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Dean Andrew McKeown 
 
PHAEOVIRUS INFECTIONS IN KELP 

Abstract 
 

The latent dsDNA viruses of the genus Phaeovirus (family Phycodnaviridae, 
clade Nucleo-cytoplasmic Large DNA Viruses; NCLDVs) employ genome 
integration in their brown algae hosts (class Phaeophyceae). The only 
phaeoviruses described in detail infected the order Ectocarpales, though 
Phaeovirus major capsid protein (MCP) occurs in 4 kelp (order Laminariales) 
species. Phaeoviruses are a major knowledge gap because brown algae are 
ecologically and economically important and have independently evolved 
complex multicellularity. This study aimed to investigate kelp Phaeovirus 
morphology, evolution, host range, distribution, host impacts, and genomics. 

Microscopy of Laminaria digitata gametophytes revealed particles and cell 
morphology typical of Phaeovirus infections. This putative Laminaria digitata 
virus 1 (LdV-1) infection, unlike the Ectocarpales phaeoviruses, often occurred 
in vegetative cells. L. digitata Phaeovirus symptoms were ~3 times more 
common in 18 versus 15 oC culture, but overall were uncommon and highly 
variable. No impact on gametophyte reproduction was observed. 

Broad-scale MCP PCRs and subsequent phylogeny identified 4 novel kelp 
phaeoviruses, placing the phaeoviruses of Ecklonia maxima, Ecklonia radiata, 
and Undaria pinnatifida in subgroup A, a Macrocystis pyrifera Phaeovirus in 
subgroup C, and a Saccharina japonica Phaeovirus in the novel subgroup D. 
Kelp phaeoviruses may follow the Ectocarpales Phaeovirus evolutionary trend 
of genome reduction (in subgroups B, C, and D versus A). Combined with all 
available data, 26 % of kelp were Phaeovirus MCP-positive. 

Genomic data from LdV-1 and 3 available kelp genomes contained 
Phaeovirus orthologs from the following putative, integrated phaeoviruses: 
LdV-1, Ecklonia radicosa virus (ErcV), Saccharina japonica virus (SjV), and 
Undaria pinnatifida virus (UpV). Subsequent phylogeny of 9 Phaeovirus core 
genes showed similar subgroups as before and non-core orthologs had 
implications for Phaeovirus evolution. 

For kelp phaeoviruses, this study has revealed a partial infection cycle, 
preliminary observations of viral symptoms, a broader distribution and host 
range, and evolutionary insights for both viruses and hosts. 
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INTRODUCTION 
 

0.1 The Nucleo-cytoplasmic Large DNA Viruses 
 

Viruses are intracellular obligate parasites which depend on a ribosome-encoding 

host cell for protein synthesis, most nucleic acid synthesis reactions, and, to a variable 

extent, transcription and replication. One nearly universal feature of viruses is the 

transmission between hosts as virus particles (virions) formed by packaging the 

genomic nucleic acid (RNA or DNA) into a protein capsid [1]. Beyond this, viruses have 

highly variable capsid and genome structures, evolutionary origins, replication 

mechanisms, and host cell interactions [2]. 

Virus lifestyles are generally lytic or lysogenic. Lytic viruses begin replication soon 

after cell entry, leading to cell lysis and the release of virions. In contrast, lysogenic 

viruses enter a cell and become latent, which is a dormant state that lasts until viral 

replication is induced by some cellular or environmental factor. Latent viruses persist 

as a viral genome integrated into the host genome (a provirus) or as a genetic element 

independent of the chromosomes (an episome). During latency, viral nucleic acids may 

be vertically transmitted via the host germline to the next generation. Pseudolysogeny 

is an intermediate strategy, often in response to host starvation, in which the lytic 

cycle is paused or slowed, such as the continual production of chloroviruses [3] or 

coccolithoviruses [4] with delayed cell lysis. 

Evolutionarily, lytic viruses are ‘acute’ or r-selected, meaning they produce many 

progeny within a short time. In contrast, latent viruses usually have more ‘persistent’ 

or K-selected evolutionary strategies, producing few progeny which are more 
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competitive (successful at achieving infections). Compared to acute viruses, persistent 

viruses are usually less virulent and form stable relationships with their hosts, which 

are mostly organisms with complex multicellularity [5, 6]. 

Most of the known viral diversity is in dsDNA viruses. Most dsDNA viruses infect 

bacteria, but there are 18 dsDNA virus families which infect diverse eukaryotes ([7] and 

references within). Within eukaryotic dsDNA viruses is a clade called the Nucleo-

cytoplasmic Large DNA Viruses (NCLDVs), or proposed order “Megavirales” [8]. 

‘Nucleo-cytoplasmic’ refers to NCLDV replication, which either begins in the nucleus 

before finishing in the cytoplasm or occurs exclusively in organelle-like ‘virus factories’ 

in the cytoplasm [9–11]. There are currently seven NCLDV families (Ascoviridae, 

Asfarviridae, Iridoviridae, Marseilleviridae, Mimiviridae, Phycodnaviridae, and 

Poxviridae;[8, 12]) and various NCLDVs which have not yet been assigned to families 

(Figure 0.1; such as pandoraviruses, pithoviruses, and molliviruses, [13]). The common 

origin of NCLDVs is supported by phylogenetic analysis based on 28 to 50 conserved 

core genes involved in replication, DNA metabolism, or structural functions [14–16]. 

The NCLDVs are estimated to have evolved 2-2.7 billion year ago, close to the origin of 

eukaryotes [15]. 

The diverse virions of NCLDVs are mostly icosahedral, range in diameter from 100 

to 1500 nm, and are constructed from conserved Major Capsid Proteins (MCPs) [11, 

17]. NCLDV genomes range in size from around 150 kb to 2.5 Mb and have large GC 

content differences from their hosts compared to other viruses [17]. The large size of 

many NCLDV virions (>200 nm) and genomes (>200 kb) classifies them as ‘giant 

viruses’ [17]. 
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0.1.1 The Evolution of NCLDVs 

 
The complexity and size of certain NCLDV genomes and virions rivals bacteria and 

even some eukaryotes. Most NCLDV genes have no known homologues in databases 

(ORFans), but they also encode universal cellular genes such as those involved in 

translation and DNA metabolism. These unusual features have prompted the 

suggestion that NCLDVs have evolved via the reduction of a cellular ancestor, 

specifically from an extinct cellular domain in the case of the ‘fourth domain’ 

hypothesis [11]. 

However, the universal cellular genes of NCLDVs have likely originated from 

multiple and independent horizontal gene transfers (HGTs) from eukaryotes [12, 16, 

18, 19] and none of the 50 conserved core genes of NCLDVs have cellular homologues 

[16]. Genome gigantism has evolved multiple times, leading to multiple NCLDV 

lineages which include members with genomes four to ten times larger than closely 

related NCLDVs, for example; ~1.2 Mb Mimiviridae versus ~300 kb Phycodnaviridae 

[20], ~600 kb Pithovirus versus ~150 kb Iridoviridae [20], and ~ 2.5 Mb Pandoravirus 

versus ~300 kb coccolithoviruses, [21]. In addition, as proposed by the ‘genomic 

accordion’ hypothesis, NCLDV genomes have undergone complex and lineage-specific 

patterns of gene loss and acquisition [16, 22]. These findings effectively falsify the 

hypothesis that NCLDVs originated from a cellular ancestor via reduction, as they show 

that the large and complex genomes of NCLDVs have originated via multiple genome 

expansions from a simpler viral ancestor [12]. 

ORFans are highly common in NCLDVs, comprising up to 80 % of NCLDV genes; in 

contrast, up to 33 % of cellular and bacteriophage genes are ORFans [23, 24]. The 

occurrence of these ORFans is hard to explain because they probably do not originate 

from common descent [12, 22] or horizontal gene transfer [25]. An emerging 
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hypothesis to explain these abundant ORFans is that NCLDVs create genes de novo 

[25], but the mechanisms of this are poorly understood, even in cellular organisms [26, 

27]. 

The best supported origin of NCLDVs is that they evolved from Polintons, which are 

large (15-20 kb), vertically transmitted, transposon-like elements which encode type B 

DNA polymerase (pPolB) and RVE family integrase. Polintons are integrated into the 

genomes of a wide range of eukaryotes, and probably evolved from Tectiviridae 

bacteriophages which entered the eukaryotic lineage with the endosymbiotic α-

proteobacteria which gave rise to mitochondria. Most Polintons are considered 

‘polintoviruses’ because they encode the proteins required to form capsids [12, 28]. 

These and other key viral genes are shared by diverse DNA viruses (Adenoviridae, 

Bidnaviridae, virophages, and NCLDVs) and plasmids, which suggests they have 

evolved from polintoviruses [12, 29]. The NCLDVs emerged from polintoviruses with 

the acquisition of RNA polymerase, which allowed NCLDVs to replicate in the 

cytoplasm and therefore escape from the nucleus. The massive expansion of NCLDV 

genomes was made possible by replacement of Polinton pPolB with a more efficient 

RNA/DNA primed PolB acquired from the eukaryotic host [12], whilst retaining the 

Polinton capsid formation proteins and D5-like helicase-primase. The Polinton origin of 

NCLDVs is congruent with the many unrelated viral lineages which originated from 

selfish genetic elements that evolved capsid proteins [7, 30]. 

The known host range of NCLDVs includes multiple eukaryotic kingdoms, which 

is the broadest of any dsDNA virus group, which usually infect a single kingdom [12, 

16]. However, an even broader host range was revealed by screening eukaryotic 

genomes in databases for integrated NCLDV core genes [31]. At least 1 NCLDV core 

gene was present in 48 out of 1282 eukaryotic genomes and 18 out of 1679 eukaryotic 
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transcriptomes, and only 4 of these 66 positive organisms were previously known to be 

infected by NCLDVs. Many of these NCLDV core genes were within viral inserts up to 

300 kb long, indicating that NCLDV genome integration is common. Eukaryotic groups 

with the highest occurrence of NCLDV core genes were the brown algae 

(Phaeophyceae; 3/3 contained NCLDV homologs), Amoebozoa (11/32), green algae 

(Chlorophyta and Streptophyta; 9/28), and Oomycetes (10/40) [31]. It remains 

unknown how many NCLDV groups exist, but the NCLDVs are evidently far more 

widespread and diverse than is currently known [32]. 
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Figure 0.1: Maximum likelihood tree of DNA polymerase B protein sequences encoded 
by NCLDV members. Node values are maximum likelihood bootstrap proportions 
(values <50 not shown). Scale units are the number of amino acid substitutions per 
site. * DNA polymerase phylogeny shows the putative polyphyly of the 
Phycodnaviridae [32, 33]. GenBank accession numbers for viruses are as follows: 
African swine fever virus, P0C974.1; Faustovirus, AIB52014.1; Heterocapsa 
circularisquama DNA virus 01, BAJ12120.1; Heliothis virescens ascovirus 3a, 
BBB16471.1; Trichoplusia ni ascovirus 2, AAY43139.1; Diadromus pulchellus ascovirus 
4, CAC19127.1; Invertebrate iridescent virus 6, NP_149500.1; Anopheles minimus 
iridovirus, YP_009021128.1; Invertebrate iridescent virus 3, YP_654692.1; Infectious 
spleen and kidney necrosis virus, NP_612241.1; Lymphocystis disease virus 1, 
NP_078724.1; Frog virus 3, ASH99238.1; Lausannevirus, YP_004347308.1; Port-Miou 
virus, ALH07009.1; Tunisvirus fontaine2, YP_009507014.1; Insectomime virus, 
AHA45970.1; Cannes 8 virus, AGV01694.1; Marseillevirus, QBK86590.1; Pithovirus 
sibericum, YP_009000951.1; Emiliania huxleyi virus 86, YP_293784.1; Acanthocystis 
turfacea chlorella virus 1, YP_001427279.1; Paramecium bursaria Chlorella virus 1, 
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P30321.2; Ostreococcus tauri virus 5, YP_001648316.1; Heterosigma akashiwo virus 
01, YP_009507574.1; Feldmannia species virus 158, YP_002154715.1; Feldmannia 
irregularis virus 1, AAR26842.1; Ectocarpus siliculosus virus 1, NP_077578.1; 
Pandoravirus dulcis, YP_008318996.2; Pandovravirus salinus, YP_009429988.1; 
Pandoravirus inopinatum, YP_009120445.1; Acanthamoeba polyphaga moumouvirus, 
YP_007354477.1 & YP_007354476.1; Moumouvirus goulette, AGF85231.1; Courdo11 
virus, AFM52349.1; Megavirus courdo7, AFM52358.1; Megavirus lba, AGD92513.1; 
Megavirus chiliensis, AEQ33130.1; Megavirus terra1, AFM52356.1; Acanthamoeba 
polyphaga lentillevirus, EJN40770.1; Acanthamoeba polyphaga mimivirus, AKI79091.1; 
Hirudovirus, AHA45542.1; Mimivirus lactour, AFM52359.1; Terra virus 2, ADC39049.1; 
Mimivirus Cher, AFM52352.1; Mimivirus pointerouge1, AFM52353.1; Cafeteria 
roenbergensis virus BV-PW1, YP_003970130.1; Aureococcus anophagefferens virus, 
YP_009052217.1; Pyramimonas orientalis virus, ABU23717.1; Phaeocystis globosa 
virus, 12T AET73097.1; Phaeocystis globosa virus, YP_008052566.1; Phaeocystis 
pouchetii virus, A7U6F3.1; Prymnesium parvum DNA virus BW1, AQV04381.1; Organic 
Lake phycodnavirus 2, ADX06483.1; Organic Lake phycodnavirus 1, ADX06143.1; 
Chrysochromulina ericina virus, YP_009173620.1; Mollivirus sibericum, 
YP_009165284.1; Molluscum contagiosum virus, AAL40129.1; Vaccinia virus, 
YP_232947.1; Melanoplus sanguipes entomopoxvirus, NP_048107.1; Fowlpox virus, 
NP_039057.1; Canarypox virus, NP_955144.1. 
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0.2 The Phycodnaviridae 
 

Algae are oxygen-evolving photosynthetic unicellular or multicellular autotrophs, 

including members of domain Bacteria (phylum Cyanobacteria) and various distinct 

eukaryotic lineages: Plantae (Charophyta, Chlorophyta, Glaucophyta, and 

Rhodophyta), the SAR clade (Stramenopila, Alveolata, and Rhizaria), Haptophyta, 

Cryptophyta, and Euglenozoa [34]. There are around 44,000 described algal species 

and there may be over 100,000 species in existence [34]. Most marine algae are 

unicellular phytoplankton which form the foundation of marine ecosystems and are 

responsible for around 50 % of global carbon fixation [35]. Recently it has been 

recognised that viral lysis of phytoplankton plays a vital role biogeochemical cycles, 

such as atmospheric sulfur cycles and the export of carbon to microbial food webs and 

marine sediments [3, 36].  

The family Phycodnaviridae (“phyco”=algae, “dna”=DNA, “viridae”=virus family) are 

NCLDVs that infect algae. There are around 150 formally identified phycodnaviruses, 

with around another 100 mentioned in the literature [37], all of which have 

icosahedral capsids. Genomes from all major algae groups contain NCLDV core genes 

[31] and phycodnaviruses are the second most diverse marine viruses after 

bacteriophages (order Caudovirales) [38]. Three genomes from Chlorovirus, 

Phaeovirus, and Coccolithovirus share only 1.4-7.3 % of their genes (out of 1000 genes, 

[15, 39]). Furthermore, the intra-genera diversity of Phycodnaviridae is large, for 

example, 20 % of Chlorovirus and 17 % of Coccolithovirus genes are highly variable or 

absent between strains [37]. The orthologous genes of Phycodnaviridae show 4 

distinct lineages: 1) Phaeovirus and Coccolithovirus, 2) Raphidovirus, 3) Chlorovirus 

and Prasinovirus, and 4) Mimiviridae and Prymnesiovirus. These lineages and genera 

are not necessarily monophyletic, and in future may become families or orders as 
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more phycodnaviruses are discovered [32, 33]. The best studied phycodnaviruses are 

Chlorovirus, Prasinovirus, and Coccolithovirus. Despite their diverse genomes and 

hosts, phycodnaviruses have been described in less than 0.1 % of algal species. Table 

0.1 summarises the virions, genomes, infection strategies, host ranges, and species of 

Phycodnaviridae and Table 0.2 summarises the infection cycles of Phycodnaviridae. 

Table 0.1: Properties of Phycodnaviridae virions, genomes, infection strategies, host 
range, and species numbers. References: Chlorovirus: [39–42]. Coccolithovirus: [4, 39, 
40, 43–46]. Phaeovirus: [39, 40, 47–52]. Prasinovirus: [39, 40, 53–55]. Prymnesiovirus: 
[39, 40, 56]. Raphidovirus: [33, 39, 40, 57, 58]. 
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G
e

n
u

s Virion 
diameter 
(nm) and 
structure 

Genome size (kb) 
number of ORFs 
G+C content (%) 
& structure 

Host range Sequenced 
genomes 

Type species and  
no. of species 

C
h

lo
ro

vi
ru

s ~190, 
icosahedral, 
internal 
membrane, 
cylindrical 
spike on one 
vertex, 
numerous 
capsid fibres 

287-348 kb 
600-800 ORFs 
40-52 % 
1 segment, linear, 
cross-linked 
hairpin ends, 
inverted 1-2.2 kb 
repeat termini, 
most of genome 
is single copy 

Genus Chlorella, 
phyla Chlorophyta: 
unicellular 
symbiotic green 
freshwater algae 

43 
 

Paramecium 
bursaria Chlorella 
virus 1 
(PBCV-1) 
 
19 

C
o

cc
o

lit
h

o
vi

ru
s 150-200, 

icosahedral, 
internal 
membrane, 
putative tail, 
external 
membrane 

377-422 kb 
444-548 ORFs 
~40 % 
1 segment, 
circular, may have 
linear stage 

Phyla Haptophyta, 
order 
Isochrysidales: 
unicellular 
coccolithophorid 
marine algae 

13 Emiliania huxleyi 
virus 86 
(EhV-86) 
 
1 

P
ra

si
n

o
vi

ru
s 100-120, 

icosahedral, 
internal 
membrane 

184-205 kb 
203-268 ORFs 
37-45 % 
1 segment, 
probably linear 

Class 
Prasinophyceae, 
phyla Chlorophyta: 
unicellular marine 
green prasinophyte 
algae, genera 
Ostreococcus, 
Bathycoccus, and 
Micromonas) 

20 Micromonas pusilla 
virus SP1 
(MpV-SP1) 
 
2 

P
ry

m
n

es
io

vi
ru

s 100-170, 
icosahedral, 
internal 
membrane 

120-485 kb 
ND ORFs 
40 % 
1 segment, 
probably linear 

Unicellular marine 
prymnesiophyte 
algae Phyla 
Haptophyta, order 
Prymnesiales 

0 Chrysochromulina 
brevifilum virus 
PW1  
(CbV-PW1) 
 
1 

R
ap

h
id

o
vi

ru
s ~200, 

icosahedral, 
internal 
membrane 

275-294 kb 
247 ORFs 
~30 % 
1 segment, 
probably linear 

Unicellular marine 
raphidophyte algae 
(class 
Raphidophyceae) 

1 Heterosigma 
akashiwo virus 01  
(HaV01) 
 
1 

P
h

ae
o

vi
ru

s 120-180, 
icosahedral, 
internal 
membrane 

120-350 kb 
156-231 ORFs 
52 % 
1 segment, 
circular, inverted 
terminal repeats, 
dispersed 
repetitive 
elements, and 
ssDNA regions of 
10-60 kb 
 

Class 
Phaeophyceae: 
multicellular 
marine brown algae 

3 Ectocarpus 
siliculosus virus 1  
(EsV-1) 
 
9 
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Table 0.2: Infection cycles and strategies of the Phycodnaviridae. References: 
Chlorovirus: [40, 42, 59]. Coccolithovirus: [4, 40, 46]. Phaeovirus: [40, 49, 60, 61]. 
Prasinovirus: [40, 55]. Prymnesiovirus: [40, 56]. Raphidovirus: [40, 58]. Horizontal 
transmission is via virions and vertical transmission is via genetic inheritance of viral 
nucleic acids. P.i.= post infection. 
 

G
e

n
u

s Infection 
strategy and 
transmission 
 

Cell entry 
 

Latent period 
(hr p.i.) and 
transcription 
 

Genome 
replication 
 

Virion 
assembly 
 

Cell exit 
and burst 
size 
 

C
h

lo
ro

vi
ru

s Lytic 
Horizontal 

Vertex spike binds 
cell wall, viral 
enzymes degrade 
cell wall, and 
internal membrane 
fuses with cell 
membrane. Internal 
membrane K+ 
channel depolarises 
host membrane. 
Viral nucleo-protein 
core enters 
cytoplasm and 
moves to nucleus. 
 

6-8 hr p.i. 
 
Nuclear with 
host RNA 
polymerase 

Nuclear 60-90 
min p.i. with 
viral DNA 
polymerase 

Cytoplasmic 
2-3 hr p.i. 

Cell lysis 
 
200-350 

C
o

cc
o

lit
h

o
vi

ru
s Lytic 

Horizontal 
Outer membrane 
binds with host 
membrane, intact 
capsid enters 
cytoplasm, nucleo-
protein core enters 
nucleus 
 
 

4-6 hr p.i. 
 
Early: nuclear 
with host RNA 
polymerase. 
Late: 
cytoplasmic 
with viral RNA 
polymerase 
 

Cytoplasmic 
with viral DNA 
polymerase 

Cytoplasmic 
4.5 hr p.i. 

Cell lysis or 
budding and 
gain of 
envelope 
from cell 
membrane 
 
400-1000 

P
ra

si
n

o
vi

ru
s Lytic 

Horizontal 
Internal membrane 
fuses with cell 
membrane. Nucleo-
protein core enters 
cytoplasm and 
moves to nucleus 

7-70 hr p.i. 
 
Unknown 
 

Unknown, 
with viral DNA 
polymerase 

Cytoplasmic 
6-20 hr p.i. 

Cell lysis. 
Organelles 
remain 
intact 
throughout 
infection 
 
<100, as low 
as 6-15 

P
ry

m
n

es
io

vi
ru

s Lytic 
Horizontal 

Unknown 
 

12-19 hr p.i. 
 
Unknown 
 

Unknown, 
with viral DNA 
polymerase 

Cytoplasmic Cell lysis 
 
400-4100 
 

R
ap

h
id

o
vi

ru
s Lytic 

Horizontal 
Unknown 
 

30-33 hr p.i. 
 
Unknown 

Unknown, 
with viral DNA 
polymerase 

Cytoplasmic Cell lysis 
 
770 
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Table 0.2 (continued) 

G
e

n
u

s Infection 
strategy and 
transmission 
 

Cell entry 
 

Latent period 
(hr p.i.) and 
transcription 
 

Genome 
replication 
 

Virion 
assembly 
 

Cell exit 
and burst 
size 
 

P
h

ae
o

vi
ru

s Horizontal 
Vertical 

Entry restricted to 
unwalled 
reproductive cells. 
Internal membrane 
fuses with cell 
membrane, K+ 
channel may 
depolarise cell 
membrane; nucleo-
protein core enters 
cytoplasm and 
moves to nucleus. 5 
min p.i., genome 
integration of viral 
DNA occurs using 
integrase Viral 
genome is 
transmitted via 
mitosis to every cell 
of the macroalga. 
The viral genome is 
inherited vertically 
between host 
generations in a 
Mendelian manner 

ND; highly 
variable or 
indefinite 
 
Replication 
restricted 
mostly to 
reproductive 
organs 
(sporangia or 
gametangia). 
Nuclear with 
host RNA 
polymerase 
 

Nuclear with 
viral DNA 
polymerase 

Cytoplasmic Cell lysis, 
induced by 
environmen
tal triggers 
which also 
induce 
spore 
release 
 

>1.106 per 

host organ 
 

 
 
 

0.2.1 Genus Chlorovirus 

 
All described chloroviruses infect Chlorella (phylum Chlorophyta), a genus of 

unicellular freshwater green algae with simple life histories, a global distribution, and 

symbiotic relationships with the alveolate protozoan Paramecium bursaria, the 

heliozoan protozoan Acanthocystis turfacea, and the cnidarian animal Hydrozoa viridis. 

Chloroviruses are excellent models for algal viruses, as free-living Chlorella can be 

easily cultured. Paramecium bursaria Chlorella virus 1 (PBCV-1) is the Chlorovirus type 

species has been studied in great detail, which include unusual features such as many 

carbohydrate metabolism genes (most viruses rely on host carbohydrate metabolism 

[62]. More than 50% of predicted proteins in Chlorovirus genomes have been acquired 
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by horizontal gene transfer (HGT), but most are ORFans, possibly acquired from the 

vast unexplored reservoir of aquatic virus diversity [41]. 

0.2.2 Genus Coccolithovirus 

 
The coccolithoviruses infect Emiliania huxleyi, a common coccolithophore (class 

Coccolithophyceae, phylum Haptophyta). Coccolithophores are unicellular marine 

algae with a global distribution, calcified scales, and important roles in primary 

production and carbon cycling. The termination of E. huxleyi blooms can be driven by 

Coccolithovirus infections [37], leading to increased zooplankton grazing and carbon 

export [63]. The Coccolithovirus type species is Emiliania huxleyi virus 86 (EhV-86, 

[64]). Notable findings include a selfish genetic element (intein), manipulation of host 

lipid metabolism [65], a persistent RNA stage [66], viral transmission via grazer faecal 

pellets and seawater aerosols, and the seasonal ecological dynamics of EhVs [44, 67]. 

Most acquired genes in EhVs have eukaryotic and bacterial origins, which suggests 

coccolithoviruses are major transporters of genes between life domains and kingdoms 

[44]. Coccolithoviruses are the only phycodnaviruses to encode their own RNA 

polymerase, meaning their transcription is partially independent of the nucleus, a 

lifestyle which the ancestral phycodnavirus likely employed. Coccolithovirus is highly 

divergent from the rest of Phycodnaviridae, and in future may be reassigned as a 

subfamily [43] or family [32]. 

0.2.3 Genus Prasinovirus 

 
The prasinoviruses infect prasinophytes (phylum Chlorophyta, class 

Prasinophyceae, [68]) which are common unicellular green algae and important 

marine primary producers. Prasinophytes are the most basal lineage of green algae 

and terrestrial plants [53]. Up to 25 % of the daily host population can be lysed by 
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prasinoviruses [53]. The first report of phycodnavirus isolation was of prasinoviruses 

from Micromonas pusilla. Notable features of Prasinovirus genomes include unusually 

long ORFans which occupy 10-15 % of Bathycoccus virus genomes, a viral heat shock 

protein which may delay cell autolysis, and infection synchronisation with the diurnal 

rhythms of their hosts [54]. Many Prasinovirus genes are acquired from prasinophytes, 

other eukaryotes, and bacteria, giving prasinoviruses highly flexible and diverse 

genomes [69]. Prasinoviruses encode seven to eight MCPs per genome (most viruses 

encode only one MCP) and genes involved in glycosylation and nitrogen metabolism, 

and their DNA polymerases contain inteins which may facilitate viral recombination 

[53]. 

0.2.4 Genus Prymnesiovirus 

 
Prymnesiophytes (phylum Haptophyta) are mostly marine unicellular algae 

with a global distribution, can form blooms, and have calcified scales. 

Prymnesioviruses strongly influence the ecology of Chrysochromulina and Phaeocystis 

(both can form harmful algal blooms), with subsequent impacts on algal seasonal 

dynamics, biogeochemical cycling, and secondary production [70, 71]. The complex 

evolutionary relationships of Mimiviridae and Phycodnaviridae are especially apparent 

in the NCLDVs infecting prymnesiophytes, as they are infected by both families [72]; 

mimiviruses with highly reduced genomes (group 1 Phaeocystis globosa viruses, PgVs, 

~470 kb genomes, [73, 74]; Aureococcus anophagefferens virus, AaV, and 

Chrysochromulina ericina virus, CeV), and Prymnesiovirus phycodnaviruses 

(Chrysochromulina brevifilum virus PW1, CbV-PW1, and group 2 PgVs, ~170 kb 

genomes, [33, 75]). 
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0.2.5 Genus Raphidovirus 

 
Raphidoviruses infect raphidophytes, which are mostly marine unicellular algae 

(class Raphidophyceae, Heterokonta) which form blooms including harmful red tides. 

The only known raphidoviruses infect Heterosigma akashiwo, the type species being 

Heterosigma akashiwo virus 01 (HaV01). The raphidoviruses display the most gene 

losses of any member of Phycodnaviridae or Mimiviridae (since divergence from the 

Phycodnaviridae/Mimiviridae ancestor) and may be a distinct viral lineage within 

Phycodnaviridae [33]. 
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0.3 Genus Phaeovirus 
 

Phaeoviruses infect the multicellular brown algae (class Phaeophyceae, 

Stramenopila) and are the only known phycodnaviruses to employ a latent infection 

strategy (Table 0.1; Table 0.2), which is shown in Figure 0.2 and images of the infection 

are shown in Figure 0.3. The type species is Ectocarpus siliculosus virus 1 (EsV-1). 
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Figure 0.2: The Phaeovirus infection cycle. (1; blue arrow) Phaeovirus virion infects 
uninfected zoids (uz) (zoid = flagellated reproductive cell, such as spore or gamete). 
Zoids are produced by zoidangia (zo). Zoids settle and develop into walled initial cells 
(semi-circles) which develop via mitosis into multicellular thalli. Only the zoids are 
susceptible to infection, as they lack cell walls and phaeoviruses lack cell wall 
degrading enzymes [49, 60]. (2; blue arrow) The viral core enters the nucleus and an 
integrated Phaeovirus genome (provirus; key) is inserted into the genome of the 
infected zoid (iz) [60, 76]. This does not normally cause cell lysis. (3) The provirus is 
copied with every mitosis, which results in an infected thallus (sporophytes, 
gametophytes, or parthenosporophytes) with a provirus copy in every cell [76]. (4) The 
thallus appears normal until environmental or cellular factors induce the expression of 
the provirus, which occurs almost exclusively in zoidangia, but sometimes occurs in 
vegetative cells [77]. Viral expression interrupts the early development of zoidangia, 
causing high viral DNA replication in the nucleus, followed by nuclear and plastid 
degeneration and cytoplasmic virion assembly. These zoidangia (4) are deformed, stain 
intensely with DAPI, lack chlorophyll, and release 106 virions in response to the same 
environmental triggers of zoid release (changes in salinity and temperature [52, 77]). 
(5) (black arrow) Infected thalli produce infected zoids which vertically transmit the 
infection via proviruses to the next generation. (6; red arrows) Meiosis segregates a 
Phaeovirus provirus to one daughter chromosome, which eliminates the provirus from 
50% of the meiotic zoids (meiospores). (7) This can result in virus-free host life cycles 
[78, 79]. However, all zoids can be re-infected by virions (1; blue arrow); some 
phaeoviruses (subgroup B) can infect already infected zoids, leading to multiple 
infections. 
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Qualitatively the extent of virus symptoms appears to be highly variable in 

Ectocarpales hosts, ranging from asymptomatic to simultaneous virion/zoid 

production, to sterile macroalgal which only produce virions [77, 80]. Only the 

phaeoviruses EsV-1 and EfasV-1 replicate in both the gametangia (organs that produce 

gametes via mitosis) and sporangia (organs that produce meiospores via meiosis), 

whilst the rest replicate only in the sporangia (Table 0.3, [49]). Phaeovirus symptoms 

can increase at lower or higher temperatures (12-15 oC versus 18-20 oC, [81–83]). 

Microscopy of wild Ectocarpales showed highly variable rates of visible Phaeovirus 

symptoms (1-25 % of individuals of Hincksia, Ectocarpus, and Feldmannia; [82–84]), 

whilst PCR of a Phaeovirus gene (capsid protein gp1) showed a higher infection rate of 

50-100 % in Ectocarpus, which indicates that unexpressed Phaeovirus infections are 

common [85, 86]. The abundance of unexpressed Phaeovirus infections indicates that 

virion production, and therefore horizontal transmission, is low. The high infection 

rates of phaeoviruses must be achieved by the vertical transmission of latent 

proviruses (Figure 0.2). Variation in environmental conditions may favour vertical or 

horizontal transmission, especially if those conditions favour host asexual or sexual 

reproduction (which many brown algae can switch between). For example, a 

Phaeovirus provirus is segregated to one daughter chromosome during meiosis, 

meaning that 50 % of the next generation will be virus free (Figure 0.2, [78, 79]). To 

counteract this elimination of proviruses in sexually reproducing hosts, phaeoviruses 

may need to horizontally infect new hosts. In contrast, asexually reproducing hosts will 

reliably transmit latent proviruses to their progeny, reducing the need for horizontal 

transmission. 
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The impacts of phaeoviruses on host fitness are currently unknown. Phaeovirus 

infection had no negative effects on the growth or photosynthesis of E. siliculosus [87], 

but reduced the photosynthesis, chlorophyll content, and possibly growth of 

Feldmannia [88]. Impairment of host reproduction by phaeoviruses is a general 

observation and virtually no host impacts have been studied quantitatively [49]. 

Though Feldmannia can asexually reproduce after sterilisation by phaeoviruses, it is 

unknown how sterilisation would impact brown algae with different life histories [89, 

90]. 

Phaeovirus infects seven species of brown algae, all belonging to four families of 

the order Ectocarpales, and it is the only phycodnavirus genus in which a single virus 

can infect multiple host families (Table 0.3). For example, EsV can infect Feldmannia 

simplex to cause symptoms and establish latency, but cannot produce virions [91, 92]. 

Similarly, Ectocarpus fasciculatus virus (EfasV) can infect E. siliculosus (but EsV cannot 

infect E. fasciculatus, [91]) and Myriotrichia clavaeformis [93], producing symptoms 

but not virions. However, EsV infection of Kuckuckia kylinii produced virions which 

could re-infect the original E. siliculosus host [94]. Inter-species infections have the 

potential to facilitate viral recombination and gene transfer between brown algal 

species, but their consequences in brown algae are unknown. 
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Figure 0.3: Microscopic images of a Phaeovirus infection the Ectocarpales brown algae 
Pylaiella littoralis. Optical microscopy: (A) Virion-filled cells have grey and homogenous 
contents (v). Epifluorescent microscopy: (B) DAPI staining excited by UV light shows 
these cells to be completely filled with DNA (blue; this is DNA within the virions) and 
the absence of chlorophyll (red). Transmission electron microscopy: (C) Healthy brown 
algal cell with nucleus (n), chloroplasts (ch), mitochondria (m), golgi apparatus (g), 
physodes (p; dark vesicles), and thick cell wall (w); (D and E) virus infected brown algal 
cell with degenerated organelles (*), masses of virions occupying the cytoplasm (vi; the 
darker nucleoprotein cores can be seen in some of the virions), and a thin cell wall (w); 
(F) Phaeovirus virions in the brown algal cytoplasm, showing the hexagonal cross-
sections typical of icosahedral virions. 
 

0.3.1 Phaeovirus Evolution 

 
Based on concatenated phylogeny of DNA polymerase and major capsid protein 

(MCP), Ectocarpales phaeoviruses are split into two subgroups (Table 0.3); subgroup A 

consisting of one virus genotype, which infects Ectocarpus, Pylaiella, Myriotrichia, and 

Hincksia, and subgroup B, which consists of multiple viral genotypes and infects only 

Feldmannia. The genomes of subgroup B are smaller (from 240-336 kb in A to 155-220 

kb in B), allowing the subgroup B phaeoviruses to exploit a more acute infection 

strategy, whereas subgroup A viruses have retained a more persistent strategy (Table 

0.3, [95, 96]). The subgroup B phaeoviruses also have evolved at a similar rate to lytic 

phycodnaviruses (possibly facilitated by the loss of a DNA proofreading gene), giving 

them twice the DNA polymerase divergence rate of subgroup A and as a result, more 

variants [95]. Another consequence of subgroup B’s infection strategy is multiple 

infections, the most extreme example being eight variants of latent phaeoviruses in a 

Feldmannia simplex genome. This is an exception to the superinfection exclusion 

hypothesis which posits that closely related viruses will exclude each other from 

infecting the same host [97]. It is unknown whether the subgroup A/B division is the 

result of subgroup A jumping hosts to Feldmannia or if it is the result of divergence 

from a common Phaeovirus ancestor that infected an ancient member of Ectocarpales.  
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0.3.2 Phaeovirus Genomes 

 
The three sequenced phaeoviral genomes have the largest size range of all known 

Phycodnaviridae and highly divergent genes and structures (Table 0.3); Ectocarpus 

siliculosus virus 1 (EsV-1), Feldmannia species virus 158 (FsV-158), and Feldmannia 

irregularis virus 1 (FirrV-1). FsV-158 has the smallest genome of any phycodnavirus and 

has 81 less genes than EsV-1 [48, 98]. FsV-158 has lost the second most genes out of all 

Mimiviridae or Phycodnaviridae [33] and has retained only 10 out of 31 core genes 

(EsV-1 has 16 out of 31), which is the smallest known set of core genes able to make a 

functional NCLDV [98]. Phaeoviruses have the least compact phycodnavirus genomes 

(one gene per 900-1000 bp in most phycodnaviruses versus one gene per 1450 bp in 

EsV-1), with only 67 % of the EsV-1 genome encoding proteins. EsV-1 also has the 

highest GC content than chloroviruses or coccolithoviruses (52 % versus ~40 %) and 

lacks their introns and tRNAs [39]. 

Notable features of the EsV-1 genome include a large integrase-like protein and 

lysogeny regulators (likely involved in latency; [47]) a capsid protein (gp1) which 

resembles an alginate synthesis protein (mannuronan C-5-epimerases), and unique 

hybrid histidine kinases homologous to cellular enzymes of two-component signalling 

pathways (may alter the cell environment to facilitate infection; [99]). Phaeovirus 

genomes are highly divergent; for example EsV-1 (231 genes) and FirrV-1 (156 genes) 

share only 93 genes with very different orders. Despite infecting closely related hosts 

using similar infection strategies, these viruses have experienced high recombination 

since their divergence [37]. 
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Table 0.3: Virion size, genomes, host range, evolutionary strategies of Ectocarpales 
Phaeovirus subgroups A and B. ND = no data; genome not sequenced. 
 
Virus Virion 

diameter 
(nm) 

Genome 
size (kb) 

Host family Replication No. of 
genotypes 

Ref. 

Subgroup A: Single infections, Persistent, K-selected, evolutionary strategy 

Ectocarpus 
siliculosus virus 1 
(EsV-1) 

130-150 336 Ectocarpaceae Sporangia 
and 
gametangia 

1 [49, 
100, 
101] 

Ectocarpus 
fasciculatus virus 
1 (EfasV-1) 

135-140 320 (ND) Ectocarpaceae Sporangia 
and 
gametangia 

1 [49, 
50, 
101] 

Pylaiella littoralis 
virus 1 (PlitV-1) 

130-170 280 (ND) Acinetosporaceae Sporangia 1 [49, 
52, 
101] 

Hincksia 
hincksiae virus 1 
(HincV-1) 

140-170 240 (ND) Acinetosporaceae Sporangia 1 [49, 
50, 
101] 

Myriotrichia 
clavaeformis 
virus 1 (MclaV-1) 

170-180 320 (ND) Chordariaceae Sporangia 1 [49, 
50, 
101] 

Subgroup B: Multiple infections, Acute, r-selected, evolutionary strategy 

Feldmannia 
simplex virus 1 
(FlexV-1) 

120-150 220 (ND) Acinetosporaceae Sporangia 8 [49, 
50, 
101] 

Feldmannia 
irregularis virus 1 
(FirrV-1) 

140-167 158-178 Acinetosporaceae Sporangia 3 [48, 
49, 
101] 

Feldmannia 
species virus 158 
(FsV-158) 

150 170 Acinetosporaceae Sporangia 2 [49, 
98, 
101] 

 

0.3.3 Phaeovirus Host Genome Integration 

Known phaeoviruses most likely persist as integrated proviruses, as EsV-1 DNA 

co-migrates with high molecular weight host DNA, indicating genome integration [76]. 

The mechanisms of this integration are not well understood, for example; it is 

unknown whether integration occurs at a specific or random site. FsV integrates at 

specific sites of the host genome [102], but this has not been studied in other 

phaeoviruses. It is also unknown whether phaeoviruses integrate as a single intact viral 

sequence or as multiple fragments throughout the host genome. 

A single EsV-1-like provirus is integrated in the genome of Ectocarpus siliculosus 

(strain Ec32) with terminal repeat positions, which indicate that the provirus was 
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inserted as a circular genome. The provirus is 310 kb long (EsV-1 is 336 kb), has a GC 

content of 51 % (EsV-1 is 51 %, E. siliculosus genome is 53.6 %), shares 75 % of EsV-1 

genes (173 out of 231 of EsV-1 orthologs), and has its lost histidine protein kinases and 

gained a FirrV-1-like gene. Provirus Ec32 has all EsV-1 NCLDV core genes and most key 

life cycle genes [103], but its integrase (3.4 kb, 97 % shared DNA identity with EsV-1 

integrase) has undergone an unexplained relocation to another site in the host 

genome and been replaced by another integrase (70% shared DNA identity with EsV-1 

integrase). Viral sequences were rare elsewhere in the E. siliculosus genome, which 

suggests there are barriers to phaeoviral gene transfer to brown algal genomes [103]. 

Unexpectedly, the provirus Ec32 was not functional; it was transcriptionally silent and 

did not produce virions, even under stress or at any life history stage, despite a lack of 

host suppression by RNA silencing of viral DNA [103]. This may be due to the loss of 

key genes, such as integrase or histidine kinases, as was observed in FsV with a large 

(>50 kb) repetitive insert in its protein kinase which prevented viral expression [104]. 

However, untested environmental or cell factors may have been capable of inducing 

virion production. 

In contrast to strain Ec32, the E. siliculosus strain NZVicZ14 produces functional 

EsV-1 virions but its only known provirus is scattered throughout the host genome as 

short fragments (average length 35 kb), three of which totalled ~150 kb [105]. This 

suggests that phaeoviruses employ a novel and complex system of recombination, 

possibly using a large integrase/recombinase protein, to reassemble fragmented 

proviruses into complete viral genomes to be packaged into virions. A similar 

mechanism (post-transcription, horizontal recombination of RNA or DNA) has been 

proposed for the reverse-transcribing dsDNA viruses of plants (Caulimoviridae), which 

can reconstruct functional and infectious virus genomes from multiple EVEs spread 
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throughout the host genome, as well as from intact proviruses [106]. Such 

recombination may also explain the ability of FsV to produce virions with different 

genomes sizes depending on temperature (more 158 kb at 18-20 oC, more 178 kb at 5-

10 oC; [90]). However, the provirus fragments identified did not comprise a complete 

EsV-1 genome and were highly dissimilar to the EsV-1 genome. It is therefore possible 

that the observed infection actually originated from an intact and functional provirus 

elsewhere in the genome of strain NZVicZ14. 

It remains unknown whether Phaeovirus proviruses integrate as single or 

multiple fragments, because of the contradictory observations of an intact, but non-

functional, provirus in strain Ec32 and a fragmented, but possibly functional, provirus 

in strain NZVicZ14. The unique evolutionary patterns, genomes, and integration of 

phaeoviruses are not well understood, but they suggest these unusual pathogens may 

play unexpected roles in brown algal biology, such as contributing novel genes and 

regulatory functions to their hosts. 

0.4 Comparing the Viruses of Macroalgae and Plants 
 
“Seaweeds are not wet trees and marine herbivores are not soggy insects” - Hay & 
Steinberg 1992 [107]. 

 
 It has been previously argued that because marine macroalgae (red, 

Rhodophyta; green, Chlorophyta; and brown, Phaeophyceae; also known as seaweeds) 

and terrestrial plants (Embryophyta) have distinct evolutionary histories, biochemistry, 

morphology, and environments, they therefore have evolved distinct interactions with 

herbivores [107].  This is also likely true of their viruses, in other words; the viruses of 

marine macroalgae are probably not just ‘soaked plant viruses’. The large evolutionary 

distance between the Archaeplastida (land plants, green and red macroalgae) and the 
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brown macroalgae (Stramenopila, SAR clade) may have driven the evolution of 

especially distinct virus-host relationships. 

The major types of viruses are not uniformly distributed across host lineages, 

which probably reflects independent viral origins and close virus-host evolutionary 

relationships [108]. For example, the largest animal virus group (~38 %) has dsDNA 

genomes  and most plant viruses (66.7 %) have ssRNA genomes, but no true (non-

reverse transcribing, RT) dsDNA genomes (Table 0.4, [109]). 

In contrast to plant viruses, most (67 %, Table 0.4) algal viruses have dsDNA 

genomes, mainly the NCLDV family Phycodnaviridae which infect distantly related algal 

lineages including green algae, haptophytes, and stramenopiles. Other algal virus 

groups include Bacilladnaviridae (ssDNA viruses of diatoms; Stramenopila), 

Bacillarnavirus (ssRNA viruses of diatoms), Dinornavirus (ssRNA viruses of 

dinoflagellates; Alveolata), Marnaviridae (ssRNA viruses of raphidophytes; 

Stramenopila), Sedoreovirinae (dsRNA viruses of chlorophytes), and Pseudoviridae (RT 

ssRNA viruses of chlorophytes) [40]. 

Plant viruses comprise about 42 % of all known viruses, with about 92 genera in 

21 families [40, 109]. Though there may be over 100,000 species of algae [110], there 

are only a few hundred algal viruses described formally or mentioned in the literature 

[37]. Only 9 viruses have been described for the ~11,000 species of macroalgae (Table 

0.4), which all belong to the genus Phaeovirus (Phycodnaviridae) and infect brown 

macroalgae. For macroalgal viruses, there are large knowledge gaps even in basic 

areas, such as what types of viruses infect macroalgae, what infection strategies they 

employ, what host impacts they have, or how macroalgal viruses are transmitted. 
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0.4.1 Viruses in Macroalgae 

 
All the available evidence of viral infection in macroalgae is summarised in 

Table 0.5 (pre-2011) and Table 0.6 (post 2011). These data are comprised of 

transmission electron microscopy (TEM) observations of virus-like particles (VLPs), viral 

sequences isolated from macroalgae, and integrated viral sequences (endogenous viral 

elements, EVEs) in macroalgal genomes. Most VLPs in red macroalgae were small (<80 

nm) and icosahedral; and therefore not distinctive enough to be identified. In contrast, 

the large (typically >150 nm) icosahedral VLPs reported in several brown and one 

green macroalgae likely belong to the distinctive NCLDVs. 

Phaeoviruses infecting the order Ectocarpales are almost the only known 

macroalgal viruses and most VLPs observed in brown algae resembled phaeoviruses. 

Some of these observations suggest novel Phaeovirus infection strategies, such as 

replication in Botrytella micromora zoids (Ectocarpales; 170 nm VLPs [111]), 

Ectocarpus fasciculatus zoids within zoidangia (Ectocarpales; 170 nm VLPs, [112]), and 

Halosiphon tomentosa zoids (Stschapoviales; 170 nm VLPs, [113]). Damaging the cell 

walls by gently scraping adult B. micromora increased the infection rate of a putative 

Phaeovirus, and the infection may have spread between neighbouring cells [111]. In 

Streblonema (Ectocarpales), VLPs were observed frequently in vegetative cells (135-

150 nm; [114]). These observations suggest that Phaeovirus infection strategies are 

more variable than is currently known. Outside of their currently known brown algal 

host range, phaeoviruses may replicate in other life history stages or cells (such as 

zoids or vegetative cells) or infect hosts through routes other than the zoids (such as 

damaged cell walls or connections between cells). 
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The only other VLPs observed in brown algae were filamentous VLPs that 

resembled ssRNA plant viruses of the genera Tobamovirus (25 by 280 nm) and 

Potyvirus (25 by 700-900 nm) in Ecklonia radiata (Laminariales, [115]). 

Since a 2011 review ([101], Table 0.5), there have been only seven publications 

reporting viruses in macroalgae (Table 0.6; excluding 2 publications resulting from this 

thesis). These reports include VLPs and sequences of RNA viruses in red macroalgae 

(Rhodophyta) and Phycodnaviridae EVEs in the genomes and transcriptomes of red 

and brown macroalgae. No VLPs or viral sequences have been reported in green 

macroalgae (Chlorophyta) since 2011. 

The sequence data provide a broader picture; NCLDV EVEs were common in brown 

macroalgae (1-10 EVEs per species from six orders, [116]) and in another study, all 

species screened (3/3) contained at least one NCLDV core gene [31]. The stramenopile 

lineage (to which the brown algae belong) contained the most NCLDV-positive 

organisms (19/66, [31]), but the green and red macroalgae contained few NCLDV EVEs 

[116] and neither contained NCLDV core genes (0/0 green and 0/2 red) [31]. Only two 

plants (out of ~110 genomes and 786 transcriptomes) contained NCLDV EVEs [31, 117]. 

This suggests that brown macroalgae are widely infected by NCLDVs, whereas the 

NCLDV EVEs in red macroalgae and plants may be remnants of ancient infections. The 

few metagenome studies of macroalgae found RNA virus sequences (mostly dsRNA) in 

13 red macroalgae species (Table 0.6). These dsRNA were most closely related to the 

fungi-infecting genus Totivirus (family Totivridiae; infects protozoans and fungi). 

In plants, most EVEs originate from Caulimoviridae (RT dsDNA, 68 species) and 

Geminiviridae (ssDNA, 447 species); whilst most brown macroalgal EVEs are from 

phaeoviruses. This means that plant and brown macroalgal genomes may have had 

distinct interactions with their respective viruses, leading to different consequences 
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for virus and host evolution. For example, caulimovirus and geminivirus EVEs probably 

integrate by random recombination of virus and host DNA during double-strand break 

repair in the nucleus, but phaeovirus EVEs are integrated by virus-encoded integrases 

as part of the viral life cycle [49, 118, 119].  

There has been a single viral metagenome study of brown algae. Kelp (Ecklonia 

radiata) affected by a bleaching disease had an elevated abundance of Circoviridae-like 

sequences, possibly elevated due to bleaching-associated grazing by circovirus-

infected invertebrates, as circoviruses are only known to infect animals. 

Phycodnaviridae sequences were equally present in healthy and bleached kelps and 

were the second most abundant viral group after bacteriophages. Most of the 

Phycodnaviridae sequences were related to EsV-1, but not described in any further 

detail [120]. 

Viral expression in macroalgae has been reported by a single study which was a 

transcriptome of the kelp S. japonica. 10.21 % of expressed genes in S.  japonica 

sporophytes were of viral origin; in addition, 8.9 % of genes expressed differentially 

between sporophyte maturity stages were also of viral origin [121]. No disease 

phenotype was observed and the identities of these viral transcripts were not 

reported. 

There are currently no formally described RNA viruses of any macroalgae, but 

RNA virus sequences have been identified in viral metagenomes of red macroalgae. 

Sequences and VLPs of ssRNA viruses (Picornavirales-like; viruses of plants, animals, 

and diatoms) and dsRNA viruses (Totivirus-like; viruses of fungi) have been detected in 

the red macroalgae Delisea pulchra [122]. Totivirus sequences have also been detected 

in Chondrus crispus and possibly eight other red macroalgae species [123]. However, 

whether these viruses infect red macroalgae or associated organisms is unknown. 
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There are two reports of possible viral disease in red macroalgae; green spot disease in 

Pyropia spp. (GSD; cell lysis leading to holes, complete disintegration of blade, and 

mortality, [124]) and galls in Bostrychia simpliciuscula [125]. 

In summary, the available evidence suggests that: 1) plants are infected by 

ssRNA and no true dsDNA viruses, 2) brown macroalgae and other stramenopile 

groups are infected by NCLDVs (dsDNA), 3) red macroalgae are infected by dsRNA 

viruses related to fungi viruses, and 4) Archaeplastida (plants, red and green 

macroalgae) was infected by NCLDVs in the past. Expanding this limited view of 

macroalgal virology would likely reveal novel evolutionary relationships between 

viruses and photosynthetic, multicellular hosts. 
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Table 0.4: Virus types present in Embryophyta (plants), Chlorophyta, Rhodophyta, and 
Phaeophyceae. References: (A) virus numbers [40, 109]; (B) reports (see Tables 0.5 and 
0.6); multicellular species numbers: plants [126]; green, red, and brown macroalgae 
[110]. RT= reverse transcribing. 
 

 Embryophyta 
(plants) 

Chlorophyta 
(green 
macroalgae) 

Rhodophyta 
(red 
macroalgae) 

Phaeophyceae 
(brown 
macroalgae) 

No. of 
multicellular 
species 

~391,000 ~2,000 ~7,000 ~2,000 

(A) Virus species recognised by the ICTV 

dsDNA (%) 0 87.5 0 100 

ssDNA (%) 23.4 0 0 0 

dsRNA (%) 3.9 4.2 0 0 

ssRNA (%) 66.7 0 0 0 

RT (%) 1.7 (ssRNA) 
4.5 (dsDNA) 

8.3 (ssRNA) 0 0 

Total % of all 
known viruses 
(n) 

42 (1325) 0.76 (24) 0 (0) 0.29 (9) 

% of 
multicellular 
host species 
with known 
viruses 

0.34 0 0 0.45 

(B) Uncharacterised reports of viruses in macroalgae 

Number of macroalgae species in which virus-like particles (VLPs)have been observed 

Unknown - 1 8 0 

dsDNA - 0 0 11 (Phaeovirus) 

ssDNA - 0 0 0 

dsRNA - 1 1 0 

ssRNA - 0 1 2 

RT (%) - 0 0 0 

Number of macroalgae species found to contain viral nucleic acids 

Unknown - 0 0 1 

dsDNA - 12 (NCLDVs) 16 (NCLDVs) 14 (NCLDVs) 

ssDNA - 0 0 0 

dsRNA - 0 12 0 

ssRNA - 0 1 0 

RT (%) - 0 0 0 
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Table 0.5: Reports of virus-like particles (VLPs) and virus sequences found in 
macroalgae. Adapted from “Viruses of Seaweeds”, Chapter 8 of Studies in Viral 
Ecology: Microbial and Botanical Host Systems, Volume 1 [101] with permission from 
https://www.wiley.com/en-gb. Copyright Wiley-Blackwell 2011. All rights reserved. 
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Phaeovirus-like 
135-150, icosahedral ND [114] 

B
o

tr
yt

el
la

 

m
ic

ro
m

o
ra

 Unclassified, 
Phaeovirus-like 

170, icosahedral ND [111] 
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Table 0.5 (continued) 

P
h

yl
u

m
 

C
la

ss
 

O
rd

e
r 

Fa
m

ily
 

Sp
e

ci
e

s Virus classification, genome 
type 

Virion diameter or 
dimensions (nm) and 
morphology 

Virus sequence 
data 

Ref. 
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p

h
yt

a 

P
h
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o

p
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St
sc

h
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o
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H
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o
si

p
h

o
n
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e
 

H
a

lo
si

p
h

o
n

 

to
m
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 Unclassified, Phaeovirus-like 170, icosahedral ND [113] 

La
m

in
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ia
le

s 

Le
ss

o
n

ia
ce

ae
 

Ec
kl

o
n

ia
 

 r
a

d
ia

ta
 Unclassified, Tobamovirus-

like, ssRNA 
25x280 ND [115] 

Unclassified,  
Potyvirus-like, ssRNA 

25x700-900 ND 
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Table 0.6: Reports of virus-like particles (VLPs) and virus sequences found in 
macroalgae, since the 2011 review [101]. 
 

P
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yl
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m
 

C
la

ss
 

O
rd

e
r 

Fa
m

ily
 

Sp
e

ci
e

s Virus classification, 
genome type 

Virion size (nm) 
and 
morphology 

Virus 
sequence 
data 

Ref. 
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Unclassified, dsRNA ND Viral 
metagenome 

[123] 
P
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o

p
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p
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P
. d
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ta
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P
. t

en
er
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 Unclassified 100, spherical, 

dark stained 
ND [124] 

P
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o
p
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ye
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s Unclassified 100, spherical, 
dark stained 

ND [124] 

Phycodnaviridae ND 8 EVEs [116] 
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u
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n
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a

 

p
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n
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 Unclassified, dsRNA ND Viral 
metagenome 

[123] 

N
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n
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a
 Phycodnaviridae ND 1 EVEs [116] 
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ly
si

p
h

o
n
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o
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Unclassified, dsRNA ND Viral 
metagenome 

[123] 

C
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n
id

io
p

h
yc

ea
e

 

C
ya

n
id

ia
le

s 

C
ya

n
id

ia
ce

ae
 

C
ya

n
id

io
sc

h
yz

o
n

 

m
er

o
la

e 

Phycodnaviridae ND 6 EVEs [116] 
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Table 0.6 (continued) 
P

h
yl

u
m

 

C
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ss
 

O
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e
r 
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m
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Sp
e
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e

s Virus classification, 
genome type 

Virion size (nm) 
and morphology 

Virus sequence 
data 

Ref. 
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s 

B
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so
n

ia
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D
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 p
u
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h
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Unclassified 
Picornavirales, 
ssRNA 

30, hexagonal, 
Picornavirales-like 

Viral 
metagenome 

[122] 

Unclassified, 
Totivirus-like, 
dsRNA 

40, hexagonal, 
Totivirus-like 

  

C
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s 

R
h

o
d

o
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ea
e

 

B
o
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m

p
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Unclassified 70-75, spherical, 
dark stained 

ND [125] 

Unclassified 70-75, hexagonal   
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p
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G
ig

ar
ti

n
al

e
s 
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u
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Unclassified, dsRNA ND Viral 
metagenome 

[123] 

D
u

m
o

n
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a
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m

p
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x 

Phycodnaviridae ND 1 EVEs [116] 

En
d

o
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ae

 

G
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p
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s 
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Phycodnaviridae ND 1 EVEs [116] 

G
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n
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e

 

C
h

o
n

d
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ca
n

th

u
s 

a
ci

cu
la

ri
s 

Unclassified, dsRNA ND Viral 
metagenome 

[123] 

C
h

o
n

d
ru

s 

cr
is

p
u

s 

Phycodnaviridae ND 2 EVEs [116] 

Unclassified, 
Totivirus-like, 
dsRNA 

ND Viral 
metagenome 

[123] 
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Table 0.6 (continued) 

P
h

yl
u

m
 

C
la

ss
 

O
rd

e
r 

Fa
m

ily
 

Sp
e

ci
e

s Virus classification, 
genome type 

Virion size (nm) 
and morphology 

Virus sequence 
data 

Ref. 
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a
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Phycodnaviridae ND 2 EVEs [116] 

P
h
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p
h

o
ra
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ae

 

A
h
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si

s 

fl
a

b
el
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o
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 Phycodnaviridae ND 2 EVEs [116] 
M

a
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o
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rp
u

s 

st
el

la
tu

s 

Unclassified, dsRNA ND Viral 
metagenome 

[123] 
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m
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m
 Phycodnaviridae ND 1 EVEs [116] 

Fu
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ea
e
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a
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m

b
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ca
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Unclassified, dsRNA ND Viral 
metagenome 

[123] 
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G
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n
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i 

G
. v
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m
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u
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p

h
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Phycodnaviridae ND 1-4 EVEs per 
species 

[116] 
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Table 0.6 (continued) 
P

h
yl

u
m

 

C
la

ss
 

O
rd

e
r 

Fa
m

ily
 

Sp
e

ci
e

s Virus classification, 
genome type 

Virion size (nm) 
and morphology 

Virus sequence 
data 

Ref. 
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H
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u
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a
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a
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 Phycodnaviridae ND 2 EVEs [116] 

G
ra

te
lo

u
p

i

a
 c

h
ia

n
g
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Phycodnaviridae ND 3 EVEs [116] 

G
ra

te
lo

u
p

ia
 

tu
ru

tu
ru

 

Phycodnaviridae ND 1 EVEs [116] 

Unclassified, dsRNA ND Viral 
metagenome 

[123] 

P
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s 

P
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m
ar

ia
ce

ae
 

P
a

lm
a
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a

 

p
a

lm
a
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Unclassified, dsRNA ND Viral 
metagenome 

[123] 
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Table 0.6 (continued) 

P
h

yl
u

m
 

C
la

ss
 

O
rd

e
r 

Fa
m

ily
 

Sp
e

ci
e

s Virus 
classification, 
genome type 

Virion size (nm) 
and morphology 

Virus sequence 
data 

Ref. 
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p
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yt

a 
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o
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e
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le

s 

D
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m
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e
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ce
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D
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m
a

re
st
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vi
ri

d
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Phycodnaviridae ND 5 EVEs [116] 

D
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ty
o

ta
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s 

D
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ta
ce
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D
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o

p
te
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s 

u
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u
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Phycodnaviridae ND 4 EVEs [116] 
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to

ca
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C
h

o
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ce
ae

 

C
la

d
o

si
p

h
o

n
 

o
ka

m
u

ra
n

u
s 

Phaeovirus ND 5 NCLDV core 
genes 

[31] 

Ec
to

ca
rp
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ea

e
 

Ec
to

ca
rp

u
s 

si
lic

u
lo

su
s 

Phycodnaviridae ND 172 EVEs [116] 

Phaeovirus ND 5 NCLDV core 
genes 

[31] 
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yt

o
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p
h

o
n
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ea

e
 

C
o
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o

m
en
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si
n

u
o
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Phycodnaviridae ND 6 EVEs [116] 
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o
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p
h

o
n
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m
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a

 Phycodnaviridae ND 10 EVEs [116] 

Fu
ca

le
s 

Sa
rg

as
sa
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ae

 

Sa
rg

a
ss

u
m

 s
p

p
.:

 

S.
 f

u
si

fo
rm

e 

S.
 h

em
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h
yl
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m
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 h
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er
i 

S.
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er
ri

m
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m
 

S.
 t

h
u

n
b
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g

ii 

S.
 v

a
ch

el
lia

n
u

m
 

Phycodnaviridae ND 3-5 EVEs  
Per species 

[116] 

Is
h

ig
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le
s 

Is
h

ig
ea

ce
ae

 

Is
h

ig
e 

o
ka

m
u

ra
i 

Phycodnaviridae ND 3 EVEs [116] 
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Table 0.6 (continued) 
P

h
yl

u
m

 

C
la

ss
 

O
rd

e
r 

Fa
m

ily
 

Sp
e

ci
e

s Virus classification, 
genome type 

Virion size (nm) 
and morphology 

Virus sequence 
data 

Ref. 

O
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p

h
yt

a 

P
h

ae
o

p
h

yc
ea

e
 

La
m

in
ar

ia
le

s 

Le
ss

o
n

ia
ce

ae
 

Ec
kl

o
n

ia
 

ra
d

ia
ta

 

Unclassified, 
Circoviridae-like, 
ssDNA 

ND Viral 
metagenome 

[120] 

Unclassified, 
Phaeovirus-like 

ND 

La
m

in
ar

ia
ce

ae
 

Sa
cc

h
a

ri
n

a
 ja

p
o

n
ic

a
 

Phaeovirus ND 1 NCLDV core 
gene 

[31] 

Phycodnaviridae ND 1 EVEs [116] 

Unclassified ND 8.9-10.21 % of 
transcripts were 
of viral origin 

[121] 

Sa
cc

h
a

ri
n

a
 

sc
u

lp
er

a
 

Phycodnaviridae ND 5 EVEs [116] 

 

0.4.2 Independent Evolution of Plant and Macroalgal Viruses 

 
Most major virus lineages (+ and - sense ssRNA, dsRNA, ssDNA, dsDNA, and RT) 

probably originated before the origin of eukaryotes or their major supergroups, 

because most major virus groups infect multiple eukaryotic supergroups [134, 135]. 

Assuming that the early ancestors of Archaeplastida and the SAR clade were exposed 

to the same major virus lineages; have distinct virus-host relationships evolved in the 

plant and macroalgal lineages? 

Complex multicellularity has evolved independently in land plants, green 

macroalgae, red macroalgae, and brown macroalgae. Brown macroalgae are very 

distantly related to Archaeplastida and are the only members of the SAR clade with 

complex multicellularity. Brown macroalgae have become important to evolutionary 

and molecular biology due to their unique signalling systems, halogen metabolism, 

photosynthesis pathways and pigments, cell walls, carbohydrate synthesis and storage, 
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lipid metabolism, and cell cycles [136–139]. Like their hosts, the viruses of these 

lineages may have also evolved independently, especially when comparing the brown 

macroalgae with Archaeplastida. 

At some point during the transition from unicellular green algae to plants, 

NCLDVs may have been excluded from land plants [117]. Viruses cannot pass through 

intact cell walls, so they must bypass this barrier by using 1) vectors, 2) virus-encoded 

cell wall degrading enzymes, 3) entering through already damaged cell walls or 4) 

vertical transmission via host reproduction [109]. Most (~75 %) NCLDV hosts may be 

from aquatic environments, possibly because virus particles as large as those of 

NCLDVs may not be able to disperse effectively in terrestrial environments [31]. These 

two limitations could have excluded NCLDVs from land plants as they evolved walled 

dispersal stages and moved from aquatic to terrestrial habitats. The NCLDV-like 

sequences in lycophytes and bryophytes are probably remnants of NCLDV infections in 

green algae [117], whilst NCLDVs may continue to infect marine macroalgae due to 

their aquatic environments and unwalled dispersal stages (Table 0.7). 

A key difference between plants and macroalgae is the complexity of their 

multicellularity. For example, the number of cell types decreases from land plants 

through brown macroalgae, red macroalgae, and finally green macroalgae (Table 0.7). 

In addition, all plant body plans are parenchymatous, whereas macroalgae can have 

simpler pseudoparenchymatous, filamentous or siphonous forms (Table 0.7). 

Plasmodesmata and vascular tissue are structural features which have clear 

implications for viral infections. In plants, viruses can move short distances between 

adjacent cells through the plasmodesmata, often using virus-encoded proteins. Viruses 

usually move between cells to reach the vascular tissue, which rapidly carries viruses 

to many locations within the host. This long distance movement is vital for most plant 
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viruses, as it allows them to achieve more effective ‘systemic’ infections, rather than 

be restricted to the initially infected cells [109]. Similar short distance transport of 

viruses in red macroalgae would be restricted by the absence of plasmodesmata, 

whilst similar long distance transport of viruses would be restricted in most 

macroalgae, due to the absence of vascular tissue (Table 0.7). Long distance transport 

would be possible in some brown macroalgae which have vascular tissue (sieve tubes), 

such as kelps, but these sieve tubes are less extensive than the xylem and phloem of 

plants [140, 141]. This exemplifies how the independently-evolved multicellularity of 

plants and macroalgae may have created different virus-host interactions. Macroalgal 

viruses may have evolved ways of achieving systemic infections not known in plant 

viruses. 

 The presence or absence of vascular tissue also has implications for virus 

transmission between hosts. The vast majority of plant viruses bypass host cell walls 

using vectors, which are mostly specialist herbivorous insects which pierce the plant 

vascular tissue and suck out nutrition (piercing/sucking feeding mode). These vectors 

are highly effective because they mostly feed on specific plants (90 % of insect 

herbivores feed on around 3 plant families [142]) and they deliver viruses directly into 

the vascular tissue, which favours systemic infections. Their effectiveness is shown by 

the rarity of plant virus vectors with chewing feeding modes [109, 143]. In marine 

systems, insects are absent and the dominant marine herbivores include sea urchins, 

gastropods, crustaceans, and fish [107]. In contrast to insect herbivores, most marine 

herbivores are generalists which feed on 10 to >20 macroalgae families and also 

consume detritus and animals, usually by chewing or rasping feeding modes (Table 0.7; 

[107, 142]. Therefore, to use marine herbivores as vectors, macroalgal viruses may 

have evolved different strategies to plant viruses, such as novel ways of moving 
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between host cells or persisting in vectors. Alternatively, macroalgal viruses may be 

more reliant on other transmission routes, such as non-herbivore vectors, the abiotic 

environment, or latent proviruses. 

0.4.3 Distinct Environments of Plant and Macroalgal Viruses 

 
How have the contrasting abiotic and biotic environments of land plants and 

marine macroalgae shaped the evolution of their respective virus-host relationships? 

The routes of aquatic virus transmission are not well understood, especially those 

involving vectors. One of the few known examples of marine virus transmission vectors 

are planktonic crustaceans carrying EhVs over many kilometres [144]. Macroalgae are 

infected by a range of poorly understood pathogens including fungi, nematodes, 

oomycetes, protozoans, bacteria, and macroalgae [145–148]. Most of these pathogens 

have some mechanical or chemical means to penetrate cell walls and potentially act as 

viral vectors. 

A notable interaction which is more common in marine versus terrestrial 

systems is epibiosis (organisms living attached to the surfaces of other organisms). 

Aquatic environments more reliably provide nutrients and prevent desiccation, which 

makes most available surfaces possible habitats for epibiotic organisms [149], whilst 

terrestrial epibiotes are restricted to humid climates [150]. This is why terrestrial 

epibiosis is restricted to a few groups (mosses, lichens, unicellular algae, and some 

seed plants), whilst most marine phyla have many members with epibiotic life history 

phases [150]. Macroalgae are colonised by diverse invertebrates, microbes, unicellular 

algae, and other macroalgae [151], which could transmit viruses by shedding adsorbed 

viruses near wounds or abrasions on macroalgae. 



62 
 

 Transmission without vectors may be more important for macroalgal viruses. 

There only are a few examples of plant viruses being spread without vectors, such as 

clothing in cultivated systems, direct plant to plant contact, contact with virus-

contaminated soil, fluids ejected from leaf pores (guttation), water in hydroponic 

systems [109], and possibly aquatic environments [109, 152]. About 25 % of plant 

viruses can infect the pollen or embryo and subsequently be transmitted through 

seeds; vertical transmission via genome integration is only known in the 

Caulimoviridae [109]. Phaeoviruses employ a latent infection strategy to infect brown 

macroalgae, but whether this is representative of macroalgal viruses is unknown. 

One of the few examples of virus transmission by physical means is EhVs 

transmitted by seawater aerosols [153]. Aquatic virus transmission is not well 

understood, but aquatic systems are more favourable than terrestrial ones for virus 

transmission without vectors. This may be because pathogens can survive or remain 

infective longer in water than in air, and coastal organisms have more linear 

distributions (especially macroalgae, due to depth/light constraints or aquaculture 

practices) [154, 155]. Aquatic environments are also more favourable to the passive 

diffusion of viruses without adsorption onto vectors or abiotic particles. Favourable 

micro-currents in laboratory cultures can increase virus infection rates [156], but in 

natural environments this could be an unreliable transmission route for macroalgal 

viruses. If transmitted by diffusion or currents, the number of virions required to 

achieve sufficient infection rates increases as susceptible host density decreases. One 

analogous example of this is the pollination of seagrasses: when pollen was dispersed 

by passive diffusion alone, pollinations rates decreased once male and female flowers 

were >20 cm apart. The addition of small marine invertebrates allowed the pollination 

rate to remain unchanged, even in seagrass flowers 150 cm apart. This was because 
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the invertebrates moved actively between the seagrass flowers with pollen attached to 

their body surfaces [157]. For the viruses of macroalgae or aquatic plants, passive 

diffusion may be reliable when susceptible hosts are densely distributed and vectors 

may become more important when susceptible hosts are sparsely distributed. 

If an algal virus is dispersed without a vector and lacks any cell wall-degrading 

enzymes (only known in Chlorovirus; [59]) or mechanisms, then it must randomly 

contact already damaged cell walls of its target host, which seems unlikely. This may 

be why the same environmental and cell factors induce Phaeovirus replication and 

host reproduction, to maximise the chance of viruses infecting susceptible unwalled 

host zoids (phaeoviruses cannot infect the walled adult cells) [158]. Random passive 

diffusion is therefore advantageous for phaeoviruses because they produce virions 

when susceptible host zoids are densely distributed. Without this synchronisation with 

host reproduction, the chance of virions encountering host zoids may be too low to 

maintain the virus-host relationship. Though phaeoviruses may not be representative 

of macroalgal viruses, they are an example of how the unique selective pressures of 

their marine environment and macroalgal hosts have led to novel viral evolutionary 

strategies which do not exist in terrestrial plants. 

 

  



64 
 

Table 0.7: The features of plants and macroalgae relevant to viral infection. This 
includes evolutionary lineages, divergence times (bya), habitat, morphological and life 
history traits, and associated organisms. References: Morphological traits - plants [159, 
160], charophytes [140, 161], and macroalgae [140, 141]; number of cell types [162, 
163]; life history dispersal stages [140, 160, 164]; main virus vectors [109]; grazer 
feeding modes and main grazer groups [107, 142, 165, 166]; Epibiotes [149–151, 167]; 
evolutionary divergence times: last common ancestor of eukaryotes, SAR clade, and 
Archaeplastida [168], Chromista [169], Ochrophyta [170], red and green macroalgae, 
charophytes, and all embryophyte land plants [160, 168], and brown macroalgae [171, 
172]. Y = yes, N = no, ND = no data (found by this review), - = unknown, na = not 
applicable, M = male, F = female, P/S = piercing/sucking. 
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p
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0
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Primary habitat 

Terrestrial     Y Y Y 

Freshwater    Y    

Marine Y Y Y     

Morphology 

Siphonous   Y     

Filamentous Y Y Y Y    

Pseudo-
parenchymatous 

Y Y Y     

Parenchymatous 

(simple)1 

 Y Y Y    

Parenchymatous 

(complex)2 

Y    Y Y Y 

Vascular tissue Y3     Y Y 

Plasmodesmata Y 
 

Y4 Y Y Y Y 

Average no. of 
cell types (range) 

9 (3-14) 5 (1-
9) 

2 (1-3) ND 23 (20-25) 23 (20-25) 63 (25-100) 

Life history 

Dispersal medium of reproductive cells: 

Air     Y Y Y 

Freshwater    Y Y5 Y5  

Seawater Y Y Y     

Do cell walls protect the reproductive cells? 

Male gametes N N6 N7 N7 N N Y9 

Female gametes N Y8 N7 Y8 Y8 Y8 Y8 
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Spores N N N na Y Y na 

Associated organisms 

Main virus 
vectors 

- - - - - - P/S insects 

Grazer feeding 
modes 

Generalist: 
Chewing 
Rasping 

P/S10 

ND Specialist: 
Chewing 
Rasping 

Specialist:  
Chewing 
Rasping 
P/S 

Specialist:  
Chewing 
Rasping 
P/S 

Main grazer 
groups 

Fish, sea urchins, gastropods, 
crustaceans 

ND Insects, mammals, gastropods 

Epibiotes Bacteria, protozoans, diatoms, 
macroalgae, bryozoans, 
echinoderms, sponges, worms, 
crustaceans, ascidians, cnidarians 

ND Unicellular algae, lichens, mosses, seed 
plants 

Table 0.7 Footnotes: 
1 Cells are arranged in 1-2 rows. 
2 Cells are differentiated into multiple specialised tissues. 
3 A minority of brown macroalgae (such as the Laminariales) have vascular tissue 
(called sieve tubes). 
4 A minority of green macroalgae consist of a single large multinucleate cell 
(siphonous). 
5 The male gametes of seedless plants swim through rain or melt water. 
6 Cells are covered with a layer of mucilage comprised of sulfated polysaccharides. 
7 In some species, these cells are covered with a layer of calcified scales.                                                                                  
8 Reproductive cells are unwalled, but retained inside walled reproductive structures 
on adult. 
9 Male plant gametes are unwalled, but protected by walled gametophyte (pollen). 
10 The only known piercing/sucking macroalgal herbivores are the ascoglossan 
gastropods, which feed on siphonous (see 4) green macroalgae. 
 

0.4.4 Human Influences on the Viruses of Plants and Macroalgae 

 
Since the ‘Green Revolution’ of the middle twentieth century, large scale 

agriculture has changed the environment for plant viruses in various ways, such as 

novel interactions between cultivated and natural systems, or the transportation of 

plants, vectors, and viruses outside of their native ranges. Viruses cause major losses 

of terrestrial crops and various methods are used to control plant viruses, such as 

reducing insect vectors with pesticides [109]. Many plant viruses have adapted to 

cultivated plants, as these hosts are often genetically uniform and densely spaced. This 

has resulted in the selection of more virulent viruses, leading to the emergence of 



66 
 

many destructive viral diseases in agriculture, exemplified by the increasing levels of 

disease from wild, to semi-wild, to cultivated plant populations [173].  

The ‘Blue Revolution’ of aquaculture is currently ongoing and includes a 

transition from Asia-dominated aquaculture and wild harvest practices to global, large 

scale macroalgal aquaculture [174]. Global macroalgal aquaculture production has 

more than doubled since 2000 and currently comprises about 30 % of global marine 

aquaculture production [175, 176]. However, this is still only 0.3 % of the annual 

production of terrestrial agriculture [175]. The domestication of macroalgae is also in 

its early stages, but similar problems have emerged as with cultivated plants, such as 

decreased genetic diversity and disease emergence (either unknown, bacterial, or 

protist pathogens, [145, 177, 178]. Further novel macroalgal diseases and interactions 

between wild and cultivated macroalgae have been predicted to emerge [179]. 

Whether the intensification of cultivation will alter virus relationships with macroalgae 

in similar ways as seen in plants is a major knowledge gap in understanding of 

sustainable cultivation systems and viral evolution. 

The majority of wild plant viruses may be symptomless [180, 181] and have 

been overlooked by 120 years of plant virology in favour of the disease-causing viruses 

of economically important crops, which are the majority of known plant viruses [40, 

182] [183]. Over 40 years of genetic and biochemical studies of plants and their viruses 

have provided detailed understanding of their mechanisms and host interactions 

[109]. These fields are less developed for algae, but are advancing quickly. These are 

important, but early stage, developments for the future of macroalgal domestication, 

conservation, disease control, and genetic modification [184]. Macroalgal virology has 

yet to begin in earnest (Tables 1.4-1.6) and must be expanded to meet the challenge of 

emerging viral diseases in ecosystems and expanding macroalgal aquaculture. 
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0.5 The Brown Macroalgae 
 

The brown algae (kingdom Chromista which is synonymous with Heterokonta or 

stramenopiles, phylum Ochrophyta/Heterokonta, class Phaeophyceae; [185] are 

macroalgae which diverged from the Plantae lineage (plants, green and red algae) 1.5 

billion years ago [186] and since then the brown algae and Plantae have independently 

evolved complex multicellularity. This has given brown algae unique metabolism, 

physiology, cellular structures, cell walls, polysaccharides, and developmental 

processes [136, 137]. Brown algae diverged from their closest relatives (class 

Schizocladiophyceae) around 260 Ma (Figure 0.5; [171, 172]). The first (basal) brown 

algal orders had isomorphic life histories and the derived orders (10/17 of brown algal 

orders) with heteromorphic life histories evolved later during the ‘Brown Algal Crown 

Radiation’ 110-155 Ma (BACR; Figure 0.5; [172]). Brown algal evolution has many 

unresolved relationships and their evolution in general is not well understood [171]. 

There are currently around 2,000 recognised species and 300 genera of brown algae 

[110]. 

0.5.1 Brown Macroalgal Morphology 

 
Brown macroalgal morphologies range from uniseriate filaments (filamentous) 

or compacted filaments (pseudoparenchymatous), to differentiated tissues 

(parenchymatous). Growth occurs from the meristem, which is either terminal (at the 

ends) or intercalary (at the middle or base). The stramenopile chloroplast of brown 

algae has four membranes and originated from a secondary endosymbiotic event [187, 

188]. The thylakoids have three layers and a girdle lamella and most species lack 

pyrenoids (storage extension of the chloroplast). The endoplasmic reticulum envelops 

the chloroplasts (multiple or singular per cell) and nucleus. The photosynthetic 



68 
 

pigments are fucoxanthin, carotenes, violaxathin, and chlorophylls a, c, and c1. The 

main carbohydrates used for storage are laminaran (contains glucose and mannitol) 

and for cell walls are alginates, fucoidan/fucan (sulfated polysaccharides), and 

cellulose. Alginates may provide flexible structural support and desiccation resistance, 

whilst sulfated polysaccharides may provide desiccation resistance and defence. The 

cell walls have channels called plasmodesmata which connect the cytoplasms of 

neighbouring cells. Brown algae have small membrane-bound vacuoles called 

physodes which contain phenolic compounds possibly used in defence against 

herbivores, oxidative stress, and UV radiation [187]. 

0.5.2 Brown Macroalgal Ecology 

 
Brown algae are almost exclusively marine, often dominating intertidal and 

subtidal coastal zones worldwide, in polar, cold to warm temperate, and sub-tropical 

waters. They usually live attached to rocks, but also artificial structures, other 

macroalgae, and some species are free-floating [187]. 

The only characterised macroalgal viruses infect the order Ectocarpales, a group of 

~775 species in 203 genera [110], which are small filamentous, 

pseudoparenchymatous, or parenchymatous macroalgae. The Ectocarpales member 

Ectocarpus siliculosus is a model organism for molecular and genetic studies of brown 

algae [103, 189], as it has a short life history (three months; Figure 0.4), is easily 

genetically crossed, and has a smaller genome than other brown algae (200 Mb vs 640 

Mb in Laminaria digitata; [190]). The genus Ectocarpus is distributed worldwide in 

temperate marine waters from the high intertidal to the sublittoral and sometimes 

occurs in freshwater and brine environments. Wild Ectocarpus can grow up to 30 cm in 

length and colonise a range of surfaces including other macroalgae and artificial 



69 
 

materials, making it a common fouling species [137, 189]. Though their ecology is not 

well studied, small brown algae are important primary producers; for example a single 

bloom of Colpomenia (Ectocarpales) may have exported 0.2-0.8 % of the daily oceanic 

carbon flux [191]. 

The closest relatives to Ectocarpales are kelp of the order Laminariales (Figure 

0.5; diverged 76-107 Ma; [172]). Kelp can refer to any large brown algae, but here it 

refers to the order Laminariales, which comprises ~144 species in 61 genera [110]. Kelp 

sporophytes have the greatest size (1-50 metres long), complexity, and longevity (1-25 

years) of any macroalgal thalli [187, 192]. Kelp sporophytes are differentiated into 

outer meristoderm, inner cortex, central medulla, and (in derived kelp) vascular 

tissues. The sporophyte body plan is further differentiated into a blade (analogous to 

leaves), stipe (analogous to stem), and secured to substrate by a holdfast. Growth 

occurs from an intercalary meristem (at junction of stipe and blade) and the 

meristoderm (thickens the sporophyte) and sporophytes reach maturity after 1-6 years 

[193, 194]. The kelp life history is shown in Figure 0.4; per m-2 per yr-1, 3 mature kelp 

sporophytes produce 20 billion meiospores, which become 1 million gametophytes, 

which finally generate one mature sporophyte (example is of L. digitata; [195]). Unless 

carried by currents, kelp have very limited dispersal and the meiospores must settle at 

high densities to achieve fertilisation (1-10 per mm2; [196]). Kelp are self-fertile [197] 

and synchronise meiospore release which may reduce inbreeding [196, 198]. In 

laboratory cultures, kelp hybrids can be produced by intergeneric crosses, but whether 

such hybrids occur naturally is unknown [199]. 
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Figure 0.4: Life histories of (A) Ectocarpus siliculosus (Ectocarpales) and (B) Laminaria 
digitata (Laminariales). Brown macroalgal life histories alternate between diploid 
sporophyte and haploid gametophyte generations. The morphologies of gametophyte 
and sporophyte generations in E. siliculosus are similar (isomorphic, slightly 
heteromorphic; most Ectocarpales are heteromorphic), whilst in all kelp species they 
are very different (heteromorphic) [171]. Both Ectocarpus generations are uniseriate 
filamentous thalli, whilst kelp have uniseriate filamentous gametophytes and 
parenchymatous sporophytes [187]. Brown algae have free-swimming reproductive 
cells (collectively called zoids), which are produced in sporangia or gametangia (these 
reproductive organs are collectively called zoidangia). Zoids are generated by 
unilocular ((U); single compartment) or plurilocular ((P); multiple compartments) 
zoidangia. Meiosis generates meiospores (n), mitosis generates gametes (n) and 
mitospores (n or 2n), and apomeiosis (non-reductive meiosis) generates 
apomeiospores (n). All zoids (including gametes post-fertilisation) settle and develop 
into initial cells with cell walls (semi-circles) which develop via mitosis into 
multicellular thalli. 
Sexual cycles (1-3): (1) Meiosis occurs in the sporangia (sp) of the diploid sporophyte, 
which produces meiospores. Kelp sporangia form dark areas on the blade; they are 
protected by sterile filamentous paraphyses (pp) and they emerge from the thallus 
surface, with the meristoderm (md) and outer cortex (oc) just below. (2) The 
meiospores settle and develop into multicellular, haploid gametophytes. Most brown 
algal orders, including the Ectocarpales and Laminariales, have separate sexes in the 
gametophytes (dioicy), but some orders have hermaphroditic gametophytes 
(monoicy), separate sexes in sporophytes (dioecy), or hermaphroditic sporophytes 
(monoecy) [171, 200]. (3) The gametophytes produce gametes and their  fertilisation 
generates a diploid zygote which develops into the sporophyte [187]. In E. siliculosus, 
like most Ectocarpales, the male and female gametes have similar morphologies 
(isogamous). All Laminariales have antheridia (an) that produce small flagellated male 
gametes which are attracted by pheromones to large non-motile female gametes 
(oogamous) produced by oogonia (og) [171, 187]. 
Asexual cycles (4-6): Many brown algae can also reproduce asexually if they are 
fragmented, as the resultant short filaments can regrow into whole thalli. This occurs 
in kelp gametophytes [201] and any Ectocarpus thalli [137]. (4) Unfertilised Ectocarpus 
gametes (male or female) can develop into haploid parthenosporophytes, which is 
common in brown macroalgae [187]. The unfertilised female gametes of kelp can 
develop into parthenosporophytes [199, 202]. (5) Ectocarpus parthenosporophytes 
can generate apomeiospores which develop into gametophytes [203]. Most kelp only 
produce small, short-lived, and sterile parthenosporophytes which do not occur often 
naturally. They likely do not continue the life cycle [199, 202]. (6) Ectocarpus 
parthenosporophytes and sporophytes can also reproduce asexually via mitospores. A 
small portion of Ectocarpus meiospores can also develop directly into sporophytes 
[140, 203]. In kelp, only the gametophytes reproduce asexually via mitospores [204]. 
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Figure 0.5: Time tree derived from relaxed molecular clock method. Horizontal bars 
indicate 95% credible intervals of divergence time estimates. Asterisks on nodes 
correspond to calibration points. Asterisks 1 and 2 indicate calibration points with 
fossils and minimum time constraints used for nodes were 13 and 99.6 Ma, 
respectively. Asterisk 3 shows calibration point based on previous molecular clock 
study. See [172] for asterisk references and estimated ages and their 95% credible 
intervals of node number labels. Reprinted from “Molecular phylogeny of two unusual 
brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the 
Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of 
divergence times for brown algal orders”, Volume 51, Kawai et al. 2015, 918-928 [172] 
with permission from https://www.wiley.com/en-gb, under the Creative Commons 
Attribution Non-Commercial No Derivatives 4.0 International Public License. Copyright 
John Wiley & Sons, Inc. 2016. All rights reserved. 
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0.5.3 Kelp Evolution 

 
The evolutionary study of kelp has begun to combine morphological and 

genetic data, which has led to the division and merging of various kelp species [205, 

206]. Genetic molecular clock methods are especially useful to kelp evolutionary 

biology because of their morphological plasticity and lack of a fossil record [206, 207]. 

It is apparent that kelp have undergone complex radiations and geographical 

movements [205]. The main hypothesised events of kelp evolution are summarised in 

Figure 0.6, most of which have not been tested with time-calibrated phylogeny. 
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Figure 0.6: Geographical distribution of major kelp genera and the hypotheses (H) of 
major events in kelp evolution. Arrows indicate general direction of kelp migration. Key 
details meaning of colours and dotted lines. All codes and letters are detailed below. 
 
(A) H: 90.5 Ma, the Laminariales and Ectocarpales diverged [172] in the cold temperate 
NW Pacific [206], and the first (basal) kelp families evolved at around 75 Ma [172]: 

- The basal Laminariales families are Akkesiphycaceae, Chordaceae, and 
Pseudochordaceae (ACP) [172, 206] and 6/7 ACP species exist in Japan [206]. 

(B) H: ~25 Ma, the later (derived) kelp families diverged from ACP [172] in the warm 
temperate NW and NE Pacific, before separation by cooling of the Bering Sea [206]: 

- The derived Laminariales families are Agaraceae, Alariaceae, Aureophycaceae 
[208], Laminariaceae, and Lessoniaceae (AAALL). Most AAALL species and 
endemism occurs in in the NW and NE Pacific [206]. 

 (C1) H: 3.5-5.3 Ma, the Bering Strait opened, which allowed derived kelp to colonise 
the warm-temperate Arctic and later (C2) the cold-temperate N Atlantic [206, 209]. 

- Arctic cooling prevented further colonisation, as few kelp can exist in both 
temperate and Arctic waters [206]. Arctic and Atlantic kelp are distinct, but 
both include Laminaria, Saccharina, Alaria, and Agarum. Only these genera 
colonised the Atlantic via the Bering Strait and are species rich and have species 
complexes due to their recent Atlantic diversification [206]. 
- Laminaria solidungula is endemic to the Arctic and is basal to Atlantic cold 
temperate Laminaria species [206, 209]. 
- Laminaria colonised N Atlantic at 5.43 Ma and Mediterranean at 2.07 Ma and 
by 3.44 Ma diverged into N (L. hyperborea and L. digitata) and S (L. rodriguezii, 
L. ochroleuca, L. abyssalis, and L. pallida) Atlantic clades [209]. 
- The Saccharina latissima species complex colonized the Atlantic 1.22-1.68 Ma, 
creating isolated populations which have not yet undergone speciation [210]. 

(ec1-8 la1-3, le1-4, ma1-6) H: Kelp have migrated (by drifting or cool water ‘stepping 
stones’) from the N to S Hemisphere 6 times and vice versa 1 time [206, 211]. 

- Macrocystis drifted from California (ma1) to S America (ma2), S Africa (ma3), 
Australia (ma4), New Zealand (ma5), and subantarctic islands (ma6) [206]. 
- Ecklonia from Japan (ec1) to Australia (ec2) and New Zealand (ec3), S Africa 
(ec4), and back to the N Hemisphere at N Africa and NE Atlantic islands (ec5). 
Ecklonia (formerly Eisenia, [212]) from Japan (ec1) to N America (ec6), Peru and 
Galapagos (ec7), and Chilean islands (ec8) [206]. 
- Laminaria at 1.34 Ma from S Atlantic (la1) to Brazil (la2; L. abyssalis) and at 
0.87 Ma from S Atlantic (la1) to S Africa and Namibia (la3; L. pallida) [209]. 
- Lessonia, the only kelp genus endemic to S Hemisphere [206], diverged at 18 
Ma after crossing the equator and then underwent speciation in S America at 
4.6 Ma and Australasia at 3.4 Ma [205]. Lessonia migrated, in unknown order, 
to S America (le1), Australia (le2), New Zealand (le3), and subantarctic islands 
(le4) [206]. 

Other references: distributions of kelp [151, 213], N and SE Pacific Ecklonia (formerly 
Eisenia) [214–216]; S Hemisphere Lessonia and Macrocystis [217]; Arctic Alaria, 
Laminaria, and Saccharina [218]; Galapagos Ecklonia, Laminaria at Brazil and the 
Philippines [211]; and Agarum [219].* Range outside NW Pacific is of invasive Undaria 
pinnatifida [220]. ** Kelp distributions predicted based on habitat requirements; Arctic 
kelp are probably Alaria, Laminaria, and Saccharina [218]; tropical kelp live in deep 
water (30-200 m) and are probably Laminaria, Ecklonia, or Lessonia [211]. 
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0.5.4 Kelp Ecology 

 
Kelp (order Laminariales) form perennial forests or beds on 25 % of the world’s 

coastlines, primarily on Arctic and temperate coastlines from the lower intertidal to 

the subtidal zones [213, 221, 222]. Kelp forests rarely exist where minimum average 

monthly seawater temperatures are above 20 °C, but they can occur in the tropics 

(Figure 0.6) if either shallow temperate waters are created within tropical waters by 

upwelling, if tropical waters are clear enough to allow enough light penetration to 

cooler depths at which kelp can survive, or if temperatures are stable all year at the 

upper limit of kelp temperature tolerance [206, 211]. 

Kelp ecosystems are among the most productive in the world [223, 224] and they 

provide complex habitat for diverse invertebrates [151, 167], smaller macroalgae [225, 

226], deposit and filter feeders [225], microbial communities [227], grazers [228], and 

vertebrates [229, 230]. This high secondary productivity is fuelled by the rapid 

‘conveyer belt’ of kelp growth, which continuously sheds organic matter from the 

decaying blade ends. Currents carry kelp detritus, which exports carbon to ecosystems 

hundreds of kilometres away, from the land to the deep sea [231, 232]. 

Macroalgae have high net primary production (NPP) per area (420 g C m-2 yr-1, 

[233]; 1210 g C m-2 yr-1 for kelp, [234, 235]) compared to other marine macrophytes 

(seagrasses, mangroves, and salt marshes; 278-440 g C m-2 yr-1; [236]) and terrestrial 

plants (31-787 g C m-2 yr-1, [235]). Macroalgae have higher global NPP (1.5 versus 0.27 

Pg C yr-1, [236]) and global carbon burial (0.17 versus 0.15 Pg C yr-1, [233, 236]) than 

seagrasses, mangroves, and salt marshes combined. This is mainly because macroalgae 

cover a larger area (3.4 versus 0.75 million km2, [233, 236]). 
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Though macroalgae cover only 0.94 % of the global ocean surface (kelp cover 

0.09 %, [233, 237], globally they contribute 2.5 % (1.5 Pg C yr-1) of ocean NPP ([35, 233, 

236, 238]; 0.17 Pg C yr-1 of this is from kelp [235, 237]), 40.5 % of the ocean carbon 

burial (0.17 Pg C yr-1; [233, 239, 240]), and 30.4 % of the carbon exported from the 

coastal to the open ocean (0.73 Pg C yr-1; 0.14 Pg C yr-1 of which is from kelp; [232, 

241]). 

0.5.5 Human Utilisation of Kelp Resources 

 

Kelp are ecologically and economically important as they provide a range of 

benefits including fisheries, iodine cycling [242–244], tourism, scientific research, 

nitrogen cycling [245], carbon sequestration [234], climate regulation, coastal 

protection through alteration of hydrodynamics [246], nutrient cycling, and cultural 

and economic importance [247–252]. The harvesting and farming of macroalgae is 

especially important in providing new income sources for impoverished communities 

[252, 253]. 

99 % of cultivated kelp is produced for food [175, 254], whilst wild kelp are 

harvested primarily for industrial chemicals such as alginates [175, 255]. Less than 1% 

of kelp production is for emerging purposes including environmental bioremediation 

[236, 256], renewable bioenergy (unlike terrestrial bioenergy sources, macroalgae do 

not compete with food crops for land and freshwater, they require no pesticides or 

fertilisers; [257–259]), cosmetics [260], nutrition [261], and medical applications [262, 

263]. Though currently not recognised, farmed macroalgae could help mitigate climate 

change by being significant carbon sinks [237, 264]. 

Global kelp aquaculture production has increased 2.3 times since 2000 and 

currently comprises about 20% of global marine aquaculture and 30% of all macroalgal 
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aquaculture production (Table 0.8). Harvesting of wild macroalgae has remained 

constant due to ecological constraints and overexploitation [177, 265]. However, 

macroalgal industries are in their infancy, as they produce only 0.3 % of the annual 

production of terrestrial agriculture [175]. 

Currently, over 95 % of cultured and harvested macroalgae are produced in Asia 

[174] and 99 % of cultured kelp are either Saccharina japonica (26% of all aquaculture 

macroalgae) or Undaria pinnatifida (6.7 % of all aquaculture macroalgae; Table 0.8). 

Though kelp aquaculture is expanding globally [175], such as with Saccharina and 

Laminaria spp. in Europe [265, 266] and Macrocystis pyrifera in Chile [267], most 

macroalgal production outside of Asia is wild-harvested (Table 0.8). 

 

Table 0.8: Summary of global macroalgal production (aquaculture and wild harvest) in 
2016. Values are metric tonnes in fresh weight and numbers in parentheses are % of 
total global macroalgal production [176]. 
 

Category Aquaculture Wild harvest Total global 
production 

All kelp 10289003 (33.36) 369274 (1.19) 10658277 (34.55) 

Undaria 
pinnatifida 

2069682 (6.71) 2679 (0.008) 2072361 (6.718) 

Saccharina 
japonica 

8219210 (26.65) 58111 (0.188) 8277321 (26.838) 

Alaria esculenta 76 (<0.001) 0 (0) 76 (<0.001) 

Macrocystis 
pyrifera 

1 (<0.001) 35093 (0.114) 35094 (0.115) 

Saccharina 
latissima 

33 (<0.001) 0 (0) 33 (<0.001) 

Laminaria 
digitata 

0 (0) 49413 (0.16) 49413 (0.16) 

Lessonia spp. 0 (0) 49802 (0.16) 49802 (0.16) 

Laminaria 
hyperborea 

0 (0) 68291 (0.22) 68291 (0.22) 

Macroalgae 30050655 (97.45) 785992 (2.55) 30,836,647 
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0.5.6 Anthropogenic Impacts on Kelp Resources and Ecosystems 

 
By 2100, the global mean surface temperature is predicted to be 2-4 oC higher than 

preindustrial temperatures [268]. The upper layers of the ocean have warmed by 0.1 

oC per decade since around 1950 [269, 270], however some regions are warming 

hotspots such as the Northeast Atlantic which has warmed by 0.3-0.8 oC per decade 

[271]. Anthropogenic changes in marine temperatures, pH, and oxygenation are 

projected to have a range of impacts including increased disease prevalence, 

distribution shifts, and decreased primary productivity [272]. 

Over the last 50 years, 38 % percent of kelp ecoregions globally have decreased in 

kelp abundance, but with large variation between localities (in 27 % and 35 % of 

regions, kelp abundance has increased and not changed, respectively) due to complex 

interactions influencing kelp responses to change. This is a different scenario from 

most terrestrial and other marine foundation species, which have declined more 

consistently across the globe [222]. Globally, across hundreds of kilometres of 

coastline, kelp ecosystems are being replaced by algal turfs (structurally simple mats of 

low-lying algae; [273–276]) and impoverished barrens due to overgrazing by sea 

urchins [277] or tropical herbivorous fish migrating into warming temperate waters 

[278]. 

Another major consequence of human impacts is kelp distribution shifts. The 

invasive Undaria pinnatifida has been introduced around the world (35-50 km-year; 

[220, 279, 280]). Possible anthropogenic cooling of waters in South Africa may have 

driven the rapid eastward expansion of Ecklonia maxima (36.5 km/year, [280]) into the 

range of Ecklonia radiata [281]. Macrocystis pyrifera and Australian E. radiata have 

declined dramatically due to warming (95 % cover reduction and 88 km/year, 

respectively; [280]). Warm temperate Laminaria ochroleuca (2.5-5.4 km/year, [282]) 
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has expanded into the warming Northeast Atlantic where the cold temperate L. 

digitata, L. hyperborea, and Alaria esculenta are retreating northwards [192]. 

Northwards moving local extinctions of Northeast Atlantic L. digitata are predicted to 

occur from 2050 to 2100 [283]. These shifts are expected to reduce the ecosystem 

services provided by kelp, for example; kelp forests exported 0.5 times less carbon in 

warmed waters [284]. 

The main anthropogenic factors which are driving these changes in kelp 

ecosystems are climate change, pollution and eutrophication, coastal development, 

[192, 213, 222], and increasingly frequent storms and heat waves [285, 286]. These 

abiotic factors cause losses of kelp by altering complex biotic interactions such as 

competition and grazing, which is why the recovery of kelp ecosystems varies so 

widely [276]. These impacts are expected to threaten kelp aquaculture by reducing 

growth [287] and increasing disease [145, 177, 179, 288–290]. 

0.5.7 Viruses: A Major Knowledge Gap in Kelp Biology 

 

Since known phaeoviruses are temperature sensitive [77, 88], elevated sea 

temperatures could led to more disease caused by phaeoviruses. This could include 

more frequent inhibition of reproduction, possibly causing reduced recovery of kelp 

ecosystems. Invasive plant spread can be facilitated by leaving their viruses behind in 

their native range [291] or by spreading novel viruses to native competitors [292]. 

Viruses could play similar roles for macroalgal range shifts driven by anthropogenic 

influences. 

Controlling disease is a major issue for the sustainable future of macroalgal 

aquaculture [145, 177, 293]. Disease is facilitated by cultivation due to the reduced 

genetic diversity of domesticated organisms, high stock density, crop to wild disease 



82 
 

spread, and the favouring of horizontal over vertical viral transmission [145, 177, 179, 

294]. To date, with the exception of Ectocarpales phaeoviruses and possibly green spot 

disease in Pyropia red macroalgae [124], no macroalgal disease has ever been linked to 

a virus (Table 0.5 and Table 0.6). Currently, the major causes of disease in marine 

macroalgal aquaculture are epiphytes, bacteria, and oomycetes [145, 179]. However, 

as previously unknown viruses have emerged to become important pathogens of crops 

[295] and marine animals [296], there is potential for viruses to emerge as important 

macroalgal viruses in the future. 

The brown algae are the only lineage to have evolved complex multicellularity 

[103] within the SAR clade, which is one of the most diverse major eukaryotic groups 

[188, 297]. Since phaeoviruses are related to phycodnaviruses which infect unicellular 

eukaryotes, then comparative genomics of novel phaeoviruses could reveal how 

phycodnaviruses have adapted to infect multicellular hosts. Furthermore, the 

widespread and latent phaeoviruses could offer a unique system for exploring the 

deeper evolutionary relationships of virus and host, as integrated viral sequences 

(EVEs) evolve at the rate of the host and can be compared to exogenous viruses [298]. 

For example; to test whether phaeoviral EVE ages correlate with the proposed timing 

of the diversification of the derived kelp families in the North Pacific [281], or how the 

dynamics of expansion and reduction in phaeoviral EVEs over long evolutionary 

timescales compare to hypotheses regarding NCLDV genome evolution [16]. 

Almost nothing is known of viruses and their roles in the ecology, health, and 

evolution of macroalgae [96]. Basic knowledge is missing, such as macroalgal virus host 

range, disease, genetics, distribution, and infection cycles. These knowledge gaps 

should be addressed, especially since macroalgal ecosystems are in decline and 

macroalgal aquaculture is expanding. Before viruses can be accounted for in the 
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conservation, utilization, and evolutionary study of macroalgae, basic research on 

macroalgal viruses is needed. 

 

0.6 Aims 
 

One basic research need is to screen brown algae outside of the order 

Ectocarpales for phaeoviruses. Given that they are closely related to the Ectocarpales 

and are ecological and economic important, the order Laminariales is a good option for 

phaeoviral screening. 

The objective of this study is to investigate the evolutionary relationships, symptoms, 

host impacts, host range, distribution, and genomics of phaeoviruses which infect the 

order Laminariales (kelp). 

The specific objectives are as follows: 

1) Assess laboratory cultured kelp gametophytes (primarily Laminaria digitata) for 

Phaeovirus-like symptoms resembling those known in the Ectocarpales. This will 

involve optical, epifluorescent, and transmission electron microscopy. This may show 

what infection strategies kelp phaeoviruses employ and establish a model with which 

proceed with for some of the following aims. 

2) Screen kelp sporophytes using PCR for the Phaeovirus core genes MCP across a 

wide range of species from around the world, followed by sequencing and 

phylogenetic analyses to investigate the evolutionary relationships of the phaeoviruses 

of the Laminariales and Ectocarpales. This may reveal a broader evolutionary history 

for the phaeoviruses and what strategies they use to infect kelp. 
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3) Compare the frequency of symptoms between kelp gametophytes cultured at 

different temperatures and the reproductive success between infected and virus-free 

gametophytes. This may show how Phaeovirus infections impacts kelp. 

4) Isolate Phaeovirus virions from laboratory cultured kelp gametophytes and use 

next generation sequencing to acquire a Phaeovirus genome. Screen all of the 

available brown algal genomes in databases for integrated Phaeovirus sequences. This 

should allow comparisons between the genes or genomes of kelp phaeoviruses with 

other Phycodnaviridae. 
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CHAPTER 1      MICROSCOPY OF KELP PHAEOVIRUSES 
 

1.1 Abstract 
 

Phaeoviruses are latent dsDNA viruses that insert their genomes into those of 

their brown algal (Phaeophyceae) hosts. Currently, these viruses are described in only 

the order Ectocarpales, which is comprised of small and short-lived macroalgae. Here 

we report morphological evidence of a novel Phaeovirus, Laminaria digitata virus 1 

(LdV-1), which infects the kelp (order Laminariales) Laminaria digitata, an ecologically 

and commercially important group of macroalgae. Epifluorescence and TEM 

observations indicated that LdV-1, the type species of subgroup C, may use a latent 

infection strategy and targets the host nucleus for its genome replication, followed by 

gradual degradation of the chloroplast and assembly of virions in the cytoplasm of 

both vegetative and reproductive cells. However, the potential biological impact of 

Phaeovirus infection in kelp remains unknown. 

1.2 Introduction 
 

Kelp (order Laminariales) belong to the brown algae (class Phaeophyceae) and 

are the largest marine photosynthetic organisms, engineering temperate rocky 

coastlines into complex habitats comparable to terrestrial forests and supporting 

extensive marine ecosystems and industries [221]. They are the dominant producers of 

biomass in coastal temperate waters [232], influencing water movement [246], and 
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biogeochemistry [243]. Global aquaculture and harvesting of kelp are sources of food, 

industrial chemicals, biofuel, fertiliser, and pharmaceuticals [258, 299]. 

Kelp are closely related to the order Ectocarpales, which are small brown algae 

that often co-occur with kelp [137, 172, 190]. The Ectocarpales are host to the only 

described macroalgal viruses (genus Phaeovirus), which are comprised of nine virus 

species infecting seven Ectocarpales species. Phaeoviruses are eukaryotic algal viruses 

(family Phycodnaviridae; [37]) with large (150-350 kb), complex dsDNA genomes [39, 

40], and are Nucleo-Cytoplasmic Large DNA viruses (NCLDV) alongside Poxviridae, 

Asfarviridae, Iridoviridae, Ascoviridae, and Mimiviridae. The well-studied type species 

of Phaeovirus is Ectocarpus siliculosus virus 1 (EsV-1), which infects Ectocarpus 

siliculosus using a persistent strategy, integrating its genome into the genome of the 

host [60, 76]. Phaeoviruses appear to infect only the short lived, wall-less life cycle 

stages (gametes and spores; hereafter collectively referred to as zoids). Mitosis of the 

zoids gives rise to adult multicellular macroalgae (gametophytes or sporophytes). 

Every host cell inherits a copy of the phaeoviral genome from the initially infected zoid. 

In vegetative cells, the phaeoviral genome remains latent and is only expressed in 

reproductive structures (gametangia or sporangia). Infected host organs produce 

densely-packed virions instead of zoids. The extent of host reproduction inhibition 

varies widely from partial to complete sterilisation, depending on temperature and 

light conditions [82]. Released phaeoviruses infect the next generation of zoids, and a 

proportion of the zoids will have already vertically inherited the latent phaeoviral 

genome [50, 91]. 

The diversity of macroalgal viruses has not been thoroughly explored, as there 

are only nine formally described viruses [40] for the approximately 13.5 thousand 

described macroalgae species, around 2000 of which are brown algae [110]. In brown 
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macrolagae, there have been microscopic observations of virus-like particles (VLPs) 

resembling phaeoviruses in eleven brown algal species, one of which was not 

Ectocarpales (Table 0.5, [101]). These VLPs have diameters of 120-180 nm and 

hexagonal cross-sections which indicate icosahedral morphology, darkly stained 

nucleocapsid cores, and multiple capsid layers which may be internal lipid membranes. 

The infection cycles and impacts on host morphology has been described in detail for 

several of these phaeoviruses, such as EsV-1 [49, 50, 52, 77, 81, 93, 111, 113, 114]. 

Phaeovirus infection is visible by optical microscopy, because viral replication fills the 

cells with virus particles which appear as grey, homogenous material that occupies the 

entire cytoplasm [77]. Virus-filled cells are easily visualised by epifluorescent 

microscopy with red chlorophyll autofluorescence (red; 640 nm) and DAPI stain (blue; 

340 nm), under which infected cells are completely filled with DAPI-fluorescent DNA 

(the DNA within the virus particles), and lack any chlorophyll. 

To address the lack of detailed observations of Phaeovirus infections in brown 

algal groups beyond the Ectocaprales, we assessed gametophytes of the ecologically 

and commercially important kelp species, Laminaria digitata (Hudson) J.V. Lamouroux. 

We focused on an L. digitata gametophyte strain which PCR has previously revealed to 

contain a Phaeovirus gene for major capsid protein (MCP). Optical microscopy, 

fluorescent microscopy with chlorophyll autofluorescence and DAPI-staining, and 

transmission electron microscopy (TEM) revealed Phaeovirus-like morphologies in L. 

digitata) gametophytes. This is the first detailed description of a putative Phaeovirus 

infection in any species of kelp. 

1.3 Materials and Methods 

1.3.1 Gametophyte strains 
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Three unialgal gametophyte strains from which Phaeovirus MCP was previously 

amplified by PCR [300] were selected for this study: Laminaria digitata Perharidy 2010 

number 30 male (LdigPH10-30m), Laminaria digitata Perharidy 2010 number 31 

female (LdigPH10-31f), Laminaria digitata Perharidy 2010 number 22 female 

(LdigPH10-22f). In addition, one MCP-negative gametophyte strain was examined: 

Laminaria digitata Perharidy 2010 number 21 male (LdigPH10-21m). These 

gametophytes were collected on the 11.8.10 from the low intertidal zone at low tide 

from Perharidy, Roscoff, France. 

1.3.2 Gametophyte Isolation and Culture 

 

All kelp gametophytes were isolated as follows [301, 302]: sori tissue was cut 

out from mature kelp sporophytes and left in sealed tubes overnight at 4 oC. The 

following day, the sori were cut with a razor blade into ~2x2 mm cubes. For each 

sporophyte, a sterile cover slip was placed on top of a drop of sterile seawater in a 

petri dish. Several sterile seawater drops were placed on each cover slip. In autoclaved 

seawater, per sporophyte, the cubes were pipetted up and down repeatedly with the 

pipette tip pressed against the bottom of the petri dish, forcing the water out (this 

creates shear forces which removes diatoms or protists on the kelp cubes). A single 

sori cube was pipetted into each drop on the cover slips, then additional seawater 

droplets were added, and the dishes sealed with parafilm to reduce desiccation. The 

dishes were turned upside down carefully in a small arc movement and left overnight 

or for 8 hours. During this time, the meiospores are released from the sori and settle 

onto the cover slip (most unwanted debris or ogranisms will sink and be washed away 

in the next step). The following day, each cover slip was removed and rinsed with 
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sterile seawater, then broken in half and placed into tubes or dishes filled with culture 

media. The settled meiospores develop via mitosis into male or female gametophytes, 

which are distinguishable by their cell sizes and frequency of branches. 

Gametophytes were cultured in half strength Provasoli’s enriched seawater 

(PES, [302]) and a 16:8 light dark cycle at 15 oC, with PES media changing every 4 

weeks. All gametophytes were kept under red light (covered with red translucent 

plastic) to inhibit gametogenesis, allowing long term vegetative growth. Once the 

resultant gametophyte mixes were visible to the naked eye, they could be gently 

ground up and male and female filaments picked out and placed in well plates. These 

individual filaments grow into unialgal cultures. All gametophyte cultures were 

transferred to 10-20 mL culture dishes or tubes once visible to the naked eye. 

1.3.3 Optical and Epifluorescence Microscopy of Gametophytes 

 
To visualise any DNA-filled cells, gametophytes were stained with 1 µg/ml of 

4’,6-Diamidino-2-phenylindole (DAPI; Sigma Aldrich) for 1-2 h in darkness, then 

washed 3 times with sterile seawater [52]. Samples were viewed under x 60 to x 100 

oil objective on a Leica DMi8 epilfuorescent microscope and excited using 488 (640 nm 

emission; red, chlorophyll) and 340 nm (461 nm emission; blue, DAPI) wavelengths. 

The DAPI and autofluorescence channels were overlaid in post-processing for the 

Figures. 

1.3.4 Tranmission Electron Microscopy of Gametophytes 

 

L. digitata gametophyte thalli (~1 mm3) were fixed for 2 hours at room 

temperature in a solution of 65 % half-strength PES media, 2.5 % glutaraldehyde, 1 % 

caffeine, and 0.05 M sodium cacodylate. The fixed thalli were then washed 3 times for 
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10 mins in the same buffer solution with glutaraldehyde replaced with an equal 

volume of distilled water. Postfixation of thalli was by 1 % osmium tetraoxide in 

sodium cacodylate solution for 2 hours at room temperature, then washed 2 times for 

10 mins in sodium cacodylate solution and the sample dehydrated in an increasing 

ethanol series from 30 % up to absolute ethanol at 15 mins each step. Samples were 

infiltrated with increasing concentrations (30, 50, 70, 100, 100 %) of high viscosity agar 

resin in ethanol overnight, with final embedding in 100 % resin at 70 oC. Ultrathin 

sections (~70 nm) were cut with a diamond knife and mounted on copper grids. The 

sections were stained with 2 % uranyl acetate solution and a 4 % lead citrate solution. 

Virus particles were filtered from culture media by a 2-step process. Firstly, the media 

was pump-filtered through Supor-450 membrane disc 0.45 µm filters to remove larger 

material such as gametophytes and bacteria, and then the filtrate was ultrafiltered 

using Amicon Ultra-15 Centrifugal Filter Devices 30 kDA (according to the 

manufacturer’s instructions) to concentrate virus particles. A drop of ultrafiltrate was 

added onto a Formvar-coated copper grid for 10 mins, then distilled water for 10 

seconds, then saturated (2 %) uranyl acetate solution for 10 mins, and distilled water 

for a final 10 seconds. All imaging was performed on a JEOL 1200 EX II transmission 

electron microscope at 120 kV at varying magnifications from x 10,000 to x 100,000. 

1.4 Results 
 

1.4.1 Microscopy of Phaeovirus-like symptoms in Kelp 

 
The L. digitata strain LdigPH10-30m gametophyte culture showed consistent 

Phaeovirus infection-like symptoms (Figure 1.1 a-n), alongside normal growth and 

gametogenesis (Figure 1.1 a). Gametangia formed preferentially on short side 

branches (Figure 1.1 a), with one to several spermatozoids developing in each (~5 µm 
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in diameter, arrowhead Figure 1.1 a). The gametes were ejected through a 

mucilaginous cap, leaving empty translucent gametangia (white arrow, Figure 1.1 a). 

Female L. digitata gametophyte strains (LdigPH10-31f and LdigPH10-22f) showed 

similar phaeoviral infection symptoms (Figure 1.1). Healthy gametophyte cells have a 

large nucleus that can be visualised through DAPI staining and epifluorescence 

microscopy (discrete and localised blue fluorescence, white arrowheads Figure 1.1 b, 

c); these are often closely associated with chloroplasts (large irregular red auto-

fluorescent structures, Figure 1.1 a-c) distributed around the cell periphery (Figure 1.1 

e). Heavily DAPI stained cells were associated with many opaque and not translucent 

cells (Figure 1.1 b-d). It has been previously reported that similar cells in Ectocarpales 

were a result of viral infection and that the phaeovirus DNA genomes could be 

detected through DAPI staining [77]. DAPI-filled cells were not observed in the MCP-

negative strain LdigPH10-21m (data not shown). 

Transmission electron microscopy (TEM) of the L. digitata strain LdigPH10-30m 

suggests that LdV-1, similar to phaeovirus infections in Ectocarpales, in male (Figures 

1.5 and 1.6) and female (Figure 1.3) L. digitata gametophytes. Targets the nucleus 

resulting in the eventual degeneration (Figure 1.1 f & g) as the cytoplasm fills with long 

tubular structures (arrows; Figure 1.1 h, i, k), followed by the development of virus-like 

particles (VLPs) (Figure 1.1 f-l). Simultaneously, the chloroplasts detached from the cell 

periphery and lost their internal structure and pigmentation (Figure 1.1 f). After 

nuclear and chloroplast degeneration, more fully formed VLPs were visible in the 

cytoplasm (Figure 1.1 j-l). VLPs were 80-150 nm in diameter, with a 60-100 nm 

granular core (Figure 1.1 l & n). The VLPs appeared round to hexagonal and may have 

icosahedral capsids, as known in other phaeoviruses. Mature VLPs were observed in 
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ultrafiltered gametophyte culture medium (Figure 1.1  m & n) showing a structure 

similar to intracellular VLPs. 
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Figure 1.1: Optical and epifluorescence (a-d, DAPI stained) and transmission electron 
(e-n) micrographs of Laminaria digitata gametophyte strain LdigPH10-30m, infected by 
putative Phaeovirus Laminaria digitata virus 1 (LdV-1). (a) Spermatozoid (arrowhead) 
released from antheridium (white arrow), (b & c). Deformed opaque structures with 
high DAPI blue fluorescence in contrast to normal nuclei (white arrowheads). (d) High 
prevalence of DAPI-fluorescent filaments. (e) Cross-section of healthy vegetative cell 
showing chloroplast (ch), nucleus (n), and mitochondria (m). (f-l) VLP formation in 
vegetative gametophyte cells. Chloroplasts detached from cell periphery, loss of 
internal structure, appearance of tubular structures (arrows) and various stages of VLP 
assembly showing internal membranes (white arrowheads) and capsids (arrowheads). 
(m & n) VLPs isolated from extracellular medium and visualised by negative staining, 
showing capsid (arrow), internal membrane (arrowhead), and nucleoprotein core 
(white arrowhead). Scale bars: 25 µm (a-d), 2 µm (e, f, j), 200 nm (g, h, i), and 100 nm 
(k, l, m, n). 
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Figure 1.2: Transmission electron micrographs (a-f) of the vegetative cells of male 
Laminaria digitata gametophyte strain LdigPH10-30m with VLPs (arrowheads) and 
associated tubules (arrows). (a-c) Three magnifications of a cell with VLPs and tubules. 
(d-f) Three magnifications of a cell with early VLP formation and tubules, mitochondria 
(m), degraded chloroplasts (ch) detached from cell periphery, and no nucleus. Scale 
bars are labelled with lengths. 
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Figure 1.3: Light and epifluorescence (a-d, DAPI stained) and transmission electron (e-
g) micrographs of female Laminaria digitata gametophyte strains LdigPH10-31f (b-g) 
and LdigPH10-22f (a). (a) Normal female gamete (arrow), (b) Deformed opaque 
structures with high DAPI blue fluorescence, (c) deformed structure with partially 
degraded chloroplasts (arrowhead) and opaque, DAPI-fluorescent material in contrast 
to healthy nuclei (white arrowhead), and (d) prevalent putative virus-filled structures 
in female gametophyte culture. Cross-sections of vegetative cells showing (e) 
degraded chloroplasts (ch) which have detached from cell periphery and lost internal 
structure, (f) VLP formation in vegetative gametophyte cells with putative degraded 
chloroplast (arrowhead) and nucleus (white arrowhead), and appearance of tubular 
structures (arrow) and early stages of VLP assembly in cytoplasm. Scale bars: 25 µm (a-
d), 2 µm (e & f), and 200 nm (g). 
 

1.5 Discussion 
 

Our microscopy observations in kelp resemble those of EsV-1 infections in 

Ectocarpus as previously described [77]. However, kelp phaeoviruses seem to be often 

expressed in vegetative cells (Figure 1.1 d & e). The replication of phaeoviruses in kelp 

gametophytes is in contrast to the Ectocarpales phaeoviruses, which all replicate in the 

sporophyte (only EsV-1 and EfasV-1 also replicate in the gametophyte) [49]. Due to 

culture of kelp gametophytes under red light to maintain vegetative growth, which is 

not required for Ectocarpus, this may have altered Phaeovirus symptoms. For example, 

the infection may have been mostly observed in vegetative cells because no 

reproductive cells were available. It would have been desirable to have imaged the 

gametophytes without DAPI staining to identify any background blue 

autofluorescence. Image quality could also have been improved through the use of 

DNA stains (such as Sybr green) which are excited by non-UV wavelengths, hence 

reducing any background blue autofluorescence. 

The Phaeovirus MCP-positive gametophyte strains LdigPH10-30m (infected by 

LdV-1), LdigPH10-31f, and LdigPH10-22f consistently showed Phaeovirus-like infection 

symptoms (Figure 1.1; Figure 1.2; Figure 1.3). These putative Phaeovirus-filled cells 

were not observed in the MCP PCR-negative strain LdigPH10-21m (data not shown). 
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Similar symptoms were also observed in MCP PCR-positive gametophytes of Laminaria 

hyperborea and Saccharina latissima (data not shown). Light and epifluorescent 

microscopy showed symptoms similar to the latent Phaeovirus infection of 

Ectocarpales, such as in Ectocarpus siliculosus [77] and Pilayella littoralis [52]. The 

opaque, DAPI-stained material in kelp gametophytes may be dense masses of 

Phaeovirus particles (Figures 1.5-1.7). A latent infection strategy is also supported by 

the co-existence of infected and functionally reproductive filaments, which is 

consistent with the partial reproductive inhibition seen in Ectocarpales phaeoviruses 

[82]. All microscopic observations suggest nucleo-cytoplasmic replication, forming 

virions in unilocular gametangia (Figure 1.1 b-c), association with tubular structures 

(Figure 1.1 h & k), at least one internal lipid membrane, similar virion size 

(phaeoviruses are 120-150 nm; absence of darkly stained cores indicates these may 

not be fully mature virions), and irregular icosahedral morphology (Figure 1.1 h-l; [40, 

77]. Mature VLPs were observed in the ultrafiltered gametophyte culture media, 

showing the similar size (80-150 nm) and structure as the VLPs seen within kelp 

gametophyte cells (Figure 1.1 m & n). 

Kelp gametangia usually form on the ends of lateral branches and each 

contains a single gamete, which makes it difficult to distinguish infected reproductive 

and vegetative cells, but both cell types were probably infected (Figures 1.5-1.7). In 

Ectocarpus, for example, vegetative and reproductive cells expressing Phaeovirus 

infection are easily distinguished because the macroalga forms lateral reproductive 

plurilocular organs. During Pilayella littoralis virus 1 (PlitV-1) infection, sporangia 

development is interrupted at the 16-32 plurilocular cell stage; the nuclei disintegrate 

whilst DAPI-fluorescent viral DNA fills the plurilocular compartments [52]. We 

observed the nuclei of kelp gametophytes becoming enlarged and intensely DAPI-
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fluorescent, followed by loss of chlorophyll fluorescence. This suggests that kelp 

Phaeovirus replication may also interrupt host reproduction, disrupting the nuclei and 

then the chloroplasts. The apparent Phaeovirus expression in the vegetative cells 

(Figure 1.1 b-d) affected entire filaments, which suggests that kelp phaeoviruses could 

be more virulent than those of the Ectocarpales. Whilst effects of host reproduction, 

growth, and biochemical composition have yet to be studied, clearly the reproduction 

of kelp gametophytes could be impaired by the proposed viral infection (Figure 1.1 d). 

We considered whether the observed infection could be caused by other 

macroalgal pathogens. For example, bacterial infection by Alteromonas has been 

documented in Saccharina japonica gametophytes [303]. Bacteria-infected 

gametophytes show cell wall projections, swelling, loss of pigmentation and 

chloroplasts, and empty cells. After two weeks entire infected cultures were 

extensively bleached with disintegration visible to the naked eye. The proposed 

Phaeovirus infection did not induce mortality or bleaching, even after one year. The 

infection replaced normal cellular structures with opaque material, rather than empty 

cells with wall projections. DAPI confocal microscopy also shows the masses of dsDNA 

observed to be too uniform to be bacteria (Figure 1.1 b & c; Figure 1.3 a-d); thus, the 

observed morphologies were probably not caused by bacteria. 

Brown algae are also host to intracellular eukaryotic parasites such as 

plasmodiophorids. Ectocarpus siliculosus is infected by the plasmodiophorid Maullinia 

ectocarpii, which forms abnormal host sporangia filled with plasmodia spores [60]. 

Plasmodia sporangia form several hundred large spores (~4.6 by ~2.3 µm) which move 

vigorously inside sporangia and transform into cysts that move by extending 

pseudopodia. DAPI stained M. ectocarpii spores have distinct fluorescent nuclei, lateral 

sporangia which, under TEM, are full of parasite cells with clear nuclei, vacuoles, and 
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host-parasite boundaries. Laminaria digitata cultures formed abnormal cells lacking 

internal movement, and DAPI-binding material too dense to be individual plasmodia 

nuclei (Figure 1.1 b & c). No parasite cells were observed within the gametophytes 

with TEM, and such large motile spores would be obvious when observing 

gametophyte cultures. Also, an intense selection process to establish stable host-

parasite cultures, but our observations seem too common and naturally stable (no 

additional culture maintenance beyond subculturing and media changes) to be a 

plasmodiophorid parasite. 

This study did not look for Phaeovirus symptoms in the sporophyte sori, which 

are comprised of the sporophyte reproductive structures (sporangia). It is reasonable 

to expect that phaeoviruses may replicate in the sporophyte sporangia, near any newly 

released zoospores, which are wall-less and free-swimming. Another limitation was 

that only a single Phaeovirus MCP PCR-negative gametophyte was examined. Due to 

the possibility of divergent phaeoviruses undetected by PCR, a negative MCP PCR 

result does not mean that a brown alga is not infected. A greater range of molecular 

tools such as primers are needed to test whether these observed symptoms and 

Phaeovirus infection are causally linked. 

1.5.1 Conclusions 

 
Three gametophytes strains of Laminaria digitata were proposed to be infected 

by phaeoviruses, including the putative Phaeovirus Laminaria digitata virus 1 (LdV-1). 

LdV-1 may employ a similar latent infection cycle as the phaeoviruses of Ectocarpales. 

LdV-1 replication appears to occur in the reproductive and vegetative cells, initially 

degrading the nucleus, before completion in the cytoplasm, followed by the 

degradation of the chloroplasts. The resulting virus particles are around 115 nm in 
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diameter, with icosahedral morphology, a darkly stained nucleoprotein core, and at 

least 1 internal lipid membrane. Further detailed characterisation of kelp Phaeovirus 

infection cycles are needed, such as of the sites of replication and cell entry, host 

impacts, and viral evolutionary strategies. 
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CHAPTER 2      THE DISTRIBUTION AND HOST RANGE OF KELP 
PHAEOVIRUSES 

 

2.1 Abstract 
 

Two sister orders of the brown macroalgae (class Phaeophyceae), the 

morphologically complex Laminariales (commonly referred to as kelp) and the 

morphologically simple Ectocarpales, are natural hosts for dsDNA viruses (family 

Phycodnaviridae, genus Phaeovirus) that persist as proviruses in the genomes of their 

hosts. Previously, major capsid protein (MCP) and DNA polymerase concatenated gene 

phylogeny have split the phaeoviruses into two subgroups, A and B (both infecting 

Ectocarpales), whilst MCP based phylogeny places the kelp phaeoviruses in subgroup 

C. Here we used MCP PCR to better understand the host range of phaeoviruses by 

screening a further 96 individuals of 11 kelp species. Kelp sporophyte samples were 

collected from their various natural coastal habitats spanning five continents: Africa, 

Asia, Australia, Europe, and South America. Our phylogenetic analyses showed that 

while most of the kelp phaeoviruses, including one from Macrocystis pyrifera, 

belonged to the previously designated subgroup C, new lineages of Phaeovirus in 3 

kelp species, Ecklonia maxima, Ecklonia radiata, Undaria pinnatifida, grouped instead 
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with subgroup A. Overall, 26 % kelp were positive for Phaeovirus MCP and only intra-

subgroup phaeoviral infections were observed in kelp. We conclude that Phaeovirus 

infection is a widely occurring phenomenon and that phaeoviruses have diversified 

with their hosts at least since the divergence of the Laminariales and Ectocarpales. 

 

 

 

2.2 Introduction 
 

The brown algae (class Phaeophyceae, kingdom Chromista) are mostly marine 

macroalgae which have evolved complex multicellularity independently from 

terrestrial plants, red and green algae, animals, and fungi [103]. The order Ectocarpales 

is comprised of small and short-lived brown algae, with little ecological or economic 

information regarding them [137]. The sister order to the Ectocarpales is the order 

Laminariales (kelp) [172]. In contrast to the Ectocarpales, kelp are large, perennial 

macroalgae which form complex forests that dominate temperate and subpolar rocky 

coastlines, from the lower intertidal to the subtidal zones [213, 221, 222]. Kelp can also 

occur in the tropics where sea temperatures are cool enough [211]. Kelp ecosystems 

are highly productive and complex [223, 224], and they support high biodiversity [151, 

225, 227–230, 304] and are involved in biogeochemical cycles [226, 231, 232, 234, 

242–245]. These roles result in socioeconomic benefits including fisheries, tourism, 

coastal protection and environmental remediation [236, 256], and cultural heritage 

[247, 248, 250]. Kelp aquaculture production is expanding rapidly (increased by 2.3 

times since 2000 [176]), as it is an increasingly important source of food, fertiliser, 
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industrial chemicals [175], renewable bioenergy, and medical applications [252, 257, 

262]. 

Kelp ecosystems and aquaculture are mainly threatened by global climate change, 

pollution, and overgrazing due to trophic cascades [192, 213, 222, 287]. Climate 

change may favour novel and more virulent macroalgal pathogens [288–290]. This is a 

major issue for aquaculture, which is already experiencing losses to various poorly 

understood macroalgal diseases [145, 177]. 

The viruses of macroalgae are poorly understood [96, 101], with the exception of 

Ectocarpus siliculosus virus 1, genus Phaeovirus in the family Phycodnaviridae [98, 

100]. Nine viruses are currently assigned to the genus Phaeovirus [40]. The 

phaeoviruses host range include multiple species within the Ectocarpales and kelp 

lineages [100, 305], but the biology and ecology of kelp phaeoviruses is largely 

unknown. Phaeoviruses employ a unique latent infection strategy, which begins with 

the virus infecting the wall-less, free-swimming reproductive algal cells (spores and 

gametes). The phaeoviral genome is then integrated into the host genome [76]. As the 

host develops into a mature macroalga, every cell inherits a copy of the phaeoviral 

genome via mitosis [60, 79]. The genome remains latent except in the host 

reproductive organs (sporangia and gametangia), which become filled with virus 

particles [52, 77]. In addition to infection by virus particles, the macroalgae hosts are 

infected vertically by inheritance of the latent phaeoviral genome. 

Concatenated phylogeny of DNA polymerase and major capsid protein (MCP) 

genes split the Ectocarpales phaeoviruses into two subgroups: subgroup A consisting 

of one virus genotype, which infects Ectocarpus, Pylaiella, Myriotrichia, and Hincksia, 

and subgroup B, which consists of multiple viral genotypes and infects only 

Feldmannia. The genomes of subgroup B are smaller (from 240-336 kb in A to 155-220 
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kb in B) and lost a DNA proofreading gene, allowing the subgroup B phaeoviruses to 

exploit a more acute infection strategy, whereas subgroup A viruses have retained a 

more persistent strategy [95]. The Phaeovirus subgroup C has been defined based 

solely on the MCP gene found in the kelp species Laminaria digitata (Hudson) J.V. 

Lamoroux, Laminaria hyperborea (Gunnerus) Foslie, and Saccharina latissima 

(Linnaeus) C.E.Lane, C.Mayes, Druehl & G.W.Saunders) [305]. 

Originally, the extent of viral infection in natural Ectocarpales populations was 

estimated using light and electron microscopy [77, 84]. However PCR has revealed that 

Ectocarpus spp. are infected by phaeoviruses at rates of 40-100 % [85, 86], and 23.2-

64.7 % of kelp individuals collected from European waters are infected by 

phaeoviruses [305]. The only other reports of viruses in kelp are virus-like particles in 

Ecklonia radiata [115], phaeoviral MCPs integrated in the genome of Saccharina 

japonica [31, 306], and a viral metagenome from Ecklonia radiata [120]. 

In order to improve our understanding of viruses in the biology and ecology of 

kelp, a key first step is to investigate the geographical and host range of kelp 

phaeoviruses. To address this, we screened 96 kelp samples from 11 species from 

Africa, Asia, Australia, Europe, and South America. All available data on the distribution 

and host range of phaeoviruses was compiled, which included Ectocarpus crouaniorum 

Thuret in Le Jolis (from high to mid intertidal), Ectocarpus siliculosus (Dillwyn) Lyngbye 

(from mid-intertidal to subtidal), Ectocarpus fasciculatus Harvey (from low intertidal to 

subtidal; [137, 307]), Ecklonia cava Kjellman, Ecklonia kurome Okamura, Ecklonia 

maxima (Osbeck) Papenfuss, Ecklonia radiata (C.Agardh) J.Agardh, Ecklonia stolonifera 

Okamura, Laminaria ochroleuca Bachelot de la Pylaie, Laminaria pallida Greville, 

Lessonia spicata (Suhr) Santelices, Macrocystis pyrifera (Linnaeus) C.Agardh, 

Saccharina japonica (Areschoug) C.E.Lane, C.Mayes, Druehl & G.W.Saunders, and 
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Undaria pinnatifida (Harvey) Suringar. We present a summary of the broad prevalence 

of phaeoviruses in 2 major orders of brown algae including previous phaeoviral PCR 

screen data (Chapter 2; [85, 86, 300]). We describe the phylogeny of novel Phaeovirus 

MCPs found in the kelp species E. maxima, E. radiata, M. pyrifera, and U. pinnatifida. 

 

2.3 Materials and Methods 

2.3.1 Sampling and DNA extraction 

 

Epiphyte-free, clean meristematic tissue was cut from kelp sporophytes (diploid) 

and stored in silica gel. 10-20 mg dry weight of sporophyte material was frozen in 

liquid nitrogen and homogenized with pestle and mortar. This was followed by DNA 

extraction with either a NucleoSpin® Plant II (Machery-Nagel, Düren, Germany) kit 

according to the manufacturer’s instructions or a CTAB-SDS DNA extraction method 

[308]. The DNA samples provided [209, 212] were extracted using this CTAB-SDS 

method. 

2.3.2 Phaeovirus prevalence map 

 

The map and pie charts (Figure 2.1, Table 2.1; Figure A.2.1; Table A.2.1) were 

constructed using QGIS 3.0.0 (https://qgis.org/en/site/) and visualised using Inkscape 

0.92 (https://inkscape.org/). In total we included 96 kelp sporophytes from 26 sites (8 

countries) comprised of Ecklonia cava, Ecklonia kurome, Ecklonia maxima, Ecklonia 

radiata, Ecklonia stolonifera, Laminaria ochroleuca, Laminaria pallida, Lessonia 

spicata, Macrocystis pyrifera, Saccharina japonica, and Undaria pinnatifida. Figure 2.1 

also includes PCR screen data from other studies comprised of 909 unialgal 

Ectocarpales strains from 39 sites (3 countries) comprised of Ectocarpus crouaniorum, 

https://qgis.org/en/site/
https://inkscape.org/
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Ectocarpus siliculosus, and Ectocarpus fasciculatus [300], 116 kelp samples from 

Europe [305]; 63 Laminaria digitata, 14 Laminaria hyperborea, 39 Saccharina 

latissima), 97 Ectocarpales isolates from a broad range of coasts (Ectocarpus 

siliculosus, Ectocarpus fasciculatus; [86]), and a further 570 isolates of Ectocarpus spp. 

from the North Atlantic and South Pacific ([85]; Figure 2.1, Table 2.1; Figure A.2.1, 

Table A.2.1). 

2.3.3 PCR and sequencing 

 

The mcp primers used were designed based on a consensus of EsV-1, FirrV-1, FsV-

158, and the E.  siliculosus genome provirus (Figure 2.3; [95]). The MCP primer 

sequences were: forward primer CVGCGTACTGGGTGAACGC and reverse primer 

AGTACTTGTTGAACCAGAACGG. All PCRs were performed using Promega Gotaq® Flexi 

DNA polymerase kit according to the manufacturer’s instructions (Promega, Madison, 

WI, USA), with the addition of 1 µL of 0.8 mg/mL bovine serum albumin (BSA) per 25 

µL reaction. PCR conditions were as following: Initial extension of 95 oC for 5 min, then 

40 cycles of 95 oC for 1 min (step 1), 55 oC for 30 sec (step 2), and 72 oC for 30 sec (step 

3), and a final extension of 72 oC for 10 min. All PCR products were Sanger sequenced 

by Source Bioscience (Nottingham, UK; accessions in Table A.2.1). 

2.3.4 Phylogenetic analysis and tree construction 

 

For phylogenetic analysis we used the protein sequences translated from MCP 

gene fragments amplified from kelp and Ectocarpales (Figure 2.2, Figure 2.4) and from 

the MCP genes of known Phycodnaviridae and Mimiviridae (Figure 2.5, see Table A.2.1 

and Table A.2.2 for all accession numbers). Only the conserved mcp region aligned 

with the mcp fragment found in kelp and Ectocarpales was used to construct Figure 
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2.5. The additional sequences in Figure 2.5 were obtained using the GenBank blastp 

algorithm and selecting the sequence with the highest homology to phaeoviral MCP 

within each available genome of Phycodnaviridae and Mimiviridae. All translated 

amino acid sequences were aligned using MUSCLE using MEGA7 [309]. Bayesian 

inference analysis was performed using MrBayes v3.2 [310], stopping the analysis once 

the number of generations was over 300,000 and once the posterior probabilities no 

longer changed with each generation. Trees were visualised using Inkscape 0.92 and 

Dendroscope 3 [311] and rooted using MCP from the poxvirus Fowlpox virus 

(Poxviridae). The Phaeovirus MCPs reported in the genome of S. japonica [31] were 

compared to MCPs from other kelp species. Saccharina japonica MCPs were found 

with the GenBank blastn algorithm searching the S. japonica genome using MCP genes 

from EsV-1, FsV-158, and FirrV-1. MCP ORFs were identified from the S. japonica 

genome scaffolds using Artemis [312]. MCPs from phaeoviral genomes were aligned 

with MCPs from S. japonica and the MCP primers (Figure 2.3) to examine their 

homology. 

2.4 Results 
 

2.4.1 Prevalence of phaeoviruses in the Laminariales 

 

PCR detected a phaeoviral MCP fragment in four of eleven kelp species tested. 

This amplified MCP fragment was 181 bp to 214 bp. There was a positive result in 15.6 

% of the kelp sporophytes studied (15 out of 96; Figure 2.1, Table 2.1, Table A.2.1). 

Phaeoviral MCP was found in 25 % of E. maxima (4 out of 16, South Africa), 25 % of E. 

radiata (5 out of 20, South Africa), 20 % of M. pyrifera (1 out of 5, Chile), and 100 % of 

U. pinnatifida (5 out of 5, South Korea). Phaeoviral MCP was not found in E. cava (out 
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of 2, Japan), E. kurome (out of 5, Japan), E. stolonifera (out of 1, Japan), L. ochroleuca 

(out of 16, UK and Portugal), L. pallida (out of 16, South Africa, Namibia), L. spicata 

(out of 5, Chile), and S. japonica (out of 5, South Korea). Including previous data, the 

overall phaeoviral infection rate of kelp was 26 % (56 out of 212 individual 

sporophytes). 
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Figure 2.1: World map of Phaeovirus subgroups (see Key) and prevalence in kelps (this 
study) and Ectocarpales (previously available data). Red points are sites. Pie charts 
show viral prevalence and subgroup per species at given site range. See Figure A.2.1 
for map of sites 31-60. See Table A.2.1 for site key and full sample details and Figure 
A.2.1 for sites 31-60. See Table 2.1 for sample sizes. Species abbreviations: Ecklonia 
cava (Ecav), Ecklonia kurome (Ekur), Ecklonia maxima (Emax), Ecklonia radiata (Erad), 
Ecklonia stolonifera (Esto), Ectocarpus crouaniorum (Ecro), Ectocarpus fasciculatus 
(Efas), Ectocarpus siliculosus (Esil), Ectocarpus species (Esp.), Kuckuckia sp. (Ksp.), 
Laminaria digitata (Ldig), Laminaria hyperborea (Lhyp), Laminaria ochroleuca (Loch), 
Laminaria pallida (Lpal), Lessonia spicata (Lspi), Macrocystis pyrifera (Mpyr), 
Saccharina japonica (Sjap), Saccharina latissima (Slat), and Undaria pinnatifida (Upin). 
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Table 2.1: Summary of phaeoviral infections detected with PCR in kelp sporophytes, 
kelp gametophytes, and Ectocarpales. See Table A.2.1 for site names key and full 
sample details. Includes data from this study and previous studies [85, 86, 300]. 
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Ecklonia cava 0 0 0 0 0 2 2 0 96, 98 

Ecklonia kurome 0 0 0 0 0 5 5 0 93, 97 

Ecklonia maxima 0 0 0 4 0 16 12 4 77, 79, 80, 82-84 

Ecklonia radiata 0 0 0 5 0 20 15 5 76, 84-86, 88, 89, 
101-103, 105  

Ecklonia stolonifera 0 0 0 0 0 1 1 0 99 

Ectocarpus crouaniorum 163 52 0 2
3 

0 235 49 186 31-35, 37, 40-43, 
47, 50-56, 58, 62 

Ectocarpus fasciculatus 49 46 0 2
8 

3 219 121 98 4, 13, 14, 17, 19, 
21, 22, 26, 32-34, 
36, 38-52, 54-57, 
59, 68, 73, 81 

Ectocarpus siliculosus 232 107 0 5
6 

42 555 216 339 1-19, 21, 23, 25, 
27-33, 36, 40, 43, 
44, 46, 47, 50, 52-
57, 59-71, 73, 81, 
87, 90, 92, 94, 95, 
100, 104, 106 

Ectocarpus sp. 4 6 0 2 490 579 84 502 24, 34, 36, 39, 40, 
46, 53, 74 

Kuckuckia sp. 0 0 0 1 0 1 0 0 14 

Laminaria digitata 0 0 14 1
1 

0 63 38 25 46, 56 

Laminaria hyperborea 0 0 5 0 0 14 9 5 46, 56 

Laminaria ochroleuca 0 0 0 0 0 16 16 0 46, 72 

Laminaria pallida 0 0 0 0 0 16 16 0 75, 77-80, 82, 83  

Lessonia spicata 0 0 0 0 0 5 5 0 20 

Macrocystis pyrifera 0 0 1 0 0 5 4 1 20 

Saccharina japonica 0 0 0 0 0 5 5 0 91 

Saccharina latissima 0 0 7 4 0 39 28 11 46, 56 

Undaria pinnatifida 0 0 0 5 0 5 0 5 91 
 

 

 

2.4.2 Phylogeny of phaeoviruses based on novel kelp MCP fragments 

 

Subgroup B viruses were grouped together, but with low support (0.66; Figure 

2.2). In a previous study, concatenated MCP and DNA polymerase phylogeny placed M. 

clavaeformis 2 in subgroup A [95], but this study’s analysis placed it in subgroup B 
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(Figure 2.2). Ectocarpales subgroup A viruses were closely related, but not within a 

supported node (Figure 2.2). Phaeoviral MCP from U. pinnatifida, E. maxima, and E. 

radiata fell within subgroup A (0.72 and 0.78; Figure 2.2). P. littoralis 1 was most 

similar to the kelp subgroup A viruses (0.78; Figure 2.2). F. simplex 8 was previously 

placed by concatenated MCP and DNA polymerase phylogeny as an intermediate 

between subgroups A and B [95], but this study’s analysis placed it with the subgroup 

A kelp phaeoviruses (0.72; Figure 2.2). MCP from L. digitata, L. hyperborea, S. 

latissima, and M. pyrifera were assigned to subgroup C with low support (0.6) and 

were more closely related to subgroup B than A (1.0; Figure 2.2). MCPs from the 

genome of S. japonica were divergent from subgroups B and C, and were defined as 

subgroup D (1.0; Figure 2.2). Out of 59 amino acids, the subgroup A was distinguished 

from subgroups B, C, and D by 2 amino acids (100% conserved sites 9 and 22; Figure 

2.4). Subgroup B had 3 amino acids different from the other subgroups (100 % 

conserved site 4; partially conserved sites 19 and 47; Figure 2.4). Subgroup C was 

distinguished from the other subgroups by 5 amino acids (partially conserved sites 2, 

24, 34, 35, and 44; Figure 2.4). Subgroup D was the most divergent, with 7 amino acids 

different from the other subgroups (100 % conserved sites 6, 7, 16, 17, 26, 29, 33; 

Figure 2.4). 
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Figure 2.2: Phylogeny of partial Phaeovirus MCP amplified by PCR from Ectocarpales 
and kelps. Subgroups A (blue) and B (red) are labelled as previously defined [95], 
subgroup C (green) by [305], and subgroup D (purple). Scale units are the number of 
amino acid substitutions per site. Triangles are collapsed branches. Node values are 
Bayesian inference proportions. Root is the outgroup Emiliania huxleyi virus 86. Kelp 
life history stages are labelled sporophyte (*), gametophyte (**), kelp gamete (***). 
Country codes; Chile (CL), France (FR), South Korea (SK), United Kingdom (UK), South 
Africa (ZA). Sites codes; De Hoop (DH), Hluleka (HL), Incheon (IC), Kei Mouth (KM), 
Perharidy (PH), Piedras Negras (PN), Plymouth (PM), Port Nolloth (PN). See Figure 2.3 
(S. japonica) and Table A.2.1 for accession numbers and sample details, and Figure 2.4 
for alignment. 
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Figure 2.3: Multiple nucleotide sequence alignment of phaeoviral MCP primers, 
phaeoviral MCP, and S. japonica MCP. Region between the primers is the partial MCP 
sequence used in phylogenetic analysis (Figure 2.2). Conserved sites are indicated by 
asterisks. 
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Figure 2.4: Multiple amino acid sequence alignment of Phaeovirus MCP fragments 
used in phylogenetic analysis. Colours represent the amino acids as labelled. This 
alignment was the basis of Figure 2.2. sg = subgroup. Sites conserved across all 
subgroups are labelled (*). Sites conserved within subgroups are labelled for 
subgroups B (<), A (>), D (=), C (+) and level of conservation within subgroup; none 
(black), partial (grey), 100% (white). 
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2.4.3 Phylogeny of Phycodnaviridae and Mimiviridae based on MCP fragments 

 

Phylogeny based on the MCP region orthologous to the conserved 59 amino acid 

MCP fragment found in kelp could distinguish Phycodnaviridae genera and Mimiviridae 

(Figure 2.5). All phaeoviral MCPs fall within the Phaeovirus genus, including the MCPs 

from S. japonica. Most phycodnavirus members are grouped together into their 

previously defined genera with high support (0.9 Bayesian inference value Chlorovirus, 

1.0 Bayesian inference value Prasinovirus, 0.93 Bayesian inference value 

Prymnesiovirus), and members of Mimiviridae are grouped together (1.0 Bayesian 

inference value) except Cafeteria roenbergensis virus. The other exception was the 

grouping of Coccolithovirus and Phaeovirus together (0.83 Bayesian inference value), 

but with large evolutionary distance between these 2 genera. 
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Figure 2.5: Phylogeny of partial Phaeovirus MCP amplified by PCR from kelps. These 
sequences were aligned with other Phycodnaviridae (Coccolithovirus, Phaeovirus, 
Raphidovirus, Prymnesiovirus, Prasinovirus, Chlorovirus) and Mimiviridae. Subgroups A 
(blue) and B (red) are labelled as previously defined [95], subgroup C (green) as by 
[305], and subgroup D (purple). Scale units are the number of amino acid substitutions 
per site. Triangles are collapsed branches. Node values are Bayesian inference 
proportions. Root is the out-group Fowlpox virus. See Figure 2.3 (S. japonica) and Table 
A.2.1 and Table A.2.2 for accession numbers and sample details. 
 

2.4.4 Phaeovirus MCP from Saccharina japonica 

 

Both JXRI01001921 and JXRI01000145 MCPs were included in this study’s 

phylogeny (Figure 2.2, Figure 2.5) as they contained the conserved MCP region found 

in Ectocarpales and kelp (Figure 2.4, Figure 2.3). The JXRI01000271 MCP was too short 

to be included in the phylogenetic analysis. The three phaeoviral MCP orthologs in the 

S. japonica genome had distinct structures. The JXRI01001921 MCP was a 458 amino 

acid ORF, with an MCP primer binding site which mismatched our primers by thee 

bases (forward primer) and two bases (reverse primer). The MCP primer binding sites 

of EsV-1, FirrV-1, and FsV-158 matched every base of both primers (Figure 2.3). 

JXRI01000145 MCP was a 439 amino acid non-ORF containing seven stop codons, with 

an MCP primer binding site which mismatched our primers by two bases (forward 

primer) and two bases (reverse primer; Figure 2.3). JXRI01000271 MCP was 47 amino 

acids within a 263 amino acid ORF, with an MCP primer binding site which mismatched 

our primers by four bases (forward primer) and did not contain the reverse primer 

binding site. 
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2.5 Discussion 
 

Including data from our previous study [305], 26 % of kelp individuals were 

positive for Phaeovirus MCP. Novel phaeoviral MCPs were found in 4 species of kelp 

(Figure 2.1, Table 2.1; M. pyrifera, E. maxima, E. radiata, and U. pinnatifida). Including 

S. japonica [31], L. digitata, L. hyperborea, and S. latissima [305], this expands the 

Phaeovirus host range to 8 kelp species in 5 genera and includes the most species-rich 

genera of the Laminariales, which contain 44 % of all kelp species (63 out of 143 

Laminariales species; Laminaria, Saccharina, Ecklonia [110]). It is therefore not 

unreasonable to expect phaeoviral infection to be present throughout the entire kelp 

order. Basal kelp taxa such as the family Chordaceae [172] should be assessed to test 

whether phaeoviral infection is ancient within the Laminariales. Furthermore, kelp 

phaeoviruses are geographically widespread, being present in kelp species from 

Europe (UK, France), South America (Chile), Asia (South Korea), and Africa (South 

Africa). Kelp phaeoviral subgroups are likewise geographically widespread, with 

subgroup C being present in Europe and South America (Figure 2.1) and subgroup A 

being present in Africa and Asia (Figure 2.1). 

The subgroup A and B viruses (Figure 2.2) were not grouped as previously defined 

[95] and showed the MCP fragment alone to be an unreliable marker for assigning viral 

subgroups. Phylogenetic analysis including other core viral genes would more reliably 

reflect the evolutionary relationships of kelp phaeoviruses. Compared to equivalent 

MCP regions from members of Phycodnaviridae and Mimiviridae, the MCP fragment 

from kelp (Figure 2.4) showed mostly appropriate phylogeny of NCLDVs [20, 313], with 

good support for the assignment of these kelp viruses to Phaeovirus (Figure 2.5). 
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We hypothesise that Laminaria, Saccharina, and Macrocystis phaeoviruses 

(subgroup C; [305]) have smaller genomes and broader host range (as they are close to 

subgroup B) than Undaria and Ecklonia viruses (subgroup A). MCP from Chilean M. 

pyrifera was most closely related to MCP from L. digitata and S. latissima (0.95, 

subgroup C; Figure 2.2), suggesting a viral lineage with a host range of at least three 

kelp genera. In contrast, MCP from the very closely related S. latissima and S. japonica 

[314] were assigned to different subgroups (Figure 2.2; subgroups C and D), suggesting 

divergent phaeoviruses within closely related host species. The extent to which 

phaeoviruses co-diverge with their kelp hosts is unclear, but could reveal novel 

understanding of viral evolution, especially regarding the shifts between horizontal 

(transmission via virus particles) and vertical (transmission via genome integration; 

may have greater degree co-divergence with host). However, it is worth noting that 

phylogeny based on multiple core NCLDV genes would more reliably represent the 

evolutionary relationships of kelp phaeoviruses, but first kelp Phaeovirus genomes 

sequences must be acquired. 

These kelp MCPs are only a hint of Phaeovirus prevalence and diversity, as the 

negative MCP PCR results may be due to divergent phaeoviruses with low affinity for 

our MCP primers, which may help explain the lower infection rate of 26 % in kelp 

versus 63 % in Ectocarpales (Figure 2.1). For example: the absence of MCP in the S. 

japonica samples may have been false negatives, as our primers would not have 

amplified the phaeoviral MCPs in the S. japonica genome (Figure 2.3; [31, 306]). 

Furthermore, these primers evidently have a higher affinity for the MCP of 

phaeoviruses in UK L. digitata, L. hyperborea, and S. latissima sporophytes, which had 

an infection rate of 64.7 % [305]. The presence of MCP in the S. japonica genome [31], 

in addition to apparent Mendelian inheritance of phaeoviral MCP in kelp 
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gametophytes [305], suggests that kelp phaeoviruses employ a latent infection 

strategy involving provirus integration into the host genome. Overall, 63 % of 

Ectocarpales were infected by Phaeovirus, which is within the range of previous 

approximations of 40 to 100 % (Figure 2.1, Table 2.1; [85, 86]).  

Human impacts on kelp ecosystems [213] and aquaculture [287] are expected to 

threaten the ecological and economic roles of kelp [222, 283]. These threats include 

climate change, pollution, overexploitation, and overgrazing leading to barren grounds 

[192, 213, 222, 315]. In the future of aquaculture, macroalgae are expected to have 

reduced performance in warmer, more acidic oceans [287] and experience losses from 

a range of eukaryotic and bacterial pathogens [145, 177, 179, 288–290]. Viruses 

however, are largely absent from our understanding of macroalgal ecology and 

performance [96]. We have shown evidence of phaeoviral infection in 5 kelp genera of 

major ecological and economic importance (Saccharina, Laminaria, Macrocystis, 

Undaria, and Ecklonia) and the impact of phaeoviral infection on these genera should 

be further investigated.  

2.5.1 Conclusions 

 

We expand the Phaeovirus host range to a total of eight kelp species including the 

most species-rich genera and their geographical range to five continents. These novel 

MCPs from kelp may represent new members of the genus Phaeovirus. Phaeoviral 

infections may be present in the entire kelp order, a group of ecologically and 

economically important marine macroalgae. However, we lack the molecular tools to 

thoroughly study the diversity and evolutionary relationships of kelp phaeoviruses.  
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CHAPTER 3      VARIABILITY OF KELP PHAEOVIRUS SYMPTOMS 
AND HOST IMPACTS 

 
3.1 Abstract 
 

There are general observations of Phaeovirus infections being temperature 

sensitive and impairing host reproduction. However, these hypotheses have not been 

tested in non-Ectocarpales brown algae or with quantitative methods. To test 

temperature sensitivity, the cultivation temperature of one Phaeovirus MCP-positive 

(LdigPH10-30m) and one Phaeovirus MCP-negative (LdigPH10-21m) gametophyte 

culture were increased from 15 to 18 oC and the occurrence of virus-producing (DAPI-
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filled) cells was counted. At 18 oC, DAPI-filled cells became 2.7-3.4 times more 

common. However the virus-negative culture expressed symptoms and was found to 

be MCP positive (in contrast to previous PCRs), meaning that Phaeovirus temperature 

sensitivity in kelp remains unclear. To test the impact of phaeoviruses on kelp 

reproduction, DAPI-filled cells were counted in gametophyte crosses, to test whether 

crosses with more common DAPI-filled cells produced fewer sporophytes. No 

correlation was found between the number of DAPI-filled cells and that of sporophytes 

produced. However, the fact that only one virus negative gametophyte (determined by 

MCP PCR) was in the crosses and the use of mixed gametophyte cultures, meant that 

the relationship between Phaeovirus infection and sporophyte reproduction could not 

be tested.  

 

 

 

 

3.2 Introduction 
 

The extent of Phaeovirus symptoms is highly variable in Ectocarpales hosts. In 

wild populations, Phaeovirus symptoms were visualised with optical microscopy and 

found to vary from 1 to 25 % of macroalgae individuals (of several genera: Hincksia, 

Ectocarpus, and Feldmannia; [82–84]), though PCR of a Phaeovirus gene (capsid 

protein gp1) showed an infection rate of 50-100 % in Ectocarpus [85, 86]. One of the 

few factors known to increase Phaeovirus symptoms are shifts in temperature 

between 12-15 and 18-20 oC [77, 82, 83]. 
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An infected individual may have both normal (spore/gamete producing) and 

deformed (virion producing) reproductive organs, or exclusively one or the other. A 

general hypothesis is that virion-producing organs displace those which produce host 

spores/gametes and subsequently reduce host reproduction [77, 80]. Whilst 

phaeoviruses have been observed in general to sterilise or reproductively impair their 

Ectocarpales hosts, essentially no quantitative methods have been used to test 

whether Phaeovirus infection impacts host reproduction [49]. What little is known of 

Phaeovirus host impacts does not show a clear picture. For example, whilst brown 

algae such as Ectocarpus and Feldmannia can be sexually sterilised by phaeoviruses 

[77, 89, 90], they can continue to propagate themselves via asexual reproduction 

(mitospores, apomeiospores or fragmentation of vegetative cells). Many Ectocarpales, 

such as Ectocarpus, can reproduce asexually through several routes [137]. Their 

unfertilised gametes (male or female) can develop into haploid parthenosporophytes 

which can produce apomeiospores which can develop into fertile sporophytes [187, 

203]. Their parthenosporophytes and sporophytes can also reproduce asexually via 

mitospores. A small portion of Ectocarpus meiospores can even develop directly into 

sporophytes [140, 203] and fragmented Ectocarpus can regenerate whole thalli from 

short filaments. 

It is unknown how sterilisation could impact brown algae with different life 

histories, such as kelp which have more limited asexual reproduction than many 

Ectocarpales such as Ectocarpus or Feldmannia. For example, unlike many 

Ectocarpales, kelp can only reproduce asexually via the fragmentation of 

gametophytes [201] or mitospores produced by gametophytes [204], and they cannot 

produce fertile parthenosporophytes [199, 202]. 
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The aim was to test  the hypothesis that as the number of Phaeovirus-filled 

cells changes in response to a change in temperature. The culture temperature was 

increased from 15 to 18 oC for one Phaeovirus MCP-positive (LdigPH10-30m) and one 

Phaeovirus MCP-negative (LdigPH10-21m) and the number of DAPI-filled (proposed to 

be filled by Phaeovirus virions) cells per 100 healthy cells were recorded using 

epifluorescent microscopy. To test the hypothesis that increased Phaeovirus symptoms 

decrease host reproduction (sporophyte production), a second set of L. digitata 

gametophytes (n=12, LdigPM 1-12) were crossed (gametophytes produce gametes 

which fertilise to form sporophytes) and the number of DAPI-filled cells per 100 

healthy cells and the number of sporophytes per 100 mm2 of gametophytes were 

recorded. The infection status of the sporophytes LdigPM 1-12 was determined by 

MCP PCR before isolating gametophytes LdigPM 1-12 from them. 

 

3.3 Methods and materials 

3.3.1 Sample collection and culture 

 
Similar sized Laminaria digitata sporophytes with mature sori were collected 

from the low intertidal zone at low tide in Plymouth May 2018 (LdigPM518-1 to 

LdigPM518-12) and in Perharidy 2010 (LdigPH10). 

All kelp gametophytes were isolated as follows: sori tissue was cut out from 

mature kelp sporophytes and left in sealed Eppendorf tubes overnight at 4 oC. The 

following day, the sori from individual sporophytes was cut with a razor blade into ~2 

mm3 cubes and >24 cubes were transferred to plastic petri dishes. In ~20 mL of 

autoclaved seawater, the cubes from each sporophyte were pipetted up and down 

repeatedly with the pipette tip pressed against the bottom of the petri dish, forcing 
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the water out and creating shear forces, which remove diatoms and protists from the 

cubes. The cubes were transferred to well-plates and cultured in 2 mL culture media 

and the plate was sealed with parafilm. After 8 hours, the sori cubes were removed. 

The settled meiospores develop via mitosis into a mix of male and female 

gametophytes. 

Gametophytes were cultured in half strength Provasoli’s enriched seawater 

(PES; [302]) on a 16:8 light dark cycle at 15 oC, with PES media changing every 6 weeks. 

To test virus induction by temperature, cultures of LdigPH10-30m (MCP positive) and 

LdigPH10-21m (MCP negative) were each kept at both 15 and 18 oC. These 

temperatures were chosen as changes from 15 to 18 oC have been shown to change 

Phaeovirus symptom occurrence [77, 82, 83]. All gametophyte crosses were kept at 15 

oC. The gametophyte crosses (for the first 6 weeks) and temperature experiment 

gametophytes were kept under red light (covered with red translucent plastic; 22.2 

µmol m-2 s-1) to inhibit gametogenesis, allowing long term vegetative growth. After 

seven weeks, the gametophyte crosses were kept in white light (54.8 µmol m-2 s-1) to 

induce sporophyte production. 

3.3.2 Gametophyte crosses 

 
The gametophytes from twelve sporophytes were crossed with themselves 

(one replicate per cross) and with the eleven other gametophytes (two replicates per 

cross). Two equal sized sori cubes were placed in each well plate to create cultures of 

gametophytes from two sporophytes (or one sporophyte for the self-crosses). Kelp can 

be self-crossed because they are self-fertile [197]. Self-crosses were performed as a 

control to which the out-crosses can be compared. 

3.3.3 Microscopic observations of gametophytes 
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During culture in white light, the gametophyte crosses were examined weekly 

with optical microscopy (Nikon TMS optical microscope) at x 2.5 magnification and any 

sporophytes present were counted. The coverage of gametophytes in each well plate 

was estimated by eye as very low (~1% = 0.001 mm2), low (~25% = 19.42 mm2), 

medium (~50% = 106.91 mm2), high (~75% = 194.4 mm2), or very high (~100% = 213.81 

mm2). At the end of the experiment, for each well plate, the maximum number of 

sporophytes and maximum gametophyte area in mm2 was used to calculate the 

number of sporophytes produced per mm2 of gametophytes. 

After twelve weeks of culture, each well plate was DAPI stained and examined 

with epifluorescent microscopy (Leica DMi8 epilfuorescent microscope) and excited 

using 640 nm (red, chlorophyll) and 340 nm (blue, DAPI) wavelengths at x10 

magnification, to visualise DNA and chlorophyll. Five images were taken per well plate, 

at the same positions (quadrants and centre). The numbers of red autofluorescent 

cells (healthy cells with chlorophyll) and blue DAPI fluorescent cells (putative virus-

filled cells) were counted automatically in ImageJ (method from 

https://www.unige.ch/medecine/bioimaging/files/3714/1208/5964/CellCounting.pdf). 

This method was also used to test whether the number of DAPI cells was different 

between gametophytes Laminaria digitata Perharidy 2010 number 30 male (LdigPH10-

30m) and Laminaria digitata Perharidy 2010 number 21 male (LdigPH10-21m) grown 

at 15 versus 18 oC. Temperature experiment replication at 15 oC: LdigPH10-21m n=5 

and LdigPH10-30m n=6. At 18 oC: LdigPH10-21m n=4 and LdigPH10-30m n=7. 

3.3.4 DNA Extraction and MCP PCR 

 
Epiphyte-free, clean meristematic tissue from kelp sporophytes Laminaria 

digitata Plymouth May 2018 number 1 to Laminaria digitata Plymouth May 2018 

https://www.unige.ch/medecine/bioimaging/files/3714/1208/5964/CellCounting.pdf
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number 12 (LdigPM518-1 to LdigPM518-12) was cut out and stored in silica gel. Fresh 

gametophytes were taken from culture dishes for DNA extraction of LdigPH10-30m 

and LdigPH10-21m. 10–20 mg dry weight of sporophyte or 100-200 mg wet weight of 

gametophyte material was frozen with liquid nitrogen and homogenized with pestle 

and mortar. This was followed by DNA extraction with the NucleoSpin® Plant II 

(Machery-Nagel, Düren, Germany ) kit, according to the manufacturer’s instructions.  

MCP PCR was performed on sporophytes LdigPM518-1 to LdigPM518-12 (proxy 

for gametophyte infection, as a Phaeovirus-infected sporophyte produces infected 

gametophytes) and gametophytes LdigPH10-30m and LdigPH10-21m. The degenerate 

primers used were designed previously [95] based on a consensus of sequences from 

EsV-1, FirrV-1, FsV-158, and the E.  siliculosus genome provirus [48, 98, 100, 103]. 

These primers were for 3 viral genes encoding MCP. Additionally, LSU d1d2 PCRs were 

performed on MCP-negative samples to ensure these were not false negatives caused 

by non-amplifiable DNA. All PCRs performed using Promega Gotaq® Flexi DNA 

polymerase kit according to the manufacturer’s instructions, with additional 0.8 mg/ml 

bovine serum albumin (BSA). All primers and PCR cycling conditions are detailed in 

Table 4.2. PCR products were run on 1.5-2 % agarose gels at 100 V. 
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3.4 Results 
 

3.4.1 Temperature induction 

 
Unexpectedly, LdigPH10-21m had DAPI-filled cells and with similar frequency to 

LdigPH10-30m at 15 oC. At 18 versus 15 oC, DAPI-filled cells were 3.4 and 2.7 times 

more common in LdigPH10-21m and LdigPH10-30m, respectively. However, the 

increase in DAPI-filled cells was not significant due to large variation between 

replicates, particularly at 18 oC (Figure 3.1). 

 

Figure 3.1: Mean number of DAPI-filled cells per 100 healthy cells. Gametophytes 
LdigPH10-30m and LdigPH10-21m kept at 15 and 18 oC on a 16:8 light dark cycle under 
22.2 µmol m-2 s-1

 red light. The error bars represent standard deviation; at 15 oC: 
LdigPH10-21m n=5 and LdigPH10-30m n=6. At 18 oC: LdigPH10-21m n=4 and LdigPH10-
30m n=7. 
 

3.4.2 Gametophyte crosses 

 
For all gametophyte crosses, there was no correlation between the maximum 

number of sporophytes produced per 100 mm2 of gametophytes and the mean 
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number of DAPI-filled cells per 100 healthy cells (Figure 3.2). When comparing specific 

gametophytes, no correlation was observed for any cross (Figure 3.3 and Figure 

3.4).The only MCP negative culture (LdigPM518-5) did not produce significantly more 

sporophytes. 

 

 

Figure 3.2: All crosses of LdigPM518, strains 1-12 (144 data points). Means of the 
maximum number of sporophytes produced per 100 mm2 of gametophytes, plotted 
against the mean number of DAPI-filled cells per 100 healthy cells. Each data point 
(self-crosses n=1, all other crosses n=2) represents a unique gametophyte cross 
(LdigPM518-1 x LdigPM518-1, LdigPM518-1 x LdigPM518-2, etc). 
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Figure 3.3: Self-crosses of LdigPM518, strains 1-12. The maximum number of 
sporophytes produced per 100 mm2 of gametophytes, plotted against the mean 
number of DAPI-filled cells per 100 healthy cells (n=1). The legend indicates the culture 
self-crossed. 
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Figure 3.4: Crosses of LdigPM518, strains 1-12 (except self-crosses). Means (n=11) of 
the maximum number of sporophytes produced per 100 mm2 of gametophytes, 
plotted against the mean number of DAPI-filled cells per 100 healthy cells. The legend 
indicates the culture crossed with the other 11 cultures. 
 

3.4.3 MCP PCR 

 
Except for LdigPM518-5, all LdigPM518 were positive for Phaeovirus MCP. 

Previously, LdigPH10-30m and LdigPH10-21m were tested by MCP PCR and found to 

be virus positive and negative, respectively. Repeating the PCR revealed that LdigPH10-

21m had become MCP positive. 

 

 

 

 

3.5 Discussion 
 

The 2.7-3.4 times increase (Figure 3.1) in the frequency of DAPI-filled cells at 18 

versus 15 oC was unsupported due to the large variability of DAPI cell occurrence (error 

bars; Figure 3.1) and the lack of a virus negative control because of the unexpected 

presence of DAPI-filled cells and Phaeovirus MCP in LdigPH10-21m. Why this culture 

became MCP positive is unclear; possibilities include viral cross infection from another 

culture, which would mean kelp phaeoviruses can infect walled cells, perhaps if cell 

walls are damaged as seen in Botrytella micromora (Ectocarpales; [111]). Perhaps the 

virus was previously integrated into too few vegetative cells (due to host elimination or 

initiation of a new infection) to be detected and has since then spread throughout the 
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host. This would mean that kelp Phaeovirus genomes can somehow move between 

host cells, which is known in plant viruses [109]. 

It was hypothesised that increased frequency of DAPI-filled cells would mean 

decreased host reproduction (fewer sporophytes), as virion production was expected 

to displace gamete production. No correlations were observed in any gametophyte 

crosses, in either all 144 possible crosses (Figure 3.2 , Figure 3.3, and Figure 3.4). 

Unfortunately, these cross experiments could not truly test the impact of virus 

infection on host reproduction, because of two unrecorded factors: the Mendelian 

segregation of integrated phaeoviruses and variation of gametophyte recruitment. 

Mendelian segregation means that the gametophytes from an infected sporophyte 

could be mostly virus-free or infected. This means that the portion of virus-infected 

gametophytes in all crosses was unknown; a portion could have been in fact virus-free 

crosses. In outcrosses, gametophyte recruitment variation means that one strain could 

dominate the culture and in fact be a self-cross. Variation in gametophyte sex ratios 

would also influence reproduction, but this was not accounted for. Ideally, this 

experiment would be performed with unialgal, unisex gametophyte cultures of known 

virus-infection state, and crossed with equal starting biomasses in all crosses. The MCP 

PCRs should be performed on the unialgal gametophytes to account for 

homo/heterozygosity of integrated Phaeoviruses. In future, the Mendelian inheritance 

of Phaeoviruses should be studied in kelp, as it has in Ectocarpus [78]. 

It may also have been better to use DNA stains such as Sybr green and a DAPI-

free control to account for background fluorescence due to temperature stress 

induced cell changes. In future, the extent of virus infection could also be assessed 

with transcriptomics to compare virus expression with observed symptoms. 
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3.5.1 Conclusions 

 
At 18 oC, around 3 % of cells at most were DAPI-filled (Figure 3.1) and in most crosses 

(115 out of 144), less than 5 % of cells were DAPI-filled (Figure 3.2).  

The hypothesis that kelp phaeoviruses are temperature sensitive was not sufficiently 

tested due to lack of replication and a true negative control.. The confounding factors 

caused by using gametophyte mixes isolated directly from sporophytes prevented the 

testing of the hypothesis that increased frequency of Phaeovirus symptoms reduce 

kelp gametophyte reproduction.  
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CHAPTER 4      GENOMICS AND MULTI-GENE PHYLOGENY OF 
KELP PHAEOVIRUSES 

 
 

4.1 Abstract 
 

The genus Phaeovirus (family Phycodnaviridae) are nucleo-cytoplasmic large 

DNA viruses (NCLDVs) which employ a latent infection strategy in brown algae (class 

Phaeophyceae) of the orders Ectocarpales and Laminariales (kelp). Despite the 

evolutionary, economic, and ecological importance of their hosts, the available 

sequence data of kelp phaeoviruses is restricted to a single gene, namely the major 

capsid protein gene mcp. Next generation sequencing was performed on Phaeovirus 

MCP PCR-positive and symptomatic gametophytes of the kelp Laminaria digitata. The 

resulting data, along with 3 kelp genomes (Ecklonia radicosa, Saccharina japonica, and 

Undaria pinnatifida) and 1 kelp viral metagenome (Ecklonia radiata), were mapped to 

the reference genomes of the Ectocarpales phaeoviruses Ectocarpus siliculosus virus 1 

(EsV-1) and Feldmannia species virus 158 (FsV-158). We present a range of sequences 

orthologous to Phaeovirus ORFs which were identified in L. digitata (10 orthologs), E. 

radicosa (24), S. japonica (9), and U. pinnatifida (87). It was hypothesised that these 

Phaeovirus orthologs originate from a partial genome of Laminaria digitata virus 1 

(LdV-1; orthologs to 4.3 % of EsV-1 ORFs; unknown if integrated or from virions), 

integrated genomes (unclear if partial or complete) from Saccharina japonica virus 

(SjV; orthologs to 3 % of EsV-1 ORFs) and Ecklonia radicosa virus (ErcV; orthologs to 7.4 

% of EsV-1 ORFs), and a putative complete integrated genome of Undaria pinnatifida 

virus (UpV; orthologs to 36.4 % of EsV-1 ORFs). We expand the set of core NCLDV 
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genes described in kelp phaeoviruses from one to nine, which is 56 % of the 16 core 

genes known in phaeoviruses. Core genes included the functions of viral DNA 

replication, integration and transposition, transcription, nucleotide metabolism, 

protein synthesis, and capsid structure. Single and concatenated core gene phylogeny 

placed these viral sequences in Phaeovirus, with LdV-1 in subgroup A or C, SjV in 

subgroup D, and ErcV and UpV in subgroup A. The putative functions of several other 

kelp Phaeovirus orthologs provide new insights into the biology of phaeoviruses and 

their kelp hosts, such as the evolution of Phaeovirus transposases, and revealed that 

kelp phaeoviruses also encode histidine kinases, host development and defence 

proteins, and potassium ion channel components. 

 

4.2 Introduction 
 

Laminaria digitata virus 1 (LdV-1), as indicated by PCR of the Major Capsid 

Protein (mcp) gene and transmission electron microscopy (TEM) of virions is a putative 

member of the dsDNA genus Phaeovirus [305], in the family Phycodnaviridae and the 

Nucleo-cytoplasmic Large DNA Viruses (NCLDVs). Phaeoviruses infect the brown algae 

(class Phaeophyceae), but they have only been described in detail in the order 

Ectocarpales, as exemplified by the type species, Ectocarpus siliculosus virus 1 (EsV-1, 

[100]) amplification of Phaeovirus MCP has expanded the Phaeovirus host range to a 

total of 8 Laminariales (kelp) species [316], which are among the first non-Ectocarpales 

brown algae shown to be infected by phaeoviruses.  

LdV-1 and the other phaeoviruses of kelp are expected to employ a latent 

infection strategy like that of the Ectocarpales phaeoviruses (see Section 0.3). This is 

supported by the PCR amplification of Phaeovirus MCP from healthy kelp sporophyte 
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and gametophyte tissue, i.e. the MCP PCR amplified the gene in host genomes, not 

virions [305, 316]. Furthermore, around 50 % of unialgal gametophytes (haploid) from 

MCP PCR-positive sporophytes (diploid) were found to be MCP PCR-negative, which 

indicates that a latent virus genome (provirus) has been removed from half of the 

gametophyte generation by meiotic segregation of chromosomes, as seen in EsV [78, 

79]. Latency in kelp phaeoviruses is also supported by the presence of Phaeovirus 

MCPs integrated into the genome of the kelp Saccharina japonica [31]. 

Phaeoviruses are a major knowledge gap for virology, phycology, conservation 

efforts, and aquaculture. Though only nine species of Phaeovirus are described and 

only from a single order of brown algae, phaeoviruses display many unique but poorly 

understood features. The enigmatic features of phaeoviruses include contradictory 

genome integration mechanisms (EsV provirus is either a single contiguous sequence; 

[103], or multiple sequences scattered throughout the genome; [105]), genome 

reduction (Feldmannia species virus 158, FsV-158, has a genome around half the size 

of EsV-1; 155 versus 336 kb; [98, 100], novel acute (r-selected, subgroup B) versus 

persistent (K-selected, subgroup A) evolutionary dynamics [95], and multiple infections 

(up to eight distinct viruses integrated into a single host genome; [95]) which challenge 

the superinfection exclusion hypothesis [97]. 

Brown algae are members of the SAR clade, which makes them only distantly 

related to the Archaeplastida (plants and  green and red macroalgae, [168, 186]). In 

addition, they have evolved complex multicellularity independently [103]. These 

factors suggest that phaeoviruses are a major knowledge gap for evolutionary biology. 

To further investigate the enigmatic latent phaeoviruses, we attempted to 

acquire novel Phaeovirus sequence data from 1) various cellular fractions of Laminaria 

digitata gametophytes, which contained both host and virion derived Phaeovirus DNA, 
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and 2) from Phaeovirus DNA integrated into three of the currently available kelp 

genome sequences (Ecklonia radicosa, Saccharina japonica, and Undaria pinnatifida) 

and 3) one viral metagenome from the kelp Ecklonia radiata. We report a set of 

Phaeovirus orthologs identified in L. digitata, and the genomes of E. radicosa, S. 

japonica, and U. pinnatifida. These orthologs are putatively from a partial Laminaria 

digitata virus 1 (LdV-1; Chapter 1) genome, integrated genomes of unclear 

completeness from Saccharina japonica virus (SjV) and Ecklonia radicosa virus (ErcV), 

and a complete integrated genome of Undaria pinnatifida virus (UpV). These orthologs 

included nine NCLDV core genes: VV D5-type ATPase (UpV), VV A18-type helicase 

(UpV), VV D6R-type helicase (LdV-1), PCNA (UpV), VLTF2 (UpV), RRLS (SjV, UpV), RRSS 

(UpV), VV A32-type ATPase (ErcV, UpV), and MCP (LdV-1, SjV, UpV). Single and 

concatenated phylogenetic analyses of these core genes placed LdV-1 in subgroup A or 

C, SjV in subgroup D, and ErcV and UpV in subgroup A, which mostly agrees with 

previous analyses [305, 316]. The putative functions of the Phaeovirus orthologs 

identified in these proposed phaeoviruses provide new insights into the biology of 

phaeoviruses and their kelp hosts. 

4.3 Methods and materials 

4.3.1 Gametophyte culture conditions 

 
Gametophytes were cultured in half strength Provasoli’s enriched seawater 

(PES; [302]) on a 16:8 light dark cycle at 15 oC and 18 oC, with PES media changing 

every 4 weeks. Gametophytes were kept in red light (covered with red translucent 

plastic; 22.2 µmol m-2 s-1). 

4.3.2 Sample preparation for DNA extraction and virion isolation 
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To separate the culture media and biomass, the cultures were passed through 

0.45 µm filters with a vacuum pump. The gametophyte biomass wet weight was 

recorded and the biomass was ground with a pestle and mortar in liquid nitrogen. 

To increase the chances of virus DNA recovery, the homogenised gametophyte 

material was split into three fractions by centrifugation: the bulk of the cellular 

material (cell debris pellet, CDP, 1 and 2; Table 4.1), isolated nuclei and chloroplasts 

(organelle pellet, OP, 3 and 4; Table 4.1), and isolated virions (virus fraction, VF, 5 and 

6, Table 4.1). This was performed as follows: to inhibit organelle disruption, the 

chloroplasts and nuclei were isolated in modified STE (mSTE) buffer: 0.01 M MgCl2 and 

0.04 M Tris-HCl (pH 7.8) with an addition of 0.01 M EDTA and 0.4 M sucrose [317, 318]. 

500 mg of brown algal material was added per 1.5 mL of mSTE buffer and re-

suspended. An equal volume of 2 mm glass beads was added to each Eppendorf tube, 

vortexed for 1 min, and disrupted at 2500 rpm (Biospec Products Mini-Beadbeater-1) 

for 40 sec and placed on ice before and after the disruption. The homogenised samples 

were centrifuged at 200 x g for 20 min. The pellet was kept for DNA extraction (cell 

debris pellet). The supernatant was centrifuged at 3700 x g for 20 min and the pellet 

re-suspended (this was repeated twice). The pellet was kept for DNA extraction 

(organelle pellet). The supernatant was kept for DNA extraction (virus fraction). 

Virion isolation was also performed on the culture media in which the 

gametophytes were kept (MV, 7-9; Table 4.1). The culture media was filtered through 

a 0.2 µm Quixstand benchtop hollow fibre cartridge pump, which reduced the volume 

to around 150 mL. The culture media was then concentrated to around 200 µL with a 

30 kDa Amicon ultracentrifuge filter according to the manufacturer’s instructions. 
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Table 4.1: Details of samples sequenced. ND = no data (sequencing failed). 
 
Sample Code Sample description DNA 

(ng/µL) 
MCP 
PCR 

LSU d1d2 
PCR 

Illumina 
Sequenced 

1_15_5L_CDP 15 oC, 5 L culture 
cell debris pellet 

91.2 + + Y 

2_18_5L_CDP 18 oC, 5 L culture 
cell debris pellet 

352 + - Y 

3_15_5L_OP 15 oC, 5 L culture 
organelle pellet 

14.3 + + Y 

4_18_5L_OP 18 oC, 5 L culture 
organelle pellet 

412.8 + + Y (ND) 

5_15_5L_VF 15 oC, 5 L culture 
virus fraction 

62.9 - - Y (ND) 

6_18_5L_VF 18 oC, 5 L culture 
virus fraction 

45.3 - - Y (ND) 

7_15_5L_MV 15 oC, 5 L culture 
media virus isolate 

3.6 - - N 

8_18_5L_MV 18 oC, 5 L culture 
media virus isolate 

<0.1 - + N 

9_15_10L_MV 15 oC, 10 L culture 
media virus isolate 

30 - + N 

 

4.3.3 DNA extraction 

 
For all samples (Table 4.1), DNA was extracted using the Nucleospin Plant II 

Midi kit (Machery-Nagel), according to the manufacturer’s instructions with the 

following modifications. For the virus fractions and culture media virus isolates, 1 µl of 

RQ1 RNase-free DNase and 9 µl RQ1 buffer (Promega) were added per 90 µL of viral 

fraction, and incubated at 37 oC for 30 min. The reaction was terminated with1 µL of 

DNase stop solution per 100 µL of reaction mix and incubation at 65 oC for 10 min. 

Next, 1 % β-mercaptoethanol was added and the mix incubated at 37 oC for 30 min. 

This was followed by the initial 65 oC for 60 min incubation step of the kit’s instructions 

with the addition of 0.5 mg mL-1 of proteinase K. 

For the cell debris and organelle pellets, 1 % β-mercaptoethanol was added to 

the buffer PL1 step and incubated at 37 oC for 30 min. This was followed by the initial 

65 oC for 60 min incubation step of the kit’s instructions with the addition of 0.5 mg 

mL-1 of proteinase K. 
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DNA was quantified by PicoGreen and Nanodrop. The presence of Phaeovirus 

was tested with MCP PCR and the presence of PCR inhibitors was tested with PCR of 

the D1-D2 region of the large subunit ribosomal gene (Table 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: PCR cycling conditions. 
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4.3.4 Next Generation Sequencing 

 
MiSeq paired-end 2 x 300 bp (Illumina), 300 cycles, version 3 chemistry. 

Nextera XT library creation standard scale. Each technology was used on the samples 

as detailed in Table 4.1. 

 

 

 

Table 4.3: Datasets used in the analyses. References: Ecklonia radicosa genome [319], 
Saccharina japonica genome [306], and Ecklonia radiata viral metagenome [120]. 
 
Dataset [Accession] Sequencing 

technology 
No. of 
sequences 

No. of 
nucleotides 

Average 
sequence 
length 

Format 

1_15_5L_CDP Illumina Miseq 10216904 3075288104 301 Paired reads 

2_18_5L_CDP Illumina Miseq 13555832 4080305432 301 Paired reads 

3_15_5L_OP Illumina Miseq 9567132 2879706732 301 Paired reads 

Ecklonia radicosa 
genome 
[PRJDB6405] 

Illumina Miseq 29956280 3739438584 125 Paired reads 

Saccharina 
japonica genome 
[JXRI00000000.1] 

Illumina Miseq 13327 543425876 40776 Scaffolds 

Undaria pinnatifida 
genome 

Illumina Miseq 112333 168154505 1497 Paired end 
contigs 
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[SRR2976377] 

Ecklonia radiata 
viral metagenome 
[SRX3446198] 

Illumina Miseq 542742 79319267 146 Contigs of 
paired reads 

Ecklonia radiata 
viral metagenome 
[SRX3446199] 

Illumina Miseq 1142971 166660233 146 Contigs of 
paired reads 

Ecklonia radiata 
viral metagenome 
[SRX3446200] 

Illumina Miseq 504250 73775745 146 Contigs of 
paired reads 

Ecklonia radiata 
viral metagenome 
[SRX3446201] 

Illumina Miseq 772410 112927229 146 Contigs of 
paired reads 

Ecklonia radiata 
viral metagenome 
[SRX3446202] 

Illumina Miseq 605515 88778690 147 Contigs of 
paired reads 

Ecklonia radiata 
viral metagenome 
[SRX3446203] 

Illumina Miseq 1045902 153230741 147 Contigs of 
paired reads 

 

4.3.5 Sequence assembly and annotation 

 
All sequence analysis steps were performed with Geneious Prime 2019.0.4 

(https://www.geneious.com). The ends of all sequence reads were trimmed where 

there was a >5 % chance of error per base, based on the base call quality. Two 

methods were applied to detect phaeovirus-like sequences. In method A, reads were 

mapped to a Phaeovirus reference genome (repeated for EsV-1; NC_002687 and FsV-

158; NC_011183) at Medium Sensitivity/Fast with up to 5 iterations. In method B, 

reads were further verified using BLASTn searches restricted to EsV-1 and FsV-158. The 

consensus sequences of reads aligned with Phaeovirus ORFs by mapping (method A) or 

BLASTn (method B) were extracted and annotated as the corresponding Phaeovirus 

ORF. The identity of the consensus sequences was analysed using BLASTn (assembly 

method A only) and BLASTx. Consensus sequences with phaeoviruses as their top 

protein (BLASTx) search hits (Bit-Scores above 100) were annotated as potential 

Phaeovirus genes or partial genes and with putative function/features (Table 4.4).  

4.3.6 Sequence analysis and phylogeny 
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Proteins which contained at least one conserved domain of a core NCLDV gene 

[98] were aligned using ClustalW with the corresponding proteins of NCLDVs 

(Poxviridae, Iridoviridae, Phycodnaviridae, Asfarviridae, and Mimiviridae). Maximum 

likelihood phylogenetic trees were constructed from both single and concatenated 

protein alignments using the Geneious Prime PhyML plugin (http://www.atgc-

montpellier.fr/phyml/) with the LG substitution model and 100 bootstraps. The trees 

were visualised using Inkscape 0.92 (https://inkscape.org/en/). 

 

4.4 Results 

4.4.1 Presence of putative Phaeovirus orthologs 

A total of ten different Phaeovirus orthologs were present in the Illumina-

sequenced L. digitata samples 1_15_5L_CDP (ten orthologs), 2_18_5L_CDP (three 

orthologs), and 3_15_5L_OP (three orthologs) (Table 4.4). In all three L. digitata 

samples, mcp was present and more Phaeovirus orthologs were detected when 

assembled to EsV-1 (seven orthologs) versus FsV-158 (four orthologs). No Phaeovirus 

orthologs were present in the MinION-sequenced samples. Culture temperature may 

have increased the number of Phaeovirus orthologs at 15 versus 18 oC (ten orthologs 

in 1_15_5L_CDP versus three in 2_18_5L_CDP; Table 4.4). 

The kelp genomes contained the following numbers of different Phaeovirus 

orthologs (Table 4.4), with the number of those orthologs assembled to EsV-1 versus 

FsV-158 (in parentheses): Ecklonia radicosa 24 (16 versus 9), Saccharina japonica 9 (6 

versus 6), and Undaria pinnatifida 87 (85 versus 11). No Phaeovirus orthologs were 

found in the viral metagenome of Ecklonia radiata. 
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A total of 104 different Phaeovirus orthologs were found for all the kelp 

sequence data tested. Of these, 37 were orthologs of genes with known or putative 

functions, which included nine NCLDV core genes (Table 4.5). The most commonly 

found core gene was mcp, which was present in all three LdV samples, SjV, and UpV. 

Subsequent phylogenetic analyses were based on these nine NCLDV core genes 

(Figures 4.1-4.7). 

 

 

 

 

 

 

 

 

 

Table 4.4: Sequences identified in LdV-1, ErcV, SjV, and UpV which were orthologs of 
ORFs (based on amino acid sequences) in the phaeoviruses EsV-1, EsV provirus, FsV-
158, and FirrV-1. (A) and (B) indicate the method used for the assembly of orthologs. 
See Appendices Tables A.4.1 and A.4.2 for full details of all Phaeovirus BLAST hits. 
 
Annotation 
reference 

EsV-1 
ortholog(s) 

EsV 
provirus 
ortholog(s) 

FsV-158 
ortholog(s)  

FirrV-1 
ortholog(s)  

Putative Function/Features 

1_15_5L_CDP to EsV-1 (A) 

23 23 
   

Helicase (VV D6R) 

24 24 24 
  

Unknown 

116 116 116 59 B50 Major capsid protein 

210, 211 210, 211 210 
  

Unknown 

231 231 231 
  

Unknown 

1_15_5L_CDP to EsV-1 (B) 

145269 - 
146699  

116 116 59 B50 Major capsid protein 

196773 - 
197924   

170 155, 170 
  

Transposase (DDE domain; IS4 family) 

222390 - 155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 
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223541   

298428 - 
299969  

210, 211 210 
  

Unknown 

300736 - 
303096  

213 213 13 
 

Integrase (phage integrase family) 

332508 - 
333659   

231 231 
  

Unknown 

1_15_5L_CDP to FsV-158-1 (A) 

59 116 116 59 B50 Major capsid protein 

1_15_5L_CDP to FsV-158-1 (B) 

1212 - 2438   
  

2 
 

Transposase (OrfB_Zn_ribbon 
superfamily) 

2383 - 3063   
  

3 
 

Integrase/resolvase (Serine Recombinase 
family) 

52791 - 54098  116 116 59 B50 Major capsid protein 

2_18_5L_CDP to EsV-1 (A) 

116 116 116 59 B50 Major capsid protein 

2_18_5L_CDP to EsV-1 (B) 

145269 - 
146699  

116 116 59 B50 Major capsid protein 

298428 - 
299969  

210, 211 210 4, 75 A33 Unknown 

2_18_5L_CDP to FsV-158 (A) 

59 116 116 59 B50 Major capsid protein 

2_18_5L_CDP to FsV-158 (B) 

52791 - 54098  116 116 59 B50 Major capsid protein 

3_15_5L_OP to EsV-1 (B) 

145269 - 
146699  

116 116 59 B50 Major capsid protein 

3_15_5L_OP to FsV-158 (B) 

1212 - 2438   
  

2 
 

Transposase (OrfB_Zn_ribbon 
superfamily) 

52791 - 54098  116 116 59 B50 Major capsid protein 

E. radicosa to EsV-1 (A) 

7 
 

7 
  

Unknown 

7 
 

7 
  

Unknown 

Table 4.4 (continued) 
Annotation 
reference 

EsV-1 
ortholog(s) 

EsV 
provirus 
ortholog(s) 

FsV-158 
ortholog(s)  

FirrV-1 
ortholog(s)  

Putative Function/Features 

17 17 
   

Unknown (Ankyrin repeats) 

26 26 
 

87 A12 Viral ATPase (VV A32-type ATPase) 

29 29 
   

Helicase (Superfamily I) 

129 129 
   

Adenine DNA methylase 

153 153 153 
 

E5 Unknown 

155 
 

170 
  

Transposase (DDE domain; IS4 family) 

170 155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

182 182    Replication factor C-Archaeae small 
subunit (ATPase) 

231 231 231 
  

Unknown 

157, 175 157, 175 
   

Unknown 

160 160 210, 211 72 
 

Unknown 

E. radicosa to EsV-1 (B) 

17330 - 18466  7 7 
  

Unknown 
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196773 - 
197924   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

199080 - 
199757   

210, 211 210, 211 
  

Unknown 

222390 - 
223541   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

253899 - 
254879  

182 
   

Replication factor C-Archaeae small 
subunit (ATPase) 

268569 - 
269711   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

30668 - 34069  17 
   

Unknown (Ankyrin repeats) 

58289 - 59161  26 
 

87 A12 Viral ATPase (VV A32-type ATPase) 

E. radicosa to FsV-158 (A) 

3 
  

3 
 

Integrase/resolvase (Serine Recombinase 
family) 

96 
 

180 96 A20 Ribonucleotide reductase large subunit 

70, 135 
  

135 
 

Unknown 

E. radicosa to FsV-158 (B) 

1212 - 2438   
  

2 
 

Transposase (OrfB_Zn_ribbon 
superfamily) 

2383 - 3063   
  

3 
 

Integrase/resolvase (Serine Recombinase 
family) 

33011 - 34882  
 

164 38 B30 NosD copper-binding protein & precursor 

93295 - 95616  
 

180 96 A20 Ribonucleotide reductase large subunit 

S. japonica to EsV-1 (B) 

145269 - 
146699  

 
116 59 B50 Major capsid protein 

18439 - 20712   178/222 
  

M1 Transposase (OrfB_Zn_ribbon 
superfamily) 

201313 - 
201933   

158 158 136 G2 Protein lysine methyltransferase 

220067 - 
222340   

178/222 
  

M1 Transposase (OrfB_Zn_ribbon 
superfamily) 

222390 - 
223541   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

248410 - 
250707  

   
A20 Ribonucleotide reductase large subunit 

268569 - 
269711   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

S. japonica to FsV-158 (B) 

Table 4.4 (continued) 
Annotation 
reference 

EsV-1 
ortholog(s) 

EsV 
provirus 
ortholog(s) 

FsV-158 
ortholog(s)  

FirrV-1 
ortholog(s)  

Putative Function/Features 

134578 - 
135201  

158 158 136 G2 Protein lysine methyltransferase 

145492 - 
146463  
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Unknown 

2383 - 3063   
  

3 P1 Integrase/resolvase (Serine Recombinase 
family) 

3270 - 4646   211 
 

4 
 

Unknown 

52791 - 54098  116 116 59 B50 Major capsid protein 

93295 - 95616  
  

96 A20 Ribonucleotide reductase large subunit 

U. pinnatifida to EsV-1 (A) 

29 29 
   

Helicase (Superfamily I) 

30 30 30 
  

Unknown 

36 36 36 
  

Unknown 

42 42 42 117 A43 Unknown 

43 43 43 118 
 

Unknown 

45 45 45 121 A46 Unknown 
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56 56 56 46 B38 Unknown 

67 67 67 39 B32 Unknown 

68 68 68 
  

Unknown 

70 70 70 42 
 

Unknown 

71 71 71 
  

Unknown 

76 76 76 18 B10, I1 Unknown 

91 91 91 108 A30 Unknown 

109 109 
 

34 B27 Superfamily III helicase (viral) (VV D5-type 
ATPase) 

114 114 114 
  

Unknown (Ankyrin repeats) 

116 116 116 59 B50 Major capsid protein 

117 117 117 
  

Putative antirepressor of the lysogenic 
cycle 

125 125 125 
  

Unknown 

126 126 126 
  

Exonuclease (DEDDh 3'-5' exonuclease 
domain) 

131 131 131 
  

Unknown 

132 132 132 80 A6 Proliferating cell nuclear antigen 

133 133 133 
  

Unknown 

172 172 172 132 
 

Ubiquitin ligase 

U. pinnatifida to EsV-1 (B) 

100261 - 
101223  

71 71 
  

Unknown 

102474 - 
104003  

74 74 
  

Unknown 

104041 - 
105222  

75 
   

Cysteine protease C1A 

105297 - 
106166  

76 76 18 I1 Unknown 

106169 - 
107170   

77 77 19 B11 Unknown 

107251 - 
108126  

78 
   

Unknown 

108100 - 
108534   

79 79 
  

Unknown 

108596 - 
109240   

80 80 
  

Heat shock protein 40 (DnaJ super family: 
DnaJ/Hsp40) 

Table 4.4 (continued) 
Annotation 
reference 

EsV-1 
ortholog(s) 

EsV 
provirus 
ortholog(s) 

FsV-158 
ortholog(s)  

FirrV-1 
ortholog(s)  

Putative Function/Features 

109978 - 
110892  

82 82 
  

Protein kinase (Pkinase superfamily) 

110936 - 
111721  

83 83 
  

UDP-glucose/GDP-mannose 
dehydrogenase 

114900 - 
115874   

87 87 
  

Replication factor C-Archaeae small 
subunit (ATPase) 

118751 - 
120406  

91 91 108 A30 Unknown 

125039 - 
125923   

96 96 
  

Very late transcription factor 2 

125984 - 
126961   

97, 98 97, 98 
  

Unknown 

128037 - 
128306   

99 99 
  

Unknown 

128758 - 
129720   

101 101 28 B20 Very late transcription factor 3 

135055 - 
136875   

109 
 

34 B27 Superfamily III helicase (viral) (VV D5-type 
ATPase) 

138875 - 
140626   

112 
   

Viral hybrid histidine kinase 

140674 - 
141000  

113 
   

Viral phosphoshuttle (histidine-containing 
phosphotransfer domain) 
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141087 - 
142181  

114 114 
  

Unknown (Ankyrin repeats) 

145269 - 
146699  

116 116 59 B50 Major capsid protein 

155049 - 
155492   

124 124 
  

Unknown 

155574 - 
156134   

125 125 
  

Unknown 

156149 - 
156769   

126 126 
  

Exonuclease (DEDDh 3'-5' exonuclease 
domain) 

157195 - 
158454   

128 128 94 A19 Ribonucleotide reductase small subunit 

161005 - 
161910  

132 132 80 A6 Proliferating cell nuclear antigen 

161911 - 
162972   

133 133 
  

Unknown 

165925 - 
166356  

137 137 101 O1 Unknown 

166394 - 
167602  

138 138 
  

Replication factor C-Archaeae large 
subunit (ATPase) 

167599 - 
168423   

139 139 
  

Oligoribonuclease (DnaQ-like 3'-5' 
exonuclease domain superfamily) 

168542 - 
169369  

140 140 
  

Unknown 

169378 - 
170004   

141 141 
  

Unknown 

170007 - 
171344  

142 142 
  

Ubiquitin ligase 

179752 - 
180714  

149 149 
  

Unknown 

194450 - 
196723   

178/222 
   

Transposase (OrfB_Zn_ribbon 
superfamily) 

196773 - 
197924   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

199080 - 
199757   

210/211 210/211 
  

Unknown 

211615 - 
213702   

164 164 
  

NosD copper-binding protein 

217194 - 
218375  

169 169 
  

Thaumatin-like protein (glycoside 
hydrolase family 64) 

220067 - 
222340   

178/222 
   

Transposase (OrfB_Zn_ribbon 
superfamily) 

222390 - 
223541   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

Table 4.4 (continued) 
Annotation 
reference 

EsV-1 
ortholog(s) 

EsV 
provirus 
ortholog(s) 

FsV-158 
ortholog(s)  

FirrV-1 
ortholog(s)  

Putative Function/Features 

232829 - 
236530  

171 
   

Unknown 

236917 - 
239346   

172 172 
  

Ubiquitin ligase 

243546 - 
244310  

176 176 147 
 

von Willebrand factor (type A) 

248410 - 
250707  

180 180 
  

Ribonucleotide reductase large subunit 

253899 - 
254879  

182 182 
  

Replication factor C-Archaeae small 
subunit (ATPase) 

254986 - 
255393  

183 183 
  

Unknown 

255485 - 
256198  

184 184 
  

Unknown 

259449 - 
260423  

187 187 
  

Replication factor C-Archaeae small 
subunit (ATPase) 

268569 - 
269711   

155, 170 155, 170 
  

Transposase (DDE domain; IS4 family) 

275146 - 
276396  

199 199 
  

Unknown (ankyrin repeats) 

293009 - 
293626  

207 207 139 C7 Unknown 
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295172 - 
296371   

209 209 
  

Unknown 

296503 - 
298032  

210, 211 210 
  

Unknown 

298428 - 
299969  

210, 211 210 4, 135 
 

Unknown 

321504 - 
321878   

223 
   

Potassium channel pore region 

321942 - 
322916  

224 
   

Replication factor C-Archaeae small 
subunit (ATPase) 

325898 - 
327883  

226 
   

Glycoprotein-1 (putative capsid protein)/ 
mannuronan C-5-epimerase 

42136 - 43974  23 
   

Helicase (VV D6R) 

58289 - 59161  26 
 

87 A12 Viral ATPase (VV A32-type ATPase) 

60675 - 62702  29 
   

Helicase (Superfamily I) 

63677 - 64435  31 
   

Unknown (Ankyrin repeats) 

65100 - 67328  34 
   

Phage-related protein (COG5412 super 
family) 

68781 - 69413   37 
   

Unknown 

72084 - 73547   40 40 
  

Unknown 

73599 - 74072  41 41 116 A42 Unknown 

74069 - 74593   42 42 
  

Unknown 

75843 - 77543  45 45 
  

Unknown 

78090 - 78410  47 47 
  

Unknown 

79165 - 80433  50 50 
  

Unknown 

80854 - 81222  52 52 
  

Unknown 

81236 - 81796   53 53 
  

Unknown 

83273 - 84919  56 56 46 B38 Calcium binding protein 1 

87711 - 88136   59 59 
  

Unknown 

90438 - 91031   63 63 
  

Unknown 

94110 - 95543  66 66 
  

Helicase (DEAD/H-like, Superfamily II) 

95964 - 98036   68 68 
  

Unknown 

 
 
Table 4.4 (continued) 
Annotation 
reference 

EsV-1 
ortholog(s) 

EsV 
provirus 
ortholog(s) 

FsV-158 
ortholog(s)  

FirrV-1 
ortholog(s)  

Putative Function/Features 

U. pinnatifida to FsV-158 (B) 

105428 - 
105649   

  
110 

 
Unknown 

109479 - 
109877  

41 41 116 A42 Unknown 

133324 - 
134460   

210, 211 210 4, 135 P1 Unknown 

20971 - 21651   96 96 22 I5 Very late transcription factor 2 

24052 - 24963   101 
 

28 B20 Very late transcription factor 3 

28433 - 30262   109 
 

34 B27 Superfamily III helicase (viral) (VV D5-type 
ATPase) 

33011 - 34882  
 

164 38 B30 NosD copper-binding protein & precursor 

52791 - 54098  116 116 59 B50 Major capsid protein 

63668 - 64714  211 210, 211 72, 135 
 

Unknown 

78029 - 78889   132 132 80 A6 Proliferating cell nuclear antigen 

91664 - 92692  128 128 94 A19 Ribonucleotide reductase small subunit 
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Table 4.5: Putative Phaeovirus proteins encoded by LdV-1 and kelp genomes (ErcV, SjV, 
and UpV). Core NCLDV proteins are underlined. LdV-1 (1)= 1_15_5L_CDP, LdV-1 (2)= 
2_18_5L_CDP, LdV-1 (3)= 3_15_5L_OP. 

 

Putative Function 

Ld
V

-1
 (

1
) 

Ld
V

-1
 (

2
) 

Ld
V

-1
 (

3
) 

Er
cV

 

Sj
V

 

U
p

V
 

Es
V

-1
 

Fs
V

-1
5

8
 

Fi
rr

V
-1

 

DNA replication, recombination, repair, and modification 

ATPase (VV D5-type) 
     

Y 109 34 B27 

Adenine DNA methylase 
   

Y 
  

129 37 B29 

Exonuclease (DEDDh 3'-5' exonuclease domain) 
     

Y 126 
  

Helicase (Superfamily I) 
   

Y 
 

Y 29 
  

Helicase (VV A18-type) 
     

Y 66 
  

Helicase (VV D6R-type) Y 
    

Y 23 
  

Proliferating cell nuclear antigen 
     

Y 132 80 A6 

Replication factor C-Archaea large subunit (ATPase) 
     

Y 138 105 A26 

Replication factor C-Archaea small subunit (ATPase) 
   

Y 
  

182 
  

Integration and transposition 

Integrase (phage integrase family) Y 
     

213 13 B4 

Integrase/resolvase (Serine Recombinase family) 
   

Y Y 
  

3 
 

Transposase (DDE domain; IS4 family) Y 
  

Y Y Y 155, 
170 

  

Transposase (OrfB_Zn_ribbon superfamily) Y 
 

Y Y Y Y 
 

2 
 

Transcription 

Oligoribonuclease (DnaQ-like domain) 
     

Y 139 77 A3 

Very late transcription factor 2 
     

Y 96 22 B14/15 

Very late transcription factor 3 
     

Y 101 28 B20 

Nucleotide metabolism 

Ribonucleotide reductase large subunit (RRLS) 
   

Y Y Y 180 96 A20 

Ribonucleotide reductase small subunit (RRSS) 
     

Y 128 94 A19 

Viral ATPase (VV A32-type) 
   

Y 
 

Y 26 87 A12 

Protein and lipid synthesis, modification, and degradation 

Cysteine protease C1A 
     

Y 75 126 A48 

Protein lysine methyltransferase 
    

Y 
 

158 136 G2 

Ubiquitin ligase 
     

Y 142, 
172 

132 D5 

Signalling 

Protein kinase (Pkinase superfamily) 
     

Y 82 
  

Viral hybrid histidine kinase 
     

Y 112 
  

Viral phosphoshuttle 
     

Y 113 
  

Miscellaneous 

Calcium binding protein 1 
     

Y 56 46 B38 

Glycoprotein-1 
     

Y 226 
  

Heat shock protein 40 (DnaJ super family) 
     

Y 80 
  

Major capsid protein Y Y Y 
 

Y Y 116 59 B50 

NosD copper-binding protein 
   

Y 
 

Y 164 38 B30 

Phage-related protein (COG5412 super family) 
     

Y 34 
  

Potassium channel pore region 
     

Y 223 
  

Putative antirepressor of the lysogenic cycle 
     

Y 117 
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Thaumatin-like protein 
     

Y 10 169 
 

UDP-glucose/GDP-mannose dehydrogenase 
     

Y 83 
  

von Willebrand factor (type A) 
     

Y 176 147 
 

 

4.4.2 Phylogenetic analyses 

 
LdV-1 was supported as a subgroup A Phaeovirus by Figures 4.2B (100 

bootstrap) and 4.6B (100 bootstrap). However, LdV-1 was also supported as its own 

subgroup, most closely related to subgroup D by Figures 4.3A (100 and 91 bootstraps) 

and 4.7 (unsupported bootstrap). For the partial MCP region (Figure 4.7), 

1_15_5L_CDP (FB) and 3_15_5L_OP (EB) were highly divergent from the phaeoviruses, 

suggesting that the most accurate assembly was 1_15_5L_CDP (FA and EB). ErcV was 

supported as a subgroup A Phaeovirus by Figures 4.1B (95 bootstrap). SjV was 

supported as the sole member of subgroup D (defined in chapter 2) by Figures 4.3A 

(100 bootstrap), 4.4A (84 bootstrap), 4.6C (68 bootstrap), and 4.7 (80 bootstrap). UpV 

was well supported as a subgroup A Phaeovirus by Figures 4.1A (99 bootstrap), 4.1B 

(95 bootstrap), 4.2A (100 bootstrap), 4.3B (82 bootstrap), 4.4A (74 bootstrap), 4.4B (99 

bootstrap), 4.4C (96 bootstrap), 4.5A (100 bootstrap), 4.5B (100 bootstrap), 4.6A (100 

bootstrap), 4.6B (100 bootstrap), 4.6C (100 bootstrap), and 4.7. UpV was placed in its 

own distinct subgroup by Figures 4.2B (100 bootstrap) and 4.3A (86 bootstrap). 

In all single protein trees (except VLTF2; Figure 4.3B) including the subgroup B viruses, 

Phaeovirus and the subgroups A and B are strongly supported. The concatenated 

protein trees distinguish the NCLDV families which good support (Figure 4.5), except 

those in Figure 4.6, which suggest that Phycodnaviridae was polyphyletic.  
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Figure 4.1: Maximum likelihood phylogenetic tree of (A) VV A18-type helicase and (B) 
VV A32-type ATPase. Assembly method labelled as follows: EsV-1 method A (EA), EsV-1 
method B (EB), FsV-158 method A (FA), FsV-158 method B (FB). This study’s LdV-1 
samples labelled as 1_15_5L_CDP, 2_18_5L_CDP, and 3_15_5L_OP. The abbreviations 
for viruses are as follows: MOCV, Molluscum contagiosum virus; VACV, Vaccinia virus; 
MSEV, Melanoplus sanguipes entomopoxvirus; AMEV, Amsacta moorei 
entomopoxvirus; IIV-6, Invertebrate iridescent virus 6; LCDV-1, Lymphocystis disease 
virus 1; ASFV, African swine fever virus; APMV, Acanthamoeba polyphaga mimivirus; 
PgV-16T, Phaeocystis globosa virus 16T; EhV-86, Emiliania huxleyi virus 86; HaV01, 
Heterosigna akashiwo virus 1; OtV5, Ostreococcus tauri virus 5; PBCV-1, Paramecium 
bursaria virus 1; EsV-1, Ectocarpus siliculossu virus 1; FsV-158, Feldmannia species 
virus 158; FirrV-1, Feldmannia irregularis virus 1; ErcV, Ecklonia radicosa virus; SjV, 
Saccharina japonica virus; UpV, Undaria pinnatifida virus. Node values are maximum 
likelihood bootstrap values (values <50 not shown). Trees rooted with the Poxviridae 
(MOCV, VACV, MSEV, AMEV). See Appendices Figures A.4.1 and A.4.2 for sequence 
alignments and GenBank Accession numbers. Scale units are the number of amino acid 
substitutions per site. 
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Figure 4.2: Maximum likelihood phylogenetic tree of (A) VV D5-type ATPase and (B) VV 
D6R-type helicase. Assembly method labelled as follows: EsV-1 method A (EA), EsV-1 
method B (EB), FsV-158 method A (FA), FsV-158 method B (FB). This study’s LdV-1 
samples labelled as 1_15_5L_CDP, 2_18_5L_CDP, and 3_15_5L_OP. The abbreviations 
for viruses are as follows: MOCV, Molluscum contagiosum virus; VACV, Vaccinia virus; 
MSEV, Melanoplus sanguipes entomopoxvirus; AMEV, Amsacta moorei 
entomopoxvirus; IIV-6, Invertebrate iridescent virus 6; LCDV-1, Lymphocystis disease 
virus 1; ASFV, African swine fever virus; APMV, Acanthamoeba polyphaga mimivirus; 
PgV-16T, Phaeocystis globosa virus 16T; EhV-86, Emiliania huxleyi virus 86; HaV01, 
Heterosigna akashiwo virus 1; OtV5, Ostreococcus tauri virus 5; PBCV-1, Paramecium 
bursaria virus 1; EsV-1, Ectocarpus siliculossu virus 1; FsV-158, Feldmannia species 
virus 158; FirrV-1, Feldmannia irregularis virus 1; ErcV, Ecklonia radicosa virus; SjV, 
Saccharina japonica virus; UpV, Undaria pinnatifida virus. Node values are maximum 
likelihood bootstrap values (values <50 not shown). Trees rooted with the Poxviridae 
(MOCV, VACV, MSEV, AMEV). See Appendices Figures A.4.3 and A.4.4 for sequence 
alignments and GenBank Accession numbers. Scale units are the number of amino acid 
substitutions per site. 
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Figure 4.3: Maximum likelihood phylogenetic tree of (A) MCP and (B) VLTF2. Assembly 
method labelled as follows: EsV-1 method A (EA), EsV-1 method B (EB), FsV-158 
method A (FA), FsV-158 method B (FB). This study’s LdV-1 samples labelled as 
1_15_5L_CDP, 2_18_5L_CDP, and 3_15_5L_OP. The abbreviations for viruses are as 
follows: MOCV, Molluscum contagiosum virus; VACV, Vaccinia virus; MSEV, 
Melanoplus sanguipes entomopoxvirus; AMEV, Amsacta moorei entomopoxvirus; IIV-
6, Invertebrate iridescent virus 6; LCDV-1, Lymphocystis disease virus 1; ASFV, African 
swine fever virus; APMV, Acanthamoeba polyphaga mimivirus; PgV-16T, Phaeocystis 
globosa virus 16T; EhV-86, Emiliania huxleyi virus 86; HaV01, Heterosigna akashiwo 
virus 1; OtV5, Ostreococcus tauri virus 5; PBCV-1, Paramecium bursaria virus 1; EsV-1, 
Ectocarpus siliculossu virus 1; FsV-158, Feldmannia species virus 158; FirrV-1, 
Feldmannia irregularis virus 1; ErcV, Ecklonia radicosa virus; SjV, Saccharina japonica 
virus; UpV, Undaria pinnatifida virus. Node values are maximum likelihood bootstrap 
values (values <50 not shown). Trees rooted with the Poxviridae (MOCV, VACV, MSEV, 
AMEV). See Appendices Figures A.4.5 and A.4.6 for sequence alignments and GenBank 
Accession numbers. Scale units are the number of amino acid substitutions per site. 
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Figure 4.4: Maximum likelihood phylogenetic tree of (A) Ribonucleotide reductase 
large subunit, (B) ribonucleotide reductase small subunit, and (C) PCNA. Assembly 
method labelled as follows: EsV-1 method A (EA), EsV-1 method B (EB), FsV-158 
method A (FA), FsV-158 method B (FB). This study’s LdV-1 samples labelled as 
1_15_5L_CDP, 2_18_5L_CDP, and 3_15_5L_OP. The abbreviations for viruses are as 
follows: MOCV, Molluscum contagiosum virus; VACV, Vaccinia virus; MSEV, 
Melanoplus sanguipes entomopoxvirus; AMEV, Amsacta moorei entomopoxvirus; IIV-
6, Invertebrate iridescent virus 6; LCDV-1, Lymphocystis disease virus 1; ASFV, African 
swine fever virus; APMV, Acanthamoeba polyphaga mimivirus; PgV-16T, Phaeocystis 
globosa virus 16T; EhV-86, Emiliania huxleyi virus 86; HaV01, Heterosigna akashiwo 
virus 1; OtV5, Ostreococcus tauri virus 5; PBCV-1, Paramecium bursaria virus 1; EsV-1, 
Ectocarpus siliculossu virus 1; FsV-158, Feldmannia species virus 158; FirrV-1, 
Feldmannia irregularis virus 1; ErcV, Ecklonia radicosa virus; SjV, Saccharina japonica 
virus; UpV, Undaria pinnatifida virus. Node values are maximum likelihood bootstrap 
values (values <50 not shown). Trees rooted with the Poxviridae (MOCV, VACV, MSEV, 
AMEV). See Appendices Figures A.4.7, A.4.8, and A.4.9 for sequence alignments and 
GenBank Accession numbers. Scale units are the number of amino acid substitutions 
per site. 
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Figure 4.5: Concatenated maximum likelihood phylogenetic tree of (A) VV D5-type 
ATPase, VV A32-type ATPase, and MCP, (B) VV A18-type helicase, VV D6R-type 
helicase, and VLTF2. Assembly method labelled as follows: EsV-1 method A (EA), EsV-1 
method B (EB), FsV-158 method A (FA), FsV-158 method B (FB). This study’s LdV-1 
samples labelled as 1_15_5L_CDP, 2_18_5L_CDP, and 3_15_5L_OP. The abbreviations 
for viruses are as follows: MOCV, Molluscum contagiosum virus; VACV, Vaccinia virus; 
MSEV, Melanoplus sanguipes entomopoxvirus; AMEV, Amsacta moorei 
entomopoxvirus; IIV-6, Invertebrate iridescent virus 6; LCDV-1, Lymphocystis disease 
virus 1; ASFV, African swine fever virus; APMV, Acanthamoeba polyphaga mimivirus; 
PgV-16T, Phaeocystis globosa virus 16T; EhV-86, Emiliania huxleyi virus 86; HaV01, 
Heterosigna akashiwo virus 1; OtV5, Ostreococcus tauri virus 5; PBCV-1, Paramecium 
bursaria virus 1; EsV-1, Ectocarpus siliculossu virus 1; FsV-158, Feldmannia species 
virus 158; FirrV-1, Feldmannia irregularis virus 1; ErcV, Ecklonia radicosa virus; SjV, 
Saccharina japonica virus; UpV, Undaria pinnatifida virus. Node values are maximum 
likelihood bootstrap values (values <50 not shown). Tree is not rooted. Scale units are 
the number of amino acid substitutions per site. Boxes indicate virus families. 
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Figure 4.6: Concatenated maximum likelihood phylogenetic tree of (A) ribonucleotide 
reductase large subunit, ribonucleotide reductase small subunit, and PCNA. (B) MCP 
and VV D6R-type helicase. (C) Ribonucleotide reductase large subunit and MCP. 
Assembly method labelled as follows: EsV-1 method A (EA), EsV-1 method B (EB), FsV-
158 method A (FA), FsV-158 method B (FB). This study’s LdV-1 samples labelled as 
1_15_5L_CDP, 2_18_5L_CDP, and 3_15_5L_OP. The abbreviations for viruses are as 
follows: MOCV, Molluscum contagiosum virus; VACV, Vaccinia virus; MSEV, 
Melanoplus sanguipes entomopoxvirus; AMEV, Amsacta moorei entomopoxvirus; IIV-
6, Invertebrate iridescent virus 6; LCDV-1, Lymphocystis disease virus 1; ASFV, African 
swine fever virus; APMV, Acanthamoeba polyphaga mimivirus; PgV-16T, Phaeocystis 
globosa virus 16T; EhV-86, Emiliania huxleyi virus 86; HaV01, Heterosigna akashiwo 
virus 1; OtV5, Ostreococcus tauri virus 5; PBCV-1, Paramecium bursaria virus 1; EsV-1, 
Ectocarpus siliculossu virus 1; FsV-158, Feldmannia species virus 158; FirrV-1, 
Feldmannia irregularis virus 1; ErcV, Ecklonia radicosa virus; SjV, Saccharina japonica 
virus; UpV, Undaria pinnatifida virus. Node values are maximum likelihood bootstrap 
values (values <50 not shown). Tree is not rooted. Scale units are the number of amino 
acid substitutions per site. Boxes indicate virus families. 
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Figure 4.7: Maximum likelihood phylogenetic tree of partial MCP. Assembly method 
labelled as follows: EsV-1 method A (EA), EsV-1 method B (EB), FsV-158 method A (FA), 
FsV-158 method B (FB). This study’s LdV-1 samples labelled as 1_15_5L_CDP, 
2_18_5L_CDP, and 3_15_5L_OP. The abbreviations are as follows: MOCV, Molluscum 
contagiosum virus; VACV, Vaccinia virus; MSEV, Melanoplus sanguipes 
entomopoxvirus; AMEV, Amsacta moorei entomopoxvirus; IIV-6, Invertebrate 
iridescent virus 6; LCDV-1, Lymphocystis disease virus 1; ASFV, African swine fever 
virus; APMV, Acanthamoeba polyphaga mimivirus; PgV-16T, Phaeocystis globosa virus 
16T; EhV-86, Emiliania huxleyi virus 86; HaV01, Heterosigna akashiwo virus 1; OtV5, 
Ostreococcus tauri virus 5; PBCV-1, Paramecium bursaria virus 1; EsV-1, Ectocarpus 
siliculossu virus 1; Esil, Ectocarpus siliculosus virus; Efas, Ectocarpus fasciculatus virus; 
Plit, Pylaiella littoralis virus; FsV-158, Feldmannia species virus 158; FirrV, Feldmannia 
irregularis virus; Flex, Feldmannia simplex virus; ErcV, Ecklonia radicosa virus; SjV, 
Saccharina japonica virus; UpV, Undaria pinnatifida virus; Ldig, Laminaria digitata; 
Lhyp, Laminaria hyperborea; Slat, Saccharina latissima; Sjap, Saccharina japonica; 
Mpyr, Macrocystis pyrifera; Erad, Ecklonia radiata; Emax, Ecklonia maxima; Upin, 
Undaria pinnatifida. Node values are maximum likelihood bootstrap values (values <50 
not shown). Tree rooted with the Poxviridae (MOCV, VACV, MSEV, AMEV). See 
Appendices Figure A.4.10 for sequence alignments and GenBank Accession numbers. 
Scale units are the number of amino acid substitutions per site. Boxes indicate virus 
families. Colours indicate Phaeovirus subgroup: blue, subgroup A; red, subgroup B; 
green, subgroup C; purple, subgroup D. 
 

4.4.3 Nucleotide metabolism 

 
UpV encodes several enzymes for the synthesis of nucleotides (ribonucleotide 

reductase small subunit, ribonucleotide reductase large subunit, and VV A32-type 
ATPase; Table 4.5), ErcV encodes 2 (ribonucleotide reductase large subunit and VV 
A32-type ATPase; Table 4.5), and SjV encodes 1 (ribonucleotide reductase large 
subunit; Table 4.5). 
 

4.4.4 Integration and transposition 

 
An ortholog of the conserved integrase of phaeoviruses was only found in LdV-

1. 1 LdV-1, ErcV, SjV, UpV may share the DDE domain, IS4 family transposases (ORFs 

155 and 170) with EsV-1. However, these same viruses and may also share an OrfB zinc 

ribbon transposase (ORF2) with FsV-158. Additionally, ErcV and SjV may share an 

integrase/resolvase (ORF3) with FsV-158 (Table 4.5). 
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4.4.5 Roles in brown algal biology 

 
A single ortholog of the EsV-1 ORF7 was found in ErcV (Table 4.5) and 

contained the conserved cysteine and histidine motif of the EsV-1-7 repeats in the 

IMM protein of Ectocarpus siliculosus [320], but with a large insert within the motif 

(Figure 4.8). UpV contained a thaumatin-like protein ortholog. In plants, thaumatin-like 

protein is involved in the defence against pathogens [321]. This protein is also present 

in EsV-1, within a putative transposon, and is proposed to be advantageous to the host 

[100]. 

 

Figure 4.8: Alignment of EsV-1-7 ortholog from Ecklonia radicosa (ErcV) and the 5 EsV-
1-7 repeat in the C-terminal region of the IMM protein [320]. The 3 conserved cysteine 
and 1 histidine residues are labelled with *. Between residues 28 and 167, there was a 
138 amino acid insert in the ErcV EsV-1-7 ortholog. X= unknown amino acid. Amino 
acid highlighted as identical (black) or similar (grey; based on side chain group). 
Genbank accession numbers are included in labels. 
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4.4.6 Signalling 

UpV had a viral histidine kinase ortholog (Table 4.5). Signalling kinases are a 

unique feature of phaeoviruses [48]. All histidine protein kinase and receiver 

conserved domains were identical between EsV-1-112 and the UpV ortholog, which 

including the conserved phosphoaccepting domains (Figure 4.9). Also present in UpV 

were a putative antirepressor of lysogeny and a DnaJ bacterial heat shock protein. 
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Figure 4.9: Alignment of the conserved histidine protein kinase (H, N, D, F, G) and 
receiver (1-3) domains of histidine kinases [100]. Alignment includes the EsV-1-112 
ortholog from Undaria pinnatifida (UpV), the 6 viral histidine kinases encoded by EsV-1 
(EsV-1-14, 65, 88, 112, 181, and 186; [100]) and histidine protein kinases from 
Arabidopsis thaliana phytochrome C (PHYC), Synechocystis sp. Cph1 (SyCph1), and 
Deinococcus radiodurans BphP (DrBphP). Phosphoaccepting amino acids are labelled 
with *. Amino acid highlighted as identical (black) or similar (grey; based on side chain 
group). Genbank accession numbers are included in labels. 

 

4.4.7 Cell entry 

 
An ortholog of EsV-1 glycoprotein 1 (gp1) was found in UpV. This protein was 

also orthologous to brown algal mannuronan C-5-epimerases (Table 4.5). UpV also 

encoded an ortholog of the potassium channel component encoded by EsV-1 [61, 100] 

and PBCV-1 [322]. The UpV ortholog was missing only 10 and 1 amino acids from the 

start and end of the sequence, respectively (Figure 4.10). The absent residues included 

6 amino acids from TM0 (residues 5-10) and 1 PKC (residue 2). UpV and EsV-1 K+ 

channel component differed by 29 amino acids, 1 insert (residue 64), and 7 unknown 

amino acids in UpV (residues 66-68, 109-111, and 115) (Figure 4.10, [61]). 

 

 



176 
 

 

Figure 4.10: Alignment of the potassium ion channel component encoded by EsV-1 
(EsV-1-223) and the EsV-1-223 ortholog from Undaria pinnatifida (UpV). Protein kinase 
C (PKC) are marked with *.  Also indicated is the K+ channel signature sequence (blue 
rectangle), putative transmembrane domains (TM0, TM1, and TM2), and 1 casein 
kinase II phosphorylation site (!) [61]. X=unknown amino acid. Amino acid highlighted 
as identical (black) or similar (grey; based on side chain group). Genbank accession 
numbers are included in label. 

 

4.5 Discussion 
 

          A total of ten different EsV-1/FsV-158 orthologs were identified from LdV-1 

(Table 4.4), two of which were core NCLDV genes (MCP and VV D6R-type helicase; 

Table 4.5). This is equivalent to only 4.3 % of the 231 ORFs in the EsV-1 genome, which 

indicates that only a partial LdV-1 genome was obtained. Three times more Phaeovirus 

orthologs were recovered from the LdV-1 sample 1_15_5L_CDP (15oC culture) versus 

2_18_5L_CDP (18 oC culture) (Table 4.4), possibly due to the temperature sensitivity of 

Phaeovirus-like symptoms in the gametophyte strain which was host to LdV-1 

(LdigPH10-30; Chapter 3). Whether these orthologs were isolated from virions trapped 

in the cellular debris or proviruses integrated in host genomes is unknown. 
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The 84 orthologs of EsV-1 ORFs found in U. pinnatifida cover 36.4 % (out of 

231) of the ORFs in the EsV-1 genome. In comparison, 130 (56.3 %) and 93 (40.3 %) 

ORFs of EsV-1 are orthologous to FsV-158 [98] and FirrV-1 [48], respectively. These 

included orthologs to 9 out of the 16 NCLDV core genes encoded by EsV-1 (VV D5-type 

ATPase, VV A18-type helicase, VV D6R-type helicase, PCNA, VLTF2, RRLS, RRSS, VV 

A32-type ATPase, and MCP genes; Table 4.5; [98]). This suggests that this U. 

pinnatifida genome contained the most integrated Phaeovirus sequences. 

          Only seven EsV-1/FsV-158 orthologs were found in SjV including two core genes 

(MCP and ribonucleotide reductase large subunit genes). There are three mcp 

orthologs in the S. japonica genome [31], two of which are closely related and possibly 

full length; but one is only a partial mcp which is missing the conserved domain 

previously amplified by PCR [316]. In phaeoviruses, mcp is a single copy gene [48, 98, 

100], which suggests that the S. japonica genome may contain multiple SjV proviruses, 

similar to the multiple infections of FsV [96]. This is noteworthy because it suggests 

that subgroup D (SjV) shares the acute evolutionary strategy of subgroup B [95]. It is 

possible that these SjV orthologs are remnants of ancient proviruses which have lost 

their functionality due to insertion or transposition events. 

          The 17 Phaeovirus orthologs present in Ecklonia radicosa included two core 

genes (ribonucleotide reductase large subunit and VV A32-type ATPase genes). 

Interestingly, ErcV was the only putative Phaeovirus for which mcp was not found 

(Table 4.5). This may be due to divergence, as Phaeovirus mcp can be amplified by PCR 

from Ecklonia radiata and Ecklonia maxima [316]. Such viral divergence may have been 

driven by host divergence, as E. radicosa occurs in Japan, and is in a distinct clade 

(within Ecklonia) from E. maxima and E. radiata, which occur in Australia and South 

Africa [212]. E. radicosa may contain a more divergent, integrated Phaeovirus genome. 
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          Currently, we cannot tell whether viral orthologs or core genes were not 

detected because they were absent or simply too divergent to be assembled using 

known Phaeovirus reference genomes. One solution to this is to sequence virus 

genomes from sufficiently high concentrations of viral DNA isolated from virions. Due 

to the latent nature of phaeoviruses, this requires knowledge of which factors induce 

viral replication, such as culture temperature. In addition, as more fully assembled 

brown algal genomes become available, it will become possible to thoroughly explore 

the genomic context of integrated Phaeovirus DNA (fragmented versus contiguous, 

complete versus partial, virus encoded versus horizontally transferred to host). 

Phylogeny of the full length (322-418 amino acids) MCP (Figure 4.3A) placed 

LdV-1 in its own distinct subgroup, which may be subgroup C as previously defined 

[305].  However, the partial LdV-1 MCP assembled by this study was placed in 

subgroup A and was not identical to the MCP PCR product of LdV-1 (LdigPH10-30; 

Figure 4.7). This ambiguity is likely the result of assembly without reference to long 

LdV-1 sequence reads, such as those created by MinION sequencing. Unfortunately, 

low virion recovery may have yielded insufficient quantities of viral DNA, which caused 

the MinION sequencing to fail. Ambiguities between the LdV-1 MCP sequences 

amplified by PCR and assembled from the Illumina data (this study) may explain the 

uncertain subgroup placement of LdV-1. 

In contrast, SjV and UpV were unambiguously placed in subgroups D and A, 

respectively, which is in agreement with previous phylogeny based on partial MCP 

alone [316]. UpV was especially well supported as a subgroup A Phaeovirus by 

phylogeny of single (seven out of nine; Figures 4.1-4.4) and concatenated (three out of 

three; Figures 4.5 and 4.6) core genes. The placement of SjV in subgroup D was 

supported by a smaller set of single (two out of two; Figures 4.3A, 4.4A, and 4.7) and 
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concatenated core gene phylogeny (one out of one; Figure 4.6C), whilst ErcV was 

placed in subgroup A based on only 1 core gene (one out of one; Figure 4.1B). For both 

SjV and UpV, the partial MCP assembled by this study was identical or highly similar to 

those amplified by PCR previously (Figure 4.7; [316]). This may be because these viral 

orthologs were probably integrated into the host genome, which provided enough 

quantities of viral DNA for sequencing. The fact that the two U. pinnatifida MCPs were 

identical despite being from China (this study) and South Korea [316], suggests that 

UpV has a single genotype, as expected for subgroup A phaeoviruses [95]. 

NCLDVs (including all EsV-1, FsV-158, and FirrV-1) encode multiple 

deoxyribonucleotide enzymes to provide sufficient nucleotides to synthesise their 

large genomes [98], which suggests that UpV and ErcV have genomes within the 

typical size range of NCLDVs. 

Phaeoviruses are the only NCLDVs known to integrate their genomes into their 

genome of the host, as demonstrated in EsV-1 [76, 105, 136] and FsV-158 [89, 102]. 

Integrase is responsible for the integration of a viral genome into a host genome, 

whilst viral transposases are responsible for DNA recombination within or between 

viruses and host genomes [39]. A conserved integrase (phage integrase family; Table 

4.5) is shared by EsV-1, FsV-158, and FirrV-1 (ORFs 213, 13, and B4, respectively) and is 

probably responsible for Phaeovirus genome integration [98]. An ortholog of this 

integrase was found only in LdV-1, leaving open the question whether the other kelp 

phaeoviruses (ErcV, SjV, and UpV) employ different types of integrases. 

FsV-158 alone has an OrfB zinc ribbon superfamily transposase (ORF2) and an 

integrase/resolvase (ORF3); these transposases are related to bacteriophages and 

mimiviruses and may have been inserted into the FsV-158 genome when it integrated 

into the host genome [98]. The putative presence of OrfB zinc ribbon transposase in 
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LdV-1, UpV, ErcV, and SjV and integrase/resolvase in ErcV and SjV suggests that the 

integration of these transposases did not occur in FsV-158 as proposed [98], but during 

an earlier transposition event in an ancestor of the Ectocarpales and kelp 

phaeoviruses.  

EsV-1 also 2 transposases which it does not share with the other phaeoviruses 

(DDE domain, IS4 family transposases; [47, 98]). Surprisingly, LdV-1, UpV, ErcV, and SjV 

may have DDE domain, OrfB zinc ribbon, and integrase/resolvase transposases (Table 

4.5). This suggests that these transposases were all present in a Phaeovirus ancestor, 

and were later lost during the divergence of EsV-1 and FsV-158 or the subgroups A and 

B.  This emphasises the question of how and what evolutionary forces may have led to 

the differential retention of these different types of transposes across the 

phaeoviruses. 

The IMM protein is responsible for the initial asymmetrical mitosis of the E. 

siliculosus sporophyte. This leads to a sporophyte which is composed of an apical 

(upright filaments which bear the reproductive organs) and basal cells (thick-walled, 

prostrate filaments which anchor the macroalga to its substrate). This developmental 

innovation is hypothesised to be an adaptation of the sporophyte to persist 

throughout winter and delay growth and reproduction until more favourable seasonal 

conditions.  An E. siliculosus IMM mutant (imm) was found to develop symmetrically, 

leading to a sporophyte which developed apical cells immediately, and resulted in a 

reduced and structurally simple basal structure [320]. Surprisingly, the IMM gene 

shares a repeated motif with EsV-1 ORF7 (EsV-1-7). EsV-1-7 is present in multiple 

brown algal families including kelp, which suggests that EsV-1-7 was involved in a 

horizontal gene transfer event between brown algae and phaeoviruses, perhaps 

associated with the evolution of complex multicellularity in brown algae [320]. S. 
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japonica was previously found to contain EsV-1-7 orthologs [320], indicating that a 

more focused search could have revealed more EsV-1-7 orthologs in our kelp genomes. 

However, the single EsV-1-7 ortholog in E. radicosa expands on the known distribution 

of these horizontally transferred Phaeovirus/brown algal genes. The large insert in the 

IMM motif of ErcV EsV-1-7 (Figure 4.8) may be the result of the extensive gene loss 

and gain observed in this gene family, or possibly further transposition. The presence 

of EsV-1-7 raises the interesting question of what roles this gene family may play in 

kelp, as kelp have much larger, longer lived, and more complex sporophytes than E. 

siliculosus. In fact, most Phaeovirus genes (including those identified by this study) 

have no known function, highlighting the unexplored potential for Phaeovirus genes to 

play roles in host biology. The orthologs of the EsV-1-7 immediate upright gene [320] 

in ErcV and thaumatin-like protein [100] in UpV are examples of proteins which could 

also provide functions to their brown algal hosts. It may be hypothesised that by 

providing selective advantages to the host, latent phaeoviruses can increase their 

chances of being transmitted vertically, thus reducing the requirement for horizontal 

transmission via virions and the subsequent pathogeneses. 

On the other hand, orthologs with important roles in the Phaeovirus infection 

cycle were also found. The viral hybrid histidine kinases are homologous to cellular 

enzymes of two-component signalling pathways and are proposed to alter the cell 

environment to facilitate infection [99]. The identical conserved domains of UpV and 

EsV-1-112 histidine kinases (Figure 4.9) indicated that UpV likely has a histidine kinase 

with the same putative function as in EsV-1 [99] and PBCV-1 [322]. Histidine kinase and 

the presence of protein interaction domains such as the antirepressor of lysogeny and 

the DnaJ heat shock protein suggest that, like EsV-1, UpV encodes various proteins for 

complex interactions with host proteins in order to control cellular events required for 
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the establishment, maintenance, and termination of the latent phase of Phaeovirus 

infection [100]. 

Gp1 is conserved in phaeoviruses [52, 86, 323] and localised in the capsid of 

EsV-1 [324]. The homology between gp1 and bacterial and brown algal mannuronan 

epimerases is hypothesised to modify or degrade alginate [100], which is a major 

component of brown algal cell walls. Indeed, similar homology is shared by a gp1 

ortholog of UpV and brown algal mannuronan C-5-epimerases. The presence of a 

potassium channel component ortholog in UpV is also relevant to cell entry. In PBCV-1, 

the potassium ion channel is localised on the internal membrane of the virion. During 

cell entry, it depolarises the host cell membrane, possibly aiding viral DNA entry and 

preventing entry by other viruses [42]. Compared to EsV-1-223, the potassium channel 

ortholog of UpV shared almost all the conserved domains and functional regions of a 

potassium channel component, which included transmembrane and PKC domains, as 

well as a potassium channel signature sequence and a phosphorylation site (Figure 

4.10). This suggests that UpV encodes a potassium channel component with a similar 

putative function to the potassium channel components of PBCV-1 and EsV-1. It is of 

interest whether alternative mechanisms of cell entry exist in other phaeoviruses, such 

as cell wall degradation, as opposed to the Ectocarpales phaeoviruses which 

exclusively infect the wall-less spores and gametes. It may also be evolutionarily 

important to understand why certain NCLDVs employ potassium channel components 

to enter host cells, whilst other related NCLDVs do not. 

 

4.5.1 Conclusions 
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A partial genome was probably obtained for LdV-1, whilst the genomes of 

Ecklonia radicosa and Saccharina japonica may contain partial integrated genomes of 

ErcV and SjV, respectively. Alternatively, most of the genes of these viruses were 

maybe too divergent to be assembled to the currently available Phaeovirus genomes. 

The Undaria pinnatifida genome however,  may contain a complete integrated 

genome of UpV. Future work should focus on isolating high concentrations of novel 

phaeoviruses, possibly through manipulating culture conditions, in combination with 

bioinformatics screening of assembled brown algal genomes for Phaeovirus sequences. 

The phylogenetic position of LdV-1 was ambiguous, in either subgroup A or C, whilst 

SjV belonged to subgroup D, and both Erc and UpV belonged to subgroup A. A variety 

of Phaeovirus orthologs with putative functions were identified with implications for 

the biology of kelp phaeoviruses and their hosts. These included NCLDV-sized genomes 

synthesised by multiple nucleotide metabolism genes, a Phaeovirus ancestor(s) with 

two types of transposases, virus-encoded proteins which may play roles in kelp 

development and pathogen defence, signalling proteins to manipulate the cellular 

environment, and carbohydrate degradation and membrane depolarisation to 

facilitate viral entry. The presence of Phaeovirus orthologs in these kelp genomes 

represent an intriguing knowledge gap in the evolutionary biology of brown algae and 

their viruses.  

 

 

FINAL DISCUSSION 
 

The aims of this PhD were fulfilled as follows: Aim 1: Microscopy (optical, 

fluorescent, and TEM) of Laminaria digitata gametophytes revealed cell morphologies 
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and virus-like particles (VLPs) that resembled those of latent Phaeovirus infections in 

the Ectocarpales. This putative Phaeovirus was named Laminaria digitata virus 1 (LdV-

1).  

Aim 2: Using Phaeovirus major capsid protein gene (mcp) primers, a broad PCR 

screen of kelp and subsequent phylogenetic analyses of mcp sequences revealed a 

broader range of kelp Phaeovirus distribution (Asia, Africa, Europe, and South America) 

and host species (an additional 4 species). The phylogeny showed the kelp Phaeovirus 

subgroups C and D were closely related to the subgroup B Ectocarpales phaeoviruses, 

whilst others were added to the subgroup A Ectocarpales phaeoviruses. 

Aim 3: LdV-1 was further studied with optical and fluorescent microscopy, 

which revealed that Phaeovirus symptoms were 3 times more common at a culture 

temperature of 18 oC than 15 oC. However, no effect on host reproduction was 

observed. 

Aim 4: Next Generation sequencing performed on the L. digitata strain infected 

with LdV-1 likely did not yield a complete virus genome. However, various Phaeovirus 

orthologs (including mcp) were found in L. digitata and three previously sequenced 

kelp genomes. Nine core NCLDV genes were found, which allowed detailed phylogeny 

placing the putative phaeoviruses LdV-1 in subgroup A or C, Saccharina japonica virus 

(SjV) in subgroup D, and Ecklonia radicosa virus (ErcV) and Undaria pinnatifida virus 

(UpV) in subgroup A. Overall, the phylogenetic inference trees of Chapters 2 and 4 

were similar. Various non-core Phaeovirus orthologs revealed new insights into the 

occurrence and evolution of several transposases, a potassium ion channel 

component, a histidine kinase, and a host development protein. All findings are 

assimilated and discussed in detail below. 
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5.1 Phaeovirus infection cycle, symptom variability, and host impacts 
 

The microscopy of infected Laminaria digitata gametophytes revealed 

morphologies resembling the Phaeovirus infections of the Ectocarpales. These 

symptoms could be observed consistently and across multiple virus positive strains. 

TEM observations also revealed cells with degraded nuclei and the presence of virus 

particles in the cytoplasm, indicating a replication cycle which began in the nucleus and 

completed in the cytoplasm, as is characteristic of an NCLDV. Phaeovirus-like infections 

were observed in several strains of L. digitata, but LdV-1 infecting strain LdigPH10-30m 

became the model for the host impact and genomic work. The putative and partial 

infection cycle of LdV-1 is shown in Figure 5.1. 

Acquiring an image of virus particles took longer than anticipated due to the 

low of occurrence virus-filled cells in kelp gametophytes (<5% of cells on average, 

Chapter 3). The empty appearance of many VLPs in the cells, suggested that the 

infection was not imaged at peak virion maturity. There was a general observation that 

LdV-1 infection did not produce many virions, as indicated by low yields of NCLDV-

sized particles (data not shown) and the low recovery of genomic LdV-1 DNA. The 

gametophyte culture conditions (e.g. red light or culture temperature) were possibly 

responsible; some of the first experiments should have been to test which conditions 

induced kelp Phaeovirus replication. In future, replication induction would improve the 

chances of recovering complete Phaeovirus genomes from virions. 

A key difference with Ectocarpales phaeoviruses was that LdV-1 appeared to 

replicate more often in vegetative cells [77]. A kelp gametangium is a single cell which 

develops a single gamete, whereas in the known Ectocarpales hosts of phaeoviruses, 

the gametangia are multicellular organs which form multiple gametes. Since kelp 

gametophytes do not offer phaeoviruses the opportunity to hijack a gametangium 



186 
 

capable of producing 106 virus particles, LdV-1 may compensate for this by replicating 

more often in vegetative cells. 

What impacts kelp phaeoviruses have on their hosts remain unclear. Future 

work should use unialgal, single sex gametophyte cultures of known virus infection 

states to reduce confounding factors caused by variable recruitment and sex 

ratios.However, the observations are still probably of Phaeovirus infections due to 

their striking similarity to Phaeovirus infections in the Ectocarpales [52, 77] and the 

lack of alternative explanations for gametophyte cells filled with homogenous DAPI-

staining masses. 
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Figure 5.1: Life histories of (A) Ectocarpus siliculosus (Ectocarpales) and Ectocarpus 
siliculosus virus (EsV-1) and (B) Laminaria digitata (Laminariales) and Laminaria 
digitata virus 1 (LdV-1). Brown algae have free-swimming reproductive cells (zoids) 
which are produced by zoidangia (sporangia in sporophyte or gametangia in 
gametophyte. Zoidangia are unilocular ((U); single compartment) or plurilocular ((P); 
multiple compartments). Meiosis generates meiospores (n). Mitosis generates 
gametes (n) and mitospores (n or 2n). Apomeiosis (non-reductive meiosis) generates 
apomeiospores (n). All zoids (including gametes post-fertilisation) settle and develop 
into initial cells with cell walls (semi-circles) which develop via mitosis into 
multicellular thalli. 
Phaeoviruses: Indicated are the brown algal life cycle stages which produce Phaeovirus 
virions (blue arrows) from cells with induced viral replication (blue structures on 
sporophytes/gametophytes). Note that vegetative cells can also produce virions (vv), 
but more often in kelp gametophytes. Unwalled cells which are susceptible to 
Phaeovirus infection are labelled with blue arrowheads. Kelp sporangia (1) are 
hypothesised to produce Phaeovirus virions. The host genome contains an integrated 
Phaeovirus genome (provirus). A copy of the provirus occurs in every cell of the 
multicellular thalli (sporophyte, gametophyte, parthenosporophyte) and is transmitted 
vertically by the reproductive life history stages as indicated (Key). Due to meiotic 
segregation, the provirus is removed from half of the meiospores (1; Key; [79]). Except 
for the sporophyte and gametophyte thalli, L. digitata life history stages have not been 
experimentally tested for Phaeovirus proviruses.  
Sexual cycles (1-3): (1) Meiosis occurs in the sporangia (sp) of the diploid sporophyte, 
which produces meiospores. Kelp sporangia form dark areas on the blade; they are 
protected by sterile filamentous paraphyses (pp) and they emerge from the thallus 
surface, with the meristoderm (md) and outer cortex (oc) just below. (2) The 
meiospores settle and develop into multicellular, haploid gametophytes. Most brown 
algae, including the Ectocarpales and Laminariales, have separate sexes in the 
gametophytes (dioicy), but some have hermaphroditic gametophytes (monoicy), 
separate sexes in sporophytes (dioecy), or hermaphroditic sporophytes (monoecy) 
[171, 200]. (3) The gametophytes produce gametes and their  fertilisation generates a 
diploid zygote which develops into the sporophyte [187]. In E. siliculosus, like most 
Ectocarpales, the male and female gametes have similar morphologies (isogamous). 
Laminariales are oogamous and their gametangia are referred to as: antheridia (an; 
produce small flagellated male gametes) and oogonia (og; large non-motile female 
gametes) [171, 187]. 
Asexual cycles (4-6): Many brown algae reproduce asexually by regrowth of 
fragmented thalli. This occurs in kelp gametophytes [201] and Ectocarpus [137]. (4) 
Unfertilised Ectocarpus gametes (male or female) can develop into haploid 
parthenosporophytes, which is common in brown macroalgae [187]. The unfertilised 
female gametes of kelp can develop into parthenosporophytes, but in most species 
they are small, infertile, and short-lived [199, 202]. (5) Ectocarpus 
parthenosporophytes can generate apomeiospores which develop into gametophytes 
[203]. Some kelp can produce parthenosporophytes with normal morphologies in 
laboratory conditions, but there is limited evidence of them successfully reproducing 
or occurring naturally [199, 202]. (6) Ectocarpus parthenosporophytes and 
sporophytes can also reproduce asexually via mitospores. A small portion of 
Ectocarpus meiospores can also develop directly into sporophytes [140, 203]. In kelp, 
only the gametophytes reproduce asexually via mitospores [204]. 



190 
 

 

Ectocarpales which have been sexually sterilised by phaeoviruses can be 

maintained in culture because they continue to reproduce asexually [52, 77, 325]. 

Whether this strategy could be maintained in kelp is uncertain because kelp 

sporophytes cannot reproduce asexually; perhaps it is employed in persistent 

populations of kelp gametophytes with high rates of asexual reproduction. The known 

Ectocarpales hosts of phaeoviruses all have gametophytes with similar morphology to 

the sporophytes, whereas in kelp the sporophytes are far larger and more complex 

than the gametophytes. Future work should explore the infection strategy (if any) 

employed by phaeoviruses in the kelp sporophyte. Meiosis occurs in the sporophyte 

which eliminates an integrated Phaeovirus from half the meiospores [79, 305]. 

However, phaeoviruses maintain a widespread, common, and stable relationship with 

their kelp [305, 316] and Ectocarpales [85, 86] hosts. This is only possible if kelp 

phaeoviruses can counter meiotic elimination, possibly (like the Ectocarpus 

phaeoviruses) by releasing virions in close synchrony and proximity to the normal 

sporangia, to re-infect the meiospores. The alternative hypothesis is that the brown 

algal hosts infected with integrated proviruses have selective advantage(s) over virus-

free hosts. Subsequently, the next generation becomes dominated by the 

competitively superior, infected kelp. In this strategy, phaeoviruses would rely mostly 

on vertical transmission and have a reduced need for horizontal transmission via 

virions, which means they have fewer negative effects on the host (because disease is 

a result of viral replication). Such symbiotic or mutualistic interactions are not well 

studied in viruses [181, 326] and would be a novel strategy for an algal virus. However, 

there are examples of plant viruses encoding proteins which can improve host drought 

tolerance [327], modify host root development in response to environmental nitrogen 



191 
 

availability [328], and deter herbivores [329]. Our study identified some Phaeovirus 

orthologs in kelp which may be hypothesised to benefit the host, such as thaumatin-

like protein in UpV, which is hypothesised to enhance pathogen defences in the host 

[100]. The other example is an EsV-1-7 ortholog in ErcV which is homologous to 

repeats in a brown algal gene encoding the protein IMM. In E. siliculosus, IMM is 

required for the development of the sporophyte into upright and basal filaments [320]. 

This morphology allows the firm anchoring and overwintering of the sporophyte. 

Though IMM orthologs are present in S. japonica, their role in kelp biology is unknown 

[320]. How the horizontally transferred EsV-1-7 family has been utilized by brown 

algae with very different sporophyte morphologies and life histories (such as kelp and 

E. siliculosus) is an intriguing question. In our genomic sequence data and the available 

Phaeovirus genomes, the majority of Phaeovirus genes had no known function. In 

addition to novel viral functions, this viral gene pool may provide functions to brown 

algal hosts, whether by expression of active phaeoviruses or horizontal gene transfer. 

Whether pathogenic or symbiotic, kelp phaeoviruses (and those of the 

Ectocarpales) may be finely tuned into the health and reproductive status of their host, 

perhaps through complex signalling processes such as two component signalling 

protein histidine kinases (UpV encoded orthologs), which are hypothesised to 

coordinate viral replication with the cellular environment and regulate Phaeovirus 

latency [99, 100]. For example, kelp Phaeovirus replication may only be induced by 

environmental or host factors when the host is reproductive or healthy, creating a 

virus-host relationship that can alternate between symbiosis and pathogenesis. 

Evidently, there is a need to investigate the complex mix of factors (such as host 
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morphology, longevity, fecundity, sexual system) which have shaped the infection 

strategies of phaeoviruses in different brown algal orders. 

We propose that the phaeoviruses of kelp employ latent infection strategies. 

Previous evidence supporting this was that the S. japonica genome contained a 

Phaeovirus mcp [31] and that mcp is subject to Mendelian inheritance between the 

sporophyte and gametophyte generations in kelp [305]. This study showed the 

following evidence of latent Phaeovirus infections in kelp: the phaeovirus-like infection 

symptoms and no host mortality in kelp gametophytes which were isolated from 

Phaeovirus MCP-positive sporophytes [316] with normal morphologies (general 

observation, no data shown). Furthermore, a range of Phaeovirus orthologs were 

found which included Phaeovirus integrase in LdV-1 and various orthologs integrated 

into the genomes of two kelp species (E. radicosa and U. pinnatifida). Further work 

should determine the genomic context of integrated phaeoviruses in kelp, to 

determine whether they integrate as single or multiple sequences, or specific or 

random sites. 

 

5.2 Kelp Phaeovirus host range, prevalence, and ecological and economic 
relevance 
 

Previously, Phaeovirus was known to infect seven species of brown algae from 

four families of the order Ectocarpales, and a screen of eukaryotic genomes found 

NCLDV core genes in another Ectocarpales species and the kelp Saccharina japonica 

[31]. In addition, a previous MCP PCR screen found Phaeovirus MCP genes in Laminaria 

digitata, Laminaria hyperborea, and Saccharina latissima [300, 305]. 

Our MCP PCRs and genomic screening of kelp for Phaeovirus genes have 

expanded the known Phaeovirus host range to another five kelp species: Ecklonia 
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maxima, Ecklonia radiata, Ecklonia radicosa, Macrocystis pyrifera, and Undaria 

pinnatifida [316]. In total, nine kelp species are putative Phaeovirus hosts and they 

belong to three kelp families (Laminariaceae, Alariaceae, and Lessoniaceae), which 

reinforces the observation that phaeoviruses have the broadest interfamilial host 

range in the Phycodnaviridae. Evidently, phaeoviruses are widespread throughout taxa 

in the order Laminariales and possibly the entire brown algal class (Phaeophyceae).  

Phaeoviruses also appear to be highly prevalent in kelp populations. Previous 

PCR screens found an infection prevalence of 50-100 % of across populations of 

Ectocarpus [85, 86] and 23.2-64.7 % for two populations of L. digitata, L. hyperborea, 

and S. latissima [305]. Per kelp species, our study found MCP in 20-100 % of kelp 

sporophytes and the infection prevalence from all available data and 9 kelp species 

was 26 % of sporophytes [316]. The apparent absence of Phaeovirus MCP in certain 

kelp species and the wide variation of Phaeovirus prevalence between kelp species 

were likely due to the MCP primers being coincidently specific to some kelp 

phaeoviruses, but not amplifying those which were more divergent from the 

Ectocarpales phaeoviruses. A key next step is to sequence kelp Phaeovirus genomes to 

allow the design of kelp Phaeovirus-specific primers, which would provide more 

representative insights into the diversity, phylogeny, and prevalence of kelp 

phaeoviruses. This approach should also be applied to a broader range of brown algal 

orders and phyla closely related to the brown algae. 

Our study also showed that kelp phaeoviruses are geographically widespread. 

The known distribution of kelp phaeoviruses was previously limited to the UK and 

France (L. digitata, L. hyperborea, and S. latissima; [305]) and China (S. japonica, [31]).  
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This study has expanded the range to include Chile (M. pyrifera), Japan (E. radicosa), 

South Korea (U. pinnatifida), South Africa (E. maxima and E. radiata), and another 

region of China (U. pinnatifida).  

 

 

5.3 Evolutionary history and implications of kelp phaeoviruses 
 

Previously, the Ectocarpales phaeoviruses were split into two subgroups, 

subgroup A with larger genomes and a more persistent infection strategy and 

subgroup B with reduced genome sizes and a more acute strategy [95]. The kelp 

phaeoviruses of L. digitata, L. hyperborea, and S. latissima had previously been 

assigned to subgroup C (Table 5.1; [300, 305]). Our study added an M. pyrifera 

Phaeovirus to subgroup C and Ecklonia maxima, E. radiata, E. radicosa, and Undaria 

pinnatifida (two strains) phaeoviruses to subgroup A (Table 5.1;  [316]). The putative 

Phaeovirus of S. japonica [31] was added to the new subgroup D (Table 5.1;  [316]). 

We hypothesise that the subgroup C and D phaeoviruses have undergone 

subgroup B type evolution and have therefore smaller genomes and may cause 

multiple infections within the same host, whereas the subgroup A kelp phaeoviruses 

have larger genomes and a more persistent infection strategy. The presence of three 

Phaeovirus MCPs in the S. japonica genome [31] suggests multiplicity of infection in 

subgroup D, but it is not known if these MCPs are active or remnant infections. The U. 

pinnatifida phaeoviruses from South Korea and China had highly similar MCPs, which is 

consistent with the single genotype trend of subgroup A. 

Surprisingly, the Ectocarpales and kelp phaeoviruses were not divided into 

distinct subgroups, as some kelp phaeoviruses fell into the existing subgroup A. 

Instead, phaeoviruses infecting different brown algal orders may be subject to similar 
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selection pressures. This may have created a subgroup A/B-type divergence across 

phaeoviruses infecting multiple brown algal orders. Future studies should expand on 

the known diversity of kelp phaeoviruses and other brown algal orders, to test 

whether the subgroup A/B-type evolutionary pattern is a more general phenomenon 

in the phaeoviruses. 

 
 
 
 
 
 
 
 

Table 5.1: Virion size, genomes, host range, evolutionary strategies of Phaeovirus 
subgroups A, B, C, and D. ND = no data; genome not sequenced. - = unknown. 
 
Virus Virion 

diameter 
(nm) 

Genome 
size (kb) 

Host order,  
family 

Replication No. of 
genotypes 

Ref. 

Subgroup A: Single infections, Persistent, K-selected, evolutionary strategy 

Ectocarpus siliculosus 
virus 1 
(EsV-1) 

130-150 336 Ectocarpales, 
Ectocarpaceae 

Sporangia  
Gametangia 

1 [49, 
100, 
101] 

Ectocarpus 
fasciculatus virus 1 
(EfasV-1) 

135-140 320 (ND) Ectocarpales, 
Ectocarpaceae 

Sporangia  
Gametangia 

1 [49, 
50, 
101] 

Pylaiella littoralis 
virus 1 (PlitV-1) 

130-170 280 (ND) Ectocarpales, 
Acinetosporaceae 

Sporangia 1 [49, 
52, 
101] 

Hincksia hincksiae 
virus 1 (HincV-1) 

140-170 240 (ND) Ectocarpales, 
Acinetosporaceae 

Sporangia 1 [49, 
50, 
101] 

Myriotrichia 
clavaeformis virus 1 
(MclaV-1) 

170-180 320 (ND) Ectocarpales, 
Chordariaceae 

Sporangia 1 [49, 
50, 
101] 

Ecklonia maxima 
(EmaxV) 

- - Laminariales, 
Lessoniaceae 

- - [316
] 

Ecklonia radiata 
(EradV) 

- - Laminariales, 
Lessoniaceae 

- - [316
] 

Ecklonia radicosa 
virus (ErcV) 

- - Laminariales, 
Lessoniaceae 

- - - 

Undaria pinnatifida 
virus (UpV) 

- - Laminariales, 
Alariaceae 

- - - 

Subgroup B: Multiple infections, Acute, r-selected, evolutionary strategy 

Feldmannia simplex 
virus 1 (FlexV-1) 

120-150 220 (ND) Ectocarpales, 
Acinetosporaceae 

Sporangia 8 [49, 
50, 
101] 

Feldmannia 
irregularis virus 1 
(FirrV-1) 

140-167 158-178 Ectocarpales, 
Acinetosporaceae 

Sporangia 3 [48, 
49, 
101] 

Feldmannia species 150 170 Ectocarpales, Sporangia 2 [49, 
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virus 158 
(FsV-158) 

Acinetosporaceae 98, 
101] 

Subgroup C: Unknown evolutionary strategy 

Laminaria digitata 
virus 1 (LdV-1) 

80-150 - Laminariales, 
Laminariaceae 

Gametangia  
Gametophyte 
vegetative cells 

- [305
] 

Laminaria 
hyperborea virus 
(LhypV) 

- - Laminariales, 
Laminariaceae 

Gametangia  
Gametophyte 
vegetative cells 

- [305
] 

Saccharina latissima 
(SlatV) 

- - Laminariales, 
Laminariaceae 

Gametangia  
Gametophyte 
vegetative cells 

- [305
] 

Macrocystis pyrifera 
virus (MpyrV) 

- - Laminariales, 
Laminariaceae 

- - [316
] 

Subgroup D: Unknown evolutionary strategy 

Saccharina japonica 
virus (SjV) 

- - Laminariales, 
Laminariaceae 

- 3 [31, 
316] 

 
 

 

Of the 16 Phaeovirus core genes, nine were identified in the kelp species 

studied. No genome sizes were acquired, but the presence of multiple 

deoxyribonucleotide synthesis in UpV and ErcV suggests that kelp phaeoviruses have 

large genome sizes typical of NCLDVs [98]. Without a complete kelp Phaeovirus 

genome isolated from virions (probably due to low virion recovery), the origin (host 

EVE or viral genome, provirus or virion, single or multiple sequences) of the Phaeovirus 

orthologs identified remains uncertain. It also means that novel or divergent genes 

present would not have been detected by PCR primers, BLAST searches or mapping, 

because they were based on Ectocarpales phaeoviruses. More complete genomes of 

kelp phaeoviruses may be acquired with the advancement of brown algal genomics 

and experimental biology to determine how to induce virion production in kelp 

gametophytes. 

A variety of non-core genes with interesting functions were also identified for 

kelp phaeoviruses, several of which offered intriguing insights into Phaeovirus 

evolution. OrfB zinc ribbon superfamily and integrase/resolvase transposases may be 

encoded by kelp phaeoviruses (LdV-1, UpV, ErcV, and SjV) and may not be unique to 
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FsV-158. These transposases are related to those of bacteriophages and mimiviruses 

and were therefore hypothesised to have been horizontally acquired by FsV-158 [98]. 

However, I hypothesised that these transposases were acquired by an ancestor of the 

Ectocarpales and kelp phaeoviruses. This Phaeovirus ancestor may have also encoded 

DDE domain transposases, as suggested by their presence in kelp phaeoviruses (LdV-1, 

UpV, ErcV, and SjV). These findings suggest an unexplored evolutionary scenario in 

which, as phaeoviruses diverged with along with their brown algal hosts, they 

subsequently lost or retained different transposases. Some consequences of this could 

be the divergence of Phaeovirus recombination strategies or distinct horizontal 

transfer gene transfer events in certain brown algal taxa. 

Two orthologs hypothesised to be involved in cell entry were found in UpV. 

One was a capsid protein which is also a mannuronan epimerase homolog (gp1) and 

the other was a potassium ion channel component. Previously, the only Phaeovirus 

with these genes was EsV-1 [61, 100, 324], which raises the question of why other 

phaeoviruses do not require these genes for cell entry as hypothesised. Clearly, there 

is a need to characterise the infection mechanisms of phaeoviruses, which may be 

more diverse than the current hypothesis of the infection of wall-less spores or 

gametes. 

The kelp phaeoviruses present an intriguing system to study NCLDV evolution, 

because many kelp genera and species have diverged following migration events and 

have remained geographically isolated ever since, such as Laminaria spp., Saccharina 

spp., and Ecklonia spp. (Introduction Chapter, Figure 0.6). These various historical and 

ongoing changes in kelp distribution and evolution may reveal novel evolutionary 

dynamics in large DNA viruses, such as the selection pressures which drive NCLDV 
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genome reduction or the adjustment of viral replication to maintain stable host-virus 

relationship in a new environment and host population dynamics. If latent Phaeovirus 

infections are widespread in kelp, as our data suggest, then the molecular timing of 

endogenous viral elements (EVEs) left in kelp genomes by ancient Phaeovirus 

infections may provide insights into the deep time (possibly back to the origin of 

brown algae 250.7 Ma; [172]) evolution of NCLDVs [298]. Furthermore, they could also 

provide insights into host evolution, as the estimated timing of Phaeovirus EVE 

integration may coincide or contradict hypotheses of the timing of kelp evolutionary 

events (Introduction Chapter, Figure 0.6). Laminaria and Saccharina are two of the 

four kelp genera which colonised the Arctic and North Atlantic from the Pacific via the 

Bering Strait when it opened 3.5-5.3 Ma (Introduction Chapter, Figure 0.6;  [206, 209]). 

Since then, they have diverged (3.44 Ma for Laminaria, [209]; 1.22-1.68 Ma for 

Saccharina, [210]) into distinct Laminaria and Saccharina species in the Pacific, Arctic, 

and Atlantic [206]. As an example, if Atlantic Laminaria spp. had a Phaeovirus EVE 

which was integrated around 3.44 Ma and was absent in Pacific Laminaria spp., this 

would support the estimated timing of Laminaria speciation in the Pacific and Atlantic. 

Since 83.8 Ma, kelp have diverged into families and species whilst colonising the Arctic, 

Atlantic (North and South), South Pacific, Indian, and Southern Oceans from the North 

Pacific [172, 206]. The recent migrations of kelp are also poorly understood, such as 

the widespread populations of M. pyrifera established by drifting across entire oceans 

and the invasive populations of U. pinnatifida established by human activities 

(Introduction Chapter, Figure 0.6). Combined with the fact that no other known 

NCLDVs employ genome integration, this exemplifies how phaeoviruses could be a 

unique system for studying the evolution of NCLDVs and their hosts over long time 

scales. 
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This study of kelp phaeoviruses is one of the few on any type of macroalgal 

viruses (Introduction Chapter, Tables 0.5 and 0.6; [101]), which exemplifies the lack of 

development in the field of macroalgal virology. Macroalgal viruses are a major 

evolutionary knowledge gap, especially those of brown algae, due to the large 

evolutionary distance between brown algae and plants. Phaeoviruses are large dsDNA 

viruses (NCLDVs) which infect aquatic photosynthetic organisms with complex 

multicellularity. Currently, virology has no similar virus-host system, because there are 

no true dsDNA viruses in plants [109], the viruses of red and green macroalgae are also 

mostly unknown (Introduction Chapter, Tables 0.5 and 0.6), and all known NCLDVs 

infect animals or unicellular eukaryotes [32, 40]. Furthermore, the study of the 

ecological dynamics and roles of aquatic viruses has advanced in unicellular algae [54, 

63, 70, 330], but not in multicellular algae, which probably have distinct virus-host 

relationships from unicellular algae (Introduction Chapter, Tables 0.5 and 0.6). There 

are also no other known NCLDVs (except some iridoviruses, [40]) or algal viruses [37, 

40] which employ a latent infection strategy. Therefore, this unique combination of 

virus and host groups, infection strategy, evolutionary history, and environment makes 

phaeoviruses a completely unique system of study that deserves detailed 

investigation. 
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