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Abstract: Following the physiological complementary/parallel Celis-Plá et al., by inhibiting
extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific
binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway
in detoxification responses mediated by chronic copper (10µM) in U. compressa. Parameters were taken
at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK,
JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under
copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK
(at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione
(GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it
did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD),
thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione
synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK
pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms
was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast,
when more than one MAPK pathway were blocked under copper, impairment of detoxification
defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification
in macroalgae.

Keywords: mitogen-activated protein kinases; Ulva compressa; antioxidant; oxidative stress;
metal chelator
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1. Introduction

It has been recognised that besides metal exclusion/extrusion mechanisms, the main strategies by
which macroalgae counteract metal excess in polluted environments are detoxification of bioavailable
metals through the syntheses of chelating compounds and the inactivation of metal-mediated excess
of reactive oxygen species (ROS) by the production and activities of antioxidants and antioxidant
enzymes [1,2]. In green macroalgae (Ulvophyceae), metal chelation is importantly controlled by
cysteine-rich compounds, among which the most important are the gene encoded metallothioneins
and the enzymatically synthesised glutathione (GSH) and its poly-oligomers phytochelatins (PCs) [2,3].
GSH, in a recycling process with ascorbate (ASC), termed the Foyer–Halliwell–Asada cycle, is recognised
as central to antioxidant metabolism in photoautotrophs, algae, and plants, and is one of the main
mechanisms by which these organisms tolerate metal-mediated oxidative stress [2,4,5]. The process
is controlled by complementary de novo synthesis and recycling of GSH and ASC. Briefly, GSH is
synthesised by subsequent enzymatically mediated reactions controlled by γ-glutamate-cysteine ligase
(γ-GCL) and glutathione synthase (GS), and in the case of ASC by l-galatose dehydrogenase (l-GDH)
and l-galatonolactone dehydrogenase (l-GLDH) [4]. Moreover, the enzyme monodehydroascorbate
reductase (MDHAR) uses GSH as a substrate to reduce dehydroascorbate (DHA) to ASC, also producing
glutathione disulphide (GSSG). Then, the enzyme glutathione reductase (GR) reduces back GSSG to
GSH using nicotinamide adenine dinucleotide phosphate (NADPH) [4]. Other enzymatic complexes
also participate in the antioxidant metabolism, directly or indirectly linked with the GSH-ASC
cycle. For instance, superoxide radicals (O2·

−) are dismutated to hydrogen peroxide (H2O2), a lower
oxidative-power ROS, by the enzyme superoxide dismutase (SOD) [6]. H2O2 is then reduced to
water by either ascorbate peroxidase (APX) using ASC as electron donor, or by the enzyme catalase
(CAT) [7]. Another important group of enzymes within the antioxidant metabolism of photoautotrophs
is thioredoxins (TRXs), which principally reduce oxidised cysteine residues and split disulfide bonds [8].

Information on the role of antioxidant metabolism on copper-stressed green macroalgae is mostly
derived from studies using the model Ulva compressa. For example, U. compressa from copper polluted
sites, compared with non-impacted areas, of northern Chile displayed high levels of lipid peroxidation,
enhanced activity of APX, increased ascorbate (as DHA), and consumption of glutathione pools [9].
Likewise, when exposed to chronic copper levels of 10 µM for up to 10 days (d) in the laboratory, U.
compressa displayed increased levels of lipid peroxidation, accompanied by greater content of ASC,
GSH, and PCs, higher expression of γ-GCL, GS, L-GDH, L-GLDH, DHAR, and GR, and increased
transcripts and activities of the enzymes APX, GR, and SOD [10–13]. Similar induction of copper- and
ROS-detoxification mechanisms have been reported in other Ulva species, including U. lactuca [14]
and U. fasciata [15]. Together, these results indicate that the activation of antioxidant defences under
chronic chronic copper excess is a transcriptionally regulated process in green macroalgae [2].

Although the main mechanisms by which green macroalgae withstand chronic chronic copper
excess are now fairly well described, the cellular signalling pathways by which these organisms activate
such metabolic machinery is poorly understood, and this is also true for exposure to environmental
stress more generally. To date, the signalling pathways that have been observed to play a role in
copper tolerance in green macroalgae relate to ROS, nitric oxide (NO), and calcium (Ca+2) signalling.
The potential participation of the mitogen-activated protein kinases (MAPKs) has been proposed, but
not fully confirmed [2,12]. MAPKs are serine/threonine kinases following a cascade of activations
from MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK) to MAPK, thus finally inducing gene
expression [1,16,17]. There are three main sub-pathways within the MAPKs, these ending in the
MAPK ERK (extracellular signal regulated kinases), JNK (c-Jun N-terminal kinases), and p38 (cytokinin
specific binding protein) [1,16,17]. While a full description of the mechanistic contribution of these
MAPK pathways to tolerance machinery under environmental stress in photoautotrophs has not been
elucidated, their presence and induction have been observed in both micro and macroalgae [18–21].

Here, we report on a holistic investigation to disclose for the first time in photoautotrophs
the role of different pathways within the MAPKs to withstand environmental stress, in this case



Int. J. Mol. Sci. 2019, 20, 4546 3 of 19

caused by chronic copper excess in green macroalgae. The green seaweed U. compressa under 10
µM of copper was exposed to specific inhibitors of MAPK pathways, ERK, JNK, and/or p38, with
measurements taken at different time points throughout the experiment (6 h, 24 h, 48 h, and 6 d).
In a complementary investigation, we demonstrated that under chronic copper excess when two or
more MAPK pathways were inhibited, there was a general trend of decreasing intracellular copper
concentrations when compared to exposure only to copper [1]. Moreover, the lowest levels of
photosynthetic performance, as determined from measurements of photosynthetic efficiency (αETR),
productivity (ETRmax), and saturation of the irradiance (EkETR), were under copper in the presence
of two or more MAPK inhibitors, [1]. Coincidentally, on the sixth d non-photochemical quenching
(NPQmax) increased in treatments with copper and a mixture of MAPK inhibitors, confirming that the
perturbed electron transport in PSII was being countered by the dissipation of heat [1]. These data
suggest that by blocking most of the MAPK pathways, an alternative cellular signalling pathway(s)
may be over-stimulated, thus enhancing mechanisms of copper exclusion/extrusion. Moreover, results
indicate that the MAPK pathways may have a central role in photosynthetic performance, even under
the presence of environmental perturbation (in this case, chronic copper excess) [1]. Here, we extend
this study to investigate the participation of MAPK pathways in the reactive oxygen metabolism (ROM)
of U. compressa under chronic copper excess. More specifically, we evaluated parameters of oxidative
stress and damage, concentrations of glutathione (GSH and GSSG), and ascorbate (ASC and DHA), as
well as the expression of enzymes involved in antioxidant metabolism (APX, CAT, SOD, GS, DHAR,
and TRX).

2. Results

2.1. Hydrogen Peroxide Levels

The levels of H2O2 were measured as an indicator of ROS imbalance (Figure 1). At 6 h, all
treatments compared with control samples induced a significantly higher accumulation of H2O2,
especially treatments with combinations of inhibitors that included p38i (Figure 1A). Treatments that
had significantly higher levels than those of T2 (copper only) were: Cu + ERKi + JNKi (T6) and Cu +

ERKi + JNKi + p38i (T9). Similar patterns were observed at 24 h, although the Cu + ERKi + p38i (T7)
and Cu + ERKi + JNKi + p38i (T9) treatments were the ones with significantly higher levels of H2O2

(Figure 1B). Inverted patterns could be detected at 48 h and 6 d, where concentrations of H2O2 in all
treatments containing copper and inhibitors were either the same as or significantly lower than control
and copper-only treatments (Figure 1C,D).
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JNKi; and T9) Cu + ERKi + JNKi + p38i. Samples were analysed after 6 h (A), 24 h (B), 48 h (C), and 6 

d (D) treatments. Different letters represent significant difference at 95% confidence interval (p < 0.05). 

Plots are represented as mean ± SE (n = 3). 

2.2. Lipid Peroxidation 

Exposure to copper did not induce significantly higher levels of TBARS than controls at 6 and 

24 h, nor did the majority of the treatments containing inhibitors, however copper treatments with 

p38 (T5) and all three inhibitors (T9) had significantly higher levels of TBARS (Figure 2 A,B). At 48 h, 

in treatments with copper without and with inhibitors (except with ERKi alone), there were 

significant decreases in TBARS compared to the controls, although there were no significant 

differences between these treatments (Figure 2C). At day 6, no differences could be detected between 

the controls and treatments with only copper and those containing copper and ERKi (T3), JNKi (T4), 

and ERKi + p38i (T7). In all other treatments with copper plus inhibitors, there were significantly 

lower levels of TBARS than controls and under copper only, but with no differences between them 

(Figure 2D). 

B

0

1

2

3

4

A

D

0

1

2

3

4

C

H
2
O

2
 
(µ

m
o
l 

m
g

-1
 p

ro
te

in
)

a
ab

b b
b b

b

c c

a

b
bcbc

b

bc
c

d
d

a a a

b b b

bc
c

d

a
ab

ab ab
abc

abcd

cd cd
d

6h 24h

48h 6d

Figure 1. Hydroxide peroxide (H2O2) levels in U. compressa under copper and/or exposure to
mitogen-activated protein kinases (MAPK) inhibitors. Treatments consisted in: T1) control only with
seawater; T2) solely copper exposure as 10 µM of CuSO4 (Cu); T3) copper + 5 µM MAPK extracellular
signal regulated kinases (ERK) inhibitor PD98059 (Cu + ERKi); T4) copper + 5 µM MAPK c-Jun
N-terminal kinases (JNK) inhibitor SP600125 (Cu + JNKi); T5) copper + MAPK cytokinin specific
binding protein (p38) inhibitor SB203580 (Cu + p38i); T6) Cu + ERKi + JNKi; T7) Cu + ERKi + p38i; T8)
Cu + p38i + JNKi; and T9) Cu + ERKi + JNKi + p38i. Samples were analysed after 6 h (A), 24 h (B),
48 h (C), and 6 d (D) treatments. Different letters represent significant difference at 95% confidence
interval (p < 0.05). Plots are represented as mean ± SE (n = 3).

2.2. Lipid Peroxidation

Exposure to copper did not induce significantly higher levels of TBARS than controls at 6 and 24
h, nor did the majority of the treatments containing inhibitors, however copper treatments with p38
(T5) and all three inhibitors (T9) had significantly higher levels of TBARS (Figure 2A,B). At 48 h, in
treatments with copper without and with inhibitors (except with ERKi alone), there were significant
decreases in TBARS compared to the controls, although there were no significant differences between
these treatments (Figure 2C). At day 6, no differences could be detected between the controls and
treatments with only copper and those containing copper and ERKi (T3), JNKi (T4), and ERKi + p38i
(T7). In all other treatments with copper plus inhibitors, there were significantly lower levels of TBARS
than controls and under copper only, but with no differences between them (Figure 2D).
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Figure 2. Thiobarbituric acid reactive substances (TBARS) accumulation in U. compressa under copper
and/or exposure to MAPK inhibitors. Treatments consisted in: T1) control only with seawater; T2)
solely copper exposure as 10 µM of CuSO4 (Cu); T3) copper + 5 µM MAPK ERK inhibitor PD98059
(Cu + ERKi); T4) copper + 5 µM MAPK JNK inhibitor SP600125 (Cu + JNKi); T5) copper + MAPK p38
inhibitor SB203580 (Cu + p38i); T6) Cu + ERKi + JNKi; T7) Cu + ERKi + p38i; T8) Cu + p38i + JNKi;
and T9) Cu + ERKi + JNKi + p38i. Samples were analyzed after 6 h (A), 24 h (B), 48 h (C) and 6 d (D)
treatments. Different letters represent significant difference at 95% confidence interval (p < 0.05). Plots
are represented as mean ± SE (n = 3).

2.3. Levels of Reduced and Oxidised Glutathione

At 6 h, there was a significant decrease of total glutathione and GSH in all treatments compared
to controls (Figure 3A). Moreover, in most treatments with copper (T2) and copper plus inhibitors
(T3-T9) there were the same or significantly lower levels of GSSG than controls; the exceptions were
copper with single MAPK inhibitor treatments (T3, T4 and T5) in which significantly higher GSSG
concentrations were measured (Figure 3A). It is important to highlight that controls presented over
4-fold levels of GSH in comparison to GSSG, whereas the majority of the other treatments had higher
GSSG than GSH (Figure 3A). At 24 h, similar concentrations within each treatment were recorded for
GSH and GSSG; in addition, all treatments containing only copper (T2) and copper with inhibitors
(T3-T9) displayed significantly lower levels of GSH and GSSG than controls (Figure 3B). Only in the
case of treatment Cu + ERKi + p38i (T7), were concentrations of GSSG higher than in copper alone (T2)
(Figure 3B). As at 6 h, at 48 h the levels of GSH were 4 times higher than GSSG in controls (Figure 3C). In
treatments with only copper, copper with either ERKi or JNKi, and copper with all the blocked MAPKs,
GSSG concentrations were higher than those of GSH (Figure 3C). In most treatments containing copper,
concentrations of GSH were significantly lower than controls; the exception was treatment under
copper and either ERKi (T3) or JNKi (T4) (Figure 3C). There were no clear patterns in GSSG across
treatments, although in treatments with copper and either p38 or all three inhibitors, concentrations of
GSSG were significantly higher than controls and copper only treatments (Figure 3C). By the 6th d
of the experiment, GSH concentrations in the copper only treatment were significantly higher than
controls, and levels in the controls were significantly higher than when inhibitors were present; there
was no clear pattern amongst these latter treatments (Figure 3D). Similarly for significantly higher
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concentrations than in controls were measured in the copper only and copper plus ERKi, both having
the largest pool of total glutathione (Figure 3D).
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Figure 3. Total reduced (GSH) and oxidised glutathione (GSSG) content in U. compressa under copper
and/or exposure to MAPK inhibitors. Treatments consisted in: T1) control only with seawater; T2)
Solely copper exposure as 10 µM CuSO4 (Cu); T3) copper + 5 µM MAPK ERK inhibitor PD98059 (Cu
+ ERKi); T4) copper + 5 µM MAPK JNK inhibitor SP600125 (Cu + JNKi); T5) copper + MAPK p38
inhibitor SB203580 (Cu + p38i); T6) Cu + ERKi + JNKi; T7) Cu + ERKi + p38i; T8) Cu + p38i + JNKi;
and T9) Cu + ERKi + JNKi + p38i. Samples were analysed after 6 h (A), 24 h (B), 48 h (C), and 6 d (D)
treatments. Different letters represent significant difference at 95% confidence interval (p < 0.05). Plots
are represented as mean ± SE (n = 3).

2.4. Concentrations of Reduced and Oxidised Ascorbate

The lowest concentrations of all ASC, DHA, and total ascorbate pool were measured at 6 h
(Figure 4A). ASC levels were higher than in controls in treatments with only copper, Cu + ERKi (T3),
and Cu + ERKi + JNKi + p38i (T9) (Figure 4A). The remainder of the treatments always had significantly
lower levels of ASC compared to the controls (Figure 4A). There was a similar trend for DHA, although
levels were only higher than in controls for treatment-only copper (T2) and copper with all combined
inhibitors (T9) (Figure 4A). With the exception of T9, higher ASC concentrations were significantly
higher than those of DHA (Figure 4A). At 24 h, the total ascorbate pool, mainly due to DHA, increased
considerably compared to 6 h in all treatments containing only copper and copper with inhibitors
(Figure 4B). Excluding the treatment with copper and all inhibitors combined (T9), ASC levels were
always significantly lower in treatments containing copper than the controls (Figure 4B). In contrast,
treatments containing copper had higher DHA concentrations than the controls, the exceptions being
those with ERKi (T3, T6, T7, and T9) (Figure 4B). At 48 h, the general trend was for higher ASC than
DHA levels, except for treatments with only copper and with copper and ERKi (Figure 4C). Treatments
combining copper with two inhibited MAPK pathways had significant lower levels of ASC than the
controls, whereas in treatments with only copper, single inhibitor exposure, ERKi (T3) or p38i (T5),
and all three inhibitors (T9) there were no significant differences with controls, however in only Cu +

JNKi (T4) was ASC significantly higher than the controls (Figure 4C). Concentrations of DHA were
significantly higher under exposure to copper alone (T2), copper and ERKi (T3), and copper and
JNKi (T4), compared to the controls (T1) (Figure 4C). The lowest levels of DHA were measured in all
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treatments having combinations of inhibitors (T6-T9) and in Cu + p38i (T5), all being significantly
lower than controls (Figure 4C). The highest levels of total ascorbate were measured on d 6, with
concentrations of 60 and 70 nmol mg−1 protein in treatments with only copper (T2) and copper plus
all three inhibitors (T9), respectively (Figure 4D). Treatments containing copper generally had higher
DHA than ASC levels, with the exceptions of copper and ERKi (T3) or JNKi (T4) (Figure 4D). Finally,
in ascending order, the highest concentrations of DHA were observed at solely copper and subject to
copper combined with all inhibitors (Figure 4D).
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Figure 4. Total reduced ascorbate (ASC) and dehydroascorbate (DHA) concentrations in U. compressa
under copper and/or exposure to MAPK inhibitors. Treatments consisted in: T1) control only with
seawater; T2) solely copper exposure as 10 µM of CuSO4 (Cu); T3) copper + 5 µM MAPK ERK inhibitor
PD98059 (Cu + ERKi); T4) copper + 5 µM MAPK JNK inhibitor SP600125 (Cu + JNKi); T5) copper +

MAPK p38 inhibitor SB203580 (Cu + p38i); T6) Cu + ERKi + JNKi; T7) Cu + ERKi + p38i; T8) Cu +

p38i + JNKi; and T9) Cu + ERKi + JNKi + p38i. Samples were analysed after 6 h (A), 24 h (B), 48 h (C),
and 6 d (D) treatments. Different letters represent significant difference at 95% confidence interval
(p < 0.05). Plots are represented as mean ± SE (n = 3).

2.5. Gene Expression Profiles

Similar behaviour could be described in the expression of the studied genes. Under copper
alone (T2), all genes, at most time points, were upregulated. When the alga was subjected to copper
and single inhibitor exposure (T3-T5), the general trend was also upregulation at most time points
with an oscillatory pattern of decrease at 24 and 48 h and then increase at 6 d, although there were
certain exceptions to this, as for CAT and DHAR (Figure 5A,C, respectively). Conversely, when two or
more MAPK pathways were blocked, the general trend was downregulation, even though at most
time periods the differences were not significant (Figures 5 and 6). There were several exceptions to
this general trend for example, at 48 h and 6 d CAT, SOD, and TRX were upregulated in treatments
containing copper and p38i with either ERKi (T7) or JNKi (T8) (Figure 5A,B, and Figure 6A, respectively).
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Figure 5. Relative expression of the genes catalase (CAT; A), superoxide dismutase (SOD; B),
dehydroascorbate reductase (DHAR; C) in U. compressa under copper and/or exposure to MAPK
inhibitors. Expression was relative to the levels of transcripts in U. compressa under control conditions.
Treatments consisted in: T1) solely copper exposure as 10 µM of CuSO4 (Cu); T2) copper + 5 µM MAPK
ERK inhibitor PD98059 (Cu + ERKi); T3) copper + 5 µM MAPK JNK inhibitor SP600125 (Cu + JNKi);
T4) copper + MAPK p38 inhibitor SB203580 (Cu + p38i); T5) Cu + ERKi + JNKi; T6) Cu + ERKi + p38i;
T7) Cu + p38i + JNKi; and T8) Cu + ERKi + JNKi + p38i. Samples were analysed after 6 h (A), 24 h (B),
48 h (C), and 6 d (D) treatments. Different letters, in italics and/or with asterisk represent significant
difference at 95% confidence interval (p < 0.05) within each experimental time. Plots are represented as
mean ± SE (n = 3).
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Figure 6. Relative expression of the genes glutathione synthase (GS; A), thioredoxin (TRX; B), and
dehydroascorbate reductase (DHAR; C) in U. compressa under copper and/or exposure to MAPK
inhibitors. Expression was relative to the levels of transcripts in U. compressa under control conditions.
Treatments consisted in: T1) solely copper exposure as 10 µM of CuSO4 (Cu); T2) copper + 5 µM MAPK
ERK inhibitor PD98059 (Cu + ERKi); T3) copper + 5 µM MAPK JNK inhibitor SP600125 (Cu + JNKi);
T4) copper + MAPK p38 inhibitor SB203580 (Cu + p38i); T5) Cu + ERKi + JNKi; T6) Cu + ERKi + p38i;
T7) Cu + p38i + JNKi; and T8) Cu + ERKi + JNKi + p38i. Samples were analysed after 6 h (A), 24 h (B),
48 h (C), and 6 d (D) treatments. Different letters, in italics and/or with asterisk represent significant
difference at 95% confidence interval (p < 0.05) within each experimental time. Plots are represented as
mean ± SE (n = 3).
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2.6. Principal Coordinate Ordination (PCO) Analysis

Considering all whole data presented in this article, evidence of clustering of the measured
parameters in relation to time period and treatment can be discerned from the PCO (Figure 7). In terms
of time, there was an association after the 6th d in the expression of all studied genes, in agreement
with the general pattern of increase in transcripts towards the end of the experiment (Figure 7a).
Another grouping between GSH, GSSG, DHA, and thiobarbituric acid reactive substances (TBARS) is
evident, albeit with no clear trend between time periods, that is attributable to the pattern of decrease
in treatments containing copper with two or more MAPK inhibitors (T6-T9) (Figure 7a). The final
cluster is between ASC and H2O2, which can be ascribed to the oscillatory pattern of increase and
decrease in treatments containing copper and mixed inhibitors (T6-T9) between time periods (Figure 7a).
Furthermore, certain clusters can be detected within different treatments, particularly in those with
copper and two or more MAPK inhibitors (T6-T9), which is in agreement, at least in part, with the
marked general patterns in gene expression, and the parameters of TBARS, glutathione, and ascorbate
(Figure 7b).
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Figure 7. Principal components ordination (PCO) analysis diagrams in relation with time (a): T1: 6 h,
T2: 24 h, T3: 48 h, and T4: 6 d; and treatments (b): t1: Control only with seawater, t2: Solely copper
exposure as 10 µM of CuSO4 (Cu), t3: copper + 5 µM MAPK ERK inhibitor PD98059 (Cu + ERKi),
t4: Copper + 5 µM MAPK JNK inhibitor SP600125 (Cu + JNKi), t5: Copper + MAPK p38 inhibitor
SB203580 (Cu + p38i), t6: Cu + ERKi + JNKi, t7: Cu + ERKi + p38i, t8: Cu + p38i + JNKi, and t9: Cu +

ERKi + JNKi + p38i. Vectors overlay (Sperman rank correlation) indicate the relationship between the
PCO axes and the parameters H2O2, TBARS (thiobarbituric acid reactive substance), GSH (reduced
glutathione), GSSG (oxidised glutathione), ASC (reduced ascorbate), DHA (dehydroascorbate), and
relative gene expression catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase
(DHAR), thioredoxin (TRX), ascorbate peroxidase (APX), and glutathione synthase (GS).

Taking into account the results presented in this article and those of the parallel-complementary
paper Celis-Plá et al. [1], a second PCO was prepared combining the whole dataset from of both articles
(Figure 8). Clear trends are apparent in the grouping between gene expression and photosynthetic
parameters associated with electron transport rates (ETRmax, αETR and EkETR), which have in common
the marked decrease under copper and mixed inhibitor treatments (T6-T9) (Figure 8). The GSH, GSSH,
DHA and TBARS cluster was maintained but with the addition of intracellular copper accumulation [1];
this obey to, not as marked as in gene expression and ETR associated parameters, a decrease in
concentrations upon exposure to copper and mixed MAPK inhibitors (T6-T9) (Figure 8). The grouping
between ASC and H2O2 is also maintained but with the addition of the photosynthetic parameters of
photoinhibition, Fv/Fm and photoprotection (NPQmax); the latter was the most isolated as at 6 d the
trend was a general increase in copper treatments containing combined inhibitors (T6-T9) compared to
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that with solely copper (T2) (Figure 8). Upon time, clustering was mostly observed at d 6, attributed to
the numeric dominance of ETR related parameters, levels of transcripts, GSH, GSSG, DHA and TBARS
(Figure 8a). Grouping was repeated mostly within treatments considering copper and two or more
combined MAPK inhibitors (T6-T9) (Figure 8b).
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Figure 8. Principal Components Ordination (PCO) analysis diagrams considering the data covered in
this article and in the parallel/complementary Celis-Plá et al. [1]. PCOs are related with time (a): T1:
6 h, T2: 24 h, T3: 48 h, and T4: 6 d; and treatments (b): t1: control only with seawater, t2: solely copper
exposure as 10 µM CuSO4 (Cu), t3: copper + 5 µM MAPK ERK inhibitor PD98059 (Cu + ERKi), t4:
copper + 5 µM MAPK JNK inhibitor SP600125 (Cu + JNKi), T5: copper + MAPK p38 inhibitor SB203580
(Cu + p38i), t6: Cu + ERKi + JNKi, t7: Cu + ERKi + p38i, t8: Cu + p38i + JNKi, and t9: Cu + ERKi + JNKi
+ p38i. Vectors overlay (Sperman rank correlation) indicate the relationship between the PCO axes and
the parameters H2O2, TBARS (thiobarbituric acid reactive substance), GSH (reduced glutathione), GSSG
(oxidised glutathione), ASC (reduced ascorbate), DHA (dehydroascorbate), and relative gene expression
catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), thioredoxin (TRX),
ascorbate peroxidase (APX), and glutathione synthase (GS). Furthermore, the physiological variables
intracellular copper accumulation (copper photoinhibition (Fv/Fm) productivity (ETRmax), efficiency
(αETR) and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching
(NPQmax) [1].

3. Discussion

In this investigation, we exposed the green macroalga Ulva compressa to chronic copper excess
(10 µM), and the relevance of the three main MAPK pathways, those ending in ERK, JNK, and p38, were
studied upon their role within detoxification mechanisms associated with metal chelation, but mostly,
with antioxidant responses. We observed that up to 24 h, levels of ROS H2O2 increased markedly
compared to the controls under the treatment with only copper, and that in treatments blocking p38
under single or combined exposure (T5, T7-T9) with other inhibitors concentrations were the same or
even higher than under copper alone (T2). That pattern at 48 h was inversed, and by the sixth day
of the experiment, treatments with copper and solely p38i (T5) and combined inhibitors, excepting
ERKi + p38i (T7), displayed even lower levels of H2O2 than under copper-only treatments and controls.
Interestingly, almost the same pattern was observed for lipid peroxidation. For antioxidants, most
treatments with copper displayed higher levels of GSSG and DHA than their reduced forms GSH and
ASC, respectively, although this was more evident for ascorbate. Towards the end of the experiment,
while the greatest concentrations of total glutathione were observed with copper alone (T2), the lowest
levels were measured under copper and mixed MAPK inhibitor treatments (T6-T9). In contrast, the
ascorbate pool was highest in the treatment with copper and all three MAPK pathways blocked,
followed by copper alone (mostly due to DHA). Clear general patterns could be observed among the
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expression of the genes CAT, SOD, DHAR, TRX, APX, and GS. Upregulation, sometimes higher than
under copper alone, was detected in treatments with copper and ERKi (T3), JNKi (T4), or p38i (T5), and
mostly downregulation when the alga was subjected to copper and more than one inhibited MAPK
pathway (T6-T9).

It is well recognised that chronic copper excess can induce oxidative stress and, in severe cases,
cause damage in photoautotrophs [2,4]. Although chronic copper excess can produce oxidative stress
in U. compressa under field conditions [9,22], this has also been described for other green macroalgae
species subject to laboratory-controlled experiments. For example, it has been detected that Ulva fasciata
exposed to copper concentrations of over 20 µM for 4 d displayed increased lipid peroxidation [15].
Notwithstanding the latter result, in this investigation no differences in lipid peroxidation were detected
between controls and exposure to copper alone over the experimental period. While at most time
periods levels of H2O2 were higher under copper alone compared to controls, the data suggest that
these concentrations of H2O2 by themselves, or in combination with other ROS, were insufficient to
cause oxidative damage, and ROS concentrations remained within homeostatic-tolerable levels. A
different pattern was observed when blocking certain MAPK pathways, which started at 48 h but
became more marked by 6 d. Inhibiting p38 (T5), ERK + JNK (T6), JNK + p38 (T8), and ERK + JNK
+ p38 (T9) under chronic copper excess, coincidentally decreased both H2O2 and lipid peroxidation
relative to controls (T1) and under copper-only treatment (T2). The information demonstrates that
under short-term copper exposure (especially at 6 h), the inhibition of more than one MAPK pathway
causes increased oxidative stress and damage. However, over longer periods of copper exposure
(mainly at 6 d), the patterns observed during short-term exposure become generally inverted, with
resilient (adaptation response) lower levels of oxidative stress and damage in certain single and
combined MAPK inhibitor treatments.

To counteract oxidative stress, the main mechanism recognised in photoautotrophs is associated
with the glutathione-ascorbate, or Foyer-Halliwell-Asada, pathway [4,23]. As in previous
investigations [13], U. compressa displayed a higher total glutathione pool under chronic copper
excess in relation to controls, although at late exposures (6 d). At 48 h and beyond, patterns of higher
GSSG upon GSH were observed in copper-exposed macroalgae, which is coincident with an induction
of ROS over-production and GSH oxidation, indeed, a decrease in GSH/GSSG ratios have been recorded
in several photoautotrophs under chronic copper excess and is fairly recognised as a good indicator
of an oxidative stress condition [2,4,5,23,24]. In the presence of copper and MAPK inhibitors, most
consistent trends were observed at 6 d. In most treatments with copper and one or more MAPK blocked
pathways, with the exceptions of ERKi + p38i (T7) and JNKi + p38i (T8), GSH levels were always lower
than GSSG. In spite of the latter, the total glutathione pool was always lower in treatments containing
MAPK inhibitors (T3–T9) compared to that with solely copper (T2), and especially in those inhibiting
more than one MAPK pathway (T6–T9). Similar tendencies were detected for ascorbate, particularly
after 6 d. In most of the copper exposure treatments, ASC levels were higher than DHA, with the
exception of treatments blocking ERK (T3) or JNK (T4). Total ascorbate was generally lower under
copper and suppression of MAPK pathways, drawing certain exceptions (see results). Chronic copper
excess also induced upregulation of CAT, SOD, DHAR, TRX, APX, and GS at most time periods and
generally increasing upon exposure time. A similar behaviour in the expression of these genes was
detected when chronic copper excess was applied and ERK (T3), JNK (T4), or p38 (T5) were blocked,
with a recovery process throughout the experimental period (more details in results). In contrast, when
more than one MAPK pathway was inhibited (T6-T9), at most of the experimental times the studied
genes displayed downregulation. An interesting feature of our investigation lies in the fact that both
GS expression and GSH levels in U. compressa displayed similar behaviour among treatments and time.
Previous investigations under high copper in U. compressa have shown that the increased induction
of GS and GSH is accompanied by a parallel increment in the synthesis and polymerisation of GSH
oligomers PCs [13]. Thus, this information suggests that MAPKs may also play an important role
in the production of metal-chelating thiols, not only GSH but also PCs. Although records about the
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regulation of the glutathione-ascorbate cycle through MAPK signalling are scarce in eukaryotes, and
especially in photoautotrophs, Karuppanapandian and Kim [25] observed that the plant Brassica juncea
under 100 µM of cobalt, activated 44 kDa and 46 kDa MAPKs, which was accompanied by an increases
in GSH, GSSG, ASC, and DHA. Furthermore, Shan and Sun [26] by blocking ERK (with PD98059 and
U0126), observed that jasmonic acid-mediated production of nitric oxide activated ERK which, in turn,
induced increased activities of APX, GR, DHAR, MDHAR, γ-GCL, and L-GLDH, which also enhanced
syntheses of ASC and GSH. Moreover, Qi et al. [27] detected that by inhibiting ERK (PD98059) in
the plant Cucumis sativus under nitrate excess induced decreased activities of SOD, CAT, APX, and
peroxidases (POD), being responsible, at least in part, for the observed greater lipid peroxidation and
H2O2 content. To the extent of our knowledge, there are no published studies describing the role
of the three main MAPK pathways, ERK, JNK, and p38 alone or complemented in the antioxidant
metabolism of photoautotrophs under environmental stress. In our investigation, we demonstrated
that the whole MAPK pathway has an important role in the antioxidant metabolism of macroalgae.
The data shows that under single and combined inhibitors of the three main MAPK pathways, there is
a progressive affection of glutathione production. Although all three MAPK pathways show to have
an influence in GSH production, JNK and p38 appear to be more relevant than ERK. Furthermore,
when more than one MAPK pathway is affected, total glutathione is almost impaired. Similar effects
can be observed for ascorbate, however, this was observed at late copper exposure, and the main
pathways regarding its production were related to the ERK, JNK, and JNK + p38 MAPK pathways.
In relation to the expression of genes involved in antioxidant metabolism and the synthesis of metal
chelators, when one of the three pathways is affected independently, in time it appears to enhance
the upregulation mediated by chronic copper excess. Crosstalk is a common phenomenon among
signalling mechanisms and has been observed within MAPK pathways as well as with other signalling
processes as those related to phytohormones, calcium, NO, ROS, and among others [28–31]. In this
context, it is possible that to counteract the inability of certain MAPK pathways, others MAPKs
and/or more cellular signalling mechanisms could be triggered and elicit an intensified transcriptomic
response in U. compressa. Although no similar investigations have been conducted in photoautotrophs,
ERK inhibition in human melanoma cells have demonstrated to be counteracted through the activation
of alternative signalling pathways, such as those mediated by phosphoinositide 3-kinases (PI3K)
and Protein kinase B (Akt) [32–36]. Furthermore, inhibition of ERK induces an upregulation of the
transcription factor Forkhead box D3 (FOXD3), involved in the development of embryo stem cells,
mediated by the activation of PI3K and receptor tyrosine-protein kinase (ErbB3) [37,38]. Considering
that in our investigation there was mostly gene downregulation when more than one MAPK pathway
was blocked under chronic copper excess, the information suggests that the gene over-expression in
U. compressa is promoted mainly by a crosstalk within the whole MAPK signalling pathway. On the
other hand, it could be hypothesised that gene repression under copper and combined MAPK inhibitors
is caused by the low levels of intracellular copper detected in these treatments in Celis-Plá et al. [1].
Indeed, it has been observed that the expression of the enzymes SOD, CAT, and APX had a positive
correlation with levels of intracellular copper in the brown macroalga Ectocarpus siliculosus [5,39].
However, this explanation appears unlikely considering that the decline of antioxidant defences in
treatments with copper and combined MAPK inhibitors most of the time reached levels even below
control conditions. Thus, MAPK signalling demonstrates to be an important mechanism for the
activation of copper-detoxification defences in U. compressa.

Multivariate analyses confirmed that the data contained in this article was importantly influenced
by time, but mostly by treatments. Furthermore, considering the results of the complementary/parallel
Celis-Plá et al. [1], the important agreement between physiological, biochemical, and transcriptomic
responses in MAPK-intervened U. compressa can be highlighted. In this regard, general tendencies
demonstrate that the inactivation of single MAPK pathways ending in ERK, JNK, and p38 subject to high
copper can be progressively counteracted by complementary biological strategies, which appear to be
related to crosstalk within the MAPKs and/or with other signalling pathways. Despite the latter, when
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more than one of these MAPK pathways is disabled under chronic copper excess, biological impairment
start to manifest, which is traduced in diminished photosynthetic activity [1], ROS-overproduction,
increased oxidative damage, and affected production and regulation of antioxidant mechanisms.
These investigations provide the first complete evidence on the importance of the MAPK pathway to
counteract environmental stress in photoautotrophs, and further confirm that copper-detoxification
mechanisms are importantly founded on transcriptionally regulated metabolic and physiological
processes in green macroalgae. Certainly, additional research on the whole transcriptome of U. compressa
subject to modified MAPK activation/inactivation will ascertain on open questions regarding green
macroalgae biological strategies to withstand stress, in this case, induced by chronic copper excess.

4. Methodology

4.1. Samples Collection and Culture Conditions

Ulva compressa (Chlorophyta, Ulvaceae) was sampled from Cachagua beach, Valparaíso Region,
Chile (32◦34’59 S; 71◦26’16 W). Algae material was washed with 2 µm of filtered seawater and stored
in plastic containers with seawater under constant aeration at 16 ◦C. The photoperiod cycle was 12:12
(day/night) with daylight conditions of 120 µmol m2

·s−1 of photosynthetic active radiation (PAR).
Algae were acclimated for 48 h before experiments.

4.2. Copper and MAPK Inhibitors Treatments

Following the acclimation period, 5 g of fresh weight (FW) U. compressa were separated in different
plastic containers with 200 mL of filtered (2 µm) and autoclaved seawater. Nine different treatments,
with three replicates each, were conducted as: T1) control with just seawater; T2) only copper exposure
as 10 µM of CuSO4 (Sigma-Aldrich, St. Louis, MO, USA) (Cu); T3) copper + 5 µM MAPK ERK inhibitor
PD98059 (Tocris Bioscience, St. Louis, MO, USA) (Cu + ERKi); T4) copper + 5 µM MAPK JNK inhibitor
SP600125 (Tocris Bioscience, St. Louis, MO, USA) (Cu + JNKi); T5) copper + MAPK p38 inhibitor
SB203580 (Tocris Bioscience) (Cu + p38i); T6) Cu + ERKi + JNKi; T7) Cu + ERKi + p38i; T8) Cu + p38i +

JNKi; and T9) Cu + ERKi + JNKi + p38i. All treatments were performed under the same environmental
conditions mentioned in Section 2.1. Negative controls to assess the effectiveness of the ERK, JNK, and
p38 inhibitors were conducted by measuring the expression of SOD and CAT (protocols in Sections 2.5
and 2.6) in the absence of copper (Figure S1) and these were complemented by negative controls
contained as Supplementary Materials in Celis-Pla et al. [1]. Even though the inhibitors used were
first developed to target human MAPKs, this and prior investigations demonstrate their successful
application to other eukaryote models given the conserved nature of MAPKs (further details) in [1].

During the experiments, sub-samples were taken from each treatment at 6 h, 24 h, 48 h, and 6 d,
immediately frozen in liquid nitrogen and stored at −80 ◦C for biochemical and molecular analyses.

4.3. Hydrogen Peroxide (H2O2) Quantification

Concentrations of H2O2 were quantified using a modification of the colorimetric method by
which H2O2 is induced by its interaction with potassium iodide (KI), as described by Junglee et al. [40].
Briefly, 100 mg of liquid nitrogen-ground sample was lysed and acidified with 100 µL of 0.1%TCA,
100 µL of 10 mM potassium phosphate buffer pH 7, 100 µL of FARB lysis buffer (Favorgen, Biotech
Corp, Ping-Tung, Taiwan), and 500 µL of 1M KI. Subsequently, samples were vortexed for 10 min
at room temperature in darkness and centrifuged at 12,000× g for 15 min at 4◦C. Then, 300 µL of
recovered supernatant were placed in a 96-well plate and absorbance was measure at 350 nm in a
microplate reader SPECTROStar Nano (BMG LABTECH, Offenburg, Germany). A standard curve
using commercial H2O2 (Merck, Darmstadt, Germany) was constructed for assay calibration. Data
values were normalised to protein concentrations, as determined by the Bradford method [41].
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4.4. Determination of Lipid Peroxidation

As a proxy for lipid peroxidation, the levels of thiobarbituric acid reactive substance (TBARS)
were measured according to Sáez et al. [24]. A total of 100 mg of grounded tissue were lysed with
300 µL of 0.1 % TCA, adding four glass beads (2 mm), and vortexed for 5 min at room temperature.
After vortexing, samples were centrifuged at 17,800 g for 15 min at 4◦C, and 200 µL of supernatant
were mixed with 200 µL of 0.5 % TBA, and incubated at 95 ◦C for 45 min. Then, samples were cooled
to room temperature and the absorbance of 200 µL of the mixture was measured at 532 nm in a
microplate reader. Commercial malondialdehyde (MDA; Sigma-Aldrich, St. Louis, MO, USA) was
used to construct a standard curve. Data were normalised to protein concentration, as determined by
the Bradford method [41].

4.5. Oxidised and Reduced Glutathione

Reduced (GSH) and oxidised (GSSG) glutathione levels were determined using the enzymatic
recycling method [42] as described for brown macroalgae in Sáez et al. [24], but optimised for
U. compressa. Briefly, for total glutathione (GSH + GSSG), 100 mg of liquid nitrogen-grinded sample
was lysed with 500 µL of 0.1M HCl and vortexed for 10 min at room temperature. Supernatant was
recovered by centrifugation at 7400× g for 15 min at 4 ◦C, and neutralised with 500 µL of 500 mM
sodium phosphate buffer pH 7.5. Then, 50 µL was mixed with 250 µL of Buffer GR containing: 100 mM
sodium phosphate buffer pH 7.5, 0.1 mM EDTA, 0.3 mM NADPH, 0.6 U glutathione reductase, and
0.2 mM 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB or Ellman’s reagent, Sigma-Aldrich, St. Louis,
MO, USA). Immediately after the start of the reaction, absorbance at 412 nm was recorded in the
microplate reader every 20 s for a total of 5 min. For GSSG quantification, 50 µL of the neutralised
supernatant was pre-treated with 1 µL of 1M 4-vinylpiridine for 45 min at room temperature as
a GSH masking agent, and then mixed with 250 µL of GR buffer to complete the reaction. GSH
content was obtained by subtracting GSSG content from total glutathione. Standard curves using
commercial GSH (Sigma-Aldrich) were constructed for assay calibration. Data were normalised to
protein concentrations, determined by the Bradford method [41].

4.6. Oxidised and Reduced Ascorbate

Reduced ascorbate (ASC) and dehydroascorbate (DHA) were measured according to the ferric
reducing/antioxidant power assay [24,43], with modifications. Briefly, 100 mg of grounded sample
was lysed with 600 µL of 0.1 M HCl, vortexed for 10 min at room temperature, and centrifuged
at 17,800 g for 15 min at 4 ◦C. Then, for ASC quantification, 10 µL of supernatant was mixed with
290 µL of FRAP solution containing: Sodium acetate buffer 300 mM pH 3.6, 20 mM FeCl3, and 10 mM
2,4,6-tripyridyl-s-triazine (TPTZ). Absorbance at 593 nm was immediately measured in the microplate
reader. For total ascorbate (ASC + DHA) determination, 250 µL of the obtained supernatant was
incubated with 2.5 µL of 100 mM dithiothreitol (DTT) for 1 h at room temperature. Then, 2.5 µL of
5% was N-ethylmaleimide applied to stop the reaction and 10 µL were used for the reaction with
290 µL of FRAP solution following the protocol described above. A standard curve using commercial
L-ascorbate (Sigma-Aldrich) was constructed for assay calibration. Data were normalised to protein
concentrations, determined by the Bradford method [41].

4.7. RNA Extraction

All samples were homogenised using mortars with liquid nitrogen. Then, RNA extraction was
performed using 100 mg of ground tissue with the FavorPrep Plant Total RNA Purification Mini
Kit (Favorgen, Biotech Corp, Ping-Tung, Taiwan), according the manufacturer’s instructions. RNA
purity was determined through electrophoresis gel and spectrophometrically by 260/280 ratio, using a
nanoplate within the microplate reader. RNA quantification was carried out by fluorescence using the
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Quant-iT RiboGreen RNA Assay Kit (Invitrogen, Waltham, MA, USA) in a QFX Fluorometer (DeNovix,
Wilmington, DE, USA).

4.8. cDNA Synthesis and qPCR

Synthesis of cDNA was carried out with 500 ng of total RNA using the ProtoScript First Stand
cDNA Synthesis Kit (New England BioLabs, Ipswich, MA, USA), according to the manufacturer’s
guidelines. Then, for the qPCR reaction, 50 ng of cDNA (2 µL) were used together with 0.25 µM of
each primer and the Brilliant II SYBR Green QPCR Master Mix (Agilent Technologies, Santa Clara,
CA, USA) 1X (final volume of 20 µL). The qPCR program was: Initial denaturation at 95 ◦C for 5 min,
40 cycles of: 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 40 s, and final extension at 72◦C for 10 min.
All reactions were performed in a MIC qPCR Magnetic Induction Cycler (Bio Molecular Systems,
Queensland, Australia). Primers were designed specifically for each gene using the GenScript online
tool primer designer (https://www.genscript.com/tools/pcr-primers-designer) (Table 1), based on public
transcriptome sequences from Rodríguez et al. [44]. The analysed transcripts corresponded to genes
coding CAT (catalase), SOD (superoxide dismutase), TRX (thioredoxin), APX (ascorbate peroxidase),
DHAR (dehydroascorbate reductase), and GS (glutathione synthase). Relative expression analyses
were based in the 2-∆∆Ct method using 18S rRNA as housekeeping gene [45].

Table 1. Genes and primers for qPCR analyses.

Gene Encoded Product Primer ID Sequence 5′-3′ Start
Position

Amplicon Size
(bp)

CAT Catalase
F1_CAT_Ulva AGCGGAACAAGTCGGCGGCAA 717

208R1_CAT_Ulva CAGCACCATGCGGCCAACGG 905

SOD Superoxide
dismutase

F1_SOD2_Ulva CCCTGCACCGCCGTCTGTCG 22
255R1_SOD2_Ulva CGCGCTGCTGATCTTCGGAGCA 255

TRX Thioredoxin
F1_Trx2_Ulva GCTGAGTGGCTCCTCTTCGCTGCAT 3

224R1_Trx2_Ulva CGGCTGTGCTCACTGGTGCGT 206

APX
Ascorbate
peroxidase

F1c_Apx1_Ulva AGGACGCGTGGCCCAAGTGC 131
297R1c_Apx1_Ulva GTCTCCGCCGGATGGCCAAGG 408

DHAR Dehydroascorbate
reductase

F1_Dhar_Ulva CGCGGACTCCGGCGACATCT 309
327R1_Dhar_Ulva AGCGCTGCGAGCTCCTCTGG 616

GS
Glutathione
synthetase

F1_GS_Ulva TGGCGGCGAAGCTGCAGGAA 1322
245R1_GS_Ulva GCCTGCCGCAACACCTCCCT 1547

18S 18S rRNA subunit
18S-F-1183 AAT TTG ACT CAA CAC GGG 1183

44818S-R-1631 TAC AAA GGG CAG GGA CG 1631

4.9. Statistical Analyses

Interactive effects in all parameters content were analysed using ANOVA. This test was performed
for U. compressa including treatment (one-way) as fixed factor for the whole dataset (mean ± SE, n = 3).
Each time period (6 h, 24 h, 48 h, and 6 d) included 9 different factors: T1, T2, T3, T4, T5, T6, T7, T8,
and T9, assessed at a 95% confidence interval. Homogeneity of variance was checked with Cochran.
Student Newman Keuls tests (SNK) were conducted after observing significant interactions in the
ANOVA. All data complied with the requirements of normality and homogeneity of variance. Analyses
were conducted with SPSS v.21 (IBM, USA). A PCO analysis was performed to detect patterns between
the parameters on the basis of an Euclidean distance using PERMANOVA+ for PRIMER6 package [46].
PCO analyses were conducted for results in vivo of H2O2, TBARS, total glutathione ascorbate, as well
as for the expression of the assessed genes. Finally, a PCO was also carried out considering the data
contained in this investigation plus the results in the parallel article Celis-Plá et al. [1].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
4546/s1.
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Abbreviations

MAPK mitogen activated protein kinases
ERK Extracellular Signal Regulated Kinases
JNK c-Jun N-terminal kinases
p38 cytokinin specific binding protein
ROS reactive oxygen species
GSH reduced glutathione
GSSG oxidised glutathione
ASC reduced ascorbate
DHA dehydroascorbate (form of oxidised ascorbate)
CAT catalase
SOD superoxide dismutase
TRX thioredoxin
APX ascorbate peroxidase
DAHR dehydroascorbate reductase
GS glutathione synthase
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