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1. Introduction
Highly branched isoprenoid (HBI) alkenes are  unusual 
 biomarkers made by a relatively small number of dia-
toms yet are common constituents in marine sediments 
worldwide (Robson and Rowland, 1986; Rowland and 
Robson, 1990; Belt et al., 2000a; Sinninghe Damsté et 
al., 2004). HBIs occur mainly as sester- (C25) and triter-
penoids (C30) with between one and six double bonds 
 (Volkman et al., 1994; Belt et al., 1996; Wraige et al., 
1997;  Sinninghe-Damsté et al., 1999; Belt et al., 2000a, 

2001; Grossi et al., 2004), although C25 HBIs with one 
to three double bonds are the most common. In the 
last decade, elucidation of the sources and distribu-
tions of some HBIs has highlighted their potential as 
proxies for sea ice in the Polar Regions, and in a range 
of different sea ice settings (see Belt, 2018, 2019 for 
recent reviews). 

The first of these HBIs, IP25 (ice proxy with 25 carbon 
atoms; Belt et al., 2007; Belt, 2018), is a mono-unsatu-
rated C25 HBI (Figure 1), first shown to be produced by 
only three (or four) sympagic diatom taxa: Pleurosigma 
stuxbergii var. rhomboides (Cleve in Cleve & Grunow) 
Cleve, Haslea kjellmanii (Cleve) Simonsen, H. cru-
cigeroides (Hustedt) Simonsen, and/or H. spicula (Hickie) 
 Lange-Bertalot (Brown et al., 2014c). In a subsequent 
study, IP25 was identified in laboratory cultures of H. spic-
ula, but not H. crucigeroides (Limoges et al., 2018), follow-
ing isolation of both species from Arctic sea ice cores. In 
contrast, a close structural analogue of IP25, but with an 
additional double bond in its structure (IIa; Figure 1), co-
occurs with IP25 in Arctic sea ice and associated sediments 
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but is also present in the Antarctic. In a recent study, 
Belt et al. (2016) identified the Antarctic sympagic dia-
tom Berkeleya adeliensis (Medlin) as a source of HBI IIa, 
and proposed the term IPSO25 (ice proxy for the Southern 
Ocean with 25 carbon atoms) for this biomarker, at 
least when detected in the Antarctic (Belt et al., 2016). 
However, the source-specificity of HBI IIa is not as clear as 
that for IP25, as it has also been identified in the benthic 
diatom Haslea ostrearia (Johns et al., 1999; Rowland et 
al., 2001b) and in sediments from some temperate loca-
tions (Xu et al., 2006; He et al., 2016). Finally, a third (at 
least) HBI has been identified in several Rhizosolenia spp. 
isolated from polar and sub-polar locations (Belt et al., 
2017) and has been linked with open-water (pelagic) con-
ditions in both the Arctic and the Antarctic (Massé et al., 
2011; Collins et al., 2013; Belt et al., 2015, 2017; Smik et 
al., 2016a, 2016b; Belt, 2018). As a common constituent 
of marine settings (Belt et al., 2000a), this tri-unsaturated 
HBI, sometimes referred to as HBI III (Figure 1), is also 
showing potential as a proxy for the spring marginal 
ice zone (MIZ) in the Arctic and the Antarctic (Collins 
et al., 2013; Belt et al., 2015; Smik et al., 2016a, 2016b; 
Köseoğlu et al., 2018; Belt et al., 2019). The possibility of 
HBI III biosynthesis by other polar pelagic diatoms also 
needs to be considered, though previously only certain 
Pleurosigma spp. have been shown to produce this HBI, 

and such species are not especially common or abundant 
in polar environments.

Although the apparent source specificity of each HBI 
is of clear value from a proxy point of view, some addi-
tional information has been proposed by combining some 
of the respective HBI abundance characteristics in the 
form of various indices. For example, the phytoplankton 
marker-IP25 or PIP25 index (Müller et al., 2011) combines 
the concentration of IP25 with those of various pelagic 
biomarkers, including HBI III. In some cases, sedimentary 
PIP25 data provide more detailed descriptions of palaeo 
Arctic sea ice conditions than using IP25 alone (e.g., Fahl 
and Stein, 2012; Müller et al., 2012; Cabedo-Sanz, 2013; 
Stein and Fahl, 2013; Berben et al., 2014; Müller and Stein, 
2014; Belt, 2018, 2019). A suite of pelagic biomarkers has 
thus far been employed in the PIP25 index, yet which is 
the most valuable in different settings or regions remains 
unclear. However, the use of HBI III has recently been 
proposed to offer some advantages over some other bio-
markers, including sterols, due to its higher apparent 
source-specificity and closer sedimentary concentration 
to IP25, which removes, to some extent, the problems of 
the c-factor used in the PIP25 calculation (see Smik et al., 
2016b, for more detailed discussions of this topic). In a 
different application, IP25 concentrations have been com-
bined with particulate organic carbon data from sea ice 

Figure 1: Structures of some common C25 highly branched isoprenoids (IP25–IV). Numbering system used to 
describe structural characteristics of highly branched isoprenoids (I) and some common C25 highly branched isopre-
noids: IP25, IIa, IIb, III, and IV. DOI: https://doi.org/10.1525/elementa.377.f1
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and the underlying water column to estimate the propor-
tion of sea ice algal-derived organic carbon within a mixed 
pool during the period of sea ice melting in spring (Brown 
et al., 2016).

Despite the growing use of IP25 and other HBIs for pal-
aeo sea ice reconstruction and polar food web studies 
(e.g., Brown et al., 2017, 2018; Belt, 2018), the number of 
studies aimed at measuring these lipids in sea ice and in 
the underlying water column along the ice-covered season 
remains relatively limited (see Belt, 2018, for a summary). 
Further, such studies were focused mainly on one or two 
HBIs or a single environmental component (e.g., sea ice, 
suspended, sinking or sediment POM; Brown et al., 2011; 
Belt et al., 2013; Rontani et al., 2014), were conducted 
at relatively low temporal or vertical resolution (Belt et 
al., 2013; Brown et al., 2016, 2017), combined data from 

different locations (Brown and Belt, 2012; Fahl and Stein, 
2012) or were conducted in somewhat niched oceanic set-
tings, including fjords (Limoges et al., 2018). In this study, 
we obtained a high-resolution temporal and vertical 
(multiple sample type and depth) dataset of HBI concen-
trations across an entire melting season in the Arctic, as 
part of the Green Edge project, in order to provide a more 
integrated dataset for building on previous investigations 
and gain further insights into the use of HBIs as Arctic sea 
ice proxies.

2. Materials and Methods 
2.1. Sampling
The sampling was conducted at a landfast station near 
Broughton Island (67°28.766’N; 63°47.579’W; water col-
umn depth of 350 m; Figure 2) in Baffin Bay (Canadian 

Figure 2: Map of the study area with location of the station investigated in Baffin Bay. White circle on the 
enlarged map of western Baffin Bay indicates the sampling location. DOI: https://doi.org/10.1525/elementa.377.f2
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Arctic) from 16 May to 8 July 2016 within the  framework 
of the Green Edge project. This study location was selected 
because of (i) the presence of seasonal sea ice; (ii) the 
recurrence of ice edge blooms in July that follow the sea-
sonal ice breakup which, in 2016, occurred on 21 July 
(Oziel et al., 2019); and (iii) the presumed representation 
of a suitable model for the whole Arctic Ocean in terms of 
physical and biological processes (for a review, see Oziel 
et al., 2019). 

2.1.1. Sea ice
Two sets of sea ice sampling were carried out, with both 
using a Kovacs Mark V 14-cm diameter corer and focusing 
on the bottom-most 10 cm of sea ice where the major-
ity of ice biota are found (Smith et al., 1990). The first set 
of samples were sub-sectioned into two further intervals 
(0–3 and 3–10 cm) and are referred to hereafter as the 
low vertical resolution (LVR) samples. The second set of 
samples were further divided into five sub-sections (0–1, 
1–2, 2–5, 5–7, and 7–10 cm) and represent the high verti-
cal resolution (HVR) series. The LVR sampling set was col-
lected every 2–3 days, while the HVR sampling set was 
collected on 17 sampling dates over the study period. To 
compensate for biomass heterogeneity, common in sea 
ice (Gosselin et al., 1986), three or four equivalent core 
sections were pooled for each sampling day in isothermal 
containers. Pooled sea ice sections were then melted in the 
dark with 0.2-μm filtered seawater (FSW; 3:1 v:v) to mini-
mize osmotic stress on the microbial community during 
melting (Bates and Cota, 1986; Garrison and Buck, 1986). 
Two additional entire sea ice cores were collected to meas-
ure the sea ice temperature and salinity, thus allowing the 
calculation of brine salinity and volume (Cox and Weeks, 
1983). Sea ice internal core temperatures were measured 
using a Testo 720 temperature probe inserted into a hole 
drilled to the centre of the core every 10 cm, while salin-
ity was measured in melted (10-cm) sea ice sections using 
a conductivity meter (Orion portable salinometer model 
WP-84TPS, Thermo Scientific) calibrated against 15 N KCL 
solution at 20°C.

2.1.2. Water column
Suspended particulate matter (SPM) was collected on 16 
sampling dates over the study period at depths of 1.5, 10, 
20 and 40 m (60 m, not 40 m, for the last five sampling 
dates) under the sea ice using large (20 L) Niskin bottles to 
accommodate any within-sample heterogeneity. SPM was 
also collected at the ice/water interface, using a battery-
operated plastic submersible pump (Cyclone®) secured to 
the end of an articulated under-ice arm through an ice 
auger-drilled hole. Vertical profiles of salinity in the water 
column were measured using a Sea-Bird SBE 19plus V2 
conductivity-temperature-depth (CTD) probe on all sam-
pling days. Photosynthetically active radiation (PAR) was 
estimated using the multispectral data collected with a 
Compact – Optical Profiling System (C-OPS; version Ice-
PRO; Biospherical instruments Inc.) (see Oziel et al., 2019).

Short-term sediments traps were deployed at 2 and 
25 m with two mooring lines at the same geographical 
coordinates as the SPM and sea ice samples. Sediment 

traps were immersed for approximately 48 h and were 
recovered at the same frequency as for the LVR sea ice 
sampling. Sediment traps were made of polyvinyl chloride 
(PVC) and had an aperture diameter of 15 cm.

Samples of each sample type were filtered through pre-
weighed Whatman glass fibre filters (porosity 0.7 μm, 
diameter 25 or 47 mm, pre-combusted 4 h at 450°C) and 
kept frozen (<–20°C) prior to lipid analysis.

2.2. Analysis of HBI biomarkers
Extraction of HBI lipids was carried out according to meth-
ods described previously (Belt et al., 2012). To enable quan-
tification, an internal standard (9-octyl-8-hepta-decene; 
0.02 μg) was added to each filter prior to extraction. Filters 
were then saponified (10% KOH; 90°C, 120 min; 10 mL), 
after which the non-polar fraction containing HBI lipids 
was collected using open column silica chromatography 
(ca. 1 g silica; 6–7 mL hexane; Belt et al., 2012). Analysis 
of HBIs was carried out using gas chromatography–mass 
spectrometry (GC–MS) in selected ion monitoring (SIM, 
m/z 350 for IP25, 348 for HBIs IIa and IIb, and 346 for HBIs 
III and IV) mode using an Agilent 7890 series gas chro-
matograph (HP5MS fused silica column; 30 m × 0.25 mm 
i.d., 0.25-μm film thickness) coupled to an Agilent 5975 
mass spectrometric detector (Belt et al., 2012). HBIs were 
identified by comparison of retention indices and mass 
spectra to those of authentic standards (Belt et al., 2000a; 
Belt, 2018). HBIs (pg mL–1) were quantified by comparing 
mass spectral intensities of molecular ions to that of the 
internal standard, and normalizing for differences in mass 
spectral fragmentation efficiency and volume filtered (ca. 
30–1000, 900, 40–80 mL for sea ice, suspended and sink-
ing particles, respectively).

2.3. Algal biomass
At the shore-site laboratory, and within 24 h of sam-
pling, duplicate samples of sea ice, suspended and sink-
ing POM were filtered through Whatman GF/F glass fibre 
filters. Concentration of chlorophyll a (Chl a) retained on 
the filters was measured using a TD-700 Turner Designs 
fluorometer, after 18–24 h extraction in 90% acetone at 
–20°C in the dark (Parsons et al., 1984). The fluorometer 
was calibrated with a commercially available Chl a stand-
ard (Anacystis nidulans, Sigma).

2.4. Protist assemblage
The protist assemblage was determined using an Imaging 
FlowCytobot (IFCB, Woods Hole Oceanographic Institute). 
For each melted ice and seawater samples, 5 mL were ana-
lyzed. A 150-μm Nitex mesh was used to avoid blocking of 
the fluidics system by large particles, although this step 
might have introduced a bias in the results by preventing 
the sampling of large cells. Images were processed using  a 
custom made MATLAB (R2013b) code (Sosik and Olson, 
2007; processing codes are available at https://github.
com/hsosik/ifcb-analysis). Automatic classification was 
performed using random forest algorithms with the Eco-
Taxa application (Picheral et al., 2015). A learning set was 
manually prepared with ca. 20,000 images annotated 
and used for automatic prediction. Images were classified 

https://github.com/hsosik/ifcb-analysis
https://github.com/hsosik/ifcb-analysis
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into 35 categories. Each automatically annotated image 
was further validated by visual examination and corrected 
when necessary.

2.5. Ice-derived particulate organic carbon in seawater 
(%iPOCw) 
As the contribution of particulate inorganic carbon (PIC) 
to total particulate carbon (TPC) is considered negligible 
in the ocean (<6%; Gordon, 1971; Gardner et al., 2003), 
we used values of TPC as a surrogate for particulate 
organic carbon (POC) to enable us to estimate values of 
%iPOCw according to the method of Brown et al. (2016). 
Briefly, estimates of iPOCw in individual seawater samples 
were obtained by multiplying IP25 concentrations meas-
ured in seawater (IP25w) with the ratio of ice-derived POC 
and IP25 in sea ice (Equation 1) obtained from the 0–3 cm 
sea ice section taken on 17 June, the date of the highest 
IP25 concentration. 

 w 25w i 25iiPOC  = IP (iPOC /IP )×  (Equation 1)

Percentage concentration estimates of iPOCw were cal-
culated using Equation 2, where tPOCw is the total POC 
measured in seawater:

 w w w%iPOC  = 100  (iPOC /tPOC )×  (Equation 2)

2.6. TPC analyses
At the shore-site laboratory, duplicate samples of sea ice 
and suspended POM were filtered through pre-weighed 
GF/F filters (pre-combusted 24 h at 450°C) and stored 
prior to dry weight and TPC analysis. At Université Laval, 
filters were dried for 24 h at 60°C, weighed again for dry 
weight determination, and then analyzed using a Perkin 
Elmer carbon-hydrogen–nitrogen–sulfur (CHNS) 2400 
Series II to measure TPC. Instrument calibration was 
achieved using accurately weighed samples of acetanilide 
(C8H9NO). 

2.7. Statistical analyses
Correlation change-point analyses (Cabrieto et al., 2017; 
Cabrieto et al., 2018) were carried out using a cp3o (change 
points via probabilistically pruned objective; James and 
Matteson, 2015) test to identify the approximate timing 
of significant correlation shifts between variables in SPM 
samples along the sampling interval. Pearson’s correlation 
with a sampling window of 11 was run using the product-
moment correlation coefficient (r), as a measure of asso-
ciation between variables and correlation significance 
determined at p ≤ 0.05. Statistical tests were carried out 
using R v.3.5 software (R development Core team 2018).

3. Results
3.1. Sea ice
During the period investigated, snow and ice thick-
nesses decreased from 32.0 to 1.8 cm and from 128 to 
105  cm, respectively (Figure 3A). A particularly notice-
able decrease can be seen for snow and ice thickness from 
3 June and 17 June, respectively. Brine salinity (calculated 
using the whole sea ice core) also decreased during the 

study period from 50.5 to 17.2, while brine volume per-
centage (relative to sea ice) increased from ca. 6% to ca. 
15% (Figure 3B). A switch from hyper- to hypo-saline con-
ditions (relative to seawater) in brines took place around 
6 June. Moreover, the relative brine volume in the bot-
tom 10 cm of sea ice cores was always greater than 5% 
throughout the sampling period. Some potential sources 
of IP25, HBI IIa and HBI III (e.g., Haslea spp., Rhizosolenia 
spp. and Pleurosigma spp.) were identified in some of the 
ice samples, although identification to only the genus 
level prevented definitive assignments from being made. 
The concentrations of Chl a and IP25 in the bottom 0–3 cm 
of sea ice were quantifiable for the majority of the sam-
pling dates, with values ranging from 0.9 to 317.3 μg L–1 
(mean ± SD = 119.8 ± 87.0 μg L–1; n = 24) and 0 to 1071.1 
pg mL–1 (mean ± SD = 239.8 ± 255.2 pg mL–1; n = 48) 
(Figure 3C), respectively. Lowest concentrations for both 
Chl a and IP25 were observed at the first and last three 
sampling dates (below 43.3 μg L–1 and 16.0 pg L–1, respec-
tively), while their maxima were observed on 1 June and 
17 June (317.3 μg L–1 and 1071.1 pg L–1 for Chl a and IP25, 
respectively). With the exception of the first and last two 
sampling dates, IP25 concentration in the lower 0–3 cm 
section was always higher than that in the 3–10 cm sec-
tion, with a mean enhancement factor in the lower sec-
tion of 10.7 (Table 1; n = 84). However, this enhancement 
factor was 18.0 from 16 May to 6 June, and 7.0 from 8 June 
to 4 July (n = 40 and 56, respectively). 

The overall trend in IP25 concentration between the LVR 
and HVR sea ice sample sets were similar, with highest val-
ues observed on 17 June and the lowest at the beginning 
and end of sampling (Tables 1, 2). Analysis of vertical IP25 
content in the HVR sampling set (Table 2) revealed simi-
lar outcomes to those described above for the LVR sam-
ples, but with more subtle changes in the IP25 distribution 
due to the increased resolution. Thus, in the early part of 
sampling (18 May to 8 June) IP25 content was predomi-
nantly in the 0–2 cm sections (>86%). From ca. 8 June to 
27 June, although highest IP25 concentrations were also 
found in the 0–2 cm sections, an increasing % character-
ized the upper layers (i.e., 2–10 cm). Finally, from 27 June 
to the end of sampling, IP25 was largely absent, with only 
trace amounts detected in the 1–2 cm section on 1 July 
(Table 2).

HBI IIa was also present in the majority of the samples 
where IP25 could be identified, and the two biomarkers 
were strongly correlated (r = 0.87, Table 3). Three other 
HBIs could also be identified, but only in the first half of 
the sampling period. Thus, HBIs IIb, III, and IV could be 
quantified in the bottom 10 cm of the two sets of sea ice 
samples from 16 May to 6 June with strong correlations 
between them (Tables 3, 4). In contrast, neither IP25 nor 
HBI IIa correlated with HBIs IIb, III or IV. Overall, the con-
centrations of all HBIs were normally higher in the 0–1 cm 
bottom sections, with the exception of 1 July (Table 2).

3.2. Suspended POM
The under-ice seawater exhibited relatively consistent 
hydrographic conditions from the surface (i.e., the sea 
ice/seawater interface) to 40 m from the beginning of 
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sampling to 10 June. The temperature was always in the 
range of –1.7 to –1.65°C and the salinity from 32.5 to 
32. After 10 June, the near-surface temperature began to 
increase (up to –1.3°C) along with a decrease in salinity 
(<30; Figure 4A, B), which coincided with reducing sea 
ice thickness (Figure 3A). By 8 July, these trends were 
also evident at 10 m (i.e., –1.45°C and 32 salinity, respec-
tively). In the early part of sampling, PAR was extremely 
low (mean < 0.08 mol photons m–2 d–1; n = 2159) in the 
under-ice seawater until 3 June (Figure 4C), after which, 
it increased rapidly and also extended to detectable levels 

at 30 m by 17 June. This increase coincided with the steep 
decrease in snow thickness from 33.4 to 0.4 cm between 
3 June and 17 June. By 8 July, PAR had increased in the 
near-surface waters to ca. 10 mol photons m–2 d–1, and all 
isolumes were shallower. 

Chl a concentration in the first 40 m of the water col-
umn was relatively low until 24 June, when it increased 
rapidly to reach 6 μg L–1 between 10 and 30 m by 8 
July (Figure 4D). Near-surface Chl a (surface and/or 
1.5 m) exhibited three anomalies with relatively high 
or low concentration compared to surrounding waters. 

Figure 3: Time series of core parameters and biomarkers in sea ice. Time series of (A) snow and ice thickness, 
(B) brine salinity and brine volume, calculated from the whole sea ice core, and (C) Chl a and IP25 concentration in 
the bottom 0–3 cm sea ice section from 16 May to 8 July 2016 at the sampling location in Baffin Bay (Figure 2). DOI: 
https://doi.org/10.1525/elementa.377.f3
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Relatively high values were observed from 3 June to 6 
June as well as on 24 June (Figure 4D), which is also the 
case for IP25 (Table 1). Both events coincided with rela-
tively low sea ice Chl a and IP25 content (Figure 3C), with 
the first event also occurring as brine salinity switched 
to hyposaline (Figure 3B). On the other hand, the occur-
rence of relatively low Chl a concentration in near-surface 
waters on 8 July coincided with low IP25 concentration. 
During both instances of higher Chl a concentration in 
near-surface waters, the protist community composi-
tion resembled that of the sea ice. In contrast, the protist 
composition at the time of the relatively low Chl a event 
was more similar to that of the 20 m (or deeper) waters 
(Figure 5), with a shift from pennate to centric diatoms, 
and most notably to Chaetoceros spp. As with the sea ice 
samples, some possible sources of IP25, HBI IIa and HBI III 
(e.g., Haslea spp., Rhizosolenia and Pleurosigma spp.) were 
identified in some of the water samples, though only to 
the genus level. IP25 was detectable in the surface waters 
(i.e., the sea ice/seawater interface) throughout the sam-
pling campaign with higher concentration from 6 June to 
8 July compared to 16 May to 3 June (mean ± SD = 2.2 
± 3.6 and 0.4 ± 0.2 pg mL–1 respectively; n = 24 and 8, 
respectively; Table 1). Furthermore, IP25 concentration in 
surface waters was substantially higher compared to the 
deeper samples. Indeed, its presence below 40 m was only 
detected from 6 June (Table 1), with a mean concentra-
tion thereafter 6.7 times lower than at the surface. 

Estimates for %iPOCw ranged from 0 to 193.9% and 
were further normalized to a maximum of 100% for illus-
tration purposes only (Figure 6). The %iPOCw estimates 
for surface waters followed the same trend as IP25, with 
relatively high values from 3 June to 6 June and again 
on 24 June (100 and 80.5 %, respectively). Estimates for 
%iPOCw were also higher in surface water samples com-
pared to their deeper counterparts throughout sampling 
(Figure 6). According to our %iPOCw estimates, although 
ice algal contribution was relatively low in the water col-
umn (apart from surface waters) at the beginning and end 
of sampling (mean %iPOCw ± SD = 1.2 ± 2.2% from 16 
to 25 May and from 27 June to 8 July; n = 40 and 120, 
respectively), somewhat higher values were observed from 
3 June to 24 June (mean %iPOCw ± SD = 17.2 ± 10.2%; 
n = 60).

A decrease in the correlation between IP25 and Chl a was 
observed between sea ice and suspended POM (r of 0.6 
and 0.16, respectively). Importantly, correlation change-
point analysis between Chl a and IP25 in suspended POM 
showed a reduction in correlation for the shallow sample 
depths (i.e., the interface and 1.5-m depth) at a later date 
(27 June) compared to the deeper ones (i.e., at 10, 20 and 
40 m; 13 June) (Figure 7A, B). 

IP25 and HBI IIa concentrations in suspended particles 
were well correlated, as previously observed in sea ice 
(Table 3), but correlations between HBIs IIb, III and IV 
were difficult to assess, reliably, due to the small sample 

Table 3: Correlation coefficients between biomarkers in sea ice, suspended and sinking POM. DOI: https://doi.
org/10.1525/elementa.377.t3

Sample type Factor Chlorophyll a IP25 HBI IIa HBI IIb HBI III

Sea ice POM Chlorophyll α 1.00 –b – – –

IP25 0.60*a 1.00 – – –

HBI IIa 0.79* 0.87* 1.00 – –

HBI IIb n/ac 0.45* 0.48* 1.00 –

HBI III 0.40* 0.44* 0.50* 0.93* 1.00

HBI IV 0.36* 0.43* 0.48* 0.93* 0.90*

Suspended POM Chlorophyll α 1.00 – – – –

IP25 0.16 1.00 – – –

HBI IIa 0.16* n/a 1.00 – –

HBI IIb n/a n/a n/a 1.00 –

HBI III n/a n/a n/a n/a 1.00

HBI IV n/a n/a n/a n/a n/a

Sinking POM Chlorophyll α 1.00 – – – –

IP25 0.18 1.00 – – –

HBI IIa 0.10 0.95* 1.00 – –

HBI IIb n/a 0.49* 0.27* 1.00 –

HBI III 0.12 0.57* 0.41* 0.77* 1.00

HBI IV –0.063 0.64* 0.47* 0.86* 0.80*

a Asterisk indicates significant correlation: p < 0.05.
b Repetition of value.
c Not applicable.
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numbers where they could be quantified accurately. For 
samples where each of HBIs IIb, III and IV were quan-
tifiable, concentrations of HBI III were, on average, 
1.6 and 4.6 times lower than those of HBI IIb and IV, 
respectively.

Highest concentrations of HBIs III and IV in seawa-
ter were observed for the surface sample on 6 June 
(Table 4), which also coincided with the second highest 
IP25 value (Table 1). HBI IV was mostly detected at the 
surface between 16 May and 17 June, while HBI III was 
only detected on 6 June.

3.3. Sinking POM 
IP25 concentration in sinking POM ranged from 0 to 599.1 
ng m–2 d–1 (mean ± SD = 56.9 ± 13.9 ng m–2 d–1; n = 34) 
and from 0 to 409.8 ng m–2 d–1 (mean ± SD = 73.4 ± 9.9 
ng m–2 d–1; n = 34) at 2 and 25 m, respectively. Although 
IP25 was detectable in each of the 25-m sediment trap sam-
ples, it was not identified in the 2-m trap between 16 May 
and 6 June (Table 1). Further, IP25 content was generally 
higher in the 25-m sediment trap samples compared with 
those at 2 m. Exceptions were found on 6 June and 17 
June, dates that also coincided with relatively high IP25 

Figure 6: Time series of ice-derived POC (%iPOCw) in seawater. Time series of water column iPOCw as a proportion 
of total organic carbon (%iPOCw) from 18 May to 8 July 216 at the sampling location in Baffin Bay (Figure 2). Data 
were interpolated and plotted using Ocean Data View v4.7.8 (Schlitzer, 2016). Data were not available (n/a) for inter-
polation between 25 May and 6 June. DOI: https://doi.org/10.1525/elementa.377.f6
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concentrations in the near-surface suspended POM, as 
described earlier. In general, sinking POM increased from 
15 June until the end of the sampling period. As previ-
ously observed in sea ice, IP25 and HBI IIa in sinking parti-
cles were well correlated (r = 0.95). HBI III concentration 
in sinking POM ranged from 0 to 12.4 ng m–2 d–1 (mean 
± SD = 1.3 ± 3.1 ng m–2 d–1; n = 34) and from 0 to 8.7 
ng m–2 d–1 (mean ± SD = 1.8 ± 2.6 ng m–2 d–1; n = 34) 
at 2 and 25 m, respectively. HBI III was only observed at 4 
and 8 sampling dates over the study period at 2 and 25 m, 
respectively. As with IP25, HBI III was more abundant in 
the shallower trap compared to the deeper trap only on 6 
June and 17 June (Table 4).

4. Discussion
4.1. Characteristics of the sea ice melting process
Sea ice at the beginning of sampling had relatively high 
snow cover and brine salinity, with relatively low Chl a 
concentration in the bottom ice sections, indicative of 
pre-bloom conditions (Figure 3). Two Chl a maxima on 
1 June and 13 June were observed under different snow 
cover conditions during the period investigated. The first 
Chl a maximum coincided with a snowfall episode, sug-
gesting the accumulation of pigments (relative to carbon 
biomass) by sympagic algae to enhance their light absorp-
tion efficiency (Johnsen and Sakshaug, 1993). In contrast, 
the subsequent decreases in snow, ice thickness and brine 

Figure 7: Correlation change-point analysis between the concentrations of Chl a and IP25. Correlation change-
point analysis between the concentrations of Chl a and IP25 collected in (A) near-surface (interface and 1.5 m) and 
(B) deeper water depths (10–40 m) from 18 May to 8 July 2016 at the sampling location in Baffin Bay (Figure 2). The 
sampling period of generally low correlation (<95%, black squares) is indicated by grey shading. DOI: https://doi.
org/10.1525/elementa.377.f7
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salinity were accompanied by the second Chl a concentra-
tion peak (13 June; Figure 3), consistent with the usual 
spring ice bloom event, which terminated around 1 July, 
as shown by a return to near pre-bloom Chl a values 
(Figure 3C). 

The profile of IP25 concentration broadly followed that 
of Chl a, as expected, although the correlation between 
them was slightly lower (r = 0.6; Table 3) than that 
reported in a previous time-series study (Belt et al., 2013), 
possibly due to different protist communities between 
the two studies. Indeed, because the IP25-producing spe-
cies are normally only present as minor components 
(typically 1–5%; Brown et al., 2014c), observing some 
de-coupling of IP25 from Chl a, the more representative 
measure of total photosynthetic biota, may not be surpris-
ing. Moreover, changes in the intracellular biosynthesis 
of IP25 in response to changing environmental conditions 
(e.g., light, salinity, temperature), such as during a melt-
ing period, are also likely (Limoges et al., 2018). On the 
other hand, the strong correlation between IP25 and HBI 
IIa is consistent with their common source (Belt and 
Müller, 2013; Brown et al., 2014a; Belt, 2018). More gener-
ally, the production of IP25 (and HBI IIa) throughout the 
spring bloom and prior to the onset of ice melt is con-
sistent with previous findings from other regions of the 
Canadian Arctic (Brown et al., 2011; Belt et al., 2013) and 
NE Greenland (Limoges et al., 2018). 

4.2. Distribution of IP25 in sea ice and the water 
column along the melt season
Brown et al. (2011) conducted the first study of the verti-
cal distribution of IP25 in sea ice cores taken from the west-
ern Canadian Arctic along a spring time series. However, 
analyses were limited mainly to the early part of the time 
series (mid-March to mid-April) with a break in sampling 
late April–May, so the dataset was not continuous. In 
addition, sea ice cores were taken from different sampling 
locations within the Amundsen Gulf, consisted of both 
landfast and drift ice, and were analysed at higher vertical 
resolution (i.e., every cm) only on two dates. Nevertheless, 
this initial study revealed a substantially higher IP25 con-
tent in the bottom 5 cm of sea ice, at least in comparison 
with the 5–10 cm sections. Further, the higher vertical 
resolution data suggested that IP25 production occurred 
mainly in sea ice sections with >5% brine volume.

Our new data confirm the main findings of Brown et 
al. (2011), including the identification of IP25 in all ice 
cores exceeding the 5% brine volume threshold believed 
to be important for favourable diatom colonisation and 
growth (Mock et al., 2003; Golden et al., 2007). However, 
the continuous HVR sea ice sampling in the current 
study has enabled some further temporal variations in 
the vertical distribution of IP25 to be identified. Thus, 
between 18 May and 8 June, during which time hyper-
saline brines prevailed and brine volumes exceeded 5%, 
IP25 content was predominantly (>86%) in the 0–2 cm 
sections. From ca. 8 June to 27 June, highest IP25 concen-
trations were also found in the 0–2 cm sections, but the 
percentage in the upper layers (i.e., 2–10 cm; Table 2) 
increased as brine conditions in the sea ice, as a whole, 

switched to hyposaline (Figure 3B). Finally, from 27 
June to the end of sampling, IP25 was largely absent, with 
only trace amounts detected in the 1–2 cm section on 
1 July (Table 2). The salinity switch in the sea ice, prob-
ably driven by the downward percolation of melted snow 
(Figure 3A), likely produced a thin hyposaline water 
layer at the ice/water interface. As such hyposaline con-
ditions are well known to significantly reduce ice algal 
growth and survival (Gosselin et al., 1986; Ralph et al., 
2007), we suggest that this (presumed) hyposaline layer 
primarily impacted the ice algae within the bottom-most 
sections of the sea ice, enhancing their release into the 
water column and, as a consequence, resulting in an 
increase in the %IP25 content in the upper sea ice layers. 
In support of this scenario, the occurrence of relatively 
low sea ice Chl a and IP25 concentration in the bottom ice 
on 6 June contrasts with the somewhat high values in the 
near-surface waters, indicative of a pulsed release of ice 
algal POM (Figures 3C, 4D and Table 1), as seen in some 
previous studies (Tamelander et al., 2008; Rontani et al., 
2016; Brown et al., 2016, 2017). A second (and larger) 
pulse of ice algae occurred on 24 June as evidenced 
from the highest IP25 concentration in the surface waters 
(Table 1). Otherwise, relatively consistent IP25 content in 
surface waters from 6 June until the end of sampling is 
indicative of a generally diffuse release of sea ice algal 
material (Table 1). 

Exceptionally, because the higher %IP25 in the upper 
sections of the ice cores did not always coincide with a 
reduction in the amount of IP25 in the bottom sea ice (e.g., 
13 and 17 June; Table 2), some additional factors may 
also be important. These may include processes such as 
the migration or development of ice algae in upper sea 
ice sections in response to changing light (due to snow 
deposition, photo-inhibition) or osmotic (hyposalinity) 
factors (Aumack et al., 2014; Olsen et al., 2017). The cur-
rent study therefore provides further spatial evidence for 
the production of IP25 during the spring sympagic bloom 
and reinforces its use as a binary indicator of Arctic sea ice 
when detected in sediments (Belt, 2018, 2019). 

The main interval of ice algal release from sea ice begin-
ning on 6 June is also evident from the occurrence of IP25 
in virtually all of the suspended POM samples, with highest 
concentrations in the near-surface layers and a generally 
decreasing concentration with depth. Further, the protist 
composition between sea ice and near-surface waters was 
also very similar during this interval, with a dominance of 
pennate diatoms (Figure 5). Along the sampling period, 
pulsed release of ice algal POM occurred twice, on 6 and 
24 June, as discussed above. The production of extracel-
lular polymeric substances (EPS) by ice algae facilitates 
their attachment to sea ice and also the formation of 
micro-aggregates of algal cells that can remain intact even 
after ice melt (Riebesell et al., 1991). The overall aggrega-
tion state of ice algae impacts their sedimentation rate 
and thus their residence time within the euphotic zone. 
Further, aggregated ice algae tend to be less active meta-
bolically than their unaggregated counterparts (Riebesell 
et al., 1991; Rontani et al., 2016). As we propose that ice 
algae in the bottommost sections of sea ice in the current 
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study experienced osmotic stress from 6 June, which likely 
reduced their survival (Ralph et al., 2007), our additional 
observation of enhanced sinking POM from this date 
onwards at both sampling depths and especially at 25 m 
(Table 1) is not surprising. Interestingly, prior to hypo-
saline conditions (reducing algal survival and enhancing 
their release and sinking potential), ice biota would have 
experienced hypersaline conditions, thus reducing bacte-
rial survival, growth and their re-mineralization poten-
tial (Amiraux et al., 2017). The pulsed release of ice biota 
resulting from hyposaline stress should therefore lead to 
the release of highly aggregated ice algal POM associated 
with a bacterial community shaped by the previous hyper-
saline conditions (Amiraux et al., 2017). Thus, we suggest 
that the sea ice POM released from 6 June possessed a 
strong burial potential, which may, in part, explain the 
widespread occurrence of IP25 in surface sediments across 
the Arctic (for an overview, see Belt, 2018).

4.3. Development of an under-ice phytoplankton bloom
Despite the well-known strong light attenuation proper-
ties of sea ice, evidence has been growing over the last dec-
ade or so for the occurrence of under-ice phytoplankton 
blooms in the Arctic (e.g., Gradinger, 1996; Ichinomiya et 
al., 2008; Mundy et al., 2009; Arrigo et al., 2012; Boetius et 
al., 2013; Assmy et al., 2017; Johnsen et al., 2018). Indeed, 
the assumption has been that some light availability is 
at least one of the determining factors controlling phy-
toplankton bloom occurrence, and Letelier et al. (2004) 
suggested a threshold value for PAR (0.415 E m–2 d–1) in 
the subtropical North Pacific gyre, a value considered as a 
reference in the Arctic (Behrenfeld et al., 2017).

In the current study, this PAR threshold was first reached 
in the water column on 8 June, coinciding with substan-
tially reduced snow cover (Figure 3A). With the exception 
of the relatively high near-surface Chl a values on 6 June 
and 24 June, likely due to the release of sea ice algae (see 
above), Chl a in suspended POM collected at all water 
depths was relatively low until 24 June (<1.2 μg L–1 up to 
20 m depth). However, from 6 June the steady increase 
in under-ice PAR was accompanied by a clear increase in 
Chl a, especially after 24 June, suggesting either an under-
ice phytoplankton bloom or an ice algae seeding event 
(Figure 4C, D). Significantly, the increase in Chl a was not 
accompanied by an increase in IP25 concentration (Table 1), 
which likely explains the poor correlation between Chl a 
and IP25 in SPM samples (r = 0.16), and the protist commu-
nity on 8 July shifted from pennate to centric diatoms and 
phytoplankton (including Chaetoceros spp.) in sea ice and 
the water column, respectively (Figure 5). Interestingly, 
colonial centric Chaetoceros spp. have been reported to 
occur along the MIZ (e.g., Wassmann et al., 1999; Poulin et 
al., 2011) and often in highest concentration later in the 
season (e.g., Von Quillfeldt, 2000; Krawczyk et al., 2014). 
Thus, we attribute the increase in water column Chl a 
from 24 June to an under-ice phytoplankton bloom. 

In order to investigate in more detail the point at which 
the composition of the SPM changed from predominantly 
ice algae to one that also included the under-ice phyto-
plankton bloom, we analysed the timing of significant 

correlation shifts between IP25 and Chl a in SPM collected 
at shallow (interface and 1.5 m) and deep (10, 20 and 
40 m) samples (Figure 7). This analysis revealed that the 
significant change-point for shallow waters occurred later 
than for the deeper samples (27 June and 13 June, respec-
tively), thus confirming, first, the stronger influence of ice 
algae at shallow water depths and, second, that the devel-
opment of the main under-ice phytoplankton bloom from 
24 June may have started earlier (13 June), coinciding with 
when the PAR threshold for such events was exceeded for 
most water depths (Figure 4C). 

The identification of a temporal evolution of sea ice algal 
deposition and subsequent development of an under-ice 
phytoplankton bloom implies a variable contribution of 
sea ice POM to the underlying water column through the 
melt season. We therefore aimed to investigate whether 
this contribution could be expressed more quantitatively, 
especially as such determinations could have important 
implications for determining the relative contributions 
of OM from different sources more generally. In a recent 
study, Brown et al. (2016) proposed a method for calcu-
lating the percentage of ice-derived particulate organic 
carbon in seawater (%iPOCw) based on the changes to the 
relative amounts of POC and IP25 in sea ice and the under-
lying water column. This approach also uses an end-mem-
ber value for POC/IP25 in sea ice (i.e., iPOCi/IP25i), a feature 
identified as a possible limitation given its likely variabil-
ity (Brown et al., 2016). Nevertheless, reasonable estimates 
for %iPOCw were obtained in the initial study by Brown et 
al. (2016), who also used the approach to provide evidence 
for an under-ice phytoplankton bloom. Brown et al. (2016) 
also suggested that the most reliable %iPOCw estimates 
were obtained using an iPOCi/IP25i ratio measured dur-
ing the interval of highest IP25 production. In the current 
study, the more frequent sampling arguably enabled this 
optimal iPOCi/IP25i to be better identified. Consistent with 
the data of Brown et al. (2016), we observed iPOCi/IP25i 
values during the interval of highest IP25i concentration 
to be in the range from ca. 103 to 104. Moreover, we also 
obtained the most realistic estimates of %iPOCw using the 
iPOCi/IP25i ratio obtained on 17 June, the sampling date of 
highest IP25 concentration in the 0–3 cm sea ice section. 

Estimates of %iPOCw confirmed our previous findings 
based on Chl a and IP25 concentrations (Figure 6). For 
example, highest %iPOCw values were observed in surface 
waters collected on 6 June and 24 June, consistent with 
the proposed pulsed release of ice algal material. Further, 
a comparison between our %iPOCw estimates and the out-
comes from the aforementioned change-point analysis of 
Chl a and IP25 concentrations provided additional informa-
tion. Thus, during the early sampling period from 16 May 
to 6 June, the good correlation between IP25 and Chl a yet 
relatively low %iPOCw estimates for the deep SPM samples 
collected suggests only a minor contribution from both 
sympagic and pelagic algae to the total POCw. In contrast, 
between 6 June and 13 June the relatively high %iPOCw 
estimates together with a still good correlation between 
IP25 and Chl a indicate the high contribution of sympagic 
algae to the total POMw as they are released from the sea 
ice. Finally, from 13 June onwards, lower %iPOCw and a 
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poor correlation between Chl a and IP25 can be attributed 
to the initiation and then continuation of the under-ice 
bloom event (Figures 6, 7). 

Identification of the optimal value for iPOCi/IP25i 
remains problematic for all of the reasons described in 
detail by Brown et al. (2016). However, we note that in the 
current study, use of the lowest iPOCi/IP25i value (obtained 
at highest IP25 concentration) resulted in only two sam-
ples exceeding 100% for %iPOCw (i.e., the interface waters 
collected on 6 June and 24 June), and these were still 
within a factor of two of the theoretical limit. In any case, 
although we still suggest applying some caution to the 
absolute values for %iPOCw, the relative changes appear to 
provide realistic qualitative changes to the variable contri-
bution of ice algal POC to a mixed pool, especially if these 
data are considered alongside other parameters, including 
taxonomy and change-point analysis, as described here.

4.4. Other HBIs in sea ice and the water column – 
possible implications for the PIP25 index
Of the previous investigations into HBIs in Arctic sea ice, 
all have focused mainly on the presence and quantifica-
tion of IP25, with much less attention given to other HBIs, 
including HBI IIa (Belt, 2018). Some earlier identification 
of other HBIs in sea ice have been reported, however, 
though these were mainly qualitative (Belt et al., 2007; 
Brown, 2011; Ringrose, 2012). Following the purification 
of standards, the development of improved analytical pro-
tocols (Belt et al., 2012), and the high sample volumes fil-
tered in the current study, we were able to quantify other 
HBIs (i.e., HBIs IIa, IIb, III and IV) in some of our samples. 
As previously discussed, IP25 and HBI IIa co-occurred and 
were strongly correlated in all sample types (Table 3), con-
sistent with common sources (Brown et al., 2014a, 2014b; 
Limoges et al., 2018). Similarly, HBIs IIb, III and IV were 
also strongly correlated in sea ice but much less so with 
IP25 and HBI IIa (Table 3) and, therefore, are assumed to 
have common sources, but different sources than those 
of IP25 and HBI IIa. Unfortunately, the concentrations of 
HBIs IIb, III and IV were mainly too low in the water col-
umn samples (e.g., Table 4) to permit satisfactory corre-
lation analyses between them. HBIs III and IV have been 
reported previously in the benthic diatom Pleurosigma 
intermedium (Belt et al., 2000b) and in several planktonic 
diatoms belonging to the Rhizosolenia genus, (Rowland 
et al., 2001a; Belt et al., 2017), but thus far the co-occur-
rence of HBI IIb in such species has not been reported. 
However, neither P. intermedium nor R. setigera are ice-
obligate species, so the identification of HBIs III and IV in 
sea ice has been attributed previously to the likely pres-
ence of certain phytoplankton entrapped within the sea 
ice matrix or brine channels (Brown et al., 2011; Rontani 
et al., 2014) rather than to production by strictly sympagic 
species. Interestingly, the co-production of HBIs IIb and IV 
has been reported in Berkeleya rutilans, a tube-dwelling 
diatom (Brown et al., 2014b) which, although belonging 
to a genus common in coastal and brackish environments 
from almost all latitudes (Round and Brooks, 1973; Cox, 
1975; Lobban, 1984; Guiry and Guiry, 2013), has also been 
recorded within sea ice diatom communities from the 

Arctic (von Quillfeldt, 1997). In the study by Brown et al. 
(2014b), HBI III was not detected in the culture of B. ruti-
lans, possibly due to too low abundance rather than strict 
absence, especially as HBI IV was only present as a minor 
constituent (ca. 7%; Brown et al., 2014b). Indeed, in our 
sea ice and water column samples, the average concentra-
tion of HBI III was 4.6 times lower than that of HBI IV, so 
may have simply been below detection limits in culture.

HBIs IIb, III and IV could be identified and quantified 
in almost all the LVR and HVR sea ice samples collected 
between the beginning of the sampling period and the 
first main occurrence of ice algal release (i.e., 16 May to 
6 June). Thereafter, they were largely below detection 
limits (Table 4), suggesting a modification of the protist 
composition, with HBI III-producers possibly even more 
sensitive to hyposaline conditions than the sources of IP25 

and HBI IIa. An increase in the ratio HBI III/IP25 between 
the 0–3 cm sea ice section and the underlying surface 
waters on 6 June (0.02 and 0.08, respectively) certainly 
supports the notion of a preferential release of producers 
of HBIs IIb, III and IV during the first algal release event. 
However, in the case of such producers still being present 
in the sea ice matrix after 6 June, the general failure to 
detect HBIs IIb, III and IV during an interval when IP25 was 
mainly quantifiable indicates either (i) their low contribu-
tion in the protist community (at least compared to before 
6 June), (ii) a switching-off in their HBI production or 
(iii) their poor physiological state. Indeed, photodegrada-
tion processes (i.e., type II photosensitized processes) are 
dependent on both the residence time of phototrophic 
cells within the euphotic layer (Zafiriou et al., 1984; Mayer 
et al., 2009) and the extent of their senescence (Brown et 
al., 1989; Merzlyak and Hendry, 1994). Thus, as HBIs III 
and IV are known to be highly reactive toward such pro-
cesses (Rontani et al., 2011, 2014), at least under labora-
tory conditions, the poor physiological state of producers 
of HBIs IIb, III and IV in sea ice could potentially result in 
their relatively rapid degradation. On the other hand, the 
quantification of the same HBIs within the water column 
following the 6 June ice algae release (Table 4) indicates 
that the higher sinking rate of such species can mitigate 
against such degradative removal. As such, the identifica-
tion of HBIs IIb, III and IV in some Arctic sediments (Belt 
et al., 2008; Brown, 2011) may potentially result from 
release of some of their producers from sea ice.

The development of the so-called PIP25 index (phyto-
plankton marker-IP25; Müller et al., 2011) in recent years 
has provided, in some cases, more detailed descriptions of 
palaeo Arctic sea ice conditions than using IP25 alone (e.g., 
Fahl and Stein, 2012; Müller et al., 2012; Cabedo-Sanz et 
al., 2013; Stein and Fahl, 2013; Berben et al., 2014; Müller 
and Stein, 2014; Belt, 2018). The robustness of this index 
is dependant, in part, on the unequivocal source-speci-
ficity of the sympagic and pelagic biomarkers. Although 
IP25 appears to represent a suitable sympagic biomarker 
due to its source specificity (Brown et al., 2014c), identi-
fication of the most suitable pelagic counterpart remains 
challenging (Belt, 2018), especially as the commonly used 
sterol biomarkers such as epi-brassicasterol can have 
diverse sources (Huang and Meinschein, 1976; Volkman, 



Amiraux et al: Temporal evolution of IP25 and other highly branched isoprenoid lipids in 
sea ice and the underlying water column during an Arctic melting season

Art. 38, page 16 of 23  

1986, 1998; Belt, 2018). In contrast, in some more recent 
studies, the use of some other HBIs (including HBI III) has 
been suggested as possibly better pelagic counterparts 
to IP25 owing to their apparently better source selectiv-
ity (i.e., certain marine diatoms). Indeed, some palaeo sea 
ice reconstructions based on PIP25 data derived from sedi-
mentary IP25 and HBI III concentrations have appeared 
in recent years (see Belt, 2018), with semi-quantitative 
estimates of palaeo Arctic spring sea ice concentration 
in some cases (Smik et al., 2016b; Belt, 2018; Köseoğlu 
et al., 2018). However, data from the current study sug-
gests that HBI III may not be as source-specific as origi-
nally believed, with some potential contribution from sea 
ice algae to the sedimentary budget. On the other hand, 
the isotopic composition of HBI III in the albeit relatively 
small number of measurements carried out thus far in the 
Arctic and Antarctic suggests that the majority (if not all) 
of the sedimentary contribution is derived from pelagic 
phytoplankton sources (e.g., Massé et al., 2001; Belt et al., 
2008; Smik et al., 2016a; Belt, 2018). In further support of 
this suggestion, we note the substantially higher relative 
amount of HBI IV compared to HBI III in our sea ice and 
water column samples (mean enhancement of HBI IV is 
4.6; see earlier), whereas the opposite is normally the case 
in Arctic and Antarctic sediments. Thus HBI III is normally 
ca. 3–4 times more abundant than HBI IV in sediments 
from the Barents Sea (Arctic) and around the Antarctic 
(Smik, 2016; Köseoğlu et al., 2018), and, importantly, this 
enhancement was also evident in several Rhizosolenia 
species isolated from mixed phytoplankton assemblages 
from both regions (Belt et al., 2017). 

At this point, our new observations and interpreta-
tions are limited in two ways. First, we are unable to 
confirm the strict origin of HBIs IIb, III and IV in our 
sea ice and water column samples due to the absence of 
stable isotope (δ13C) data. Second, as studies of HBIs in 
sea ice are still relatively few in number (Belt, 2018), the 
extent to which the new findings are location-specific or 
representative of other Arctic regions is not clear. Both 
aspects need further attention before the broader sig-
nificance of the new findings can be fully understood. 

5. Conclusions
The sea ice proxy biomarker IP25 and other HBIs were 
identified and quantified in a time series of sea ice cores 
and in suspended and sinking particles sampled from the 
underlying water column across a single spring bloom and 
ice melt season in Baffin Bay (Canadian Arctic). The meas-
urement of IP25 at high temporal and vertical resolution 
allowed us to highlight: (i) some production variability 
within sea ice, likely as a result of changes in brine salinity; 
(ii) the release of ice algae with high sinking rates follow-
ing the switch of sea ice salinity from hypersaline to hypo-
saline conditions within the sampling period; and (iii) an 
under-ice phytoplankton bloom, as shown by a reduction 
in the contribution of sea ice organic carbon in the water 
column commensurate with a decoupling between IP25 
concentration and Chl a concentrations. Other di- and 
tri-unsaturated HBIs were also quantified in some of the 
samples, with Berkeleya rutilans and/or species belonging 

to the Pleurosigma and Rhizosolenia genera suggested as 
potential sources. Although the strict origin of these HBIs 
remains uncertain at this stage, their occurrence in sea ice 
was restricted to early sampling dates, with their source(s) 
likely released to the water column during the first dis-
charge of ice algae. Such HBIs may subsequently become 
deposited in underlying sediments, but the impact of this 
deposition on their use as possible pelagic counterparts 
to IP25 when using the PIP25 index requires further investi-
gation. Our initial assessment of this aspect suggests that 
the contribution of such di- and tri-unsaturated HBIs to 
sediments from sea ice is much lower than from open 
water phytoplankton. 
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