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Abstract

The ecology, distribution and spawning behaviour of the com-

mercially important common cuttlefish (Sepia officinalis) in the

inshore waters of the English Channel

Isobel Bloor

Over the last 50 years there has been a rapid increase in global landings of cephalopods (octo-

pus, squid and cuttlefish). In European waters, cuttlefish are among the most important com-

mercial cephalopod resources and within the North-East Atlantic, the English Channel supports

the largest cuttlefish fishery, with the common cuttlefish, Sepia officinalis (Linnaeus, 1758),

dominating landings. S. officinalis has a short (2 year) life cycle in the English Channel that

is punctuated by seasonal migrations inshore and offshore. Using a combination of different

métiers including beam trawling, otter trawling and coastal trapping, this shared fisheries re-

source is targeted at nearly every phase of the life cycle. Despite this continuing increase there

remain only minimal management measures in place, with no quotas, no total allowable catches,

no closed areas, no minimal landing size and no routine assessment of stocks. In order to pro-

vide sustainable fisheries management advice for S. officinalis populations it is essential that a

thorough understanding of the ecology and life history of this species, in particular the factors

affecting spawning and recruitment variability, is attained.

In this thesis, I examine critical gaps in our understanding of the distribution, movements, habi-

tat use and behaviours of spawning and sub-adult S. officinalis. This research provides baseline

data for this species within the inshore waters of the English Channel and uses a combination

of novel field-based electronic tracking techniques, in situ subtidal observations of spawning

patterns within natural environments and presence-only species distribution modelling. A max-

imum entropy (MaxEnt) modelling approach was used to predict the distribution of benthic egg

clusters using presence-only data. The model showed very good performance in terms of pre-

dictive power and accuracy (test area under the receiver operating characteristics curve [AUC]

= 0.909) and among the explanatory variables used to build the model, depth (gain = 1.17),

chlorophyll-a concentration (used here as a proxy for turbidity; gain = 1.06) and distance from

coastline (gain = 1.02) were shown to be the greatest determining factors for the distribution of

S. officinalis spawning. As part of the model output, maps (logistic and binary) of the predicted

spawning distribution of S. officinalis within the English Channel were produced.

Subtidal observation were undertaken at spawning grounds on both the North and South coast
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of the English Channel to investigate spawning habitat and structure use. A total of 15 types

of natural spawning structures were identified. The range of spawning structures used varied

among sites with Zostera marina identified as the dominant spawning structure at two of the

UK sites (Torbay and Poole Bay), potentially indicating a ‘preference’ for this structure within

localities. Fractal dimension analysis of the seagrass beds at Torbay revealed that the spatial

dynamics of seagrass beds within this site varied significantly between 2011 and 2012 (Mann-

Whitney U: Z = 4.92, P < 0.0001) as a result of both anthropogenic and natural disturbance.

Interannual changes in the spatial dynamics of these beds could affect the annual pattern and

intensity of spawning at a site. The use of structures with small diameters was found to occur,

with cuttlefish adapting the device to their requirements by utilising multiple leaves or thalli in

order to achieve a suitable diameter for egg attachment, this was evident in their use of both

Chorda filum and Z. marina.

This research also provided the first data on the fine-scale movements and behaviours of adult

and sub-adult individuals, tracked within their natural environments, using electronic tagging

methodologies. That expected patterns of short-term spawning site fidelity at a local level were

observed in only two individuals, whilst larger scale movements (up to 35 km) along the coast-

line were observed in three individuals, indicated that a range of behaviours and movement

patterns could occur among spawning adults. Similarly varied patterns of site fidelity were also

observed in tagged sub-adults, tracked over an extended period (up to 73 days), using a static

acoustic array. These results highlight the complex range of patterns and plasticity in behaviour

that exist within natural populations.

In summary, a series of different approaches was used within this thesis in an effort to improve

our understanding of the fine-scale movement, behaviours and habitat use of S. officinalis (in

both spawning adults and non spawning sub-adults), as well as their potential spawning distribu-

tion within the inshore waters of the English Channel. Observing the movements and behaviours

of small marine animals like S. officinalis in their natural environments has traditionally been

difficult. Recent developments in technologies and techniques however, including those used

within this thesis (e.g. electronic tagging), have highlighted the potential capacity of novel tools

to monitor the in situ movements and behaviour of cuttlefish. By providing important insights

into the ecology of this species these new tools can aid conservation and management advice for

this important commercial fishery species, both within the English Channel and further afield.
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Chapter 1

General introduction and exploratory case study

of the English Channel cuttlefish fishery

1.1 Introduction

As a general introduction to this thesis a short description is provided on the commercial cut-

tlefish fishery within the English Channel. An exploratory case study of this fishery is also

presented using results collected during three years of research (2009-2012) highlighting data

from Brixham (Devon) which is one of the most important ports for cuttlefish landings in the

UK. This Chapter finishes with a general overview of the aims and objectives of this thesis.

1.1.1 English Channel cuttlefish fishery

Global landings of cephalopods (cuttlefish, squid and octopus) have increased dramatically over

the last 50 years. Rising from approximately 0.5 million tonnes (t) in 1958 (FAO 1964) to over

4 million t in 2008 (FAO 2010), cephalopod landings now constitute almost 5% of the total

world’s fisheries production (FAO 2010). At a time when landings of many traditional fin-

fish stocks are continuing to experience a global decline as a result of over-exploitation; it is

expected that fishing pressure on cephalopod stocks will continue rising as the fishing industry

switch their focus onto these non-quota species. However, long term trends may indicate that

global cephalopod landings have now begun to plateau or even show a slight decline and a

better understanding of these commercial cephalopod species is required in order to sustainably

manage these stocks (Figure 1.1).
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Figure 1.1: Global production landings (t) of cuttlefish, squid and octopus from 1950-2010
(FAO 2012)

In European waters, cuttlefish are among the most important commercial cephalopod resource

(Perez-Losada et al. 1999; Denis and Robin 2001; Pierce et al. 2010) and the highest yielding

cephalopod group harvested in the north-east Atlantic (Royer et al. 2006).

1.1.1.1 Species

Three species of cuttlefish occur in the English Channel viz., Sepia officinalis (Linnaeus, 1758),

Sepia elegans (Blainville, 1827) and Sepia orbignyana (Férussac, 1826) (Figure 1.2) (Reid and

Jereb 2005; Reid et al. 2005). Of these, S. officinalis is considered the only species to be abun-

dant (Dunn 1999). These species can be distinguished by differences in external colouration,

morphology, size or the presence and shape of the cuttlebone (Table 1.1).
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1.1. INTRODUCTION

incomes. Using a combination of different métiers including beam trawling, otter trawling and

coastal trapping (e.g. Denis and Robin 2001; Royer et al. 2006; Pierce et al. 2010). On both sides

of the Channel, inshore landings are highest between March and June (ICES 2003) coinciding

with the peak in breeding season. Offshore landings meanwhile are concentrated in the centre of

the Channel with a peak between November and March (ICES 2003), coinciding with the known

migration pattern of this population (Boucaud-Camou and Boismery 1991). Whilst originally

considered as a pest species in the UK due to its low value and copious ink production (Dunn

1999), landings of cuttlefish by UK vessels have seen a period of rapid increase over the last

three decades, rising from approximately 26 t (£12,000) in 1980 (Dunn 1999) to almost 4,000 t

(approximately £5,500,000) in 2007 (MMO 2010).

In contrast to the U.K., the French fishery is longer established and better developed, both in

terms of volume and value, with landings remaining fairly consistent at around 10,000 t a year

between 2002 and 2007 (ICES 2010). An analysis of the 1996 landings indicate that the largest

portion of cuttlefish landings was taken by trawlers (Denis et al. 2002). Furthermore, a spatial

analysis of catch indicate that the French fleet target cuttlefish at nearly all stages of their life-

cycle, exploiting both their offshore wintering areas and inshore spawning and nursery grounds

(Denis et al. 2002). Whilst offshore landings were almost exclusively derived from trawling,

in coastal areas a variety of métiers co-exist, with coastal traps consistently contributing only a

minor proportion of these landings (Denis et al. 2002).

1.1.1.3 Landings

As reported by (Dunn 1999), the shift from by-catch to directed fishery was the result of several

key factors including an increase in the market value, which rose from only £0.45 per kilogram

(kg) in 1980 (Dunn 1999), to £1.45 per kg in 1996 (Dunn 1999), £1.97 per kg in 2007 (MMO

2010) and up to £3.00 per kg in 2011 (Pers comm R. Smith (Brixham Trawler Agents)). Cur-

rently, landings of cuttlefish within the English Channel are not separated by species and in the

UK are only sorted into two size classes. Whilst S. officinalis is known to be the dominant con-

stituent of the catch, the exact composition of species within the landings remains unknown. In

addition, as a non-quota species, there has been no mandatory reportings of landings and so the
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available statistics may under represent the true landing values for this fishery (ICES 2003). On

the UK coast of the English Channel inshore cuttlefish landings are known to be greatest at the

ports of Brixham, Shoreham, Portsmouth, Hastings and Eastbourne (ICES 2003). Data for UK

cuttlefish landings (1992 - 2002) presented in the ICES 2002 report from the Working Group on

Cephalopod Fisheries and Life History (WGCEPH) (ICES 2003) showed that annual landings

by offshore trawlers (beam and otter) comprised 90 % of total UK landings for cuttlefish within

the English Channel, whilst for the smaller inshore trap fishery landings comprised only 4.3%

(ICES 2003).

1.1.1.4 Management measures

To date no specific management measures have been introduced in the UK to maintain and man-

age the English Channel cuttlefish stock (e.g. no total allowable catch, no minimum landing size

and no fisheries closures), despite the significant increase in exploitation levels (e.g. Dunn 1999;

Challier et al. 2005a). The short-lived, fast-growing life cycle of S. officinalis means that within

the English Channel each year’s stock is composed entirely of only two overlapping genera-

tions (e.g. Royer et al. 2006), with half the standing crop of biomass replaced on an annual

basis (Boyle and Boletzky 1996). This lack of ‘demographic buffer’ leaves these populations

vulnerable to the effects of unsuccessful annual recruitment (Moltschaniwskyj et al. 2003). As

a result large and unpredictable, interannual fluctuations in the stock (Koueta et al. 2000) and

landings (Piatkowski et al. 2001) are known to occur and the lack of regular stock assessment

data for this species severely limits the ability of fisheries managers to assess the resulting risk

of overfishing or stock collapse for this fishery.

The use of traps has been encouraged as they specifically target spawning cuttlefish, which

are at the end of their life cycle (e.g. Dunn 1999). A potential issue surrounding their use is

that their efficiency in attracting spawning adults is considered, at least in part, due to the use

of these devices by female cuttlefish as spawning structures (Figure 1.3) and raises concerns

regarding the potential long-term sustainability of the inshore trap fishery. The issue arises

when the eggs laid on traps are subsequently lost from the system, which occurs when the traps

are removed at the end of the spawning season and cleaned off using pressure hoses to remove
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any eggs or biofouling, before being placed in storage over the autumn and winter (e.g. Blanc

and Daguzan 1998). The potential impact of egg mortality from cuttlefish traps has yet to be

quantified within the English Channel, but is a potential area of concern for fishermen, scientists

and fisheries managers.

Figure 1.3: Eggs laid on cuttlefish traps (Eastbourne 2011)

1.2 Aims and objectives

The overall aim of this chapter was to assess and update our current understanding of the English

Channel fishery S. officinalis and the issues that it currently faces. This chapter will focus on

the smaller inshore fishery due to the interesting interactions with spawning cuttlefish in this

inshore area. The objectives of this Chapter were to:

• Summarise known information on the English Channel cuttlefish fishery

• Using Brixham port as a case study discuss up to date data on landings

• Present new data on the inshore fishery and landings collected as part of this thesis, in-

cluding:

Monthly market sampling scheme (2010-2012)

Samplings of landings from cuttlefish traps

6
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• Trial three new methodologies in order to find a suitable technique for rapid and accurate

assessment of eggs counts that can be used either by scientific observers on board fishing

vessels or by trained divers during subtidal surveys.

1.3 Methods

1.3.1 Landings

Data on cuttlefish landings were obtained for the port of Brixham from 1989 to 2011 from

Brixham Trawler Agents (BTA) (Pers comm R. Smith). The data includes both quantity (tonnes

(t)) and value (£) per kg. This data is compiled from actual sales figures at Brixham market and

is not divided by gear or boat size.

1.3.2 Market sampling

As part of this research, monthly market sampling was undertaken between January 2011 and

July 2012 with the assistance of Devon and Severn Inshore Fisheries Conservation Authority

(DSIFCA). For each monthly survey a total of 200 individuals (when available) were weighed

and measured by hand. Length measurements were recorded using dorsal mantle length and

reported in centimetres (cm), whilst weight measurements were recorded using electronic scales

and reported in grams (g). In some cases the sex of individuals was also recorded, but this

information was difficult to collect year round due to the variation in visible sexual maturity

stages and condition. In general cuttlefish collected from inshore traps were free of ink and

sand and in better visible condition, this made it easier for the sex to be identified. In these

cases, sex was determined by examining the interior of the mantle cavity to check for visual

signs of spermatophores (males) or nidamental glands and oocytes (female), identification was

therefore only possible for individuals that had reached a visible macroscopic state of sexual

maturity.

1.3.3 Sampling of landings from cuttlefish traps

To examine the landings of the trap fishery in more detail, 400 cuttlefish, caught by trap fisher-

men, were sampled between 2010 and 2011, with the dorsal mantle length (cm) and weight (g)

recorded for each individual.
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1.3.4 Eggs laid on cuttlefish traps

During the course of this research three methodologies were trialled for counting eggs on a

small number of traps:

• At Babbacombe Bay in July 2010 as part of an MSc project that was undertaken to moni-

tor spawning on artificial structures, the eggs from three traps were counted in July (Brig-

den 2010). An assessment of the numbers of eggs laid on traps was obtained in situ by

two pairs of divers, the results from each pair were then cross-validated and compared

with reference to photographic and video footage (Brigden 2010).

• At Torbay in July 2011 at the end of the cuttlefish trap season, the eggs from three cut-

tlefish traps were removed by hand and individually counted as part of a study looking at

the feasibility of removing eggs from traps to redeploy into purpose built egg receptors

within sheltered areas.

• At Eastbourne in June 2011, eggs were recorded from a further three traps. In this in-

stance, eggs quantities were estimated from a series of photographs and video footage

obtained on board a commercial inshore cuttlefish trap fishing vessel during routine haul-

ing of pots. The data from these images was subsequently analysed on return to the

laboratory.

1.3.5 Potential mitigations for eggs laid on cuttlefish traps

The issue of egg mortality on cuttlefish traps has been cited in the literature as a potential area

of concern (e.g. Bouchaud 1991b; Blanc and Daguzan 1998). These issues were discussed

directly with the fishermen during a series of presentations and discussions that were organised

between March and June 2012 at three separate locations (Torbay, Selsey and Hastings) where

active inshore cuttlefish trap fisheries operate. A series of practical mitigation measures were

investigated and discussed to gauge the feasibility of these options. As a non-quota species

with no direct management in place, there is no legal requirement for fishermen to undertake

any such mitigation actions and so self-regulation of such techniques would be required in order

to develop a best working practice for the minimisation of egg mortality from cuttlefish traps.
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In addition, a small project was undertaken with the help of DSIFCA to test the feasibility of one

mitigation techniques. In 2011 a method was trialled to remove the eggs from cuttlefish traps

by hand and replace them in a pre-made egg receptor that would subsequently be redeployed

into a sheltered area of Torbay to allow the eggs to develop (Figure 1.4). For this purpose the

eggs from three traps were removed, counted and placed into the receptor. The device was

then redeployed at a sheltered area of Hope’s Cove (Torbay, Devon). Due to limited resource

availability the egg receptor was monitored in situ by a dive pair on one occasion, to check

that the device was in place and that significant bio-fouling had not occurred, but a quantitative

assessment of hatching rates was not made.

Figure 1.4: Eggs removal and redeployment trial (Torbay 2011). (a.) One of the three traps
randomly selected for egg removal, (b.) eggs being removed by hand from the
traps, (c.) eggs counted prior to redeployment, (d.) trial egg receptors for rede-
ployment at a sheltered location at Hope’s Cove (Torbay)

1.4 Results

1.4.1 Landings

On the UK coast of the English Channel, Brixham is one of the largest ports for cuttlefish

landings. Data from Brixham Trawler Agents (Pers comm. R. Smith) managers of the market at
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this location are presented in Figure 1.5. The landings data showed a substantial increase within

this region from approximately 200 tonnes (t) in 1989 to a peak of almost 3,500 t in 2004. Over

the last ten years (2001 to 2011), annual landings of cuttlefish at this port had averaged 2,096

t (£2,800,000). In the UK from 2000 to 2002, the average percentage of landings from inshore

cuttlefish traps was 4.3 % (ICES 2003). This estimate was used to approximate the total average

annual quantity and value of landings by cuttlefish traps at Brixham over the last ten years (2001

to 2011) and equated to approximately 90 t (£120,400) per year.

Figure 1.5: Cuttlefish annual landings (solid black line) and price per kg (dotted red line) at
Brixham fish market (1988 to 2011) (Pers comm Brixham Trawler Agents).

1.4.2 Market sampling

The results of the market sampling from 2011 and 2012 combined are presented by month in

Figure 1.6. The results indicate that two peaks are evident throughout several months of the

year, representing ‘Year 1’ individuals and ‘Year 2’ individuals. The data collected from 2011

are presented by month in Figure 1.7 to visualise changes in the length frequency distribution

within landings over the year. In January, February, March and April both ‘Year 1’ and ‘Year

2’ peaks are separate and evident. In May an intermittent peak is evident and by June the

landings are represented only by small individuals. In July and August, there were none or
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minimal landings available to sample as the inshore trap fishery had finished for the season and

the offshore trawling fishery had yet to commence. In September when landings recommenced,

a single cohort was observed following mass mortality of spawning adults at the end of the

season, whilst the new cohort of cuttlefish were still too small to enter the fishery (Figure 1.7).

By October, the new cohort had begun entering (or recruiting to) the fishery as evidenced by the

introduction of smaller size frequency classes and by November and December the two ‘Year’

peaks were again evidenced. It is of interest to note, that although not prevalent in terms of

frequency, that individuals as small as 5 cm dorsal mantle length (DML) and 30 g in weight are

captured within the fishery (Figure 1.6). The results of the 18 months sampling are presented

in combined format in Figure 1.6 and reflect the two overlapping generations that occur within

the population. In addition, the relationship between length and weight data is also presented

in Figure 1.8 and show the rapid growth rate that occurs within this species. The data are

not separated by sex and it is possible that the increased variability in weight and length seen

in individuals over 15 cm DML could be attributed to sex related differences in growth and

investment in reproductive resources.

Figure 1.6: Brixham market sampling combined overall results presented for the years 2011
and 2012 indicating length (DML) frequency.
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Figure 1.7: Brixham market sampling results presented by month for 2011
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Figure 1.8: Relationship between dorsal mantle length and body weight calculated using mar-
ket sampling data from Brixham fish market (2011 and 2012). A power trend line
(black line) was also fitted to the data.

1.4.3 Inshore cuttlefish trap fishery at Torbay (Brixham)

The inshore cuttlefish trap fishery in operation at Torbay (Brixham) is discussed here in more

detail as an example of the fisheries that occur at the study sites discussed within this thesis. The

inshore trap fishery operates during the spring and summer, it is a relatively short fishing season

and lasts for approximately four months beginning in late February/early March and concluding

late June/early July, although the start and end of the fishing season can vary interannually by

around three weeks and is dependent on environmental conditions. The trap fishery in Brixham

is well established and the most up to date information suggests that in 2010 approximately

eight boats operated commercial cuttlefish traps in the area, with around 466 cuttlefish traps in

total (Pers comm. DSIFCA). However, because cuttlefish are a non-quota species and licences

are not required to fish for this species, this data was recorded by voluntary submission only

and may be an underestimation of the total fishing effort for this métier within the region.
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1.4.4 Sampling of landings from cuttlefish traps

The assertion that inshore cuttlefish trap fisheries specifically target spawning adults was tested

by analysing the length frequency distribution of a random sample of catch from three fishing

boats in May 2010 and one in June 2011. The average DML of cuttlefish landed by these boats

was found to be 23.3 cm (range = 13 - 35 cm, mean = 23.3 cm, SD = ± 4, n = 400) with the

smallest cuttlefish landed 13 cm, which would suggest that landings are composed mainly of

spawning adults (Figure 1.9). This is in contrast to the data reported from Brixham fish market

(data from all métiers) for which the average DML of cuttlefish landed is 16.4 cm (range = 5

- 33 cm, mean = 16.4 cm, SD = ± 5, n = 2894), with the smallest cuttlefish landed 5 cm. A

visual comparison of this data can be seen in Figure 1.10 illustrating the distribution of landings

within the ‘Year 2’ peak only.

Figure 1.9: Sampling of landings from commercial cuttlefish trap fisheries in May 2010 (Tor-
bay, Selsey, Eastbourne) and in June 2011 (Eastbourne) indicating length (DML)
frequency
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Figure 1.10: Visual comparison of length (DML) frequency between landing samples from
Brixham fish market (all métiers; 2011 and 2012; indicated by black dotted line)
and from cuttlefish trap landings (2010 and 2011; indicated by black fill).

1.4.5 Eggs laid on cuttlefish traps

At Babbacombe Bay (2010) the eggs from three cuttlefish traps were counted by pairs of divers

the average number of eggs laid on each trap was approximately 1050 (Table 1.2). In Torbay

(July 2011) the eggs from three cuttlefish traps were removed by hand and counted the average

numbers of eggs for these three traps was approximately 3,000 (Figure 1.4). At Eastbourne on

2nd June 2012, the average over these three traps was approximately 1,500 eggs (Table 1.2).
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Table 1.2: Numbers of eggs recorded laid on traps in July 2010 (Babbacombe Bay), July 2011
(Torbay) and June 2011 (Eastbourne)

Site Date Trap Number of eggs

Babbacombe Bay July 2010 1 1210

Babbacombe Bay July 2010 2 1770

Babbacombe Bay July 2010 3 150

Torbay July 2011 1 3400

Torbay July 2011 2 3700

Torbay July 2011 3 2100

Eastbourne June 2011 1 1005

Eastbourne June 2011 2 1470

Eastbourne June 2011 3 725

1.4.6 Potential mitigations for eggs laid on cuttlefish traps

One of the potential mitigation measures proposed was the removal of eggs from cuttlefish traps

at the end of the season by hand. These eggs could subsequently be redeployed in egg receptors

placed into sheltered areas during the summer until hatching. As a trial study, the eggs from

three pots were removed by hand at the end of the cuttlefish trap season in July 2011. In total

around 9,000 eggs were removed from the three traps, a process that took three people, three

hours to complete. It was considered that even if the hatching rates using such methods was

high, such a method could not be implemented practically by fishermen (some of whom work

single handed and have up to 100 traps) as part of their routine work.

1.5 Discussion

The status of the English Channel cuttlefish fishery as a non-quota stock, combined with the in-

crease value of landings for S. officinalis (currently around £3.00 per kg) has caused a dramatic

increase in UK landings of cuttlefish over the past thirty year with a valuee of approximately

4,000 t recorded in 2007 (MMO 2010). However, despite this increase in fishing pressure and

value with the English Channel cuttlefish fishery, there remain minimal management measures
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in place and only a limited understanding of the interactions between fishing pressure, environ-

mental conditions and recruitment variability. In particular, although one of the smallest métiers

in operation, the interaction of coastal trap fisheries which occur on inshore spawning grounds

during the spring and summer and which target spawning adults (who may or may not have

spawned prior to capture) and that utilise these traps as spawning structures, is an area where

more research is required in order to gain a full understanding of the impacts and interactions

within this natural population.

1.5.1 Eggs laid on cuttlefish traps

Small-scale pilot studies investigating quantification of eggs laid on cuttlefish traps were under-

taken. The method of counting eggs individually, by hand, produced the highest recorded values

for the numbers of eggs laid on traps (average 3,000) and is the most accurate method of quan-

tification. However, the time taken to count eggs in this manner is prohibitive for large-scale,

standardised use, with egg counts for three traps taking three people three hours, for fishermen

with 100’s of traps, such a method is prohibitively time consuming. Additional methods of

video and photographic measurement and in situ measurement by divers were also trialled. The

use of divers for regular monitoring of eggs laid on traps would not be practical for traps in

commercial operation due to the dangers associated with this task (the traps surveyed within

this research were part of an experimental trial and as such the traps were not hauled during the

study). The most promising method for fast and efficient collection of data is the use of pho-

tographic and/or video records that could be collected by an onboard scientific observer during

regular fishing activities of commercial trap fishermen. Photographs were simply recorded as

the pots were hauled and the data subsequently analysed on return to the laboratory. However,

two major limitations are currently evident in this technique. Despite the addition of a scale to

the photographs, the field of view within the photographs is likely to vary unless each is taken at

a set distance, for this purpose a frame, similar to that used during subtidal video transects could

be of use. The three dimensional nature of egg clusters also provides a limit to this method (and

may result in underestimation of egg counts) as only those eggs visible can be counted and in

many instances the three dimensional aspects of the egg clusters are not well represented by
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two-dimensional photographs. Analysis of photographic records collected in this manner are

still time consuming and a way of automating this process in an image counting software such

as Image J would be required before this technique could be utilised at a larger scale to quantify

the numbers of eggs laid on traps within the English Channel during a spawning season. A

potential estimate of predation rates for eggs laid on traps together with an assessment of the

proportion of eggs that hatch from these traps prior to cleaning would be required for a study of

this kind.

1.5.2 Potential mitigations for eggs laid on cuttlefish traps

In some areas of the UK English Channel coastline cuttlefish traps are simply left underwater

until the cuttlefish eggs have hatched. For example, the Southern Inshore Fishery and Conser-

vation Authority (SIFCA) promote a voluntary code of conduct that requests all cuttlefish trap

fishermen to leave their cuttlefish traps in the water until September to give the eggs time to de-

velop and hatch. This solution is by far the simplest and has been demonstrated in experimental

trials, undertaken in France, to give high rates of hatching (e.g. up to 95 % Gouyen (2001)).

Unfortunately, in many areas, the fishermen consider the practice of leaving cuttlefish traps,

unworked, in the water following the end of the cuttlefish season to be of high risk to their gear.

Disturbance and damage from bottom trawlers, storms or just increasing wear and tear are all

issues that have been raised as concerns regarding this practice. For this purpose research and

discussions with local fishermen were undertaken to assess alternative options that would be a

feasible method for mitigating against egg mortality from cuttlefish traps. One such method,

using the removal of eggs from cuttlefish traps at the end of the spawning season and rede-

ploying them in egg receptors within sheltered areas was trialled in July 2011. The trial study

undertaken in Torbay showed that the method was labour intensive and even at a small scale

(e.g. three traps) would not be sustainable, taking three people three hours to complete the pro-

cess. For many of the fishermen who work in Torbay operation of the boats is undertaken single

handedly, working up to 100 traps, in this context such a method is not practical. Alternative

methods proposed by the fishermen could be to only remove the eggs that are laid on the fingers

of the trap entrances, as these eggs can simply be slipped off the plastic fingers and redeployed
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very quickly. Another method that was proposed to fishermen was an idea first proposed by

a French cuttlefish fishermen and involved the adaptation of cuttlefish traps at the end of the

season to include an opening in the top of the trap, allowing them to continue to be worked in

the months following the end of the cuttlefish trap season to fish for spider crabs (Malgrange

2009). Whilst this idea was considered to be feasible in practice, two major issues would need

to be overcome in the UK before such a method could be trialled at any scale. Firstly, in the UK

shellfish licensing requirements would need to be met and the majority of the <10 m boats that

operate cuttlefish traps in Torbay do not have the required licence. Secondly, in the UK whilst

there is certainly the capacity to fish for spider crabs, at present there is little to no infrastructure

in place to market this species and so there is no financial incentive to fish for this species. The

results of this work indicate that communication and discussion with fishermen will be vital

to the development of any mitigation measures proposed to reduce the mortality of eggs from

cuttlefish fishing traps. This is essential as the feasibility and practicality of any method needs

to be assessed and due to the non-quota nature of this species, for which there is currently min-

imal management in place, the implementation of any such methods would require voluntary

agreement by the fishermen.

1.5.3 Conclusions.

To conclude, there are still many aspects of the inshore trap fishery and its interactions with

natural spawning grounds that remain unknown. An assessment of the quantity of eggs laid

on traps within these inshore areas is the basic starting point for investigating the potential

impacts of egg mortality from this métier. Whilst landings of this non-quota species continue

to increase, steps towards developing targeted stock assessment methods and the knowledge on

natural movements, behaviours and spawning patterns of these individuals will be required in

order to provide the necessary advice for future management of this species.

1.6 Overall study aims and objectives

The main aim of this thesis was to investigate the free-ranging movements, behaviours and

distribution of spawning S. officinalis within the inshore waters of the English Channel and

the potential impacts of spawning habitat ‘selection’ on early life stage (ELS) growth rates
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and survival, in order to begin to address critical gaps in our knowledge for this commercially

important species and provide baseline data that can be used for the future management and

conservation of this species. The main objectives of this thesis were to:

1. Compile pre-existing information on the distribution of S. officinalis spawning locations

within the English Channel using records of egg cluster presence; these data were then

used in (Chapter 3).

2. Undertake a spatial analysis of potential spawning areas in order to examine the envi-

ronmental conditions of known cuttlefish spawning locations and to build a predictive

model describing areas within the English Channel where the environmental conditions

are within the preferred range for spawning (Chapter 3). The maps of predicted potential

spawning habitat/locations produced will provide an informed knowledge base for in situ

observations (Chapter 4).

3. Collect in situ observations of natural substratum where spawning females attach their

eggs, in both UK and French coastal waters and assess patterns of spawning within study

locations.

4. Describe the movement and activity patterns of free-ranging adult and sub-adult cuttlefish

in the inshore waters of the English Channel using acoustic telemetry (Chapter 5).

5. Undertake a long-term archival tagging study using sub-adult cuttlefish to provide a better

understanding of the movements and migration patterns of S. officinalis within the English

Channel (Chapter 6).

6. Investigate the impact of heterogeneous conditions within early life stage (ELS) habitats

(as a result of variations in spawning habitat selection) on growth and survival rates of

ELS, with a particular focus on the physical complexity of these different habitats (Ap-

pendix B).

In Chapter 1, a general introduction to this thesis is made and combined with a short study

introducing the commercial cuttlefish fishery within the English Channel. Several key aspects
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of this commercial fishery are highlighted and results collected during the three years of this

research are presented. This research focuses on the fishery that operates from the port of

Brixham (Torbay), one of the most important ports for cuttlefish landings in the UK.

The detailed review provided in Chapter 2 identified and highlighted the factors considered to

affect spawning, early life stage survival and recruitment variability in the common cuttlefish (S.

officinalis) within the English Channel. Despite the great body of literature that already exists

for this species and the advances in many areas of study that have been made there clearly still

exists the need for further study that addresses the main knowledge gaps highlighted within this

review. Specifically the need for information on the free-ranging behaviours and movements of

S. officinalis and their habitat use in inshore waters is key. Such information is vital for non-

quota commercial species like S. officinalis for which fishing pressure continues to increase,

whilst minimal management exits.

Despite the growing importance of S. officinalis as a commercial fishery species, there has to

date, been no direct efforts to predict the distribution of spawning habitat within the English

Channel. Chapter 3 highlighted the potential spawning habitat/locations of S. officinalis within

the English Channel and produced maps of this data, contributing to the available baseline data

for spawning habitats and location for Sepia officinalis around the coast of the English Channel.

Within the English Channel, a clear definition of spawning habitat for S. officinalis was lacking.

In Chapter 4 a series of surveys was undertaken to record in situ observations of spawning on

natural structures within both the UK and French inshore waters of the English Channel. Using

the outputs produced from Chapter 3, to provide an informed knowledge base to guide the study

locations used for this research, surveys at five study sites were undertaken over a three year

period with the aim of identifying the structures and habitats used for spawning and to make

an assessment of the spawning patterns among different depth strata, habitat strata and between

different years.

Previously the movement patterns of free-living S. officinalis have been little studied, but ad-

vances in electronic tagging technologies and new methods for tag attachment have provided

the opportunity for these novel tools to be used in the study of S. officinalis in the field for
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the first time. Chapters 5 and 6 provide details of the first use of electronic tags (acoustic and

archival) for the study of the free-ranging movements and behaviours of this species within

their natural environment. The aim was to provide information to address the major knowledge

gaps that currently exist and to help shed light on habitat use and selection of spawning adults.

This information is essential for understanding the spatial distribution patterns of this species,

which in turn will help provide better information and advice for sustainable management and

conservation of this species.

Laboratory studies were designed and partially implemented in order to address Objective 6. An

example of these laboratory studies, which aimed to investigate the effects of different levels of

habitat complexity on ELS behaviour, survival and growth rates, is described in summary in

Appendix B. However, the presence of a Vibrio sp. bacterial infection in the sea water reservoir

system at the MBA laboratory in both 2011 and 2012 affected the completion of this work which

had to be terminated in both years as the bacterial infection was fatal for cuttlefish hatchlings.

As such, whilst the methodology and laboratory set up are described within the appendices,

the results collected were too limited in scope to provide any robust analysis or discussion.

However, it is hoped that the methods described will provide the basis for additional future

studies.

Finally in Chapter 7 a summary of the key findings and contributions of this thesis to the current

literature are highlighted and a brief discussion and integration of this work and its conclusions

are provided.
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Chapter 3

Species distribution modelling of potential spawn-

ing habitat

3.1 Introduction

Describing the spatial patterns of species distribution and understanding the driving factors be-

hind them, is a key objective in ecology dating back over 100 years (e.g. Grinnell 1904). It is

widely acknowledged that the geographic distribution of a species is shaped by a wide range of

factors including dispersal capacity, climatic conditions and biotic interactions (Soberon 2005).

Of these factors, climatic conditions (e.g. environmental and physical variables) are often con-

sidered the most important, especially in short lived species like cephalopods, where large vari-

ations in annual abundance are often related to variations in environmental conditions (Pierce

et al. 2008). As survey data are rarely available for every location within the extent of a species’

distribution range, species distribution models (SDMs) are often used to interpolate (or extrapo-

late) the limited data that are available for species distribution by relating species presence (and

absence) to a set of environmental variables (Pearce and Boyce 2005). The relationship be-

tween environmental and physical variables and the distribution of the reproductive behaviour

of a species is a key research focus (Sanchez et al. 2008), especially for commercially important

species like S. officinalis for which this information provides an essential base from which to

propose sustainable fisheries management.

Spawning grounds are essential for the maintenance of recruitment, particularly in cephalopods

which are heavily dependent on successful annual recruitment to sustain population levels. By

understanding which areas within the heterogeneous marine environment have a potentially
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high capacity for the biological production of a specific species, the prioritisation of conserva-

tion or management of these areas can be undertaken in order to sustain the long-term viability

of a population and its associated fishery and landings (Valavanis et al. 2008). As such, the

identification of potential spawning locations for commercial fisheries species is an essential

basis for sustainable management of a fishery resource. In S. officinalis, spawning females

attach clusters of eggs to erect flora or fauna that radiate from the seabed, which are left to

develop without parental care. The benthic and static nature of these eggs makes them an ideal

measure of true spawning, in contrast to the presence of spawning adults which indicates, but

does not confirm potential spawning events at a location. In addition, the use of static, benthic

egg clusters as opposed to mobile adults, provides a life-stage that is easier to model as during

the predefined modelling period (March to September) movement does not need to be taken

into account for these individuals. The use of egg cluster sample points rather than those of

spawning adults is a more certain way to ensure that the distribution of spawning locations are

accurately modelled. Within the English Channel, the spawning distribution of S. officinalis is

already known in part, at a large scale, from the presence of inshore cuttlefish trap fisheries,

which target spawning adults. However, despite the commercial importance of this species, the

location and description of fine-scale spawning grounds and habitats are not yet well defined,

especially in areas where coastal trap fisheries do not operate.

The literature highlights a range of variables that may be important in determining suitable

spawning habitat for S. officinalis. Cuttlefish are highly visual animals (e.g. Hanlon and Mes-

senger 1996) which may rely on visual cues for navigation to spawning locations, finding suit-

able mates as well as assessing the suitability of fine-scale spawning habitats, the success of

which have the potential to be affected by variation in the water clarity. K490 is the attenuation

coefficient at 490 nm and is one of the indicators used to represent water column turbidity. In

addition, the spring bloom, which in the English Channel can cause an increase in Chlorophyll-

a concentrations from June through to August (Smyth et al. 2010) and may also have an effect

on the turbidity of the water in coastal regions causing additional impacts on spawning in this

species in the same manner. Chlorophyll-a concentration also reflects the concentration of phy-

toplankton, which forms the basis of the marine food chain and is considered a good indicator
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of primary productivity (Pierce et al. 2008), which is thought to be an important determinant

of cephalopod distribution and abundance (Pierce et al. 2008). This is particularly the case for

paralarval and juvenile cephalopods (Vidal et al. 2010) with primary productivity potentially

indicating areas of favourable feeding habitat which is essential for newly emerged hatchlings.

SST has been shown by numerous authors to affect cephalopod abundance and distribution (e.g.

Waluda and Pierce 1998; Wang et al. 2003). In particular, for S. officinalis, SST was found to

correlate with the annual migration patterns of S. officinalis in the English Channel (Wang et al.

2003). That temperature is a key regulating factor in recruitment of cephalopod populations, as

a result of its effects on ELS (e.g. rate or embryogenesis, yolk utilisation, size and weight at

hatching) is an idea supported by numerous authors (e.g. Boyle and Boletzky 1996; Forsythe

et al. 2001; Waluda et al. 1999; Challier et al. 2005a; Hatfield et al. 2001). S. officinalis is rela-

tively tolerant to variations in salinity however, a salinity of 28 or greater is considered optimal

for spawning (Paulij et al. 1990a; Mangold-Wirz 1963) and so maybe an important determin-

ing factor in spawning distribution, within the English Channel salinities of between 32 and

35 have been recorded at spawning sites on the French coast (Boucaud-Camou and Boismery

1991). Within the English Channel, salinity can vary significantly both spatially and tempo-

rally (within and between years). For example, areas such as the Baie de Seine are strongly

influenced by river input, the rate of flow from which is variable (Garnaud et al. 2002) and can

cause fluctuations in the salinity of the area; whilst the salinity in areas of the English Channel

which are not influenced by river input may remain at a higher and more stable level. Reduced

salinity may influence both the abundance of prey in the area and the success of hatching rates

in S. officinalis, with salinity found to have a statistically significant affect between the range

of 28 to 33, with a hatching rate of only 50 % at a salinity of 28 (e.g. Palmegiano and d’Apote

1983). As such, salinity may have an effect on the use of sites for spawning within the English

Channel.

S. officinalis is a nekto-benthic species which occurs, from the coastline (2-3 m) to approxi-

mately 200 m depth (Guerra 2006), beyond which, the shell is vulnerable to implosion (Ward

and Boletzky 1984). Depth has also been shown to play a part in the spawning distribution

of this species with eggs generally thought to occur at depths of less than 40 m (Guerra and
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González 2011) or 50 m (Valavanis et al. 2002). S. officinalis undertake seasonal migrations

from the deeper, offshore waters of the Channel to the shallower, inshore waters. In spring

adults migrate to inshore waters to spawn and so distance from the nearest coastline has been

included here as a predictor variable. S. officinalis is a benthic spawner, with spawning thought

to occur predominantly on muddy and sandy sediments (Guerra 2006). As such sediment type

is likely to be an important predictor variable for spawning distribution in this species. Bed

shear stress (Newtons per m2) is a measure of the friction exerted on the seabed by the mean

tidal current, and is often associated with the type of sediment predominant at a location. In

general, bed shear stress is considered to be an important determinant in the distribution pat-

terns of many species (Freeman and Rogers 2003), and is likely to be important to some degree

for benthic spawners such as S. officinalis.

This current study aims to use presence-only sample points of S. officinalis egg clusters to pro-

vide the first SDM for spawning of this species within the English Channel. Presence-only

datasets have no information about areas where the species is absent and have often been col-

lected without a specific sampling method and include ad-hoc or opportunistic records. Despite

the increase in landings of cuttlefish within the English Channel by UK fishing vessels (26 t in

1980 (Dunn 1999) to 4,000 t in 2007 (MMO 2010)), there remains little or no directed manage-

ment in place for this fishery, with no total allowable catch, no minimum landing size and no

closures (either spatial or temporal). The increased popularity of this species as a commercial

fisheries resource, with fisheries targeting nearly every stage of their life cycle (e.g. offshore

wintering grounds, migration routes and coastal spawning grounds) and across a wide range of

habitats, combined with large fluctuations in recruitment (reflected in inter-annual variability of

landings), identifies a need for basic information of the distribution of spawning locations and

habitats to be determined (both at the broad and finer-scale) within the English Channel.

3.1.1 Review of models

Within the marine environment it is often only possible to obtain fragmentary information re-

garding species and habitats. SDMs provide important tools with which the distribution of a

species can be predicted, based on the partial information that is available (Guisan and Zim-
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mermann 2000; Guisan and Thuiller 2005). Whilst the application of SDMs within the marine

environment has been a relatively recent phenomenon (Valavanis et al. 2008; Robinson et al.

2011), their increasing use (Figure 3.1) has allowed a wide range of practical and theoretical is-

sues to be addressed including: the relationships between species occurrence and environmental

conditions (e.g. Lefkaditou et al. 2008), planning of marine protected areas and conservation

networks (e.g. Leathwick et al. 2008), identification of essential fish habitat (e.g. Valavanis et al.

2004b) and forecasting how species distribution is affected by climate change or environmental

disturbance (Cheung et al. 2009).

Figure 3.1: Trends in the number of marine applications of SDMs. The data in this graph
were derived from an ISI Web of Science search using the search criteria specified
by Robinson et al. (2011): Search topic = ‘species distribution’ OR ‘ecological
niche’ OR ‘habitat preference’ OR ‘environmental preference’ OR ‘bioclimate en-
velope’ OR ‘bioclimate’ OR ‘environmental niche’ OR ‘habitat suitability’ AND
‘model*’. In order to obtain only marine records, a subsearch within the original
results was also undertaken using the search topic =‘marine’ to obtain only the
marine records

Rapid developments in statistical techniques and geographical information systems combined

with a greater availability and access of remotely sensed environmental datasets have enabled a

rapid development in the number and types of SDM techniques that are now available (Guisan

and Zimmermann 2000). This vast array of SDM techniques can be loosely divided either

by their basic approach (e.g. correlative, coupled correlative or mechanistic) or by the type

of data that they require (e.g. presence-absence, presence-pseudo absence, presence-only or
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abundance). The common methods used for modelling presence-absence data include: gen-

eralised linear models (GLMs) (e.g. McCullagh and Nelder 1983), a mathematical extension

of linear models that fits parametric terms and utilises a link function to assume a relationship

between the mean of the response variable and the linear combination of the explanatory vari-

ables (Guisan et al. 2002). Generalised additive models (GAMs) (Hastie and Tibshirani 1986),

provide a semi-parametric extension to GLMs that offer a more flexible approach so as to deal

with highly non-linear relationships between response and explanatory variables (Guisan et al.

2002). A link function provides a relationship between the mean of the response variable and

a ‘smoothed’ function of the explanatory variables (Guisan et al. 2002). The main underlying

assumption of this technique is that the functions are additive and the components are smooth

(Guisan et al. 2002); multiple adaptive regression splines (MARS) (Friedman 1991), a flexible,

non-parametric, regression based approach that fits non-linear responses using piecewise lin-

ear fits rather than smoothing functions (Elith and Leathwick 2007); boosted regression trees

(BRTs) (e.g. Elith et al. 2008; De’Ath 2007), an ensemble approach that combines two algo-

rithms (regression trees and boosting) based on an additive regression model in which individual

terms are simple trees, fitted in a forward, stagewise fashion (Elith et al. 2008) and finally, artifi-

cial neural networks (ANNs) (e.g. Lek and Guegan 1999), a highly flexible, non-linear mapping

structure based on the function of the human brain (Lek and Guegan 1999). It has been termed a

’black box’ approach in which all the characters describing the unknown situation are presented

to the trained ANN and a prediction is provided (Lek and Guegan 1999).

The common methods used for presence-only data include: bioclimatic envelopes (BIOCLIM)

(Busby 1991), an environmental envelope algorithm which identifies locations that have envi-

ronmental values that fall within the range measured from the presence-only dataset provided

for the target species (Busby 1991); environmental niche factor analysis (ENFA) (Hirzel et al.

2002), a multivariate modelling approach that performs a factor analysis within the multidi-

mensional space of ecological variables, to assess the distribution of the localities that a target

species was observed within, against a reference set that describes the entire modelling extent

(Hirzel et al. 2002); genetic algorithm for rule-set production (GARP) (Stockwell 1999), an ar-

tificial intelligence-based approach that employs the rules from four distinct modelling methods
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(atomic, logistic regression, bioclimatic envelope and negated bioclimatic envelope) to derive

several different rules which are then used to iteratively search for non-random correlations

between the presence and background absence observations and the environmental predictors

(Stockwell 1999; Hernandez et al. 2006) and finally, maximum entropy modelling (MaxEnt)

(Phillips et al. 2006), part of the machine learning community of models, MaxEnt estimates

the species’ distribution of maximum entropy (or that which is closest to uniform) across the

study area, given the constraint that the expected value of each environmental predictor variable

under this estimated distribution matches its average value for the set occurrence data (Phillips

et al. 2006). Summary details for each of these methods can be found in Table 3.1. Despite

the intrinsic differences between these available techniques (e.g. presence-absence, presence-

only, presence-pseudoabsence etc.) they are all numerical tools which are generally used within

ecology for one of three main purposes as described by Elith and Graham (2009):
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Table 3.1: Main species distribution modelling methods available

Method Type Data requirement Reference
Generalised linear model (GLMs) Statistical (regression based) Presence/Absence McCullagh and Nelder (1983)

Generalised additive model (GAMs) Statistical (regression based) Presence/Absence Hastie and Tibshirani (1986)
Multivariate adaptive regression splines (MARS) Statistical (regression based) Presence/Absence Friedman (1991)

Boosted regression trees (BRTs) Machine learning Presence/Absence Elith et al. (2008)
Artificial Neural Networks (ANNs) Machine learning Presence/ Absence Lek and Guegan (1999)

Maximum Entropy (MaxEnt) Machine learning Presence only Phillips et al. (2006)
Genetic Algorithm for Rule-set production (GARP) Machine learning Presence only Stockwell (1999)

Bioclimatic envelopes (e.g. BIOCLIM) Profile technique Presence only Busby (1991)
Ecological Niche Factor Analysis (ENFA) Profile technique Presence only Hirzel et al. (2002)
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1. To describe and understand the relationships between species occurrence and environ-

mental conditions (e.g. define its ecological niche)

2. To predict and map those geographic areas within a study region that are more or less

suitable for use by a target species (e.g. to extend the prediction of species distribution to

unsampled locations within the study region)

3. To extrapolate to environmental conditions or spatial locations outside of the sample

space (e.g. to predict changes in species distribution as a result of climate change)

3.1.2 Presence-only model selection

The type of environment that S. officinalis uses for spawning in the English Channel can be

investigated by modelling the probability that at least one cuttlefish egg cluster is present at a

particular location within the modelling extent, given a particular set of environmental variables.

Ideally, this model would be produced using a rigorously defined sampling scheme that covers

the entire extent of the English Channel (with an equal representation of sites both environ-

mentally and spatially) with surveys undertaken at each of the sampling locations to determine

whether egg clusters of this species are present or absent. However, one of the greatest chal-

lenges within the marine environment remains the collection of high quality datasets containing

both presence and absence records, as collection is often difficult, due to the intrinsic nature of

the marine environment and or the mobility of the target species, and because such sampling is

costly (and often prohibitive) in terms of both time and expense (Tsoar et al. 2007).As a result

there has been an increase in interest in methods that allow the utilisation of pre-existing and

readily available presence-only data sets. Sources of species presence records include archival

datasets, incidental observation databases, museums and bibliographic records.

The range of methods available for using presence-only data to create SDMs has rapidly ex-

panded over the last twenty years (Phillips et al. 2009), with Pearson (2010) describing three

main approaches:

1. The first approach centred around ‘true’ presence-only models that are specifically de-

signed to use only presence records, without reference to the set of environmental condi-
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tions available to the species within the region (Elith et al. 2006). These use envelope or

distance based methods and include BIOCLIM and DOMAIN (e.g. Busby 1991; Carpen-

ter et al. 1993).

2. A subsequent approach adapted existing presence-absence modelling methods to use

with presence-only datasets. By taking into account the available environment (‘pseudo-

absence’ data; selected randomly or according to a set of weighting criteria) as well as

observed presence-only species records these methods allowed better discrimination and

included methods such as GLMs, GAMs and MARS which are all multiple regression

based techniques which differ in the fitting procedures and methods used to model com-

plex responses (Guisan et al. 2007).

3. The most recent approach utilises novel methods specifically designed to work with

‘noisy’ presence-only datasets whilst additionally taking account of the environmental

conditions (Elith et al. 2006). Methods for this approach include MaxEnt and BRT which

focus on how the environment where the species has been observed to occur relates to the

environment across the rest of the study area (the ‘background’). An important distinc-

tion between the use of background and pseudo-absence data is that observed occurrence

localities are included as part of the background datasets, whilst pseudo-absence datasets

are not (Pearson 2010).

Whilst at present there is no clear advice within the SDM community as to what is the best

choice among presence-only modelling techniques for a given application, several thorough

reviews have now been undertaken to compare the ability of such modelling techniques to ac-

curately model species distribution within specific situations (e.g. Segurado and Araujo 2004;

Elith et al. 2006; Tsoar et al. 2007; Elith and Graham 2009; Franklin and Miller 2009; Hernan-

dez et al. 2006; MacLeod et al. 2008). The most extensive of these reviews was undertaken

by Elith et al. (2006) and used 16 different presence-only modelling approaches to model the

distribution of 226 species from across the globe. Whilst many of the tested methods pro-

duced differences in predictions within different situations, others consistently outperformed

the rest (Elith et al. 2006). Two of the best performing models were novel presence-only mod-
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elling methods from the machine-learning community, MaxEnt and a naive boosted trees model,

which both consistently outperformed established envelope and regression methods both within

this study (Elith et al. 2006) and in other comparative studies (e.g. Guisan et al. 2007; Hernan-

dez et al. 2006). Of these two methods, MaxEnt was selected as the focus of this study as it

operates using presence-only data combined with a background dataset, whilst BRTs require

presence/absence or presence/pseudo-absence data to operate. MaxEnt operates without ab-

sence or pseudo-absence data and is flexible in using both categorical and continuous data types

for environmental variables (Wilson et al. 2009). It also performs well with small (as few as

four records) datasets and its comparative analysis is one of the best and most consistent tools

for presence only modelling (e.g. Elith et al. 2006; Guisan et al. 2007; Hernandez et al. 2006);

the ability for the user to account, at least in part, for sampling bias within the pre-run settings

and that the mathematics implemented in the software has been subjected to rigorous analysis

(Dudik et al. 2004; Dudık et al. 2005, 2007).

3.1.3 MaxEnt

Maximum entropy is a general purpose technique for estimating a probability distribution from

partial information (Jaynes 1957). In the context of a probability distribution, the term (or con-

cept) of entropy has been used interchangeably with that of uncertainty, such that entropy could

be defined ‘as a measure of our degree of ignorance as to the state of a system’ (Jaynes 1957).

Jaynes (1957) was the first author to propose the maximum entropy approach to probability

distribution. The principle is that estimates of a probability distribution are generally based on

only partial information, and any inference about the distribution should be based on maximum

entropy (or maximum uncertainty), subject to whatever information is known. This distribu-

tion is calculated given the constraint that the expected value of each environmental predictor

variable under this estimated distribution matches its average value for the set occurrence data

(Phillips et al. 2006). In other words, any estimate of probability distribution that is based on

only partial information should be maximally non-committal in order to ensure that no arbitrary

assumptions are introduced (Jaynes 1957). Maximising entropy is a desirable aim in species dis-

tribution modelling as to do otherwise would be to impose additional (unfounded) constraints on
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the predicted species distribution (Phillips et al. 2009). The modern day approach to maximum

entropy species distribution modelling was developed within the machine learning community

by Phillips et al. (2004, 2006) and is delivered through a free-ware software platform known as

MaxEnt, which is available for download from: http://www.cs.princeton.edu/ schapire/maxent.

For the purpose of this study the following key terms and concepts that will be used in reference

to MaxEnt throughout the rest of this chapter will be introduced and defined. A sample point

is defined as an occurrence (or presence) record of the target species for which the probability

distribution is being predicted, a feature refers to a predictor variable (environmental or phys-

ical) or a function thereof. In order to encompass the range of possible responses of a species

to these features, MaxEnt currently has six possible feature classes that can be used : Linear,

product, quadratic, hinge, threshold and categorical (Phillips and Dudík 2008; Elith et al. 2011).

Finally, the term location refers to the geographic extent which outlines the geographic study

area of the model (Dudik et al. 2004; Phillips et al. 2004) which is pre-ordained by the user.

These parameters are then provided by the user as the input data for MaxEnt, such that a set

of sample points (occurrence/presence locations) for the target species and a set of features

(predictor variables) that are relevant to the distribution of the target species are uploaded to

the software interface within the user defined location (geographic extent). Whilst a number

of different distributions exist that will satisfy the constraints of the partial information avail-

able, MaxEnt uses the supplied information to produce the probability distribution of maximum

entropy (i.e. the distribution closest to uniform) for the target species (Phillips et al. 2004),

subject to the constraints of the supplied features, with the expectation that each feature should

match its empirical average (Phillips et al. 2004). MaxEnt has a range of built in evaluation

techniques which allow the user to compute a test statistic known as the area under the receiver

operating characteristic curve (AUC), which enables models performance to be evaluated. The

computation of a receiver operating characteristic (ROC) curve enables a threshold independent

analysis of the model’s performance (i.e. overall model fit) to be made. The ROC curve is

created by plotting sensitivity values (the true-positive fraction) against 1-specificity (the false

positive fraction) for all available probability thresholds (Fielding and Bell, 1997; Manel et al.,

2001). An ROC curve for which the sensitivity is maximised at low values of the false-positive
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fraction is considered to be a good model and is quantified by calculating the area under the re-

ceiver operating characteristic curve (AUC). The AUC has been extensively used within SDM

research and is a useful measure of how well a model is able to discriminate between areas

where a species is present and those where it is absent (Hanley and McNeil 1982). The AUC is

calculated automatically by MaxEnt and with values ranging from 0 to 1. Where 1 represents

perfect discrimination and 0.5 representing a model that is no better than random. An interpreta-

tion of intermeditary AUC values is presented in Table 3.2. ROC curves are not restricted to use

with traditional presence/absence data and can also be generated with presence and background

data (Phillips et al. 2006). When using presence and background data to generate the ROC plot

the AUC value can be interpreted as a measure of the models ability to discriminate between

a suitable environmental condition (occurrence point) and a random background pixel (back-

ground point), as opposed to the traditional interpretation used with presence/absence data of

discrimination between suitable (presence) and unsuitable (absence) conditions (Phillips et al.

2006). As a result the AUC calculated by MaxEnt is based on the fractional predicted area, de-

fined as the fraction of the total study area predicted present, rather than the traditional fraction

of absences predicted present (Phillips 2010). Using the data from the entire replicate set it is

possible to calculate average AUC values for both training and test data as well as the standard

deviation to assess the degree of variability within the replicate set. It is also possible to run

a jackknife test to determine which predictor variable contributes most to the model prediction

(Pearson 2010).

Table 3.2: Area under the curve values for assessment of the performance and predictive ability
of the MaxEnt model (Phillips et al. 2009; Hosmer and Stanley 2000; Swets 1988)

AUC value Prediction assessment

1 perfect prediction

≥ 0.9 excellent prediction

0.7 - 0.9 good prediction

0.5-0.7 poor prediction

≤ 0.5 prediction no better than random
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Since its introduction in 2004, MaxEnt has been used to model a wide range of species distri-

butions within both the terrestrial (e.g. Lizards: Gadsden et al. (2012), wild dogs: Jenks et al.

(2012) and bird species: Brambilla and Ficetola (2012)) and marine environments (e.g. harbour

porpoises: Edrén et al. (2010), cold water corals: Yesson et al. (2012) and humpback whales:

Smith et al. (2012)). In terms of cephalopods, whilst a variety of studies have been undertaken

to assess the relationship between cephalopod distribution and environmental conditions using

solely GIS or GIS combined with SDM techniques (e.g. Valavanis et al. 2002; Sanchez et al.

2008; Moreno et al. 2009; Waluda and Pierce 1998) to date only one published study has used

MaxEnt to model the distribution of a cephalopod species e.g. Octopus vulgaris in the Mediter-

ranean and Eastern Atlantic waters (Hermosilla et al. 2011). This study used 213 presence

records of octopus collected from surveys and bibliographic records to model the distribution

of this species (Hermosilla et al. 2011). The authors found that MaxEnt was able to successfully

predict octopus distribution in the Mediterranean whilst additionally evaluating which variables

used within the model were the most important in predicting this distribution (Hermosilla et al.

2011).

Whilst S. officinalis has yet to be modelled using presence-only methods, the EU Interreg IV

funded Channel Integrated Approach for Marine Resource Management (CHARM II) project

modelled the distribution of S. officinalis in the eastern English Channel (for July and October)

using GLM and GAM methods and a series of structured fisheries survey data from the ground

fish survey (October) and bottom trawl survey (July) that enabled presence-absence modelling

methods to be utilised. These models use data from adult and juvenile life stages and do not

focus on the spawning locations and conditions of this species.

3.1.4 The presence-only problem

3.1.4.1 Lack of absence data

Before using presence-only techniques to build SDMs, an understanding of the inherent issues

associated with these presence-only datasets is required. Two main problems exist regarding

their use to model species distribution. Firstly, whilst these datasets inform us of the locations

in which cuttlefish spawning is observed, they often contain no information regarding where
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a species is absent (Elith et al. 2006). When using these presence-only datasets to assess the

distribution of cuttlefish spawning it is not possible to know for sure where cuttlefish spawning

does not occur.

Ward (2007) summarises this presence-only problem stating that the aim of presence-only mod-

elling is to predict the probability of true presence (y = 1) or absence (y = 0) of a species, given

the environmental covariates x. The presence-only datasets that are utilised however provide in-

formation only on observed presences (z = 1). Depending on the modelling method used, a set

of background or pseudo-absence data (z = 0) is then also created. Whilst within the presence-

only dataset an observed presence (z = 1) implies a true presence (y = 1), for the background

data or pseudo-absence dataset it is unknown whether (z = 0) equates to a true presence (y = 1)

or a true absence (y = 0). In presence modelling, the sampled locations (i.e. all locations which

are represented in the presence-only dataset or the background or pseudo-absence datasets) can

be defined using the notation s = 1. Any location which is within the study location but that is

not part of the dataset is subsequently denoted as s = 0. Whilst the aim of presence-only mod-

elling is to use the observed z and x to estimate the model of interest, P(y =1|x), as a result of

the presence-only problem the data are actually generated instead by the probability P(z =1|x, s

=1) (Ward 2007).

3.1.4.2 Spatial sampling bias

Secondly, these datasets often have no defined sampling scheme (e.g. the aims and methods of

collection for data within these datasets are generally unknown). The lack of known sampling

scheme can mean that these datasets exhibit a level of spatial bias in survey effort (e.g. Reddy

and Dávalos 2003), reflecting the haphazard manner in which these datasets may have been col-

lated. For example, some sites (e.g. those that are easily accessible) within the modelled area

could potentially have been surveyed more than others, this is known as ‘sample selection bias’.

Sample selection bias within these presence-only datasets is generally unquantified but can the-

oretically impact the quality of the SDM produced (Phillips et al. 2009). Whilst presence-only

datasets can provide an important data source for SDMs, a critical assessment of the limitations

and biases associated with these models is required in order to realise the full potential of these
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methods (Elith et al. 2006).

A number of issues can affect the accuracy of presence-only modelling techniques such as

MaxEnt, including geographic bias in the sample point dataset, which is a greater problem for

presence-only models than for presence-absence models, since the bias afflicts presence data

but not background data (Phillips 2008). Presence-absence models are not however without

issues of bias or error in terms of the absence data. For example, absence records may be

misleading as the species may not be easily detected or because they can include strong imprints

of biotic interactions, disturbances or dispersal constraints that preclude modelling of potential

distributions (Elith and Leathwick 2009; Elith et al. 2011). The presence-only datasets that are

utilised for presence-only modelling are collated from a range of different sources and often

records will have no known sampling scheme. A degree of spatial sampling bias is likely,

however, the precise structure or extent of this bias is unknown (Ward 2007). These datasets are

vulnerable to bias from a range of sources including:

• Sample points may be correlated to ease of access to a site (Phillips et al. 2006), such that

areas that are hard to access are underrepresented within the dataset.

• Datasets may exhibit spatial-autocorrelation if the sample points are collected from a

limited number of nearby sites within a restricted portion of the total area available for

the study location (Phillips et al. 2006).

• Sampling intensity and/or methodology may vary significantly across the study area

(Phillips et al. 2006).

If unaccounted for, spatial and temporal sampling bias within a dataset can affect the quality of

the model produced, regardless of the modelling method used (e.g. Dudık et al. 2005; Phillips

et al. 2009). When using only random background sampling with no assessment of the spatial

bias, the majority of modelling methods will subsequently make predictions biased towards

intensively sampled areas (Phillips et al. 2009). MaxEnt was developed to allow the user to

account for such sampling bias through two pathways which help guide the training of the

model in the presence of sampling bias (Wilson et al. 2009). The first allows a ‘bias density
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map’ to be included with the input data, providing MaxEnt with a grid of cells that are weighted

according to the degree of sampling bias that is expected to occur within that cell (Dudık et al.

2005). Model quality can be affected by the geographical scope of the region from which the set

of random background points that are included during the creation of the model can be attained.

If the geographical scope from which environments can be sampled is too broad, then the model

may be over-fitted, and if it is too narrow, then the predicted distribution may be uninterpretable

(Wilson et al. 2009). Providing a bias density map helps to define the optimal geographic scope

from which the set of random background points can be selected, creating a similar spatial

sample bias within the background data as is prevalent in the original presence-only dataset.

Guidelines for the appropriate selection of background points are still a focus of active research

for both MaxEnt and other modelling tools (e.g. Phillips et al. 2009). The second pathway

allows the user to create a ‘target group’ (a defined group of species that are ecologically or

behaviourally similar to the target species and for which locations show similar sampling bias)

which is used to select the set of background points for use in the model creation (Phillips et al.

2009). This second pathway of bias adjustment is however, restricted for use with species or

situations, where reasoned and justified arguments can be presented for the identification of

species within the target group (Wilson et al. 2009).

3.2 Objectives

1. Collate information on the occurrence of S. officinalis, at all life stages, throughout the

English Channel and store this information in a specialised geo-database.

2. Identify the environmental and physical drivers (predictor variables) of S. officinalis spawn-

ing distribution in the English Channel.

3. Create a model to produce predictive maps based on pre-selected predictor variables and

known occurrence records of S. officinalis egg clusters, extracted from the geo-database.

4. Evaluate and assess the predictive capabilities of the model.

5. Identify how the information from the output of the model can be used for future conser-

vation or fisheries management of this species.
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3.3 Materials and methods

The creation of a SDM follows a number of steps that are undertaken in order to construct the

model as outlined in Figure 3.2. As illustrated in Figure 3.2a, these steps include (i.) con-

ceptualisation, (ii.) data preparation, (iii.) model fitting, (iv) model evaluation, (v.) spatial

prediction, and (vi.) assessment of model applicability (Guisan and Zimmermann 2000; Guisan

and Thuiller 2005). Where relevant these steps will be highlighted throughout this section and

further details of the subphases involved are illustrated in Figure 3.2b. During the conceptual

phase (Step i.), the concept behind the model is proposed, this includes defining the objec-

tives of the model (Section 3.2), assessing which environmental predictors may be relevant for

modelling the target species (for which a review of the literature was conducted) as well as an

appreciation of the scale (both temporal and spatial) for which the model should be created (e.g.

Section 3.3.1). In addition during the conceptual phase it is also necessary to identify the most

appropriate method for modelling the response variable (Section 3.1.2).
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Figure 3.2: Steps in making a SDM in MaxEnt (adapted from (Pearson 2010; Guisan and
Zimmermann 2000; Guisan and Thuiller 2005). These steps include (i.) Concep-
tualisation, (ii.) data preparation, (iii.) model fitting, (iv.) model evaluation, (v.)
spatial prediction and (vi.) assessment of model applicability

3.3.1 Location (Step i.)

This study focused on the discrete spawning population that is known to occur within the En-

glish Channel. As such the location (or extent) of this study will extend across the entire area

of the English Channel (approximately 51◦ 3’N, 1◦ 50’ E and 48◦ 25’N, 5◦ 37’W).

The English Channel is a shallow epicontinental shelf system that extends over an area of 77,000

km2 and is bordered by both the U.K. and France (Dauvin 2012). The Channel extends approx-

imately 750 km from the Dover strait (east) to the Celtic Sea (west) with the deepest areas in the

west, reaching 174 m in the deep central trench and the shallowest areas in the east, diminishing

to 40 m at the Dover strait (Dauvin 2012). The sediment varies within the Channel with a pre-

dominance of pebble based substrates in the strong tidal currents that prevail offshore and fine or

muddy sand in the weaker tidal currents of the inshore estuaries and bays (Dauvin 2012). The
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Channel is considered a transitional area between the warm temperate waters of the Atlantic

ocean system and the colder waters of the North Sea (Dauvin 2012). The distinction between

the biological and physical features of the western and eastern Channel has led to it’s consid-

eration for many purposes as two separate basins, divided along a vertical line between Start

Point on the U.K. coast and the Cotentin Peninsula on the French coast (Dauvin 2012). One

of the reasons for the disparity in conditions between the two basins is the dominant influences

on the hydrologic and oceanographic features of the areas, with the Eastern Channel affected

predominately by the Seine Estuary and the Western Channel by Atlantic waters (Dauvin 2012).

3.3.2 Species occurrence data (Step ii.)

A total of 217 sample points of presence records for S. officinalis egg clusters was collated

and stored within an ArcGIS geo-database (Esri, Version 10) (Figure 3.3). These records were

obtained from five main sources which included:

• Fisheries surveys data (e.g. Centre for Environment, Fisheries and Aquaculture Science

[CEFAS] and French Research Institute for Exploration of the Sea [IFREMER]), where

cuttlefish are not the target species, but information has still been collected on their pres-

ence and abundance

• Bibliographic records (e.g. current and historical published literature)

• Current research (e.g. Cephalopod Recruitment from English Channel Spawning Habitats

[CRESH]. subtidal surveys)

• Historical data archives (e.g Data Archive for Seabed Species and Habitats [DASSH]; see

Appendix C.1 for details)

• Current sightings scheme (e.g. Cuttle-Watch) (see Appendix C.2 for further details)

The data set was extracted from the geodatabase and saved as a comma-delimited (CSV) file

with the life stage and associated latitude and longitude coordinates extracted for each record,

ready for incorporation into the MaxEnt software. Records of eggs, rather than records of

102



3.3. MATERIALS AND METHODS

spawning adults, were used as a basis for the model as eggs represent a true measure of spawn-

ing. Presence data included a total of 217 records of S. officinalis eggs within the English

Channel area from 1995-2012, and between March and September. The data was further subdi-

vided by MaxEnt into two randomly allocated data sets, a larger training data set (163 records)

and a smaller test data set (54 records).

Figure 3.3: A map showing the locations of the 217 sample points for S. officinalis egg occur-
rence within the English Channel (March to September, 1995-2012)

3.3.3 Environmental predictor variables (Step i. and ii.)

A review of the literature concerning spawning in S. officinalis was undertaken to ascertain

which environmental and physical variables were ecologically relevant for use as predictor

variables within the model (see Chapter 2). The list of variables highlighted included both

categorical and continuous forms of data such as: sediment type, depth, distance from coast-

line, sea surface temperature, sea bottom temperature, sea surface salinity, productivity, thermal

fronts, turbidity, current velocity and habitat type.

Of the variables highlighted in the literature a set of eight were selected to incorporate this

information into the model, based on knowledge of the species life cycle in the English Channel,
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and/or accessibility of data layers at resolution and quality high enough for useful inclusion

(Figure 3.4):

• Attenuation coefficient K490 (representing turbidity).

• Chlorophyll -a (representing turbidity and primary productivity).

• Sea surface temperature (SST) [known to be correlated with sea bottom temperature

(Wang et al. 2003)].

• Depth (bathymetry plus mean sea level).

• Bed shear stress (representing current flow and sediment type).

• Distance from coastline.

• Sea surface salinity.

• Sediment type

3.3.3.1 Collinearity among predictor variables

Prior to running the model with all eight pre-selected predictor variables, it was first necessary

to assess the degree of collinearity among them. It is not recommended to use highly correlated

variables within the MaxEnt modelling process and so in this study, Pearson’s correlation was

used to assess collinearity among the variables. To avoid issues of colinearity, only variables

with a Pearson correlation between -0.7 and 0.7 were included (Ommen Kloeke et al. 2012).

If variables had a Pearson correlation greater than these values one of the pair of variables was

excluded from the model construction phase.

In order to assess whether collinearity among variables did exist, the data were extracted from

the raster layers using ArcGIS. An environmental grid consisting of 132492 points was created

which covers the whole extent of the study area. The environmental grid was used to extract

point data for each of the predictor variables in order to perform correlation analysis. Extraction

was performed using the ArcGIS tool ‘Extract multi values to points’ (ArcGIS Toolbox ->

Spatial Analyst Tools -> Extraction -> Extract Multi Values To Points). Following extraction
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Maps showing the data for each of the eight predictor variables used in the MaxEnt
model, (a) Attenuation coefficient K490, (b) Chlorophyll-a, (c) Sea surface tem-
perature, (d) Depth, (e) Bed shear stress, (f) Distance from coastline, (g) Salinity,
(h) Sediment
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of the data from each variable to the environmental grid, the data within the grid was saved and

exported to a Microsoft Excel file (Microsoft 2007) where the Pearson’s correlation function

was used to calculate the degree of correlation between each pair of variables.

3.3.3.2 Preparation of environmental layers

The sourcing and pre-processing of data layers is summarised in Table 3.3. For all variables

with a temporal element (SST, Chlorophyll-a and K490) long-term averages (median) were

assembled over the period 2000-2010 and incorporating the months when eggs were recorded

as being present in the English Channel (March to September). This was done as MaxEnt does

not have the ability to include time as a variable in this way. Long-term averages were created

from the weekly composite data which were combined to create monthly and seasonal long

term averages (median) in ArcGIS using the ‘Cell statistic tool’ (Spatial analyst -> Local ->

Cell statistics), seasonal averages were then combined for each year in order to produce a single

layer.

To execute the model, data layers (saved in ASCII format) for all predictor variables were

converted to the same resolution (cell size), projection system and clipped to the same pixel

extent to ensure data availability for every cell and to provide MaxEnt with information on the

modelling extent. Data layers were processed using spatial analyst tools.
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Table 3.3: A list of predictor variable datasets obtained for use in the MaxEnt model together with a description and source

Parameter Sensor/Model Units Resolutions Years Source
Sea surface Chlorophyll-a MERIS mg mm−3 1 km 2002 to 2010 NEODAAS
Sea surface Temperature AVHRR ◦C 1 km 2000 to 2010 NEODAAS

Attenuation Coefficient (K490) MERIS m−1 1 km 2002 to 2011 NEODAAS
Depth SHOM and MARS m 1 km - CHARM III Sextant (Carpentier et al. 2009)

Substrate type - - 0.009 - (Larsonneur et al. 1979)
Sea surface salinity - - Point data 1981 to 2012 ICES Oceanographic Data Centre

Bed shear stress POL N.m−2 1 km - CHARM III Sextant (Carpentier et al. 2009)
Distance from coastline - m 0.009 - ArcGIS (ESRI V.10)
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3.3.3.2.1 Attenuation coefficient, K490 (March - September) These data were obtained

from NEODAAS (National Environment Research Council Earth Observation Data Acquisition

and Analysis Service; www.neodaas.ac.uk) and were generated from MERIS (MEdium Reso-

lution Imaging Spectrometer) satellite/sensor with a spatial resolution of 1 km. The data set

consists of 1359 weekly composite images (layers) for a period of 10 years between 2002 and

2011. The data were received in Geo-Tiff format having already been processed for cloud cover

and in digital number format which required extraction to real-world values (range 0.01 to 7.08

m−1) prior to use in the model. Data extraction (SST, Chlorophyll-a and K490) were performed

in ArcGIS and was set up to run semi-automatically using the Model Builder application to

create a tool to extract the data.

3.3.3.2.2 Chlorophyll-a concentration (March - September) The Chlorophyll-a data were

also obtained from NEODAAS and were generated from the MERIS satellite with a spatial res-

olution of 1 km. The data set consists of 1467 weekly composite images (layers) for a period of

9 years between 2002 and 2010. All data were received in digital number format and required

extraction to real-world values (range 0.01 - 66.8 mg m−3) prior to use in the model.

3.3.3.2.3 Sea surface temperature, SST (March - September) SST (◦C) data were also

obtained from NEODAAS and were generated from the AVHRR (Advanced Very High Res-

olution Radiometer) sensor on-board NOAAs (National Oceanic and Atmospheric Adminis-

trations) satellite platform with a spatial resolution of 1.1 km. The data set consists of 1804

weekly composite images (layers) for a period of 11 years between 2000 and 2010. All data

were received in digital number format and required extraction to real-world values (range -3 to

22.5◦C) prior to use in the model.

3.3.3.2.4 Depth Depth data were obtained from the CHARM habitat atlas via the Sextant

portal www.ifremer.fr/sextant/en/web/charm/geocatalogue and consists of

bathymetry plus mean sea level, considered to be of greatest ecological value, and supplied at a

spatial resolution of 1 km2 (Carpentier et al. 2009). The depth layer was created from a combi-

nation of bathymetric data derived from SHOM (Service Hydrographique et Oceanographique
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de la Marine) navigation charts and mean sea level data estimated with the MARS (Model for

Applications at Regional Scales) 3D hydrodynamic model (Le Roy and Simon 2003) the data

were then interpolated using ArcMap in order to create continuous raster layers with a spatial

resolution of 1 km2, before both data layers were summed using the raster calculator in ArcGIS

to create a finalised depth layer (e.g. bathymetry plus mean sea level) (Carpentier et al. 2009).

3.3.3.2.5 Bed shear stress For the purpose of this model, bed shear stress was obtained from

the CHARM habitat atlas via the Sextant portal and is based on the mean M2 tidal current on the

bottom at a spatial resolution of approximately 8 km cell size which is estimated from the 2D

hydrodynamic model of the north-west European shelf developed at Proudman Oceanography

Laboratory (POL) (Carpentier et al. 2009). Bed shear stress was then calculated as a function of

the maximum predicted tidal current and a bed friction coefficient (Carpentier et al. 2009). The

raster layer was then interpolated to create a continuous layer of 1 km2 resolution (Carpentier

et al. 2009).

3.3.3.2.6 Distance from the nearest coastline A direct distance function was used to cal-

culate the ‘Distance from the nearest coastline’ which represents the distance of every pixel

to a shapefile of the land (UK and France). This data layer was created using the ‘Euclidean

Distance’ tool in ArcGIS Spatial Analyst.

3.3.3.2.7 Sea surface salinity The data for sea surface salinity (Figure 3.4g) were down-

loaded from the International Council for Exploration of the Seas (ICES) website for surface

data which is part of the ICES Oceanographic Data Centre http://ocean.ices.dk/

data/surface/surface.htm. The data were download as CSV files which were im-

ported into ArcGIS as XY feature layers. Once imported the relevant data points within the

model location were extracted and a new point shapefile created. The individual point data

shapefiles were then merged to create a single file, using the ‘Merge’ tool in ArcGIS. This point

shapefile was then interpolated to a raster data layer (cell size [resolution] 0.009) using the ‘In-

verse Distance Weighting (IDW)’ interpolation tool. The temporal data range of this data set

varies from 1891 to 2012.
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3.3.3.2.8 Sediment The data layer on seabed sediments used in this model was obtained

from a digitised version of the ‘Larsonneur Map’ (Larsonneur et al. 1979). This layer was

originally obtained in vector format and so was converted in ArcGIS to a Raster. Only the four

main categories of seabed sediments (pebble, gravel, sand and mud) were included.

3.3.4 Non-spatial analysis

A non-spatial analysis of the data was performed prior to running the model in MaxEnt. This

was done by extracting the data for each of the predictor variables to each of the sample points

in ArcGIS. The extracted data were then exported to Excel (Microsoft, 2010) and the range and

averages for each variable assessed to provide an indication of the values within which spawning

occurs in the English Channel. These data were then compared with the data produced as part

of the model output.

3.3.5 MaxEnt pre-run settings (Step iii.)

3.3.5.1 Background points

In addition to the presence-only sample points that are provided for input to MaxEnt, a sample

of ‘background points’ were also required by the software program to provide a summary of

the environmental conditions within the landscape against which the observed presences can

be compared. These background points are created by MaxEnt during model building and can

include locations of sample points where the species is known to occur as well as unsampled ar-

eas where the presence of the species is undefined. MaxEnt was used to create 10,000 randomly

selected background points.

As described in Section 3.1.4.2, the presence-only datasets like that used within this study are of

unknown sampling method and the spatial bias associated with this dataset is unknown. Whilst

the background data are drawn at random from the entire region, occurrence data are often

spatially biased. Since spatial bias often results in environmental bias, spatial sampling bias can

affect the quality and accuracy of the model produced (Phillips et al. 2009). For example, if

locations are only sampled within the 0 to 10 m depth range then this may cause the model to

overfit the data to this region of the study area. By providing MaxEnt with a set of background
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data that has the same bias as the occurrence data, it is possible to correct this bias estimation

(Phillips et al. 2009). However, accurate information about spatial bias is usually lacking, so

explicit biased sampling of background sites may not be possible, but by providing MaxEnt

with a bias density map that contains a grid of cells that are weighted according to the degree of

sampling bias that it is expected occurred within that cell (e.g. Dudık et al. 2005) it is possible

to correct the bias at least in part.

For this purpose, a bias file was created and uploaded prior to running the model. The bias grid

was created in ArcGIS and provided MaxEnt with a grid that contains a value for each cell in

the modelling extent (in a similar format to the environmental data) following the methodology

of Tingley and Clements (2011). The bias file is used by MaxEnt during training and must

contain only positive values with the ratio of values in any two cells representing the relative

sampling effort. The bias density map was uploaded as an optional bias file within the pre-run

settings of MaxEnt.

3.3.5.2 Random test percentage

To evaluate model accuracy MaxEnt was used to randomly partitioning the original dataset into

two independent data sets. The training dataset is used to build the model and comprises 75 %

of the sample points (163 records). The test dataset comprises 25 % (54 records) of the data and

is used to test the models accuracy (Pearson 2010). MaxEnt was used to partition the original

dataset randomly into two, prior to building the model (Pearson 2010). This partitioning was

done in the pre-run settings by specifying the ‘random test percentage’ as 25, thereby informing

the software that 25% of the sample points should be set aside for use in the test dataset.

In addition, MaxEnt has the capacity to run multiple model generations from the same dataset

within a single processing session, since each MaxEnt models are nondeterministic, each run (or

replicate) will have a slightly different output, setting replicates will therefore allow an average

model of all the replicates (as well as a model for each individual replicate) to be created, as

well as the standard deviation in order to provide an approximation of the variability within the

replicate set. A set of 15 replicates was considered sufficient to reduce any spurious effects from

model. The random seed option was used to allow a different training and test partition to be
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created for each run. The user is also required to specify which of three sampling techniques

they wish to be used for the replicate runs: crossvalidation, which partitions the dataset into

a number of equal sections and for each run one replicate is used for the test dataset and the

remaining for the training dataset; Bootstrapping, which is sampling with replacement, which

means that for each replicate run, the test data were sampled from the dataset with replacement

so that the same point may be selected multiple times within each test dataset; subsampling,

is sampling without replacement, which means that for each replicate run, the test data were

sampled from the dataset without replacement so that each point may be selected only once

within each test dataset. For the purpose of this study subsampling was used as the replicate run

type.

3.3.5.3 Other settings

For the purpose of this MaxEnt model, the remaining settings for the maximum number of

iterations, which defines the time the model has to converge (in the form of number of iterations)

and the regularisation, which controls the amount of smoothing that can occur within the model,

were left at their default values of 500 and 1 respectively.

3.3.6 MaxEnt model output and evaluation (Steps iv. and v.)

3.3.6.1 Predictive habitat suitability maps

The main output from MaxEnt is a predictive distribution map. Version 3.0 and above of Max-

Ent has a feature which transforms the exponential function into a logistic function to represent

probability of presence, it is scale independent and is calibrated so that a typical presence point

has a value of 0.5 on a scale of 0 to 1 (represented using a linear scale) Phillips (2008). The pre-

dictive distribution maps are therefore produced as a logistic output, where each cell has a prob-

ability estimate of between 0 and 1 that represents the likelihood (or probability) of S. officinalis

spawning within that cell. A predicted probability close to 0 indicates that the environmental

conditions within that cell are not suitable for spawning, whilst a predicted probability close to

1 indicates that the environmental conditions are suitable for spawning. A logistic output map

is produced for each individual replicate with average, median, minimum, maximum and stan-
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dard deviation maps also produced based on the results from the entire replicate set. The output

maps are saved by MaxEnt in ascii format and can be viewed in ArcGIS following conversion to

raster format. The predictive maps use colour to reflect the predicted probability that the envi-

ronmental (and physical) conditions are suitable across the predetermined geographic location.

The warmer colours (e.g. red) indicate a high probability that the conditions at that location

are suitable for cuttlefish spawning to occur, whilst the cooler colours (e.g. blue) indicate a low

predicted probability that the conditions at the location are suitable for cuttlefish spawning to

occur (Phillips 2010).

To aid model interpretation, a binary map was produced to distinguish between ‘suitable’ and

‘unsuitable’ areas. This was done by setting a decision threshold above which the output is

considered to be a prediction of presence (or suitable habitat). A wide range of approaches

have been employed for setting decision thresholds (Liu et al. 2005) and to date there are no

set methods to ascertain the most appropriate method and in general this will depend on the

objective of the maps. MaxEnt computes a range of threshold values as part of the model

output that include the minimum training presence logistic threshold, the 10 % training presence

logistic threshold and the equal training sensitivity and specificity threshold. For this study a

liberal approach was taken with the 10 % minimum threshold used to define the minimum

probability value for suitable habitat. Using this threshold, suitable habitat is defined using

90 % of the data that was used to develop the model, if it was certain that the data used to

create the model was error free then a minimum threshold of a lower value (e.g. 5 %) could

be used. The threshold value produced in the MaxEnt output file is then used to adjust the

model classification within ArcGIS so that the final map produced has only two classifications,

representing unsuitable and suitable habitat.

3.3.6.2 Analysis of Variable contributions

Another output of MaxEnt is an estimation of the percentage contribution and permutation im-

portance for each of the predictor variables. This allows the user to analyse which variables are

contributing the most to the creation of the model and are therefore important for determining

the distribution of the modelled species. During training of the MaxEnt model an assessment
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is made as to which of the predictor variables are contributing most to the fitting of the model.

This is done by monitoring the changes in gain that are made during each step of the MaxEnt

algorithm when the ceofficients for a single feature are modified, the increase in gain is then

assigned to the environmental variable or variables that the modified feature depends on. At the

end of the training process the total values for each environmental variable are then converted

to percentages to provide an estimation of the contribution of each variable to the model. These

values of percentage contribution are heuristically defined (dependent on the particular pathway

used by the algorithm to obtain the optimal solution) and may vary between replicate runs. An

average value is therefore taken across the entire replicate set for use in the final analysis.

During the training process a second measure of variable contribution is also calculated that is

termed as permutation importance. In contrast to the percentage contribution value, the value for

permutation importance is dependent only on the final MaxEnt model, not the pathway that the

algorithm used to generate it. Permutation importance is determined for each predictor variable

by random permutation of the values of that variable among the training points (both presence

and background) and measuring the resulting decrease in training AUC. A large decrease in the

training AUC indicates that the model depends heavily on that variable and a high permutation

importance is generated.

3.3.6.3 Jackknife

In addition to the analysis of variable contributions (percentage contribution and permutation

importance) that are calculated, it is also possible to determine the importance of each predictor

variable to the model using a jackknife test that is performed within the MaxEnt software. The

jackknife test provides two separate measures, firstly it tests the gain of the model when a single

variable is excluded in turn and the model created using the remaining variables. Secondly it

tests the gain of the model using only that variable in isolation. A model with all variables

included is also run in order to provide a control gain with which to compare the results. The

jackknife test therefore allows the user to determine the overall improvement in gain and loss

of gain in a model when each individual variable is either included or excluded (Phillips and

Dudík 2008). The results of these models are displayed in a series of three bar charts (training,
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test and AUC) as part of the model output.

Gain is a term closely related to that of deviance which is commonly used in GLMs and GAMs

to measure the goodness of fit (Phillips 2010). Within the context of MaxEnt, gain indicates how

closely the model concentrates around the presence samples (Phillips 2010). At the beginning of

the model run, the gain starts at 0 and increases during the run to an asymptote (Phillips 2010).

In mathematical terms the gain is defined as the average log probability of the presence samples,

minus a constant that makes the uniform distribution have zero gain (Phillips 2010). During

model training MaxEnt calculates the contribution of each of the predictor variables to the

model by measuring the gain. Whilst progressing through the MaxEnt algorithm, modifications

to the single feature coefficients are made in order to increase the gain of the model, the variable

that the feature depends on is then assigned this increase in gain. At the end of the training

process, the gain assigned to each variable is then converted into percentages and the results

presented in table format (Phillips 2010).

3.3.6.4 Marginal response curves

The marginal response curves show how the MaxEnt prediction is affected by each of the pre-

dictor variables. This is done by displaying how the logistic prediction (y-axis) changes as each

target predictor variable is varied (x-axis), whilst all other variables remain constant (at their

average sample value).

3.4 Results

3.4.1 Non-spatial analysis

The data collated on egg cluster presence records indicate that within the English Channel,

potentially suitable habitat areas for S. officinalis spawning occur within a set range of condi-

tions for each of the predictor variables (Table 3.4). These include a weak bed shear stress,

sea surface temperatures of 10 ◦C and above, shallow water depths of between 0 to 30 m, soft

sediment types (e.g. sand and mud), a salinity of between 34.5 to 35.5, low Chlorophyll-a and

K490 levels, and within close proximity of the coastline (2,000 to 12,000 m).
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Table 3.4: Environmental limits for spawning in the common cuttlefish S. officinalis in the
English Channel based on the outputs of the non-spatial model (NSM) and spatial
model (SM) created within this study

Predictor variable S. officinalis (NSM) S. officinalis (SM)
Months March to September March to September

Bed shear stress 0.4 to 1.4 N.m−2 0.39 to 0.75 N.m−2

SST 10 to 19 ◦C 14 to 18 ◦C
Depth 0 to 30 m 4 to 23 m

Substrate type sand and mud -
Salinity 34.5 to 35.5 34.6 to 35.2

Chlorophyll-a 0.5 to 3.0 mg m−3 1.1 to 2.2 mg m−3

K490 0.1 - 0.4 m−1 -
Distance from coastline 2.0 to 120 km 2.2 to 121 km

3.4.2 MaxEnt model

3.4.2.1 Collinearity among predictor variables

From all the pairs of variables analysed using the Pearson’s correlation coefficient, only two

pairs of variables were found to have a value greater than the threshold values of between r =

-0.7 to 0.7. After this level there is considered to be colinearity between the variable pair and

one of the two correlated variables was excluded, as specified previously in Section 3.3.3.1.

These pairs included chlorophyll-a and attenuation coefficient K490 (Figure 3.5) which had a

Pearson’s correlation coefficient of 0.95 and sediment type and bed shear stress which had a

Pearson’s correlation coefficient of 0.79. Attenuation coefficient K490 and Sediment type were

both excluded from the MaxEnt model so as to avoid issues with collinearity. The results of all

the Pearson’s correlation coefficient analysis are presented in Table 3.5.
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Figure 3.5: Correlation between Chlorophyll-a concentration and the attenuation coefficient
(K490) within the English Channel
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Table 3.5: Pearson correlation coefficient analysis among pairs of predictor variables

Predictor variable pairs Pearson correlation coefficient Above exclusion threshold

K490&SST 0.038 No

K490&Chl-a 0.949 Yes

K490&Sed 0.047 No

K490&Sal -0.040 No

K490&Dist -0.490 No

K490&Depth -0.551 No

K490&Bstress 0.050 No

SST&Chl-a 0.046 No

SST&Sed -0.017 No

SST&Sal 0.355 No

SST&Dist 0.184 No

SST&Depth 0.173 No

SST&Bstress -0.124 No

Chla&Sed -0.007 No

Chl-a&Sal -0.106 No

Chl-a&Dist -0.458 No

Chl-a&Depth -0.520 No

Chl-a&Bstress -0.016 No

Sed&Sal 0.089 No

Sed&Dist -0.078 No

Sed&Depth 0.015 No

Sed&Bstress 0.791 Yes

Sal&Dist 0.193 No

Sal&Depth 0.212 No

Sal&Bstress 0.045 No

Dist&Depth 0.517 No

Dist&Bstress -0.082 No
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3.4.2.2 Presence maps

The presence maps created from the MaxEnt model (Figure 3.6) show the areas within the

English Channel that have suitable conditions predicted for S. officinalis spawning. Figure 3.6a

illustrates the average predictions (based on all 15 replicates) on a logistic scale from 0 to 1,

with warmer colours (e.g. red (1)) showing areas with better predicted conditions than cooler

colours (e.g. blue (0)).

Figure 3.6b illustrates the average predictions (based on all 15 replicates) following adjustment

to the ten percentile training presence logistic threshold (0.182) with the output data divided into

two categories: areas of suitable habitat (above 0.182) and areas of unsuitable habitat (below

0.182).

To investigate the prediction in more detail the U.K. coast is taken as an example. Here it is

evident that a large portion of the inshore area has been predicted as suitable, with a larger

proportion in the east of the Channel than the west (Figure 3.6b) for cuttlefish spawning to

occur. The map highlights several areas along this coastline as suitable for spawning, where

major inshore cuttlefish trap fisheries are known to occur (labelled as 1 - Torbay, 2 - Poole,

3- Selsey and 4- Hastings on Figure 3.6b). However, there are also several areas along this

coastline which the map has highlighted as unsuitable for cuttlefish spawning and where major

inshore cuttlefish trap fisheries do not occur (labelled as 5 - St Austell, 6- West Lullworth area,

Figure 3.6b). In addition the entire offshore, deep water area in the centre of the English Channel

has also been predicted as unsuitable for cuttlefish spawning.
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(a)

(b)

Figure 3.6: Predicted habitat suitability map for S. officinalis spawning distribution within the
English Channel. (a.) Logistic output, presence predicted from 0 to 1. Warmer
colours (e.g. red and orange) indicate a high probability that the conditions at that
location are suitable for spawning to occur. Cooler areas (e.g. blue and green)
indicate a low predicted probability that the conditions at the location are suitable
for spawning to occur. (b.) Binary output, predictions were classified into two
categories ‘unsuitable habitat’ and ‘suitable habitat’ using a threshold of 0.182
as specified by the ten percentile training presence logistic threshold. The map
highlights several areas along the UK coastline as suitable (1 - Torbay, 2 - Poole,
3- Selsey and 4- Hastings) and unsuitable (5 - St Austell, 6- West Lullworth area)
for spawning 120



3.4. RESULTS

3.4.2.3 Model evaluation

3.4.2.3.1 Area under the receiver operating characteristics curve (AUC) Figure 3.7a il-

lustrates the receiver operating characteristics (ROC) curves for both training and test data. The

red line represents the fit of the model to the original training data, whilst the blue line represents

the fit of the model to the testing data and is a good indicator of the models predictive power.

The area under the ROC curve (AUC) value (averaged over 15 replicates) for the training data

was 0.938 (SD ± 0.005) and the AUC value for test data was 0.909 (SD ± 0.017) (Figure 3.7a),

which is higher than by chance (AUC =0.5). Figure 3.7b illustrates the ROC curve (averaged

over 15 replicates) for the test data, plus and minus one standard deviation, in order to indicate

the variability. According to the assessment in Table 3.2 both the training and test AUC values

indicate excellent predictive ability of the model.
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(a)

(b)

Figure 3.7: Receiver operating characteristic (ROC) curve averaged over 15 replicate runs for
both training and test data. (a.) ROC curve for both training and test data. Training
data (red line) has an area under the ROC curve (AUC) of 0.938; Test data (blue
line) has an AUC of 0.909; Random prediction (black line) has an AUC of 0.5. (b.)
ROC curve for test data, with 1 standard deviation shown (black dotted lines)
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3.4.2.3.2 Predictor variable importance The relative contributions of the predictor vari-

ables to the MaxEnt model are indicated in Table 3.6. The variable with the highest percentage

contribution was distance from coastline with 27.5 %, closely followed by depth (23.9 %),

chlorophyll-a concentration (22.6 %) and bed shear stress (20 %). However, whilst distance

from coastline, depth and bed shear stress all have accompanying high permutation importance

(36.5 %, 23.8 % and 33.6 % respectively), chlorophyll-a has the lowest permutation importance

of all the variables with a value of only 1.4 %.

The remaining two variables (sea surface salinity and sea surface temperature) both have a low

percentage contribution (4 % and 1.9 % respectively) and a low permutation importance (2.5 %

and 2.3 % respectively).

Table 3.6: Relative contributions of the predictor variables to the MaxEnt model

Variable Percentage contribution Permutation importance

Distance from coastline 27.5 36.5

Depth 23.9 23.8

Chlorophyll-a 22.6 1.4

Bed shear stress 20 33.6

Sea surface salinity 4 2.5

Sea surface temperature 1.9 2.3

3.4.2.3.3 Jackknife The results of the jackknife test are displayed within a series of three bar

charts (Figure 3.8). In Figure 3.8a, the predictor variables with the highest regularised training

gain when used in isolation were depth (gain = 1.17), chlorophyll-a (gain =1.06) and distance

from coastline (gain = 1.02) (longest black bars in Figure 3.8a), indicating that in isolation,

these variables provide the most useful information for predicting the presence of S. officinalis

spawning, with a good fit to the training data. In addition, the predictor variable that decreases

the training gain most when removed from the model was bed shear stress (shortest grey bar in

Figure 3.8a), indicating that this variable may contain the most information that is not present

within the other variables.
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A comparison of the three bar charts is useful for exploring the model further, for example for

this model, depth, chlorophyll-a and distance from coastline have the highest gain under both

training and test conditions, when used in isolation, suggesting that these predictor variables

might be the most transferable between models.
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(a)

(b)

(c)

Figure 3.8: Jackknife of (a) regularised training gain, (b) test gain and (c) AUC, for predicted
spawning distribution of S. officinalis within the English Channel. The black bars
represent model gain using only that variable and the grey bars represent the effect
of removing that variable from the model, the red bar indicates the total gain for
the model with all variables. 125
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3.4.2.3.4 Marginal response curves The marginal response curves (Figure 3.9) give an in-

dication of the range of values that have the highest and lowest predicted probability of suitable

conditions. For depth the highest response in terms of predicted probability of suitable con-

ditions is between 3 and 26 m and declining from this point onwards. For chlorophyll-a the

highest response in terms of predicted probability of suitable conditions falls between 1.0 and

2.5 mg.m−3 whilst the lowest response falls between 2.5 and 5.0 mg.m−3. For distance from

coastline the highest response is between 2.2 and 121 km from the coastline, after which the re-

sponse again declines. For bed shear stress the lowest response in terms of predicted probability

of suitable conditions falls between 1.5 and 3.0 whilst the highest response falls between 0.5

to 1.5, indicating a preference for areas with weaker bed shear stress. For sea surface salinity

the marginal response curve is difficult to interpret, although there is a change in response be-

tween approximately 33 to 35. The marginal response curve for sea surface temperature is also

difficult to interpret but again there is a change in response pattern between 14 and 18 ◦C. A

summary of the highest response values for each predictor variable are also presented in Table

3.4.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: The average marginal response curve (black line) for each predictor variable, with
standard deviation (dotted red lines) displayed (a) Bed shear stress, (b) Depth, (c)
Salinity, (d) Chlorophyll-a, (d) Sea surface temperature, (e) distance from coast-
line. The curves indicate how the logistic prediction (y-axis) changes as each target
environmental variable is varied (x-axis), with all other variables remain constant
(at their average sample value).
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3.5 Discussion

The aims of this study were to describe the potential spawning distribution of S. officinalis

within the English Channel and to understand the influence of environmental and physical con-

ditions on this predicted distribution pattern. Although a few studies have already begun to

investigate the topic of spatial and temporal distribution patterns of this species (e.g. Wang

et al. 2003; Carpentier et al. 2009; Valavanis et al. 2002), the present study differs from these

in a number of ways. Firstly, previous studies (e.g. Wang et al. 2003; Carpentier et al. 2009;

Valavanis et al. 2002) have focused on the use of occurrence records from all life stages of the

target species, with data sourced from commercial fisheries landings (Wang et al. 2003; Vala-

vanis et al. 2002) or targeted research surveys (e.g. Carpentier et al. 2009). In contrast, this

study makes use of readily available presence-only data sets from a range of sources including

both archival and ad-hoc records. In addition, only the occurrence records from a key life stage

(spawning), with presence records of benthic egg clusters were utilised as a means to represent

a true measure of spawning. Secondly the type of methodology differs from previous stud-

ies which use either geographic information systems to assess correlations with environmental

characteristics (Wang et al. 2003; Valavanis et al. 2002) or presence-absence techniques such

as GLMs and GAMs (e.g. Carpentier et al. 2009). In contrast, this study uses a novel presence-

only species distribution modelling technique known as MaxEnt, a method that has not been

used previously for studying this species.

3.5.1 Spawning distribution of S. officinalis within the English Channel

The model predicted areas suitable for S. officinalis spawning in coastal areas on both sides of

the English Channel, with a predominance of suitable habitat predicted in the eastern part and

a smaller fraction, of more discrete sites, predicted in the western part. Areas where important

targeted coastal trap fisheries for S. officinalis exist were all identified by the model as suitable

areas for spawning, included: Torbay, Exmouth, Poole, Selsey, Eastbourne and Hastings on the

UK coast and Agon-Countainville, Langrune-sur-mer on the French coast (Figure 3.6b).
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3.5.1.1 Western and Eastern English Channel

The MaxEnt model predicted a larger proportion of suitable spawning habitat in the Eastern

English Channel relative to the Western English Channel. There are several possible theories as

to why this spatial distinction in the model prediction might have occurred. The first is based on

sample selection bias, which indicates a slight predominance of samples in the Eastern Channel

compared with the Western Channel, however a discussion on bias is made separately (Sec-

tion 3.5.3.3). Another possible explanation for the higher fractional predicted area of suitable

spawning habitat in the eastern part of the Channel compared with the western part may be the

innate difference in hydrodynamic and physical conditions which vary distinctly between the

two areas, as outlined in (Dauvin 2012) and summarised in Table 3.7. For example, in the west-

ern part of the Channel, the hydrological and oceanographic conditions are mainly dominated

by the input of water from the Atlantic; whilst in the eastern part, the large fresh water input

from the Seine estuary plays an important role in dictating the conditions, particularly on the

French coast (Dauvin 2012). The sediment in the Western Channel is generally coarser than that

found in the Eastern Channel with a decrease in the benthic species from west to east (Pawson

1995). The Western Channel is known to account for approximately 63 % of the English Chan-

nel, covering a total area of 56,452 (Stanford and Pitcher 2004), however, despite its size, there

are still many aspects of its features that remain unknown. For example, whilst several studies

have studied the benthic macrofaunal assemblages within the Eastern Channel (e.g. Sanvicente-

Añorve et al. 2002), a detailed study regarding the relationships of these assemblages within

the Western Channel has yet to be undertaken (Araujo et al. 2005). Further research is therefore

required to elucidate the true nature of the differences between these two areas.

The fisheries that exist within the English Channel have also been studied in some detail with

ecosystem models exploring the interactions between a variety of aspects including economic,

technical, biological and trophic (Araujo et al. 2005). One such model, produced by (Stanford

and Pitcher 2004) for the whole English Channel, lead its authors to postulate that the signif-

icant distinctiveness that exists between the two areas (Eastern and Western Channel) would

certainly warrant their study as two separate models. This distinctiveness is manifested not
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Table 3.7: General characteristics of the Western and Eastern basins of the English Channel,
highlight the similarities and differences between these two area (Adapted from
Dauvin (2012)

Oceanographic characteristic Western basin Eastern basin
Mean depth 80 m 50 m

Maximum depth 174 m 100 m
Major estuary Absent Seine
Water clarity High Low

Maximum tidal range 13.2 m 8 m
Maximum bottom current speed 10 knots 5 knots
Maximum bottom temperature 17◦C 20◦C
Minimal bottom temperature 8◦C 4◦C

only in the physical and hydrodynamic features of the areas but also in the ecology and fish-

eries, with examples of fish stocks confined to single side of the Channel, or that exhibit very

different long-term trends between the two sides (e.g. sole, Solea solea) (Araujo et al. 2005).

In addition, for the commercial species Atlantic cod Gadus morhua the distribution and abun-

dance trends of this species between the two areas has led to its management as two separate

stocks with the Western Channel cod treated as part of the Celtic Sea Stock and the Eastern

Channel cod as part of the North Sea Stock (Araujo et al. 2005). The evidence that suggests the

Eastern and Western Channel are different enough, both hydrodynamically and ecologically, to

be considered, managed and modelled as two separate entities is growing. For the purpose of

S. officinalis a more in depth study incorporating sample points across the entire range of the

lifecycle (e.g. adults, juveniles and eggs) will be required in order to investigate whether the

distribution of this commercial fishery resource is sufficiently different between these two areas

to require separate consideration.

3.5.2 Species-habitat relationship

The internal validation procedure of the MaxEnt model indicates that it performs well in terms

of predictive ability (test AUC =0.909), and identifies three variables as being most relevant for

predicting the spawning distribution of S. officinalis, these are depth, chlorophyll-a concentra-

tion and distance from coastline, with bed shear stress providing additional useful information.

As indicated in Table 3.4, the MaxEnt model predicts similar suitable conditions as predicted
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by the non-spatial analysis, with cuttlefish spawning occurring between the months of March

to September, in shallow (4 to 23 m depth), inshore (2.2 km to 121. km distance from the

coastline) areas, at warmer temperatures (between 14 to 18 ◦C, SST), within a moderate range

of salinity (34.6 to 35.2), in areas of weaker bed stress (0.39 to 0.75 N.m−2) and with relatively

low Chlorophyll-a concentrations (1.1 to 2.2. mg m−3). These conditions will be discussed in

more detail individually.

3.5.2.1 Depth

Within this model, depth was found to be an important factor in determining the spatial dis-

tribution of spawning in S. officinalis, with a relatively high percentage contribution (23.9%)

together with a relatively high percentage permutation importance (23.8%). In addition, the

jackknife test indicated that this variable, when used in isolation, was the most important in

terms of both training gain (1.17) and test gain (1.14) when averaged over all 15 replicates.

This suggests that of the predictor variables it might be the most important and the most trans-

ferable between models, its transferability is likely given the static nature of depth as a long-term

factor, when compared with the temporally changing variables such as SST or Chlorophyll-a

concentration. The marginal response curve indicated that the values for depth that predicted

the best conditions suitable for spawning were between 4 and 23 m, which is congruent with

what is known about the species life-history traits, with migration of spawning adults to the

shallow coastal waters of the English Channel in Spring (Boletzky 1983; Boucaud-Camou and

Boismery 1991), as well as with data collated from other populations of S. officinalis within the

eastern Mediterranean (Valavanis et al. 2002), which suggests that cuttlefish spawning occurs at

depths ≤ 50 m. English Channel fisheries data for this species also supports this assertion with

deep water, offshore trawling ceasing during the summer period (from March onwards) when

both adult and sub-adult cuttlefish have moved inshore (Dunn 1999).

However, the sample point data for egg clusters that were collected for the model, indicate that a

small proportion of egg clusters have been located in the centre of the English Channel (Figure

3.3). A study by Challier et al. (2005a) that investigated trends in recruitment of S. officinalis

within the English Channel indicated that although the majority of recruitment occurred in au-
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tumn, some recruitment was found to occur throughout the year. One of the explanations that the

authors made to account for these findings was that as spawning takes place from spring through

summer, when spawning adults occur both offshore (prior to or during their migration) and in-

shore (following migration), that eggs could potentially be laid in both shallow, warm waters as

well as deeper, cold waters (Challier et al. 2005a). As a result of the temperature dependent rate

of embryogenesis in this species, eggs spawned in deeper, colder waters would take longer to

develop and hatch later than those spawned inshore (Challier et al. 2005a). Whilst it is entirely

possible that some spawning does occur in the deeper waters of the Channel as evidenced both

by the findings of Challier et al. (2005a) and the location of cuttlefish egg clusters within the

presence-only dataset used for model construction (Figure 3.3), the model constructed in this

study indicates that spawning predominately occurs in shallow waters. In addition, the benthic

nature of cuttlefish spawning, requires that females have access to a range of benthic supports to

attach their eggs to, in order that the eggs receive adequate aeration and water circulation, such

structures are likely to be limited in some deeper offshore waters of the Channel where gravel

and pebble sediments dominate (e.g. Figure 3.4h). Although some structures which are suitable

for spawning (e.g. Hydroids and Porifera spp.) may occur in these deeper offshore waters, such

spawning (if apparent) is likely to be limited in contrast to shallow inshore spawning, possibly

occurring only under certain environmental conditions or situations.

3.5.2.2 Chlorophyll-a

Within this model, chlorophyll-a, was found to be an important factor in determining the spatial

distribution of spawning in S. officinalis, with a high percentage contribution (22.6 %) but a

low percentage permutation importance (1.4 %). In addition, the jackknife test indicated that

this variable was one of the two most important in terms of training gain (1.06) and test gain

(1.12), when used in isolation. The marginal response curve also indicated that the values

of chlorophyll-a concentration that predicted the best conditions suitable for spawning was

between 1.1 and 2.2 mg m−3.

Whilst the sea surface concentration of chlorophyll-a is not likely to directly determine the dis-

tribution of spawning in this nekto-benthic species, which attaches its eggs to structures that
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radiate from the seabed, the role of chlorophyll-a has been shown in other studies to provide

a useful indicator of primary productivity (Pierce et al. 2002). Chlorophyll-a concentration is

often used as a proxy for primary production (Friedland et al. 2012), which may in turn related

to food availability and abundance, and has also been found to be positively correlated with

fisheries yield in some ecosystems (e.g. Friedland et al. 2012). These factors are believed to

be important in cephalopod distribution and in particular for the distribution of paralarvae and

hatchlings (e.g. Vidal et al. 2010). A similar relationship was found between the distribution of

Octopus vulgaris and chlorophyll-a in the Mediterranean, when modelled with MaxEnt (Her-

mosilla et al. 2011), although this study was not focused on spawning distribution in particular.

A study by Smyth et al. (2010) which investigated the environmental conditions in the Western

English Channel state that typical background chlorophyll-a concentrations for this area are

around 1 mg.m−3 throughout the year. The authors also note that whilst in winter (October to

March) coastal areas appear to be characterised by higher chlorophyll-a concentrations, that

this elevation could actually be caused by an artefact of increased suspended particulates and

dissolved organic matter which causes an increase in the levels recorded by the satellite (Smyth

et al. 2010). This, combined with the colinearity of the attenuation coefficient (K490) (represen-

tative of turbidity) and chlorophyll-a concentration that was recorded in this study and required

the removal of one of these variables from the model building process, could indicate that

cuttlefish use areas with low chlorophyll-a concentration (which would also represent low con-

centrations of K490) as these areas have a lower turbidity than areas with higher chlorophyll-a

concentrations.

The English Channel is subject to spring blooms where chlorophyll-a values increase in the

English Channel within June, July and August (Smyth et al. 2010). Creating a long-term average

for the chlorophyll-a satellite data smoothes out point events and lessens their impact. As such,

the impact of variations both spatially and temporally in primary production relating to the

availability of food within these inshore coastal areas might have been reduced within this model

and alternative ways to incorporate these long-term, variable datasets need to be investigated in

the future.
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3.5.2.3 Distance from the coastline

Within this model, distance from coastline was found to be an important factor in determining

the spatial distribution of spawning in S. officinalis, with a high percentage contribution (27.5%)

and the highest percentage permutation importance (36.5%). In addition, the jackknife test

indicated that this variable was one of the three most important in terms of both training (1.02)

and test (1.03) gain. The marginal response curve also indicated that the values of distance from

the coastline that predicted the best conditions suitable for spawning, were between 2.2 and 121

km from the nearest coastline.

Within the English Channel, S. officinalis undertake seasonal migrations, from the deeper off-

shore waters where they spend the winter months, to the shallow, inshore waters in the spring

and summer, when mature adults spawn. The results of the model are congruent with this aspect

of their life cycle, predicting the area between 2.2 and 121 km from the coastline to be the most

suitable for spawning to occur within. A study undertaken by Valavanis et al. (2002) which

developed a marine information system for cephalopod fisheries in the eastern Mediterranean

found that L. vulgaris and S. officinalis selected areas to spawn that were closer to the coast

when the coastline was rocky and sharp and further away from the coast when the coastline was

smooth and sandy. Future analysis using information on the composition of the coastline could

be of interest to see if a similar effect is observed in the English Channel.

3.5.2.4 Bed shear stress

Bed shear stress, was found to be an important factor, within this model, for determining the

spatial distribution of spawning in S. officinalis, contributing to the model the most information

that was not contained by any other variable producing the lowest training (1.44) and test (1.35)

gain value when excluded from the model during the jackknife test. In addition, the percentage

contribution to the model (20 %) from this variable was relatively high with a corresponding

high value for permutation importance (33.6%). The marginal response curve for this variable

indicated that the values of shear bed stress that predicted the best conditions suitable for spawn-

ing were between 0.39 to 0.75 N. m−2, indicating a preference for areas with weaker shear bed

stress, such as sheltered bays with fine sandy sediment.
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As part of the CHARM II project, a distribution model of all life stages of S. officinalis was

created in the eastern English Channel for the two months of July and October. The results of the

July model, which occurs during the spawning season, indicated similar results to those reported

in this study, suggesting that the species is tied to areas of weak bed shear stress (Carpentier

et al. 2009). Such areas are often found in sheltered bays and are defined by the presence of fine

sand and mud as a result of the associated weak currents (Dauvin 2012). For S. officinalis which

are benthic spawners, the importance of shear bed stress as a factor may be two-fold, to begin,

the task of attaching eggs to a structure, which is performed by the female using her tentacles

to ‘tie’ each individual egg around the structure, by means of a basal ring. This is a complex

task that may be best achieved in areas where the currents are low and thus the effect of water

movement, on both the structure and the spawner may be reduced. In addition, in areas of weak

bed stress, the currents are reduced and the areas are defined by finer sediments which have

a higher degree of retention in such conditions, the type of sediment present will additionally

affect the type of structures available for spawning and may be important in determining the

degree to which a site is utilised for spawning, with cuttlefish spawning grounds thought to

occur predominantly in sandy areas (Nixon and Mangold 1998).

3.5.2.5 Salinity

As a predictor variable, sea surface salinity appears to contribute minimally to the model with

a low percentage contribution (4 %) and permutation importance (2.5%). This suggests that

within this area salinity is not a determining factor in the spawning distribution of S. officinalis.

In addition, the jackknife values for this variable in isolation were also low for both training

(0.36) and test (0.42) gain, with the marginal response curve indicating a change in the pattern

of response with a sub-peak at 34.6 to 35.2. However, generally the curve indicates a suitability

across the entire range of salinity values (e.g. 25 to 37). This suggests a large degree of tolerance

to variations in salinity, a result that is supported by the model produced in CHARM II, which

also indicates a large tolerance to salinity conditions for all life stages of this species in the

eastern English Channel during the month of June (Carpentier et al. 2009).

Within the literature a salinity of 28 or greater has been considered as optimal for spawning
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grounds of S. officinalis (Paulij et al. 1990a; Boucaud-Camou and Boismery 1991; Mangold-

Wirz 1963) with salinity shown to be an important factor for successful embryonic development

(Paulij et al. 1990a). The benthic nature of spawning in this species means that the eggs are fixed

to a variety of substrata on the sea floor, rendering them stationary and subject to any fluctua-

tions in salinity that may occur at the spawning site (e.g. river outflow, rainfall etc.). A study

by Paulij et al. (1990a) which investigated the effects of salinity on the embryonic development

of S. officinalis eggs in the Delta found that at a salinity of 28.7 or less, the developmental

rate of embryos was significantly reduced, whilst at a salinity of 22.4 or below, malformed em-

bryos were found. The authors suggest these effects of reduced salinity may be a result of the

increased osmotic stress experienced by the developing embryo which causes large energy de-

mands, thereby reducing the energy reserves available for successful development (Paulij et al.

1990a). However, it has been observed that if individuals are slowly acclimatised to salinity

changes, it is possible for ELS of S. officinalis to survive for some time at lower salinities (e.g.

18 or 19) (Boletzky 1983; Paulij et al. 1990a).

The effects of salinity on embryogenesis and hatching are important and confirm S. officinalis

niche as an essentially marine species, unsuited to spawning in brackish water (Palmegiano

and d’Apote 1983). This means that in order to maximise the survival potential of eggs and

hatchlings, sexually mature females must select a spawning site with a suitable salinity, in an

area where fluctuations (e.g. river input, rainfall runoff etc.) are minimal. As such the area

within the English Channel which is most affected by salinity variations, and for which this

factor may be of more importance in determining spawning distribution at a local scale, is

the area in the eastern Channel near to the Seine Estuary, where fresh water inflow creates a

desalinated corridor parallel to the French coast, known as the coastal river (Dauvin 2012),

however further investigation would be required to determine if annual or seasonal salinity

variations in this area are great enough to limit spawning. In addition, the mechanism by which

cuttlefish are able to assess the salinity of the ambient water is still not well known, and requires

additional study to determine if it is essential process by which spawning females determine site

selection.

136



3.5. DISCUSSION

3.5.2.6 SST

SST also appears to contribute minimally to the model, with the lowest percentage contribution

(1.9 %) and a low permutation importance (2.3 %). In addition, the jackknife value for this

variable, in isolation, was also the lowest for both training (0.33) and test (0.36) gain. The

marginal response curve for this variable indicates that the best predicted conditions for habitat

suitability for temperature are between 24 to 18◦C. This is consistent with what is known about

the life cycle of this species which suggests that spawning adults migrate inshore to spawn

when the water temperature is around 12◦C (Boucaud-Camou and Boismery 1991) and that in

general temperatures of between 9.5− 20◦C are considered optimal for this species(Mangold-

Wirz 1963).

There are several reasons why SST may not have factored as an important variable in predicting

suitable spawning areas for S. officinalis within the English Channel. Given the benthic nature

of spawning in this species, it could be that sea bottom temperature (SBT) might be a more use-

ful predictor variable, however, this data is harder to obtain and a study by Wang et al. (2003)

indicated that in the English Channel these two variables were highly correlated. The other

issue may be the temporal limitations of the data layer which is a long-term median of March

to September between 2000-2010. By averaging the date many of the temporal patterns that are

evident in the data during these time periods (Figure 3.10), as well as inter-annual differences,

may not be evident. Whilst a previous study within the English Channel, has shown SST to

affect the extent of cuttlefish migrations, with an expansion of their distribution more northerly

in warmer years and shifting further south in cooler years (Wang et al. 2003). However, the

authors suggest that whilst this indicates a positive correlation between local abundance of S.

officinalis and SST during the spawning season, it is difficult to determine whether this reflects

a causal link or not (Wang et al. 2003), but highlights the need to incorporate temporal temper-

ature variability into the model.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: Maps showing the data for SST: (a) long-term average (March to September), (b)
Long-term average March (c) Long-term average April, (d) Long-term average
May, (e) Long-term average June, (f) Long-term average July, (g) Long-term
average August, (h) Long-term average September
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3.5.3 Data limitations

A model is a means of simplifying or approximating a complex reality using the most accurate

data and information available. It must therefore be noted that any model will always incorpo-

rate at least a degree of inaccuracy by its very nature, with the quality of the model produced

depending heavily on the quality of the data and methods available for its constructions (Wil-

son et al. 2009). However, despite this caveat, SDMs are useful tools that allow an assessment

of species distribution to be made, providing important information on the way that a species

interacts and responds to environmental conditions.

3.5.3.1 Long-term averages

In terms of the predictor variables, one of the other limitations of the data, is the inability to in-

corporate the information on temporal variability of these factors, such as SST or Chlorophyll-a.

For these factors conditions can change on daily, monthly and annual scales. A large portion

of this temporal information is therefore lost when the data layers are averaged to produce the

long-term median. Long-term averages were used in this study to allow a large-scale model of

spawning distribution to be created using remotely sensed satellite data. One solution to this

problem would be to create models for different months within the spawning season or for dif-

ferent years, where the data are combined into monthly or annual median composites, rather

than the long-term composite used in this model. This type of modelling would also be of in-

terest given the large inter-annual variations in recruitment (and associated landings) that result

from variability in annual environmental conditions. There is the potential that large variability

in the quantity and location of predicted suitable spawning habitat may occur between years as

well. However, the major restriction on this approach is the lack of sample point data available

across these smaller timescales, with the original dataset of 163 points, reduced significantly

when broken down by individual months or years across a 10 year timescale.

3.5.3.2 Spatial resolution and data availability

One of the biggest limitations of the data is the lack of availability of detailed habitat maps,

indicating the type and distribution of habitats within the Channel. Whilst, high quality habitat
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data does exist for several restricted areas of the Channel, is it a long way off being created for

the entire extent of the study area and highlights an important data limitation in this study. For

example, a large area of the Channel was predicted by the model as being potentially suitable

for spawning, in terms of the conditions outlined by the predictor variables. However, the

benthic nature of spawning in this species with eggs being individually attached, by means of

the basal ring, to structures that radiate from the seabed, mean that spawning can only occur

within predicted areas that also contain suitable spawning structures onto which eggs can be

laid. The lack of suitable habitat maps currently restricts the integration of such data into the

model.

The spatial resolution of some of the data layers is also a limitation on the model, for example,

the data layer for sediment is high quality at a large scale across the entire Channel, but when

it is investigated at a finer geographic scale the detail is lacking. For example, the area in the

west part of the Channel around Lyme Bay is labelled entirely as ‘mud’(Figure 3.4h), whereas

in reality this area is actually composed of a variety of sediment types, but the low resolution of

the data does not reflect these intricacies with sufficient depth. For regional areas where higher

resolution data exists (e.g. high resolution sediment data and/or high resolution marine habitat

maps), local models could be created at a finer scale. This would allow additional detail to be

input into the model and may enable a better resolve of suitability for spawning to be achieved.

However, in order for such modelling to be undertaken suitable sample point data for cuttlefish

eggs would also need to be available at this regional scale.

3.5.3.3 Sample selection bias

The issue of sample selection bias is another limitation of the presence-only dataset used within

this study. Whilst, such issues are known to have a greater impact on models derived from

presence-only data relative to those derived from presence-absence data, absence datasets are

not without their own sets of issues and bias. when sampling bias is known, it can be addressed,

but one of the biggest issues within presence-only datasets is simply that this bias is unknown.

Several new techniques are emerging to deal with bias in these models, including target group

sampling for background data (Phillips et al. 2009) and creating bias map files (Dudık et al.
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2005). In this study a bias density map was used to guide the model with relation to the sampling

bias within the presence-only dataset. However, a thorough and comparative examination of

different bias mitigation techniques and the effects that each has on model output and model

performance would provide useful information on the degree to which sampling bias within

these datasets impacts this and other such models.

3.5.3.4 Data errors:

Errors may also occur within both the sample point dataset and predictor variable data layers

from a range of sources, which for the sample points can include misidentification of species,

transcriptional errors or lack of geographic detail (Phillips et al. 2006). The data obtained

from DAASH which is a MEDIN standard data archive centre has already undergone rigorous

checks to ensure as far as possible that all these issues are addressed. In addition, records from

bibliographic and fisheries survey sources are considered to be of high quality as these are often

studies performed by experts in the field of study, and will likely have undergone peer-review.

The occurrence records submitted to us by the general public, where possible are included with

photographic detail in order that the record can be validated for correct species identification

and geographic coordinates, along with a description of the dive location are also obtained to try

and limit any sources of error. Prior to use in the model, the sample point dataset were plotted

spatially in ArcGIS and checked visually for any obvious transcriptional errors.

In terms of the sources of error that may exist within the predictor variable data layers, these

could include, the initial choice of data layers, correlation among variables, issues with resolu-

tion, interpolation of lower-resolution data, loss of information due to amalgamation of temporal

series data, errors in data manipulation or data processing (Phillips et al. 2006). To eliminate

issues with correlation among variables, a Pearson correlation analysis was performed and for

any pairs of variables with a correlation of r ≥ 0.7, one variable from the pair was excluded.

In terms of errors in data manipulation and processing, all data layers and calculations were

checked and interpolation avoided where possible.
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3.5.4 Conclusions

Despite the increase in landings of cuttlefish within the English Channel by UK fishing vessels

over the last 30 years, there exists no directed cuttlefish management for this fishery. Given the

extensive coverage of the fishery, which occurs across a wide range of habitats and almost all

areas of this species life cycle, and targets nearly every life stage; a need for basic information

of the distribution of spawning locations and habitats (both at the broad and finer-scale) is

identified within the English Channel. The results of this study have begun to address this

knowledge gap by providing the first data available on predictive spawning habitat suitability

across the entire area. Such data will enable an evaluation of the important spawning location

for S. officinalis and could feed into potential future management measures for this species, or

in an assessment of the need to protect inshore spawning habitats.

In addition, the results of this study provide ample support for the use of MaxEnt as a tool for

modelling the distribution of cephalopod species. With the main predictor variables of depth,

chlorophyll-a concentration, distance from the coastline and bed shear stress, aligning with

the known life history traits of this species. As a tool, MaxEnt has been useful to assess how

environmental and physical variables are related to spawning distribution of S. officinalis within

the English Channel and can be used to generate valid distribution models for this species given

the limited data available on cuttlefish egg cluster presence.

Further study and investigation is required to properly assess the degree that the spatial bias

within the presence-only dataset may contain and how this may affect the predictive ability

of the model and which mitigation measure proves the most valid for this model. Such biases

must be considered during interpretation of any presence-only model predictions, and continued

research into the problems related to bias for both MaxEnt and other presence-only modelling

methods will hopefully provide a better understanding and improved methods to help reduce

the effects of sample selection bias within these models.

142



Chapter 4

Observations of natural spawning substrates

on the UK and French coastlines of the En-

glish Channel

4.1 Introduction

Although Chapter 3 has provided predictive maps of potential spawning habitats/locations within

coastal areas of the English Channel, large gaps in our knowledge and understanding of the

quantity and composition of cuttlefish spawning habitats within these inshore areas still exist.

In many species, migratory patterns like those exhibited by S. officinalis (see Chapter 2; Section

2.2.2.3) have evolved so that spawning adults can deposit their eggs in a habitat in which the

ecological and environmental conditions are optimal (spatially and/or temporally) for survival

and growth of their offspring (e.g. Dodson 1997; Pierce et al. 2008). At spawning, S. officinalis

females deposit their eggs on structures attached to the seabed, which means that developing

embryos remain at the site of spawning (see Chapter 2; Section 2.2.3.3.2 and 2.2.3). As such, the

location (oviposition site) that mothers ‘select’ to lay their eggs can dramatically affect offspring

performance and fitness by determining the local environment and conditions in which their

offspring will develop (Marshall et al. 2008), yet specific details of the structural components

and substratum types of these inshore spawning habitats is lacking.

In 1983 Boletzky wrote that S. officinalis eggs are generally laid in shallow water (e.g. < 40

m) and are attached to any oblong object with a diameter of around 1 cm (Boletzky 1983).

Each egg is attached by the female who uses her tentacles to manipulate the basal ring of the
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egg’s gelatinous envelope around the support to fix it in place (Boletzky 1983). Eggs are found

attached to natural structures such as plants or sessile animals as well as to artificial structures

such as submerged trees, cables or fishing nets (Boletzky 1983). Blanc (1998) undertook a

qualitative analysis of the spawning structures used within the east and west area of the Gulf of

Morbihan which is located in the northern part of the Bay of Biscay. In this study Blanc found

a total of twelve different natural spawning structures (Table 4.1), 6 in the west and 8 in the east

(Blanc 1998). This present study will undertake a qualitative survey of spawning structures on

both the UK and French coastline of the English Channel in order to determine the key habitats

and structures used by S. officinalis for spawning.

Table 4.1: A list of natural spawning supports for Sepia officinalis found by Blanc (1998) in a
survey of sites in the west and east of Morbihan Bay situated in the northern part of
the Bay of Biscay.

West East

Spirographis spallanzanii Spirographis spallanzanii

Sabella pavonina Sabella pavonina

Hypoglossum woodwardii Sargassum muticum

Laminaria saccharina Soleria chordalis

Zostera sp. Zostera sp.

Cladophora pellucida Gracilaria multipartita

Gracilaria verrucosa

Dictyota dichotoma

The English Channel is not homogeneous across its extent and is known to vary in habitat,

sediment, oceanographic and hydrodynamic conditions (e.g. East vs West English Channel

Araujo et al. 2005). The general ecology and range of habitats that occur also change rapidly

over small scales and may affect spawning intensity at a given site. As such, it is thought that

spawning intensity will vary both spatially and temporally across the English Channel coast-

line. Patterns of spawning in benthic species like S. officinalis can be described directly through

natural observations of spawning areas. In situ observations will help to better understand the
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range of habitats and structures used for spawning and the factors and processes that influence

variability in spawning patterns. Once the range of spawning structures has been determined,

it would be useful to understand whether spatial or temporal differences between patterns of

spawning intensity occur as a result of the quality or presence of habitat available and whether

that is affected by depth or the type of structures present. Information on habitat requirements

for spawning and the characteristics of spawning habitats and locations (e.g. preferred spawn-

ing structures and depth range) is important (Valavanis et al. 2004b). Within the two French

spawning sites information on spawning within three depth strata was used to analyse whether

a preferred depth range occurred within these spawning sites.

In terms of the availability of structure types and spawning patterns, seagrass beds, for exam-

ple, are considered highly productive nursery areas with the potential to provide diverse and

abundant sources of prey items and the structural complexity to provide shelter from preda-

tion to juveniles of many species (e.g. Jackson et al. 2001). Seagrasses are also recognised for

their capacity to modify currents (e.g. Fonseca et al. 1982) and promote sediment deposition

(e.g. Ginsburg and Lowenstam 1958). This provides a sandy substrate, which is useful for ELS

to bury themselves, low wave exposure, which may reduce egg loss during embryonic devel-

opment, shallow depth or local warming, which may decrease embryonic development time.

If key nursery areas can be identified for juvenile cuttlefish then this may help direct future

conservation and management strategies for this species.

The spatial arrangement of seagrass beds can vary from a single rhizome or group of shoots

(e.g. cm to m), to a patch or patches (e.g. m) and up to entire seagrass landscapes (e.g. m

to km) (e.g. Olsen and Sand-Jensen 1994). Within a seagrass landscape the context of the bed

will also be constrained by the level of patchiness or heterogeneity of the patches contained

within it (e.g. Kotliar and Wiens 1990). Seagrass beds are spatially and temporally dynamic

and are sensitive to both natural and anthropogenic disturbance (e.g. Den Hartog 1987). In

areas where seagrass is used as a spawning structure the scale of the spatial arrangement will

affect the quantity of structures available for spawning and therefore the maximum spawning

intensity possible. The fragmentation of heterogeneity of a seagrass landscape is known to
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display a strong relationship with the physical characteristics of the area (e.g. wind-generated

wave dynamics and tidal currents) Fonesca and Bell (1998); Frederiksen et al. (2004); Fonesca

et al. (1983). The implications for such larger-scale spatial patterns will be explored within this

study to examine the role of the heterogeneity of seagrass landscapes in influencing the patterns

and intensity of spawning within seagrass beds in Torbay, Devon (Turner et al. 1999). One

means of quantifying the differences in spatial variation of the seagrass beds between sites is to

undertake a ‘Fractal Dimension‘ analysis which enables a measure of transect heterogeneity to

be made (e.g. Jackson et al. 2006). The relationship between spawning patterns and seagrass

fractal dimension was examined to test the hypothesis that seagrass patch characteristics are

important in explaining variations in spawning patterns within seagrass beds. In addition, to

understand the use of this habitat not just spatially, but temporally, time series analysis was

undertaken to investigate patterns in spawning both within a season (e.g. March, April, May,

June) but also between seasons (e.g. 2011 and 2012).

4.1.1 Aims and objectives

The overall aim of this study was to survey important spawning areas and habitats, for S.officinalis,

within the English Channel and to investigate the different structures within these areas that are

used for spawning, during a series of subtidal and intertidal surveys. The objectives of this study

were to:

• Provide a qualitative assessment of the range of structures used for spawning by S. offici-

nalis within the English Channel using in situ observations of natural spawning habitats.

• Assess whether differences in spawning patterns occur between different depth strata.

• Assess whether differences in spawning patterns occur between different structural strata.

• Investigate the temporal patterns of spawning within seagrass beds at the UK coastal site

of Torbay:

Compare egg densities between months and years.

Analyse variability in cluster size between months and years.
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Analyse spatial dynamics of seagrass beds between years (fractal dimension).

Analyse spawning characteristics among individual seagrass plants.

4.2 Methods and Materials

4.2.1 Study sites

Subtidal surveys were conducted at study sites along the English Channel coastline to obtain

the data for both qualitative and quantitative analysis of the natural spawning structures used

by S. officinalis within these inshore waters. Surveys were restricted to shallow coastal areas,

due to both the safe limit for scientific diving and pre-existing knowledge of the lifecycle of

this species, which indicates that spawning adults migrate to the shallow inshore areas of the

English Channel to spawn. Five study sites were selected from areas that supported active

inshore cuttlefish trap fisheries during the spring and summer, and incorporated sites in both the

Eastern and Western English Channel. The sites selected were:

4.2.1.1 Torbay

Torbay is situated in Devon off the south-west coast of England, in the Western English Channel

(Figure 4.1). The maximum spring tidal range at Torbay is around 4 m (Herbert et al. 2007),

describing a mesotidal environment (Woodroffe 2003). Torbay is exposed to the east and shel-

tered from the prevailing west and south-west winds, it has relatively weak tidal streams, but is

vulnerable to wind and wave action from the east (Forster 1955). The area is relatively shallow,

reaching depths of about 20 m in the centre of the bay, where muddy sediment dominates (e.g.

Larsonneur et al. 1982), further inshore areas of sand and reef are also found (McBreen et al.

2011). The reef features in this area are in discrete formations around the bay, mainly associ-

ated with headlands and coves and are known to support rich species that typify reef habitat,

including hydroids, algae, sponges and corals (Natural England 2010). The site also contains a

number of seagrass beds, with surveys by Torbay Coast and Countryside Trust’s (TCCT) 2006

seagrass project indicating that there are at least 80 hectares of seagrass meadows in Torbay

(TCCT 2006).
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4.2.1.2 Selsey

Selsey is situated in West Sussex off the south-east coast of England, in the Eastern English

Channel (Figure 4.1). The maximum spring tidal range at Selsey Bill is 4.5 m (Cope 2005),

describing a mesotidal environment (Woodroffe 2003). The inshore region within the study

area is relatively shallow (< 30 m) although the seabed does slope gently to about 60 m depth

off Selsey Bill. The sediment in the area is a mix of sand, mud and rocky reef (McBreen et al.

2011) which supports a diverse range of flora and fauna.

4.2.1.3 Poole Bay

Poole is situated in Dorset off the central south coast of England, in the Eastern English Chan-

nel (Figure 4.1). The maximum spring tidal range at Poole Bay is approximately 2 m, which

is among the lowest in the English Channel (Pingree and Maddock 1977) and describes a mi-

crotidal environment (Woodroffe 2003). The area is also known to experience the unusual tidal

phenomena of a double high and low water (Pingree and Maddock 1977). Within Poole Bay, the

Studland Bay area contains extensive seagrass (Zostera marina) beds (156 hectares, of which

61 hectares is considered sparse seagrass)(Jackson et al. 2012) and additionally the Poole Bay

area is known to contain both maerl and sabellaria reefs as well as artificial and natural patch

reefs (Collins 2007). The small patch reefs within the Bay are known to support a mixture of

brown (e.g. Dictyota dichotoma) and red (e.g. Calliblepharis ciliata) algae at shallower depths

(below 10 m) and only red algae at deeper depths (above 10 m) (Collins 2007). In addition the

area is also known to be the eastern-most extent within the English Channel for pink sea fans

(Eunicella verrucosa) (Collins 2007).

4.2.1.4 Agon-Coutainville

On the French coast the Cotentin peninsular divides the English Channel into two basins (east

and west) (Figure 4.1). For the purpose of this study, sites were chosen on either side of the

Cotentin peninsular. Agon-Coutainville is situated in the region Basse-Normandie off the north-

west coast of France, in the Western English Channel (Figure 4.1). The maximum spring tidal

range for the area is up to 14 m, which is among the highest in the world, describing a megatidal
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system (Lefebvre et al. 2009). The substrate in the area is generally classified as medium to

coarse sand with areas of rock (Lefebvre et al. 2009). The west coast of Cotentin is generally

exposed to the currents of the North Atlantic drift, which run eastward and are then deflected

north-ward along the coast from the Baie du Mont Saint Michel (Lefebvre et al. 2009). The

riverine watersheds that emerge on the west coast are relatively small (approximately 929 km2)

compared to the east coast (Lefebvre et al. 2009)

4.2.1.5 Langrune-sur-Mer

Langrune-sur-Mer is situated in the region Basse-Normandie off the north-west coast of France,

in the Eastern English Channel (Figure 4.1). The maximum spring tidal range is approximately

8 m, describing a macrotidal environment. (Lefebvre et al. 2009). The substrate on the east coast

is generally of a smaller grain size than on the west, with fine and muddy sand predominating

in inshore areas (Lefebvre et al. 2009). The Baie de Seine is sheltered from prevailing winds

and currents. The larger riverine watershed (approximately 4383 km2) on the east of Cotentin

does however leave the area vulnerable to large terrestrial inputs and fluctuations in salinity

(Lefebvre et al. 2009).
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Figure 4.1: English Channel Study Sites. The locations of each study site are indicated on
the map and include: Torbay, Poole and Selsey on the U.K. coast and Agon-
Coutainville and Langrune-sur-Mer on the French coast. The vertical black line
indicates the split between the Eastern and Western basins of the English Channel
as proposed by Pomerol (1977)

4.2.2 Survey methods

A variety of methods, using SCUBA, were used to obtain data for both the quantitative and

qualitative analysis of natural spawning structures. During this research, five study sites along

the UK and French coast were surveyed (Torbay, Selsey, Poole Bay, Agon-Coutainville and

Langrune-sur-Mer). As specified in Section 4.2.1, the variation in hydrological conditions

among study sites was high, with tidal systems ranging from megatidal at Agon-Coutainville

to microtidal at Poole Bay and additionally large differences in current regimes were also evi-

denced. Therefore, a single unified survey method was not considered suitable for standardised

use across all study sites. Whilst every effort was made to keep the survey method as stan-

dardised as possible, methodological changes were required among sites to allow surveys to be

undertaken safely. These methods included 50 m2 circular belt transects (Figure 4.2 a), 100 m2

line belt transects (Figure 4.2b), which were used in areas with low currents and timed global
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positioning system (GPS)-tracked drift transects (Figure 4.2 c), which were suitable for areas

with strong currents. A brief description of each method is provided:

4.2.2.1 Circular transect (radius of 4 m, area of 50.3 m2)

A distance line was extended out to 2 m to define the limits of the first circular sweep and a

weighted positional marker placed to mark the start of the transect. Rotating in a clockwise

direction, information from the transect was recorded (in a 1 m belt either side of the line). On

return to the positional marker, the rope was then extended to 4 m and a second circular sweep

undertaken in an anti-clockwise direction (Figure 4.2a).

4.2.2.2 Line belt transect (area of 100 m2)

A 50 m distance line (marked off in 5 m sections) was extended in a pre-determined direction

and information recorded from the transect in a belt of 1 m either side of the central transect

line (Figure 4.2b).
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Figure 4.2: Survey methods: (a.) Circular belt transect, (b.) Line belt transect, (c.) GPS-
tracked drift transect
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4.2.2.3 GPS-tracked drift transect (15 minutes; variable length)

Transects were completed in the direction of running currents. A surface marker buoy was

used to denote the location of the survey divers, enabling a boat (with a GPS unit) to follow

and record the transect path from the surface. Geographic coordinates of the survey track were

matched to egg cluster observations which the dive pair recorded using a time stamp from a

dive watch synchronised to the GPS. This allowed both the search area and the positions of egg

cluster observations to be recorded (Figure 4.2c).

4.2.3 Survey design

At all sites stratified random sampling was used to obtain the start locations of transects. This

was done using ArcGIS (Esri, v.9.3) to construct a grid that overlaid the study site. Each square

within the grid was assigned a unique identifying code and then a random subset of squares were

selected using a random number generator in Excel (Microsoft Ltd, 2007) to obtain random start

locations for transects.

4.2.3.1 Qualitative assessment of natural spawning structures

For this study three methods described in Section 4.2.2 were utilised to obtain data for qualita-

tive analysis. Surveys were conducted between 2010 and 2012 and took place between April

and July, to align with the cuttlefish spawning season. On the UK coast all surveys were subti-

dal, whilst on the French coast, due to the large tidal range both subtidal (SCUBA) and intertidal

(walking) surveys were undertaken.

4.2.3.2 Comparison of spawning strata (depth)

A comparison of spawning among different depth strata was undertaken at Agon-Coutainville

and Langrune-sur-Mer in June 2011. Transect start points were randomly assigned within three

depth strata (0-5 m, 5-10 m and 10-15 m). Five surveys were undertaken at each depth stratum

at Agon-Coutainville and between three and nine surveys at Langrune-sur-Mer . All surveys

were completed using timed (15 minutes) GPS-tracked drift transects. This methodology was

used due to the large currents experienced in the area, which prevented divers from undertaking

stationary surveys such as those proposed for use in the UK (e.g. circular or line belt transect).
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4.2.3.3 Comparison of spawning strata (structures)

A comparison of spawning between two strata with different structure types, seagrass beds

(seagrass stratum) and mixed seaweed habitat (mixed stratum) was undertaken. A preliminary

trial within Torbay was conducted in May and July 2010, where the study area was delimited

by the natural geographic boundary of the Bay and within the area of the 10 m depth contour

(Figure 4.3a). Four seagrass and four mixed stratum sites were surveyed at Torbay in May 2010

and five seagrass and five mixed stratum sites in July 2010. For each survey site, three replicates

were undertaken using 50 m2 circular belt transects. The main study was undertaken in June

2011 at two study sites (Torbay and Poole Bay) to compare spawning patterns between seagrass

and mixed stratum. The study site for the Torbay area was altered for the main study in 2011,

with the new study area extending from Hollicombe Head around the headland at Hope’s Nose

and on to Babbacombe Bay (Figure 4.3c). This was done to better reflect the study area at Poole

Bay which extended from the Branksome reef around the headland at Handfast point and onto

Ballard Pinnacle (Figure 4.3d). For both sites the study area was restricted to within the 10 m

depth contour. Transect start points for all surveys (2010 and 2011) were randomly assigned

within the two strata. In June 2011, our seagrass and four mixed stratum sites were surveyed at

each study site, with eight replicates at each stratum site. All surveys were completed using 100

m2 line belt transects, although due to adverse diving conditions, it was not always possible to

undertake a full set of replicates.
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Figure 4.3: Study sites for comparison of natural spawning structures with subtidal survey sites
marked. (a.) Subtidal survey sites Torbay May 2010, (b.) Subtidal survey sites
Torbay July 2010, (c.) Subtidal survey sites Torbay June 2011 and (d.) Subtidal
survey sites Poole June 2011.
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4.2.3.4 Temporal analysis of spawning in seagrass beds

A comparison of spawning patterns and intensity within a season (May, June and July) was un-

dertaken at two seagrass beds (Millstones Bay and Torre Abbey Sands) between 2010 and 2012.

The extents of the seagrass beds were delimited according to the results of the 2006 TCCT sea-

grass project (TCCT 2006). Transect start points were randomly assigned within each seagrass

bed, however, due to the dated nature of the available seagrass maps, a drop-down video camera

was also used to verify the presence of seagrass prior to the deployment of transects. If seagrass

presence could not be verified at a transect start position, an alternative location was selected.

At Millstones Bay and Torre Abbey Sands four replicates were undertaken at each site in 2010

(May and July) using 50 m2 circular belt transects and eight replicates undertaken at each site

in 2011 and 2012 (May, June and July) using 100 m2 line belt transects, although due to adverse

diving conditions, it was not always possible to undertake a full set of replicates.

4.2.4 Data collection

Data were recorded on template data sheets which were printed on waterproof paper. For all

studies a general description of the habitat was made for each transect. When encountered,

the presence of egg clusters was recorded together with details of the attachment structure . A

predetermined scale was used by all divers for collection of data on egg number per cluster

whilst underwater (Egg number: <10; 10-30; 30-100; 100-1000).

In addition, for the temporal analysis of spawning in seagrass beds (Torbay 2011 and 2012)

video recordings of the transect were made in order to enable calculation of the fractal dimen-

sion of the seagrass within each transect. At UK sites photographic records of egg clusters were

also made to ensure that diver estimation of egg cluster size could be validated. In 2011 at Tor-

bay, data were also collected on the position and length of egg clusters on individual seagrass

plants to assess how these structures are specifically utilised by cuttlefish for spawning.

4.2.5 Data analysis

As a result of the categorical scale used (Section 4.2.4), the datasets collected within this study

failed to meet the assumptions of normality and so non-parametric tests were used for statistical
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analysis. Two non-parametric tests were used to analyse the data within this study and a brief

description of each is provided.

4.2.5.1 Kruskal-Wallis test

The Kruskal-Wallis test was performed using the ‘Analyse-It’ (Analyse-It Software Ltd, version

2.20) add-in for Excel (Microsoft, 2007). The null hypothesis for the test (H0) was that there is

no difference in the response variable (e.g. medians of the groups: egg cluster size, egg density

etc.) as a result of the explanatory variable (e.g. depth, structure type, year etc.). When using

a Kruskal-Wallis test to analyse data from more than three groups, each with more than five

samples per group then the calculated H statistic should be treated as Chi-Square and interpreted

using the Chi-Square critical value table at the appropriate degrees of freedom. For an alpha

value of 0.05 the decision rule for this test states that if the calculated value was greater than the

tabled value then the null hypothesis (H0) was rejected. If the calculated value was less than the

tabled value then the null hypothesis (H0) was accepted.

4.2.5.2 Mann-Whitney U test

The Mann-Whitney U test was performed using the ‘Analyse-It’ (Analyse-It Software Ltd, ver-

sion 2.20) add-in for Excel (Microsoft, 2007). The H0 for the test was that there is no difference

between the medians of the two groups. The Mann-Whitney U-Test was used to undertake

two tailed tests at an alpha value of 0.05. The output of this test was assessed using a Z table

distribution and evaluated using both a Z and p-values.

4.2.5.3 Qualitative assessment of natural spawning structures

4.2.5.3.1 Characteristics of natural spawning structures The data collected from all sites

were pooled and a list of all the different spawning structures produced. A short description for

each individual spawning structure was produced that included a brief discussion of the number

of egg clusters located on each structure type and at which sites, the size of egg clusters and

any noticeable spawning patterns. The variety of physical characteristics of all the spawning

structures was assessed and a short summary produced.
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4.2.5.3.2 Variability in egg cluster size A box plot was created to display the minimum

and maximum numbers of eggs laid per cluster on each type of spawning structure in order

to visually analyse the data set for patterns. A Kruskal-Wallis test was then performed to test

whether or not the difference observed was significant. Prior to analysis any group with fewer

than five samples was excluded from the test. The H0 for the test was that there is no difference

in the number of eggs laid per cluster (Response Variable) on different types of spawning struc-

ture (Explanatory Variable). For an alpha value of 0.05 the decision rule for this test stated

that if the calculated value was greater than the tabled value (alpha = 0.05, DF 10, Chi-Square

= 18.31) then the null hypothesis (H0) was rejected. If the calculated value was less than the

tabled value then the null hypothesis (H0) was accepted.

4.2.5.4 Comparison of spawning strata (Depth)

For each transect an egg density (eggs per m2) was calculated. The distributions of the popu-

lations of egg densities (Response Variable) were compared between depth strata (0-5 m, 5-10

m and 10-15 m) (Explanatory Variable). This was done at each site and then for both sites

pooled. Analysis was undertaken using a Kruskal-Wallis test. The H0 for the test was that there

is no difference between the distributions of egg densities from transects within different depth

strata.

4.2.5.5 Comparison of spawning strata (Structures)

The number of egg clusters and egg density per m2 were calculated and the data from both sites

pooled by stratum (seagrass and mixed). The data were then compared between sites using a

Mann-Whitney U Test. The H0 hypotheses for the test was that there is no difference between

the median number of egg clusters or median egg density (Response Variables) collected from

seagrass and mixed strata (Explanatory Variable).

4.2.5.6 Temporal analysis of spawning within seagrass beds (Torbay 2010-2012)

4.2.5.6.1 Egg density The density of eggs per m2 was calculated for each site by dividing

the total number of eggs recorded at a site by the total area of the site surveyed by transects.

This was done by year and by month for Millstones Bay and Torre Abbey Sands. From these
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density calculations an estimate of the total numbers of eggs at each site was then calculated by

multiplying the estimated egg density for a site by the known area of seagrass (Millstones Bay

15,500 m2 and Torre Abbey Sands 595,000 m2 TCCT2006). Finally the potential number of

females spawning at each site was estimated by dividing the total number of eggs for each site

by the average potential fecundity of a female (2,000 eggs e.g. Hanley et al. (1998)).

4.2.5.6.2 Variability in the number and size of egg clusters Variability in cluster size was

plotted graphically with standard error, in order to assess whether any variability in cluster size

was evident between months and/or between years. Egg cluster size was compared between

years using a Mann-Whitney U test in order to determine whether a significant difference existed

in the size of egg clusters between the years 2011 and 2012. The H0 for the test was that there

is no difference between the median number of eggs laid per cluster (Response Variables) in

transects from 2011 and 2012 (Explanatory Variable).

4.2.5.6.3 Fractal dimension Fractal dimension was used to measure the heterogeneity of

seagrass in the transects and was estimated from video recordings that were completed during

dive surveys for each transect. Fractal dimension was calculated by measuring the presence or

absence of seagrass along the transect across a range of increasing resolutions (R) (1 m, 5 m, 10

m, 50 m). For each resolution, the cumulative length (L) of sections with seagrass present were

measured. The fractal dimension was then obtained by regressing log(L) on log(R) (Jackson

et al. 2006). Transects with a fractal dimension of zero can be considered as homogeneous (e.g.

seagrass is continuously present along the transect), whilst transect heterogeneity is reflected

by dimensions closer to one (e.g. seagrass within the transect is fragmented and patchy). This

method allows quantitative information on the spatial patterns of the seagrass within each tran-

sect to be assessed and considered in terms of cuttlefish spawning patterns. A Mann-Whitney U

test was used to test if a difference existed between the fractal dimension of seagrass transects

in 2011 and 2012. The H0 for the test was that there is no difference between the medians of

the fractional dimensions of seagrass transects between the two years.

4.2.5.6.4 Seagrass analysis In order to investigate the characteristics of one of the predom-

inant spawning structures (for Torbay and Poole) in more detail, an assessment of the lengths
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and positions of egg clusters on Z. marina plants was undertaken in Torbay during 2011. In

order to examine the data visually, a box plot of seagrass length was created using R software

(RGui, version 2.1.2.0) with the data grouped by month and a box plot of the height of the

egg cluster on the seagrass plant measured from the seabed to the base of the egg cluster. In

addition, basic univariate statistics (e.g. mean, minimum, maximum of seagrass and egg clus-

ter length measurements) were calculated and compared to analyse patterns of spawning on Z.

marina plants.

4.3 Results

4.3.1 Qualitative assessment of natural spawning structures

4.3.1.1 Characteristics of natural egg laying structures

A total of 15 different types of spawning structure were recorded in this study. The height

of these structures varied between 20 and 800 cm and the widths of sections used for egg

attachment varied between 0.6 and 15 mm. A summary of the key attributes of these structures

and the patterns of spawning observed are presented in Table 4.2, whilst photographic examples

of spawning structures are presented in Figures 4.4, 4.5 and 4.6. The patterns of spawning

observed varied between structures, for example Chorda filum is composed of cylindrical fronds

which are formed from hollow tubes of approximately 0.6 mm in diameter and which grow up

to 8 m in height (Bunker et al. 2010). Whilst the diameter of fronds is small, observations of egg

laying on this species showed that multiple fronds were grouped together in order to achieve

a suitable size for egg attachment (Figure 4.7) with eggs observed attached to large portions

of the total length of this structure. A different type of structural composition and pattern of

egg attachment was observed in Halidrys siliquosa. This species reaches heights of between

30 and 120 cm and has compressed fronds (< 1 cm wide) with air bladders attached. It grows

as a bushy structure with thalli which attach via a strong discoid holdfast (Bunker et al. 2010).

The rigid nature of this structure enables it to support multiple egg cluster to be attached to the

branches of this plant with coverage of large areas (Figure 4.5c). In the angiosperm Z. marina

which grows up to 2 m in height and can form large meadows or beds, with egg attachment

observed on both the stem and to groups of leaves (Figure 4.6a). In addition to plant structures,
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egg laying was also observed on sessile animals, for example, Sabella pavonina which is a

polychaete worm that grows up to 30 cm in height and 4 mm in width and can form small

forests (Wood 2007). Eggs were observed attached to the tubes of the worms and their rigid

nature supported attachment along the entire length of the tube (Figure 4.6c).
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Table 4.2: A table indicating the characteristics of natural spawning structures recorded during qualitative subtidal and intertidal surveys (2010-2012)

Structure Cluster
Species Type Max depth Height (cm) Width (mm) IT/ST FR/UK median size Total recorded

C. crispus seaweed (R) 24 22 xx IT FR 20 188
C. filum seaweed (B) xx 800 0.6 IT FR 200 1

D. ligulata seaweed (B) 9 200 2-7 ST FR 75 3
D. sanguinea seaweed (R) 30 25 xx ST UK 50 1
F. lumbricalis seaweed (R) 12 30 2 IT/ST FR 35 6

F. serratus seaweed (B) xx 60 20 IT FR 75 41
Gymnogongus sp. seaweed (R) xx 10 xx IT FR 35 6

H. siliquosa seaweed (B) xx 120 10 ST UK 35 30
Nemertesia sp. hydroid xx 25 xx ST FR 150 16

Porifera sp. sponge xx xx 15 ST FR 50 9
S. chordalis seaweed (R) 5 20 2 ST/IT FR 40 3
S. latissima seaweed (B) 30 150 xx ST FR 35 4
S. muticum seaweed (B) xx 200 xx ST/IT FR 20 116
S. pavonina fan worm xx 30 4 ST UK/FR 75 82
Z. marina seagrass 9 200 xx IT/ST UK/FR 10 1007
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Figure 4.4: Examples of egg clusters laid on spawning structures intertidally. (a.) Chondrus
crispus, (b.) Fucus serratus. Photographs courtesy of University of Caen

Figure 4.5: Examples of egg clusters laid on subtidal spawning structures. a. a piece from a
Porifera sp. on which eggs were found, (b.) Nemertesia antennina (Photograph
by Francois Sichel) and (c.) Halidrys siliquosa. Photographs a and b courtesy of
University of Caen
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Figure 4.6: Examples of egg clusters laid on spawning structures both subtidally and inter-
tidally. a. Z. marina, (b.) Furcellaria lumbricalis, (c.) S. pavonina, (d.) Solieria
chordalis and (e.) Sargassum muticum. Photographs b, d and e courtesy of Uni-
versity of Caen

Figure 4.7: C. filum with cuttlefish eggs attached. (a.) egg cluster on C. filum, (b.) and (c).
close up of egg attachment, illustrating the use of multiple fronds to obtain a suit-
able diameter for egg attachment. Photographs courtesy of University of Caen

4.3.1.2 Structure use among sites

The diversity and type of spawning structures utilised was found to vary among sites. On the

UK coast only three different types of spawning structure (Table 4.3) were identified across the

three study sites (Z. marina 997 egg clusters, H. siliquosa 30 egg clusters and S. pavonina three
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egg clusters) with Z. marina providing the highest numbers of egg clusters recorded for UK

sites . On the French coast a total of twelve different spawning structures were identified with

the most egg clusters (188) recorded on C. crispus. The most diverse range of structures was

identified at Agon-Coutainville (Table 4.3) with ten different types of spawning structure iden-

tified within the subtidal and intertidal ranges. Z. marina plants recorded the highest number of

egg clusters when pooled across all sites (UK and France) and across all years with 1007 egg

clusters recorded in total.

Table 4.3: A table indicating the structures, with S. officinalis egg clusters attached, recorded
during qualitative subtidal and intertidal surveys and listed by study site

Torbay Selsey Poole Bay Agon-Coutainville Langrune-sur-Mer

Z. marina H. siliquosa Z. marina S. muticum S. latissima

H. siliquosa D. sanguinea S. pavonina F. lumbricalis Porifera sp.

S. chordalis Nemertesia sp.

S. pavonina S. muticum

D. ligulata

Nemertesia sp.

C. crispus

C. filum

F. serratus

Gymnogongrus sp.

4.3.1.3 Variation in cluster size among natural structures

Figure 4.8 shows the variation in egg cluster size (number of eggs per cluster) with structure

type. By comparing the variation in egg cluster size indicated in Figure 4.8 with the size, diam-

eter and location of egg attachment illustrated in Figure 4.9 a few key points can be highlighted.

For example in structures such as S. pavonina where the entire length of the tube (up to 30 cm)

can be utilised for egg laying (Figure 4.9) the box plot indicated a relatively high median, range

and maximum number of eggs per cluster. A similar pattern is shown for C. filum where almost
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the entire length of the structure (up to 800 cm) can be utilised for egg laying (Figure 4.9b).

In contrast for structures such as S. latissima where only a small fraction of the total structure

(e.g. Stipe) is available for egg attachment (Figure 4.9l) the box plot indicated a relatively low

median, range and maximum number of eggs per cluster. In order to test whether the difference

in egg cluster size among structures was significant a Kruskal-Wallis test was performed. The

results of this test indicated a significant difference among structure type in the numbers of eggs

laid per cluster (H = 431.49, DF = 10, P < 0.0001). The following structure types were excluded

from the analysis as they contained fewer than five samples per group: Solieria chordalis, Des-

marestia ligulata, Algae Z, C. filum, Delesseria sanguinea and Saccharina latissima.

Figure 4.8: A box plot showing the variation in egg cluster size (numbers of eggs per cluster)
among natural spawning structures
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Figure 4.9: Diagrams illustrating the natural structures to which egg clusters have been found attached. (a.) C. crispus, (b.) C. filum, (c.) D. ligulata,
(d.) D. sanguinea, (e.) F. lumbricalis, (f.) F. serratus, (g.) Gymnogongus sp., (h.) H. siliquosa, (i.) Nemertesia sp., (j.) Porifera sp., (k.)
S. chordalis,(l.) S. latissima, (m.) S. muticum (n.) S.pavonina, (o.) Z. marina. Red dotted lines show examples of the rough area limits of
egg attachment for a structure.
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4.3.2 Comparison of spawning strata (depth)

The analysis of depth strata showed no significant difference in median egg densities at Agon-

Coutainville (Kruskal-Wallis: H = 0.87, DF = 2, p = 0.6482) at Langrune-sur-Mer (Kruskal-

Wallis: H = 2.09, DF = 2, p = 0.3509) or for both sites pooled (Kruskal-Wallis: H = 2.13,

DF = 2, p = 0.3451). Visual inspection of the dataset for Agon-Coutainville (Figure 4.10)

indicated a difference between the types of spawning structures used within different depth

strata. For example, S. pavonina was predominately used in the 0-5 m and 5-10 m depth stratas.

Nemertesia sp. was predominately used within the deeper 10-15 m stratum.

Figure 4.10: A graph showing the proportion of egg clusters recorded within each depth stra-
tum by spawning structure type and is independent of the area surveyed (Agon
2011)

4.3.3 Comparison of spawning strata (structures)

In May 2010 a total of 147 egg clusters were recorded across all sites surveyed within Torbay

(Appendix A). Egg clusters were recorded at all four seagrass sites attached to Z. marina plants.

However, no egg clusters were recorded at any of the four mixed structure sites where seaweeds
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were present. Seaweeds recorded as present within mixed substrate sites included short faunal

turf and mixed red and brown seaweed species.

During July 2010, ten sites (five seagrass and five mixed) were surveyed within Torbay with

four replicates at each site (excluding Torre Abbey Sands where adverse weather conditions

forced the survey to be terminated for safety reasons), with a total of 45 egg clusters recorded

across all sites (Appendix A). Egg clusters were recorded at all five seagrass sites attached to

Z. marina plants. However, no egg clusters were recorded at any of the five mixed structure

sites where seaweeds were present. The results of these two studies indicated that a significant

difference existed between the spawning pattern of these two strata within Torbay, with eggs

only recorded attached to Z. marina plants within the seagrass stratum.

In June 2011 egg clusters were recorded at all seagrass sites in Torbay (Appendix A). Egg

clusters were also recorded attached to a steel rope at Outer Millstones and to the brown sea-

weed H. siliquosa at Babbacombe Bay, there were no egg clusters recorded at the remaining

mixed substrate sites. Across the eight sites surveyed at Torbay, a total of 173 egg clusters was

recorded.

In June 2011 egg clusters were recorded at two of the four seagrass sites at Poole Bay (Appendix

A), where eggs were attached to both Z. marina and S. pavonina. Only a single egg cluster

was recorded within the four mixed substrate sites attached to a ghost trap within the site at

Handfast Point. Structures recorded as present during surveys of the area included S. muticum,

H. siliquosa, Kelp (Laminaria hyperborea), short faunal turf and large quantities of red foliose

algaes. Over the eight sites a total of 100 egg clusters was recorded at Poole Bay.

The replicates undertaken at both sites were pooled by strata and a Mann-Whitney U-Test per-

formed to compare the distributions of the two groups. This was done to compare egg clusters

and number of eggs observed within transects. For both situations the results indicated a signifi-

cant difference between the two distributions, with the mean ranks indicating that seagrass beds

were found to have significantly more eggs and egg clusters per transect than mixed seaweed

habitats (Table 4.4).
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Table 4.4: Results of the Mann-Whitney U test for differences between seagrass and mixed
strata (Poole and Torbay, June 2011). MR = Mean Rank.

Condition Test Z value MR Seagrass MR mixed Significance

No. egg clusters Mann-Whitney U 3.18 59.30 44.56 0.0015

No. eggs Mann-Whitney U 2.78 57.91 45.23 0.0055

4.3.4 Temporal analysis of spawning within seagrass beds (Torbay 2010-2012)

4.3.4.1 Egg density

The egg densities for each month and year are presented in Table 4.5 for Millstones Bay and

Table 4.6 for Torre Abbey Sands. The data for 2010 are presented for both sites, although it

should be noted that a different methodology was used to collect data for this year. At Millstones

Bay the highest egg density recorded was in May 2010 (11.3 eggs per m2) and the lowest egg

density recorded was in May 2012 (0.025 eggs per m2). Egg densities at this site were lower in

2012 (for all months) compared to 2010 or 2011 (Table 4.5). At Torre Abbey Sands the highest

egg density recorded was in July 2011 (3.9 eggs per m2) and the lowest egg density recorded

was in June 2012 (0.008 eggs per m2). Egg densities at this site were lower in 2012 (for all

months) compared to 2010 or 2011 (Table 4.6).
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Table 4.5: Temporal variation in mean egg density at Millstones Bay seagrass site (2010-2012). Estimates of total eggs calculated for the total area
of Millstones Bay (15,500 m2). Estimates of potential spawning females calculated using the total number of eggs at a site divided by an
average fecundity of 2,000

Egg clusters Egg density Total eggs at site Potential spawning females
Year May June July May June July May June July May June July
2010 117 - 23 11.3 - 1.4 175150 - 21700 88 - 11
2011 8 116 29 0.3 3.7 1.4 4650 57350 21700 2 29 11
2012 20 77 77 0.025 0.1 0.1 388 1550 1550 1 1 1

Table 4.6: Temporal variation in mean egg density at Torre Abbey Sands seagrass site (2010-2012). Estimates of total eggs calculated for the total area
of Torre Abbey Sands (595,000 m2). Estimates of potential spawning females calculated using the total number of eggs at a site divided by
an average fecundity of 2,000

Egg clusters Egg density Total eggs at site Potential spawning females
Year May June July May June July May June July May June July
2010 19 - 12 2.8 - 3.8 1666000 - 2261000 833 - 1131
2011 29 67 74 0.9 2.9 3.9 535500 1725500 2320500 268 863 1160
2012 56 6 44 0.07 0.008 0.055 41650 4760 32725 21 2 16
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4.3.4.2 Variability in the number and size of egg clusters

A reduction in the size of egg clusters (number of eggs per cluster) was recorded between 2011

and 2012 at both Millstones Bay and Torre Abbey Sands (Figure 4.11). A Mann-Whitney U-

Test found a significant difference between egg cluster size at both of these sites in 2011 and

2012, with the mean ranks indicating larger egg clusters in 2011 (Table 4.7).
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(a)

(b)

Figure 4.11: Variability in egg clusters size at for 2011 (black bars) and 2012 (blue bars) with
standard error displayed. (a.) Millstones Bay: A significant difference was found
between egg cluster size in 2011 and 2012 (Z = -4.06, p < 0.0001) with larger
egg clusters recorded in 2011 (mean rank = 181.77) than in 2012 (mean rank
= 148.37), (b) Torre Abbey Sands: A significant difference was found between
egg cluster size in 2011 and 2012 (Z = -3.24, p = 0.001) with larger egg clusters
recorded in 2011 (mean rank = 149.38) than in 2012 (mean rank = 121.05)
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Table 4.7: Results of Mann-Whitney U tests for differences between egg cluster size at Mill-
stones Bay and Torre Abbey Sands between 2011 and 2012. MR = Mean Rank.

Condition Z value MR 2011 MR 2012 Significance

MB Months 2011 v Months 2012 - 4.06 181.77 148.37 0.0001

TAS Months 2011 v Months 2012 - 3.24 149.38 121.05 0.0001

4.3.4.3 Fractal dimension

The results of the Mann-Whitney U test for differences between the fractal dimension of the

transects in 2011 and 2012 (Appendix A) at Millstones Bay showed a significant difference

between years (Z = 3.98, p < 0.0001). The mean rank indicated that there was a greater degree

of fractal dimension (fragmentation of the seagrass bed) of the seagrass transects in 2012 (mean

rank = 27.59) compared to 2011 (mean rank = 12.58). The results of the Mann-Whitney U test

for differences between the fractal dimension of the transects in 2011 and 2012 at Torre Abbey

Sands showed a significant difference between years (Z = 4.92, P < 0.0001). The mean rank

indicated that there was a greater degree of fractal dimension (fragmentation of the seagrass

bed) of the seagrass transects in 2012 (mean rank = 30.79) compared to 2011 (mean rank =

12.21).

4.3.4.4 Seagrass analysis

A box plot of seagrass length was created to allow a visual comparison of the data between

months (Figure 4.12). In order to assess whether a significant difference existed, a Kruskal-

Wallis test was performed using the data grouped by month. The results indicated that a signif-

icant difference did exist between the height of Z. marina plants among different months (H =

35.81, DF =2, p <0.0001). To assess where this difference lay post-hoc tests were performed

for each pair of months using a Mann-Whitney U test, the results indicated that there was a sig-

nificant difference in seagrass height among all months (Table 4.8). The mean ranks indicated

that the seagrass was highest in June, followed by July and then May and the p values indicated

that the difference was least significant between June and July (Table 4.8).
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Figure 4.12: A box plot showing the variation in seagrass length (cm) in May, June and July
in Torbay (2011)

Table 4.8: Results of Kruskal-Wallis and Mann-Whitney U tests for differences between sea-
grass height among the months of May, June and July at Torbay (2011). MR =

Mean Rank.

Condition Test Result MR May MR June MR July Significance

May, June & July Kruskal-Wallis H = 35.81 - - - p <0.0001

May & June Mann-Whitney U Z = -5.37 74.63 153.63 - p <0.0001

May & July Mann-Whitney U Z = -3.80 38.76 - 62.68 p <0.0001

June & July Mann-Whitney U Z = 3.12 - 172.25 134.05 p = 0.001

Observations on the distance (height) of the egg cluster up the Z. marina plant (as measured

from the seabed to the base of the egg cluster) indicated that an average height of 6.4 cm (n =

361, SDDV = 3.19) was observed with a minimum height of zero cm (i.e. the egg cluster was

laid at the very base or bottom of seagrass plant) (Figure 4.13a) and a maximum height of 20

cm from the base or bottom of the seagrass plant (e.g. Figure 4.13b). The average length of the
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cluster from the top of the seagrass plant was 32.3 cm (n = 361, SDDV = 11.8) with a minimum

of 1 cm and a maximum of 65 cm. The average percentage length of the seagrass plant that was

covered by the egg cluster was 19.2 % (n = 361, SDDV = 10.3) with a minimum of only 2 %

(Figure 4.13c) and a maximum of 75 % although in this latter case the plant was generally not

able to remain erect and subsided under the weight of the eggs (Figure 4.13d).

Figure 4.13: Photographs showing eggs attached (a.) at the base of a Z. marina plant, (b.) eggs
attached higher up Z. marina plants, (c.) showing a small percentage coverage of
egg cluster to Z. marina plants and (d.) showing a large percentage coverage of
egg cluster to Z. marina plants

4.4 Discussion

4.4.1 Qualitative assessment of natural spawning structures

The range of different spawning structures identified in this study indicated that within the En-

glish Channel S. officinalis was not confined to a specific spawning structure or habitat. A total

of 15 different spawning structures were recorded across the two coasts, whilst it would appear

that the use of a structure for spawning is likely to be constrained by a maximum diameter or

width, to allow the basal rings of the eggs to be securely attached around the structure. As

previously indicated in the literature, which suggests a maximum diameter of 1 cm described
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as suitable for spawning structures (Boletzky 1983). However, within this study a minimum

diameter or width was indicated to be less important, with cuttlefish adapting structures with

smaller diameters by clumping or aggregating multiple leaves or thallus until a suitable diame-

ter or width is achieved. This was observed for both C. filum on the French coast and Z. marina

on the UK coast and indicated that spawning could occur across a wider range of spawning

structures than has previously been suggested. As seen in Section 4.3.1.1 and Figure 4.9, the

characteristics of these structures are varied, however what drives the criteria and processes

behind selection of suitable structures by females remains unknown.

4.4.1.1 Spawning structures among sites

As seen in Table 4.3 the types and range of structures utilised varied among study sites. The

qualitative nature of this analysis does not allow for an assessment of these differences. How-

ever, it is of interest to note that intertidal spawning is prevalent at least one of the study sites

(Agon-Coutainville) where the tidal range is one of the largest in the world. This large tidal

range could allow cuttlefish within the area to access a wider range of structures across these

different depth ranges. That cuttlefish eggs are capable of surviving in intertidal conditions is

also of interest, with a recent study estimating hatching rates from eggs collected from the in-

tertidal zone to be as high as 73 % (Safi, pers. comm.). This suggests that hatching rates are not

detrimentally affected by the regime of daily exposure to air and/or the fluctuations in ambient

conditions that accompany these changes from subtidal to intertidal (e.g. water temperature,

light intensity and oxygen saturation), although the duration of embryogenesis or size at hatch-

ing may vary in eggs hatched intertidally when compared to those hatched from the subtidal

range, which may subsequently affect survival or recruitment rates. In addition, the synchronic-

ity of timing for hatching of eggs laid in the intertidal range would need to correspond with

subtidal conditions for the hatchlings to have any chance of survival.

4.4.2 Comparison of spawning strata (depth)

The results of this study indicated that there was no apparent difference in median egg densi-

ties recorded within three depth strata (0-5, 5-10 and 10-15 m) at either Agon-Coutainville or

Langrune-sur-Mer. It is recognised that this study only included only two sites both situated
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on the French coast and so interpretation of these results cannot be extrapolated to the wider

extent of the Channel. The effect of depth on the presence, distribution and composition of fau-

nal and floral communities may be a co-factor in any study investigating depth related changes

in spawning patterns and intensity. Further research to assess exactly how deep spawning oc-

curs at each site could provide a better understanding of the relationship between depth and

spawning intensity, however, the practicalities of safe limits for scientific diving restrict the use

of SCUBA techniques for such surveys, indicating that a remotely operated vehicle may be

required to complete depth surveys of this kind.

4.4.3 Comparison of spawning strata (structures)

In 2010, studies were undertaken within Torbay (delimited by the extent of the bay) to assess

spawning patterns between two different strata, seagrass beds and mixed seaweed habitats. Dur-

ing these surveys (completed in May and July), it was found that within the geographical extent

of this Bay, eggs were only recorded attached to Z. marina plants within seagrass beds. De-

spite the presence of a variety of seaweed species (e.g. C. filum, S. muticum, S. latissima and

red foliose algae) within the mixed seaweed stratum that are known to be utilised as spawning

structures at other study sites, no egg clusters were recorded within this substratum. Whether

these results indicate a ‘preference’ for seagrass as a spawning structure/habitat within this

study site remains to be determined. Seagrass has often been cited in the literature as providing

important nursery areas for a variety of commercial marine species, providing food and relative

safety and protection for vulnerable ELS (e.g. Jackson et al. 2001). However, demonstrating

that a higher density of eggs exist within a habitat does not provide conclusive evidence of the

nursery role of that habitat (Beck et al. 2001). For that, additional evidence showing increased

growth rates or survival of juveniles or successful movement to adult habitats would also be

required as specified by Beck et al. (2001) in their ‘Nursery-role’ hypothesis.

In 2011, studies were undertaken within Poole Bay and Torbay, although for this study the

geographic extent of the Torbay study site was adjusted to include the area from Torbay to Bab-

bacombe Bay (which extends outside of the geographic extent of the Bay). Within the Torbay

study site egg clusters were recorded at all four seagrass sites, but within the mixed substratum
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only at one site on H. siliquosa(Babbacombe Bay), although a single egg cluster was recorded

at Outer Millstones but attached to a section of steel rope. At Poole Bay, eggs were located on

natural structures only within the seagrass stratum (although a single egg cluster was recorded

at Handfast Point attached to a ghost trap). A significant difference between the numbers of

eggs and the numbers of egg clusters recorded within each stratum was demonstrated with sea-

grass dominating in both categories. As was the case in the 2010 study, a variety of seaweed

species (e.g. H. siliquosa, S. muticum, S. latissima and red foliose algae) were recorded within

the mixed stratum that are known to be utilised as spawning structures at other study sites. A

number of theories can be proposed to account for the difference in spawning patterns that was

observed within these two strata: (1) a ‘preference’ for seagrass structures/habitats exists at this

sites, as it provides an appropriate ecological environment for the development and survival of

ELS (e.g. food and shelter); (2) in contrast to seaweed sites, the hydrodynamic conditions within

seagrass areas (e.g. reduced current flows and reduced exposure), may provide better conditions

for spawning making it easier for female cuttlefish to attach eggs to structures within sheltered

areas. The mechanisms for spawning site and spawning structure/habitat selection need to be

investigated in further detail and an investigation into the effect of exposure or current strength

on patterns of spawning intensity now made.

4.4.4 Temporal analysis of spawning within seagrass beds (Torbay 2010-2012)

The results of this study highlighted the potential effects that changes in the spatial dynam-

ics of seagrass beds, which were demonstrated to be an important spawning habitat within the

UK study sites at Poole Bay and Torbay, can have on cuttlefish spawning patterns and inten-

sity. Changes in the spatial dynamics of seagrass beds can occur for a variety of reasons that

include both anthropogenic and natural disturbances. Seagrass beds are legislated for under sev-

eral agreements which include being listed as a priority species in the UK Biodiversity Action

Plan (Maddock 2008) and as a threatened habitat under the OSPAR agreement (Tullrot 2009).

Despite this, in many areas these beds are still damaged as a result of anthropogenic (e.g. pollu-

tion, fishing activity and recreational boat anchoring) or natural disturbance (e.g. from physical

factors such as wind and wave exposure) (Maddock 2008; Tullrot 2009).
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In 2012 the subtidal survey data from Torbay indicated a significant increase in the fractal di-

mension (spatial heterogeneity) of sampled seagrass beds compared to the 2011 subtidal survey

data. Fractal dimension is used to represent the degree of fragmentation (or spatial heterogene-

ity) within a seagrass bed, which is described by a combination of the area of seagrass cover,

patch size and the distance between patches (Jackson et al. 2006). The spatial dynamics of

seagrass beds are known to be influenced by a range of factors including natural disturbance

(e.g. wind-generated wave dynamics), which can affect both the development of the bed and

its heterogeneity or patchiness (e.g. Turner et al. 1999; Robbins and Bell 1994). This change

in fractal dimension (or spatial heterogeneity) of the sampled seagrass beds could be caused

by anthropogenic (e.g. pollution) or natural disturbance (e.g. storms). Torbay is an easterly

facing bay and is therefore vulnerable to easterly winds, during the spring of 2012 Torbay was

exposed to higher levels of easterly winds in April 2012 (Figure 4.14) in the month prior to

surveys being conducted. The resultant damage from the easterly winds to the seagrass habitat

in the area may have affected the growth, health and extent of the seagrass beds within Torbay.

This is reflected in the levels of fractal dimension within transects compared from 2011 and

2012, with significantly higher levels of fractal dimension in 2012 transects indicating a higher

level of fragmentation. The numbers of eggs per cluster and egg density were also significantly

different between 2011 and 2012 with larger egg clusters and higher densities of eggs recorded

in 2011 than in 2012. The results of this study indicate that as the fractal dimension of seagrass

transects increased (e.g. an increase in the fragmentation of the seagrass landscape) the density

of cuttlefish eggs laid at a site decreased. This could indicate a link between egg laying patterns

and status and fragmentation of seagrass beds, such that events that cause variation in the spatial

dynamics of seagrass beds (e.g. wind-generated wave dynamics from storms) may also operate

to produce differences in the spawning patterns of S. officinalis within these areas both spatially

and temporally. By developing a better understanding of this relationship, information required

for management of this important habitat and commercial fishery resource can be provided.
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Figure 4.14: A wind rose showing the mean wind speed and direction for April 2011 (black
line) and April 2012 (red line) (UKMO 2012)

At Millstones Bay where the seagrass bed covers an area of approximately 15,500 m2 (TCCT

2006) the total numbers of eggs laid (estimated per month) ranged from 388 (May 2012) to

175,150 (May 2010) from this data an estimated number of spawning females present at the

site (per month) was calculated to range from one (May 2012) to 88 (May 2010) (Table 4.5).

At Torre Abbey Sands where the seagrass bed covers a larger area of approximately 595,000

m2 (TCCT 2006), the total numbers of eggs laid (estimated per month) ranged from 4,760

(June 2012) to 2,320,500 (July 2011), whilst the respective estimates for numbers of spawning

females (per month) ranged from two and 1,160 (Table 4.6). This temporal variation may also

be linked to changes in the spatial dynamics of the seagrass beds between years.

4.4.5 Selection Strategies

The results of this study have indicated that female S. officinalis can lay their eggs on a wide

variety of erect fauna and flora. At different sites, the patterns and use of these structures varied,
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in part this may be due to the availability of the structures (e.g. the presence/absence of a struc-

ture at each site) but, at the UK study sites of Poole and Torbay spawning was predominately

associated with Z. marina plants within seagrass beds even though alternative structures, iden-

tified as suitable for spawning at other survey sites or locations, were present (e.g. H. siliquosa

and S. latissima). Whether this indicates a ‘preference’ for Z. marina as a spawning structure at

these locations has yet to be determined. Further investigation at sites where eggs were found

tot5 be present and where eggs were not found to be present among both seagrass and mixed

seaweed strata would be of interest to assess whether additional hydrodynamic or biotic factors

may influence spawning intensity or absence of spawning at different survey sites.

Given the results of this study it would appear that the pattern of spawning substrate selection

by female S. officinalis is not ‘random’ (i.e. spawning on the first suitable substrate encoun-

tered), but to the same degree it would appear that neither do they exhibit a ‘specificity’ for a

particular spawning structure. An intermediate spawning selection strategy would better suit

the patterns of spawning observed within this study, with the potential for Z. marina to provide

a ‘preferred’ spawning structure that may, at least at the study sites of Poole and Torbay, be used

preferentially, but not to the complete exclusion of other structures.

A habitat ‘preference’ is often assumed when animals are found to associate with a particular

habitat or spawning substrate, suggesting that they have actively ‘selected’ that habitat from a

variety of suitable habitats encountered (Rosenzweig 1981). Habitat preference can be defined

as ‘the ratio of the use of a habitat over its availability, conditional on the availability of all

habitats to the study animal’ (Aarts et al. 2008). It is expected that animals will ‘select’ or

‘prefer’ a spawning habitat which confers advantages for reproductive success and/or survival of

embryos and ELS (e.g. Levins 1968). To enable organisms to demonstrate an active ‘selection’

for a habitat, then some sort of selection/choice process is required (e.g. sensory selection or

natal imprinting). This kind of selective/preferred spawning behaviour for a spawning structure

or substrate is already known to occur in some species of cephalopod, for example Sauer et al.

(1992) demonstrated that for L. vulgaris reynaudii fine grain sand was the preferred spawning

substrate, a specific grain size may be preferable to form a good anchoring for the eggs, as

182



4.4. DISCUSSION

suggested by Augustyn (1990).

Within the current literature there is only one main example of a cephalopod species demon-

strating specificity in spawning structures (S. apama Hall and Hanlon 2002). It is far more

common to find examples of cephalopod species which lack specificity and utilise multiple

spawning substrates (Moltschaniwskyj and Pecl 2003). Moltschaniwskyj and Pecl (2003) state

that in both South Australia and Tasmania, the southern calamary species Sepioteuthis australis

displays a lack of specificity for spawning substrates, with eggs observed to be attached to a

wide variety of both natural substrates (e.g. attached to Amphibolis antarctica, macrophyte al-

gae or embedded in sand) and artificial substrates. The same would appear to be true for S.

officinalis spawning observed within this study, with a variety of spawning structures identified.

In addition, other authors have also observed S. officinalis spawning on a wide variety of natural

(e.g. seagrass, algae, hydroids, crabs) (e.g. Boletzky 1983; Clark 2007) and artificial (e.g. cuttle

pots, ropes, sticks) (e.g. Clark 2007).

4.4.6 Data limitations

4.4.6.1 Methodological variation

One of the biggest limitations of the three year dataset that was collected as part of this research,

across both the French and UK coastline, was the different methodologies used for both the de-

sign and implementation of the surveys at different study sites. This has significantly reduced

the validity of this dataset to be analysed quantitatively as a whole, using all study sites, which

had been the intention at the outset of this research. The reasons for the differences in method-

ology are two-fold. Firstly at the outset of the project, publically available benthic habitat and

sediment maps were originally intended to be used to stratify the study sites into three strata (by

habitat type) for the surveys. However, the data available were not at a high enough resolution in

the <10m zone to enable stratification to this level and alternative stratification methods had to

be used, according to the data available at each site. Secondly, a wide variety of hydrodynamic

conditions existed among the survey sites. The large tidal currents exhibited on the French

coast meant that divers found they were unable to use the standard methodology that had been

designed in the UK using 50 m2 circular belt transects to undertake the surveys. This resulted
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in the use of two separate methods being used in 2010 to complete the surveys. In the UK the

standard methodology of 50 m2 circular belt transects was adhered to, whilst in France a timed

GPS-tracked drift transect was the only methodology found to be suitable and safe for use in

the water conditions. In 2011 a meeting between UK and French divers was arranged to try and

find a standard methodology that could be used on both coasts. Discussions were resolved for

UK divers to use an alternative methodology that used line belt transects of 100 m2 as a means

of trying to make the two survey methods as similar as possible. However, in practice these

methods were still very different, whilst UK line belt transects covered a set area (100 m2) the

French method used a set time (15 minutes) which meant the area covered varied considerably

between transects (e.g. 383 m2 to 2045 m2) depending on the rate and direction of the cur-

rent, among other factors. In addition, UK sites had been divided into two broad habitat based

strata, seagrass beds (seagrass stratum) and mixed seaweed habitats (mixed stratum) by over-

laying seagrass habitat maps produced by (TCCT 2006) in 2006 on to the study site to produce

a seagrass stratum and labelling the remainder of the area as mixed seaweed stratum, with large

areas of bare sand excluded from the stratum following a broad-scale drop-down camera sur-

vey. However, at the French sites, no such habitat delineation existed and the large variable area

covered by transects reduced the ability of the divers to survey specific habitat. The area was

instead divided by depth strata for which the data were easy to obtain and for which the large

blocked areas created were well suited for the transect methodology used. The vast differences

in environmental, physical, ecological and hydrodynamic conditions among the study sites had

made it very challenging to produce a unified dataset for which robust, parametric statistical

analysis could be produced. However, the undertaking of diving studies at the scale of the en-

tire English Channel, with dive teams based in two different countries and with diving sites

within both basins of the Channel was and still remains a vital goal in order to obtain the infor-

mation that is necessary to manage this shared fishery resource at this larger scale. In addition,

in many ways the diving research was a success despite the limitations of the dataset obtained

at this larger scale. For example, the knowledge that female cuttlefish are able and indeed do

spawn over this wide range of conditions is of interest in itself. That eggs are laid at sites with

macrotidal regimes where the tidal range can reach up to 15 m (e.g. Agon-Coutainville) and
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eggs can be exposed to the air on a daily basis, but also at microtidal sites where the tidal range

is only 4 m and eggs are always subtidal, highlights the degree of plasticity and the complex

range of patterns that exist within the spawning behaviour of this species.

4.4.7 Conclusions

The patterns and intensity of spawning by S. officinalis within the inshore waters of the En-

glish Channel were shown to vary both spatially and temporally. Eggs were found attached

to 15 natural structures across all study sites (UK and France). Whilst at the UK study sites

only three separate spawning structures were identified, at the French study sites 12 separate

spawning structures were described. At the UK sites of Poole Bay and Torbay, Z. marina was

the dominant structure used for spawning, however whether this determines a ‘preference’ at

these sites remains to be determined. The process by which selection of spawning structures

or habitats may occur in female S. officinalis remains unknown. Whilst there was shown to be

no significant difference in the numbers of eggs or egg clusters laid within different depth strata

(0-15 m) at the French site of Agon-Coutainville, this site did support eggs that were laid on

structures in the intertidal zone, increasing both the area and diversity of structures available for

spawning. The results of this study also indicate that changes in the environmental, hydrody-

namic or physical conditions at a site may affect the patterns and intensity of spawning, with

interannual variation between years, depending potentially on the conditions encountered.
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Chapter 5

Acoustic tagging for the study of adult and

sub-adult S. officinalis in inshore waters

Parts of the work in this Chapter has been submitted for publication:

• Wearmouth, V.J., Durkin, O.C., Bloor, I.S.M., McHugh, M.J., Rundle, J. and Sims, D.W.

(in press). A method for long-term electronic tagging and tracking of juvenile and adult

common cuttlefish Sepia officinalis. Journal of Experimental Marine Biology and Ecol-

ogy.

• Bloor, I.S.M., Wearmouth, V.J., Cotterell, S.P., McHugh, M.J., Humphries, N.E., Jackson,

E.L., Attrill, M.J. and Sims, D.W (submitted). Movements and behaviour of European

common cuttlefish Sepia officinalis in English Channel inshore waters: first results from

acoustic telemetry. Journal of Experimental Marine Biology and Ecology.

5.1 Introduction

Management measures to support and maintain a sustainable fishery require a thorough under-

standing of the temporal and spatial use of habitats across the lifecycle of a species. Hence,

a detailed knowledge of the spatial ecology (distribution in time and space) of this species, in

particular the movements, migrations and behaviour of key life stages such as spawning adults,

is both ecologically and commercially important for ensuring sustainable management of this

population in the English Channel.

What is currently known about the free-living movements of this species is generally based

upon mark and recapture studies (e.g. Boucaud-Camou and Boismery 1991; Ezzedine-Najai
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et al. 1997), fisheries data (e.g. Dunn 1999; Denis and Robin 2001; Wang et al. 2003), or the

occurrence of beaks or other hard parts in predator stomach samples (e.g. Morte et al. 1997;

Salman et al. 2001). From the basis of these studies, a consistent life cycle has been described

for S. officinalis which is punctuated by migratory behaviour. Nevertheless, the exact migratory

routes have yet to be identified and the locations of inshore spawning grounds are often only

inferred, at a large scale, from the known presence of commercial trap fisheries for cuttlefish.

The exact habitats utilised by this species and the range of movements and interactions that

occur within or between these inshore spawning grounds remain unknown. Specifically, infor-

mation on how long sexually mature adults spend in these inshore spawning areas and whether

they remain at a single specific site, indicating a degree of seasonal or short-term site fidelity,

remains unknown.

Animal-borne electronic tags (acoustic and archival) provide useful tools by which we can ad-

vance our knowledge of the movements and behaviour of cuttlefish and other cephalopods. For

example, Rigby and Sakurai (2005) used acoustic telemetry to study the movements and be-

haviour of the octopus species (Enteroctopus dofleini) in the inshore waters of Japan and found

unusual vertical movements of individuals that represented tagged individuals scaling fish nets

to attain easy access to the fish trapped within. Pecl et al. (2006b) also used acoustic teleme-

try in the inshore areas of Tasmania, Australia, to investigate the movements of the calamary

squid species (Sepioteuthis australis) for spatial management, enabling the authors to assess

the effectiveness of a closed area for the protection of spawners during the egg laying period.

Acoustic and archival tags have also been used in combination in Australia to monitor the en-

ergetics and movements of the Australian giant cuttlefish (S. apama) within localised inshore

areas (O’Dor et al. 2002; Aitken et al. 2005; Jackson et al. 2005). These studies all demonstrate

the potential of acoustic telemetry to enable scientists to study the complex movement patterns

of free-ranging cephalopods and to use this information to infer their behaviour and develop

new insights into their spatial ecology.

Advances in acoustic telemetry technology and the increasing miniaturisation of electronic tags

(Semmens et al. 2007), combined with the development of new tag attachment procedures for
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S. officinalis (Wearmouth et al. 2012), have now made it possible for smaller marine inverte-

brates such as these to be tagged. These advances have enabled the fine scale movements and

behaviours of S. officinalis to be monitored using traditional radio acoustic positioning sys-

tems, which can be temporarily deployed for the duration of the study. In addition, longer-term

acoustic monitoring is also possible using static acoustic arrays, such as that developed and

deployed by the Marine Biological Association in Whitsand Bay. This static system allows the

departures, arrivals and occupancy times of tagged individuals within the area to be monitored

in order to study site fidelity and spatial dynamics. Previous studies have used this array to

monitor several fish species (e.g. small-spotted catshark, Scyliorhinus canicula, Jacoby et al.

(2012)), but to date its use as a system to track inshore cephalopod species remains untested.

During the spring and summer months, sexually mature cuttlefish migrate inshore to spawning

grounds in the shallow coastal waters of the English Channel, where they loosely aggregate to

mate and spawn. Females then lay benthic egg clusters which are attached to upright structures

that radiate from the seabed. During this critical key life stage this species are also the subject

of focused fishing pressure, both from trawlers and nets during the inshore migration and from

the cuttlefish trap fishery on the inshore spawning grounds themselves. One of the major issues

currently associated with the trap fishery is the tendency of female cuttlefish to lay their eggs

on the traps (both internally and externally), which are then often removed by fishermen mid

or post fishing season during the cleaning process. Whilst a great deal of research has been

undertaken in the laboratory to investigate aspects of this key life stage (e.g. Boletzky 1986b,

1987a, 1988, 1989; Forsythe et al. 1994), demonstrating that in captivity this species has a

high degree of flexibility in its reproductive behaviour, and is capable of both semelparous (one

oviposition event, at one location and dying shortly afterward (Fritz et al. 1982)) and uniseasonal

intermittent (multiple oviposition events over a single breeding season, at a single or multiple

spawning sites (Kirkendall and Stenseth 1985)) spawning patterns. In contrast, our limited

knowledge on the in situ spawning behaviours and movements of these adult spawners within

natural populations and habitats remains of concern for their future management, especially in

light of the additional anthropogenic egg loss from the cuttlefish traps. It is hoped that electronic

tagging may help provide additional insights into the dynamics of spawning movements and
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behaviours of S. officinalis within natural populations, enabling such knowledge gaps to be

shortened.

The aim of this study was to investigate the fine scale movements and behaviours of both adult

and sub-adult cuttlefish within the inshore waters of the English Channel using two acoustic

telemetry methods. Habitat use and site fidelity of spawning adults were assessed in real-time

within a known spawning ground. whilst the movements and behaviours of sub-adult cuttlefish

were also studied with the aim of determining whether sexually immature individuals exhibit

site attachment to a specific area (e.g. seasonal site fidelity) and whether they return to the same

geographic locations or areas (e.g. natal homing of regional philopatry) during subsequent

years.

5.2 Objectives

1. To assess the feasibility of using electronic tags to study S. officinalis in their natural envi-

ronment (i.e. validating the transference of novel tagging techniques from the laboratory

to the field).

2. Monitor the movements of sexually mature adult cuttlefish within a known spawning site,

in order to monitor their habitat use, assess the degree of seasonal site fidelity (if any) that

occurs and to infer possible associated behaviours (e.g. reproductive patterns).

3. To determine whether sub-adult (Year 1) cuttlefish remain at a single coastal locality (e.g.

seasonal site fidelity) during the inshore period or whether they move along the coastline

to multiple localities.

4. Estimate how long sub-adult (Year 1) cuttlefish remain in inshore waters before making

their return offshore migration to deeper waters.

5. To investigate diurnal cycles and activity patterns and whether sub-adult cuttlefish (Year

1) return to the same inshore areas as sexually mature adults (year 2) to breed and spawn

(e.g. to investigate whether natal homing or regional philopatry occurs in this species).
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5.3 Methods

5.3.1 Study location

5.3.1.1 Torbay, Devon, U.K.

The Vemco radio acoustic positioning array (VRAP) array (operated with assistance from the

Marine Biological Association’s behavioural ecology group) was deployed in Torbay which is

situated off the south coast of England, within the Western English Channel (Figure 5.1). The

study area of Millstones Bay (50◦ 27.30’N; 03◦ 31.40’W) is a small embayment (Figure 5.2)

within the Torbay area that encompasses a seagrass bed (Zostera marina) of approximately 1.5

hectares (15,500 m2) that is a known spawning ground for S. officinalis during the spring and

summer. The water depth in the bay reaches approximately 10 m.

The sediment in the bay is varied with pebbles and boulders predominating in the intertidal

zone, rapidly transitioning to sand in the near subtidal and then to silty-mud as the area deepens

away from the shore. Large rocky outcrops also punctuate the bay with Millstones Rock on the

west and Saddle Rock to the east. The water temperature within the bay was recorded during

the study period using an in situ temperature sensor situated at approximately 5 m depth, and

was found to average 12.7 ◦C (± SD 0.35).

5.3.1.2 Whitsand Bay, Cornwall, U.K.

The static acoustic array (operated by the MBA’s behavioural ecology group) is situated at

Whitsand Bay (50◦ 20.40’N, 04◦ 15.40’W), Cornwall (UK). The study site (Figure 5.3) has

a water depth of less than 30 m and is within 2 km of the coast. The substrate at the site is

mainly ‘soft ground’ (e.g. fine sand, coarse sand and mud) although areas of gravel and broken

shell are also present. Within the study area there are also two ship wrecks on the seabed, the

HMS Scylla (< 28 m depth) and the James Egan Lane (< 24 m depth), which are located within

Receiver 2 and Receiver 3 respectively (Figure 5.3).
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Figure 5.1: Map of south-west England showing the location of the study site. The study site
Millstones Bay is shown in inset A

Figure 5.2: A photograph depicting the layout of the study site Millstone bay with the seagrass
bed situated within the embayment, a visual line of sight from Living Coast over
the bay and Millstones Bay rock emerging from the water on the right-hand side.
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Figure 5.3: The location and spatial arrangement of the static acoustic array (6 VR3-UWM
receivers) at Whitsand Bay, Cornwall, U.K. The grey area denotes land, black
line denotes 20 m depth contour, black dots indicate locations of six receivers and
larger grey circles indicate the approximate extent of each receiver (data from the
MBA behavioural ecology group). Diamonds denote locations for two submerged
wrecks. 193
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5.3.2 Study animals

Eight adult cuttlefish ranging in size from 170-205 mm dorsal mantle length (DML) were cap-

tured by standard commercial cuttlefish traps in Millstones Bay by the commercial fishing ves-

sel Our Wendy during May 2011. On deck, animals were held in temporary storage units with

clean seawater (12− 13◦C) for transfer back to the Living Coast laboratory where they were

immediately placed in aerated, recirculating aquaria. At the laboratory individual animals were

examined and excluded from tagging if they showed any external signs of damage or abnormal

behaviour. Eight adults were tagged and re-released, into the centre of the array, on the same

day as tagging.

Ten sub-adult cuttlefish (132 - 180 mm DML) were captured by short hauls of a demersal trawl

(12 m otter trawl, cod-end mesh size 12 mm) in Whitsand Bay, by the research vessel RV MBA

Sepia during summer 2011. On deck, animals were held in aquaria with a constant supply of

clean seawater before being transferred to the MBA laboratory where they were held in aerated,

recirculating aquaria for between three to four weeks prior to tagging. All tagged cuttlefish were

released on 27th October 2011 (approximately two days after tagging) at 09:05h at the position

50◦ 19.549‘N; 04◦ 15.251‘W.

5.3.3 Tagging methodology

All eight adult cuttlefish were fitted with continuous transmitters (24 mm long x 9 mm diameter

and weighed 2.2 g in water, VEMCO V9-1L continuous transmitter, VEMCO, Halifax, Nova

Scotia) which were surgically attached to the internal cuttlebone, as outlined in Section 5.3.5.

Each transmitter operates at a unique frequency (63, 69, 72, 75, 78, 81, 84 kHz) to allow

individual identification and functions as a ‘position only’ transmitter, with an expected battery

life of approximately 20 days.

All sub-adult animals were fitted with a coded acoustic transmitting tag (29 mm long x 9 mm

diameter and weighed 2.9 g in water; V9-2L coded tag, VEMCO, Halifax, Nova Scotia). Each

coded transmitter operates at a frequency of 69 kHz with a nominal delay of 180s and had an

expected battery life of approximately 738 days.
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Acoustic transmitters were fitted into purpose-built harnesses prior to attachment to the internal

cuttlebone. Each harness was constructed from a 10 mm long section of acrylic rod (17 mm

diameter), with a nylon screw (3.8 mm) threaded into the base. A hole was then drilled through

the centre of the acrylic section to enable the acoustic transmitter to be inserted and secured into

place using a small amount of quick drying cyanoacrylate glue (Wearmouth et al. 2012). The

harnesses were also printed with contact details for the MBA so that they can be returned.

5.3.4 Sedation procedures

Adult cuttlefish were immobilised prior to tagging using a magnesium chloride seawater ‘bath’

(1.9 % MgCl2). The bath was prepared by mixing 300 g MgCl2 (Magnesium chloride hex-

ahydrate 99 %; MgCl2.6H2O, Fisher Scientific, Loughborough, U.K.) dissolved in two litres of

distilled water (13.04 % MgCl2). Sub-adult cuttlefish were immobilised using a higher concen-

tration MgCl seawater ‘bath’ (3.35 % MgCl2) (Chapter 6, Section 6.3.3), prepared by mixing a

stock solution of 600 g MgCl2 dissolved in two litres of distilled seawater (23.08 % MgCl2). In

both cases 170 ml of this stock solution was added to each litre of seawater in the bath.

A clear perspex bath, covered externally with black waterproof material and an opaque grey

lid was used to reduce any external stimuli and help settle the animal. Individual cuttlefish

were transferred from the holding aquaria to the MgCl2 bath using a soft hand-held net and

placed in a covered basin of seawater for transport. Periodic observations were then made

to assess the degree of immobilisation and the surgical tagging procedure commenced once

sufficient immobilisation was attained. Sufficient immobilisation (as summarised in Table 5.1)

was judged to have occurred once the individual had floated to the water’s surface, changed to

a consistent white (pallid) colouration (indicating a relaxation of the chromatophores), and all

medial fin undulations had ceased (Wearmouth et al. 2012). Once medial fin undulations had

ceased, the back fin was gently pinched and the reaction observed, if there was no movement

of the fin in response to this stimulus the procedure was commenced. However, if a curling of

the fin was observed the individual was left for one or two minutes longer and then the response

re-checked.
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Table 5.1: Steps of visible sedation in cuttlefish using MgCl2;[ *ventilation rate (King and Adamo 2006)]

Stage Description Visible signs

Anaesthetic

A1 Reduction in activity Slowing of movement activity, positioned on bottom or central water column

A2 Change in body position Floating on water’s surface; randomised chromatophore action

A3 Change in body colour Floating on surface, consistent body colour pale/white

A4 Movement cessation Floating on surface, medial fin undulations ceased; white colouration

Recovery

R1 Recovery of body position Positioned level on bottom; shallow, slow ventilation rate; pale body colouration

R2 Recovery of body colour Resumption of randomised chromatophore action; slow but deeper ventilation activity

R3 Recovery of movement activity Consistent colouration; recovery of fin undulations; increasing ventilation rate

R4 Recovery of regular ventilation Strong, regular ventilation rate (35±9.3 breathes min−1)*; normal movement patterns
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5.3.5 Tagging procedure

Following immobilisation, a support frame was slowly submerged into the anaesthetic bath and

the individual manoeuvred onto it, to maintain the animal at the surface of the bath and allow a

laboratory assistant to hold the cuttlefish firmly by the lateral processes of the dorsal shield of

the cuttlebone. This ensures that the animal remains still and that no pressure is exerted on the

internal cavity of the cuttlefish which contains the internal organs (Wearmouth et al. 2012).

All individuals were tagged using a method whereby the tag harness is secured to the internal

cuttlebone using a surgical procedure as first proposed by Wearmouth et al. (2012). A small

incision is made at approximately 50 mm from the distal end of the cuttlebone (to enable at-

tachment at the thickest part of the cuttlebone), both in the skin overlying the mantle and the

subcutaneous membrane surrounding the cuttlebone. The skin was then held taut to expose

the dorsal surface of the cuttlebone using a set of forceps. The cuttlebone has a strong exter-

nal covering on the dorsal side which needs to be penetrated in order to create a hole for the

transmitter harness to be attached. A battery powered, hand-held drill was used to create a pre-

liminary starter hole in the bone (3.1 mm width). Extreme care was taken to ensure that once

the external hard layer had been penetrated, the pressure on the drill was immediately released

to ensure that the hole did not penetrate the remaining soft part of the cuttlebone. Once the

external surface had been penetrated the hole was then widened using a second battery powered

drill (3.8 mm width). The screw end of the tag harness was then tapped into the hole in the

dorsal surface of the cuttlebone by hand, to a depth of approximately 5 mm, and fixed firmly

in place with a small amount of quick drying cyanoacrylate glue (Figure 5.4). The surgical

procedure (including weighing and measuring) took less than three minutes per individual. The

weights of the transmitters in water (2.2 and 2.9 g) were considered minimal, as the tag to body

weight ratio was less than 2 %, and no additional flotation was fitted to the harnesses.

Following tag attachment, each individual was weighed (g) and measured (mm DML) before

being transferred to a recovery aquarium, containing clean seawater and fitted with a small

water (or air) pump to ensure adequate aeration for recovery. Individuals were continuously

monitored for a minimum period of 10 minutes to ensure that recovery was evident. This in-
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cluded observation to ensure that the siphon was active, normal colour returned to the gills and

mantle and normal body movement recommenced (Table 5.1). For sub-adult cuttlefish that were

sedated at a higher concentration (see Chapter 6 for further details), following transfer to the re-

covery aquarium, clean seawater was pumped through the mantle cavity and across the gills for

several minutes to help recover normal gill movements. Following the initial period of recovery,

periodic observations were then made over the course of the following 30-60 minutes to ensure

that no adverse effects, or behaviours were observed from the surgical and sedation procedures

prior to being re-released back at the site of capture. Adult cuttlefish were re-released on the

same day as tagging, whilst sub-adult cuttlefish were retained in holding aquaria at the MBA

for 48 hours prior to being released at Whitsand Bay.

Figure 5.4: Attachment of acoustic transmitters (V9, VEMCO) to adult cuttlefish in Torbay.
(a.) Purpose built acrylic harness, (b.) V9 (Vemco) acoustic transmitter, (c.) Tag
set in purpose-built acrylic harnesses and secured to the cuttlefish using a screw
and acrylic superglue (following the method in Wearmouth et al. (2012)).

5.3.6 Vemco Radio Acoustic Positioning Array

The movements of adult cuttlefish fitted with acoustic transmitters were monitored in real-time

using a Vemco Radio Acoustic Positioning (VRAP) array (Vemco, Nova Scotia). The array

consisted of three buoys deployed in a triangular array (Figure 5.5) with each buoy fitted with

a hydrophone and an acoustic transmitter with a VHF radio link which allowed the buoys to

communicate with each other, as well as with the computer linked base station that is maintained

198



5.3. METHODS

on land, by way of a line of sight two way radio connection. This enables the buoys to be

controlled from the base station on land and for information collected by the buoys on the

transmitter signals to be passed back to the base station for analysis and calculation by the

VRAP algorithm, allowing the position of a transmitter to be determined (in real time) from the

arrival times of the pulse signals to each of the three buoys.

Figure 5.5: Schematic diagram illustrating the set up of the radio acoustic positioning system
(VRAP) which provides continuous triangulated positions and data using the three
radio-linked buoys. (a.) Living Coasts where the base station was housed, (b.)
base station connected to VRAP software, (c.) VRAP buoy setup, illustrating the
locations of the three buoys.

5.3.6.1 Moorings

The moorings for the array were initially deployed on Friday 13th May with placement in an

approximate equilateral triangle with 200 to 300 m between each (Table 5.2 and Figure 5.5).

The moorings were left in situ for two days with small marker buoys attached in order to indicate

their location. During this period the placement of the moorings was monitored using a hand-

held global positioning system (GPS) unit (GPSMAP 76, Garmin (Europe) Ltd., Southampton,

UK) to ensure that their position was maintained. Each of the three moorings was composed of

a flat anchor (7 kg for inshore and 9 kg & 14 kg for offshore), shackled to a 2 m long section of

light anchor chain by a swivel joint, to allow free rotation of the chain. A second shackle was
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used to attach the anchor chain to a long section of rope (Figure 5.6).

On Monday 16th May 2011 the marker buoys were replaced with the VRAP buoys to complete

the set up of the array. Prior to deployment the buoys were fitted with new batteries charged at

between 12.5-12.7 volts and the buoys were then tested in air before being pressure tested to

15 psi (pounds per square inch). A set of counter weights (16 kg) attached to help maintain its

correct position in the water column. To prevent fraying of the rope from any movement of the

weights, a section of plastic pipe was placed around the attachment rope.

Figure 5.6: A diagram of the moorings used for the VRAP array. (a.) antennae, (b.) VRAP
buoy, (c.) hydrophone, (d.) counter weights, (e.) rope, (f.) swivel joint, (g.) light
anchor chain, (h.) swivel joint, (i.) flat anchor. Grey dotted line indicates sea
surface.
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Table 5.2: Locations and details for the moorings for the VRAP array

Mooring Label Serial n. Latitude Longitude Depth (m) Dist. to A (m) Dist. to B (m) Dist. to C (m)

Inshore B 2562 50◦ 27.367’N 03◦ 31.342’W 5.9 - 6.0 215 - 200

Offshore easterly C 2563 50◦ 27.264’N 03◦ 31.309’W 9.6 270 200 -

Offshore westerly A 2564 50◦ 27.345’N 03◦ 31.499’W 9.2 - 215 270
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5.3.6.2 Base station

A laptop computer was used to run the VRAP software (VRAP 5 Version 5.1.4, Vemco, Nova

Scotia). A cropped bitmap image of the admiralty chart (resolution 500 DPI [dots per inch])

for the area was uploaded to the software and georeferenced using two calibration points (Cal-

ibration point A = 50◦ 27’N, 03◦ 32’W; Calibration point B = 50◦ 27.9’N, 03◦ 30’W), this

enabled the base station to plot the resolved positions for each transmitter in real-time onto the

admiralty chart. The base station was connected to a weather-proofed aerial antenna that was

erected on the exterior of the Living Coasts building to enable a direct line of sight between the

antenna and the VRAP buoys (A poster display was created and displayed at Living Coasts to

inform visitors about the project; see Appendix C.3). The following settings were then used to

set up the tracking regime within the VRAP 5 software. For the acoustic tags (‘pingers’), the

scan time was set to 12 s, the scan delay was set to 0 s and the upload interval to 12 s, the speed

of sound was left at the default setting of 1500 m−1 and the position average algorithm used to

calculate the positions. For the buoys, the scan delay was set to 0 s, the calibration interval to

180 minutes and five positions selected to show.

5.3.6.3 Passive monitoring

Passive telemetry tracking systems rely on the set of stationary receivers which are able to

monitor the movements of acoustic transmitters within a predefined study area. The VRAP

5 software allows the user to program a tracking schedule for the array, the base station then

instructs each of the three VRAP buoys to listen for a pre-set duration (e.g. 20 seconds) for

pulses of the signal from a specified transmitter. The arrival times of these sound pulses are

then transmitted via a radio signal to the base station receiver onshore (at Living Coasts). The

computer software uses this information to triangulate the position of the tag as a result of the

differences in arrival times of the sound pulse to each of the three buoys, allowing the position

of the tagged cuttlefish to be plotted on a georeferenced map. The base station instructs the

buoys to repeat this process for each of the active transmitters in turn (as defined in the tracking

schedule), before repeating the process cyclically, enabling each of four active transmitters to

be searched for by the array approximately every 90 seconds. In order to resolve the position
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of a transmitter the pulse signal must be received by all three of the buoys. If a transmitter is

positioned directly behind a buoy, then the position cannot be calculated. During this study the

software program was set up to calibrate the position of the three buoys every hour in order to

maximise the accuracy of their positions, and in turn, the positions of the transmitters.

5.3.6.3.1 Positional accuracy The positional accuracy of the VRAP system has been tested

by several authors (e.g. Klimley et al. 2001; Filer 2009) which suggest that within the detection

range the accuracy of the resolved transmitter positions is not uniform. The accuracy being

greatest within the centre of the triangular array (approximately 2 to 3 m) and decreasing rapidly

with distance outside of the array (VEMCO 2003). In addition, around each of the three buoys

is a shadow zone, where the accuracy of position calculation is also reduced to approximately

20 m.

The accuracy of the VRAP system was assessed to identify the degree to which temporal error in

the detection of pulses from a transmitter affected the accuracy of positional determinations by

the VRAP array. This was undertaken using the VRAP Positional Simulator program (Vemco

ltd., VRAP PosSim, V. 3.01 Beta) (Figure 5.7). For the simulation, the depth of each buoy and

the distances between them were set to match those recorded at the beginning of the study (Table

5.2). A temporal error for pulse detection of 0.5 ms was introduced and the simulation run for

an area of approximately 1,000 by 1,500 m surrounding the VRAP buoys (Figure 5.7). The

PosSim software prepares the simulation by determining the times taken for a pulse emitted,

within a randomly seeded quadrat, to arrive at each of the three buoys. The arrival times are

then altered by a random number (less than or equal to our pre-set temporal error of 0.5 ms) in

order to simulate the variability in pulse detection by each of the three buoys. The simulated

positional error occurs as the signal from the quadrant travels along slightly different pathways

and at different speeds, as described by Klimley et al. (2001).

The simulation (Figure 5.7) indicates that the theoretical accuracy of positions was highest

within the array (1 m accuracy) to approximately 100 m distance outside of the array (excluding

the areas directly behind each buoy). The theoretical accuracy of positions was less than 20 m

for a distance of approximately 400 m directly in front of the array. The theoretical accuracy
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of areas behind each of the buoys was low (accuracy less than 50 m), and for areas extending

outwards from the sides of the array. Whilst a large number of the data points collected during

this study do fall outside of the area of highest accuracy (within the array), these ‘cleaned’ data

positions still fall within the 400 m distance directly in front of the array, where the theoretical

error is less than 50 m, and so are still considered sufficient to support the analysis that is

presented in this chapter.

Figure 5.7: Simulation plot of the accuracy of positions determined within the detection range
of the VRAP array with a receiver timing error of 0.5 ms and a transmitter depth
of 10 m. The default speed of sound (1,500 ms) was also used

5.3.6.4 Active monitoring

Active (or manual) monitoring was undertaken using a directional hydrophone and acoustic re-

ceiver (VR60 receiver, Vemco) and a hand-held GPS to locate the pulse signals emitted by the

acoustic transmitters and then manually record their positions. Active monitoring was under-

taken by boat on four occasions during the study (20th, 24th, 25th and 27th May 2011) and once

following the removal of the acoustic array (3rd June 2011). The purpose of this monitoring was

to monitor the area outside of the immediate study vicinity to confirm the presence or absence

of tagged individuals, which were no longer being tracked by the VRAP system, but that might

have remained in the greater Torbay area.
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A typical monitoring session lasted between 1 to 2 hours, although the session undertaken

at the end of the study took place over a 4 hour period, allowing a systematic search of the

greater Torbay area to be undertaken. Tagged individuals were searched for, starting with their

last known position recorded by the VRAP system. The directional hydrophone was set to

the correct scanning frequency to detect the target transmitter and placed in the water at a

depth of approximately 1 m and then rotated to 0◦, 60◦, 120◦, 180◦, 240◦, 300◦ and 360◦ in

order to determine the direction of the strongest signal strength. Once the direction of the

target transmitter had been identified, the hydrophone was removed from the water and the boat

proceeded 300 m in that direction. The process was then repeated until the position of the target

tag was localised (indicated by strong detection of the signal pulse in all directions). A GPS

location and a time and date stamp were then recorded. A similar process was undertaken for

non-positioned tags, with systematic sampling at 300 m intervals and the hydrophone cycled

through all required tag frequencies.

5.3.7 Static acoustic array

Static acoustic array telemetry was conducted at Whitsand Bay, commencing on 27th October

2011 and remaining ongoing. A total of ten sub-adult S. officinalis were tagged using V9-2L

coded transmitters and released back into the study site. The static acoustic array is deployed

approximately 1.5 km offshore at a depth of between 14 to 25 m and covers an area of 1.5

km2. The array consists of six non-overlapping receivers (VR3-under water modem, VEMCO,

Halifax, Nova Scotia) mounted 2 m above the seabed on a set of seabed landers (Figure 5.8),

that are being used principally to track fish movements and space use. When a tagged cuttlefish

occurs within 250 to 300 m of one of the six receivers, at the same time as their coded transmitter

emits a pulse, then that specific receiver will create a log of the tagged individual’s presence,

recording information on the transmitter (ID, date and time).
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Figure 5.8: A diagram illustrating the seabed landers at Whitsand Bay. (a.) Release transpon-
der, (b.) one of the three feet used to stabilise the lander on the seabed, (c.) VR3
acoustic receiver and data logger, (d.) the main frame of the seabed lander which
is painted with anti-fouling paint to prevent biofouling. The seabed landers were
designed by the Marine Biological Association’s behavioural ecology group and
built by Underhill Engineering Ltd.

5.3.8 Tag recovery

For the purpose of this study, a monetary reward (£50) was offered for the return of each tagged

animal together with information on its recapture date and location. In addition, posters an-

nouncing the experiment were distributed at the port and to individual fishermen involved in the

local cuttlefish trap fishery.

5.3.9 Data processing

5.3.9.1 VRAP array

5.3.9.1.1 Track cleaning For data collected from the VRAP array, all tag positional fixes

were calculated from the VRAP 5 software (Version 5.1.4; Vemco Ltd) using the ‘position-

average’ algorithm. Since the determination of tag locations relies on the detection of the sound

pulses by all three buoys within the VRAP array and the positional accuracy of tag positions

attenuates from the centre of this array, erroneous positions can be created. Such anomalies

can be created as the result of the sound pulse emitted from the transmitter reaching one or

more of the VRAP buoys indirectly, causing a delay in its arrival time, as a result of reflecting
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off underwater features such as the seabed or rocky outcrop or from noise of water movement

created during adverse weather conditions. In addition, Klimley et al. (2001) noted that the

signal is more likely to travel indirectly or by multiple paths when the tagged individual swims

near the seabed or the surface of the water. Such anomalies include positions calculated on

land, or those separated by greater distances than physically possible for the animal to travel. In

order to analyse the data correctly, the first step must include cleaning of the tracks to remove

any such anomalous positions. For this purpose a data cleaning routine was developed and used

to clean the data from each individual tagged cuttlefish, as follows:

1. Positions plotted on land: The data were extracted from the Vemco software and trans-

ferred into ArcGIS where they were plotted onto a georeferenced map of the study area

(Admiralty Chart no. 26 ’Harbours on the South Devon Coast’). Any positions plotted

on land were then highlighted and deleted from the data file.

2. Positions exceeding maximum range of VRAP system: The maximum range of the

VRAP system was estimated at approximately 0.5 km from the centre of the array (after

which the theoretical accuracy is greater than 50 m (Figure 5.7)) and any positions outside

of this range were removed.

3. Positions exceeding maximum swim speed (1 ms−1): The data points were extracted

from ArcGIS and transferred to a track analysis software program (Track Analysis, MBA,

2011), step lengths between successive points were then calculated and all positions with

abnormally large step lengths to and from a point (using maximum swim speed filter set to

1 ms−1) were removed. The maximum plausible speed was calculated from data recorded

within the VRAP coverage area (0.262 ms−1) in addition a calculation of the maximum

swim speed of cuttlefish produced by O’Dor and Webber (1991) stated that the maximum

speed for cuttlefish is 0.65 ms−1, therefore a conservative estimate of 1 ms−1 was used

for initial exclusion.

4. Positions exceeded maximum step length distance (m): Finally using the Track Anal-

ysis software any position resulting from a movement greater than ten times the distance
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between two continuous positions, in a time interval of less than 30 minutes was consid-

ered an outlier and removed from the data set.

5. Positions averaged for every 15 minutes section of the track: To aid with visual display

of the data positions were then averaged for every 15 minute section of the track and

plotted in ArcGIS. This was done for ease of viewing and did not affect the content of the

data set.

5.3.9.2 Static acoustic array

The data from the static acoustic array was downloaded directly from the at-sea modem, follow-

ing verification of the data with the time and date stamps, it was then transferred into Microsoft

Excel for analysis.

5.3.10 Data analysis

5.3.10.1 Presence/absence

Data from both acoustic tracking systems were used to examine the patterns of presence and

absence of tagged individuals. Presence of all tagged individuals was assessed on a daily basis

with individuals considered present in the study area if one or more positions were detected

with a single day.

5.3.10.2 Maximum net displacement

Maximum net displacement of a tagged individual was calculated as the greatest straight line

(at sea) distance from the point of release to any subsequently recorded position within the

VRAP array (for adult individuals that remained for multiple days) or to the point of recapture

(for individuals that were recovered through the fishery). Whilst this allowed the maximum net

displacement to be calculated for several adult individuals, it could not be calculated for any

adult individual that had left the study area immediately and was subsequently not recaptured

through the fishery. Maximum net displacement was not calculated for any sub-adult individuals

as only their positions at each of the six receivers were recorded and so an estimate of maximum

net displacement would have been limited to within this small, static area.
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5.3.10.3 Habitat and area use

At Millstones Bay, a habitat map was produced from video surveys during May 2012, using a

drop down video camera (Colour camera used with GPS overlay, Panasonic, UK) and a hand-

held GPS. The point data from these surveys were then plotted in ArcGIS and interpolated

within the extent of the sampling area using inverse distance weighting to produce a contin-

uous raster layer showing the habitats of the study area (Figure 5.9). An estimation of the

total area use for this individual was undertaken using minimum convex polygons in ArcGIS

(Arc Toolbox-> Data Management -> Features -> Minimum Bounding Geometry [ConvexHull,

All]). This was calculated for the total duration of the tracking period as well as individually

for each period of day (06:00 - 19:59) and night (20:00 - 05:59).

Figure 5.9: A habitat map for the Millstones Bay study area produced using drop down video
surveys and interpolated from point data to a raster layer using ArcGIS. Green =

seagrass, light brown = seaweed (short algal turf), dark brown = seaweed (kelp)
and yellow = areas of bare sand. The black triangles show the locations of the three
buoys for the VRAP acoustic array. The solid grey area denotes land. Contour lines
are drawn in solid lines and labelled
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At the Whitsand Bay study site, the habitat was inferred from data given on the admiralty chart

for the area (Admiralty Chart 1900 Whitsand Bay to Yealm Head including Plymouth Sound),

which suggests that the area is largely soft sediment with patches of gravel and broken shell and

the presence of complex structures on the seabed (e.g. HMS Scylla and James Egan Layne).

5.3.10.3.1 Diel activity patterns Diel activity patterns were examined for only one individ-

ual (Cuttlefish 7) for which the data set covers nine consecutive days of tracking(May 19th -

May 27th 2011). Data for the remaining tagged individuals was not analysed for diel activity

patterns due to the restricted temporal extent of these datasets. For the period May 19th to May

27th 2011, the mean sunrise and sunset were at 04:58 (SD ±3 minutes) and 20:56 (SD ±3 min-

utes) respectively. By estimating the minimum convex polygons (the smallest area that contains

all your data points) in ArcGIS for each 12 hr period, an analysis of the cuttlefish movement

patterns during daylight hours (06:00 - 19:59) and nighttime hours (20:00 - 05:59) was possi-

ble. In addition, the dataset for Cuttlefish 7 was divided into hourly bins and the net distance

moved measured and plotted by hour to observe whether movement was related to periodicity

(e.g. activity occurring at regular intervals). In addition, each hour was then assigned to one of

four activity patterns as previously described by Scheel and Bisson (2012) based on directional

tendency and step length of the series of positions. Stationary activity was described as a scat-

tering of positions that lacked directional tendency and that fell within a radius of the estimated

error; all other sequences were termed movement. Directed movement was considered to have

occurred when the sequence of positions exhibited a directional tendency and the final displace-

ment from the start position was approximately the same as the net distribution (calculated as

ratios [of net displacement and final displacement] between 1.00 - 1.50). Indirect movement

occurred when the sequence of positions lacked direction and central tendency and where final

displacement was less than the net displacement (calculated as ratios of 1.50 or greater). In

contrast central tendency movements (or loops) occurred when net displacement occurred, but

the final displacement was approximately equal to zero (calculated as 5 m or less) (Figure 5.10)

(Scheel and Bisson 2012).
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Figure 5.10: Types of movement pattern as described by Scheel and Bisson (2012). (a.) Cen-
tral tendency (or loop), (b.) directed movement, (c.) indirect movement, (d.)
stationary. Green dots = start position of sequence, Red dot = end position of
sequence, Black dot = intermediary positions

5.3.10.3.2 Swimming speeds Maximum swimming speed was calculated for each adult

tagged cuttlefish using portions of the tracks where directed travel had occurred and that con-

tained a minimum of 10 consecutive points. Swimming speed was calculated by dividing the

distance travelled by the time taken to travel it and was expressed as meters per second (ms−1).

It was not possible to calculate maximum swimming speed from sub-adult cuttlefish due to the

nature of the datasets recorded.

5.4 Results

5.4.1 Sedation

For adult cuttlefish, movement was observed to cease 12 minutes following introduction to the

MgCl2 sedative bath (range = 9 - 19 min, mean = 12.1 min, sd = 3.25, n = 9) and individu-

als remained immobile throughout the tagging procedure. Recovery commenced immediately

following placement into a recovery aquarium. For sub-adult cuttlefish, using a higher concen-

tration MgCl2 sedative bath, movement was observed to cease after approximately six minutes

(range = 4 - 8 min, mean = 5.9 min, sd = 1.2, n = 10). For adult cuttlefish recovery commenced

211



5.4. RESULTS

immediately following placement into a recovery aquarium, whilst for sub-adult individuals

sedated at a higher concentration, recovery times were longer and aided by pumping clean sea-

water across the gills.

5.4.2 Tag retention and recovery

Tag retention was considered good for both studies, three adult individual (37.5 %) were recov-

ered through the fisheries between two and six weeks after their release. Only the individual

recaptured six weeks after release was returned to the laboratory for analysis, however, tag

retention in all three individuals was considered normal as the tag was firmly attached to the

cuttlebone and the area surrounding the tag was observed to be healthy. In the case of the third

individual which was returned to the laboratory, somatic growth was evident around the tag

harness, which resulted in a thickening of the tissue (Figure 5.11), this is considered to be a

normal process as the animal’s skin tissue attempts to heal itself around the shaft of the harness

(Wearmouth et al. 2012). This thickened area of tissue appeared healthy and there was no sign

of infection or damage to the tissue.
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Figure 5.11: Somatic growth at surgical tag attachment sites (Cuttlefish 5): (a) Recovered cut-
tlefish with tag still attached following six weeks at liberty (cuttlefish recovered
in Exmouth by a local cuttlefish trap fisherman); (b) A front view of the tag at-
tachment site with tissue growth; (c) A top view of the tag attachment site with
tissue growth

In addition, three of the ten sub-adult individuals were tracked intermittently by the static acous-

tic array over an extended period (up to 73 days) following release (Table 5.3), indicating that

the tag retention in these individuals was also good. A fourth tag, still attached to the cuttlebone,

was recovered on 18th January 2012 after having been washed up on Rustington beach, Sussex,

some 200 miles from its original release site in Cornwall. The cuttlebone was subsequently

returned to the laboratory; whilst we have no indication how long this individual lived follow-

ing the tag attachment, or where in the English Channel it had died, what is evident is that the

tag and harness were still well attached (suggesting tag retention is good) and that the recovery

from a beach indicates that the bone was still buoyant with the tag attached, supporting the idea

of a ‘life-time tag’ (see Chapter 6, Section 6.1 for further details) and a novel method for their
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recovery independent of the fisheries.

Table 5.3: Summary details of sub-adult cuttlefish (CF-SA) receiving V9-2L coded tags.
DML: Dorsal mantle length. * Indicates individual was recovered. All individu-
als were captured and released at Whitsand Bay.

Cuttlefish DML (mm) Weight(g) Released Last recorded No. pings

CF-SA1 180 457 27/10/11 27/10/11 19

CF-SA2 145 310 27/10/11 07/12/11 30

CF-SA3* 147 279 27/10/11 27/10/11 51

CF-SA4 134 228 27/10/11 10/01/12 40

CF-SA5 160 417 27/10/11 27/10/11 1

CF-SA6 138 282 27/10/11 31/10/11 97

CF-SA7 145 322 27/10/11 27/10/11 1

CF-SA8 132 173 27/10/11 18/12/11 177

CF-SA9 145 279 27/10/11 28/10/11 80

CF-SA10 150 354 27/10/11 - -

5.4.3 Presence/absence

A total of six individuals left the vicinity of the array either immediately (< 45 min) or within 9

hrs of release (Cuttlefish 1, 2, 3, 5, 6 and 8. The remaining two individuals (Cuttlefish 4 and 7)

stayed within the vicinity of the array for two and nine days respectively (Table 5.4 and Figures

5.12 and 5.13). Some individuals were present within the study site for continuous periods

of 1-9 days, most were only present for short periods. No cuttlefish were found to return to

the study area after leaving, in addition, the combination of passive and active monitoring also

suggests that once an individual left the immediate vicinity of Millstones Bay it also left the

greater area of Torbay as well, with at least three individuals moving along the coastline in an

easterly direction.
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Table 5.4: Summary details of adult cuttlefish receiving Vemco V9 continuous tags. DML: Dorsal mantle length (Note: weight not recorded), *
denotes that two tagged individuals were additionally recovered but their transmitter identity was not confirmed

Cuttlefish no. Tag no. Tag freq. Length (mm DML) Date released Time monitored Recovered*
1 A05699 66 170 19/05/11 8 hrs 30 mins -
2 A05698 63 180 18/05/11 9 hrs -
3 A05705 84 190 24/05/11 41 mins -
4 A05704 81 190 19/05/11 25 hrs 45 mins -
5 A05707 72 195 19/05/11 1 hr 15 mins Yes
6 A05703 78 200 19/05/11 1 hr 15 mins -
7 A05702 75 200 19/05/11 185 hrs 30 mins -
8 A05700 69 205 18/05/11 2 hrs 45 mins -
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Of the ten sub-adult cuttlefish tagged and released with the study area at Whitsand Bay (Table

5.3), only nine transmitters were subsequently detected by the array. Of the nine individuals

detected by the array, four (Cuttlefish SA-1, SA-3, SA-5 and SA-7) were only recorded as

present in the vicinity of the array on the day of release. A further two individuals (Cuttlefish

SA-9 and SA-6) were last detected by the array one and five days respectively following release.

None of these six individuals have to date subsequently been detected in the vicinity of the

array, indicating that they have left the area and not returned. The remaining three individuals

(Cuttlefish SA-2, SA-8 and SA-4) which were detected by the array up to three days following

initial release, were then subsequently re-detected within the vicinity of the array again on 7th

December 2011, 18th December 2011 and 10th January 2012, respectively (Figure 5.14). Data

collection from the array is ongoing and the next data upload is due to take place in September

2012.
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(a) Telemetry data points and tracks
(Cuttlefish 3). Tracked for 41
minutes

(b) Telemetry data points and tracks
(Cuttlefish 5). Tracked for 1 hr
15 minutes

(c) Telemetry data points and tracks
(Cuttlefish 6). Tracked for 1 hr
15 minutes

(d) Telemetry data points and tracks
(Cuttlefish 8). Tracked for 2 hrs
45 minutes

Figure 5.12: Telemetry data points and tracks for: (a.) Cuttlefish 3, (b.) Cuttlefish 5, (c.) Cut-
tlefish 6, (d.) Cuttlefish 8. The solid grey area represents land. Depth contours (3
m, 5 m and 10 m) for the site are labelled and black triangles denote the locations
of the three VRAP buoys.
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(a) Telemetry data points and tracks
(Cuttlefish 1). Tracked for 8 hrs
30 minutes

(b) Telemetry data points and tracks
(Cuttlefish 2). Tracked for 9 hrs
00 minutes

(c) Telemetry data points and tracks
(Cuttlefish 4). Tracked for 25
hrs 45 minutes

(d) Telemetry data points and tracks
(Cuttlefish 7). Tracked for 185
hrs 30 minutes

Figure 5.13: Telemetry data points and tracks for: (a.) Cuttlefish 1, (b.) Cuttlefish 2, (c.) Cut-
tlefish 4, (d.) Cuttlefish 7. The solid grey area represents land. Depth contours (3
m, 5 m and 10 m) for the site are labelled and black triangles denote the locations
of the three VRAP buoys.
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Figure 5.14: Data from tagged sub-adults within the Whitsand Bay static acoustic array. Ten
sub-adult cuttlefish were tracked within the array from October 2011 - January
2012. Only nine transmitters were recorded by the array the data from these indi-
viduals are presented. Blue triangles represent the locations of complex habitats
(submerged wrecks), whilst the arrows indicate transference patterns of the trans-
mitters between receivers, and not actual directed movements. Information on
the dorsal mantle lengths (DML mm) of each individual together with tracking
dates and the numbers of detected pings by each receiver are also provided for
each transmitter

5.4.3.1 Active monitoring

No individuals were detected during the active monitoring sessions outside of the VRAP array,

although the precise locations of those individuals being tracked by the array were ground-

truthed during these monitoring sessions.

5.4.4 Maximum net displacement

Three adult cuttlefish were recaptured through the fishery allowing their maximum net displace-

ment to be calculated, along with a fourth animal (Cuttlefish 7) that remained within the study

site for ≥ 9 days (this individual was still in the study area at the end of the study period). Data
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from Cuttlefish 5 that was recaptured in a commercial cuttlefish pot by the fishing vessel Becci

of Ladram (E508) off the coast of Exmouth on 30th June 2012 (50◦ 35.661’N, 03◦ 24.129’W)

had a maximum net displacement of approximately 25 km (Figure 5.15). The maturity status of

this individual was identified in accordance with the new guidelines for macroscopic maturity

in cephalopods produced by the report of the International Council for Exploration of the Sea

workshop on maturity stages of cephalopods (ICES WGMSCEPH) (ICES 2010). Using these

guidelines, this individual was assessed to be a mature spawning females (stage 3-aGSA11)

with an amber-coloured gelatinous ovary with oocytes > 4 mm (Figure 5.16). The other two

tagged adult individuals recovered through the fishery off the coast of Sidmouth were unfortu-

nately sold before they could be returned to the laboratory for analysis, as such we have only

an approximate capture date and location provided by the fisherman and cannot identify their

transmitter ID or the sex and maturity status of these individuals. However, an estimation of

the maximum net displacement of these two individuals was approximated at 35 km (Figure

5.15). For the fourth individual (Cuttlefish 7), the point of recapture was taken as the position

recorded by the VRAP array that was furthest from the original point of release. The maximum

net displacement of this individual was accordingly estimated at 0.57 km.

Figure 5.15: Maximum displacement for three tagged cuttlefish. Cuttlefish 5 was recaptured
through the fishery in Exmouth, 23 km from the original release site in Torbay,
after six weeks at liberty. A further two tagged individuals (ID unknown) were
recaptured through the fishery at Sidmouth, 34 km from the original release site,
after two weeks at liberty. Black circle indicates release site in Torbay, black
triangles indicate recapture sites in Exmouth and Sidmouth.
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Figure 5.16: Dissection and macroscopic maturation analysis of Cuttlefish 5: (a) A- shows the
amber coloured and gelatinous ovary containing oocytes. B- shows the enlarged
nidamental and ovary glands; (b) shows part of the mass of oocytes removed from
the ovary; (c) shows an example oocyte measuring 7 mm.

5.4.5 Habitat and area use

In Figure 5.17, the data for nine days of continuous tracking for adult Cuttlefish 7 was overlaid

onto the habitat maps for the study site. The results indicate that the individual actually spent

the majority of the time it was tracked (83 %) in the bare sand habitat adjacent to the seagrass

bed, with gradual exploratory movements around the area over a period of several days, before

returning and re-passing over the same area (Figure 5.18 A.). The movement patterns during

this time could suggest periods of resting on the seabed (when no movement was recorded)

or periods of foraging or searching for potential mates (when movement was recorded). In

addition, as well as the time spent in the seagrass bed immediately following release (approx 20

hrs) the individual had two additional, discrete trips into the seagrass bed, each lasting around 6

hrs and taking place in the early morning (02:00 - 09:00) where the individual could have been

engaged in spawning activities (egg laying or copulation). This equates to the tracked individual

spending only 17 % of the total time that it was tracked in the seagrass bed. This individual did
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not use any of the adjacent seaweed (kelp and short-algal turf) habitat.

Figure 5.17: The movement tracks for Cuttlefish 7 over a period of nine consecutive days (19th
- 27th May 2011) overlaid on to a habitat map of the study area. Yellow = areas
of bare sand, green = seagrass, light brown = seaweeds (short algal turf) and dark
brown = seaweed (kelp). Depth contours (3 m, 5 m and 10 m) for the site are
labelled and the black triangles denote the locations of the three VRAP buoys.
Cuttlefish 7 spent approximately 83 % of the total time in sand habitat and only
17 % of the total time tracked within the seagrass bed. Three discrete trips were
made into the seagrass bed in the early morning (02:00-09:00). This individual
did not use any of the adjacent seaweed habitat.
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Figure 5.18: Example movement patterns exhibited by Cuttlefish 7. (A.) A discrete looping
excursion over a 24 hr period (here small red dots are used in addition to black
dots, here the black dots illustrate the first movement path [original points] and the
red dots illustrate the second movement path [loop points]) (B.) Directed move-
ment, with net displacement equal to 215 m and final displacement to 205 m over
a 3 hour period (ratio = 1.05) (C.) Stationary, the theoretical accuracy was esti-
mated at approximately 50 m in this area and so it is likely that this sequence of
points which occurred over a 24 hr period represent the tagged individual sitting
stationary on the seabed. The solid grey area represents land. The small black
dots denotes the locations of Cuttlefish 7 over the nine day tracking period and
the lines joining them represent movement paths between points. Depth contours
(3 m, 5 m and 10 m) for the site are labelled.
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For Cuttlefish 7 the total area use for the nine days of tracking was estimated using a minimum

convex polygon at 89,250 m2 (or approximately 9 hectares) (Figure 5.19). However, ultimately

this figure must be much larger for some individuals within the population as at least six in-

dividuals left the study area. The patterns of cuttlefish movement, whilst hard to distinguish

at the finer-scale due to the decline of accuracy (less than 50 m) outside of the array, general

movement patterns at the larger scale can still be identified. In Figure 5.18 examples of three

movement types are highlighted. In box (A.) an example of a looping excursion is highlighted

whereby the individual makes an initial pass over the area (black points) over a period of 2 to

3 days, before leaving the area to box (C.) where it spends a period of approximately 1 day

stationary on the seabed, before returning back and passing over the original area again (red

points). An example of directed movement is also highlighted in box (B.) where the track on

the left hand side of the box illustrated the movement of the tagged individual from the corner

of box (A.) to the far end of box (B.) over a final displacement of 205 m and a net displacement

of 215 m giving a ratio of 1.05.
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Figure 5.19: A minimum convex polygon to estimate area use (or home range) for Cuttlefish
7 over nine days of tracking. A total area of 9 ha was used by the animal over
the nine day tracking period. This is the first estimation of the home range for
spawning S. officinalis. The minimum convex polygon is outlined in green. The
solid grey area represents land. The small black dots denotes the locations of
Cuttlefish 7 over the nine day tracking period. Depth contours (3 m, 5 m and 10
m) for the site are labelled.

Of the tagged sub-adult cuttlefish, six out of the nine individuals spent the majority of the time

they were tracked by Receiver 2 and/ or Receiver 3 (Table 5.5 and Figure 5.14) which are also
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the two receivers which have complex structures on the seabed (two ship wrecks: HMS Scylla

and James Egan Lane) within their detection range.

Table 5.5: The percentage (%) of time each of the nine sub-adult cuttlefish (CF-SA) were
tracked by each Receiver

Reciver No. CF-SA 1 CF-SA2 CF-SA3 CF-SA4 CF-SA5 CF-SA6 CF-SA7 CF-SA8 CF-SA9

Receiver 1 0.0 32.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00

Receiver 2 97.1 17.2 0.0 0.4 0.0 100.0 0.0 0.0 79.16

Receiver 3 2.9 27.3 0.0 99.2 100.0 0.0 100.0 0.0 0.00

Receiver 4 0.0 0.0 0.0 0.0 0.0 0.00 0.0 1.8 0.0

Receiver 5 0.0 15.6 0.0 0.0 0.0 0.0 0.0 31.1 0.2

Receiver 6 0.0 7.8 100.0 0.4 0.0 0.0 0.0 67.1 20.7

5.4.6 Diel activity patterns

The mean area use estimated for Cuttlefish 7 using minimum convex polygons was 5934 m2

(SE ± 2235 m2) for daytime hours and 8356 m2 (SE ± 2479 m2) for nighttime use, suggesting

a greater degree of movement at night. On a daily basis movement was greatest at nighttime on

four out of the eight days compared with only two for daytime movement, for the remaining two

days movement was considered equal during both the day and night) (Figure 5.20). In addition,

in terms of directed movement patterns, Figure 5.21 indicates that it was greatest during the

dawn (58.3 %) and nighttime (41.8 %), compared with daytime (33.3%) and dusk (41.8%).

Finally, whilst Figure 5.22 did not indicate any overall patterns in terms of diel activity, the use

of seagrass beds during the early morning, dawn period was highlighted.
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Figure 5.20: Daily minimum convex polygons for daytime (06:00 - 19:59) marked and night-
time (20:00 - 05:59) marked for Cuttlefish 7. The positions for Cuttlefish 7 are
also plotted for reference. The solid grey area represents land. The small black
dots denotes the locations of Cuttlefish 7 over the nine day tracking period and the
lines joining them represent movement paths between points. Depth contours (3
m, 5 m and 10 m) for the site are labelled. Day polygons are filled in yellow and
night polygons are filled in dark grey. The total minimum area estimated by the
minimum convex polygons was 5934 m2 for daytime and 8356 m2 for nighttime,
suggesting a greater degree of movement at night.
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Figure 5.21: Directed movement patterns for Cuttlefish 7 indicating the percentage of hours
for directed movement during each phase of the day (Dawn: 04:00-05:00; Day:
06:00-19:00; Dusk:20:00-21:00; Night: 22:00-03:00).
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Figure 5.22: Graph of net distance moved by hour of the day for Cuttlefish 7 indicating dominant habitat type. The bar along the top denotes daytime
periods in grey (calculated from the mean time for sunrise for the period 19th -27th May 2011) and nighttime periods in black (calculated
from the mean time for sunset for the period 19th -27th May 2011), green bars = seagrass and yellow bars = bare sand.
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5.4.7 Speed and distance analysis

The data from each tagged adult individual indicates that the maximum sustained average

speeds (taken over 10 points or more during directed travel) recorded for these adult cuttle-

fish ranged between 0.058 ms−1 to 0.262 ms−1 (Table 5.6).

Table 5.6: Maximum swimming speeds of tagged cuttlefish within Millstones Bay

Animal Date Time start Duration (mins) Distance (m) Tide state Swim speed (ms−1)

Cuttlefish 1 19th 21:29 31 487 High 0.262

Cuttlefish 2 18th 13:38 37 87 Low 0.058

Cuttlefish 3 24th 13:10 16 206 Mid (ebb) 0.215

Cuttlefish 4 20th 12:43 16 90 Mid (ebb) 0.094

Cuttlefish 5 19th 15:55 29 319 Mid (flood) 0.183

Cuttlefish 6 19th 16:19 25 225 Mid (flood) 0.150

Cuttlefish 7 20th 10:58 26 260 Mid (ebb) 0.167

Cuttlefish 8 18th 13:32 18 216 Low 0.200

5.5 Discussion

This is the first reported study to track the movements of the common cuttlefish S. officinalis in

their natural habitats using acoustic telemetry. The results of this study have enabled the first

insights into the subsurface movements, behaviours and activity patterns for this species (adults

and sub-adults) within their natural environments. Whilst the initial results indicate that indi-

viduals (both spawning adults and non-spawning sub-adults) can exhibit a degree of seasonal

(short-term) site fidelity at a small geographic scale (< 1.5 km2), over a medium temporal scale

(e.g. weeks or months). They also indicate that individual spawning adults can exhibit a more

complex pattern of movement along the coastline over a period of one to two months. A num-

ber of (mutually exclusive or interactive) theories may explain such patterns. Firstly site fidelity

may occur in these individuals, but at a larger geographic scale, for example at the extent of a

geographic region (e.g. Lyme Bay or Western English Channel) rather than at a single spawning
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site (e.g. Millstones Bay). Secondly, spawning adults may utilise multiple spawning sites (or

habitats) during the spawning season to spread the risk of recruitment (or spawning) failure.

Finally, uniseasonal-iteroparous spawning may occur within natural populations of this species,

to some extent, alongside other strategies such as semelparous spawning. Further electronic

tagging studies are required to validate the movement patterns and behaviours of S. officinalis

in these inshore habitats.

5.5.1 Evaluation of tagging methodology for field use

One of the objectives of this field study was to assess the feasibility of using electronic tags to

track the movements and behaviours of S. officinalis within their natural environment. Whilst

previous studies have already used electronic tags to study this species in the laboratory (Wear-

mouth et al. 2012), this study provides the first results of their use in the wild for periods of up

to six weeks for sexually mature adults and intermittently over a period of up to 11 weeks in

sub-adults.

5.5.1.1 Tag retention

Tag retention in these studies was considered to be good (up to 11 weeks to date). Although so-

matic growth was evident around the surgical site in the tagged adult individual recaptured after

six weeks as liberty (Figure 5.11), the skin appeared healthy, with the tag harness remaining

firmly attached to the cuttlebone with no evidence of movement. In a study by Watanuki and

Iwashita (1993) on tagging in Sepia esculenta, the authors reported that the tissue surrounding

a surgical tag attachment site generates epithelial cells for protection, and should be considered

as part of the natural healing process and not an adverse reaction to the tagging procedure. This

type of tissue growth was also evident in animals tagged and studied under laboratory conditions

(Wearmouth et al. 2012).

The novel tag attachment technique used in these studies enabled the tag to be attached to the

internal cuttlebone, this was an important feature for studies using acoustic telemetry to ensure

that the transmitter signal was not blocked or reflected by the internal cuttlebone itself, as may

have been the case if the transmitter had been attached to the inside of the mantle cavity or to
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the ventral side of the animal, which would position the transmitter below the cuttlebone.

5.5.1.2 Tag recovery

Tag recovery was also considered good, with a total of four out of the eighteen tags released

having been recaptured and/or returned to the laboratory. Of these four tags, three were recap-

tured through the fisheries and one located by a member of the general public after having been

found washed up on a beach in Sussex. Tag return rates of 37.5 % for tagged adults and 10

% for tagged sub-adults, compared well with tag-recapture rates reported in other studies of S.

officinalis, where on the Gulf of Tunis, a recovery rate of 8.96 % was reported (Ezzedine-Najai

et al. 1997) and in the Gulf or Morbihan where a recovery rate of 32 % was reported Le Goff

and Daguzan (1991). Several factors are known to influence the rates of tag recovery, including

the interest of fishermen, the level of rewards (e.g. Taylor et al. 2006) and the ease of reporting

or returning tags.

5.5.1.3 Tag presence

The validity of field data is dependent on the effect that the tagging process has on the individu-

als. The results of previous laboratory work found no changes in the detailed behaviour and/or

movements between tagged and control animals, following investigation of feeding rates, buoy-

ancy control and movement patterns (Wearmouth et al. 2012). Also within this study, general

observations confirmed normal patterns of behaviour and activity in tagged individuals proceed-

ing tagging and prior to their release. On the basis of these laboratory results, the assumption

was made that the tagging process did not alter the behaviour, movement of activity pattern of

these individuals in the field. In addition, the post-mortem examination of one of the tagged in-

dividuals following six weeks at liberty, allowed the individual to be assessed as being in good

health at the time of capture.

One possible effect of the tagging on individuals, which has not yet been assessed in detail, is the

potential for reduced survivorship or increased predation risk, especially for smaller sub-adult

individuals. For example, the degree to which the cryptic ability of these tagged individuals (e.g.

camouflage and sand burying), which are, among other things essential for predator avoidance
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and ambush feeding, are compromised by the presence of the tag on the dorsal mantle, needs to

be assessed in more detail (see Chapter 6, Section 6.5.4 for further discussion of this topic).

Another concern that has yet to be addressed is an assessment of the effects that the presence of

these tags may have on the social interactions of tagged individuals to ensure that the physical

presence of the transmitter on tagged individuals does not negatively influence social interac-

tions, for example in sexually mature adults, the number of copulations received. A study by

Sauer et al. (2000) which tagged the Chokka squid (Loligo vulgaris reynaudii off the coast of

South Africa reported that tagged male individuals were observed to engage in normal courtship

behaviour, despite the presence of highly visible, external tags. Further research is still required

to understand the effects (if any) of tag presence on social interactions in S. officinalis, both in

the laboratory and in the field.

5.5.2 Presence/absence

Of the eight adult cuttlefish tagged and released within the study area at Torbay, only two were

recorded as present within the array for longer than 24 hours, the remaining six individuals were

all present for less than 24 hours, three of which could not be relocated, whilst the remaining

three were subsequently recaptured through the inshore cuttlefish trap fishery. There are several

possible (mutually exclusive or interacting) explanations as to why these differences in presence

patterns may have occurred. One explanation, to do with site fidelity will be discussed in Section

5.5.4.1. Other potential explanations include the sex of the cuttlefish, with male and females

individuals potentially exhibiting different patterns of movements and behaviours within the

spawning season. The spawning state of the individuals on capture and tagging was unknown

and it is likely that it varied between individuals, in some cases female individuals may have

spawned prior to capture or even during the duration of the period spend in the cuttlefish traps

prior to tagging. These individuals, if adopting a semelparous strategy may then be at the end

of their lifecycle, and entering senescence. It is not known whether cuttlefish remain at their

spawning locations during senescence of if they disperse to other areas, in addition individuals

that have already spawned at the site but that have not entered senescence may have left the

site in search of additional mates or spawning locations. Unfortunately, this information was
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difficult to assess prior or during the tagging procedure without having to significantly prolong

the procedure and sedation of the individual potentially causing stress to the individual.

Of the ten sub-adult cuttlefish tagged and released within the study area at Whitsand Bay, only

nine transmitters were subsequently detected by the array. It is possible that the remaining

transmitter (Cuttlefish 10) failed or that the animal had simply left the area before any data

was recorded and logged by the receivers. The movement patterns of sub-adult individuals

was of interest in terms of migration, with three of the nine recorded individuals remaining in

the inshore coastal waters of the study area until December and January (Figure 5.14). The

traditional view of the life cycle within the English Channel has been based on the premise

that offshore migration occurs during the autumn period (22nd September - 20th December),

indicating that at least two of these tagged individuals did not migrate offshore until the very

end of autumn (7th and 18th December 2011), whilst the remaining individual was detected

within the array as late as 10th January 2012, suggesting that it had still not migrated offshore.

An assessment of local sea surface temperature (2005-2010) for these months indicates that

the average water temperature within the vicinity of the array generally ranges between 8.0

- 11.1 ◦C (mean 10.08 ◦C SE ±0.8) in December and from 7.5 - 11.4 ◦C (mean 9.2 ◦C SE

±0.09) in January (satellite data AVHRR for the static array, averaged between 2005-2010). The

actual SST measured at the station ‘L4’, which is 8 km away from the static acoustic array and

measured on a monthly basis by the Marine Biological Association during the standard haul,

was recorded as slightly above the monthly average at 11.6 ◦C in December 2011 and at the

upper end of the monthly average at 10.7 ◦C in January 2012, suggesting that the temperature at

this time could have still been warm enough for an individual to remain active and survive (10 ◦C

and 7 ◦C respectively Richard 1971). This data indicates that a greater degree of plasticity in the

timing of migration may occur within natural populations than has previously been considered.

The possibility that variation in the timing of migration for this species might be linked to larger

scale climate mediated regulation (e.g. North Atlantic Oscillation), as has been previously

demonstrated in the English Channel for the squid species Loligo forbesi (Sims et al. 2001),

could be an interesting area for future research.
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5.5.3 Maximum net displacement

Within the inshore areas of the English Channel, spawning individuals were found to move

relatively large distances during the spawning season, reaching as far as 35 km in 14 days

(approx 2.5 km/d) and 25 km in 42 days (approx 0.6 km/d) (Figure 5.15).The movements of

all three relocated individuals was in an easterly direction along the coastline and could imply

a general population-level movement in that direction, although further tagging research would

be required to verify this. Whilst these distances are likely to be underestimated given that they

are based on the most direct, straight line, ‘at sea’ distance between the point of release and

capture, these figures are in line with those found by Ezzedine-Najai et al. (1997) in the Gulf of

Tunis where maximal and minimal individual distances of 4 km in 2 days (approx 2 km/d) and

25 km in 21 days (approx 1.2 km/d) were reported.

5.5.4 Habitat and area use

For the tagged adult Cuttlefish 7, the degree of time spent outside of the seagrass bed itself

(83 %), indicates the importance of adjacent habitats which may provide suitable conditions

for sand burying, resting and feeding, as well as the seagrass beds themselves which provide

the structures for spawning, when considering the potential management options such as closed

areas for the protection of spawning in this commercial species. The area use estimated for

Cuttlefish 7 was estimated at approximately 89,262 m2 and is the first estimate of habitat use

for this species in their natural environments. It is likely that this area is an underestimate in

terms of some individuals within the population as the remaining seven tagged individuals all

left the study area. An estimate of cuttlefish use area has been reported by Aitken et al. (2005)

for S. apama to be up to 23,700 m2 which is much smaller than that quoted here. However,

there are several important differences between the life cycles of these two species. For exam-

ple, S. officinalis is generally quite solitary, forming loose aggregations to mate and spawn, in

inshore areas along both sides of the English Channel coastline, and within a variety of different

habitats during the spring and summer. In contrast, in the Spencer Gulf, Australia, the S. apama

population forms the only known dense spawning aggregation (105 individuals per 100 m2) of

cuttlefish in the world (Hall and Hanlon 2002) making use of a limited area of suitable spawning
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substrate that exists at the site. In terms of movement patterns of these two species, it would

seem likely that the area use of S. officinalis may be larger in comparison to allow individuals

that do not form part of a dense aggregation to find suitable mates and copulation opportunities,

as well as enabling female cuttlefish, which will spawn on a wide variety of substrates to locate

a suitable spawning site in which to lay her eggs.

In addition, examples of general movement patterns for Cuttlefish 7 that were highlighted in

Figure 5.18 could indicate the potential of S. officinalis to use ‘pilotage’, a navigational ability

based on either simple orientation by means of familiar landmarks (visual or otherwise) (Griffin

1955) to move around a locality. In Figure 5.18 box (A.) illustrates a looping excursion where

the individual spends multiple days in one area before leaving that area to make a discrete

trip elsewhere box (C.) before returning and recovering the same area again. Such movement

patterns with the individual returning to the same area could suggest at least a basic form of

navigation by visual pilotage. Although there remains limited knowledge on the behaviour of

cuttlefish in their natural environments, it is likely that their survival may depend on the ability

to find and relocate specific sites such as spawning and feeding areas, through some form of

navigation. In the laboratory, S. officinalis has already been demonstrated to use various spatial

learning strategies including both response and place (visual cue) learning (Alves et al. 2006),

the use of acoustic telemetry to study spatial learning and navigation of this species in their

natural habitats will provide an interesting area of research for the future.

For tagged sub-adult cuttlefish, six out of the nine individuals spent the majority of the time

they were tracked within Receiver 2 and/ or Receiver 3 (Table 5.5 and Figure 5.14) which are

also the two receiver ranges within which the two ship wrecks are present (HMS Scylla and

James Egan Lane). In a study by Watanuki and Hirayama (2000), the authors suggest that the

main motivation for the Golden cuttlefish (Sepia esculenta), entry into basket traps is a habit of

physically occupying the internal space of a three dimensional structure. One theory to explain

the predominance of tagged cuttlefish within the area of these two receivers, could be that within

the study area, which is predominately ‘soft ground’ (e.g. sand and mud), the added complexity

of these wrecks to the habitat is of ‘preference’ to these individuals, as it is possible for them to
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occupy the internal space that these structures provide.

5.5.4.1 Site fidelity

A principle objectives of this study was to investigate whether individuals, both spawning adults

and non-spawning sub-adults, remained associated with localised areas for any appreciable

length of time, thereby indicating a degree of seasonal (short-term) site fidelity. In the present

study, the results were varied with a range of different strategies evidenced among tagged in-

dividuals. For example, of the tagged adults, only two remained in the study area (which was

structured around a seagrass bed, where spawning is known to occur) for greater than 24 hrs,

and only one of these two individuals remaining in the area for the entire duration of the study

(9 days) (Figure 5.13) and for some time afterwards, indicating a possible degree of site fidelity

to the spawning ground (or spawning habitat) at a small geographic scale (< 1 km). In contrast

at least three of the remaining six tagged adults, were known to have travelled at least 25 to 35

km along the coastline in an easterly direction, over a period of two to six weeks (Figure 5.15),

suggesting limited site fidelity, at least at the smallest geographic scale (e.g. individual seagrass

bed) described above, although site fidelity at a larger geographic scale (e.g. a geographic re-

gion such as Lyme Bay) remains a possibility. In addition the location and movements of the

final three tagged individuals remains unknown following their departure from the study site, it

is possible that these individuals had already spawned and so were entering senescence or that

they also travelled along the coast, but were simply not recaptured through the fishery, their

presence within the greater Torbay area was not detected however, following extensive active

monitoring surveys with a mobile hydrophone. A similarly varied pattern was exhibited by

tagged sub-adult individuals with only three of the nine tagged cuttlefish recorded by the array

remaining within (or at least returning to) the study area or its near vicinity, intermittently over

a period of up to 73 days. The remaining six individuals dispersed away from the immediate

vicinity of the study site within five days of release.

These results suggest that if site fidelity does occur in this species it may be apparent at a range

of geographic spatial scales within the population, with some individuals showing seasonal site

fidelity to small geographic areas or habitats (e.g. < 1 km) and others potentially to much larger
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geographic areas (e.g. ≤ 50 km). This difference in potential ‘choice’ affects the distances

moved by individuals and can have direct costs in terms of energetics, growth and susceptibility

to predation and mortality (including fishery mortality) (Steingrimsson and Grant 2003). How-

ever, for spawning adults the benefits of moving longer distances to utilise multiple habitats or

locations within a site can also include helping to spread the risk of recruitment failure by dis-

tributing the risk of encountering poor conditions for spawning and offspring hatching (Sauer

et al. 2000). The movement of sub-adult S. officinalis along the coastline may indicate that these

individuals are searching out preferred habitats or better food availability.

5.5.4.2 Reproductive strategies

Traditionally, S. officinalis has been considered as a semelparous spawner. A definition of

semelparous females was provided by Fritz et al. (1982) as those that lay a single clutch/batch

of eggs within their life time and deposit it in one place. Semelparous spawning females essen-

tially commit their entire reproductive effort into one oviposition event, at one location and die

shortly afterwards (Fritz et al. 1982). The spatial clustering of eggs (both spatial and temporal)

that is provided by semelparous spawning can be of particular importance for species which

provide parental care, but S. officinalis does not. The results of this study indicate that individ-

ual sexually mature cuttlefish can show a degree of seasonal site fidelity over a period of weeks

that could be indicative of a semelparous spawning strategy.

In captivity, sexually mature female cuttlefish are known to exhibit a high degree of flexibil-

ity in their spawning patterns (Boletzky 1986b), including semelparous spawning (Boletzky

1986b) and intermittent spawning, with multiple repeated spawning events over a period of sev-

eral months (Boletzky 1983, 1987a, 1988, 1989). Similarly, in this study a second movement

pattern was also observed with individuals moving relatively large distances (25-35 km) along

the coastline during the spawning season, over a period of up to six weeks. This type of move-

ment pattern better reflects a second, alternative spawning strategy that has been labelled by

Rocha et al. (2001) as intermittent terminal spawning to define females that lay multiple egg

clusters/batches, within a single breeding season, potentially at multiple spawning sites. Inter-

mittent terminal spawners distribute their reproductive effort within a single breeding season,
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over multiple oviposition events, which can be distributed within both time and space, in order to

spread the risk of encountering unsuitable conditions for embryonic development and hatching.

For many species, one of the major advantages in distributing reproductive effort (temporally)

is to enable a greater overall investment in offspring as an individual has more time available to

accrue the necessary resources required for these costly reproductive processed (Kirkendall and

Stenseth 1985).

Uniseasonal-iteroparous spawning is not a new concept in terms of captive female spawners of

this species (e.g. Boletzky 1983, 1987a, 1988, 1989), and whilst it has generally been acknowl-

edged that S. officinalis has the capacity to exhibit extended spawning, as long as the individual

can remain alive for long enough to accomplish this, whether such a strategy is exploited in nat-

ural populations is still under debate. Several authors have suggested that is does occur, with a

review of cephalopod reproductive strategies by Rocha et al. (2001) indicating that S. officinalis

should be labelled as ‘intermittent terminal spawners’ in their review of cephalopod reproduc-

tive strategies and a study by Laptikhovsky et al. (2003) comparing the potential fecundity of

pre-spawning and spawning females in the Aegean Sea, also indicating that intermittent spawn-

ing is a process that is likely to occur within natural populations. This study also provides an

indication that the in situ movements and behaviours of individual sexually mature adults could

reflect the occurrence of a uniseasonal-iteroparous spawning strategy within natural populations

and environments; further supporting the idea that within natural populations the potential ex-

ists for a similar degree of flexibility in spawning strategies to that already described for captive

individuals.

5.5.5 Diel activity patterns

S. officinalis is generally considered to be a nocturnal species, with Denton and Gilpin-Brown

(1961) demonstrating the effects on buoyancy control of the internal shell according to changes

in the light conditions, attributable to day and night, whilst Castro and Guerra (1990) demon-

strated nocturnal activity patterns from an analysis of stomach contents. A study by Mark et al.

(2007) has also indicated that some of the physiological processes of this species operate un-

der diurnal cycles, with the authors finding that measurements of both activity (video analysis)
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and oxygen consumption suggested a strong diurnal pattern, with maximum physical activity

occurring shortly after midnight and a relatively constant minimum value during the daytime.

A more recent study by Frank et al. (2012) provides support for the concept of nocturnality in

this species, for juvenile cuttlefish, which showed clear diurnal organisation in rest and activ-

ity, with an increase in activity during the night. However, this study also indicated that for

adult/senescent animals such a division was not detectable (Frank et al. 2012). In this present

study, the analysis of tracks from Cuttlefish 7 over a period of nine days indicated that although

activity did appear to be slightly more pronounced during the nighttime (increased area use and

directed movement), that activity was also still apparent during the daylight hours, suggesting a

lack of clear diurnal pattern for this spawning adult.

5.5.6 Swimming speeds

In a study by O’Dor (2002) the speeds for S. apama on the breeding grounds at Whyalla, South

Australia were calculated from the track of a mature female with an average speed of 0.038

ms−1 over a 2 hr period. The speeds calculated in this study for S. officinalis which is a smaller

species than S. apama are generally quicker and range from between 0.06 to 0.26 ms−1. Given

a general inshore migration distance during the spring of around 100-200 km a speed of 0.06 to

0.26 ms−1 would equate to a migration period of between 1 to 6 weeks depending on the speed

and distance travelled.

The primary mode of locomotion in Sepia is considered to be undulatory swimming with a

skirt fin, while jet propulsion is a secondary mode of locomotion primarily used as an escape

response (O’Dor and Webber 1991). The maximum speed that is capable via this primary mode

of fin-wave locomotion has been estimated at around 0.15 ms−1 (O’Dor and Webber 1991). The

potential to combine fin and jet locomotion would enable cuttlefish to travel above this maximal

speed for fin-wave locomotion alone (e.g. 0.26 ms−1).

5.5.7 Conclusions

In conclusion, this field study has proved the validity of using electronic tags (acoustic teleme-

try) in natural environments to study the movement and behaviour patterns of S. officinalis.
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Demonstrating the potential power of acoustic telemetry as a tool for obtaining useful infor-

mation on the ecology of this species but also essential information on key life stages that are

required for sustainable management of this commercial species in the future. Tag retention and

recovery using the novel tag attachment technique were shown to be good in the field, which

also shows the potential of these methods for longer term studies such as archival (data storage

tag) tagging studies. The results from this study indicate that within inshore spawning grounds,

cuttlefish can be relatively mobile, over a relatively long spawning phase (up to six weeks),

and exhibiting a high degree of plasticity in their reproductive behaviour and general movement

patterns. Further electronic tagging research is required in order to gain a proper understanding

of whether the results here represent persistent, large scale phenomena, and if so, to what extent

seasonal site fidelity (in both adults and sub-adults) occurs and to what degree uniseasonal-

iteroparous spawning may occur within natural populations and under what conditions. This

research has begun to explore the potential of electronic tagging methods for the study of S.

officinalis and other inshore cephalopod species within the English Channel (and further afield)

and further research using these techniques is now required to gain a thorough understanding

of the complex phenomena and processes that may occur in natural populations to further both

our ecological understanding and our capacity to sustainably manage this fishery.
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Chapter 6

Long-term tagging of S. officinalis using data

storage tags

6.1 Introduction

As the fishing pressure on non-quota species like S. officinalis continues to increase (FAO 2010),

a need for accurate life history, growth and movement data becomes ever more apparent. Whilst

studies using acoustic telemetry have enabled the first insights into the fine-scale subtidal move-

ments of this species over relatively small temporal and spatial scales (see Chapter 5), in order

to study larger-scale (spatial and temporal) movements (e.g. migration) as well as potential ver-

tical movements within the water column, the implementation of alternative electronic tagging

methods using data storage tags (DSTs) is required. DSTs (also known as archival) are able to

continuously monitor and store information on several key environmental variables (e.g. light

intensity, water pressure and water temperature), that enables the movements and behaviours

of marine species to be studied. The major drawback of any data storage tagging study, is the

requirement that tags be recovered in order to download the stored data (Semmens et al. 2007).

In spite of these disadvantages, the data provided by DSTs can often be of great importance to

understanding the movements and behaviours of natural marine populations, allowing vertical

movements in the water column to be recorded, together with the inhabited depths and temper-

ature range of the individual. In addition, once the data have been downloaded, if the tagged

individual has spent sufficient time on the seabed, it is possible to compare the data collected

by the tag to models of tidal cycles and water movements in order to estimate the horizontal

movements of tagged individuals (e.g. Neuenfeldt et al. 2004).

243



6.1. INTRODUCTION

To date, only a few studies have been published that have used DSTs to study cephalopod

species in the wild (Replinger and Wood 2007; O’Dor et al. 2002; Gilly et al. 2006). Of these

studies, O’Dor et al. (2002) used hybrid acoustic/archival tags to study the energetics of S.

apama, although only one tag was recovered. Jackson et al. (2005) also used hybrid acous-

tic/archival tags to study the movements of S. apama, allowing the location and retrieval of

tagged individuals. Using the technique, the authors were able to track two individual cuttlefish

for over one week, one of which was subsequently recovered by divers using a hand-held acous-

tic receiver, enabling the environmental data collected by the tag to be retrieved and downloaded

(Jackson et al. 2005). A third study by Gilly et al. (2006) used 96 DSTs and 10 PAT (Pop-up

Archival Transmitting) tags to study the migrations of the jumbo squid (Dosidicus gigas) in the

Gulf of California. The authors only managed to recover a single DST, however seven of the

ten PAT tags successfully up-loaded, providing data on temperature, pressure (water depth) and

light intensity (horizontal movements) allowing the tracks of these tagged animals to be recon-

structed and their movements inferred. The fourth study undertaken by Replinger and Wood

(2007) used DSTs to study the growth rates of Caribbean reef squid (Sepioteuthis sepioidea) in

the wild.

Whilst the general migration patterns of S. officinalis are well accepted (see Chapter 2, Section

2.2.2.3), the fine-scale detail of these movements remains lacking, including the exact locations

and routes that these migrations follow, and the factors that regulate and direct these movements.

The daily activity patterns of this species, including the presence/absence of diel vertical migra-

tions and growth rates within wild populations remain unknowns. The potential for DST studies

to answer these knowledge gaps is a new and promising field of research, which has previously

been unavailable due to the relatively large size of DSTs in comparison to individuals of this

species. However, rapid advancement in electronic tagging technology has seen an increasing

miniaturisation of the hardware available and combined with new tag attachment methods for

this species have now enabled these methods to be used, not just for larger adults but also for

smaller sub-adults.

The new tag attachment technique that has been used in all the studies within this chapter
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enables the tag to be attached to the internal cuttlebone (Wearmouth et al. 2012). There are

several important features of this method, firstly it provides a visible tag location (with the tag

raised above the dorsal mantle) and in prominent view for fishermen. Secondly, the attachment

of the tag to a hard part of the animal (e.g. cuttlebone), provides a lasting attachment that will

continue even after the cuttlefish has died. The cuttlebone grows with the individual during

its life time and in contrast to the soft tissue and muscle, which will decompose or be eaten

once the animal has died, the hard structure of the cuttlebone remains long after the death of

the animal. In fact, these bones are often washed up en masse on beaches around the English

Channel following the mass mortality of adults at the end of the spawning season. Tagging of

cuttlefish as small as 100 mm dorsal mantle length (DML), that are in their first year of life,

is possible using this new technique, and the tag may remain in place as the cuttlefish grows.

Should it die of natural causes the potential exists for the tagged cuttlebone to be recovered (e.g.

washed up on a beach and located by recreational beach users).

The aims of this study were to use DSTs to investigate and describe the migration movements

and patterns of sub-adult (1 year) cuttlefish S. officinalis in the English Channel, as well as

to observe their behaviours and daily activity patterns (e.g. vertical migrations) for periods

of up to one year (or the remainder of their natural lifespan). For commercially important

species such as S.officinalis an understanding of the habitat utilisation (including the locations

of juvenile feeding grounds, migratory routes and the temporal and spatial movement patterns

of individuals in relation to environmental variables, will help to provide baseline knowledge

for the future management and sustainability of this commercial fisheries resource.

6.2 Objectives

1. To trial a new tagging methodology for long-term tag attachment in sub-adult individuals

(over 100 mm DML).

2. To investigate and discuss the use of different anaesthetic concentrations on the sedation

rates of sub-adult cuttlefish.

3. To provide the first fisheries independent information on the movements and behaviour
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of sub-adult cuttlefish over seasonal scales, including the patterns of migrations and loca-

tions of offshore wintering grounds within the English Channel (e.g. geolocation through

tidal algorithms).

4. To record the patterns of vertical movements of these individuals within the water column

on a daily basis (e.g. feeding migrations etc.) as previously demonstrated in laboratory

studies.

5. To assess the recovery and return rates of DSTs through the fishery and through the gen-

eral public (beaches) to validate the concept, and use in the field, of a ‘life-time’ tag

attachment technique and a method of recovering tags that is fisheries independent and

possible if the animal dies of natural causes or predation and to determine how recovery

and return rates can be optimised.

6.3 Methods

6.3.1 Study animals

Individual sub-adult cuttlefish ranging in size from 118 - 160 mm DML were captured by short

hauls of a demersal trawl (12 m otter trawl, cod-end mesh size 12 mm) in Whitsand Bay (50◦

33’N, 04◦ 24’W), Cornwall, U.K (17 individuals) and Bigbury Bay (50◦ 15’N, 03◦ 54’W),

Devon, U.K. (4 individuals), by the research vessel RV MBA Sepia between July and September

2011. On deck, animals were held in aquaria with a constant supply of clean seawater before

being transferred to the MBA laboratory where they were held in aerated, recirculating aquaria

for up to three and a half weeks prior to tagging. The difference in capture sites was a result of

opportunistic sampling to obtain individuals suitable for tagging, however all individuals were

subsequently released at Whitsand Bay (Figure 6.1). The first eight individuals were released on

4th August 2011 at 08:38h at the position 50◦ 19.538’N; 04◦ 15.181’W, the next twelve cuttlefish

were released on 11th August 2011 at 09:38h at the position 50◦ 19.234’N; 04◦ 14.125’W. The

final individual was released on 27th October 2011 at 09:05h at the position 50◦ 19.549’N; 04◦

15.251’W (Table6.1).
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Figure 6.1: A Map of south-west England showing the location of the release site for sub-adult
cuttlefish fitted with data storage tags. The study site Whitsand Bay is shown in
inset B.

6.3.2 Tagging methodology

All 21 sub-adult cuttlefish (Year 1) were fitted with Cefas G5 DSTs (31 mm long x 8 mm

diameter and weighed 1.3 g in water, Cefas G5 DSTs, Cefas Technology Limited, Lowestoft,

U.K.), which were surgically attached to the internal cuttlebone as outlined previously (Chapter

5, Section 5.3.5). Each transmitter records the ambient water pressure and water temperature

and has an estimated battery life of between 1 - 2 years. It should be noted that Tag A07558

(from Cuttlefish D10) was redeployed following its retrieval 3 days after initial deployment

(Table 6.1).
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Table 6.1: Summary details of cuttlefish receiving Cefas G5 (20bar 2MB) DST tags. ML:
Mantle length. (*) indicates tags that have been redeployed following recovery

Cuttlefish Tag no. ML (mm) Weight(g) Capture location Capture date Tagging date Release date

Cuttlefish D1 A07548 150 241 Whitsand 26/07/11 29/07/11 04/08/11

Cuttlefish D2 A07550 140 275 Whitsand 26/07/11 03/08/11 04/08/11

Cuttlefish D3 A07551 150 277 Bigbury 03/08/11 03/08/11 04/08/11

Cuttlefish D4 A07552 118 94 Bigbury 03/08/11 03/08/11 04/08/11

Cuttlefish D5 A07553 130 251 Bigbury 03/08/11 03/08/11 04/08/11

Cuttlefish D6 A07554 140 291 Whitsand 26/07/11 03/08/11 04/08/11

Cuttlefish D7 A07555 130 251 Bigbury 03/08/11 03/08/11 04/08/11

Cuttlefish D8 A07556 130 224 Whitsand 26/07/11 03/08/11 04/08/11

Cuttlefish D9 A07557 130 246 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D10 A07558 151 306 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D11 A07560 130 207 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D12 A07561 125 200 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D13 A07562 140 243 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D14 A07563 135 261 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D15 A07565 142 272 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D16 A07566 148 305 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D17 A07567 138 271 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D18 A07568 138 265 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D19 A07569 150 321 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D20 A07570 142 299 Whitsand 04/08/11 10/08/11 11/08/11

Cuttlefish D21 A07558* 160 309 Whitsand 29/09/11 24/10/11 27/10/11

Each tag has a memory of 2 megabytes which can be programmed to the user’s specific data

collection needs (e.g. start date and time and data collection intervals) prior to deployment.

In this study, the DSTs were programmed to save data on ambient water pressure at 20 s time

intervals for the first 274 days and then at 120 s intervals for the next 92 days. Whilst data on
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ambient water temperature were programmed to save at 600 s time interval for 366 days or the

duration of the battery life.

6.3.3 Sedation procedures

Sedation procedures are as described in Chapter 5, Section 5.3.4. However, during an initial

sedation session (29th July 2011 (Table 6.2) using a concentration of 13.04 % MgCl2 at 19.1

◦C, the first cuttlefish placed into the anaesthetic bath was still unaffected after 40 minutes (Ta-

ble 5.1). A new anaesthetic bath was prepared at the same dosage, using a fresh, unopened

batch of MgCl2 to eliminate any potential issues with the quality of the original sedation bath,

but again the anaesthetic bath was not affective after 18 minutes. The original dosage was con-

sidered insufficient to induce the required effect on these smaller sub-adult individuals and the

concentration was increased, adding an additional 300 ml of stock solution over the following

12 minutes until the anaesthesia began to show visual signs of effect. This gave an increased

concentration of 2.04 %, this individual was tagged and then placed into recovery. A third cut-

tlefish (140 mm DML) was then immersed into the anaesthetic bath at 11:50 hrs, after 7 minutes

the effects of the anaesthetic were still not apparent and so an additional 650 ml of stock so-

lution was added to give an increased concentration of 2.33 %, this individual was tagged, but

did not recover. A fourth cuttlefish was immersed into the anaesthetic bath at 12:27 hrs and

following 10 minutes it was decided that the anaesthetic was not taking adequate effect and so

an additional 48.3 g of MgCl2 dissolved in 100 ml of distilled water was added to the bath to

give a final concentration of 2.52 %. After a total time of twenty minutes the individual was still

showing little visual sign of anaesthesia. The session was terminated and the individual placed

into recovery.

Whilst working at Living Coasts in Torbay the water used for maintaining the animals and

preparing the anaesthetic bath was 12 ◦C whilst the water used while working at the MBA

was 19.1 ◦C. In order to evaluate whether temperature was altering the effectiveness of the

anaesthetic, a second tagging session (3rd August 2011 (Table 6.2) was initiated using the same

concentration bath as had been used in Torbay (13.04 %), but at a reduced water temperature

of 11 ◦C. The first cuttlefish (130 mm DML) immersed in the anaesthetic bath was still moving
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after 15 minutes and exhibited no visible signs of anaesthesia. The reduction in the water

temperature of the bath was therefore considered to have little or no effect on these smaller sub-

adult animals and the concentration of the bath was again gradually increased until a visible

effect of the anaesthetic was seen. All the remaining cuttlefish tagged during this session were

successfully anaesthetised at this increased concentration and therefore subsequent sedation

sessions (10th August and 23th October 2011 (Table 6.2) used a concentration of 3.35 %.
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Table 6.2: Summary details of cuttlefish receiving anaesthetic (MgCl2.6H2O). D: Dorsal man-
tle length. (*) denotes that the individual was not immersed immediately at the dose
recorded but that the dose was gradually increased over a period of time in order to
obtain an effective dosage, WSB refers to Whitsand Bay, Cornwall and BBB refers
to Bigbury Bay, Devon. ‘-’ indicates that no length or weight measurements were
recorded as the anaesthetic procedure was terminated and the individual placed into
recovery without measurement as they were not considered suitably anaesthetised
to undertake this procedure without incurring potential stress

Session CF DML (mm) Weight(g) Dose (%) Time (min) Temp (◦C) Location

one 1 - - 1.9 < 40 19.1 WSB

one 2* 150 241 2.04 30 19.1 WSB

one 3* 140 255 2.33 29 19.3 WSB

one 4* - - 2.52 < 20 19.3 WSB

two 5* 130 312 3.12 58 11.3 WSB

two 6 150 277 3.12 07 11.3 BBB

two 7 118 94 3.12 03 11.3 BBB

two 8 130 251 3.12 05 11.3 BBB

two 9 140 291 3.12 14 11.3 WSB

two 10 130 251 3.12 07 11.3 BBB

two 11 130 224 3.12 09 11.3 WSB

two 12 140 275 3.12 13 11.3 WSB

three 13 130 246 3.35 11 15.6 WSB

three 14 170 408 3.35 17 15.6 WSB

three 15 130 207 3.35 12 15.6 WSB

three 16 141 281 3.35 14 15.6 WSB

three 17 140 243 3.35 10 15.6 WSB

three 18 135 261 3.35 10 15.6 WSB

three 19 142 272 3.35 10 15.6 WSB

three 20 148 305 3.35 11 15.6 WSB

three 21 138 271 3.35 10 15.6 WSB

three 22 138 265 3.35 05 15.6 WSB

three 23 150 321 3.35 09 15.6 WSB

three 24 142 299 3.35 05 15.6 WSB

three 25 125 200 3.35 11 15.6 WSB

three 26 151 306 3.35 11 15.6 WSB

four 27 160 309 3.35 04 17.5 WSB
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6.3.4 Tagging procedure

(All surgical tagging procedures were undertaken by a team of scientists which included Prof.

D.W. Sims (MBA) who provided surgical techniques, Isobel Bloor, Dr. V.J. Wearmouth and M.

McHugh.)

Following immobilisation, all individuals were surgically fitted with CEFAS G5 DSTs with

tagging following the same procedure described previously for acoustic tags (Chapter 5, Section

5.3.5). The only difference pertained to the method by which the tag was attached within the

purpose-built harness. Whilst for acoustic tags, which do not store data, the tags were simply

attached to the harnesses using quick drying cynoacrylate glue (Chapter 5, Section 5.3.3), for

DSTs which store data and so need to be released from the harness once the tags are recovered,

the tag harnesses had two small holes inserted to each side of the tag insertion area, enabling

them to be wired into place (Figure 6.2). On retrieval this wire was simply cut to remove the

tag from the harness for data downloading.

Figure 6.2: DST wired into harness prior to attachment (tag harnesses for DSTs were devel-
oped by the MBA behavioural ecology group).

6.3.5 Tag recovery

In order to recover the data from the deployed DSTs it is essential that the tags are recovered

and returned to the laboratory by either members of the public (e.g. recreational beach goers)

who may find the tags attached to cuttlebones that have washed up on the beach, or fishermen

that find the tagged cuttlefish among their catch. The DSTs are printed with contact details
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and details of the reward (£50 for a cuttlefish and tag or £25 for cuttlebone and tag), it was

also necessary to ensure that anyone who may come into contact with these tags was aware of

the study taking place. Recovery of the whole animal (primarily through the fishery) enables a

post-mortem of the individual to be undertaken, providing valuable information about health,

growth rates and tag retention for the tagged individual and an accurate recovery location also

enables net displacement of the animal to be calculated, therefore the reward was higher (£50).

The additional value of the reward for fishermen also compensates them for the monetary loss

for not selling this piece of catch.

In order to inform fishermen within the English Channel about the tagging project, a series of

posters and leaflets (Appendix C.4) were produced, in French and English, and disseminated to

both French and UK fishermen through the help of IFREMER and Comite regional des peches,

Basse Normandie on the French coast and the inshore fisheries and conservation authorities

(IFCAs) and trawler agents on the UK coast. In addition, this information was also dissemi-

nated to a variety of recreational organisations with links to beach or coastal activities such as

local conservation organisations, recreational divers and anglers, beach cleaning organisations,

canoe clubs and coastal national trust properties through a series of posters (examples shown in

Appendix C.4), oral presentations and press opportunities.

6.3.6 Data analysis

Data from recovered tags was downloaded using the G-series reader and G5 Host software

(Version 2.2.0, Cefas technology limited, Lowestoft, U.K.) provided with the Cefas G5 tags

and in Excel the tracks were separated by day and plotted graphically as depth against time

(GMT). Additional analysis was also carried out using Dive Analysis software (Dive Analysis,

Marine Biological Association, 2011, V6.14) allowing the average depth of the cuttlefish to be

calculated by hour.
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6.4 Results

6.4.1 Sedation

In sub-adult cuttlefish the optimal sedation dosage was found to differ considerably from that

used for adult cuttlefish in previous studies with a dosage of 1.9 % found to have little or no

effect. At an increased dose of 3.12 % movement in sub-adult cuttlefish was found to cease

in approximately 8 minutes following introduction to the MgCl2 sedative bath (range = 3 - 14

mins, mean = 8.3 mins, sd = 4.03, n = 7) and individuals remained immobile throughout the

tagging procedure. At a dose of 3.35 % movement in sub-adult cuttlefish was found to cease

in approximately 10 minutes following introduction to the MgCl2 sedative bath (range = 4 - 17

mins, mean = 10 mins, sd = 3.4, n = 15) and individuals remained immobile throughout the

tagging procedure (Table 6.2). For sub-adults sedated at this higher concentrations, anaesthesia-

free, clean seawater was directed over the gills to enhance the recovery phase.

6.4.2 Tag retention and recovery

The long-term retention of DSTs deployed in the field cannot be directly assessed from this

study as there has to date been only one tag returned, which occurred only two days following

release. However, as part of this series of tagging studies, following post-mortem, individuals

that had either not recovered from the anaesthetic procedure or that were returned to us through

the fisheries, were placed in a tank with shore crabs to monitor how the tag attachment to the

bone might be affected during the scavenging and removal of the surrounding flesh (Figure 6.3),

the results of these tests indicated that in all cases, the tag and harness remained firmly attached

to the cuttlebone, with no sign of movement.
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Figure 6.3: Photographs showing crabs eating the flesh off the dead cuttlefish. (a.) crab tank
(b.) cuttlefish 1 day on (c.) cuttlefish after 2 days (d.) cuttlefish floating on surface
with tag attached after being cleaned by crabs

Tag recovery for this study was low (5 %), with only one (Cuttlefish D10) of the original 21

DSTs that were released, recovered and returned to the laboratory (Figure 6.4). The tag from

Cuttlefish D10 was recovered on the beach at Whitsand Bay on 13th August 2011 by a local

lifeguard. The tag had been released on 11th August 2011 at 09:38 hrs and so was at liberty for

only two days before it was recovered after being washed ashore. On return to the laboratory the

tag was still firmly attached to the cuttlebone with no signs of movement, whilst the underside

of the cuttlebone was punctuated with a series of gouge marks (Figure 6.4).
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(a) Dorsal view with tag attachment site

visible

(b) Ventral view with gouge marks visible

Figure 6.4: Cuttlebone with DST attached from recovered Cuttlefish D10, located on the beach
at Whitsand Bay on 13th August 2011

6.4.3 Data analysis

From the tracks (Figure 6.5) it is possible to identify periods when the individual is resting on

the seabed (indicated by I and II). The point of release has been marked with an arrow at the

beginning of the track on Figure6.5a, from this point we see a steady increase in depth down

to approximately 23 m as the cuttlefish swims into deeper water. For the next five hours the

individual seems to have moved up into the water column at a much shallower depth of 5 m,

potentially indicating a period of feeding activity. Following this, the individual then returned

back to the seabed (around 23 m depth) and remained on the bottom (denoted by I) for the next

two hours, before returning to a depth of approximately 5 m for the next four and a half hours

during dusk/night (18:00 - 22:30 GMT), this could indicate a vertical migration in the water

column to feed. After this time, the individual returns to slightly deeper water at around 10

m depth, before returning again to shallower water (< 5 m). At this point, a second period of

resting on the seabed is observed between 04:00-05:30 GMT (denoted by II).

A second arrow has been marked on the track on Figure 6.5b where the individual sank to the

bottom of the seabed, which is the time of presumed death (19:00 GMT). As the individual

was near the surface at this point (around 1 - 2 m depth) it is possible that it had been attacked

by a seabird or other predator. Sub-adult individuals of this size (151 mm DML) are prone

to predation and the effect of the tag on the visibility of the individual may have increased its
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chances of a fatal predation encounter. The track then shows that movement in the individual

suddenly ceases and it sinks to the seabed (around 33 m depth). At around 21:30 GMT the

transmitter then re-emerges at the water’s surface.

In the dive analysis software, the average depth for each hour of the day was calculated for

the duration of the recorded data (Figure 6.6). These results indicate that the individual was

higher in the water column at regular intervals throughout the day and not just during the night-

time (01:00-03:00 [GMT], 06:00-07:00 [GMT], 11:00-15:00 [GMT], 18:00-19:00 [GMT] and

21:00-23:00 [GMT]).

The ambient water temperature recorded by the tag varied between 15.2 - 16.3 ◦C.

(a) Cuttlefish DST Track August 11th

(b) Cuttlefish DST Track August 11th

Figure 6.5: The retrieved data storage tag track from Cuttlefish D10 that was recovered from
the beach in Whitsand Bay on 13th August 2011, 2 days post release. All times are
specified in GMT and so 1 hr needs to be added to convert to BST
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Figure 6.6: The average depth over time calculated for the retrieved data storage tag track from
Cuttlefish D10 that was recovered from the beach in Whitsand Bay on 13th August
2011, 2 days post release

6.5 Discussion

6.5.1 Sedative procedures

The issues surrounding anaesthesia and analgesia are of specific importance as all cephalopods

become protected under the Animals (Scientific Procedures) Act (ASPA) from 1st January 2013

onwards. Currently a wide range of methods and techniques is used throughout the research

community, varying from species to species as well as among different laboratories and research

groups. To date, a guidance on the best method for these procedures has not been produced by

the Home Office.

The results of these studies indicate that the issue of anaesthesia and analgesia is a complex one,

with a set method proposed for use in one size of animal (e.g. adult) not suitable for animals of

all sizes (e.g. juveniles or sub-adults). In order to better understand the effects and processes

involved in cephalopod anaesthesia and analgesia, a short summary of research on this topic

that relates to S. officinalis is provided (additional information in Table 6.3). Anaesthesia can

be defined as a loss of sensation that is often accompanied by a loss of consciousness and is

generally considered to be formed of three components: narcosis, which is a state of uncon-

sciousness; analgesia which is a loss of sensitivity to painful stimulation and muscle relaxation.
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Common anaesthetic agents for cephalopods have previously included ethanol, urethane, mag-

nesium chloride and cold seawater, however the use of many of these agents has been discontin-

ued due to adverse effects. For example urethane was found to be carcinogenic (Gunkel 2008),

whilst ethanol and urethane have both been found to cause traumatic reactions such as inking

and jetting (Andrews and Tansey 1981). MgCl2 has generally been considered to be a suit-

able agent for use in cephalopods, as it produces rapid sedation and fast recovery, whilst being

cheap and easy to use (Messenger et al. 1985). The site of action of MgCl2 in cephalopods is

thought to be the central nervous system (Scimeca 2006). There remains some debate about

whether MgCl2 is able to produce adequate analgesia and sedation combined by blocking nerve

transmission and neurotransmitter release, or if it is solely acting as a neuromuscular blocking

agent producing muscle relaxation (Lewbart and Mosley 2012). Additional anaesthetic agents

have been proposed for use in cephalopods, including 2-phenoxyethanol which was used with

success by Şen and Tanrikul (2009) to anaesthetise the musky octopus Eledone moschata. The

authors of this study reported no traumatic effects (e.g. inking or escaping), and shorter induc-

tion times than those reported by Messenger et al. (1985) for MgCl2. This agent has also been

used successfully for anaesthesia in juvenile cuttlefish by Sykes et al. (2011), although whilst

induction times were shorter for 2-pheoxyethanol (2 mins) compared with MgCl2 (3-7 mins),

recovery times were greater for 2-pheonxyethanol (> 15 mins) compared to MgCl2 (1-2 mins)

(Table 6.3).

There are several possible theories as to why sub-adult individuals may require a higher dose

of anaesthetic than adults. One reason could include the fact that sub-adults, which are in their

first year are stronger and fitter than their adult counterparts for whom spawning will be their

final act. As such a large degree of the energy stores of these adults has either been expended

during migration or converted into reproductive resources. It is also unknown whether adults in

natural populations continue to feed during the spawning period; whilst sub-adults, in contrast,

spend this period feeding and growing and may have a greater degree of muscle reserves. in

comparison to adults, that requires a higher dosage of anaesthetic.
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Table 6.3: Review of anaesthesia and analgesia in S. officinalis.*indicates that the dosage quoted refers to the stock solution and not the concentration
of the final solution

Drug Dose Size/weight Induction (min) Duration (min) Recovery (min) Reference

Chloral hydrate 0.2 % 70 - 1900 g 5 - 2-10 Abbott et al. (1985)

Urethane 0.5 % 100-150 mm DML - ≥ 30 - Collewijn (1970)

Ethanol 1.5 to 3.0 % 220 g ≤ 1 44 20 Harms et al. (2006)

Ethanol 10.0 mL.L−1 25-37 g 3-7 1 1-2 Sykes et al. (2011)

MgCl2 6.8 g/L 114.7 g 6-12 - - Gore et al. (2005)

MgCl2 7.5 % * 365-890 g 5-12 - 2-20 Messenger et al. (1985)

MgCl2 1.9 % 170-205 mm DML 9-19 3 - Chapter 5, Section 5.3.4

MgCl2 3.12 -3.35 % 118-160 mm DML 3-14 3 - Section 6.4.1

MS222 50.0 mL.L−1 25-37 g 3 3 11-15 Sykes et al. (2011)

Clove oil 5.0 mL.L−1 25-37 g 4-8 0 < 15 (100% mortality) Sykes et al. (2011)

Hypothermia 4-10 ◦C 25-37 g ≤ 1 > 3 1 - 3 Sykes et al. (2011)

2-Phenoxyethanol 0.20 mL.L−1 25-37 g 2 0 > 15 Sykes et al. (2011)
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6.5.2 Tag recovery

One of the major disadvantages of data storage tagging studies is that the cost of electronic tags

are high and the necessity to recover the tags before the data can be download and analysed. De-

spite the use of a continuous communication campaign to promote data storage tagging studies,

in an attempt to raise the awareness of fishermen and marine managers, recovery rates can still

vary dramatically as a result of many interacting factors. These include the level of rewards,

the views of fishermen towards scientific research, the species being tagged, the timing of the

study, and the modes of the fishery.

In this study tag recovery and return rates were low (5 %) with only one tag being returned to

the laboratory despite the use of a reward scheme, communication strategy (e.g. leaflets, posters

and press articles) together with oral presentations, and recovery details printed on individual

tags and harnesses. The return of the tag from Cuttlefish D10, which was found attached to

the bone after being washed up on a beach, highlights the potential for a ‘life-time’ tagging

technique. This confirms that the tags, which were surgically attached to the internal cuttlebone,

can still be recovered should the cuttlefish evade the fishery and die of natural mortality. Under

laboratory conditions, the tags and harnesses from dead cuttlefish were found to remain firmly

attached to the cuttlebone after the flesh had been removed by crabs and the tagged bone floated

on the water surface, creating an opportunity (in the natural marine environment) for the tagged

cuttlebone to be washed ashore as a result of the prevailing winds and currents and recovered

by recreational beach users.

The hard internal shell of the cuttlebone is a rich source of calcium. The gouge marks on the

underside of the cuttlebone could have potentially been made by crabs picking at the bone using

their chela, and causing deep groves to be scored on the surface. Cuttlebones are often used by

aquaculture hobbyists in the rearing of hermit crabs for this purpose, with cuttlebones added to

the tank to provide an additional source of calcium, calcium supplementation may additionally

be of particular importance for some crab species during the moulting period. No gouge marks

were observed in the cuttlebones that had been placed in laboratory crab tanks. However, as the

bones were observed to float the right side up, with the hard surface upright, in would have been
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difficult for the crabs in these tanks to access the submerged softer underside of the bone. It may

be more pertinent to suggest that these gouge marks were made after the bone was washed onto

the beach, possibly by hermit or shore crabs.

Tag recovery rates in this study (5 %) were low compared to those for acoustic telemetry tags

in Torbay (37.5 %). There may be many reasons for this disparity, including the timings of the

study and the biphasic seasonal nature of the fisheries for this species. For example, in order to

record the fine-scale movements and behaviours of adults on spawning grounds the Torbay study

(Chapter 5) targeted spawning adults (2nd year) and was conducted in May, which is considered

to be a peak spawning month. In comparison, the aim of this study was to record the movements

(and migration patterns) of immature, sub-adult (1st year) cuttlefish as they made their second

autumn migration offshore, and their final inshore migration the following spring. This study

was therefore conducted towards the end of the spawning season (August-October), so that the

majority of spawning adults would have already spawned and died, enabling individuals in their

1st year, undertaking these migrations, to be selected. The coastal trap fishery which specifically

targets spawning adults generally operates between March to July, although the exact duration

is dependent on the timing of the inshore migration, which may vary interannually by up to two

or three weeks. The trap fishery is a small sector of the English Channel cuttlefish fishery and

is generally undertaken by <10 m boats which are often operated single handed. The traps are

set either in strings or individually and raised every 2-3 days. The small-scale nature of this

aspect of the fishery, where landings are often sorted by hand on the boat, to allow females

to be extracted and used for re-baiting pots, allows the tags to be easily spotted among the

catch. In contrast, the offshore and inshore trawlers which operate almost year round, with a

dip in activity in June, July and August when the cuttlefish are too far inshore to fish, operates

at a much larger scale, with long tows and large catches. The quantity of ink and the lack of

requirement for sorting of the catch (in most cases) mean that even if caught the tags may be

easily passed over. In addition, the physical nature of the trawl, can be high impact on the catch

suggesting that tags and harnesses could become detached during the trawl, before the catch

is hauled onboard the deck. These vast differences in the modes of the fishery suggest that

differences in return rates through these two fisheries would not be unexpected. A more recent
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study that has evolved from the work of this pilot study, undertaken at the Marine Biological

Association (MBA) and funded by the Department for Environment, Food and Rural Affairs

(DEFRA) began in summer 2012 and has 100 additional Cefas G5 DSTs. Already higher return

rates, relative to those from this pilot study, have been recorded. From the first release batch

of nine tags, that were deployed prior to August, three have already been returned, at least one

of these was through the coastal trap fishery (Pers comms V.J. Wearmouth and D.W. Sims),

indicating that the timing of release, in relation to the modes of fisheries in operation, may

have an impact on the number of tags returned. In fact, to date, from all four of the tagging

studies mentioned, no tags have been returned from the offshore fishery, despite its dominance

at the largest métier within the English Channel cuttlefish fishery. It should also be noted that

the preliminary research and methodological development, alongside the sustained publicity

campaign that was undertaken within this project and included regional and national radio and

news coverage has provided the groundwork for tag recovery that is now providing high levels

of returns within the subsequent DEFRA funded DST study and enabling valuable data on

cuttlefish behaviour and movement to be obtained using DSTs.

6.5.3 Data analysis

The returned tag (Cuttlefish D10), provided a total of < 2 days data showing that the cuttlefish

inhabited depths of between 2 and 33 m, spending periods resting on the seabed, but also making

frequent vertical movements to shallower depths. A study by Jackson et al. (2005) that used

hybrid tags (acoustic and archival) to record movements of S. apama on their spawning grounds

at Whyalla, South Australia showed a ‘regular pattern of diurnal vertical migration, with the

animal moving deeper during the night’. The data from this study suggests that rather than

being a discrete diurnal division in the pattern of vertical migration, this sub-adult individual

exhibited regular vertical movements between the shallower and deeper zones of the water

column throughout the day. However, we are limited to only a short data coverage, for a single

tag and so in order to understand whether such patterns are indicative of the population or

simply of this individual will require additional tags to be returned.

It is not possible to interpret from the track exactly how this individual died. However, the
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individual had been monitored along with the other tagged individuals prior to release for up to

24 hrs and no unusual behaviours or movements had been recorded during this time to suggest

that any negative effects from the tagging procedure had occurred. The estimated time of death

(19:00 GMT) as indicated by an arrow on Figure 6.5b, shows that the individual was near the

water’s surface at this time (between 0 - 3 m depth). At this depth below the surface of the

water, it is possible for the individual to have suffered a fatal attack by a seabird or from a

marine predator. The pattern of the track, with movement appearing to cease suddenly, and

the cuttlefish subsequently sinking vertically to the seabed, could be indicative of a sudden

predator attack. Had the individual death been related to the tagging process, the movement

in the individual may have ceased more gradually with a slow loss of buoyancy and a gradual

decline in movement and increase of depth.

After sinking to the seabed the transmitter remained there over the next few hours (19:50 -

21:30 GMT), at which point it is likely that the flesh from around the bone was scavenged

by benthic organisms (e.g. crabs; see Figure 6.3). As this happens, the natural buoyancy of

the bone dominates and the bone with the tag attached floated to the surface, where it arrived

at approximately 21:30 GMT. This scenario, if valid, highlights the rapidity with which the

natural processes are at operation within the marine environment, from its estimated time of

death (19:00 GMT) it took under 24hrs for the bone to be completely stripped of its flesh,

washed ashore and recovered.

6.5.4 Predation rates of juvenile cuttlefish

Cuttlefish are susceptible to predation (Table 6.4) at almost all stages of their life cycle from

hatching to spawning. The majority of cephalopod species have soft unarmoured bodies which

means they have little structural defence and instead rely heavily on behavioural responses

to avoid predation (Hanlon and Messenger 1996; Messenger 2001; Poirier et al. 2004). For

example, primary defences such as crypsis serve to reduce the risk of detection by potential

predators, whilst secondary defences such as inking, whereby an individual will release a cloud

of ink to either screen itself or to act as a decoy, distracting the predator whilst it escapes (Boyle

and Rodhouse 2005) are used only once the individual has been detected (Messenger 2001;
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Hanlon and Messenger 1996; Poirier et al. 2004). Cuttlefish are able to adapt their colouring

and texture to reduce their visibility in a wide variety of substrates and habitats. However, in the

natural environment it remains unknown whether the presence of these tags affects the ability

of individuals to camouflage themselves from predation within some substrates and habitats.

In natural populations the potential predation rate for tagged sub-adult cuttlefish may be higher

than for tagged adult cuttlefish, as both the smaller size of these individuals, combined with their

presence in both shallow and deeper habitats over a larger period of time, is likely to expose

them to a greater range of potential predators (e.g. Table 6.4). The issue of how these tags affect

the cryptic defences of these smaller sub-adult individuals may be of particular importance to

study.
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Table 6.4: Review of predators of S. officinalis, describing species which have had cuttlefish found in their stomach contents analysis

Common name Scientific name Location Reference
Blue sharks Prionace glauca L. English Channel Clarke and Stevens (1974)

Risso’s dolphin Grampus griseus English Channel Clarke and Pascoe (1985)
Whiting Merlangius merlangus North Sea Pinnegar and Platts (2011) [2006]

European hake Merluccius merluccius Celtic Sea Pinnegar and Platts (2011) [1991]
Megrim Lepidorhombus whiffiagonis Celtic Sea Pinnegar and Platts (2011) [1993]

Lesser spotted dogfish Scyliorhinus canicula North Sea Pinnegar and Platts (2011) [1991]
Anglerfish (Monk) Lophius piscatorius Celtic Sea Pinnegar and Platts (2011) [1991]

Cod Gadus morhua North Sea Pinnegar and Platts (2011) [1990]
Conger eel Conger conger Morbihan Bay Blanc and Daguzan (1999)

Grey triggerfish Balistes carolinensis Morbihan Bay Blanc and Daguzan (1999)
Ballan wrasse Labrus bergylta Morbihan Bay Blanc and Daguzan (1999)

Common cuttlefish S. officinalis Ria de Vigo Castro and Guerra (1990)
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6.5.5 Conclusions

With only two days of accumulated data for only one tagged individual it was not possible

to make any strong assertions about the movements and behaviours of sub-adult cuttlefish from

this data. However, this study has demonstrated the successful use of electronic tagging methods

for field studies using smaller sub-adult individuals, whilst highlighting the potential for a ‘life-

time’ tag. The potential for the tag to be retained in the cuttlebone for the remainder of the

individual’s lifespan, enabling recovery either through the fisheries (e.g. fishery mortality) or

from the beach (e.g. natural mortality) has also been demonstrated. Further work, with a focus

on the timing and location of deployment of these tags is now required.
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Chapter 7

General discussion

In order to provide sustainable fisheries management for S. officinalis populations it is essential

that we first have a thorough understanding of the ecology and life history of this species, in

particular the factors affecting spawning, early life stage survival and recruitment variability.

This thesis aimed to address critical gaps in the knowledge of these areas and this final chapter

provides a discussion and assimilation of the key findings of this research, whilst additionally

suggesting directions for potential future research in this area.

7.1 Summary of new contributions of this thesis

1. The potential distribution of spawning habitat for S. officinalis was mapped for the first

time within the English Channel. A presence-only modelling technique (MaxEnt) was

utilised that enabled information from pre-existing records of egg cluster presence (a true

measure of spawning), collated from a range of open-source datasets, to be exploited and

modelled against a set of pre-determined environmental predictor variables.

2. The first in depth qualitative study of spawning structures used by female S. officinalis

within the English Channel was presented. Surveys conducted on both the French and

English coasts of the Channel contributed to this work. Whilst overall, a wide variety

of spawning structures were observed, at certain sites (e.g. Torbay and Poole Bay) a

dominance of a single spawning structure (e.g. Z. marina) was recorded, highlighting the

degree of plasticity in spawning behaviour that occurs at a spatial scale and highlighting

the potential for ‘selection’ or ‘preference’ processes to exist.

3. A temporal analysis of spawning patterns within seagrass beds was undertaken using in
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situ observations. The results demonstrated the impact of interannual variability in the

spatial dynamics of spawning structures (e.g. as a result of natural or anthropogenic dis-

turbance) on the patterns and intensity of spawning by S. officinalis. This highlighted

both the direct and indirect effects that interannual fluctuations in environmental condi-

tions can have on the patterns and intensity of spawning in this species.

4. Electronic tagging methods were used for the first time to study the free-ranging move-

ments and behaviours of S. officinalis (adult and subadult) within their natural environ-

ments. The results highlighted the degree of plasticity that was evident in the movement

patterns and behaviours of spawning adults. Whilst two tagged adults were observed to

exhibit a degree of seasonal site fidelity to the study site, others adopted a more complex

movement pattern, travelling relatively large distances (up to 35 km) along the coastline

in an easterly direction over a period of up to 6 weeks. These different movement pat-

terns could potentially mirror patterns of both semelparous and ’intermittent terminal’

spawning strategies.

5. Monitoring of sub-adult individuals in a static acoustic array showed similar patterns of

plasticity with three individuals repeatedly monitored over a period of up to 73 days. That

sub-adult individuals were recorded in inshore waters as late as December and January

(with water temperatures above 10 ◦C) could demonstrate a large degree of plasticity in

the timing of this migration.

6. The proof of concept of a life-time tagging technique for use in the field was also demon-

strated as part of this research. Tags attached to the internal cuttlebone were washed

ashore by prevailing winds following the natural mortality of the animals. These tagged

cuttlebones were then subsequently returned to the laboratory after being located by

members of the general public, thereby validating this novel method of tag recovery for

cuttlefish.
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7.2 Discussion

There is a range of general difficulties associated with the collection of direct field observa-

tions from subtidal marine species, which has led to a paucity of data for several aspects of

the ecology of these species. For example for S. officinalis details of free-ranging movements,

behaviours and habitats use, information that is essential for good fisheries management and

conservation, have to date been limited. This thesis has adopted a combination of methodolog-

ical approaches to try and address these significant gaps in the knowledge of this species within

its natural environments.

7.2.1 Spawning location and distribution

In order to model the spawning distribution of S. officinalis within the English Channel, archival

and opportunistic datasets were utilised. Despite the issue of unknown bias that is associated

with these datasets, the techniques currently available enable the extraction of valuable informa-

tion on the distribution of marine species, without the requirement for new and original datasets,

which can be both difficult and costly to obtain. The results of Chapter 3 highlighted differences

in the distribution of spawning effort within the English Channel based on environmental con-

ditions with a predominance of suitable habitat in the Eastern English Channel. In this study

data from a wide variety of sources on the known presence of S. officinalis were collated for

all life stages. The data on the presence of cuttlefish egg clusters (a true measure of spawning)

was then extracted for use in construction of a spawning distribution model, prepared using a

maximum entropy (MaxEnt) modelling approach.

SDMs have the potential to address many applications for ecological, conservation and fisheries

management. They provide accurate and cost effective tools, especially for areas or species for

which limited data exist, by allowing the spatial distribution patterns of a target species to be

identified, and analysed in terms of the environmental and physical drivers behind these ob-

served distributions. In this way, such models are able to provide essential information on

where and why a species may occur at a particular location, enabling suitable areas for habitat

management or protection to be highlighted, which is especially important for key life stages

or phases of a species life cycle such as spawning which is predicted in this study. Models of
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cuttlefish spawning distribution within the English Channel could also be used to highlight im-

portant spawning areas that could be targeted for periodic closure to fishing during the spawning

season. However, one problem with model interpretation or its use in fisheries management to

assess the impact of area closures, is that the exact nature of spawning in these wild populations

is still unknown. For example, whether spawning site fidelity occurs and the extent to which

intermittent spawning exists in these natural populations are areas of research that need to be

addressed before such models could realistically be for utilised in such management contexts.

There has been a focus in recent years on the use of SDMs to predict the effects of climate

change scenarios on species distribution. Whilst this can be a useful exercise, especially in

terms of a management strategy to predict the effects of future environmental change on species

distribution, this type of modelling requires extrapolation beyond the range of the current dataset

and brings with it a whole range of additional limitations and issues.

The model and outputs from Chapter 3 contributed to the baseline data for spawning habitats and

location for S. officinalis which were previously limited at the fine-scale resolution and provided

a distribution map of potential spawning habitat for S. officinalis around the English Channel

to focus further study within this thesis. In addition the outputs provided in Chapter 3 have

provided a potential source of information for fisheries managers (e.g. IFCAs). For example,

both the geo-database, which contains records of cuttlefish presence, and maps of potential

spawning distribution can help identify areas within the jurisdiction of individual IFCAs where

potential spawning habitats occur to highlight areas that may be sensitive to commercial fishing

activities or other disturbance during the spawning season.

7.2.2 Characteristics of spawning habitat

A clear definition of spawning habitat was lacking for S. officinalis within the English Chan-

nel. This thesis provided the first detailed study, within the English Channel, to describe the

structures and habitats used by S. officinalis for spawning. Extensive surveys incorporated sites

from both the Eastern and Western basins of the Channel, and from both the North (UK) and

South (French) coasts. Although the wide variety of hydrodynamic conditions among sites re-

quired the use of multiple survey techniques, for a shared fishery resource like S. officinalis,
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information collected from across the distributional range of the population (allowing incorpo-

ration of the full range of plasticity observed in the behaviour of spawning individuals) will be

vital to provide accurate management advice for this fishery. In addition, Chapter 4 showed

that whilst a wide range of structures can be used by female cuttlefish for spawning (including

sessile animals (e.g. S. pavonina), sponges, seaweeds (e.g. H. siliquosa) and angiosperms (e.g.

Z. marina)), at several study sites (e.g. UK: Torbay and Poole Bay) a single structure dominated

(e.g. Z. marina), potentially indicating a localised ‘preference’ which requires further investi-

gation. The temporal analysis of seagrass beds undertaken at Torbay additionally suggested that

factors (e.g. natural and anthropogenic disturbance) affecting the spatial dynamics and subse-

quent suitability of a spawning habitat can also indirectly affect the patterns and intensity of S.

officinalis spawning observed. The seagrass beds surveyed in Chapter 4 were found to vary in

their spatial structure between years (in 2012 seagrass was significantly more fragmented than

in 2011) and the associated spawning effort varied in relation (in 2012 there were significantly

fewer eggs and egg clusters laid than in 2011), linked to changes in the bed heterogeneity at this

local level. This indicates that in addition to the direct effect of environmental conditions on

the spawning and recruitment success of S. officinalis, environmental conditions may also indi-

rectly effect these important population parameters, through changes in the quality of available

spawning habitat.

The results of this chapter also demonstrated that cuttlefish are able to utilise a wide range of

natural structures which vary in physical dimensions. For example, structures with very small

diameter were used by grouping multiple leaves or thalli together in order to attain a suitable

diameter for egg attachment. Such behaviour was observed both on the French coast for C. filum

and on the UK coast for Z. marina. Spawning patterns were also affected by the distribution of

spawning structures at a site, such that at sites where Z. marina was present, a seagrass species

that forms large beds or meadows, there was a greater availability of spawning structures and

a higher density of spawning. In contrast at sites where suitable structures were sparsely dis-

tributed, lower densities of spawning were observed across a wider range of structures. The

size and architecture of a structure also affected the number of eggs laid, whilst multiple, small

(mean size 10 eggs) clusters are located in seagrass beds, fewer but larger egg clusters can be
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observed on more rigid structures such as H. siliquosa, which were capable of supporting large

numbers of eggs without subsiding under the pressure or weight of the clusters. In much the

same way, artificial structures such as commercial cuttlefish traps exhibit the same structural

rigidity and are also capable of supporting large numbers of eggs. Preliminary estimates of egg

coverage on this structures ranged from 150 to 3700 eggs on a single trap. That the rigidity of

these structures may aid spawning, especially in areas where swells or currents would otherwise

affect the movement of the structures to which females were attaching eggs, is a potential hy-

pothesis that requires additional exploration. This research has demonstrated the wide variety

in factors that can affect the pattern and density of spawning within a single location or across

the entire extent of the Channel. The English Channel fishery for the common cuttlefish (S.

officinalis) is known, like many cephalopod species, for its intrinsic variability in recruitment

levels. The availability of suitable spawning habitat, which can vary interannually with envi-

ronmental conditions, may be a contributing factor, at least at a local level, to this variability in

annual recruitment.

It is expected that the results of Chapter 4 will contribute to the elucidation of key spawning

grounds and habitats within the English Channel. This information will help inform manage-

ment strategies of this population in the future, enabling fisheries managers to select specific

habitats that may help protect cuttlefish spawning stocks through the use of closed fishing areas

during years of or following poor recruitment. This information could also identify habitats that

should be included in marine protected areas to help maintain spawning or areas where habitat

maintenance or enhancement may be of benefit to the conservation of local cuttlefish stocks

(e.g. seagrass beds in Torbay). In addition, data relating to the spawning density of cuttlefish

at different sites or within different habitats can provide useful information for fisheries and

conservation managers in estimating the ecosystems value of an area.

7.2.3 Spawning behaviour

In addition to spawning patterns, the behaviours and movements of spawning adults were as-

sessed using acoustic tagging, providing the first reported use of acoustic tags for the study

of S. officinalis within the field. Such novel tools will help develop our understanding of the
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spatial dynamics and spawning behaviour of this species enabling an assessment of the level of

recruitment from spawning areas, which will be a critical factor for the effective management of

this species within the English Channel. The use of acoustic telemetry to assess the movements

and habitat use of adults within a seagrass bed that is a known spawning ground for this species

provided evidence for extended periods of spawning activity and a larger degree of movement

within the spawning season than had originally been thought, suggesting a connectivity be-

tween multiple spawning habitats and coastal locations that would require tagging studies to be

undertaken across a larger spatial scale.

The successful development of a long-term tagging technique for S. officinalis to allow the use

of DSTs represented the first small step towards better understanding patterns of migration, site

fidelity and the processes behind navigation (e.g. natal homing). In terms of DSTs the results

provided within this study in terms of collected data are limited. However, as with any study

that is undertaken with a species for the first time, the value is in the lessons learned from un-

dertaking it. To optimise tag return rates the timing of tag deployment should coincide with the

inshore commercial trap fishery where possible. It is apparent that in order to collect data from

these tags, that is so vital for our increased knowledge, the quantity of tags that is deployed

needs to be significantly increased from the twenty originally completed within this study in

order that some individuals can evade the offshore fishery and return to inshore grounds the

following spring to enable tags to be picked up through the trap fishery or should the animal

die of natural causes for it to be washed up on a beach and located. In addition, in order to

obtain the best chance of relocating tagged cuttlefish cooperation from offshore trawlers (both

French and UK) is required. Another potential recovery avenue could be from the processing

factories where the cuttlefish is taken following sale at the fish market for processing before it

is exported abroad. A study into this operation and whether the cuttlefish is processed in the

UK or abroad and to assess if any of the processes within the operation may be manually over-

seen, providing an additional opportunity for the retrieval of these tags from these processing

factories. Essentially any way of increasing the rate of tag recovery will drastically improve the

degree of information obtained from this exciting and novel method of research.
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The data collected and methods used in Chapters 5 and 6 can help provide advice for fisheries

management by examining the scale at which management measures would be best applied

within the English Channel population. For example, the degree of movement exhibited by

spawning individuals within the inshore waters of the Channel would suggest that localised

management of spawning stocks may not be effective in isolation. In addition, data on the mi-

gration patterns of S. officinalis will help fisheries scientists and managers to better understand

the spatial patterns of and factors driving navigation in this species (e.g. natal homing) that will

be critical in the management of this species.

7.3 Conclusions

Throughout this thesis a combination of methodologies was used to address critical gaps in the

understanding of the distribution, movement patterns and spawning behaviour of S. officinalis

within the inshore waters of the English Channel. This research has highlighted the use of com-

plementary research methods (traditional and novel) to provide fundamental insights into the

ecology of this commercially important fishery species both at the individual and population

level, building on the knowledge and baseline data that is required for good fisheries manage-

ment and conservation of S. officinalis both in the English Channel and further afield.

7.4 Future work

Within the Western English Channel, the MaxEnt model produced within this thesis predicted

only limited areas of suitable spawning habitat. In addition from the Plymouth area and west

towards Penzance the presence of commercial cuttlefish trap fisheries is reported as limited. The

model output of mapped potential spawning distribution for S. officinalis provided a basis from

which exploration and investigation of areas within the Western English Channel, that could

potentially support important spawning locations, can be systematically sampled based on the

predicted logistic probability of presence calculated for each area. By surveying the areas for

the presence of spawning and also identifying the habitat available in these areas, an assessment

of the usage of these location by cuttlefish as spawning grounds can be made. By undertaking

these surveys using a remotely operated vehicle it would be possible to accurately record the
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location and habitat of the areas surveyed overlaid with GPS. In addition, such techniques would

allow the exploration of habitats at depths greater than are feasible using SCUBA.

Following on from the study of natural structures that was undertaken within this thesis, an

investigation of spawning on artificial structures (e.g. cuttlefish traps) would now be of interest.

Large quantities of eggs are thought to be laid on commercial cuttlefish traps during the fishing

season by spawning females. The eggs laid on these traps can be lost from the system, when the

traps are removed at the end of the season and the eggs cleaned off using pressure hoses before

being placed in storage over the autumn and winter. In order to provide a proper assessment

of the potential issues associated with this aspect of the inshore trap fishery, an in depth study

to quantify the proportion of eggs laid on trap needs to be undertaken to quantify the extent

spawning effort that is distributed on these commercial fishing traps such data will provide a

valuable comparison to egg densities that have now been calculated for natural substrates and

will also allow an assessment of the true extent of the problem. In addition, complementary

studies using ‘baited video surveys’ in which the traps themselves essentially provide the ‘bait’

could be undertaken both within the laboratory and within the field to observe and assess the

behaviours of cuttlefish in relation to these structures. By understanding how cuttlefish inter-

act with these structures both individually and in groups, including their approach, exploration,

entry and use as a spawning device will help provide an understanding of their utilisation form

which mitigation practices can be better suggested. In addition the undertaking of these ‘baited

video surveys’ in natural environments could help to provide information on how many cuttle-

fish use a single trap for spawning and the level of predation on eggs on these traps that occurs

within natural environments.

This study explored the powerful techniques and potentials of electronic tagging for monitoring

and recording the movements and behaviours of S. officinalis within their natural environments.

The work here has only begun to highlight the potential uses and data that can be obtained with

these methods and it is hoped that in the next few years studies using these techniques will help

expand our current knowledge of the behaviour and ecology of this species. For example, the

use of DSTs to monitor growth rates of S. officinalis within natural populations has yet to be
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explored. Using DSTs there is the potential for research to elucidate natural growth rates to be

undertaken. To date, the majority of information which provides the basis of our understand-

ing of temperature regulated growth in cephalopods has been determined by laboratory based

studies. Such studies are often undertaken under set (fixed) temperature regimes and without

the interactions of other environmental factors. Whilst they have provided valuable information

on the effects of temperature on early life history parameters, they may not accurately reflect

the situation in natural populations when temperature regimes are dynamic (seasonal changes

in water temperature) and complicated or compounded by multiple additional environmental

factors. DSTs record information on ambient water temperatures and the profiles extracted

from these tags can then be used to analyse the growth rate on a tagged individual following

recapture. Understanding how growth rates of ELS S. officinalis are determined is critical to

research on stock assessments and sustainable exploitation of the fishery and would provide an

interesting area for future research using these novel electronic tagging techniques.
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Appendix A

Chapter 4: Raw data tables

A.1 Results

A.1.1 Comparison of spawning strata (structures)

Table A.1: Torbay 2010 subtidal survey results for May

No. egg clusters recorded

Date Site Stratum Rep 1 Rep 2 Rep 3

May Meadfoot Mixed 0 0 0

May Roundham Head Mixed 0 0 0

May Salturn Cove Mixed 0 0 0

May The Ridge Mixed 0 0 0

May Millstones Bay Seagrass 5 19 93

May Corbyn’s Head Seagrass 0 2 0

May Fishcombe Cove Seagrass 0 1 8

May Torre Abbey Sands Seagrass 4 15 0
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Table A.2: Torbay 2010 subtidal survey results for July. ’*’ indicates that these replicates were
aborted due to adverse weather conditions

No. egg clusters recorded

Date Site Stratum Rep 1 Rep 2 Rep 3 Rep 4

July Silver Cove Mixed 0 0 0 0

July North Corbyn Mixed 0 0 0 0

July North Meadfoot Mixed 0 0 0 0

July Hope’s Nose Mixed 0 0 0 0

July London Bridge Mixed 0 0 0 0

July Elberry Cove Seagrass 0 2 0 1

July Hollicombe Head Seagrass 0 0 1 0

July Millstones Bay Seagrass 0 15 1 6

July Fishcombe Cove Seagrass 0 7 0 0

July Torre Abbey Sands Seagrass 1 11 * *
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Table A.3: Torbay 2011 subtidal survey results for June. * denotes insufficient space for the full number of transects to be undertaken within the
specified habitat stratum

No. egg clusters recorded
Date Site Stratum Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8
June Outer Millstones Mixed 0 0 0 0 0 1 0 0
June Long Quarry Mixed 0 0 0 0 0 0 0 0
June Babbacombe Bay Mixed 0 0 12 14 16 12 0 0
June Meadfoot Mixed 0 0 0 0 * * * *
June Hollicombe Head Seagrass 18 12 0 2 * * * *
June Torre Abbey Sands Seagrass 0 20 0 0 8 24 15 0
June Millstones Bay Seagrass 14 0 0 68 50 0 32 3
June Hope Cove Seagrass 0 0 0 0 0 0 8 0
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Table A.4: Poole Bay 2011 subtidal survey results for June. * denotes that the full number of transects was not undertaken at a site due to adverse
diving conditions or spatial restrictions

No. egg clusters recorded
Date Site Stratum Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8
June Branksome Reef Mixed 0 0 0 0 * * * *
June Ball Cliff Mixed 0 0 0 0 0 0 0 0
June Handfast Point Mixed 1 0 0 0 * * * *
June Ballard Pinnacle Mixed 0 0 0 0 * * * *
June Training bank Seagrass 0 0 0 0 0 0 0 0
June Handfast bay Seagrass 23 2 5 18 31 14 0 4
June Middle beach Seagrass 0 0 0 0 * * * *
June Studland Bay Seagrass 1 0 0 0 0 0 0 1
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Table A.5: Summary details of subtidal survey transect data for Agon-Coutainville in June 2011

Transect Stratum Area covered (m) Structures Egg clusters Eggs Egg density (Eggs per m2)
1 0-5 1018 - 0 0 0
2 0-5 723 - 0 0 0
3 0-5 856 - 0 0 0
4 0-5 1982 D. ligulata 1 10 0.005
5 0-5 1443 S. pavonina 21 2300 1.594
1 5-10 1487 - 0 0 0
2 5-10 626 - 6 350 0.559
3 5-10 1769 S. pavonina 11 780 0.441
4 5-10 832 - 0 0 0
5 5-10 1342 - 0 0 0
1 10-15 1451 Nemertesia sp. and D. ligulata 9 700 0.482
2 10-15 1787 Nemertesia sp. 6 550 0.308
3 10-15 1936 - 0 0 0
4 10-15 1204 Nemertesia sp. 1 50 0.0415
5 10-15 956 Nemertesia sp. 1 100 0.105

A.1.2 Comparison of spawning strata (depth)
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Table A.6: Summary details of subtidal survey transect data for Langrune in June 2011

Transect Stratum Area covered (m) Structures Egg clusters Eggs Egg density (Eggs per m2)
1 0-5 156 Nemertesia sp. 1 150 0.9615
2 0-5 90 - 1 60 0.6667
3 0-5 410 - 0 0 0
4 0-5 260 - 0 0 0
5 0-5 116 - 0 0 0
6 0-5 114 - 0 0 0
7 0-5 1196 - 2 40 0.0334
8 0-5 478 - 0 0 0
9 0-5 992 - 0 0 0
1 5-10 122 - 0 0 0
2 5-10 888 - 0 0 0
3 5-10 88 - 0 0 0
1 10-15 1230 - 3 150 0.1220
1 10-15 1972 - 0 0 0
3 10-15 152 - 0 0 0
4 10-15 366 Porifera sp. 9 450 1.2295
5 10-15 424 - 1 20 0.0472
6 10-15 146 - 0 0 0
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Table A.8: Fractal dimension slopes for seagrass transects at Torre Abbey Sands 2011 and
2012

May June July
Transect 2011 2012 2011 2012 2011 2012

1 * 0.1437 0.0492 * 0.0153 0.1437
2 * 0.1396 0.0153 0.5885 6E-16 0.068
3 * 0.1106 0.0492 0.0616 0.0261 0.1152
4 0.1653 * 0.0153 0.0492 6E-16 0.3617
5 0.0553 0.093 6E-16 0.1621 0.0317 0.1266
6 0.0746 0.0553 0.005 0.2081 0.005 0.1667
7 6E-16 0.2317 6E-16 0.2023 6E-16 0.1409
8 0.068 0.4069 0.0153 0.3537 0.0616 *

A.1.3 Fractal dimension

Table A.7: Fractal dimension slopes for seagrass transects at Millstones Bay 2011 and 2012

May June July

Transect 2011 2012 2011 2012 2011 2012

1 0.1231 0.3989 0.0492 0.3064 0.1106 0.0432

2 * 0.1409 0.0101 0.1243 0.0884 0.1204

3 * 0.3419 0.2398 0.1396 0.0363 0.2351

4 0.0207 0.2093 0.0793 0.2161 0.0432 0.2981

5 0.068 * 6E-16 0.3909 * 0.1679

6 0.0153 0.2457 0.0599 0.2658 * 0.0492

7 0.3419 0.2754 6E-16 0.1865 * 0.3235

8 0.1437 0.2457 0.0553 0.1621 * 0.3155
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Appendix B

Laboratory Observations 2011.

B.1 Introduction.

Whilst one of the better studied cephalopod species, a full understanding of the behaviour and

ecology of S. officinalis in the wild, and in particular direct observations of ELS (pre-recruit

stages) remain limited. Within the English Channel, large interannual variations in recruitment,

and subsequently landings of cuttlefish are known to occur (Royer et al. 2006). In order to

produce enough eggs to allow average recruitment each year, a sufficient number of spawners

are required, but beyond this stock size is likely to have little effect on recruitment strength as

mature adults generally exhibit mass mortality following spawning (Caddy 1983). Instead ELS

survival rates are considered to be of particular importance to recruitment. During these ELS,

mortality rates are presumed to be at their highest (Caddy 1996) and individuals are consid-

ered more sensitive to environmental conditions (e.g. Forsythe 1993; Boyle and Boletzky 1996;

Rodhouse 2001).

Conditions encountered within pre-recruit environments (e.g. temperature, oxygen saturation,

light, predation and food availability) can account for a significant proportion of the variation

in annual recruitment rates both temporally (e.g. between years) and spatially (e.g. between

spawning sites). Variation in the conditions encountered by ELS is initially generated through

the reproductive dynamics of spawning adults, through the timing and location of spawning,

oviposition site selection and variable egg production or quality. These variations will then be

amplified or dampened through the embryonic or ELS. It is therefore important that research

to investigate the effects of the heterogeneous conditions in ELS habitats on the behaviour

and survival and growth rates of ELS, and which thus directly or indirectly affect recruitment
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success, is also undertaken. Such information will be crucial to the successful and sustainable

management of this species both within the English Channel fishery and further afield.

In order to better understand annual recruitment success, this research aims to examine the

degree to which the physical composition of ELS habitats may impact growth and survival

rates of ELS. For example whether changes in feeding patterns, movement patterns and defence

strategies occur in different habitat types (i.e. with or without structure or sediment) will be

examined. In addition the ability of ELS cuttlefish to adapt their behaviour sufficiently among

different habitat types will be assessed to determine whether survival rates among habitats can

be optimised by adapting behavioural responses or if a particular habitat type may provide an

advantage to ELS in terms of optimal feeding and shelter from predation indicating the potential

for nursery habitats to exist. For this purpose an investigation of the behaviours and movements

exhibited by ELS cuttlefish across a range of habitat complexities, and in the presence and ab-

sence of predators and prey are of interest. Previous research has demonstrated the viability

of a range of predator cues for use in studies of cephalopods. Langridge et al. (2007) demon-

strated the viability of crabs (Necora puber), juvenile dogfish (Squalus acanthias) and juvenile

sea bass (Dicentrarchus labrax) for direct use as predators of ELS cuttlefish in the laboratory.

Adamo et al. (2006) demonstrated the viability of using inanimate objects as visual predator

stimuli, such that the threat of an aerial bird predator was stimulated through use of a model

suspended above the tank. Boal and Golden (1999) demonstrated the ability of cuttlefish to

detect small changes in odour within an aquarium, suggesting a potential for chemical predator

cues. Whilst Pronk et al. (2010) demonstrated the use of high definition video playback as a

means of providing visual stimuli to cephalopods.

B.1.1 Aims and objectives

The aim of this experimental research was to analyse the hunting sequence, visual defence dis-

plays (e.g. changes in body pattern) and movement patterns of ELS cuttlefish across a range

of habitat complexities when exposed to prey items or stimuli from predators (visual or chem-

ical). Enabling an investigation into whether the behaviours or defence displays invoked are

modulated by the presence or absence of different habitat complexity components (e.g. struc-
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ture and/or sediment). Such information may help us to understand the ‘choices’ or ‘decisions’

associated with spawning habitat ‘selection’, with the intention of better understanding survival

and recruitment rates from different ELS habitats and the potential for the existence of nursery

habitats. The specific objectives of this research were:

• Develop, construct and test a video arena to study the effects of habitat complexity on

ELS movement and behaviour.

• Acquire video footage of trials across a range of habitat complexities for ELS cuttlefish

in response to the presence or absence of prey and predator stimuli.

• Analyse data from the video footage regarding predation, defence and movement patterns

of ELS cuttlefish across a range of habitat complexities to assess whether the response is

modulated by habitat type.

B.2 Methodology

(Prior to the commencement of experimental work approval was attained, via the standard

application procedure, from the ethical committee of the Marine Biological Association of the

United Kingdom.)

B.2.1 Study animals

For the preliminary stages of these trials, S. officinalis were initially sourced from wild eggs

that were collected from both Selsey (646 eggs) and Torbay (148 eggs) on 12th July 2011.

Hatchlings emerged from these eggs from 20th July 2011 onwards.

A second source of study animals, wild-caught individuals from the western English Channel,

were obtained using short hauls of a demersal trawl (12 m otter trawl, cod-end mesh size 12

mm) in Whitsand Bay (50◦ 33’N, 04◦ 24’W), Cornwall, U.K. and Bigbury Bay (50◦ 15’N,

03◦ 54’W), Devon, U.K. Following capture individuals were subsequently maintained at the

Marine Biological Association of the United Kingdom. A total of four animals (DML 30 - 50

mm) were tested on each of the treatments in a random sequence order. Prior to the start of the

trials all cuttlefish were kept in holding tanks and fed ad libitum. However, food was withheld
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for cuttlefish for 24 hrs prior to the commencement of a trial.

B.2.2 Prey

The brown shrimp (Crangon crangon) was used as prey for the purposes of experimental trials

and also for feeding of the cuttlefish during general maintenance and rearing.

B.2.3 Predators

For preliminary trials individual shore crabs (Carcinus maenas) were used to simulate visual

predator cues. Prior to and following experimental trials all shore crabs were housed as per

the requirements of Marine Biological Association and each crab used only once in any trial

to ensure minimal stress. The predators in this experiment simply represent stimuli to evoke

cuttlefish defensive behaviours; as such there was no direct physical contact between predators

and cuttlefish during any of the trial scenarios. The tank was divided with a clear Perspex screen

(with small holes to allow water flow) to ensure that the predators could be seen and/or chemi-

cally detected and that they could approach or recede from the cuttlefish, but that no direct phys-

ical contact between the cuttlefish and predators was possible. If the cuttlefish demonstrated any

signs of abnormal behaviour or stress during the trials, the experiment was terminated imme-

diately, with an opaque screen placed between the two animals to terminate visual contact and

both individuals removed from the trial tank and returned to their holding tanks. After each trial

the aquarium was fully drained and wiped clean to ensure that all predator stimuli are removed.

If the cuttlefish inked before the start of the trial, that trial was terminated and the aquarium

again drained and wiped clean prior to the commencement of the next trial.

B.2.4 Water quality

The water quality of the experimental and holding tanks was recorded every five days. During

these tests temperature, salinity, pH, ammonia, nitrite and nitrate were all sampled to ensure

consistency.
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B.2.5 Experimental design

Experimental trials were conducted across a range of habitat complexities with three levels of

habitat complexity and one control represented in this study:

1. Sediment no structure (Level 1)

2. Structure no sediment (Level 2)

3. Structure and sediment (Level 3)

4. No sediment and no structure(Control)

Artificial seagrass and natural sediment were used to simulate the basic components of physical

complexity. The level of structural complexity reflected that found in nature, with the density

of shoots and the number of leaves per shoot taken from data on seagrass bed structure in

Torbay, presented in (Attrill et al. 2000). Shoot density per m2 was taken to be medium (120

shoots) and the average number of leaves for seagrass beds of 120 shoots was taken to be

5 leaves per shoot (Attrill et al. 2000). This was scaled down for the area covered by the

artificial substrates in each tank so that a total of 12 shoots each with 5 leaves were evenly

distributed within the experimental tank. Artificial seagrass structure was created from green

polypropylene ribbon cut into 0.5 cm width strips of 15 cm length. The leaves were attached

to a small (1 cm diameter) clear circular aquarium suckers in groups of 5 to create shoots. The

artificial shoots were attached to the base of the experimental tank. Natural sediment (sand,

pebbles and small shells) was collected from an offshore area just outside Plymouth.

The experimental arena was constructed from a sea water tank (122 cm long and 61 cm wide

with a depth of 20 cm) with the sides of the tank covered with waterproof white material to

prevent disturbance or stress by unwanted visual stimulation. The experimental arena was illu-

minated from above by standard fluorescent ceiling lights. A Sony high definition camcorder

was fixed directly above the experimental arena to enable video recording of all trials.

Experimental trials were conducted in February 2012 using four juvenile cuttlefish within the

size range 30 - 50 mm (DML). A series of eight trials (Table B.1) were conducted on each test
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individual. For each test, individual trials were randomised, using a random number generator

in Excel. Prior to the commencement of each trial, a cuttlefish was introduced into the trial arena

with one of the four habitat complexities (Level 1, Level 2, Level 3 or Control) and allowed a

period of acclimatisation (around 20 minutes). At the start of a trial a predator (1 shore crab) or

prey (5 brown shrimp) stimuli was introduced to the trial arena and the behaviour and movement

of the trial subject monitored and recorded by video. Each trial lasted no longer than 30 minutes.

Each cuttlefish was used in only one trial per day and only once for any given stimulus. No more

than four trials took place on any one day. At no point did the predators and cuttlefish come

into direct contact. The use of naturalistic habitats, with hiding places (e.g. artificial seagrass

or sediment for burying) and relatively low light levels was considered to reduce any potential

stress associated with laboratory observations. If either species (cuttlefish or predator) showed

signs of abnormal behaviour or stress, the trial would have been immediately terminated and

the individuals immediately returned to their holding tanks.

Table B.1: a description of the 12 different trials used

Trial # Habitat complexity Cuttlefish Prey Predator
1 Level 1 Yes Yes -
2 Level 2 Yes Yes -
3 Level 3 Yes Yes -
4 Control Yes Yes -
5 Level 1 Yes - Yes
6 Level 2 Yes - Yes
7 Level 3 Yes - Yes
8 Control Yes - Yes

B.2.6 Data collection

B.2.6.0.1 Computer-aided video monitoring Movement of the juvenile cuttlefish was recorded

from above during all trials. The video camera was mounted directly above the video arena and

the video recorded was situated in the next room, with cables exchanged between the wall to

link the two systems (Figure B.1). Video trials were recorded and saved to DVD to allow

subsequent analysis of the hunting sequences, defence mechanisms and movement patterns of

individuals.
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Figure B.1: Tank setup showing experimental arena and video monitoring system: (a) Ceiling
mounted video camera, (b) Prey, (c) Test subject, (d) Habitat complexity compo-
nents (e) Tank divider, (f) Tank, (g) Video monitoring and recording system (h)
Wall separating experimental arena and video monitoring system
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B.2.7 Data analysis

B.2.7.1 Predation

In trials where prey was used the number of attacks (successful and unsuccessful) was recorded

and observations on the initiation and sequence of attacks described. This data was then com-

pared between habitats to examine whether cuttlefish exhibit ‘habitat specific hunting’ patterns.

B.2.7.2 Defence

In trials where a predator was used, observations on the defence behaviours and patterns were

described and the data compared between habitats to examine what differences were exhibited

by ELS among different habitat complexities.

B.2.7.3 Movement

Data on the area covered and time spent moving or still was also recorded from the trials and the

data compared between habitats to examine differences in movement patterns of ELS among

different habitat complexities.

B.3 Results

(The presence of a bacterial infection (Vibrio sp.) within the sea water reservoir resulted in

large scale death of cuttlefish hatchlings in both 2011 and 2012. As a result, trials were under-

taken on only four individuals and thus the data collected within this study were considered too

limited in scope to provide any robust analysis or discussion and so are not included below)

B.3.1 Study animals

Eggs collected from Torbay and Selsey began hatching on 20th July 2012. On 15th August 2011

the cuttlefish hatchlings began to die en masse. The water from the system was tested and high

levels of bacteria were found to be present. The bacterial presence on the system only affected

the cuttlefish hatchlings and all other fish species (of variable life stages) and adult cuttlefish

remained unaffected. The infection spread rapidly around the hatchlings (Figure B.3.1) and

approximately 800 hatchlings in total were affected and the commencement of experimental

trials suspended.
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infection on cuttlefish hatchlings.]A demonstration of the effects of the bacterial (Vibrio sp.)

infection on cuttlefish hatchlings. (a.) The first signs of the infection are the loss of buoyancy

control in the hatchlings which float with their back ends at the water surface, and hatchlings

expending large amounts of energy swimming trying to maintain their buoyancy and position

on the tank floor, (b.) and (c.) Hatchlings subsequently become very pale and attach themselves

to the tank floor, moving very little, (d.) within around two three days from the first symptoms,

the hatchlings die, often sores are visible on the mantle with flesh missing

A second source of juvenile cuttlefish was obtained from wild-caught specimens. On arrival at

the MBA the four individuals captured were maintained and monitored in holding tanks and fed

ad libitum for up to one month prior to the start of trials to ensure that no adverse behaviours

or visible symptoms of bacterial infections were observed. It was only possible to collect four

individuals, which was not sufficient for a full experimental trial, but enabled the methodology

to be tested, with the aim of repeating a full scale study in 2012.

B.4 Discussion.

(The presence of a bacterial infection (Vibrio sp.) within the sea water reservoir resulted in

large scale death of cuttlefish hatchlings in both 2011 and 2012, the data collected within this
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study were considered too limited in scope to provide any robust discussion and so are not

included below)
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Appendix C

Supplementary information

C.1 Species occurrence data [DAASH]

The data sources within the DAASH archive included:

• CEFAS survey data

• Seasearch survey and observation data

• Conchological Society data

C.2 ‘Cuttlewatch’ sightings scheme

Cuttlewatch was a scheme set up by the Marine Biological Association of the United King-

dom to encourage members of the general public to report their sightings of cuttlefish. The

posters produced for the scheme (Figure C.1) were distributed to local dive groups, shops and

organisations and provided information on how to report these sightings.
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C.2. ‘CUTTLEWATCH’ SIGHTINGS SCHEME

Figure C.1: Poster for the cuttlefish sightings scheme ’Cuttlewatch’ to enable members of the
general public to report cuttlefish sightings
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C.3. POSTER DISPLAY ON CUTTLEFISH ACOUSTIC TAGGING AT LIVING COASTS

C.3 Poster display on cuttlefish acoustic tagging at Living Coasts

A poster display was designed and displayed at the Living Coast aquarium where the base

station for the VRAP acoustic tagging study was situated. This enabled communication with

the general public about this particular study as well as on the general ecology of the common

cuttlefish.

Figure C.2: Poster display (1 of 2) for Living Coats on the general ecology of the common
cuttlefish
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C.4. DST RECOVERY

Figure C.3: Poster display (2 of 2) for Living Coats on the VRAP acoustic tagging study con-
ducted in Torbay

C.4 DST recovery

Figure C.4: Reward poster for DSTs aimed at Fishermen
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C.4. DST RECOVERY

Figure C.5: Reward poster for DSTs aimed at recreational beach goers
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Şen, H. and Tanrikul, T. T. (2009), ‘Efficacy of 2-phenoxyethanol as an anaesthetic for the

musky octopus, Eledone moschata (lamarck 1799),(cephalopoda: Octopodidae)’, Turkish

Journal of Veterinary and Animal Sciences 33(6), 463–467.

Shashar, N., Rutledge, P. S. and Cronin, T. W. (1996), ‘Polarization vision in cuttlefish-a con-

cealed communication channel?’, Journal of Experimental Biology 199, 2077–2084.

Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. and Osorio, D. (2006), ‘Cuttlefish

responses to visual orientation of substrates, water flow and a model of motion camouflage’,

The Journal of Experimental Biology 209, 4717–4723.

Sims, D. W., Genner, M. J., Southward, A. J. and Hawkins, S. J. (2001), ‘Timing of squid

migration reflects North Atlantic climate variability’, Proceedings of the Royal Society of

London. Series B: Biological Sciences 268(1485), 2607.

330



LIST OF REFERENCES.

Smith, J. N., Grantham, H. S., Gales, N., Double, M. C., Noad, M. J. and Paton, D. (2012),

‘Identification of humpback whale breeding and calving habitat in the Great Barrier Reef’,

Marine Ecology Progress Series 447, 259–272.

Smyth, T. J., Fishwick, J. R., Lisa, A. L. M., Cummings, D. G., Harris, C., Kitidis, V., Rees, A.,

Martinez-Vicente, V. and Woodward, E. M. S. (2010), ‘A broad spatio-temporal view of the

Western English Channel observatory’, Journal of Plankton Research 32(5), 585–601.

Soberon, J. (2005), ‘Interpretation of models of fundamental ecological niches and species’

distributional areas’, Biodiversity Informatics 2, 1–10.

Sobrino, I., Silva, L., Bellido, J. M. and Ramos, F. (2002), ‘Rainfall, river discharges and sea

temperature as factors affecting abundance of two coastal benthic cephalopod species in the

gulf of cadiz (sw spain)’, Bulletin of Marine Science 71(2), 851–865.

Sogard, S. M. (1997), ‘Size-selective mortality in the juvenile stage of teleost fishes: a review’,

Bulletin of Marine Science 60(3), 1129–1157.

Sollberger, A. (1965), ‘Biological rhythm research’, New York .

Stanford, R. and Pitcher, T. J. (2004), Ecosystem simulations of the English Channel: climate

and trade-offs, Fisheries Centre, University of British Columbia.

Staver, J. M. and Strathmann, R. R. (2002), ‘Evolution of fast development of planktonic em-

bryos to early swimming’, The Biological Bulletin 203(1), 58.

Steer, M. A., Moltschaniwskyj, N. A., Nichols, D. S. and Miller, M. (2004), ‘The role of temper-

ature and maternal ration in embryo survival: using the dumpling squid Euprymna tasmanica

as a model’, Journal of Experimental Marine Biology and Ecology 307(1), 73–89.

Steer, M. A., Pecl, G. T. and Moltschaniwskyj, N. A. (2003), ‘Are bigger calamary Sepioteuthis

australis hatchlings more likely to survive? a study based on statolith dimensions’, Marine

Ecology Progress Series 261, 175–182.

Steingrimsson, S. and Grant, J. W. A. (2003), ‘Patterns and correlates of movement and site

fidelity in individually tagged young-of-the-year atlantic salmon (Salmo salar)’, Canadian

Journal of Fisheries and Aquatic Sciences 60(2), 193–202.

Stockwell, D. (1999), ‘The garp modelling system: problems and solutions to automated spatial

prediction’, International Journal of Geographical Information Science 13(2), 143–158.

Strathmann, R. R. (1985), ‘Feeding and nonfeeding larval development and life-history evolu-

tion in marine invertebrates’, Annual Review of Ecology and Systematics 16, 339–361.

331



LIST OF REFERENCES.

Strathmann, R. R. (2007), ‘Three functionally distinct kinds of pelagic development’, Bulletin

of Marine Science 81(2), 167–179.

Strathmann, R. R. and Chaffee, C. (1984), ‘Constraints on egg masses. II. Effect of spacing,

size, and number of eggs on ventilation of masses of embryos in jelly, adherent groups, or

thin-walled capsules’, Journal of Experimental Marine Biology and Ecology 84(1), 85 – 93.

Strathmann, R. R. and Strathmann, M. F. (1995), ‘Oxygen supply and limits on aggrega-

tion of embryos’, Journal of the Marine Biological Association of the United Kingdom

75(3D02), 413–428.

Swets, J. A. (1988), ‘Measuring the accuracy of diagnostic systems’, Science 240(4857), 1285–

1293.

Sykes, A. V., Almansa, E., Lorenzo, A. and Andrade, J. P. (2009), ‘Lipid characterization of

both wild and cultured eggs of cuttlefish (Sepia officinalis L.) throughout the embryonic de-

velopment’, Aquaculture Nutrition 15(1), 38–53.

Sykes, A. V., Taipina, S., Goncalves, R. A., Bernardino, R. J. and Aragao, C. (2011), Efficiency

of different anaesthetics as welfare promoters during human manipulation of European cut-

tlefish (Sepia officinalis) juveniles, in ‘EuroCeph Poster no.1.10’.

Taylor, R. G., Whittington, J. A., William III, E. and Pollock, K. H. (2006), ‘Effect of different

reward levels on tag reporting rates and behavior of common snook anglers in southeast

Florida’, North American Journal of Fisheries Management 26(3), 645–651.

Tingley, R. and Clements, G. R. (2011), Creating a bias grid for maximum entropy modelling

(maxent). Accessed on 05/04/2012 [http://myrimba.org/2011/04/18/].

Torbay Coast Countryside Trust ’(TCCT) (2006), ‘Torbay’s seagrass beds. a hidden world’.

Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. and Kadmon, R. (2007), ‘A comparative evalua-

tion of presence-only methods for modelling species distribution’, Diversity and distributions

13(4), 397–405.

Tsui, M. T. K. and Wang, W. X. (2007), ‘Biokinetics and tolerance development of toxic metals

in Daphnia magna’, Environmental Toxicology and Chemistry 26(5), 1023–1032.

Tullrot, A. (2009), Background document for Zostera beds, seagrass beds., Technical report,

OSPAR Convention.

Turner, S. J., Hewitt, J. E., Wilkinson, M. R., Morrisey, D. J., Thrush, S. F., Cummings, V. J. and

Funnell, G. (1999), ‘Seagrass patches and landscapes: the influence of wind-wave dynamics

and hierarchical arrangements of spatial structure on macrofaunal seagrass communities’,

Estuaries and Coasts 22(4), 1016–1032.

332



LIST OF REFERENCES.

UK Meteorological Office (UKMO) (2012), ‘Midas land surface stations data (1853-current),

[internet].’, Available from http://badc.nerc.ac.uk/view/badc.nerc.ac.uk.

Unrine, J. M., Jackson, B. P., Hopkins, W. A. and Romanek, C. (2006), ‘Isolation and partial

characterization of proteins involved in maternal transfer of Selenium in the western fence

lizard (Sceloporus occidentalis)’, Environmental toxicology and chemistry 25(7), 1864–1867.

Valavanis, V. D., Georgakarakos, S., Kapantagakis, A., Palialexis, A. and Katara, I. (2004b),

‘A GIS environmental modelling approach to essential fish habitat designation’, Ecological

Modelling 178(3), 417–427.

Valavanis, V. D., Georgakarakos, S., Koutsoubas, D., Arvanitidis, C. and Haralabous, J. (2002),

‘Development of a marine information system for cephalopod fisheries in Eastern Mediter-

ranean’, Bulletin of Marine Science 71(2), 867–882.

Valavanis, V. D., Pierce, G. J., Zuur, A. F., Palialexis, A., Saveliev, A., Katara, I. and Wang, J.

(2008), ‘Modelling of Essential Fish Habitat based on remote sensing, spatial analysis and

GIS’, Hydrobiologia 612(1), 5–20.

VEMCO (2003), VRAP Hardware Manual, VEMCO Limited, Shad Bay, NS.

Vézina, A. F. and Hoegh-Guldberg, O. (2008), ‘Effects of ocean acidification on marine ecosys-

tems’, Marine Ecology Progress Series 373, 199–201.

Vidal, E. A. G., DiMarco, F. P., Wormuth, J. H. and Lee, P. G. (2002), ‘Influence of temperature

and food availability on survival, growth and yolk utilization in hatchling squid’, Bulletin of

Marine Science 71(2), 915–931.

Vidal, E. A. G., Haimovici, M. and Hackbart, V. C. S. (2010), ‘Distribution of paralarvae and

small juvenile cephalopods in relation to primary production in an upwelling area off southern

Brazil’, ICES Journal of Marine Science 67(7), 1346–1352.

Villanueva, R., Moltschaniwskyj, N. A. and Bozzano, A. (2007), ‘Abiotic influences on em-

bryo growth: statoliths as experimental tools in the squid early life history’, Reviews in Fish

Biology and Fisheries 17(2), 101–110.

Voss, G. L. (1983), ‘A review of cephalopod fisheries biology’, Memoirs of the National Mu-

seum Victoria 44, 229–241.

Walsh, L. S., Turk, P. E., Forsythe, J. W. and Lee, P. G. (2002), ‘Mariculture of the loliginid

squid Sepioteuthis lessoniana through seven successive generations’, Aquaculture 212(1-

4), 245–262.

333



LIST OF REFERENCES.

Waluda, C. M. and Pierce, G. J. (1998), ‘Temporal and spatial patterns in the distribution of

squid Loligo spp. in United Kingdom waters’, South African Journal of Marine Science

20(1), 323–336.

Waluda, C. M., Trathan, P. N. and Rodhouse, P. G. (1999), ‘Influence of oceanographic vari-

ability on recruitment in the Illex argentinus (cephalopoda: Ommastrephidae) fishery in the

south atlantic’, Marine Ecology Progress Series 183, 159–167.

Wang, J., Pierce, G. J., Boyle, P. R., Denis, V., Robin, J. P. and Bellido, J. M. (2003), ‘Spatial and

temporal patterns of cuttlefish (Sepia officinalis) abundance and environmental influences-a

case study using trawl fishery data in French Atlantic coastal, English Channel, and adjacent

waters’, ICES Journal of Marine Science 60(5), 1149.

Ward, G. (2007), Statistics in Ecological Modeling; Presence-Only Data and Boosted MARS,

PhD thesis, Department of Statistics, Stanford University.

Ward, P. D. and Boletzky, S. V. (1984), ‘Shell implosion depth and implosion morphologies in

three species of Sepia (Cephalopoda) from the Mediterranean Sea’, Journal of the Marine

Biological Association of the United Kingdom 64(04), 955–966.

Warnau, M., Temara, A., Jangoux, M., Dubois, P., Iaccarino, M., De Biase, A. and Pagano, G.

(1996), ‘Spermiotoxicity and embryotoxicity of heavy metals in the echinoid Paracentrotus

lividus’, Environmental toxicology and chemistry 15(11), 1931–1936.

Watanuki, N. A. and Hirayama, I. Z. (2000), ‘Why do cuttlefish Sepia esculenta enter basket

traps? space occupation habit hypothesis’, Fisheries Science 66(2), 190–197.

Watanuki, N. and Iwashita, T. (1993), ‘Tags for cuttlefish Sepia esculenta’, Recent Advances in

Fisheries Biology pp. 619–625.

Wearmouth, V. J., Durkin, O. C., Bloor, I., McHugh, M., Rundle, J. and Sims, D. (2012), ‘A

method for long-term electronic tagging and tracking of juvenile and adult common cuttlefish

Sepia officinalis’, Journal of Experimental Marine Biology and Ecology .

Weatherhead, P. J. and Robertson, R. J. (1979), ‘Offspring quality and the polygyny threshold:"

the sexy son hypothesis"’, American Naturalist pp. 201–208.

Wells, M. J. (1958), ‘Factors affecting reactions to mysis by newly hatched sepia’, Behaviour

pp. 96–111.

Wells, M. J. and Wells, J. (1970), ‘Observations on the feeding, growth rate and habits of newly

settled Octopus cyanea’, Journal of Zoology 161(1), 65–74.

Williamson, R. (1995), ‘A sensory basis for orientation in cephalopods’, Journal of the Marine

Biological Association of the United Kingdom 75(01), 83–92.

334



LIST OF REFERENCES.

Wilson, P. D., Downey, P. O., Leishman, M., Gallagher, R., Hughes, L. and O’Donnell, J.

(2009), ‘Weeds in a warmer world: Predicting the impact of climate change on Australia’s

alien plant species using MaxEnt’, Plant Protection Quarterly 24(3), 84–87.

Wolfram, K., Mark, F. C., John, U., Lucassen, M. and Pörtner, H. O. (2006), ‘Microsatellite

DNA variation indicates low levels of genetic differentiation among cuttlefish (Sepia offici-

nalis L.) populations in the English Channel and the Bay of Biscay’, Comparative Biochem-

istry and Physiology D-Genomics & Proteomics 1(3), 375–383.

Wood, C. (2007), Seasearch Observer’s Guide to Marine Life of Britain and Ireland, Marine

Conservation Society.

Woodroffe, C. D. (2003), Coasts: Form, process and evolution, Cambridge University Press.

Yesson, C., Taylor, M. L., Tittensor, D. P., Davies, A. J., Guinotte, J., Baco, A., Black, J., Hall-

Spencer, J. M. and Rogers, A. D. (2012), ‘Global habitat suitability of cold-water octocorals’,

Journal of Biogeography 39(7), 1278–1292.

Zeebe, R. E. and Wolf-Gladrow, D. (2001), ‘CO2 in seawater: Equilibrium, kinetics, isotopes’,

Elsevier Oceanography Series 65, 1–346.

Zouhiri, S., Vallet, C., Mouny, P. and Dauvin, J. C. (1998), ‘Spatial distribution and biological

rhythms of suprabenthic mysids from the English Channel’, Journal of the Marine Biological

Association of the United Kingdom 78(04), 1181–1202.

335


