic interface [4], subjects rotated a virtual
tool whose orientation relative to the hand could be varied.
Subjects could immediately anticipate the force direction
for each orientation of the tool based on its visual geometry,
and, with experience, they learned to parameterize the force
magnitude. Surprisingly, this parameterization of force
magnitude showed limited generalization when the orienta-
tion of the tool changed. Had subjects parameterized a
single general representation, full generalization would be
expected. Thus, our results suggest that object dynamics
are captured by multiple representations, each of which
encodes the mapping associated with a specific grasp
context. We suggest that the concept of grasp-specific repre-
sentations may provide a unifying framework for interpreting
previous results related to dynamics learning.

Results

Subjects rotated a virtual hammer in the horizontal plane by
grasping and rotating the vertical handle of a novel robotic
manipulandum (the WristBOT [4]; Figure 1A). The WristBOT
can produce forces and torques that depend on the position
and orientation of the handle. Visual feedback of the hammer
was projected over the subject’s hand (Figure 1B) and updated
in real time. The dynamics of the hammer were simulated as
a point mass on the end of a rigid rod (Figure 1C; see also
Supplemental Experimental Procedures available online for
full details).

Trials were performed in pairs in which the hammer was first
rotated 40° counterclockwise (CCW) and then 40° clockwise
(CW) between two visually presented targets. The targets
were oriented bars emanating from the central disc represent-
ing the home position (Figure 1C). The orientation of the
hammer and the targets could be varied in order to present
the tool at different orientations (inset of Figure 1B; see also
Figure S1). Subjects were asked to keep the handle stationary
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within the home position as they rotated the tool. Such pure
rotation required subjects to generate time-varying torques
and forces in the horizontal plane. For a given angular velocity
profile, the direction of the force vector depends only on the
orientation of the hammer, whereas the force magnitude
depends on the mass and rod length.

The aim of the first experiment was to determine whether
subjects could recall the general structure of the dynamics
based purely on vision of the hammer. Specifically, we exam-
ined whether subjects generated forces in the appropriate
direction when manipulating hammers grasped at different
orientations relative to the hand. The position of the handle
was held fixed by a simulated spring, and therefore subjects
did not experience kinematic errors (translation of the handle)
that might trigger reactive forces and learning. These error-
clamp trials allowed us to measure the anticipatory forces
produced by subjects.

The hammer was presented at five orientations (inset of
Figure 1B), and subjects performed four trial pairs at each
orientation. Despite having no training with the perturbing
dynamics associated with rotating the tool, subjects gener-
ated substantial translational forces during the rotation. To
assess the relation between the visual orientation of the
hammer and the direction of the forces (Figure 2A), we calcu-
lated the strength (p) of the circular-circular linear association
[5] for each subject. There was a significant relation (mean
p = 0.47 [CW] and 0.26 [CCW] across subjects, both
p < 0.001) between the hammer’s visual orientation and the
force direction, with offsets of —86.8° = 30.8° (circular mean +
circular standard deviation [SD]) and 81.2° = 17.4° for CW and
CCW rotations, respectively. Simulations demonstrate that for
a pure rotation of a hammer about the handle (assuming a
Gaussian angular velocity profile), this offset should be —93°
(or 93°) for CW (or CCW) rotations. These results show that,
given only vision of the hammer, subjects can recall the appro-
priate dynamic structure, allowing them to predict the force
direction required for each orientation.

In contrast to the orientation-dependent modulation of force
direction, subjects did not modulate peak force magnitude
either for the different visual orientations of the hammer (anal-
ysis of variance [ANOVA], p = 0.53; Figure 2B) or across
successive blocks of four trials (ANOVA, p = 0.76; Figure 2C).
Moreover, peak force magnitude was similar across subjects
(2.3 = 0.1 N; mean = standard error) and was, on average,
appropriate for a hammer head mass of 444 g. It is possible
that subjects estimated the required force magnitude based
on the visual size of the mass and the rod length, both of which
were constant across trials. In general, however, direct senso-
rimotor experience is required to learn the dynamic parame-
ters that specify force magnitude [6-10].

In the second experiment, we examined how experience
with the dynamics of a specific hammer, confined to a single
orientation, generalized to other orientations. The aim was
to test two alternative hypotheses. We asked whether the
motor system uses multiple representations of the dynamics
associated with different tool orientations or a single general
representation applied to all orientations. If a single general
representation exists, single context learning should lead to
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Figure 1. Robotic Manipulandum and Virtual Tool Manipulation Task

(A) The WristBOT is a planar two-dimensional robotic manipulandum that includes torque control at the vertical handle. Cables and pulleys (two are shown)
implement the transmission system between the handle and drive system at the rear of the manipulandum (not shown). A safety cover that encloses the
handle pulley and cables has been removed for clarity.

(B) Top view of subject showing visual feedback of a virtual tool, which is projected over the subject’s hand in the plane of movement. Visual feedback (see C)
is consistent with grasping the tool at its base. In reality, subjects grasp the vertical handle of the WristBOT, which is aligned with visual feedback. The
WristBOT handle translates in the horizontal plane (x and y) and rotates around the vertical axis. Subjects view visual feedback in a mirror that prevents
them from seeing either their hand or the manipulandum. Dotted line shows subject’s midsagittal plane, which is aligned with the hand and the vertical
rotation axis of the tool. Inset shows top view of subject’s hand overlaid with five different visual orientations of the tool.

(C) Virtual tool dynamics were simulated as a point mass (mass, m) on the end of a rigid rod (length, r) of zero mass (see Supplemental Experimental Proce-
dures). Visual feedback of the tool (dark gray figure) was provided and updated in real time. Subjects grasped the tool by the circular handle, which was
aligned with their hand. The task involved rotating the tool 40° from a starting angle (light gray bar) to a target angle (black bar) while maintaining the handle
within a circular home region (light gray). Rotation generated translational forces (F) and rotational torques (7) at the handle. Figure shows a grayscale version

of actual visual feedback presented to subjects (scale bar represents 1 cm). Annotations have been added.

perfect generalization in novel contexts. In contrast, limited
generalization to novel contexts would suggest the existence
of multiple context-specific representations.

Subjects performed multiple blocks of 90 trials. They first
rotated the hammer at a training orientation (0°) for 60 trials
while experiencing full dynamics (torques and forces).
Subjects then performed an additional 30 trials consisting of
24 training trials (full dynamics at 0°) and 6 randomly selected
error-clamp trials: 3 at the training orientation (0°) and 3 at
a transfer orientation (—90°). Although the visual orientation
of the hammer (the grasp context) could change between
trials, the orientation of the hand and arm and the required
rotation were kept constant. Within a given block, the hammer
head mass was 0.7%, 1.0%, or 1.3% of the subject’s body
mass.

We measured peak force magnitude on error-clamp trials
and estimated the hammer mass for which this force would

have been appropriate had the handle not been error clamped.
We termed this value the compensated object mass. At the
training orientation (0°), the compensated object mass scaled
with the mass of the hammer (Figure 3A, squares), showing
that subjects adapted their force output based on sensori-
motor experience. However, limited generalization of this
adaptation was observed when the hammer was presented
at —90° (Figure 3A, circles). Specifically, the compensated
object mass at the transfer orientation was approximately
half of that observed at the training orientation. There was
a significant positive relation between the experienced and
the compensated object mass across subjects for both the
training (slope = 0.59 = 0.17; t test, p < 0.001) and transfer
(slope = 0.22 = 0.15; t test, p < 0.005) orientations. The slope
for training was significantly steeper than for transfer (t test,
p < 0.005). These results indicate that subjects were not simply
using a default force but were representing the inertial
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Figure 2. Tool Dynamics Cued by Visual Feedback
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Trials

(A) Direction of peak anticipatory forces as a function of visual orientation of the tool. Data points are circular means (+1 circular standard error [SE]) across
subjects (n = 8). Dotted line shows force direction that would fully compensate for the tool dynamics at that orientation (based on simulations; see Results).
(B) Peak magnitude of anticipatory forces as a function of visual orientation of the tool. Data points are means (=1 SE) across subjects (n = 8).

(C) Peak magnitude of anticipatory forces across experimental blocks. Each data point is the mean of 4 trials averaged across subjects. Shaded region
is =1 SE.
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Figure 3. Performance after Training at a Single Orientation and Subse-
quent Transfer to Novel Orientations

(A) Anticipatory forces during probe trials (expressed as compensated
object mass) at the training orientation (0°, squares) and transfer orientation
(—90°, circles) for tools of different mass. Tool mass is expressed as
percentage of each subject’s body mass. Compensated object mass is
the tool mass (also expressed as percentage body mass) for which the
forces would have been appropriate. Data points are means (+1 SE) across
subjects (n = 9). Lines show average of individual linear regressions across
subjects.

(B) Peak handle displacement angle (PDA) during probe trials as a function
of visually presented orientation of the tool. Dotted line shows the direction
that would fully compensate for the tool dynamics (plotted as in Figure 2A).
Data points are circular means (=1 circular SE) across subjects (n = 8) at the
training orientation (0°, square) and transfer orientations (—22.5°, —45°,
—90°, 180°, circles).

(C) Peak handle displacement (independent of direction) during probe trials
that shows the transfer of training as a function of the visually presented
orientation of the tool. Data points are means (=1 SE) across subjects
(n = 8) at the training orientation (0°, square) and transfer orientations
(—22.5°, —45°, —90°, 180°, circles). The orientation-dependent decrease in
displacement was fit by a half Gaussian for each subject, and the line shows
the average fit across subjects (mean fit standard deviation [SD] = 34°).

(D) Increases in peak displacement following probe trials that show effects
of partial deadaptation as a function of visually presented orientation of the
tool, plotted as in (C). Values are means of the subject-by-subject difference
between preprobe and postprobe displacements at the training orientation
(0°) after partial deadaptation with probe trials at different visually presented
orientations of the tool. As in (C), the orientation-dependent decrease in
displacement was fit by a half Gaussian for each subject, and the line shows
the average fit across subjects (mean fit SD = 39°).

properties of the tool that they experienced at the training
orientation. The limited transfer suggests that the representa-
tion was orientation specific, consistent with the multiple
representation hypothesis.

It should be noted that even at the training orientation, the
compensated object mass was around 60% of the true mass.
As such, the force generated by subjects would not have
fully compensated for the tool dynamics. However, this is
expected because error-clamp trials probe only the anticipa-
tory (feedforward) forces and do not elicit any reactive

(feedback) forces that would normally complement predictive
compensation [11].

In the third experiment, we examined transfer to a range of
orientations. Subjects first rotated the hammer at 0° for 64
trials while experiencing full dynamics. They then performed
15 blocks of 26 trials as follows: the first 8 trials of each
block were presented at one of five transfer orientations
(0°, —22.5°, —45°, —90°, or —180°) randomly selected, with
the forces turned off. Peak handle displacement was
measured during these probe trials as an indicator of the
forces produced by subjects. This allowed us to examine the
generalization of adaptation as a function of the visual orienta-
tion of the tool. In addition, presenting a small number of zero-
force probe trials causes partial deadaptation of the learned
force magnitude, allowing us to examine the generalization
of deadaptation. The last 18 trials of each block were pre-
sented at the training orientation (0°). The first 2 trials immedi-
ately following the probe trials were error-clamp trials, during
which anticipatory forces were measured. The final 16 trials
were once again under full dynamics of the tool. Subjects
completed 15 blocks, which included three presentations
of each transfer orientation and each direction of rotation
(CW or CCW).

Consistent with results from the first experiment, the angle
of the peak displacement during probe trials varied with
hammer orientation (Figure 3B) and was close to the direction
predicted by the dynamics. The peak displacement magnitude
was also measured in order to quantify generalization. If
subjects generalize perfectly to a particular transfer orienta-
tion and thus generate the appropriate force at the handle,
the displacement should be as large as at the training
orientation. However, the peak displacement on probe trials
decreased progressively as the transfer orientation increased
relative to the training orientation (Figure 3C), consistent with
the multiple representation hypothesis. The pattern of orienta-
tion-dependent generalization was well fit by a half Gaussian
(mean fit SD = 34°).

In addition to the orientation-dependent decrease in dis-
placement observed during probe trials, we found similar
orientation dependence for the increase in peak displacement
immediately following probe trials, when the tool returned to
the training orientation (Figure 3D). This increase in displace-
ment can be understood as resulting from partial deadaptation
following the zero-force probe trials. Probe trials near or at
the training orientation caused the greatest deadaptation, as
expected from the multiple representation hypothesis. This
pattern of orientation-dependent deadaptation could also be
fit by a half Gaussian (mean fit SD = 39°).

It is important to note that the generalization seen here is
distinct from that reported previously. Previous studies have
examined generalization by exposing subjects to novel
dynamics (e.g., a state-dependent force field) in one kinematic
context (e.g., a region of the workspace or direction of
movement) and testing generalization in a second kinematic
context, where the dynamics have not been experienced
(e.g., [12, 13)). In contrast, in the current study, the kinematic
context is kept constant. That is, the position and orientation
of the arm and hand are fixed, as is the movement required
at the hand. The only factor that changes is the visual orienta-
tion of the tool. As such, we are specifically probing the
representation of the tool rather than the representation of
the arm.

Previous studies of force adaptation when lifting objects
have shown that subjects rely on visual cues but can, through
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Figure 4. Performance during Exposure when Vision is Either Congruent or Incongruent with Dynamics

(A) Peak handle displacement (independent of direction) averaged across subjects (n = 7) for each block (4 trials) for a visually congruent tool at 0° (see inset;
a second group experienced a visually congruent tool at 180°). Shaded region is =1 SE. Black trace shows performance during exposure to full dynamics.
Gray traces show pre- and postexposure phases with no translational forces.

(B) Peak displacement, plotted as in (A), for an incongruent tool with a visual orientation of 180° (0° for dynamics; see inset; a second group experienced an
incongruent tool with vision at 0° and dynamics at 180°).

(C) Peak anticipatory force vectors for a congruent tool at 180°. Black arrow shows circular mean (across subjects) for peak forces produced by the
dynamics of the tool. Dark and light gray lines show circular mean (across subjects) for peak anticipatory forces at the training (dark gray) and —90° transfer
(light gray) orientations. Ellipses show 99% confidence intervals across subjects.

(D) Peak anticipatory force vectors for an incongruent tool at 180°, plotted as in (C).

(E) PDA during entire pre-exposure phase (48 trials) and for early (first 12 of 48 trials) and late (last 12 of 48 trials) stages of postexposure (deadaptation)
phase, for the congruent tools. Dotted line shows PDA predicted from congruent vision and dynamics (V&D) of tool. Data points are circular means (+1
circular SE) across subjects.

(F) PDA for the incongruent tools, plotted as in (E). Dotted lines show separate PDA predicted from dynamics (D) and vision (V) of the incongruent tools.

sensorimotor experience, override these cues when they are  significantly smaller anticipatory forces (congruent: 3.7 =+

misleading [8, 14, 15]. To further examine the interaction
between vision and sensorimotor experience, in the fourth
experiment we dissociated the visual orientation of the
hammer from the orientation of its dynamics. The visual orien-
tation was either congruent with the dynamics or incongruent.
In the latter incongruent case, the visual feedback was rotated
180° relative to the dynamics. For both congruent and incon-
gruent conditions, one group of subjects experienced the
visual hammer at 0° and another at 180° (making four groups).
In the first phase of the experiment, subjects rotated the
hammer with the forces turned off for 24 trials. As in the first
experiment, subjects generated a small force in the appro-
priate direction based on the visual cue, resulting in a small
initial displacement of the handle (Figures 4A and 4B).
Subjects then performed a further 248 trials with full dynamics
(Figures 4A and 4B). The initial displacement was larger in the
incongruent condition, because initially subjects produced
a force appropriate for the visual orientation and therefore
opposite to that needed to compensate for the dynamics.
Although the incongruent group showed significant learning,
their final displacement (average of the last 18 trials) was
significantly larger (t test, p < 0.001) than that of the congruent
group. This larger displacement was associated with

0.9 N; incongruent: 2.6 = 0.6 N; t test, p < 0.005).

To evaluate the generalization of congruent and incongruent
dynamics, subjects then performed 256 trials with full
dynamics during which 1 error-clamp trial was inserted
randomly every 8 trials, either at the training orientation (0° or
180°) or at a transfer orientation (—90°). Figures 4C and 4D
show the force vectors produced on error-clamp trials at the
training (dark gray) and transfer (light gray) orientations. For
both groups, the forces produced by subjects on error-clamp
trials at the training orientation (Figures 4C and 4D, dark gray
vectors) were in the appropriate direction to compensate for
the dynamics. For the congruent group, when the visual orien-
tation was rotated to —90°, the force generated also rotated
appropriately (Figure 4C, light gray vector). This is consistent
with results of the first experiment showing that subjects
produce forces that are appropriate for the visual orientation
of the tool. In contrast, for the incongruent group, when the
visual orientation rotated to —90°, the force generated by the
subjects did not change. Specifically, for the congruent
groups, the change in force direction did not differ significantly
from 90° (t test, p = 0.64), whereas for the incongruent groups,
it did not different significantly from 0° (t test, p = 0.60). Consis-
tent with the second experiment, in the congruent group, force
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magnitude decreased significantly (t test, p < 0.001) by 57% =
7% from the training to the transfer orientation (compare
lengths of dark and light gray force vectors in Figure 4C). In
contrast, no difference in force magnitude (t test, p = 0.49)
between the training and transfer orientations was observed
in the incongruent group (compare lengths of dark and light
gray force vectors in Figure 4D).

These results show that when vision was incongruent
with dynamics, the pattern of generalization was markedly
different. Results for the congruent group, as with the previous
three experiments, were consistent with the multiple represen-
tation hypothesis. However, for incongruent dynamics, neither
force direction nor magnitude was modulated by the visual
orientation of the tool, suggesting that a single representation
was applied in the incongruent case.

Finally, because performance remained worse in the incon-
gruent group relative to the congruent group (even after exten-
sive experience), it is possible that the subject’s preexisting
representation of congruent dynamics was affecting their
ability to represent the incongruent dynamics. Analysis of the
direction of anticipatory forces during the postexposure phase
provides further support for this possibility (compare Figures
4E and 4F). In the postexposure phase, subjects deadapted
because the forces associated with tool dynamics were turned
off (see postexposure gray trace in Figures 4A and 4B). Imme-
diately following exposure in the incongruent condition, the
direction of anticipatory forces was consistent with the incon-
gruent dynamics (Figure 4F, “Post Early”). At the end of the
postexposure phase, however, the direction of anticipatory
forces had spontaneously reverted to be consistent with
vision (Figure 4F, compare “Pre Late” and “Post Late”). This
occurred even though subjects in the incongruent group had
not experienced congruent dynamics during any stage of the
experiment, suggesting that the representation of incongruent
dynamics was labile relative to the representation of congruent
dynamics.

Discussion

When first rotating a hammer-like tool, subjects generated
anticipatory forces in directions that were appropriate for its
visual orientation. This indicates that subjects had prior knowl-
edge of the structural form of the dynamics of the tool that
could be recalled based on visual information alone. Previous
studies have shown that visual information can be used to
identify the location of the center of mass of an object [16]
and that this information can be used to appropriately scale
forces when lifting objects [17-20]. Visual information can
also facilitate the sudden change in dynamics associated
with grasping and releasing an object [21]. The current study
shows that visual information can be used to recall complex
grasp-dependent dynamics, such as those associated with
rotating a hammer at different orientations.

When subjects experienced the full dynamics of the hammer
at a particular orientation, they quickly scaled the magnitude of
their anticipatory forces to the mass of the hammer. Thus,
subjects started with a representation of the structural form
of the dynamics and subsequently parameterized this repre-
sentation following interaction with a specific hammer. We
considered two mechanisms by which these dynamics are
represented. In the single general representation model, the
motor system would use a single context-invariant representa-
tion of dynamics that is transformed based on the visual orien-
tation of the tool. In the multiple representation model, the

motor system would use multiple context-specific representa-
tions for different tool orientations. Our results support the
latter multiple representation model. Specifically, we found
that adaptation to the dynamics of the hammer at one orienta-
tion showed limited generalization to novel grasp contexts in
which the orientation of the hammer was changed relative
to the hand. This is consistent with multiple representations,
because a single representation would predict perfect per-
formance at all orientations following exposure at a single
orientation.

It has been suggested that the brain could use multiple
internal models for sensorimotor control, with appropriate
models being selected based on the context of the movement
[22-24]. Our results are consistent with this framework, in
which the sensorimotor control of tool use is mediated by
multiple context-specific internal models, with the contribu-
tion of different models being smoothly modulated by the
context, such as the visual orientation of the tool.

Although the current study focuses on dynamics that are
familiar, many previous studies have examined how novel
dynamics are represented [12, 13, 25-28]. Several of these
studies conclude that novel dynamics, applied to the hand
via a grasped handle, are represented in joint-based coordi-
nates. This conclusion is based on patterns of generalization
when the arm is rotated. Whereas good generalization is
observed when the force field is rotated with the arm, poor
generalization is seen when the orientation of the force field
is held constant in Cartesian space [12, 26, 29]. However,
a joint-based representation seems surprising given that
subjects attribute force field dynamics to the grasped object
rather than the arm [3, 21, 30-32]. Our results suggest an
object-centered representation of the dynamics associated
with novel force fields. Maintaining the orientation of the force
field in Cartesian space when the arm is rotated is equivalent to
changing the orientation of the tool relative to the hand.
However, in the absence of visual feedback of tool orientation,
subjects may assume that a grasped tool rotates with the arm.
This would maintain a constant orientation relative to the hand.
As such, the poor generalization observed in previous studies
would be expected. Even if visual feedback of the force field
orientation could be provided, our results, suggesting that
the motor system learns grasp-specific models, would predict
poor generalization. Rotating the force field with the arm is
equivalent to maintaining the orientation of a grasped tool
constant relative to the hand. Thus, the good generalization
that is observed in this situation is consistent with the idea
that the central nervous system learns grasp-specific models
of tool dynamics.

Our results can be related to hypotheses regarding the
mechanisms of visual object recognition. Specifically, it has
been suggested that the visual system uses either single or
multiple representations to solve the problem of viewpoint
invariance for object recognition [33-35]. Evidence for multiple
viewpoint-specific representations comes from studies in
which subjects learn to visually recognize novel objects.
When first trained with a novel object at a single orientation,
subjects learn to recognize the object with progressively
smaller reaction times until a minimum is achieved [36].
However, when subsequently presented with the same object
at a novel orientation, reaction times increase monotonically
with further departures from the training orientation. With
additional training at novel orientations, reaction times
again decrease. These results suggest that when learning to
recognize a novel object, the visual system accumulates



ulation, Current Biology (2010), doi:10.1016/j.cub.2010.01.054

Please cite this article in press as: Ingram et al., Multiple Grasp-Specific Representations of Tool Dynamics Mediate Skillful Manip-

Current Biology Vol 20 No 7
6

progressively more viewpoint-specific representations [37].
Our results suggest that a progressive accumulation of
multiple context-specific representations may also occur
when the motor system learns tool dynamics.

In summary, we have used a novel robotic manipulandum to
show that subjects have an existing representation of the
complex dynamics associated with hammer-like tools. The
representation can be appropriately recalled by simple visual
information, which captures the geometric features of the
tool. It is locally parameterized based on experience with
a specific tool, with limited generalization to orientations
where the tool has not been directly experienced. These
results suggest that our ability to use tools relies on multiple
context-specific representations of dynamics rather than
a single context-invariant representation.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures
and one figure and can be found with this article online at doi:10.1016/j.cub.
2010.01.054.
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