Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus

Urvashi F. Gunputh 1, 2, Huirong Le 2*, Kiruthika Natesan 3, Alexandros Besinis 1, Christopher Tredwin 3 and Richard D. Handy 4*

1 School of Engineering, Plymouth University, Plymouth, PL4 8AA, United Kingdom
2 School of Mechanical Engineering and Built Environment, University of Derby, DE22 3AW, United Kingdom
3 Peninsula Schools of Medicine and Dentistry, Plymouth University, Research Way, Plymouth, Devon, PL6 8BU, United Kingdom
4 School of Biological & Marine Sciences, Plymouth University, PL4 8AA, United Kingdom

Corresponding Authors: r.handy@plymouth.ac.uk (R. D. Handy) and h.le@derby.ac.uk (H. R. Le).
Abstract

Medical grade titanium alloy, Ti-6Al-4V, with TiO_2 nanotubes (TiO_2-NTs) grown on the surface and then decorated with silver nanoparticles (Ag NPs) is proposed to enhance the antimicrobial properties of the bone/dental implants. However, the decoration with Ag NPs is not consistent and there are concerns about the direct contact of Ag NPs with human tissue. The aim of this study was to achieve a more even coverage of Ag NPs on TiO_2-NTs and determine their biocidal properties against *Staphylococcus aureus*, with and without a top coat of nano hydroxyapatite (nHA). The decoration with Ag NPs was optimised by adjusting the incubation time of the TiO_2-NTs in a silver ammonia solution, and using biocompatible δ-glucronolactone as a reducing agent. The optimum incubation in silver ammonia was 7 minutes, and resulted in evenly distributed Ag NPs with an average diameter of 47.5 ± 1.7 nm attached to the surface of the nanotubes. The addition of nHA did not compromise the antimicrobial properties of the materials; high resolution electron microscopy showed *S. aureus* did not grow on the composite with nHA and with >80 % biocidal activity measured by the LIVE/DEAD assay, also limited lactate production. Dialysis experiment confirmed the stability of the coatings, and showed a slow release of dissolved silver (3.27 ± 0.15 μg/L over 24 h) through the top coat of nHA.

Keywords: Silver nanoparticles, titanium dioxide nanotubes, nano hydroxyapatite, *Staphylococcus aureus*, antimicrobial, silver dissolution
Introduction

Orthopaedic and dental implants should be suitably durable with mechanical properties that mimic the intended tissue (O'Brien, 2011). The implants must also be biocompatible and ideally exhibit some antimicrobial properties as infection post-surgery is an underlying cause of implant failure (Connaughton et al., 2014). The challenge is to make a medical implant with all these attributes. Titanium dioxide nanotubes (TiO$_2$-NTs) are readily grown on medical grade titanium whereby they can resist mechanical stresses similar to those faced by bone (Descamps et al., 2013). They have also been shown to be biocompatible with bone cells, partly because they mimic the surface morphology of bone (Brammer et al., 2012). Crucially the properties of TiO$_2$-NTs can be tuned to the clinical application by varying the thickness, surface texture and/or decoration of the nanotubes (Spriano et al., 2018). The relationship between the surface properties of TiO$_2$-NTs and mechanistic responses of osteoblast cells is also partially understood (Meyerink et al., 2018). However, TiO$_2$-NTs alone are not antimicrobial (Zhao et al., 2011).

Staphylococcus aureus is one of the most common cause of infection in implants (Rodríguez-Cano et al., 2014). To enhance antimicrobial properties, TiO$_2$-NTs can be coated with antibiotics such as gentamicin (Yang et al., 2016) or vancomycin (Zhang et al., 2013). However, infections related to implants are normally caused by a mixture of microbes (Nie et al., 2017) and individual antibiotics are inevitably only targeted at a few of the organisms present. There is also the concern of antibiotic resistance (Moriarty et al., 2016). Alternatively, dissolved metals such as silver, copper and zinc have been known for their antimicrobial properties for centuries. Their solubility and biological reactivity have restricted their applications to simple disinfectants in the past, but now nanoparticulate forms of these metals are available. Of these metals, silver nanoparticles (Ag NPs, review, Reidy et al., 2013) are arguably the strongest biocide with minimum
inhibitory concentrations (MIC) for growth of 3.25 mg/l to *S. mutans* (Besinis *et al*., 2014a). Ag NPs are also toxic to *S. sanguinus* when presented as a silver coating on medical grade titanium alloy (Besinis *et al*., 2017). However, the rapid release of Ag from silver-containing coatings may cause toxicity to mammalian cells (Gao *et al*., 2014), and instead a controlled release of Ag by enhancing the stability of the coating is desirable (Zhao *et al*., 2011).

It is also possible to decorate Ag NPs onto the surface of TiO$_2$-NTs using anodization methods (Gunputh *et al*., 2018), and then add another biocompatible material to control the Ag release. TiO$_2$-NTs can also be decorated with Ag NPs in the presence of calcium phosphate NPs (Chernozem *et al*., 2019), but there are some concerns about the elastic properties and nanohardness of the implant material when Ca$_3$(PO$_4$)$_2$ is used (Chernozem *et al*., 2017). One possible alternative approach is to ‘top-coat’ the silver-containing nanomaterial with a layer of biocompatible hydroxyapatite (HA), so that there is no hazard to the human tissue and better mechanical properties. Hydroxyapatite (HA) has a similar structure to bone and is well-known as a biocompatible material that promotes osteointegration (Ramires *et al*., 2001, Balani *et al*., 2007). Nano forms of HA (nHA) are also available (Ha *et al*., 2015). Our previous work developed an anti-bacterial coating consisting of TiO$_2$-NTs grown on Ti-6Al-4V alloy, with clusters of Ag NPs on the TiO$_2$-NT surface (Gunputh *et al*., 2018). The aim of the present study was to develop these coatings further by optimising the incubation time with reducing agents to provide a more uniform decoration of Ag NPs, and crucially, to determine if antibacterial properties remained after top coating the materials with nHA. To demonstrate the antimicrobial properties, the final composite coatings were tested against *S. aureus*. For these latter studies, this included counting the proportions of live and dead bacteria on the
coatings, monitoring microbial activity with a lactate production assay, as well as electron microscopy to observe coating integrity and the presence of any microbes.

Materials and Method

Titanium dioxide nanotubes (TiO$_2$-NTs) were self-assembled on the surface of Ti-6Al-4V alloy discs followed by the chemical reduction of silver to form Ag NPs on the nanotubes. For some of the silver coated nanotubes, nHA was sintered to the composite coating. After characterising the different coatings formed, the antibacterial properties of all of them were tested in the presence of *S. aureus*.

Growth of TiO$_2$-NTs with Ag NPs and HA coating

The synthesis of the composite coatings started with TiO$_2$-NTs followed by the addition of Ag NPs and last nHA. To start with, the self-assembly of the TiO$_2$-NTs on to titanium alloy discs was conducted using an anodisation process as previously optimised (Danookdharree *et al.*, 2015). Briefly, this was a 1 hour electrochemical reaction in a mixture of 1 mol/L NH$_4$HPO$_4$ and 0.5 wt% NH$_4$F (0.5 g of NH$_4$F in 100 mL of ammonia solution) at 20 V. All the coated discs were then annealed at 350 ºC for 2 h in a furnace to achieve the anatase phase (Carbolite RWF 1200, Carbolite Engineering Services, Hope Valley, UK). The TiO$_2$-NTs were then functionalised by treating them with 2 mol/L NaOH at 50 ºC for 2 minutes (Parcharoen *et al.*, 2014). This resulted in the formation of sodium titanate (Na$_2$Ti$_3$O$_7$) which is a reactive surface for the next steps in the synthesis of the composite material.

Silver nanoparticles were then chemically reduced on the surface of the TiO$_2$-NTs as previously described (Gunputh *et al.*, 2018). Briefly, a silver ammonia solution was prepared, at room temperature and with continuous stirring, by mixing 2.545 g of silver nitrate and 900 mL of ultrapure water, followed by 15 mL of 1 M NaOH. A precipitate
of silver oxide formed, but was continuously mixed to remain in suspension. Concentrated liquid ammonia (13.4 M; density, 0.910 kg/m³) was then added dropwise to the mixture until all the oxide had dissolved. Pure water was then added to bring the final volume to 1000 mL. The resulting solution of silver ammonia, [Ag(NH₃)₂]⁺, (15 mM) was allowed to stir for a further 10 minutes to ensure complete reaction and mixing. Afterwards, 2 mM δ-glucuronolactone solution (Sigma Aldrich, UK) was prepared in 12 mM NaOH, the volume of which was dependent on the experiment performed.

The titanium alloy discs covered with TiO₂-NTs were immersed in silver ammonia first, allowing the cationic silver ammonia to attach to –O⁻ residues of the nanotubes (Gunputh et al., 2018). After an initial exposure to the silver ammonia, the samples were ultrasonicated in deionised water at 12 MHz for 5 minutes to remove any loosely attached silver ammonia; after which the disks were air dried at room temperature. The samples were then exposed to the glucuronolactone solution for 5 minutes. Depending on the exposure time to silver ammonia, the samples were identified as TiO₂-Ag₃, TiO₂-Ag₇ and TiO₂-Ag₁₀ for an exposure of 3, 7 and 10 minutes in silver ammonia respectively, and all treated for 5 minutes in glucuronolactone solution (n = 3 each). Glucuronolactone was expected to reduce the silver ammonia to Ag NPs which are attached on the surface of the TiO₂-NTs. The samples were again ultrasonicated in deionised water for 5 minutes with the aim of removing the loosely attached Ag NPs.

After the optimisation of the incubation time for the synthesis of Ag NPs on the TiO₂-NT discs, hydroxyapatite was finally added using a sintering method (Besinis et al., 2017). Briefly, 7 minutes was deemed the optimum time for the silver ammonia treatment, and so TiO₂-Ag₇ discs were placed in 24-well plates and sterilised with 70 % ethanol (n = 12 discs). Afterwards, 20 µL of 10 wt% nHA solution (Sigma Aldrich, UK) was evenly pipetted on top of the discs after which they were left to dry at room
temperature for 48 hours. Subsequently, the discs were placed in a porcelain dish and gradually heated (Carbolite furnace, Hope, UK) at 10 °C per min to 500 °C. The final temperature was maintained for 10 minutes after which the temperature was gradually reduced to room temperature. The 500 °C temperature was chosen as it was high enough to cause sintering, while being below the melting point of silver. The change in temperature was gradual to ensure maintaining the crystallinity of the nHA. The resulting discs are hereafter termed ‘TiO$_2$-Ag7-HA’.

Characterisation of the coatings

The morphology and chemical composition of the TiO$_2$ at each step of the synthesis (i.e., addition of Ag-NPs and then HA) was analysed by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Figure 1 shows the surface morphology prior to the HA additions and for different incubations times with silver ammonia. The growth of the TiO$_2$-NTs gave generally good coverage of the alloy, as expected (Danookdharree et al., 2015). When 3 minutes incubation time was used (TiO$_2$-Ag3), the TiO$_2$-NTs had less spherical Ag NPs on the surface (Figure 1B). The samples incubated for 7 minutes (TiO$_2$-Ag7) had a more uniform distribution of Ag NPs. In both TiO$_2$-Ag3 and TiO$_2$-Ag7, the nanotubular characteristic of the TiO$_2$ was still visible after the growth of Ag NPs. However in TiO$_2$-Ag10, the Ag NPs grown covered the whole surface of the TiO$_2$ with some clustering observed (Figure 1D). The EDS analysis of the white spherical nanoparticles on the discs confirmed the presence of silver with the weight percentage of the latter over the coating increasing from TiO$_2$-Ag3 to TiO$_2$-Ag10 (5-8 wt%) to the contrary of Ti, Al and O which were found to be decreasing. The incubation time also affected the primary size of the Ag NPs, as observed by electron microscopy, with diameters of 88.25 ± 5.1, 47.5 ± 1.7, 30 ± 2.4 nm for incubations of 3, 7 and 10 minutes.
with silver ammonia, respectively (all significantly different from each other, ANOVA, P < 0.05).

For the logistics of biological testing, one ‘best’ composite had to be selected for experimental work. After considering all the characterisation information, TiO$_2$-Ag7 was chosen as the coated samples to be taken forward for further testing. This was selected on the basis that it had the most uniform coating with almost no clustering of and full surface coverage of the Ag NPs (Figure 2). After the addition of nHA to the latter coating, another uniformly distributed coating was obtained (Figure 2B). The EDS analysis (Figure 2D) confirms the presence of Ca and P as part of the nHA. As expected, the amount of silver now detected with the HA surface was less than TiO$_2$-Ag7 alone (< 5 wt %). Some cracking of the nHA layer was observed (Figure 2D), but this regarded as a desirable feature to facilitate the slow release of the underlying silver.

Dialysis experiment and the release of dissolved metal

A dialysis experiment was conducted according to Besinis et al (2014b) using the TiO$_2$-Ag7 and TiO$_2$-Ag7-HA discs to inform on the release of any dissolved Ag with respect to antibacterial properties, and on the stability of the coatings (Besinis et al., 2014a). A simulated body fluid (SBF) was used for these experiments (in mmol/l): Na$^+$, 142; K$^+$, 5.0; Mg$^{2+}$, 1.5; Ca$^{2+}$, 2.5; Cl$^-$, 147.8; HCO$_3^-$, 4.2; HPO$_4^{2-}$, 1.0; SO$_4^{2-}$, 0.5 (Kokubo et al., 1990), with the pH adjusted to 7.2 with a few drops of 1 mol/L HCl. Experiments were conducted in triplicate at room temperature in previously acid washed (5% nitric acid) and deionised glassware. Dialysis tubing (MW cut off, 12 000 Da, Sigma Aldrich, UK), was cut in 7 cm x 2.5 cm lengths and sealed at one end using a Mediclip; then filled with one Ti alloy discs as appropriate with 7 mL of SBF. The dialysis bag was closed with another Mediclip and then suspended in a 500 mL pyrex glass beaker containing 243 mL
of SBF (i.e., total volume 250 mL). The beakers were gently stirred throughout, and 4 mL aliquots of the SBF were collected from the external compartment of the beaker at 0, 0.5, 1, 2, 3, 4, 6, 8, 24 h. The SBF samples were acidified with a drop of 70 wt% nitric acid and stored for metal analysis (see below). At the end of the 24 h, the dialysis bags were also carefully opened and 4 ml of the fluid therein collected for metal analysis. Dialysis curves were plotted using SigmaPlot 13.0 (Systat Software, Inc.), after deducting the background ionic concentrations of the SBF. A first order rectangular hyperbola function was used to fit dialysis curves to the raw data. The maximum initial slope of the curves informed on the maximum apparent dissolution rate of each substance.

Plate preparation and exposure to S. aureus

The experimental design involved exposing *S. aureus* to the coated samples of TiO2-Ag7 and TiO2-Ag7-HA in 24-well, flat-bottom sterile polystyrene plates (Thermo Fischer Scientific, Loughborough, UK). TiO2-NT coated discs were used as a control for the composite coating effect. Silver nitrate was used as a metal salt control for any possible dissolved silver effect from the coating. Silver nanoparticles alone were also used as a control for Ag NP effect that might arise from the coatings. *S. aureus* was allowed to grow on its own as a negative control. Nine replicate runs were conducted for each type of coated samples and the controls (n = 6 for biochemical assays and n = 3 for SEM). Following the approach by Besinis *et al* (2014a), the materials were exposed to *S. aureus* for 24 h and the proportion of live to dead cells and the amount of lactate produced were evaluated (see biochemical assays below). The concentration of total dissolved silver, calcium and phosphorus released from the coating in the SBF were also measured. *S. aureus* was chosen as it is considered to be one of the main causes of infection in orthopaedic and dental implants (Swank and Dragoo, 2013, Tsikandylakis *et al*., 2014).
S. aureus was cultured in brain heart infusion (BHI) broth (Lab M Ltd, Bury, UK) at 37 °C. A bacterial suspension having optical density 0.018 at 595 nm absorbance (Spectrophotometer Genesys 20, Fisher Scientific, Loughborough, UK) was prepared in the BHI broth at a concentration of 1×10^7 cells/mL. For the experiments, 2 mL of the bacterial culture was pipetted in each well of a 24-well plate containing TiO$_2$-NTs, TiO$_2$-Ag$_7$, TiO$_2$-Ag$_7$-HA, AgNO$_3$ (0.001M), or Ag NPs (107.9 mg/L equal to 0.001M) dispersed in ultrapure deionised water on their own ($n = 9$ replicates of each). A silver concentration of 0.001M was used for the positive controls as it was found that 0.001M was the maximum amount of silver released from the coatings. The 24-well microplates were then incubated at 37 °C on a shaking table. At the end of the overnight exposure, six of the replicate plates were used for biochemistry. An aliquot (1 mL) of the exposed broth from each well were collected for the LIVE/DEAD® kit and lactate production assays (see below). The remaining broth was acidified with 70 wt% HNO$_3$ and used for metal determination. Then the remaining adherent bacterial were collected. Bacterial pellets were obtained whereby the samples from the wells were sonicated (12 MHz) for 60 s in 2 mL of sterile saline to remove the bacteria from the discs (Besinis et al., 2014b). Then, 1 mL of the resulting suspension were allowed to grow in 5 mL of BHI broth for 5 h at 37 °C on a shaking table with the aim of increasing the amount of live cells in order to readily measure them with the Live/Dead assay. The viability of the cells and the amount of lactate in the suspension was also assessed, followed by the measurement of the ionic composition of the latter. For the remaining three replicates, the broth was removed and the samples were prepared for electron microscopy.
Cell viability and lactate production assays

The cell viability of *S. aureus* in both the exposed broth and incubated cell suspension from all of the relevant treatments and controls [TiO$_2$-NTs, TiO$_2$-Ag7, TiO$_2$-Ag7-HA, AgNO$_3$ (0.001M), and Ag NPs] were assessed using the L7012 LIVE/DEAD® Backlight™ Kit (Invitrogen Ltd, Paisley, UK), exactly according to Gunputh *et al.* (2018). Briefly, 100 μL of the exposed broth and 100 μL of the incubated homogenate from each replicate was subject to several washes with sterile NaCl solution. Then 100 μL of the final suspension from each well were used for fluorimetry in clean 96 well plates with 100 μL of freshly prepared dyes from the LIVE/DEAD kit. Microplate were incubated in the dark at room temperature for 15 min and the fluorescence measured on a Cytofluor II fluorescence plate reader (excitation, 485 nm; emission at 530 nm and 645 nm). The readings at 530 nm were divided by the readings at 645 nm in order to obtain the percentage of live to dead cells in the exposed broth and the incubated cell suspension from the different samples and controls according to the kit instructions.

The metabolic activity of *S. aureus* was assessed by measuring the amount of lactate present in both the exposed broth and incubated cell suspension from the wells containing TiO$_2$-NTs, TiO$_2$-Ag7, TiO$_2$-Ag7-HA, AgNO$_3$ (0.001M), and Ag NP (6 replicates of each) according to Besinis *et al.* (2013). Briefly, 100 μL of the exposed broth, or 100 μL of the incubated homogenate as appropriate, were transferred to a V-bottom 96-well microplate and were centrifuged at 2000 rpm for 10 minutes to generate a clean supernatant that could be measured for total lactate. Then, in a new plate, 1 μL of 1000 units/mL of lactate dehydrogenase (Sigma-Aldrich Ltd, UK) was pipetted into wells of a 96-well plate followed by 10 μL of 40 mmol/L nicotinamide adenine dinucleotide and 200 μL of 0.4 mol/L hydrazine prepared in a glycine buffer of pH 9. Ten μL of the supernatants were then added, mixed and incubator at 37ºC for 2 hours to allow lactate production to occur.
The absorbance was then read at 340 nm against lactic acid as standards (0, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 mmol/L).

Metal analysis following S. aureus exposure

The exposed broth and the detached bacteria were analysed for silver, calcium and phosphorus composition. After the exposure to S. aureus, 1 mL of the broth or the detached bacteria were diluted with Milli-Q water to a final volume of 5 mL and acidified (few drops of 70 wt% nitric acid). Total Ag concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS, Varian 725-ES Melbourne, Australia), and total Ca or P by optical emission spectrometry (ICP-OES, Thermo Scientific XSeries 2, Hemel Hempstead, UK). Calibrations for both instruments were performed with matrix-matched analytical grade standards. For ICP-MS the standards and samples contained internal references (0.5, 0.25 and 1% of iridium) for SBF, broth and any homogenates made from bacteria. In the complex matrix of broth and SBF, the detection limit was around 0.001 µg/L for Ag by ICP-MS, and 5 µg/L for Ca and 40 µg/L for P by ICP-OES.

Imaging of the attached S. aureus

The remaining 3 repeats of the control, TiO₂, TiO₂-Ag7, TiO₂-Ag7-HA, AgNO₃ and Ag NP were examined by scanning electron microscope to confirm the presence of S. aureus on the different surfaces. After the 24 h exposure to S. aureus, the supernatants were removed and the plates carefully washed twice with sterile saline (0.85 wt% NaCl). Then 2 mL of 3 wt% glutaraldehyde in 0.1 mol/L cacodylate buffer was added to each well and was allowed to stay overnight at 4 ºC. The next day, the glutaraldehyde was removed and the samples were washed with 0.1 mol/L cacodylate buffer. Specimens were serially
dehydrated through ethanol solutions, coated with carbon, and viewed under a JEOL7001F SEM. Each specimen was viewed at three different random locations (i.e., 3 images of each specimen x 3 replicate samples). Care was taken to systematically photograph the specimens without bias and at the same magnifications for all treatments.

Statistical analysis

The data from the cell viability assay, the lactate production assay and the ionic concentration measurements were analysed using Statgraphics Centurion XVII (StatPoint Technologies, Inc.). After descriptive statistics, data were checked for normality and for equal variances (Levene’s test). When data were parametric, the data was analysed for treatment or time effects using one way ANOVA with Fisher’s LSD test post-hoc. In cases of unequal variances, the data were transformed before analysis and where the data remained non-parametric, the Kruskal Wallis test was used. Data are presented as mean ± S.E.M unless otherwise stated. The default 95% confidence level was used for all statistics.

Results

Dialysis experiment and the stability of coatings

Figure 3 shows the results of the dialysis experiments. The total concentration of silver from the samples without any silver coatings was minimal as expected. In the presence of Ag-containing materials, there was a rise in the total Ag concentration in the external compartment of the dialysis bag, reaching a maximum of 5.44 ± 0.06 and 3.27 ± 0.15 μg/L from TiO2-Ag7 and TiO2-Ag7-HA respectively. The maximum dissolution rates were 0.17 ± 0.01 μg/h and 0.21 ± 0.05 μg/h for Ag from TiO2-Ag7 and TiO2-Ag7-HA respectively (statistically different, ANOVA, p<0.05, n = 3). Figure 3 also shows the
dissolution of calcium and phosphorus from the coated samples. A similar trend in the total concentration was observed for both Ca and P in the beaker (Figure 3B and 3C). The maximum concentration of Ca reached was 86.5 ± 1.48 and 92.0 ± 0.36 mg/L from TiO2-Ag7 and TiO2-Ag7-HA respectively with a maximum dissolution rate of 68.8 ± 1.92 mg/h and 73.4 ± 0.07 mg/h respectively. The maximum concentration of P reached was 27.6 ± 0.73 and 28.4 ± 0.24 mg/L from TiO2-Ag7 and TiO2-Ag7-HA respectively with a maximum dissolution rate of 21.8 ± 0.42 and 23.0 ± 0.51 mg/h respectively.

Confirming silver exposure in the broth during S. aureus exposures

The measured total Ag concentrations in the broth during the exposure of S. aureus to the different composite coating and relevant controls are shown in Figure 4A. For the controls and materials without silver, as expected they showed only a background concentration of the metal (6.78 μg/L). The positive controls of AgNO3 and Ag NPs alone had a high concentration of silver, 67.7 ± 2.1 and 1.36 ± 0.025 mg/L respectively. Where the coatings contained Ag NPs, total Ag (form unknown) was readily measured in the broth (Figure 4A). The broth exposed to both TiO2-Ag7 and TiO2-Ag7–HA discs had 2.08 ± 0.2 and 0.50 ± 0.1 mg/L of total Ag respectively (significantly less total Ag from TiO2-Ag7–HA (Kruskal-Wallis, p <0.05; n = 6). Thus the coating with HA impeded the release of the majority of the silver from the coatings in the presence of the broth.

Cell morphology and survival

Specimens from the controls and treatments were examined for abundance and morphology of the bacteria by electron microscopy at the end of the experiment (Figure 5). As expected the bacteria cultured directly on the plastic wells (control) survived and grew on the whole surface (Figure 5A). The bacteria also grew on the TiO2-NTs (Figure 5B), but were sparse or absent on all the Ag-containing materials (Figures 5C-F). The
electron microscopy observations were consistent with by the proportions of live bacteria detected using the L7012 LIVE/DEAD® Backlight™ Kit after a 24 h of exposure to the composite materials or the controls (Figure 6). The percentage of live bacteria was high in the broth (72.5 ± 2.9%) and on the surface of the plastic well (100.9 ± 2.6%), as expected. The control cells were the most metabolically active compared to all other treatments (Kruskal Wallis, p < 0.05, n = 6) as confirmed by the lactate production assay (Figures 6C-D).

Slightly few bacteria grew on the TiO2-NTs, but with >80% alive on the surface this material was not biocidal. In contrast, the bacteria exposed to silver controls (AgNO3 or dispersions of Ag NP) were dead (< 1% live bacteria) and with negligible lactate production (0.2 mM or much less, Figure 6). AgNO3 and Ag NPs were equally effective biocides (not statistically different from each other, Figure 6). Both TiO2-Ag7 and TiO2-Ag7–HA coatings had a significantly lower percentage of live to dead cells (6.74 ± 0.98% and 1.78 ± 0.29% respectively) as compared to the control or TiO2-NTs. The TiO2-Ag7 was as effective as AgNO3 or dispersions of Ag NPs at killing bacteria with only 3.4 ± 0.3% live on the former and negligible lactate production (Figures 6A and C). Notably, with the addition of nHA, the TiO2-Ag7–HA coating still retained most of its biocidal properties with 13.9 ± 1.0% of live cells attached to its surface and only 1.07 ± 0.03 mM of lactate production (Figures 6A and C).

Discussion

Improved fabrication and Ag release from the composite coating

In this study, TiO2-NTs were successfully decorated with a uniform distribution of individual Ag NPs on the surface (Figure 1C). This is a marked improvement on our previous attempts to reduce silver ions to Ag NPs on the surface of TiO2-NTs using the
biocompatible reducing agent, δ-gluconolactone (Gunputh et al., 2018), where the
distribution of the nanoparticles was not uniform and showed micron and nano-sized
clusters of the particles. Furthermore, in the present study the as formed TiO\textsubscript{2}-NTs were
initially treated at 350°C to increase their chemical stability (Zazpe et al., 2017) followed
by an alkaline treatment in 2 mol/L NaOH which made the nanotube more receptive to
silver ammonia solution. When the TiO\textsubscript{2}-NTs react with NaOH, sodium titanate crystals
are formed on the nanotubes (Tsai and Teng, 2006) as per Equation (1):

\[2\text{TiO}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{Ti}_2\text{O}_5.\text{H}_2\text{O}\] \hspace{1cm} (1)

When exposed to silver ammonia solution, the Na+ is substituted by the silver ammonia
complex as per Equation (2) (Gunputh et al., 2018).

\[\text{Na}_2\text{Ti}_2\text{O}_5.\text{H}_2\text{O} + 2[\text{Ag(NH}_3)_2]^+ \rightarrow [\text{Ag(NH}_3)_2]^2- \text{Ti}_2\text{O}_5.\text{H}_2\text{O}\] \hspace{1cm} (2)

The latter attachment of the silver ammonia to titanate is stronger than the bond in the
TiO\textsubscript{2}-[Ag(NH\textsubscript{3})\textsubscript{2}]+ complex (Gunputh et al., 2018). Hence, the exposure to δ-
gluconolactone reduced the silver complexes to silver nanoparticles still attached to the
nanotubes as per Equations (3) below.

\[\text{TiO}_2 + 2\text{Ag}^0 + 2\text{H}_2\text{O} + 4\text{NH}_3 + \text{H}^+ \rightarrow [\text{Ag(NH}_3)_2]^2- \text{Ti}_2\text{O}_5.\text{H}_2\text{O} + 2\text{Ag}\] \hspace{1cm} (3)

In the presence of δ-gluconolactone, the silver ammonia, while still being attached to the
nanotubes, is reduced to Ag NPs. Hence, the decoration is achieved, and by modifying
the incubation time the clustering and size of the Ag NPs can be controlled (Gunputh et al., 2018). In the present study this was optimised, with the TiO$_2$-Ag$_7$, achieving the desired decoration (Figure 1C). Further details on the stability of the TiO$_2$-NTs such as the current density, porosity, pH effects, and Gibbs free energy can be found elsewhere (Danookdharree et al., 2015). The absence of high Ag concentrations in the broth at the end of the experiment also suggests the TiO$_2$-NTs with their Ag NP decoration was remaining attached to the Ti alloy. The visible presence of Ag NPs on the materials (Figure 1) argues that the Ag is remaining in the reduced form, Ag0, as expected from x-ray photoelectron spectroscopy (XPS) studies of Ag NPs grown on TiO$_2$ materials (Kamaraj et al., 2015). Also, the low µg/L releases of Ag by dissolution, suggests very little of the Ag is oxidising (i.e., as assumed soluble Ag$^+$), and in any event it will spontaneously form sparingly soluble AgCl complexes in the media (Besinis et al., 2014a), not silver oxides.

For biocidal properties, it is desirable to have a slow release of Ag from the surface of the material. This was achieved with the Ag NPs alone decorated on TiO$_2$-NTs, releasing µg/L amounts of total Ag into the surrounding biological media (Figures 3 and 4). However, the osteoblasts critical to the healing of bone show toxicity and lose around 75% of their vital alkaline phosphatase activity when in direct contact with Ag NPs on TiO$_2$-NTs (Zhao et al., 2011). So, our approach was to include a top coat of nHA, which still allowed some release of dissolved Ag in dialysis experiments with SBF (Figure 3) and into the broth during exposure to *S. aureus* (Figure 4).

Antibacterial properties

In the present study, as expected, the TiO$_2$-Ag$_7$ coating was biocidal with almost no live bacteria attached to the surface or remaining suspended in the broth (Figures 5 and 6).
Indeed, the TiO2-Ag7 coating was as potent as AgNO3 solution or dispersions of free Ag NPs (Figures 5 and 6). The biocidal properties in this circumstance could arise either from direct contact toxicity of the Ag NPs on the cell walls of the bacteria, or from any dissolved Ag released (Reidy et al., 2013). It is also theoretically possible for UV light stimulation to catalyse the oxidation of some Ag0 with TiO2 to form reactive oxygen species that subsequently kill bacteria (Hajjaji et al., 2018), although this is not relevant to the conditions here. Regardless of mechanisms, there are few reports of the MIC values for Ag NPs suspensions with S. aureus. Yuan et al. (2017) reported an MIC of 2 µg/mL for a multi-drug resistant strain of S. aureus. Similarly for methicillin-resistant S. aureus (MRSA), Paredes et al. (2014) reported MIC values of around 0.25 µg/mL for Ag NPs. Although neither of these latter studies included silver salt controls or particle dissolution measurements, it suggests that low mg/L concentrations of Ag NPs are biocidal, as observed here (Figures 5 and 6). Dissolved silver is arguably more toxic and as little as 50 µg/L can completely kill S. aureus in 24 h in physiological saline (Jung et al., 2008).

In the present study, dissolution of 2-3 µg/L of dissolved Ag was demonstrated in the dialysis experiments with TiO2-Ag7 (Figure 3), and this material showed no appreciable microbial biofilm (Figure 5). This magnitude of apparent dissolved Ag release is also far below the acute toxicity values for mammalian cells. For example, fibroblasts have an EC50 of 1.7 mg/L for AgNO3 and between 17-35 mg/L for Ag NPs depending on particle size (Ivask et al., 2014). Bone cement loaded with up to 1% w/v as Ag NPs also has no appreciable toxicity to osteoblasts in vitro (Alt et al., 2004). Thus the silver release is biocidal, but not likely to be toxic to the surrounding human tissue.

The presence of a nHA top coat did not hinder the antibacterial properties of the implant material (Figure 5). The nHA formed a consistent layer over the TiO2-NTs decorated with Ag NPs, but with some cracks in the nHA surface (Figure 2). This has
been observed before with nHA coatings and is likely due to differences in the thermal expansion coefficients of nHA compared to the underlying materials (Besinis et al., 2017). The small fissures in the nHA coat serve to enable the controlled release of the underlying silver (e.g., from electroplated titanium alloy, (Besinis et al., 2017) and a similar observation was made here with the TiO$_2$-Ag7-HA treatment (Figures 3 and 4). Thus overall, the fissures in the nHA top coating are a desirable feature that enable the leaching of some Ag to cause antimicrobial properties towards *S. aureus*, and yet the nHA would also provide a known biocompatible surface for human osteoblasts.

In conclusion, the chemical reduction of silver ammonia using δ-gluconolactone was successfully used to synthesise individual Ag NPs that consistently decorated the surface of TiO$_2$-NTs. Both TiO$_2$-Ag7 and TiO$_2$-Ag7-HA exhibited antibacterial properties, but the latter material with a nHA top coat is more desirable from the viewpoint of biocompatibility with human cells. The next step in the research will be to explore the adherence and differentiation of osteoblasts on the TiO$_2$-Ag7-HA with a view to demonstrating osseointegration of the implant material with human bone.

Acknowledgements

Technical support from the Schools of Marine Science and Engineering, Biological and Biomedical Sciences, and the Electron Microscopy Centre (EMC) at Plymouth University is gratefully acknowledged.

Disclosure Statement

There are no conflicts of interest.
Funding

UG was supported by a joint PhD studentship from the Faculty of Science and Environment and the Peninsular Schools of Medicine and Dentistry.
References

Besinis, A., De Peralta, T. & Handy, R.D., 2014a. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology, 8, 1-16.

Figure 1: SEM images of Ti-6Al-4V discs coated with (A) TiO$_2$ nanotubes (×50 000), (B) TiO$_2$-Ag$_3$ (×30 000), (C) TiO$_2$-Ag$_7$ (×30 000), (D) TiO$_2$-Ag$_{10}$ (×30 000) for incubations of 3, 7 and 10 minutes in silver ammonia solution respectively. The respective EDS analysis are of the Ag NPs formed on the surface represented by white spheres/dots in the images (example images from n = 3 preparations).
Figure 2: SEM images of (A) TiO$_2$-Ag7 (×5000) and (B) TiO$_2$-Ag7-HA (×200) at low magnifications to show coverage of the surface, and their magnified versions in (C, ×30000) and (D, ×1000) respectively with EDS spectra confirming the expected elemental composition (example images from n = 3 preparations).
Figure 3: Concentration of (A) total dissolved silver, (B) calcium, and (C) phosphorus measured in simulated body fluid following dialysis of a well without any disc, titanium alloy discs coated with TiO$_2$ (TiO$_2$-NTs), TiO$_2$-Ag7 (TiO$_2$-NTs decorated with Ag NPs), and TiO$_2$-Ag7-HA (TiO$_2$-NTs decorated with Ag NPs, and then a coating of nano hydroxyapatite). Dialysis experiments were performed in triplicate and a rectangular hyperbola function was fitted to the raw data points using Sigmaplot.
Figure 4: Concentration of (A) total silver, (B) calcium, and (C) phosphorus in the exposed broth after overnight growth of *S. aureus* on: Blank (control with no Ti alloy disc, cells grown directly on the plastic culture plate), TiO$_2$ (TiO$_2$-NTs), TiO$_2$-Ag7 (TiO$_2$-NTs decorated with Ag NPs), and TiO$_2$-Ag7-HA (TiO$_2$-NTs decorated with Ag NPs, and then a coating of nano hydroxyapatite). AgNO$_3$ and Ag NPs are silver controls, where the bacteria were grown in broth with silver nitrate solution or a dispersion of Ag NPs (i.e., not as a coating). Values are means ± SEM, n = 6 replicates. Different letters indicate a statistically significant difference between treatments (P < 0.05, Kruskal-Wallis).
Figure 5: SEM images of attached *S. aureus* (white spherical structures as shown by arrows) after overnight culture in 24-well microplates: (A) Blank (control with no Ti alloy disc, cells grown directly on the plastic culture plate), (B) Ti alloy with TiO$_2$ nanotubes on the surface (TiO$_2$-NTs), (C) AgNO$_3$ solution, (D) Ag NPs in suspension, (E) TiO$_2$-NTs decorated with Ag NPs (TiO$_2$-Ag7), and (F) TiO$_2$-NTs decorated with Ag NPs, and then a coating of nano hydroxyapatite (TiO$_2$-Ag7-HA). Note, the AgNO$_3$ and Ag NPs in suspension are silver controls, where the bacteria were grown with the substances added to the broth (i.e., not as a coating).
Figure 6: The proportion of live to dead *S. aureus* (panels A and B) and lactate production (panels C and D) by the organism after 24 h when attached to the surface of the materials (left hand panels), or remaining suspended in the broth (right hand panels). Blank (control with no Ti alloy disc, cells grown directly on the plastic culture plate), TiO$_2$ (TiO$_2$-NTs), TiO$_2$-Ag7 (TiO$_2$-NTs decorated with Ag NPs), and TiO$_2$-Ag7-HA (TiO$_2$-NTs decorated with Ag NPs, and then a coating of nano hydroxyapatite). AgNO$_3$ and Ag NPs are silver controls, where the bacteria were grown in broth with silver nitrate solution or a dispersion of Ag NPs (i.e., not as a coating). Values are means ± SEM, n = 6 replicates. Different letters indicate a statistically significant difference between treatments (P < 0.05, Kruskal-Wallis).