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TOPOGRAPHIC RECONSTRUCTIONS OF THE VARISCAN BELT OF WESTERN 

EUROPE THROUGH THE STUDY OF FOSSIL HYDROTHERMAL SYSTEMS 

Camille Dusséaux 

This thesis presents the first stable isotope quantification of paleoaltimetry for the 

Variscan Belt of Western Europe that integrates late-Carboniferous hydrogen isotope 

ratios of meteoric water in the internal zones in the Armorican Massif (AM) and the 

French Massif Central (FMC) with age-equivalent precipitation records in the foreland 

Bourbon l’Archambault basin (BA) and the Montagne Noire (MN).  

Combined microstructural, hydrogen and oxygen stable isotope, thermometry 

and geochronology data allow the calculation of the isotopic composition of meteoric 

water in the internal zones of the orogen where surface-derived fluids infiltrated the 

ductile segment of the Quiberon, Piriac (AM) and Felletin (FMC) detachment shear zones 

during high temperature deformation and post-orogenic extension. 

When compared to age-equivalent isotopic composition of surface-derived fluids 

based on freshwater shark remains found in the BA basin near sea level, the composition 

of meteoric water obtained from synkinematic muscovite in the detachment footwalls 

are consistent with a minimum elevation difference of 2500 ± 900 m in the AM and 3300 

± 1000 m for the FMC. 

This study suggests that the internal zones (AM and FMC) of the Variscan Belt of 

Western Europe were characterized by a mean elevation typical for medium-sized 

mountain belts. These results are in good agreement with the view of the Variscan belt 

as a hot orogen characterized by abundant syntectonic crustal melting and high-grade 

metamorphism that profoundly affected its tectonic evolution. 
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RECONSTRUCTIONS TOPOGRAPHIQUES DE LA CHAINE VARISQUE DE L’EUROPE DE L’OUEST 

PAR L’ETUDE DES SYSTEMES HYDROTHERMAUX FOSSILES 

Camille Dusséaux 

Cette thèse présente la première quantification de la paléoaltitude de la Chaîne 

Varisque de l’Europe de l’Ouest par la méthode des isotopes stables, qui intègre la 

composition isotopique en hydrogène des eaux météoriques dans le Massif Armorican 

(MA) et le Massif Central (MC) avec des enregistrements contemporains provenant du 

bassin d’avant-pays de Bourbon l’Archambault (BA) et de la Montagne Noire (MN).  

La combinaison des données microstructurales, des isotopes stables de 

l’hydrogène et de l’oxygène, thermométriques et géochronologiques permet de calculer 

la composition isotopique des eaux météoriques dans les zones internes, où des eaux 

de surface ont infiltré le segment ductile des zones de détachement de Piriac, Quiberon 

(AM) et Felletin (MC) pendant l’extension post-orogénique. 

Comparée à des enregistrements isotopiques d’eaux de surface d’âge équivalent 

basés sur des fossiles de requins d’eau douce du bassin de BA, la composition des eaux 

météoriques obtenue à partir des muscovites dans les murs des détachements est 

cohérente avec une altitude moyenne minimale de 2500 ± 900 m dans le MA et 3300 ± 

1000 m dans le MC. 

Cette étude suggère donc que les zones internes de la Chaîne Varisque de l’Europe 

de l’Ouest ont atteint une altitude plutôt moyenne. Ces résultats sont en accord avec 

une vision de la Chaîne Varisque comme un orogène chaud caractérisé par une fusion 

partielle syntectonique abondante et un métamorphisme de haut grade qui ont 

profondément affecté son évolution tectonique. 
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INTRODUCTION 

The Variscan belt of Western Europe was built as a result of a Himalayan-type 

continental collision between two main lithospheric plates, Laurussia (Laurentia-Baltica) 

to the north and Gondwana to the south, which led to crustal nappes stacking and to 

the formation of foreland basins during the Carboniferous (e.g. Matte, 2001). This belt 

is now completely eroded but displays similarities with the Tibet-Himalaya orogen in its 

tectonic style and geochemistry of partially molten rocks exhumed in the footwall of 

detachment faults, leading to the suggestion that its thickened hinterland regions could 

have represented a topographic high similar to the Himalaya during the Carboniferous 

(e.g. Mattauer, 1986, Dörr and Zulauf, 2010). However, recent studies point to a 

subdued topography due to coeval orogenic-parallel extension and low-viscosity crustal 

material that would have counterbalanced crustal thickening and uplift (e.g. Franke, 

2014). Therefore, the paleoaltitude of the Variscan Belt is at the core of considerable 

debate and no paleoaltimetry estimates have been acquired at this time. This project 

addresses this outstanding, first-order question by combining newly developed 

quantitative methods in geochemistry with classical geological techniques to decipher 

the long-term topographic evolution of the Variscan belt of Western Europe using stable 

isotope paleoaltimetry. 

Obtaining paleoaltimetry estimates is important to climate modellers and 

scientists interested in paleoclimate because the topography of mountain ranges 

controls the atmospheric circulation (e.g. Seager et al., 2002). The best example of solid 

Earth affecting climate is the Himalaya-Tibet orogen, for which a direct link between the 

growth of topography and the intensification of the Asian monsoon has been recognized 

(e.g. Molnar and England, 1990; Boos and Kuang, 2010; Wu et al., 2012). 
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Palaeontologists and biologists that aim at correlating the evolution of species with 

geological landscapes are also interested in such studies (e.g. Hoorn et al., 2010; Favre 

et al., 2014; Mulch, 2016). Finally, reconstructing the topography of ancient orogens is 

of great interest to the geosciences community because it provides information on the 

deformational and geodynamic processes that occur at depth as the elevation of the 

Earth’s surface is closely related to the processes that govern the internal part of 

orogens (e.g. Braun, 2010). 

Stable isotope paleoaltimetry uses the oxygen (δ18O) and hydrogen (δD) isotope 

composition of meteoric water that scales with elevation in a predictable fashion on the 

windward side of a mountain range (~-2.8 ‰ in δ18O or ~-22 ‰ in δD per km; Poage and 

Chamberlain, 2001). This is due to the Rayleigh distillation of heavy isotopes (18O or D) 

through condensation and precipitation as air masses that rise across a mountain range 

cool adiabatically during ascent. Quantifying the temporal evolution of topography is 

challenging in eroded orogens because it is difficult to find proxies in the geological 

archives that have recorded the isotopic composition of ancient rainfall. The most 

commonly used geological materials, such as lacustrine carbonates, are not necessarily 

available and/or unaltered by diagenetic processes in eroded orogens. However, 

hydrous silicates that crystallize at depth during deformation-related fluid flow have 

been shown to be reliable proxies of such meteoric fluids (e.g. Mulch et al., 2004, 2007; 

Gébelin et al., 2011, 2017). Indeed, the low hydrogen (δD) and oxygen (δ18O) stable 

isotope values of synkinematic hydrous minerals have allowed researchers to document 

the infiltration of meteoric fluids in the footwall of detachment zones of metamorphic 

core complexes such as those in the North American Cordillera (e.g. Fricke et al., 1992; 

Losh, 1997; Mulch et al., 2004, 2006; Holk and Taylor, 2007; Gébelin et al., 2011, 2012, 
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2015, 2017; Gottardi et al., 2011; Methner et al., 2015; Quilichini et al., 2015, 2016), in 

the European Central Alps (Campani et al., 2012), in the Menderes Massif of Turkey 

(Hetzel et al., 2013) and the South Tibetan Detachment (Gébelin et al., 2013, 2017). Such 

minerals, even though (re)crystallised at significant depth, can be used as paleoelevation 

proxies if they can be temporally and kinematically linked to the shear zones evolution 

(e.g. Mulch et al., 2004; Campani et al., 2012; Gébelin et al., 2012, 2013). 

The present study aims at quantifying the late-Carboniferous paleoelevation of the 

Variscan Belt of Western Europe by studying fossil hydrothermal systems that have 

recorded the isotope composition of Variscan surface-derived fluids. This work is 

subdivided into five chapters. The first chapter explains the aim of the study by giving 

an overview of the Variscan Belt of Western Europe geological framework and the 

associated debate on its paleoelevation. This introduction is followed by the principles 

and limitations of the stable isotope paleoaltimetry method, and ends with the main 

objectives of this study.  

The second chapter presents the different methods used to achieve the study’s 

goals. To recover the isotopic composition of ancient precipitation, the hydrogen 

isotope (δD) ratio of hydrous silicates that crystallized during high temperature 

deformation in the footwall of detachment zones of the internal zones is measured. In 

parallel, a similar study is conducted on fluid inclusions in quartz grains derived from 

identical mylonitic samples. To determine the temperature of isotopic exchange 

between the fluid and the minerals that is essential to calculate the isotope composition 

of the fluid present during deformation, different thermometry techniques have been 

used. A detailed microstructural study (including EBSD) is conducted on representative 

samples to estimate the temperature of deformation, but also to characterize and 
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understand the deformational and isotope exchange histories at the grain-scale. 

40Ar/39Ar thermochronology on neocrystallized hydrous minerals allow us to constrain 

the timing and duration of recrystallization and fluid flow. 

The main results of this study are presented in Chapters III and IV. Chapter III 

depicts the work conducted in the southern Armorican domain. Part A presents the 

hydrogen isotope ratios of muscovite from different shear zones. Following the 

identification of ancient precipitation in the Armorican detachments, part B presents a 

detailed study that characterises the thermomechanical context of fluid-rock interaction 

as well as the timing of meteoric fluid infiltration in the Quiberon detachment footwall. 

Part C presents the results obtained on fluid inclusions in the Armorican detachment 

footwalls. A similar study conducted in ductile shear zones of the western part of the 

French Massif Central is presented in Chapter IV. 

Finally, Chapter V aims at quantifying the paleoelevation of the Variscan Belt of 

Western Europe during the Late Carboniferous. The hydrogen isotope record of 

precipitation in the hinterland is referenced to age-equivalent proxies that have 

preserved the isotope composition of rainfall near sea level. Two different proxies for 

meteoric water are presented for the foreland areas: teeth and spines from fresh-water 

sharks in foreland basins (Fischer et al., 2013) and hydrous silicates from the Espinouse 

detachment in the Montagne Noire. The isotope lapse rate between the isotope 

composition of meteoric water and elevation, and the difference in δD and δ18O values 

of meteoric water in the internal and external zones allow us to get a first evaluation of 

the paleotopography of this part of the Variscan hinterland, consistent with a medium 

mean elevation, in agreement with a “hot orogen” model involving extensional thinning 

and flow of partially molten rocks.
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I. THE VARISCAN BELT OF WESTERN EUROPE AND THE CONTROVERSY ON 

ITS TOPOGRAPHY 

A. The Variscan Belt of Western Europe 

1. The Variscan Belt 

The convergence and subsequent collision of two main continents (Laurussia to 

the North and Gondwana to the South) led to the amalgamation of the Pangea super-

continent between ~500 and 250 Ma (Fig. I-1). The collision was responsible for the 

formation of collisional orogen systems, including the Variscan belt of Western Europe 

(e.g. Matte, 2001; Kroner and Romer, 2013). 

 

 

Figure I-1 Palaeozoic 
reconstructions ot the 
formation of the 
Variscan Belt.  
- 540 Ma: formation of 
the Iapetus ocean 
between Laurentia and 
Gondwana 
- 460 Ma: formation of 
the Rheic ocean that 
separates Avalonia–
Carolinia (A–C) from 
Gondwana 
- 370 Ma: Collision of 
Laurentia, Baltica and 
Avalonia–Carolina that 
forms Laurussia 
- 280 Ma: Closure of the 
Rheic Ocean that forms 
Pangaea and both 
Variscan and Ouachita-
Alleghanian orogens.  
A-C: Avalonia-Carolina. 
Figure from Nance et 
al., 2010; modified 
from Scotese, 1997; 
Cocks and Torsvik, 
2002; Stampfli and 
Borel, 2002; Murphy et 
al., 2006; Cawood and 
Buchan, 2007. 
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In Western Europe, the Variscan terranes can be divided into 3 simplified tectonic 

and metamorphic zones: (1) a south-verging collisional wedge to the south and (2) a 

north-verging one to the north, and (3) the internal zones of the belt composed of high-

grade metamorphic rocks (Fig. I-2). The south and north-verging collisional wedges gave 

rise to an E-W trending fan-shaped orogen (see cross-sections on Fig. I-2). The European 

Variscan internal zones are recognized in the Iberian Massif in Spain (Galicia and the 

Pyrenees), in the Armorican Massif in France (southern Brittany), in the French Massif 

Central, in Corsica, and in the Bohemian Massif (Germany). The North Variscan Front 

can be observed in the UK (SW Ireland, SW England and Wales) and in the north of 

France (N Brittany, Ardennes), and the South Variscan Front can be seen in Southern 

France (Montagne Noire, Vosges and Corsica), in Spain (Galicia, Pyrénées) and in Italy 

(Sardinia) (Fig. I-2). 

Two main areas were targeted for this study: the Armorican Massif and the French 

Massif Central, which are part of the internal zones (Fig. I-2). These two Massifs have 

been extensively studied since the 19th century (e.g. Suess, 1887). However, the recent 

development of sophisticated methods have allowed researchers to get a precise idea 

of their nature (structural geology, petrology, palaeontology, stratigraphy, 

sedimentology, as well geochemistry and geochronology) and 3D geometry (geological 

mapping, airborne geophysics, seismic imagery). 
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Figure I-2: Geodynamic sketch dividing the Variscan Orogen in Europe in four main domains: 
(1) north and (2) south opposite foreland wedges, (2) plateau-like upper structurally central 
regions of the hinterland and (4) underlying high grade orogenic crust. BF, Black Forest; BV, 
Brunovistulian; CCSZ, Córdoba-Coimbra Shear Zone; CIZ, Central Iberian Zone;CO, Corsica; CZ, 
Cantabrian Zone; ECMA, External Crystalline Massifs of the Alps; GB, Galicia Banks; GS-H: 
Giessen-Hartz; GTMZ, Galicia Trás-os-Montes Zone; LC, Lizard Complex; MGCH, Mid German 
Crystalline High; MN, Montagne Noire; MM, Maures Massif; MZ, Moldanubian Zone; NASZ, 
North Armorican Shear Zone; NH, Normannian High; NPF, North Pyrenean Fault; NPZ, 
Northern Phyllite Zone; OMZ, Ossa-Morena Zone; PTSZ, Porto-Tomar Shear Zone; PY, 
Pyrenees; RHZ, Rhenohercynian Zone; SA, Sardinia; SASZ, South-Armorican Shear Zone; SPZ, 
South Portuguese Zone; STZ, Saxo-Thuringian Zone; TBZ, Teplá-Barrandian Zone; VM, Vosges 
Massif; WALZ, West Asturian- Leonese Zone; and WS, West Sudetes (Rubio Pascual et al., 
2016). 
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Figure I-3: Construction of the Variscan belt through progressive closures of oceanic basins. 
GSB: Galicia-Southern Brittany ocean and suture (Matte, 2001). 
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Two main models have been proposed to explain the tectonic evolution of the 

Variscan Belt of Western Europe. A monocyclic model proposed by Matte (1986b, 2001) 

and Lardeaux et al. (2001) which highlights a continuous convergence between 

Laurentia and Gondwana from the Silurian to the Early Carboniferous. This model is 

characterized by the progressive closure of two main oceanic basins, the Rheic Ocean to 

the north and the Galicia-Massif Central Ocean to the south of the belt, by intraoceanic 

subduction of opposite vergence, followed by obduction and intracontinental 

lithospheric subduction (Fig. I-3). It explains the progressive crustal thickening by nappe 

stacking and migration of the deformation through time from the sutures toward the 

external parts of the Variscan belt.  

 

 

Figure I-4: Lithospheric-scale interpretative cross-section of the east Massif Central-Ardennes 
area showing the synchronism of extension in the internal and compression in the external 
parts of the orogen. In the internal parts, the thermal input from the mantle responsible for 
the Late Visean magmatism is related to mantle delamination. Plutons younger than Visean 
have been omitted (Faure et al., 2002). 
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In contrast, Pin (1990), Faure (1995); Faure et al., (1997; 2005, 2014) suggest a 

polycyclic evolution of the belt that involves: (1) a northward subduction that led to the 

closure of the Galicia-Massif Central ocean, followed by (2) a southward subduction of 

the Rheic Ocean. The latter was accompanied by localized extension that affected the 

upper plate in the internal zones while the externals parts were still in compression (Fig. 

I-4). Another model emphasizes the impact of ductile shear zones and associated 

partially molten rocks that accompanied the Variscan orogenic collapse in a 

transgressive regime (e.g. Gébelin et al., 2007, 2009 and Vanderhaeghe et al., 2018). 

This study focusses on the late stages of the orogeny, when the mountain was 

already built and a certain altitude was very likely achieved before the post-orogenic 

collapse (see discussion below). Indeed, most of the studied crustal-scale shear zones 

played a major role in controlling the mean elevation of the belt during post-orogenic 

extension (e.g. Malavieille et al., 1990; Gapais et al., 2009).  

  

2. The debate on the Variscan belt’s paleoelevation 

The ultimate goal of this study is to obtain paleoaltimetry estimates of the eroded 

Variscan Belt of Western Europe whose topography and associated tectonic processes 

are the focus of considerable debate. Principally, two competing models exist in the 

literature: 1) a Himalaya-Tibet-style high orogenic plateau that developed as a result of 

thickened hinterland regions (e.g. Dewey and Burke, 1973; Ménard and Molnar, 1988; 

Matte, 2001; Dörr and Zulauf, 2010), and 2) subdued topography due to coeval orogenic-

parallel extension that counterbalanced crustal thickening and uplift (e.g. Franke, 2012, 

2014). 
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a. Arguments for high elevation (≥ 4000m) 

The Variscan Belt has often been compared to the Himalayas in terms of structural 

and metamorphic arrangement (Fig. I-5): both of these belts show an E-W trending axis 

and display a V-shaped geometry highlighted by West and East syntaxes (e.g. Dewey and 

Burke, 1973; Burg, 1983; Mattauer, 1986; Mattauer et al., 1988; Kroner and Romer, 2013; 

Stampfli et al., 2013). Both chains display major thrust zones developed in response to 

crustal thickening; the Main Central Thrust in the Himalayas has been compared to the 

‘Main Champtoceaux Thrust’ in the Armorican Massif or the ‘Main Massif Central Thrust’ 

in the Massif Central (Mattauer et al., 1988; Mattauer and Matte, 1998; Ballèvre et al., 

2013). Detachment zones parallel to the orogen are observed in both orogens: the South 

Tibetan Detachment in the Himalayas, and the Pilat detachment zone in the French 

Massif Central (FMC). The presence of normal faults perpendicular to the E-W trend of 

the belt that reflect orogen-parallel extension have been described in both the 

Himalayas (e.g. Leo Pargil, Ama Drime; Thiede et al., 2006; Jessup and Cottle, 2010) and 

the Variscan belt (e.g. Quiberon in the Armorican Massif, Argentat, Felletin or Nantiat in 

the FMC; Gapais et al., 1993, 2015; Roig et al., 2002; Gébelin et al., 2009). 
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Figure I-5 (last page): Comparison between the Himalayas and the Southern French Massif 
Central at the end of the Palaeozoic. (a) Continental crust; (b) Lithospheric mantle; (c) 
Asthenosphere. MCT: Main Central Thrust; MBT: Main Boundary Thrust; FNP: Mont Pilat 
ductile normal fault. Crosses indicate the recent granitic massifs (Mattauer and Matte, 1998). 

 

Synorogenic clastic sediments deposited in foreland basins indicates the presence 

of topographic relief in the internal zones of the Variscan belt of Western Europe (e.g. 

Franke and Engel, 1986; Schneider et al., 1999; Hartley and Otava, 2001; Pastor-Galán 

et al., 2013; Lin et al., 2016; Žák et al., 2018). Although controversial, periglacial deposits 

found in the French Massif Central and striated boulders in the Bohemian Massif were 

interpreted as the proof of a topographic high of ~4 km (Becq-Giraudon and Van Den 

Driessche, 1994; Becq-Giraudon et al., 1996). Crustal thickening in the internal zones of 

the Variscan orogen is supported by the presence of nappes emplaced during the Late 

Carboniferous and high-pressure metamorphism as attested by outcrops of blueschist 

and eclogite rocks (Ledru et al., 1989; Ballèvre et al., 2013; Rubio Pascual et al., 2016; 

Žák et al., 2017).  For some authors, crustal thickening (up to 55km) in the internal zones 

of the belt led to a high-altitude plateau reaching Himalayan-type elevation of 3 to 4 km 

(e.g. Dörr and Zulauf, 2010). Furthermore, recent seismic section and gravity 

acquisitions reveal low resistivity and low velocity zones at the Moho depth in the 

internal zones of the Variscan belt, interpreted to represent the presence of partially 

molten lower crustal material comparable to those in the Himalaya (Beaumont et al., 

2001; Guy et al., 2011). 

b. Arguments for medium to low elevation (≤ 4000m) 

Some authors acknowledge that surface uplift may have occurred only in “rather 

narrow belts along crustal-scale shear zones or active margins, in which Devonian-

Carboniferous overstep sequences have not been detected” (Franke, 2014). Franke 
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(2014) argues that a high altitude would not have been achievable in the Variscan Belt 

because: (1) orogen-parallel extension and the activation of strike-slip shear zones 

(escape tectonics) would have reduced the amount of crustal thickening, (2) the 

subduction erosion of oceanic plates would have enhanced lithospheric thinning (e.g. 

Lardeaux et al., 2001; Franke, 2014), (3) the low viscosity of crustal materials in this « hot 

orogen » would have not been able to sustain high reliefs (e.g. Chardon et al., 2009; 

Franke, 2014; Vanderhaeghe et al., 2018). In summary, Franke (2014) compares the 

Variscan belt to the Alps where orogen-parallel extension compensated crustal 

thickening, uplift and erosion (Ratschbacher et al., 1989) and concludes that the 

Variscan Belt is “failed, but not collapsed” in terms of topography.  

In addition, widespread fauna and flora found in European intra-montane coal-

bearing basins are in agreement with medium to low elevation (Fig. I-6; Roscher and 

Schneider, 2006). The  findings of periglacial deposits supporting a high elevation have 

been questioned as slip scars, slumps and water escape structures and do not 

necessarily constitute evidence for a cold climate (Becq-Giraudon and Van Den 

Driessche, 1994; Becq-Giraudon et al., 1996; Dörr and Zulauf, 2010; Franke, 2012, 2014). 

Moreover, atmospheric general circulation modelling applied to different configurations 

of Pangea points to a mean elevation of ~2000 to 3000 m (Fluteau et al., 2001). The 

presence of a flat Moho and a thin lithosphere in the Iberian Massif indicates a limited 

elevation (Torne et al., 2015).  
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Figure I-6: Location of main Permo-Carboniferous basins in Western Europe (Roscher and 
Schneider, 2006) 

 

As the Variscan Belt’s topography is still at the core of the debate, it is important 

to quantify its topographic evolution through space and time. The principles and 

limitations of the method of stable isotope paleoaltimetry will be explained in the 

following section. 
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B. Stable Isotope Paleoaltimetry of the Variscan Belt of Western 

Europe 

1. Principles of Stable Isotope Paleoaltimetry 

 

Figure I-7: Principle of stable isotope paleoaltimetry. (A) Lapse rate of δ18O values of 
precipitation as a function of elevation. (B) Δ(δ18O) is the difference between the δ18O values 
recovered from low elevation reference sites (foreland basin) and higher elevation sites 
(detachments) through time. Δz = difference in elevation between low elevation reference site 
and high elevation proxy record (Modified from Campani et al., 2012 and Mulch, 2016) 

 

Stable isotope paleoaltimetry is based on the relationship between the isotopic 

composition of rainfall that scales with elevation. The process of Rayleigh’s distillation 

(Dansgaard, 1964) is due to the decrease in temperature with increasing elevation (-

6.5 °C/km) and implies that heavy isotopes concentrate in the condensate. Therefore, 

as air masses rise across a mountain range, the isotopic composition of meteoric water 

(the oxygen isotope composition is expressed in δ18O values and the hydrogen isotope 

composition in δD values, see part II-D) becomes more negative as water vapour is more 

depleted in heavy isotopes (18O and D) (Fig. I-7). A gradient has been identified from 

higher δ18O and δD values of precipitation at low elevation where the temperature is 
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elevated to lower δ18O and δD values of precipitation at high elevation associated with 

low temperature (Figs. I-7 and I-8). An average lapse rate has been defined for low and 

mid latitude at  -22‰ per km for δD values, and  -2.8 ‰ per km for δ18O values (Fig. 

I-8; e.g. Poage and Chamberlain, 2001; Rowley and Currie, 2006; Rowley and Garzione, 

2007).  

 

 

 

Figure I-8: The compilation of 
68 studies revealed an 
empirical relationship 
between the net elevation 
and the isotope composition 
(δ18O) of meteoric water in 
mountain ranges (Poage and 
Chamberlain, 2001). 

 

 

The method of stable isotope paleoaltimetry has evolved considerably since its 

infancy when single site isotope values were directly linked to elevation estimates 

(Ambach et al., 1968; Siegenthaler and Oeschger, 1980). A recent development allows 

us to reduce potential uncertainties relative to large-scale climate change effects on the 

stable isotope composition of precipitation by comparing an isotope record of rainfall 

sourced at high elevation (hinterland) with one sourced at low elevation (foreland) (Fig. 

I-7; e.g. Mulch et al., 2006a; Mulch and Chamberlain, 2007; Gébelin et al., 2012, 2013; 

Mulch, 2016). This means that both low and high altitude proxies will record the effects 

of upstream moisture recycling and atmospheric vapour transport, while the additional 
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effect of elevation will result in more negative isotope values for the high altitude 

proxies (e.g. Mulch, 2016). As shown on Fig. I-7, this method allows us to gain 

quantitative data on the hypsometric mean elevation of an area. 

Stable isotope-based paleoaltimetry has allowed studies to reconstruct the past 

mean elevation of eroded mountain ranges using near-surface proxies in the Tibetan 

plateau (e.g. Garzione et al., 2000; Currie et al., 2005; Rowley and Currie, 2006; Quade 

et al., 2011; Xu et al., 2013; Hoke et al., 2014; Huntington et al., 2015), in the Rocky 

mountains, the North American Cordillera, the Cascades, the Basin and Range, the Sierra 

Nevada and Patagonia (e.g. Morrill and Koch; Drummond et al., 1993; Norris et al., 1996; 

Dettman and Lohmann, 2000; Mulch et al., 2004b, 2006a, 2008, 2015; Sjostrom et al., 

2006; Horton and Chamberlain, 2006; Cassel et al., 2009; Chamberlain et al., 2012; Feng 

et al., 2013; Fan et al., 2014, 2017; Mix et al., 2016) and the Andes (e.g. Garzione et al., 

2008; Mulch et al., 2010; Saylor and Horton, 2014). However, most of these studies are 

based on proxies that recorded the isotope composition of meteoric water in the near-

surface record, whereas some recent studies are based on the isotope record of hydrous 

silicates that recrystallized and interacted with meteoric water at depth (e.g. Mulch et 

al., 2004b, 2007; Campani et al., 2012; Gébelin et al., 2012, 2013). 

2. Limitations of paleoaltimetry reconstructions  

a. Stable isotope-based paleoaltitude estimates 

Stable isotope paleoaltimetry is based on an empirical relationship between the 

isotope composition of water and elevation (Fig. I-8; Poage and Chamberlain, 2001). This 

relationship is assumed to have remained stable over time. Indeed, the physical 

processes (Rayleigh’s distillation) that regulated the isotope fractionation in air masses 

during Palaeozoic times would not be different from today. However, the lapse rate that 
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describes the isotope composition of meteoric water scaling with elevation depends on 

various parameters such as the latitude, the source of precipitation, the temperature of 

the moisture source and the air masses above it, and finally the distance to the source 

of precipitation (e.g. Rowley and Garzione, 2007). As such, evaluating the 

paleogeography and paleoclimate of Pangea at the end of the Carboniferous is essential 

(see section b below). 

Nevertheless, these parameters are negligible compared to the effect of elevation 

on the isotope composition of precipitation (e.g. Rowley, 2007). Therefore, the 

uncertainty of the paleoaltitude estimates can be calculated by propagating the 

uncertainties observed in empirical data (mainly the isotope composition of minerals 

and the temperature of isotope exchange). Most stable isotope-based paleoaltitude 

studies exclude the uncertainty relying on the lapse rate, which can attain ± 700 m for 

model elevations of ~5000m (Rowley, 2007). This method has allowed us to estimate 

paleoaltitudes of ~5100 ± 400 m and ~5400 ± 350 m for the Mount Everest area (Gébelin 

et al., 2013) and 2350 (+700/-500) m for the European Alps (Campani et al., 2012), both 

during the Miocene.  

b. Variscan paleogeography 

Paleomagnetic data indicate that the Variscan Belt of Western Europe was located 

near by the Equator (Fig. I-10; Tait et al., 1996a, b, 1999, 2000; Zwing and Bachtadse, 

2000; Domeier and Torsvik, 2014; Edel et al., 2018). Yet, the isotope composition of 

modern rainfall in equatorial regions display higher δD and δ18O values than in low and 

mid latitudes (Fig. I-9, Rozanski et al., 1993). The different lapse rates calculated in many 

of the world’s mountain belt give an average of −2.8‰/km for the δ18O values and 

−22‰/km for the δD values (Fig. I-8, Poage and Chamberlain, 2001). However, this lapse 
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rate increases with latitude as shown by a recent study conducted in Ecuador that has 

revealed a much lower lapse rate of −2.2‰/km for the δ18O values and −17‰/km for 

the δD values (Windhorst et al., 2013). As a consequence, using the lapse rate estimated 

by Poage and Chamberlain (2001) for low latitude areas might lead to an 

underestimation of the paleoaltitude. 

 

Figure I-9: Long-term annual mean 
δ18O ratio in precipitation, derived 
from the database of the IAEA/WMO 
global network, plotted as a function 
of latitude (Rozanski et al., 1993). 
δ18O values of precipitation can 
increase from low to high latitude by 
at least 20‰. It results in a lower 
isotope lapse rate between 
precipitation and attitude at the 
equator when compared to higher 
latitudes (Poage and Chamberlain, 
2001; Windhorst et al., 2013). 

 

c. Variscan paleoclimate 

During the Late Carboniferous, the Southern part of Gondwana was covered by 

thick ice sheets, now found in South Africa, South America and southern Australia, that 

were 40% more extensive than today (Fig. I-10; Du Toit, 1921; Martin, 1975; Banks, 1985; 

Visser, 1987a,b; González-Bonorino and Eyles, 1995). The accumulation of large 

amounts of snow and ice, characterized by very low 18O and D values, induces a positive 

increase of δ18O and δD values of sea water (e.g. Blisniuk and Stern, 2005). As a result, 

the δ18O values of sea water during the Carboniferous were probably 1.5‰ higher than 

today (Buggisch et al., 2008). In addition, the warm equatorial paleoclimate 

characterizing the Variscan Belt might have induced an increase in the oxygen and 
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hydrogen isotope ratios of precipitation that could also lead to an underestimate of the 

past mean elevation of eroded mountain ranges (Poulsen and Jeffery, 2011). 

 

Figure I-10: Paleogeography of Pangea at the end of the Carboniferous (Scotese, 1997). Note 
the equatorial position of the Variscan Belt of Western Europe and the extensive ice sheet 
cover on southern Gondwana. 

 

3. Proxies of late-Carboniferous rainfall in the Variscan Belt of Western 

Europe 

The main goal of this study is to find proxies that have preserved the isotope 

composition of late-Carboniferous meteoric water. Indeed, most of the commonly used 

geologic material amenable to record the stable isotope composition of late-

Carboniferous meteoric water is not preserved within this highly eroded belt. As this 

mountain range is 15 times older (≥ 300 Ma) than the orogens studied in previous stable 

paleoaltimetry studies (≤ 20 Ma), reconstructing the paleoelevation of the Variscan Belt 

of Western Europe is very challenging. 
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a. Proxies that interact with meteoric water at the Earth’s surface 

The most commonly used materials for stable-isotope paleoaltimetry 

reconstructions are found in the near surface record, such as lacustrine, palustrine and 

pedogenetic carbonates, paleosols, volcanic glasses or biogenic apatite from fossils (e.g. 

Kohn and Dettman, 2007; Mulch and Chamberlain, 2007; Quade et al., 2007). In Western 

Europe, late-Carboniferous post-orogenic basins are typically filled with siliciclastic 

sediments alternating with clay and coal, deposited in various environments (Fig. I-6; 

e.g. Châteauneuf et al., 1989). Scarce lacustrine carbonates are preserved, but the 

majority of the primary calcite has been replaced by secondary dolomite (e.g. Freytet et 

al., 1992). Hence, these surface records underwent later diagenesis and recrystallization 

that led to an increase of the δ18O values and reset the isotope composition of primary 

calcite (e.g. Garzione et al., 2004). However, fresh-water shark remains are found in the 

Permo-Carboniferous basins in the external zones of the belt. They constitute a good 

target to recover the isotope composition of meteoric water at low elevation as the 

phosphate-oxygen bound in shark teeth fluorapatite is very resistant to diagenetic 

alteration (e.g. Kohn and Dettman, 2007; Fischer et al., 2013). Therefore, the oxygen 

isotope composition of biogenic fluorapatite from shark that evolved in fresh-water 

environments ~300 Ma ago could be used as a proxy for low-altitude meteoric water.  

b. Proxies that interact with meteoric water in the crust 

Recent studies indicate that meteoric water can penetrate the crust down to the 

brittle-ductile transition and interact with hydrous silicates during deformation (Fricke 

et al., 1992; Mulch et al., 2004; Mulch et al., 2006; Gottardi et al., 2011; Campani et al., 

2012; Gébelin et al., 2011, 2012, 2015, 2017; Methner et al., 2015; Quilichini et al., 2015, 

2016). Muscovite that crystallized at depth during deformation-related fluid flow 
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provides a reliable record to track meteoric-derived fluids that circulated in active 

ductile shear zones during high temperature deformation (~400-600°C; e.g. Gébelin et 

al., 2011, 2015; Methner et al., 2015).  It allows us to calculate the hydrogen isotope 

ratio of the fluid (δDwater) if muscovite-water hydrogen isotope equilibrium was attained 

during deformation and crystallization and if the temperature of isotope exchange can 

be assessed (e.g. Fricke et al., 1992; Losh, 1997; Mulch and Cosca, 2004; Mulch et al., 

2007; Gébelin et al., 2011, 2015). In addition, the high resistance of muscovite to post-

deformational alteration and low-temperature isotope exchange makes it an excellent 

proxy (e.g. Guggenheim et al., 1987; Mulch et al., 2005; Mariani et al., 2006). 

Furthermore, this mineral can be dated using Ar/Ar geochronology that can help to 

determine the timing of meteoric fluid infiltration and duration of hydrogen isotope 

exchange between the fluid and the mineral. 

In Western Europe, syntectonic two-mica leucogranites were emplaced in the 

footwall of detachment zones and along strike-slip zones during the Late Carboniferous 

(Fig. I-11; e.g. Jegouzo, 1980; Bernard-Griffiths et al., 1985; Gapais et al., 1993, 2015; 

Malavieille, 1993; Faure, 1995; Le Carlier de Veslud et al., 2004; Gébelin et al., 2007, 

2009; Cartannaz et al., 2007; Rolin et al., 2009, 2014; Turrillot et al., 2009; Tartèse and 

Boulvais, 2010; Poilvet et al., 2011). The southern part of the Armorican Massif is 

bounded to the north by the South Armorican Shear zone that extends to the south-east 

in the western part of the Massif Central where it separates in a horse-tail structure 

along the internal zones of the belt (e.g. Cogné, 1960; Jegouzo, 1980; Gébelin et al., 

2007). Detachment zones have been described in the French Variscan belt (e.g. 

Malavieille et al., 1990; Van Den Driessche and Brun, 1992; Gapais et al., 1993, 2015; 

Faure, 1995) and have been interpreted as expressing orogenic collapse similarly to 
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detachments found in the Tibetan plateau and the Basin and Range province (e.g. 

Mattauer et al., 1988; Ménard and Molnar, 1988; Malavieille et al., 1990). Therefore, 

this study is mainly based on the measurement of hydrogen and oxygen isotope ratios 

(δD and δ18O values) of hydrous minerals from detachment zones that developed in both 

the hinterland and the foreland of the French Variscan Belt. 

Ancient precipitation can also be trapped in fluid inclusions within minerals. The 

oxygen and hydrogen isotope composition of fluid inclusions has allowed us to identify 

the presence of meteoric water at depth (e.g. Kerrich et al., 1984; Siebenaller et al., 2013; 

Menzies et al., 2014; Carter et al., 2015; Gardien et al., 2016) and in some case can be 

used as proxies for paleoaltimetry reconstructions (Gardien et al., 2017). Therefore, the 

study of fluid inclusions can be used as a complementary tool and help to determine the 

isotope composition of ancient rainfalls. 

c. Traces of surface-derived fluids in the Variscan Belt 

In the Armorican Massif, albitic and chloritic alteration of mylonite samples point 

to the infiltration of meteoric fluids in crustal-scale ductile shear zones, as suggested (1) 

in detachment zones footwalls by the low-salinity fluid inclusions (1% NaCl eq.) and the 

high Sn and Cs content coupled to the low K/Rb, Nb/Ta and δ18Owhole rock values of 

synkinematic leucogranites (δ18Owhole rock values = 9.7‰; Ballouard et al., 2016, 2017), (2) 

in strike-slip shear zones by δ18Owhole rock values as low as 1.7‰ in leucogranite (Tartèse 

et al., 2011, 2012), and (3) in crustal-scale quartz veins interpreted as giant tension 

gashes by δ18OQuartz values as low as -2‰ (Lemarchand et al., 2012). 

In the SW of the Massif Central, muscovite hydrothermal alteration has been 

recognized in the hanging wall of the Argentat shear zone (Roig et al., 2002; Bellot, 2007, 

2008; Courtnadge, 2016). Moreover, aqueous fluid inclusions studied in gold deposits 
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(e.g. Villeranges, North of the Massif Central) have low salinity and δ18Owater values of -

1 to +4‰ interpreted as the infiltration of depleted surface-derived fluids (Boiron et al., 

2003).  

In Permo-Carboniferous basins, the isotope composition of shark remains (δ18Op 

values from ~12 to 18‰ and 87Sr/86Sr ratios from 0.7085 to 0.7122) has shown that the 

sharks lived in aquatic environments influenced by meteoric waters (Fischer et al., 2013), 

including in the Bourbon l’Archambault basin located on Fig. I-11. 

 

 

Figure I-11: Geological map of France (modified from BRGM, 2003). The Armorican and Central 
Massifs are defined by syntectonic granite (red) emplaced within strike-slip shear zones (deep 
blue lines) and detachments zones (purple lines). The Montagne Noire is a migmatite dome 
located in the foreland. The Bourchon l’Archambault basin is a foreland sedimentary basin.  
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4. Aims and objectives 

 

The isotope composition of ancient precipitation in the internal and external zones 

needs to be recovered in order to reconstruct the paleoelevation of the Variscan belt of 

Western Europe (Figs. I-11 and I-12). 

 

The objectives of this study are:  

(1) Find meteoric water in fossil hydrothermal systems through the isotopic 

composition of hydrous silicates and fluid inclusions in the southern part 

of the Armorican Massif (Chapter III) and the western part of the French 

Massif Central (Chapter IV); 

(2) Referencing the hinterland surface fluids records with age-equivalent 

isotope data from fresh-water sharks remains in the Bourbon 

l’Archambault foreland basin, and from hydrous silicates in the Espinouse 

detachment in the Montagne Noire supposed to have developed in the 

foreland (Chapter V). 
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Figure I-12: Flow chart of the project that aims at reconstructing the paleoaltitude of the 
Variscan Belt of Western Europe by comparing the rainwater isotope composition preserved 
in the geological record (hydrous silicates, fluid inclusions, shark remains) in the internal and 
external zones of the belt (sketch of a detachment zone from Whitney et al., 2013). 
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II. METHODS 

This study aims at reconstructing the spatial and temporal evolution of the 

Variscan belt of western Europe using the method of stable isotope paleoaltimetry 

based on the isotopic composition of rainfalls that scale with elevation. Therefore, the 

main objective of this study is to find ancient precipitation in the highly eroded Variscan 

Belt. As discussed in the first chapter, none of the commonly used geologic materials 

amenable to record the stable isotopic composition of late-Carboniferous meteoric 

water has been preserved within this old orogen. However, crustal-scale ductile shear 

zones represent fossil hydrothermal systems that are amenable to have preserved the 

hydrogen and oxygen stable isotope composition of surface-derived fluids at depth. 

To be able to characterise and understand the deformational and isotopic 

exchange history from the mesoscopic to the microscopic scale, structural (section II-A) 

and microstructural (section II-B) data were systematically collected along structural 

sections from the top to the bottom of detachments zones into their mylonitic footwalls. 

Thermometry data were obtained based on quartz microstructures and muscovite 

geochemistry (section II-B and C) as the temperature of isotopic exchange was required 

to recover the isotopic composition of water (section II-H) that interacted with 

synkinematic minerals in the shear zone through experimentally calibrated parameters. 

These data also allowed us to decipher important events in the thermal and temporal 

history of the samples, even though deformation most likely continued after the thermal 

part of metamorphism.   

The hydrogen (ẟD) and oxygen (ẟ18O) isotopic ratios of hydrous silicates (section 

II-D and E) were used as a proxy for the isotopic composition of water that interacted 
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and exchanged with minerals during deformation/recrystallization. As D and 18O-

depleted fluids are typically absent in the crust, low ẟ18O and ẟD values of silicates were 

considered indicative of isotopic exchange with meteoric fluids. The stable isotope and 

thermometry data obtained from muscovite were then compared with the isotope 

signature and microthermometry of fluid inclusions from the same samples (section II-

F). Finally, geochronology (Ar/Ar and U-Th/Pb) data allowed this study to constrain the 

timing and duration of recrystallization and fluid-flow in the hydrothermal systems 

(section II-H). 

A. Structural study 

Mountains ranges are characterised by crustal-scale ductile shear zones that 

accommodate the movement of relatively rigid wall-rock blocks. Shear zones are 

important source of geological information as their fabrics and mineral assemblages 

allow the unravelling of the Pressure-Temperature conditions of deformation, the 

kinematics, as well as the metamorphic and deformation history within the deformation 

zone (e.g. Passchier and Trouw, 2005). Ductile shear zones are sites of intense 

deformation and fluid circulation. During convergence and/or post-orogenic extension, 

low-angle normal detachment shear zones develop as a result of local extensional 

processes (Fig. II-1). They dissect the crust and create preferential pathways for deep 

crustal (magmatic and/or metamorphic) fluids, but also allow the downward infiltration 

of surface-derived fluids (Fig. II-2).  

Previous studies have shown that detachment shear zones are preferential targets 

when looking for evidence of ancient precipitation: meteoric water can infiltrate the 

crust down to the brittle-ductile transition (~10 – 15 km depth) and more specifically 

within the first hundreds of meters into the footwall of detachment zones (Fig. II-2; e.g. 
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Fricke et al., 1992; Mulch et al., 2004a; Gébelin et al., 2011, 2012, 2013, 2015, 2017; 

Quilichini et al., 2015, 2016; Methner et al., 2015). From these studies, the essential 

conditions allowing the downwards infiltration of fluids imply a combined effect of 

brittle normal faults and fractures development in the upper crust, a high geothermal 

gradient and the presence of a hydraulic head (Fig. II-2; e.g. Mulch et al., 2004a; Person 

et al., 2007; Gébelin et al., 2011, 2015, 2017).  

 

Figure II-1: Extension in mountain belts for different tectonic settings: (a and b) crustal 
shortening; (c) late-orogenic extension. Fg: gravitational forces, and Ft: tectonic forces 
(sketch from Malavieille, 1993) 

 

Detachment systems separate the brittle unmetamorphosed upper crust from the 

ductile highly-metamorphosed (metamorphic, magmatic and partially molten) lower 

crust (e.g. Coney, 1980; Dewey, 1988; Vanderhaeghe, 1999). At large scale, a 

detachment shear zone represents a ten to hundreds-meter thick planar zone with low-

angle dipping foliation and widespread stretching lineations (e.g. Malavieille, 1993; Figs. 

II-2 and II-3). As detachment zones continuously exhume lower-crustal material to the 

upper crust, brittle structures such as conjugated normal faults can overprint earlier 

ductile shearing fabrics at the outcrop scale (Fig. II-3; e.g. Davis, 1983; Malavieille, 1993). 

Synkinematic granite can be emplaced in the footwall of the detachment and 

experience intense deformation that is expressed by an anastomosed network of shear 
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bands (such as C-S structures and C’ planes, Fig. II-3). These foliated and mylonitic rocks 

contain stretching and mineral lineation highlighting the sense of movement and flow. 

Looking parallel to the direction of lineation and perpendicular to the foliation plane, 

shear sense indicators (delta and sigma clasts, mica fish and structural relationships) 

allow the kinematics of the shear zone to be determined. In particular, synkinematic 

hydrous silicates (re)crystallise during deformation and preserve the isotopic 

composition of the fluids that circulated within the shear zone (e.g. Person et al., 2007). 

 

Figure II-2: Example of a detachment system in the northern Snake Range core complex 
(Nevada, USA) from Gébelin et al. (2015). Normal faults and tension fractures allow the 
downward infiltration of meteoric fluids to the active northern Snake Range detachment 
footwall, with high heat flow as driving force for hydrothermal fluid circulation in this part of 
the northern Snake Range detachment that was characterised by high topography (~4000m) 
during the Oligo-Miocene (Gébelin et al., 2012). 
 

 

In this study, mylonitic rocks were systematically sampled across up to 500 m of 

structural section into the underlying mylonitic footwall of detachment zones. The 

sample distance to the hanging wall-footwall interface was estimated when observable. 

If the detachment interface could not be located due to erosional processes, the 

samples were referenced to the sample located at the very top of the section, 
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considered at 0 m from the detachment interface. Synkinematic mylonitic samples 

associated with strike-slip shear zones were also collected. 

 

Figure II-3: Macrostructures in detachment zones: (1) foliated rocks with extensional shear 
bands (C’ planes); (2) small scale normal shear zones; (3) synkinematic granite bodies or sill, 
mylonitized and boudinaged; (4) stretching and mineral lineations; (5) extensional crenulation 
cleavage; (6) boudinage at different scales; (7) shear criteria (rolling clasts); (8) sheath folds in 
zones of high shear strain; (9) folds with axes parallel to stretching lineations; (10) tight folds 
with subhorizontal axial planes; (11) slickensides on brittle detachment surfaces; (12) 
cataclastic breccia; (13) fractured pebbles, stretched and striated; (14) low-angle decollements 
in weak layer; (15) conjugated high angle brittle faults; (16) stretched layers; (17) 
synsedimentary hydroplastic faults; (18) gravity folding (from Malavieille, 1993). 

 

All samples were carefully located, described and oriented in the field to allow the 

making of structural thin-sections parallel to the lineation direction. The thin-sections 

allowed a detailed microstructural and petrological study to be conducted (including 

classic microscopy and SEM-based techniques such as EBSD and microprobe – see 

sections II - B, C and F for more details). The collected samples were also crushed for 

mineral separation as part of the stable isotope or geochronology analyses (see sections 

II – D, E and H). 
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B. Microstructural study 

Orientated polished thin sections and thick-sections were prepared for 

microstructural analysis with the aim of correlating deformation mechanism and fluid-

mineral interactions during activity along the shear zones. For instance, previous studies 

have shown that there is a close relationship between fluid-rock interaction and quartz 

and silicates recrystallization within the top 200m of detachment zones, indicating that 

the quartz, silicate and fluid reached isotopic equilibrium during high temperature 

deformation (e.g. Gébelin et al., 2011). Polished thin-sections were made by the thin-

section laboratories of the Universities of Montpellier and Lille, and the Thin Section Lab 

in Toul. Microstructural analyses using classical microscopy were performed at the 

Universities of Plymouth and Lille. 

1. Mica microstructures 

Mica fish can be used as shear sense indicators, as well as to determine the 

presence of multiple deformation histories due to their resistance to later deformation. 

To characterise syntectonic fluid-rock interactions, it is important to study the 

mechanisms of pressure-solution and diffusive mass transfer highlighted by the 

microstructural arrangement of minerals and the shapes of mica fish. Mica fish can be 

divided into 6 groups with different morphologies that reflect different mechanisms of 

formation, as well as different stages of evolution (Fig. II-4; ten Grotenhuis et al., 2003).  

 Group 1 mica fish are lenticular and form by rotation and reduction on the 

upper and lower sides.  

 Group 1 can evolve into group 2 fish with inclined tips by dragging along 

micro shear planes.  
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 Mica fish from group 3 that form by slip on (001) are rhomboidal with (001) 

parallel to the longest side of fish.  

 Group 4 are rhomboidal with (001) parallel to the shortest side of the fish. 

They form from undeformed grains with a (001) cleavage at high angle to 

the foliation by antithetic slip on (001) and drag along micro shear zones.  

 Mica fish from group 5 have a low aspect ratio and curved tails that form 

from irregular grains by rotation and grain size reduction along micro shear 

zones.  

 Group 6 mica fish have a high aspect ratio and inverted stair stepping that 

form by slip on (001).  

 

Figure II-4: Schematic drawings of the different morphological types of mica fish. Group 1, 
lenticular mica fish; group 2, lenticular fish with points inclined in the direction of the foliation; 
group 3, rhomboidal shaped fish with (001) parallel to longest side of the fish; group 4, 
rhomboidal shaped fish with (001) parallel to the shortest side of the fish; group 5, fish with 
small aspect ratio and curved tails; group 6, mica fish with high aspect ratio and inverted stair 
stepping; if considered out of their context, these structures could lead to an erroneous shear 
sense determination (from ten Grotenhuis et al., 2003). 

In general, the final shape of mica fish results from rigid body rotation at the early 

stage of deformation accompanied by slip on basal planes, bending and folding, and 
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‘tectonic erosion’ along the rims mainly due to recrystallization, cataclasis and possibly 

pressure-solution and/or diffusional mass transfer (ten Grotenhuis et al., 2003). 

Synkinematic mica fish (that (re)crystallised during deformation) displaying evidence of 

recrystallization processes by solution-precipitation indicate that the isotope exchange 

between the fluid and the mineral occurred during mylonitisation. 

2. Quartz microstructures 

Quartz microstructures are a valuable tool to determine the temperature of 

deformation. This temperature can be used as an approximation for the temperature of 

isotope exchange between the hydrous minerals and the fluid circulating during 

deformation, if quartz and hydrous minerals share a common (re)crystallisation history. 

Three quartz dynamic recrystallization mechanisms corresponding to different 

deformation temperatures and strain rates have been defined by Hirth and Tullis (1992) 

and Stipp et al. (2002) (Fig. II-5): (a) Bulging recrystallization represent temperatures of 

deformation ranging between ~300 to 400°C; (b) sub-grain rotation recrystallization; 

deformation temperatures between ~400 to 500°C, and (c) grain boundary migration 

temperatures; temperatures above 500°C (Stipp et al., 2002).  

Figure II-5: Characteristic microstructures of the three dynamic recrystallization mechanisms of 
quartz shown at the same relative scale. (a) Bulging recrystallization (low temperature): bulges 
and recrystallized quartz grains are present along grain boundaries and to a lesser extent along 
micro cracks. (b) Sub grain rotation recrystallization (intermediate temperature): core and 
mantle structures of porphyroclastic ribbon grains and recrystallized sub grains. Polygonization 
by progressive sub grain rotation can completely consume the ribbon grains. (c) Grain boundary 
migration recrystallization (high temperature): irregular grain shapes and grain sizes; grain 
boundaries consists of interfingering sutures (Stipp et al., 2002). 
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C.   Scanning Electron Microprobe-based techniques (SEM) 

Scanning Electron Microscopy is a high-resolution imagery technique based on 

electron-matter interactions. An electron beam scans the sample surface that in 

response emit particles analysed by different detectors, such as EBSD or WDS that are 

described below. These methods have been used in this study as complementary 

techniques to estimate the temperature of synkinematic isotope exchange between the 

fluid and the minerals. 

1. Electron backscatter diffraction (EBSD) 

Electron backscatter diffraction is an SEM-based technique that helps identifying 

mineral phases, grain boundaries and crystal orientations in a rock sample. It consists of 

an electron beam bombarding the polished surface of a sample that is tilted at 70° from 

the horizontal. The diffracted electrons excite a phosphor screen that generates 

diffraction patterns called Kikuchi bands. Each crystal phase and orientation is related 

to a specific Kikuchi band. The Euler angles (ϕ1, ϕ2, ϕ3) are determined for each quartz 

grain and stored with the nature of the mineral. The whole procedure is carried out 

automatically. The precision of crystal orientations measured from electron 

backscattering patterns is better than 1° [Krieger Lassen, 1996]. EBSD data can be used 

to determine the Crystal Preferred Orientation (CPO) of specific minerals, highlighting 

the activated slip system that is related to temperature of deformation (Fig. II-6). 

In this study, quartz CPO was evaluated from representative quartz ribbon. If the 

analysis of the [C] axis of the quartz (red on Fig. II-6) exhibit CPO maxima at the middle 

of the pole figure, it means that the prism <a> slip system was activated during 

deformation at temperatures ranging from ~400 to 500°C (e.g. Stipp et al., 2002). If the 

CPO maxima are located at the periphery of the pole figures around the foliation plane, 
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in the vicinity of the lineation, it means that the prism <c> slip system was dominant (e.g. 

Stipp et al., 2002). The <a> axis distribution also depends on the activation of slip 

systems related to temperature (Fig. II-6; e.g. Stipp et al., 2002). 

 

Figure II-6: Generalized quartz CPO patterns formed by simple shear under different 
temperatures (Singleton and Mosher, 2012, modified after Passchier and Trouw, 2005) 
 

 

EBSD analyses were performed at the Plateforme de Microscopie Électronique et 

Analytique MEA of the University of Montpellier (France) using a Camscan Crystal Probe 

X500FE. It is an electron-scanning microscope with a field emission gun, equipped with 

a HKL NordlysNano EBSD detector for crystal analysis and an X-MaxN 20 mm² EDS 

detector for chemical analysis, both piloted by Aztec HKL software, leading to a 

resolution of about 10 nm. This EBSD-indexation was obtained from the comparison 

between acquired and simulated diffraction patterns (number of Kikuchi bands detected 

= 12).for each analysis point using HKL CHANNEL 5+ software with sampling steps 

ranging from 10 to 16 µm. Typical working conditions of the SEM were 17.50 kV for 

acceleration voltage, around 7 na for probe current and a working distance of 25.0 mm 

under low vacuum conditions (chamber pressure = 2 Pa). 
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2.  Microprobe and Ti-in Ms Geothermometer 

In this study, the microprobe analyses were aimed at determining the titanium 

content of muscovite so it could be used as a thermometer (Wu and Chen, 2015). Also, 

the combined Ti, Na and Mg contents of muscovite were measured to allow the 

determination of the magmatic or hydrothermal genetics of muscovite (Miller et al., 

1981). 

An Electron Micro Probe Analyser (EMPA) is an in-situ and non-destructive SEM-

based technique that allows the determination of the chemical composition of mineral 

phases by detecting all the elements from Beryllium in a volume of about 1 µm3, with a 

precision of about ± 100 ppm. The electron beam analyses the x-ray wave produced by 

incident electrons bombarding the analysed mineral. 

Geochemical data were acquired using the microprobe EPMA CAMECA SX100 that 

is composed of 4 to 5 WDS (Wavelength Dispersion Spectrometer) spectrometers, which 

are composed of a crystal monochromator, a gas-flow proportional counter and a 

proportional counter. They analyse the X-rays emitted by the analysed mineral that are 

diffracted by the crystal following Bragg’s law and collected by the proportional counter. 

Each crystal has a specific distance adapted for a range of wavelength characterising a 

limited number of elements. Therefore the EPMA CAMECA SX100 uses several WDS 

detectors with each of them being equipped with up to 3 crystals, which allow 

measuring X-ray emission of several elements simultaneously.  

The mineral compositions presented in Chapter IIII (Armorican Massif) were 

measured at the Service Inter-régional Microsonde Sud of the University of Montpellier 

(France) using a Cameca SX100 electron probe microanalyzer (EPMA) operating at 20 kV 

accelerating voltage and 10 nA beam current for aluminium (Al), silicon (Si), titanium (Ti), 
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sodium (Na), magnesium (Mg), manganese (Mn), iron (Fe), potassium (K), calcium (Ca), 

chromium (Cr) and oxygen (O) X‐ray point analysis. The elemental analysis of Chapter IV 

(Massif Central) was performed at the Ecole Nationale Supérieure de Chimie de Lille 

(France) using a Cameca SX‐100 electron probe microanalyzer (EPMA) using wavelength 

dispersive X‐ray spectrometers at 15 kV and 15 nA for backscattered electrons (BSE) 

images and at 15 kV 40 nA for the same above elements X‐ray point analysis. The 

uncertainty of analysis is ± 0.01 ox. wt%. 

The Titanium-in-Muscovite (Ti-in-Ms) geothermometer was developed to 

estimate metamorphic temperatures of muscovite coexisting with ilmenite and Al2SiO5 

polymorphs using the titanium content of muscovite measured by electron microprobe 

for P-T conditions of 450–800 °C and 0.1–1.4 GPa (Wu and Chen, 2015). The temperature 

can be estimated using the following equation developed by Wu and Chen (2015): 

Ln[T(°C)] = 7.258 + 0.289ln[Ti] + 0.158 [Mg/(Fe+Mg)] + 0.031 ln(P) 

The parameters that need to be input to calculate the temperature are highlighted 

in bold and are namely: (1) the estimated pressure P (kbar); (2) the Ti content (mol) and 

(3) the ratio Mg/(Fe+Mg) (mol). Parameters (2) and (3) are determined by electronic 

microbe analysis, but a significant unknown in the Ti-in-Ms geothermometer is the 

estimated pressure. The calibrations conditions of the Ti-in-Ms geothermometer and 

comparision with measurements form this study are summarized in Table II-1.  

An input pressure error of ± 3 kbar may propagate to a tolerable temperature error 

of ± 4–20 °C (Wu and Chen, 2015). In chapters III and IV, the estimated pressure of 4 ±1 

kbar gives an uncertainty of ± 5°C. The random error of this thermometer is estimated 

to be of ± 65 °C (Wu and Chen, 2015). In Chapters III and IV, the standard deviation of 
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temperatures estimated from point analysis of different muscovite in the same sample 

gives a maximum uncertainty of ± 57°C, in good agreement with the calibration of Wu 

and Chen (2015). 

 Ti (mol) Fe (mol) Mg (mol) 

Wu and Chen (2015) 0.01 – 0.07 0.03 – 0.16 0.01 – 0.32 

Chapter III 0.02 - 0.05 0.11 - 0.15 0.08 - 0.11 

Chapter IV 0.00 – 0.05 0.02 – 0.10 0.04 – 0.18 

 
Table II-1: Comparison between the conditions to use the Ti-in-Ms geothermometer of Wu 
and Chen (2015) and the Ti, Fe and Mg contents measured in this study. 

 

           

D. Hydrogen isotope geochemistry 

1. Theoretical approach 

a. Hydrogen and oxygen isotope ratios 

The hydrogen and oxygen stable isotope composition of precipitation are 

commonly expressed by the δ-notation that expresses the relative abundance of the 

stable isotopes (2H/1H (or D/1H) or 18O/16O), compared to the one of a reference 

standard in per mil (‰). For example, the δD expresses the isotopic ratio between D and 

1H through the following formula: 

δD𝑠𝑎𝑚𝑝𝑙𝑒 = (
D/ H1

𝑠𝑎𝑚𝑝𝑙𝑒

D/ H1
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗ 1000              expressed in ‰. 

 

In this study, all δD and δ18O values were reported to VSMOW (Vienna Standard 

Mean Ocean Water). 



  

40 
 

b. Hydrogen isotope ratios of fluids 

Hydrogen is quite particular as its isotopes have a high relative mass difference 

amongst them that leads to a broad range of δD values in naturally occurring waters 

(Coplen et al., 2002). δDwater values of precipitation range from -495 ‰ in Antarctic ice 

to +129 ‰ in the Sahara (Fontes and Gonfiantini, 1967, Jouzel et al., 1987). The range 

of δD values of natural water is 10 times greater than the range of their δ18O values (-

63 ‰ to +31 ‰) (Aldaz and Deutsch, 1967; Fontes and Gonfiantini, 1967). 

 

Figure II-7: Graph showing different oxygen and hydrogen isotopic ratios for different fluid 
sources (after Sheppard, 1986). VSMOW = Vienna Standard Mean Ocean Water. 

 

Crustal fluids can be grouped in two main groups: (1) Metamorphic fluids yield δD 

values from -70 to -20 ‰ and (2) Magmatic fluids with δD values that range from -80 to 

-40‰ (Taylor, 1974; Rye et al., 1976; Field and Fifarek, 1985; Sheppard, 1986). This 

means that δDwater values lower than -80‰ reflect a composition of surface-derived 

fluids (e.g. Mulch et al., 2004a, 2006; Gébelin et al., 2011, 2015, 2017).  
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The hydrogen (δD) and oxygen (δ18O) isotopic ratios of meteoric water plot along 

the Global Meteoric Water Line (GMWL) following the equation from Craig (1961):  

δD = 8 × δ18O + 10 (‰) 

 

Along a shear zone interface, the downward penetration of surface-derived low-

δD fluids in the crust would lead to an increase in δDwater and δ18Owater values as the fluid 

interacts with the host magmatic and metamorphic rocks. However, even with low 

water-rock ratio (W/R ≥ 1), the final δDwater value remains similar to the original δDwater 

value. Hence, deuterium-depleted δDwater values found at depth represents a maximum 

value that could have been even lower if it would have been extracted from the near-

surface geological record (e.g. Gébelin et al., 2012), but provides a reasonable estimate 

of the δDwater value of the meteoric fluid originating from the earth’s surface. On the 

opposite, δ18Owater values shift to more positive values with very low water rock ratio 

(W/R ≤ 1). Water–rock reaction paths can be calculated at different water–rock ratios 

and temperatures using a closed system (Taylor, 1974, 1978; Field and Fifarek, 1985) 

where the final δwater value after equilibrating with crustal rock (δrock) depends on the 

initial δwater value, the water–rock ratio and the temperature of water–rock interactions 

(example in Fig. II-8). 
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Figure II-8: Modelled closed system water-rock reaction paths (based on Taylor, 1974, 1978; 
Field and Fifarek, 1985) for fluids in equilibrium with Alpine schists at different water-rocks 
ratios and temperatures based on δDwater and δ18Owater values measured from fluid inclusions 
and calculated from chlorite (Menzies et al., 2014). 
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2. Analytical approach 

a. Sample Preparation 

 

Figure II-9: Sample preparation at the University of Plymouth for hydrogen isotope 
measurements. (A) Sample crushing using a pestle and mortar; (B) Sample sieving; (C) Sample 
fractions washing in ultrasonic bath; (D) Sample drying in oven; (E) and (F) Hydrous silicates 
hand picking under binocular; (G) Hydrous silicate grains weighting and sealing in aluminium 
capsules. 

 

Samples were crushed using a pestle and a mortar, and then separated in four 

different fractions using sieves (f > 500 μm, 500 < f < 250 μm, 250 < f < 180 μm, and f < 

180 μm; Fig. II-9 - A and B). The fractions were washed using an ultrasonic bath to 

remove dust and split grains and dried at about 50°C for 24h (Fig. II-9 – C and D). Finally, 

pure and clean hydrous minerals present in the sample (e.g. muscovite, biotite, 

tourmaline, epidote, and chlorite) were hand-picked using a low-powered binocular (Fig. 

II-9 – E and F). The samples were weighed and sealed in aluminium capsules for 

hydrogen isotope measurements (Fig. II-9 - G). The sample size depends on the mineral 

water content that can attain up to ~10%: muscovite contains 4.07 wt% of water, biotite 

3.64 wt%, tourmaline 3.42 wt% and chlorite 8.14 wt%. As a consequence, ~1.5 to 2.0 mg 
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was needed for muscovite, tourmaline and biotite that contain ~4‰ of water, whereas 

only 1 mg of chlorite was enough as chlorite contain twice as much water as muscovite.  

b. Measurement of hydrogen isotope ratios of silicates 

The hydrogen isotopic composition (δD) of silicates range from -429 ‰  to +5 ‰ 

(Wenner, 1979; Graham et al., 1980). Hydrous silicates are minerals that (re)crystallize 

in ductile shear zones at depth and interact and exchange isotopically with depth-

sourced and/or surface-derived waters. Combined stable isotope ratios and 

geochronology of synkinematic micas that crystallised in detachment zones is therefore 

a powerful proxy for meteoric water and can be used as a paleoaltimeter (Mulch and 

Chamberlain, 2007). 

 

Figure II-10: Thermo-Finnigan High Temperature Conversion Elemental Analyser coupled with 
a continuous flow mass spectrometer at the Geowissenschaften, Goethe Universitat, 
Frankfurt, Germany. 

 

Hydrogen isotope measurements were performed in the joint Goethe University/-

Senckenberg BiK-F Stable Isotope Facility, Frankfurt. δD values of muscovite (δDMs) were 

determined by continuous flow mass spectrometry using a high temperature elemental 

analyzer (Thermo Finnigan TC/EA) coupled to a Finnigan MAT 253 mass spectrometer in 

continuous flow mode (Fig. II-10). 
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A sample weight of 1.6 to 2.5 mg was used to obtain sufficient signal sizes, and 

measurements with low signal sizes (< 7 Vs) were rejected from further interpretation. 

Three internationally referenced standard materials and additional in-house working 

standards were run at the beginning, middle and at the end of each individual runs. After 

correction for mass bias, daily drift of the thermal combustion reactor, and offset from 

the certified reference values (δDNBS30 = -65.7‰, δDNBS22 = -117‰, and δDCH7 = -100.3‰), 

NBS30 (biotite), NBS22 (oil), CH7 (polyethylene foil) had δD values of -66‰, -117‰, and 

-101‰, respectively. 

The raw δD values obtained by the instrument need three types of corrections: (1) 

size (i.e. weight), (2) drift and (3) standards. (1) The correction for size takes into account 

the fact that δD values can differ regarding the weight of the sample. This was corrected 

though the use the size correction factor that was determined experimentally using a 

standard material with a known δD value (in this study’s case, kaolinite Kga1b) with 

weights ranging from 0.03 to 3.7 mg. (2) The drift correction consisted of taking into 

account the drift of δD values along the run due to the thermal combustion reactor. The 

slope of standard’s values through time is applied to the δD value of the sample. (3) The 

standard correction consists of comparing standards’ δD values corrected for size and 

drift to the certified reference δD values. The slope correction is then applied to the δD 

value of the sample. For this study, three internationally referenced standard materials 

were used: NBS30 (biotite), NBS22 (oil), and CH7 (polyethylene foil) as well as additional 

in-house working standards. After corrections for size, drift, and standards, NBS30 

(biotite), NBS22 (oil), CH7 (polyethylene foil) had δD = -65.7‰, -117‰, and -100.3‰, 

respectively. Repeated measurements of various standards gave a precision of ± 2‰ for 

δD. All isotopic ratios are reported relative to standard mean ocean water (VSMOW).  
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E. Oxygen isotope geochemistry and thermometry 

The oxygen stable isotope composition (δ18O) of quartz (Qz) and muscovite (Ms) 

were measured in the Stable Isotope Laboratory of the University of Lausanne, 

(Switzerland). About 1.00 to 2.00 mg of muscovite and quartz were heated using a CO2 

laser fluorination line coupled to a Finnigan MAT253 mass spectrometer. One in-house 

standard quartz sample was measured at the beginning and the end of each run. The 

average precision of measurements was ± 0.1 ‰. 

If quartz and muscovite attained isotopic equilibrium during activity of the shear 

zone, the difference in their δ18O values (Δ18OQz-Ms) permits the calculation of a 

temperature of isotope exchange equilibrium. The thermometer of Chacko et al. (1996) 

was calibrated for temperatures ranging from 123°C to 1227°C based on the following 

equation:  

Δ18OQz-Ms= 1.350 106 T-2 + 0.042 (106 T-2)2 - 0.0086 (106 T-2)3 

 

F. Fluid inclusion analyses 

Fluid inclusions (FIs) are 1 μm to 1 mm cavities containing fluids trapped inside 

minerals. The study of FIs allows the determination of the fluid composition and the 

pressure-temperature conditions of its entrapment. At room temperature, FIs are 

commonly composed of two phases: A liquid phase (mainly dominated by H2O; 

sometimes oil) and a vapour phase (generally a mixture of CO2, CH4 and N2). They 

sometimes contain one or several solid phases such as salt and/or minerals.  
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The study of FIs is based on three principles: (1) The fluid composition has not 

changed since it was trapped; (2) The inclusion volume has not changed since it formed; 

(3) The fluid composition was homogeneous at the time of trapping (Roedder, 1984).  

FIs studies must be conducted with caution as 4 processes can modify the fluid 

properties: 

1) Necking down: Fluid inclusions split into tinier inclusions after vapour nucleation 

2) Recrystallization: The shape of the cavity changes to replicate the host mineral 

crystal architecture 

3) Stretching: Fluid inclusion volume increases due to temperature or pressure changes. 

This process is called decrepitation if stretching leads to expose the cavity to the 

outside environment 

4) Leakage: The fluid escapes through microcracks or cleavages due to chemical 

gradients 

FI analysis is based on several methods that will be explained further in this section: 

(1) petrography, (2) microthermometry, (3) extraction and stable isotope analysis of the 

fluid, and (4) spectroscopic methods.  

1. Petrography and typology  

The optical methods consist of establishing the typology of FIs (evaluation of shape, 

size, and number of phases at room temperature), estimating the fluid/vapour ratio and 

defining the relative chronology between the different generations of fluid inclusions. 

In this study, thick sections were made at the thin-section laboratory of the 

University of Lille (France) and have been specifically made following the X-Z plan in 
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order to allow structural observations. FIs were analysed in quartz grains on ~100 μm-

thick rock sections to prevent FIs to be affected by sample preparation. 

2. Microthermometry 

Microthermometry is the observation of phase changes as a function of 

temperature. It is a statistical method performed on Fluid Inclusions Assemblages (FIAs) 

that are typically composed of 15 to 20 inclusions and represent the smaller formation 

time (Goldstein and Reynolds, 1994). According to the FIA approach, all inclusions of a 

given FIA must have the same composition and density. Therefore, a single composition 

and temperature of homogenisation can be attributed to each FIA corresponding to the 

average of individual FI measurements. 

In this study, microthermometry measurements were performed at the University 

of Lille (France) using a Linkam MDS600 plate. The plate calibration was done using 

synthetic fluid inclusions: melt of pure CO2 and pure H2O provided by SynFlinc. The 

maximum uncertainty for measured temperatures was ± 0.1°C. In this study, fluid 

inclusions were all aqueous. As a consequence, the lower limit for cooling was 

about -50°C and heating never exceeded 400°C.  

Two kinds of temperature paths are applied on FIs. Cryometry (T<25°C) allows the 

temperature of ice melting (Tim) to be measured. The Tim is obtained by freezing the FIs 

down to -200°C with liquid nitrogen, and observing at which temperature the last ice 

crystal melts during heating (typically around 0°C for aqueous inclusions). The Tim is 

related to salinity; in other words, the lower the Tim value, the higher the salinity. 

Salinities were calculated based on the temperature of ice melting using the equation 

of Bodnar (1993). A polynomial fit of the ice melting curve is generally used (Bodnar, 

1993). Thermometry (T>25°C) consists of measuring the temperature of 
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homogenisation (Th), that is obtained by heating the fluid inclusions up to +700°C using 

an electrical resistance and observe the homogenization of the FI. Th relates to the 

minimum temperature of the inclusion formation.  

The P-T conditions of entrapment can be estimated by calculating isochores that 

represent temperature evolution according to pressure assuming a constant volume. 

Considering that all of this study’s fluid inclusions can be modelled in a water-salt system, 

the isochores are calculate using the empirical equation of state (EOS) of Zhang and 

Frantz (1987). The only required input data are Tim and Th. 

The thermobaric gradient at the time of inclusion entrapment is assumed to be 

based on a postulated geothermal gradient at the time of the geological process. Once 

a geothermal gradient (present day = 30°C/km in the crust) has been chosen, two 

possibilities can be considered: a hydrostatic gradient that allow water infiltration from 

the surface, or a lithostatic gradient (no circulation between the surface and the depth). 

The choice of a geothermal gradient and associated uncertainties, as well considering 

either a lithostatic or a hydrostatic gradient, must be carefully considered regarding the 

metamorphic and tectonic context from which the samples were collected. 

3. Oxygen and hydrogen stable isotope measurements 

Once the microthermometry analysis was done, the isotopic composition of the 

fluid contained in the FIs was determined using several techniques. The technique used 

in this study was the crush-leach technique. The rock sample was crushed in order to 

handpick quartz grains down to 0.1 g. The fluid contained in the inclusions was then 

extracted by decrepitation in a vacuumed line. Th obtained from the microthermometry 

(section II-F2) helped to define the temperatures of decrepitation.  
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The isotopic composition of the fluid was measured at the Laboratoire de Géologie 

de Lyon, Terre, Planètes, Environnement (France) by Dr. Véronique Gardien during 

October 2018. Water trapped in quartz grains was extracted by thermal decrepitation 

(i.e. fluid inclusions opening due to internal overpressure resulting from the thermal 

expansion of fluids). 5 to 8 g of millimetre-scale quartz grains were dried overnight at 

110°C in an oven, then loaded in a quartz tube and degassed at 80°C under vacuum for 

at least 90 min. Water was extracted by heating the samples up to 650°C for 20 min. 

Water blanks did not contribute for more than 1% of the total amount of water 

extracted from FIs over the complete set of experiments.  

The 2 to 8 µL of water collected during the FI decrepitation was then transferred 

to a microequilibration vessel, to which 5–10 µmol of CO2 of known isotopic composition 

was added. The vessel was placed at 25°C for 2 days where H2O and CO2 were able to 

exchange oxygen isotopes. Once the equilibration was complete, the equilibrated 

samples of H2O and CO2 were separated cryogenically. The water samples ẟ18O values 

were calculated using the mass balance equation of Kishima and Sakai (1980): 

ẟ18OH2O = (ẟ18OCO2 f
− ẟ18OCO2 i

)(2
[CO2]

[H2O]
) + (1 +

ẟ18OCO2f

1000
 )

1000

α𝐶𝑂2−𝐻2𝑂
− 1000   

With: 

 α𝐶𝑂2−𝐻2𝑂 = 1.0412 at T = 25°C (O’Neil and Adami, 1969). 

 ẟ18OCO2 i
= ẟ18O value of CO2 before equilibrium with H2O = 15.3 ± 0.1‰ 

(SMOW). 

 ẟ18OCO2 f
 = ẟ18O value of CO2 after 2 days of equilibration with H2O. 

 [CO2] and [H2O] are the amounts of the two gases in μmol. 
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Internal reproducibility obtained during the experiments for ẟ18O values of water 

was ± 0.5‰. After equilibration, the same water was collected into a silica glass tube 

containing about 500 mg of fine-grained chromium metal. This water was reduced by Cr 

at 1000°C for 5 min to produce H2 gas. The ẟD of this gas was then determined using a 

dual-inlet GV Prisme mass spectrometer. External reproducibility of ẟD measurements 

was estimated to be ± 3‰ by normalizing raw data to the VSMOW-SLAP scale. Aliquots 

of «Lyon water » were analysed along with water samples obtained from the fluid 

inclusions. Sample water amounts were determined by comparison with a series of 

water samples of known weights ranging from 0.5 to 3.5 µL. After expansion of H2 into 

a constant volume in the mass spectrometer sample inlet, the amount of gas was 

estimated from the voltage on the mass 2 collector. Uncertainty associated with the 

determined amount of water was close to ± 0.05 µL. The internal reproducibility of ẟD 

analyses of reference waters was better than 1.5‰. 

4. Spectroscopic method 

Raman spectroscopy is used to identify molecules using low-frequency modes 

induced by Raman scattering of monochromatic light from a laser. It can therefore help 

to identify the phases contained in a fluid inclusion. 

Raman analyses were performed at the University of Lille using a Horiba Jobin 

Yvon HR 800 UV Raman spectrometer. An Ar Lexel laser tuned at 532 nm was used to 

reach excitation and the time for integration ranged from 30 to 120 s. Raman was mainly 

used to check the absence of volatile components in the inclusions, allowing the 

interpretation to be confined to the H2O-NaCl system only. 
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G. Calculation of δDwater values based on δDmineral values 

In order to calculate the isotopic composition of water (δDwater) that interacted 

with minerals during deformation/recrystallization based on the δDmineral values, the 

temperature of hydrogen isotopic exchange between the fluid and the mineral is 

required. If hydrous minerals show evidence of synkinematic (re)crystallization (see 

section II-C1), the temperature of deformation is considered to represent the 

temperature of isotopic exchange between the fluid and the mineral during the shear 

zone activity.  In this study, this temperature was estimated using complementary 

methods: (1) Microstructural study of quartz (including EBSD; sections II-B2 and C1); (2) 

Titanium-in-muscovite thermometry (section II-C2); (3) Oxygen isotope thermometry 

(section II-E); (4) Fluid inclusions microthermometry (section II-F2). 

The temperature-dependent equations that allow the calculation of the 

fractionation factor between OH-bearing minerals and water were experimentally-

calibrated by previous studies. The following equations were considered for mineral-

water hydrogen isotopic exchange: 

 Muscovite-water hydrogen isotopic exchange between 450 and 800°C 

(Suzuoki and Epstein, 1976): 103 ln αmuscovite-water = -22.1 (106 T-2) + 19.1 

 Biotite-water hydrogen isotopic exchange between 450 and 800°C 

(Suzuoki and Epstein, 1976): 103 ln αbiotite-water = -21.3 (106 T-2) + 2.8 

 Tourmaline-water hydrogen isotopic exchange between 350 and 600°C 

(Kotzer et al., 1993): 103 ln αtourmaline-water = -27.2 (106 T-2) + 28.1 

 103 ln αmineral-water is the stable isotope fractionation factor between the mineral 

and the fluid 
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 T is the temperature of stable isotope exchange in Kelvin.  

The isotope composition of the fluid is calculated using the following equation: 

δDwater = δDmineral - 103 ln αmineral-water 

 

H. Geochronology 

In order to unravel the thermal history of the studied fossil hydrothermal systems, 

radiometric dating of different minerals associated with different closure temperatures 

were used. The U/Pb system, which closes at about 700-800°C in zircon and monazite 

(e.g. Cherniak and Watson, 2001; Cocherie, 2005), allow the determination of the timing 

of granite emplacement. The closure temperature for Ar diffusion in muscovite is 

estimated at 425 ± 50°C (Villa, 1998). Muscovite 40Ar/39Ar ages can be interpreted as the 

age of cooling and/or mylonitisation. 40Ar/39Ar geochronology of muscovite was used in 

this study to determine the timing and duration of minerals (re)crystallization, i.e. timing 

of the isotopic exchange between the mineral and the fluid (e.g. Mulch and Cosca, 2004; 

Teyssier et al., 2004; Mulch et al., 2005). 

1. 40Ar/39Ar geochronology on muscovite 

40Ar/39Ar geochronology is a radiometric method that compares the 40Ar (naturally 

radioactive isotope) with the 39Ar (decay product). As the rate of decay is known and 

constant, the 40Ar/39Ar ratio relates to the sample’s age. In other words, the older the 

sample is, the more 40Ar it contains. Samples were irradiated in a nuclear reactor to be 

able to produce 39Ar from the stable potassium from 39K. Samples were then heated in 

a furnace to release gases (including Argon) that were measured by a mass-

spectrometer.  
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White micas used for 40Ar/39Ar laser probe step heating experiments were 

randomly extracted by handpicking them from the largest fraction (f > 500 µm) using a 

binocular microscope. The muscovite grains were analysed following the analytical 

procedure described by Ruffet et al. (1991, 1995) and Castonguay et al. (2001, 2007). 

Irradiation of samples was performed at Mac Master Nuclear Reactor (Hamilton, 

Ontario, Canada) in the 8F facility and lasted 250.067 h with a global efficiency (J/h) of 

1.096 x 10-4 h-1. The irradiation standard was the amphibole Hb3gr (Turner, 1971; 

Roddick, 1983; Jourdan et al., 2006; Jourdan and Renne, 2007) dated at 1081.0 ± 1.2 Ma 

according to Renne et al. (2010, 2011). 

Apparent age errors were plotted at the 1σ level and do not include the errors on 

the 40Ar*/39ArK ratio and age of the monitor and decay constant. Plateau ages were 

calculated if 70% or more of the 39ArK was released in at least three or more contiguous 

steps, the apparent ages of which agreeing to within 1σ of the integrated age of the 

plateau segment. Pseudo-plateau ages (PPA) were defined when less than 70% of the 

39ArK was released and in less than three contiguous steps. The errors on the 40Ar*/39ArK 

ratio and age of the monitor and decay constant are included in the final calculation of 

the error margins on the pseudo-plateau age (PPA) or on apparent ages individually 

cited. 

Analytical data and parameters used for calculations (e.g. isotopic ratios measured 

on K, Ca and Cl pure salts; mass discrimination; atmospheric argon ratios; J parameter; 

decay constants) and reference sources are available in Table II-2. 
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Parameters (36Ar/37Ar)Ca 0.000322 3 % 
 

(39Ar/37Ar)Ca 0.000788 4 % 
 

(38Ar/37Ar)Ca 0.000026 100 % 
 

(40Ar/37Ar)Ca 0.0006 100 % 
 

(40Ar/39Ar)K 0.00085 4 % 
 

(38Ar/39Ar)K 0.011 91 % 

[3] (36Cl/38Cl) 316 5 % 

[1] and [1'] (40Ar/36Ar)Atm 298.56 0.104 % 

[1] and [1'] (38Ar/36Ar)Atm 0.1885 0.159 % 

[2] Lambda 40 5.53E-10 1.35E-12 y-1 
 

Lambda 39 2.58E-03 
 

y-1 
 

Lambda 37 1.98E-02 
 

d-1 
 

Lambda 36Cl 2.26E-06 
 

y-1 

Table II-2: Ar/Ar analytical parameters used for calculations and references. References: [1] 
Lee et al. (2006); [1’] Mark et al. (2011)); [2] Renne et al. (2011); [3] York, Personnal 
Communication, McMaster reactor. Regression method from York (1968). Ages and errors of 
Hb3gr and TCs monitors refers to Renne et al. (2011). 

 

2. U-Th/Pb geochronology on monazite 

Monazite is a phosphate mineral that contains Rare Earth Elements (REE). It is an 

accessory mineral found in granitic and metamorphic rocks. U-Th/Pb ages are generally 

interpreted in terms of metamorphism, deformation, melting and hydrothermal 

alterations. 

In section III-B, monazite in migmatite were located and mapped in BSE using a 

ZEISS Evo MA 10 Scanning Electron Microscope at the University of Portsmouth (UK). In-

situ monazite U-Pb and trace element analyses were performed in two separate sessions 

at the University of Portsmouth using a Jena PlasmaQuant Elite ICP-MS coupled to an 

ASI RESOlution 193 nm ArF excimer Laser system.  

For U-Pb analyses, Trebilcock monazite (~272 Ma; Tomascak et al., 1996), was 

used as the primary reference material and Itambé (aka Moacyr, 207Pb/235U age 509.1 ± 

1.2 Ma; Gonçalves et al., 2016) and Bananeira monazites (207Pb/235U age 503.3±1.2 Ma; 
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Gonçalves et al., 2016) were used as secondary reference materials and gave weighted 

average ages within 1.2% of reported values (Table VI-2 in the appendix). NIST610 glass 

was used as the primary reference material for trace element analysis. BHVO-2G, and 

Trebilcock monazite were used as secondary reference material. BHVO-2G gave an 

average reproducibility of 2.9%; Trebilcock reproduced less well due to non-matrix 

matched standard problems. Laser conditions for U-Pb analyses were 9 μm spot size, 

laser fluency of ~2.5 J.cm2 and repetition rate of 3 Hz. Laser conditions for trace element 

analysis in monazite were 3 μm spot size, laser fluency was ~2 J.cm2 and its repetition 

rate was 2 Hz. Glasses were ablated under the same conditions with a 60 μm spot size. 

There was 20 seconds of background measurement, followed by 30 seconds of ablation 

and 15 seconds of washout for each analysis. Four pulses of pre-ablation using 11 μm 

spot sizes were used to clean the area before each analysis. Full analytical details are 

shown in Table VI-2. Monazite data were processed, corrected for down-hole 

fractionation and instrumental drift using the Iolite 3.4 software (Paton et al., 2011). 

Data was presented using software Isoplot 4. Uncertainties include instrumental drift 

and were increased in quadrature to include 2% reproducibility of the secondary 

reference material. 
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III. THE SOUTHERN ARMORICAN DOMAIN 

Introduction 

This chapter focusses on the southern Armorican domain (Armorican Massif, 

France) that experienced crustal thickening and high-pressure metamorphism during 

the Carboniferous. The southern Armorican Massif has been intensively studied (see 

review in Ballèvre et al., 2013) due to the exceptional outcropping conditions on the 

coast of Britany which has allowed the eroded internal zones of the Variscan Belt of 

Western Europe to be revealed. 

 Part A is based upon a paper accepted for publication in Terra Nova. It focuses on 

late-Carboniferous ductile shear zones in the southern part of the Armorican Massif that 

represent sites of strong fluid-rock interaction. The hydrogen isotope composition of 

muscovite (δDMs) from syntectonic leucogranite allows the determination of the source 

of fluids that infiltrated the footwall of three detachment zones and the South 

Armorican Shear Zone. This study documents the infiltration of meteoric fluids with δD 

values as low as -74‰ in the upper part of detachment footwalls. 

Part B is a paper in preparation. It presents structural, microstructural, stable 

isotope, and geochronological (40Ar/39Ar and U-Th/Pb) data from the Quiberon 

detachment shear zone, where meteoric fluids interacted with muscovite (δDMs values 

down to -85‰) and tourmaline (δDTo values down to -87‰). Quartz microstructures and 

EBSD agree with high deformation temperatures (≥ 500°C), that are corroborated by the 

Ti-in-Ms geothermometer applied to synkinematic muscovite. Various dating 

techniques (U-Th/Pb, Ar/Ar and Fission Track) applied to different minerals (zircon, 

monazite and muscovite) that have different closure temperatures allow us to 
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reconstruct the thermochronological history of the Quiberon detachment zone. It 

reveals that surface-derived fluids (δDwater value ~ -75‰) penetrated the brittle-ductile 

transition the Quiberon detachment during the Late Carboniferous and interacted with 

white mica during extensional shearing and mylonitic fabric formation. The downward 

infiltration of rainfall was enhanced by a combination of brittle fault development in the 

upper crust, while migmatite sustained convection at depth. Therefore, the Quiberon 

detachment zone represents an important orogen-scale structure for fault-controlled 

hydrothermal activity. 

Part C presents the fluid inclusions analysis performed on 5 samples from the 

footwall of Quiberon and Piriac detachment zones. The microstructural and petrological 

characterisation of fluids inclusions aims to understand better the relationship between 

the deformation history and fluid entrapment. Then, the microthermometry allows us 

to calculate the salinity of the fluid and infer the thermobarometric conditions of fluid 

entrapment. Finally, the oxygen and hydrogen isotope measurements of fluids 

inclusions acquired using the crush-leach method allow us to decipher the source of the 

fluid. This work will be submitted for publication once more isotope data has been 

acquired. 
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A. Meteoric fluid-rock interaction in Variscan detachment zones 

This section is based upon a paper that was accepted for publication in the journal 

Terra Nova in March 2019 (Chapter VII). 

1. Introduction 

Crustal-scale shear zones are sites of significant fluid circulation and hydrothermal 

alteration (e.g. McCaig, 1988; Fricke et al., 1992; Mulch et al., 2006b; Gébelin et al., 2011; 

Menzies et al., 2014). They represent critical interfaces where metamorphic, magmatic 

and surface-derived fluids meet (e.g. Upton et al., 1995; Nesbitt and Muehlenbachs, 

1995; Mulch et al., 2006b; Gébelin et al., 2015, 2017). Characterization of a meteoric 

component of crustal fluids is crucial to better understand ore deposition at the orogen 

scale (e.g. Boiron et al., 2003) or for paleoaltimetry reconstructions (e.g. Mulch et al., 

2004, 2007; Gébelin et al., 2012, 2013). 

Muscovite that crystallized at depth during deformation-related fluid flow 

provides a reliable record to track meteoric-derived fluids that circulated in ductile shear 

zones during high temperature deformation (~400-600°C; e.g. Gébelin et al., 2011, 2015; 

Methner et al., 2015).  In particular, the hydrogen isotope ratio of the fluid (δDwater) can 

be estimated if muscovite-water hydrogen isotope equilibrium was attained during 

deformation and crystallization, and if the temperature of isotope exchange can be 

assessed independently (Fricke et al., 1992; Mulch and Cosca, 2004; Mulch et al., 2007). 

In addition, the high resistance of muscovite to post-deformational alteration and low-

temperature isotopic exchange makes it an excellent tracer of water present during 

deformation (e.g. Guggenheim et al., 1987; Mariani et al., 2006). 
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This method has proven to be one of the cornerstones when recovering the 

isotopic composition of ancient rainfall that infiltrated the upper crust through a brittle 

deformation network down to 15 km depth in the footwall of detachment zones in the 

North American Cordillera (e.g. Fricke et al., 1992; Losh, 1997; Mulch et al., 2004, 2007; 

Gébelin et al., 2011, 2012, 2015), in the European Central Alps (Campani et al., 2012) 

but also in the Himalaya (Gébelin et al., 2013, 2017). 

Here hydrogen isotope geochemistry of synkinematic muscovite (δDMs) from 

Variscan strike-slip and detachment footwalls of the Armorican Massif (Fig. III-1) is 

employed to identify and characterize ancient meteoric water that circulated along and 

across the brittle-ductile transition. Low δDMs values indicate that meteoric fluids 

infiltrated the upper part of detachment footwalls and strike-slip shear zones to variable 

degrees.  

 

Figure III-1: General map of the southern Armorican domain and E-W cross-section (AA’). 
Samples sites colours indicate the calculated hydrogen isotope composition of fluids that 
interacted with muscovite in syntectonic granites. E.Q: Elliant quarry; Q.G.: Questembert 
granite; L.: Lizio leucogranite; S.: Sarzeau leucogranite; Q.: Quiberon leucogranite G.: 
Guérande leucogranite; modified after Gapais et al. (1993). 
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2. Geological framework 

The southern Armorican domain represents the internal zone of the Variscan Belt 

that experienced crustal thickening and high-pressure metamorphism during the 

Carboniferous (e.g. Ballèvre et al., 2013). From top to bottom, three units can be 

distinguished (Fig. I-1): 1) Upper units (blueschists and greenschist facies metasediments 

and metavolcanics; Bosse et al., 2002; Le Hébel et al., 2002); 2) Intermediate units (mica 

schist; Barrovian metamorphism from greenschist to amphibolite facies conditions; 

Triboulet and Audren, 1988); 3) Lower units (migmatites; 750°C-1000MPa; Jones and 

Brown (1990) and syntectonic peraluminous leucogranites). 

The entire region was affected by coeval WNW-ESE trending dextral strike-slip and 

E-W extensional faulting during the Late Carboniferous that provided effective pathways 

for melt migration and fluid infiltration (e.g. Gapais et al., 2015). Syntectonic two-mica 

leucogranites forming the footwall of detachment shear zones and spatially associated 

with the dextral South Armorican Shear Zone (SASZ) were emplaced between ~320 and 

300 Ma (Ar/Ar on muscovite and U-Th-Pb on zircon and monazite; e.g. Jegouzo, 1980; 

Gapais, 1989; Brown and Dallmeyer, 1996; Turrillot et al., 2009, 2011a; Tartèse et al., 

2012; Ballouard et al., 2015, 2017; Gapais et al., 2015). 

3. Sampling strategy and sample description  

To characterize the role of different types of active shear zones in controlling 

meteoric water infiltration in the Variscan crust, oriented samples of highly to weakly 

deformed leucogranites were collected along the SASZ and following transects from 

Quiberon and Piriac detachment shear zones into their underlying mylonitic footwalls 

(samples locations in Table 1). Some leucogranites display albitic and chloritic alteration 

that, together with the presence of quartz veins, point to the involvement of magmatic 
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and/or hydrothermal fluids (higher Sn and Cs content and lower K/Rb and Nb/Ta ratios; 

e.g. Ballouard et al., 2016). Also, the involvement of surface-derived fluids is suspected 

by oxygen isotope analysis (δ18OQuartz values as low as -2‰ in quartz veins formed at 

~250-350°C; e.g. Lemarchand et al., 2012; Tartèse et al., 2012; Ballouard et al., 2017). 

Leucogranite samples from the Sarzeau detachment shear zone that allows the 

observation of a deeper structural level (e.g. Gapais et al., 2015) were also collected. 

Sub-solidus deformation textures such as rectangular and castellate quartz grain 

boundaries indicate that grain boundary migration (≥550°C; e.g. Stipp et al., 2002; 

Bukovská et al., 2016) was the dominant dynamic recrystallization process that affected 

mylonitic syntectonic leucogranites from all three types of shear zones (Fig. III-2). These 

microstructural observations, together with EBSD data indicating prism <c> and <a> 

glide (Gapais and Boundi, 2014; Bukovská et al., 2016), support high deformation 

temperature (≥400°C, e.g. Langille et al., 2010). 

C-S structures highlighted by muscovite fish along shear and schistosity planes 

indicate a syntectonic emplacement of leucogranites (e.g. Gapais, 1989; Fig. III-3, 

Supporting Information). Solution-precipitation mechanisms can explain the 

development of synkinematic lozenge-shaped muscovite grains (groups 1, 2 and 3 of ten 

Grotenhuis et al. (2003) classification; Figs. III-3 and III-4). Weakly deformed granite 

display euhedral muscovite grains and large primary quartz crystals and/or quartz grain 

boundary migration consistent with high-temperature deformation (Fig. III-4). 
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Figure III-2:  
 
Representative quartz 
microstructure from the SASZ 
and detachment zones as well 
as associated measured ẟDMs 
values (± 2‰) and calculated 
ẟDwater values (± 10‰).  
 
Hydrogen isotope ratios of 
water have been calculated 
from ẟDMs values using a 
deformation temperature of 
550 ± 100˚C and temperature-
dependent fractionation 
equations from Suzuoki and 
Epstein (1976). 
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4. Hydrogen isotope geochemistry 

δD values of muscovite (δDMs) were measured in 51 syntectonic leucogranite 

samples from the different ductile shear zones (Fig. III-2; Methods in Chapter II and data 

in Table III-1). δDMs values from the Sarzeau detachment footwall (SARZ-) range from -

47 to -46‰ (n=3). δDMs values from the Quiberon (QUIB-) and Piriac (PIR-, GUE-) 

transects are constant within the footwall from the top to the bottom and range from -

88 to -76‰. Weakly deformed leucogranites located at larger distance from the hanging 

wall (GUEweakd-) have similar values (-84 to -80‰). 

δDMs values from mylonitic samples from the SASZ (ELL-, QRT-, QUEST-, LRT-) vary 

from -84 to -54‰. The range of values allows to define a lateral trend from lower δDMs 

values (-84 to -79‰) obtained on highly deformed samples within the SASZ to higher 

δDMs values (-79 and -70‰) at increasing distance from the deformation zone where 

leucogranites are weakly deformed (GRTweakd-, LRTweakd-; Figs. III-1 and III-2). 
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Figure III-3: Muscovite microstructures from the upper part of Quiberon and Piriac 
detachments footwall. Sections are cut perpendicular to foliation and parallel to lineation. 
Sub-solidus deformation textures such as rectangular and castellate quartz grain boundaries 
suggest that grain boundary migration (regime 3, Hirth and Tullis, 1992) was the dominant 
dynamic recrystallization process. (A) and (B) Muscovite fish (group 3 of ten Grotenhuis et al., 
2003) from the Guérande mylonitic leucogranite forming C-S structures indicating a top-to-
the-north sense of shear (Location G.1 on fig. DR1; sample PIR16 in table DR1); (C) Rhomboidal 
muscovite fish as observed in (A) and (B) (group 3) highlighting a cleavage parallel to the 
longest side of the fish that develops as a result of synthetic slip on (001) basal planes (G.1; 
PIR14); (D) Group 2 mica fish that forms from group 1 mica fish as a result of drag along micro 
shear planes that develop along the upper and lower sides of the grain, indicating a top-to-
the-west sense of shear (Q.; QUIB01); (E) Lenticular muscovite fish (group 1) forming C-S 
structures that formed by rotation and then removal of the upper and lower part of the grain 
indicating a recrystallization process by solution-precipitation (QUIB01). 
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Figure III-4: : Muscovite microstructures from Sarzeau disclosing the lower part of the 
detachment footwall (A, B), and from the Questembert (C, D) and  Lizio (E, F) leucogranites 
that emplaced within the active South Armorican Shear Zone (SASZ). Sections are cut 
perpendicular to foliation and parallel to lineation and quartz microstructures suggest that 
grain boundary migration was the dominant dynamic recrystallization process. (A) and (B) 
Muscovite fish (group 1 and 2 of ten Grotenhuis et al., 2003) from the Sarzeau mylonitic 
leucogranite forming C-S structures indicating a top-to-the-ESE sense of shearing. Group 1 
mica fish show evidence of recrystallization by solution-precipitation and evolve into group 2 
by drag along micro shear planes and folding; Within the Questembert leucogranite, (C) 
euhedral muscovite fish from the weakly deformed facies (see location G.3 on Fig. DR1) 
provide a higher δDMs value (-63‰) than (D) lenticular muscovite fish (G.2 on Fig. DR1) that 
give a lower δDMs value (-82‰) suggesting an interaction with meteoric fluids. (E) Euhedral 
muscovite (see location L3 on Fig. DR1) from the weakly deformed Lizio granite facies yielding 
a higher δDMs value (-70‰) than (F) muscovite fish (group 3) forming C-S structures in the high 
strain zone (L.4 on Fig. DR1) that provides δDMs value as low as -84‰. 
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Type Area Fig. 1 Sample Rock type 
δDMs 
(‰) 

Structural 
distance 
from the 

detachmen
t hanging 
wall (m) 

Latitude 
(DD) 

Longitude 
(DD) 

Low
er 

part 
of 

deta
chm
ent 
foot
wall 

Sarzeau 

S. 2016-SARZ01 Mylonitic leucogranite -47 6 47.527336 -2.755594 

S. 2016-SARZ02 Mylonitic leucogranite -46 12 47.527597 -2.752014 

S. 2016-SARZ03 Mylonitic leucogranite -46 

140 

47.544139 -2.724361 

St
ri

ke
-s

lip
 s

h
ea

r 
zo

n
e

 

Elliant quarry 

E.Q. 2016-ELL01 Mylonitic leucogranite -65 n/a. 47.975056 -3.894417 

E.Q. 2016-ELL03 Mylonitic leucogranite -60 n/a. 47.976167 -3.894000 

E.Q. 2016-ELL05 Mylonitic leucogranite -64 n/a. 47.976444 -3.894000 

E.Q. 2016-ELL06 Mylonitic leucogranite -57 n/a. 47.976556 -3.893972 

E.Q. 2016-ELL07 Mylonitic leucogranite -54 n/a. 47.976556 -3.893972 

E.Q. ELL08 Mylonitic leucogranite -73 n/a. 47.975686 -3.893881 

E.Q. ELL09 Mylonitic leucogranite -76 n/a. 47.975606 -3.892611 

E.Q. ELL10 Mylonitic leucogranite -66 n/a. 47.975456 -3.894297 

E.Q. ELL11 Mylonitic leucogranite -64 n/a. 47.975186 -3.891769 

Questembert 
granite 

Q.G.1 Q-RT-08 Mylonitic leucogranite -74 n/a. 47.728056 -2.617500 

Q.G.2 2016-QUEST04 Mylonitic leucogranite -80 n/a. 47.709300 -2.551819 

Q.G.2 2016-QUEST06 Mylonitic leucogranite -82 n/a. 47.709300 -2.551819 

Q.G.3 Q-RT-02 Mylonitic leucogranite -63 n/a. 47.671667 -2.361944 

Q.G.4 Q-RT-01 Mylonitic leucogranite -74 n/a. 47.648889 -2.160000 

Lizio granite 

L.1 GRTweakd-16 Weakly deformed leucogranite -77 n/a. 47.908333 -2.688889 

L.1 GRTweakd-17 Weakly deformed leucogranite -74 n/a. 47.897500 -2.696667 

L.2 LRTweakd-10 Weakly deformed leucogranite -79 n/a. 47.887222 -2.569444 

L.3 LRTweakd-11 Weakly deformed leucogranite -70 n/a. 47.873333 -2.497500 

L.4 LRT-12 Mylonitic leucogranite -84 n/a. 47.838056 -2.589722 

L.5 LRT-14 Mylonitic leucogranite -79 n/a. 47.831944 -2.645000 
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Piriac-sur-
mer 

(Guérande 
granite) 

G.1 2016-PIR01 Mylonitic leucogranite -81 500 47.383722 -2.547472 

G.1 2016-PIR02 Mylonitic leucogranite -82 503.5 47.383722 -2.547444 

G.1 2016-PIR03 Mylonitic leucogranite -81 507.5 47.383722 -2.547417 

G.1 2016-PIR04 Mylonitic leucogranite -79 509 47.383667 -2.547389 

G.1 2016-PIR05 Mylonitic leucogranite -85 512 47.383611 -2.547306 

G.1 2016-PIR06 Mylonitic leucogranite -76 517 47.383528 -2.547389 

G.1 2016-PIR07 Mylonitic leucogranite -79 521 47.383444 -2.547139 

G.1 2016-PIR08 Mylonitic leucogranite -80 523 47.383333 -2.547166 

G.1 2016-PIR09 Mylonitic leucogranite -82 526 47.383194 -2.547000 

G.1 2016-PIR10 Mylonitic leucogranite -85 528 47.383083 -2.546972 

G.1 2016-PIR11 Mylonitic leucogranite -87 531 47.382972 -2.546972 

G.1 2016-PIR12 Mylonitic leucogranite -77 536 47.382806 -2.546889 

G.1 2016-PIR13 Mylonitic leucogranite -84 540 47.382694 -2.546583 

G.1 2016-PIR14 Mylonitic leucogranite -81 544 47.382472 -2.546417 

G.1 2016-PIR15 Mylonitic leucogranite -88 550 47.382306 -2.546667 

G.1 2016-PIR16 Mylonitic leucogranite -88 560 47.382111 -2.547083 

G.1 GUE12-09 Mylonitic leucogranite -85 570 47.381192 -2.548596 

G.2 GUE12-06 Mylonitic leucogranite -85 1900 47.370945 -2.515918 

G.2 GUE12-21 Mylonitic leucogranite -86 2150 47.365750 -2.541317 

G.3 GUE12-07 Mylonitic leucogranite -80 2000 47.380000 -2.346883 

G.4 GUEweakd12-14 Weakly deformed leucogranite -81 8000 47.296217 -2.546383 

G.4 GUEweakd12-17 Weakly deformed leucogranite -80 8100 47.286967 -2.526550 

G.5 GUEweakd12-11 Weakly deformed leucogranite -81 10000 47.274183 -2.484200 

G.5 GUEweakd12-12 Weakly deformed leucogranite -84 10000 47.274183 -2.484200 

G.5 GUEweakd12-13 Weakly deformed leucogranite -81 10000 47.274367 -2.484533 

Quiberon 
(Quiberon 

granite) 

Q. 2016-QUIB01 Mylonitic leucogranite -85 300 47.484472 -3.143917 

Q. 2016-QUIB02 Mylonitic leucogranite -79 305 47.484500 -3.143694 

Q. 2016-QUIB03 Mylonitic leucogranite -82 322 47.484444 -3.143750 

Table III-1: GPS location and hydrogen isotope composition of muscovite from syntectonic 
granite along the South Armorican Shear Zone, the mylonitic footwall of Quiberon and Piriac-
sur-mer detachment zones and Sarzeau intra-crustal shear zone. ELL, LRT, GRT and QRT 
samples are the ones described in Tartèse and Boulvais (2010) and Tartèse et al. (2011, 2012, 
2013). GUE samples are from Ballouard et al. (2015, 2017). 
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Type Area Fig. 1 Sample 
δDMs 
(‰) 

δDwater (‰) 
450°C 

δDwater 

(‰) 
550°C 

δDwater(‰) 
650°C 

Lower part of 
detachment footwall 

Sarzeau 

S. 2016-SARZ01 -47 -24 -34 -40 

S. 2016-SARZ02 -46 -23 -33 -40 

S. 2016-SARZ03 -46 -23 -33 -39 

St
ri

ke
-s

lip
 s

h
ea

r 
zo

n
e

 El
lia

n
t 

q
u

ar
ry

 

E.Q. 2016-ELL01 -65 -42 -52 -58 

E.Q. 2016-ELL03 -60 -37 -46 -53 

E.Q. 2016-ELL05 -64 -41 -51 -57 

E.Q. 2016-ELL06 -57 -34 -44 -50 

E.Q. 2016-ELL07 -54 -31 -41 -48 

E.Q. ELL08 -73 -50 -59 -66 

E.Q. ELL09 -76 -53 -63 -70 

E.Q. ELL10 -66 -43 -53 -60 

E.Q. ELL11 -64 -41 -50 -57 

Q
u

es
te

m
b

er
t 

gr
an

it
e 

Q.G.2 2016-QUEST04 -80 -57 -66 -73 

Q.G.2 2016-QUEST06 -82 -59 -69 -76 

Q.G.4 Q-RT-01 -74 -51 -60 -67 

Q.G.3 Q-RT-02 -63 -40 -50 -56 

Q.G.1 Q-RT-08 -74 -51 -60 -67 

Li
zi

o
 g

ra
n

it
e

 L.2 LRTweakd-10 -79 -56 -66 -72 

L.3 LRTweakd-11 -70 -47 -57 -63 

L.4 LRT-12 -84 -61 -71 -77 

L.5 LRT-14 -79 -56 -66 -72 

L.1 GRweakdT-16 -77 -54 -64 -70 

L.1 GRTweakd-17 -74 -51 -61 -67 

U
p
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m
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P
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c-
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r-

m
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u
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d

e 
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G.1 2016-PIR01 -81 -58 -68 -75 

G.1 2016-PIR02 -82 -59 -69 -76 

G.1 2016-PIR03 -81 -58 -68 -74 

G.1 2016-PIR04 -79 -56 -66 -73 

G.1 2016-PIR05 -85 -62 -72 -78 

G.1 2016-PIR06 -76 -53 -63 -69 

G.1 2016-PIR07 -79 -56 -66 -72 

G.1 2016-PIR08 -80 -57 -66 -73 

G.1 2016-PIR09 -82 -58 -68 -75 

G.1 2016-PIR10 -85 -62 -72 -78 

G.1 2016-PIR11 -87 -64 -74 -80 

G.1 2016-PIR12 -77 -54 -63 -70 

G.1 2016-PIR13 -84 -60 -70 -77 

G.1 2016-PIR14 -81 -58 -68 -74 

G.1 2016-PIR15 -88 -65 -74 -81 

G.1 2016-PIR16 -88 -65 -74 -81 

G.1 GUE12-06 -85 -61 -71 -78 

G.2 GUE12-07 -80 -56 -66 -73 

G.2 GUE12-09 -85 -62 -72 -78 

G.3 GUE12-21 -86 -62 -72 -79 

G.5 GUEweakd12-11 -81 -58 -68 -74 

G.5 GUEweadkd12-12 -84 -61 -71 -77 

G.5 GUEweadkd12-13 -81 -58 -68 -74 

G.4 GUEweadkd12-14 -81 -58 -68 -74 

G.4 GUEweadkd12-17 -80 -57 -67 -73 

Quiberon 
(Quiberon granite) 

Q. 2016-QUIB01 -85 -61 -71 -78 

Q. 2016-QUIB02 -79 -56 -66 -73 

Q. 2016-QUIB03 -82 -59 -69 -76 
        

 

Error calculation taking into account the precision on the isotopic analysis and the temperature isotopic exchange 

  Error Error in δDwater Propagated error in δDwater 

Isotopic analysis (δDMs) ± 2‰ ± 2‰ ± 10.2‰ 

Deformation temperature ± 100°C ± 10‰ 

Table III-2: Calculated δDwater values, with error taking into account the precision on isotopic 
analyses (δDMs ± 2‰) and the uncertainties linked to the temperature of recrystallization (550 
± 100˚C results in δDwater uncertainties of ± 10‰). δDwater values have been calculated by using 
the hydrogen isotope muscovite-water fractionation factor (α) of Suzuoki and Epstein (1976) 
with 10lnα varying from -23.2‰ at 450°C to -6.8‰ at 650°C. 
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Based on microstructural observations  (e.g. C-S structures and quartz Grain 

Boundary Migration; ≥550°C; e.g. Stipp et al., 2002) and previous EBSD data (≥400°C; 

Gapais and Boundi, 2014; Bukovská et al., 2016), a temperature of deformation of 550 

± 100°C was used which corresponds to the temperature of hydrogen isotope exchange 

between the fluid and the mineral. Together with measured δDMs values and using the 

hydrogen isotope muscovite-water fractionation of Suzuoki and Epstein (1976), δD 

values of the fluid (δDwater ±10‰ taking into account analytical and temperature 

uncertainties) present during deformation and (re)crystallization were calculated and 

vary from –34 to −33‰ in the Sarzeau detachment zone, from –74 to −63‰ in the 

Quiberon and Piriac detachment zones, and from –71 to −41‰ in the SASZ (Figs. III-1, 

III-2 and III-5; Table III-2). 

5. Discussion 

a. Meteoric infiltration and mixing with deep crustal fluids 

Samples from Sarzeau exposing the deepest part of a detachment footwall display 

calculated δDwater values of -34 to -33‰ which are significantly higher than those 

obtained from the Quiberon and Piriac detachments (δDwater values as low as -74‰; Fig. 

III-5). δDwater values calculated from samples collected in the SASZ vary from –71 to 

−41‰, covering the entire range of hydrogen isotope compositions found in Sarzeau 

and in Quiberon and Piriac. 

Considering that the Sarzeau granite was emplaced at ~15 km depth (Turrillot et 

al., 2011b), the highest calculated δDwater value (~-33‰) is interpreted to reflect the 

hydrogen isotope composition of a deep crustal fluid (-70‰ < δDmetamorphic fluids < -20‰ 

and/or  -80‰ < δDmagmatic fluids < -40‰; e.g. Field and Fifarek, 1985) present during 

deformation at such a depth. In contrast, the lower δDwater values obtained from 



  

70 
 

Quiberon and Piriac (-74‰ to −63‰) suggest that muscovite from these syntectonic 

leucogranites interacted with deuterium-depleted fluids during deformation. These 

lower δDwater values (41‰ lower than those obtained from Sarzeau) can most readily be 

explained by the involvement of meteoric fluids, in good agreement with the shallower 

depths of granite emplacement at Quiberon and Piriac (~ 3-6 km; Le Hébel et al., 2007; 

Ballouard et al., 2017). 

 

 

Figure III-5: 3D simplified sketch showing the crustal-scale ductile shear zones and associated 
ẟDwater values. Blue arrows: meteoric fluids infiltration. Red Arrows: deep crustal fluids. SASZ: 
South Armorican Shear Zone. 

 

The range of δDwater values (-74‰ to -33‰) obtained from the Variscan shear 

zones of the southern Armorican domain indicates a mixing relationship between deep 

crustal fluids and meteoric fluids in the mylonitic detachment footwalls and along the 

SASZ. As shown in Figs. 5 and 6, two fluid end-members are defined: a crustal fluid that 

predominantly involves magmatic and/or metamorphic fluids (δDwater value = -33‰) and 

a surface-derived fluid that reflects a large percentage of mixing with low-δD meteoric 

water (δDwater value = -74‰). 
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The variability in the low δDwater values within the Quiberon and Piriac detachment 

zones (-74 to -63‰) and in the SASZ (-71 to -41‰) can be explained by 1) different 

degrees of mixing with meteoric water, and 2) a difference in the temperature 

controlling the hydrogen isotope exchange between the fluid and synkinematic 

muscovite (± 100°C gives an uncertainty of ±10‰ for the δDwater values). 

In addition, this study suggests that the lowest δDwater value of -74‰ represents 

the hydrogen isotope composition which approximates most closely the value of 

surface-derived fluid that penetrated the crust at depth during detachments activity (Fig. 

5). As the downward penetration of meteoric fluids in the crust generally leads to an 

increase in δDwater values due to fluid-rock interaction, this δDwater value represents a 

maximum value that may have been potentially lower than -74 ‰ if it would have been 

extracted from the near-surface geological record (e.g. Gébelin et al., 2012). 

 

 

 

 

 

 

 

 

Figure III-6: Graph showing the ẟDwater values from detachments footwall and the SASZ 
calculated from measured δD values of synkinematic muscovite (this study). Note the 
progressive involvement of meteoric fluids from an unmixed deep crustal end-member 
fluid in the Sarzeau lower part of detachment footwall (ẟDwater value = -33‰) to greater 
mixing with meteoric fluids in the Piriac and Quiberon upper part of detachment 
footwalls (ẟDwater value = -74‰). MF/R: meteoric fluid/rock ratio. 



  

72 
 

b. Timing, depth and mechanisms of meteoric fluid infiltration 

The onset of meteoric fluid infiltration can be estimated at ~320 Ma based on U/Pb 

ages from syntectonic leucogranites emplaced in detachment footwalls or along strike-

slip shear zones (e.g. Tartèse et al., 2012; Ballouard et al., 2015). Deformation and fluid 

infiltration likely ended at ~300 Ma with the cessation of the shear zones activity 

(40Ar/39Ar muscovite ages from the same studied leucogranite intrusion; Turrillot et al., 

2011a; Tartèse et al., 2012; Gapais et al., 2015; Ballouard et al., 2017, 2018). 

Based on the depth at which leucogranites were emplaced at Quiberon and Piriac 

(~3 to 6 km) and along the SASZ (~3 to 12 km), a minimum depth of ~3 km is estimated 

for the infiltration of Carboniferous meteoric fluids. However, based on the depth of 

Sarzeau granite emplacement (~15 km) and on its deep crustal fluid signature, this study 

infers that the penetration of meteoric fluids in the crust did not exceed ~12 km 

corresponding to the deepest level of leucogranites emplacement in the SASZ (e.g. Le 

Hébel et al., 2007; Tartèse and Boulvais, 2010; Turrillot et al., 2011b; Ballouard et al., 

2017). 

These results are in good agreement with previous studies conducted on ductile 

shear zones in the Pyrenees, the New Zealand Alps, the North American Cordillera and 

the Himalaya that highlight the infiltration of meteoric fluids at similar depths (e.g. 

McCaig, 1988; Upton et al., 1995; Mulch et al., 2004, 2006; Person et al., 2007; Gébelin 

et al., 2011, 2017; Menzies et al., 2014). As proposed for detachment zones in Western 

USA and the South Tibetan Detachment (Mulch et al., 2004; Person et al., 2007, Gébelin 

et al., 2011, 2013; 2015, 2017), three main conditions are essential to explain the 

downward infiltration of meteoric fluids at depth and imply a combined effect of brittle 

normal faults in the upper crust, a high geothermal gradient and the presence of a 
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hydraulic head. These criteria were very likely met in the southern Armorican domain 

where brittle normal faults have been recognized and linked to the exhumation of high-

grade metamorphic rocks at ~300 Ma, but also where the thickened crust would have 

provided the necessary hydraulic head (Fig. 3; e.g. Gapais et al., 2015; Brown and 

Dallmeyer, 1996). 

Fault-valve rupture (fluid pressure builds up and results in periodically slip where 

a high volume of fluid can be released) could represent another mechanism for the 

downward flow of small volumes of meteoric fluids where quick episodes of fluid 

penetration are followed by protracted periods of fluid stagnation promoting fluid-rock 

interaction under lithostatic conditions (e.g. Sibson, 1981; McCaig, 1988; Sibson et al., 

1988; Jenkin et al., 1994; Upton et al., 1995; Menzies et al., 2014), Fault sealing may 

enhance the buffering between the deuterium-depleted surface-derived fluids and the 

deuterium-enriched rocks (Famin et al., 2005), in good agreement with the rock-

buffered meteoric fluid signatures found in this study. 

c. Isotopic composition of ancient rainfall in the Armorican Massif 

Low-δD meteoric precipitation typical of high-altitude regions (δDwater ~ -150‰ in 

the Himalayas; e.g. Quade et al., 2011) are expected in the thickened Armorican Massif. 

Although this study’s data highlight the presence of meteoric fluids at depth, δD values 

of these surface waters (estimated at -74‰) remain relatively high if corresponding to 

the initial meteoric water (see above). Four main factors can explain these relatively high 

δD values for Carboniferous rainfall: 1) a moderate paleoelevation as hydrogen (δD) 

isotope ratios of rainfall scale with elevation on the windward side of a mountain range 

(e.g. Poage and Chamberlain, 2001); 2) the equatorial paleogeographic position of the 

Armorican Massif during the Late Carboniferous (e.g. Tait et al., 1996; Boucot et al., 2013) 
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would have yielded higher δDrainfall values as observed today due to the high global 

evaporation flux over the oceans at the equator (Rozanski et al., 1993); 3) the warm 

equatorial late-Carboniferous paleoclimate that characterized the Variscan belt of 

western Europe could lead to relatively high δDmeteoric water values (e.g. Poulsen and 

Jeffery, 2011); 4) the presence of major ice sheets (40% more extensive than today) 

during the Late Carboniferous may have induced an increase of +1.5‰ in the δ18O of 

ocean waters or +12‰ for the δDocean water values (González-Bonorino and Eyles, 1995; 

Buggisch et al., 2008). 

6. Conclusion 

Fluid flow in ductile shear zones is investigated in the southern Armorican domain 

through muscovite hydrogen isotope ratios (δDMs) from syntectonic leucogranites 

emplaced within detachment footwalls and strike-slip fault systems. Mica fish from the 

lower part of detachment footwalls reveal a typical metamorphic and/or magmatic fluid 

source, whereas the top of detachment footwalls reveal low δDMs values indicative of 

meteoric fluids infiltration. Syntectonic leucogranites from the SASZ also interacted with 

surface-derived fluids, but varying degrees of mixing between deep-sourced and 

surface-derived fluids resulted in intermediate δDMs values. Penetration of surface-

derived fluids in the crust occurred between ~320 and 300 Ma by the means of upper-

crustal brittle fracture networks while active shear zones continuously exhumed lower-

crustal rocks. Ancient rainfall δD values are relatively high compared to present-day 

major orogens and can be explained by moderate paleoelevation and/or warm 

paleoclimatic and equatorial paleogeographic conditions. Variscan shear zones in the 

Armorican Massif represented major orogen-scale structures where fluids from both the 

Earth’s surface and the deep parts of the crust mixed. 
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B. Late-Carboniferous infiltration of meteoric fluid in the Quiberon 

detachment zone (Armorican Massif, France) 

Publication in preparation for Tectonics by Dusséaux C., Gébelin A., Grimes S., 

Mulch A., Boulvais P., Ruffet G., Poujol M., Cogné N., Branquet Y., Mottram C., Barou F. 

1. Introduction 

Extensional shear zones play a major role during post-orogenic collapse as they 

control lateral and vertical displacements in the continental crust, that in turn affects 

the Earth’s surface dynamics by shaping topography and controls mass transport in the 

middle and lower crust (e.g. Brun and van den Driessche, 1994; Teyssier and Whitney, 

2002; Mulch et al., 2004; Whitney et al., 2013). Therefore, detachment zones that 

separate the cool upper crust from the hot middle crust are sites of strong fluid-rock 

interaction where meteoric, metamorphic and magmatic fluids meet (e.g. Fricke et al., 

1992; Nesbitt and Muehlenbachs, 1995; Famin et al., 2004; Mulch et al., 2005, 2007; 

Person et al., 2007; Gébelin et al., 2011, 2015, 2017). Assessing the source of fluids in 

such hydrothermal systems can be used to better understand ore deposition and 

mineralization (e.g. Beaudoin et al., 1991; Boiron et al., 2003), but also for 

paleoaltimetry reconstructions if Earth’s surface-derived fluids are present (e.g. Mulch 

et al., 2004, 2007; Campani et al., 2012; Gébelin et al., 2012, 2013). 

Meteoric water infiltration has been documented in the footwall of detachment 

zones in the North American Cordillera (e.g. Mulch et al., 2004, 2006; Person et al., 2007; 

Gébelin et al., 2011, 2015) and in the Himalayas (Gébelin et al., 2013, 2017; Webster et 

al., 2018). These pioneering studies highlight three main conditions for the downward 

infiltration of meteoric fluids: (1) brittle normal faults and fracture development in the 
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upper crust which enhances the porosity and permeability, (2) a high geothermal 

gradient with advection of partially molten material in the footwall that maintains an 

active convection system for fluids, and (3) a minimum topography that provides the 

necessary hydraulic head. 

This study documents meteoric fluid infiltration in one of the best-exposed 

Variscan extensional shear zones, the Quiberon detachment zone in the south 

Armorican Massif (France), that developed as a result of post-orogenic extension of the 

Variscan belt of Western Europe. The Quiberon detachment (QD) represents an 

excellent target to better understand the fluid-rock-deformation interaction in the crust 

and the timing of fluid flow during the Variscan post-orogenic extension because: 1) the 

structural, metamorphic, and geochronological record of the region is well established 

(e.g. Gapais et al., 1993, 2015; Turrillot, 2010); 2) brittle normal faults have been 

identified in the hanging wall of the QD (Gapais et al., 2015); 3) the QD is considered to 

have played a major role in the exhumation of high-grade metamorphic rocks (Brown 

and Dallmeyer, 1996), and 4) the region was characterized by a high geothermal gradient 

in part generated by the emplacement of peraluminous syntectonic leucogranites and 

migmatites (e.g. Brown and Dallmeyer, 1996; Gapais et al., 2015). 

This study presents structural, microstructural, electron backscatter diffraction 

(EBSD) petrofabrics, Ti-in-muscovite thermometry, hydrogen isotope (δD) and 

geochronology data (40Ar/39Ar and U-Th/Pb) from mylonitic leucogranites exposed in the 

QD footwall and associated high-grade metamorphic rocks. These data indicate that 

surface derived-fluids penetrated the ductile segment of the QD during high 

temperature deformation and that intense fluid-rock interaction started at 320 Ma. 

The QD can be compared, from at least a crustal permeability point of view, to 
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extensional detachments observed in the western part of the U.S. where tertiary 

meteoric fluid infiltration was enhanced by the combined effect of steep brittle normal 

faults development in the upper plate and advection of partially molten rocks in the 

lower crust. 

2. Geological setting and previous works in the southern Armorican domain 

a. General tectonic context and timing of metamorphism 

The Armorican Massif (Western France) is part of the Ibero-Armorican arc, which 

forms the western part of the Variscan belt of Western Europe. Three main domains, 

characterized by contrasted tectonic, geochronological and metamorphic features, are 

delimited by two major dextral strike-slip shear zones, the North Armorican Shear Zone 

(NASZ) to the north and the South Armorican Shear Zone (SASZ) to the south. In contrast 

to the southern domain where substantial Carboniferous crustal thickening and high-

pressure metamorphism have been recognized, the northern and central compartments 

are characterized by moderate crustal thickening and metamorphism (e.g. Ballèvre et 

al., 2013) (Fig. III-7A). In the southern domain, three main units can be identified from 

top to bottom (Fig. III-7 A and B): 1) The upper units formed by blueschists (1.4-1.8 GPa, 

550°C) and metavolcanics (0.8 GPa, 350-400°C)  (Bosse et al., 2002; Le Hébel et al., 2002, 

2007); 2) The intermediate units represented by micaschists characterized by 

greenschist to amphibolite-facies metamorphism (Bossière, 1988; Triboulet and Audren, 

1988; Goujou, 1992); and 3) The lower units marked by the presence of syntectonic 

leucogranites and high grade metamorphic rocks (0.8 GPa, 700-750°C; Jones and Brown, 

1990).  
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The whole region was affected by active late-Carboniferous strike-slip and coeval 

extensional shear zones that served as conduits for aqueous fluids and / or melt 

migration (e.g. Gapais et al., 2015). Syntectonic two-mica leucogranites, resulting from 

the partial melting of pelitic sediments, emplaced along the South Armorican dextral 

strike-slip Shear Zone (SASZ) as well as in the footwall of detachment zones (e.g. Jegouzo, 

1980; Bernard-Griffiths et al., 1985; Gapais et al., 1993, 2015; Turrillot et al., 2009; 

Tartèse and Boulvais, 2010; Tartèse et al., 2012; Fig. III-7 - A and B). These extensional 

shear zones separate high pressure-low temperature rocks (blueschist and 

metavolcanics) from leucogranites and migmatites below (Fig. III-7; e.g. Gapais et al., 

2015).  

The peak of high pressure metamorphism in the upper and intermediate units has 

been dated between ~370 Ma and ~345 Ma (U/Pb, 40Ar/39Ar and Rb/Sr, eg. Bosse et al., 

2002, 2005; Le Hébel, 2002; El Korh et al., 2011). Following this episode, activity on 

ductile shear zones at ~350-345 Ma allowed the exhumation of blueschist, porphyroid 

and micaschist (40Ar/39Ar and Rb/Sr dates; e.g. Bosse et al., 2002, 2005; Le Hébel, 2002; 

El Korh et al., 2011; Ballèvre et al., 2012). Migmatites from the lower crust were brought 

to the surface much later during the Late Carboniferous by the activity on detachment 

zones that developed as a consequence of post-orogenic extension (e.g. Goujou, 1992; 

Gapais et al., 1993, 2015; Brown and Dallmeyer, 1996; Cagnard et al., 2004; Turrillot et 

al., 2011). 

 

 



  

79 
 

 

Figure III-7: (A) Map of the southern Armorican domain. SASZ: South Armorican Shear zone; 
(B) W-E cross-section across the Quiberon detachment and the SASZ with focus on the main 
structures and rock types found in the Quiberon footwall; (C) Stratigraphic column and 
associated field pictures: (1) Late brittle normal faults, (2) General view of the Quiberon 
detachment zone, (3) Micaschist enclave (sample QUIB07), (4) High-strain zone made of 
ultramylonitic pegmatite and mylonitic leucogranite (samples QUIB03-06), (5) Mylonitic 
leucogranite with C-S structures highlighting a top-to-the-West sense of shear, (6) Magmatic 
foliation in weakly deformed leucogranite. Modified after Gapais et al (1993, 2015) and 
Turillot (2010).  
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b. The Quiberon detachment zone 

The Quiberon detachment footwall exposes two-mica leucogranites that contain 

a shallow (10-30) southwest-dipping foliation and ESE-WNW trending stretching 

lineation (Fig. III-7). Kinematic criteria (including C-S structures) indicate a dominant top-

to-the-WNW sense of shear (Gapais et al., 1993). Using U/Pb on monazite and zircon 

from synkinematic leucogranites and 40Ar/39Ar thermochronology, the activity of this 

representative Variscan detachment zone has been bracketed between ~320 Ma and 

298 Ma (Turrillot, 2010; Gapais et al., 2015). 

Low hydrogen isotope ratios (δD) of synkinematic muscovite from similar 

syntectonic leucogranite samples indicate that meteoric water interacted with these 

hydrous silicates during high temperature deformation (Dusséaux et al., 2019). However, 

the timing of surface-derived fluid infiltration and the duration of isotopic exchange is 

still elusive. Here, new hydrogen isotope, thermometry and geochronology data on 

syntectonic leucogranites emplaced in the footwall of the QD and migmatites below are 

presented. They indicate that the QD represented a major hydrothermal system during 

the Late Carboniferous, especially at ~300 Ma where syntectonic hydrothermal 

muscovite and apatite crystallized during partial melting and coeval migmatization. The 

analytical methods employed are presented in Chapter II. 
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3. Results 

a. Structural study 

(1) Macrostructures 

Quiberon Island provides exceptional outcrop conditions to study a late-Variscan 

detachment zone (Fig. III-7 - C2). It is mainly composed of mylonitic two-mica 

leucogranite emplaced within the footwall of the Quiberon detachment zone (Fig. III-7).  

Foliation planes (S) dip shallowly to the west and exhibit a strong lineation plunging to 

the WNW (~N280). S-planes are affected by  C-planes that dip to the WSW at 30° (Figs. 

III-7 - B, C2 and C5). The C-planes are parallel to the shear zone boundary and together 

with the S-planes form shear bands that indicates a top-to-the-WNW sense of shear (Fig. 

III-7 – C5). The ductile shear bands form an heterogeneous and anastomosing network 

that isolate sigmoidal quartz veins and micaschist lenses (Fig. III-7-C3). In some areas, 

leucogranites are moderately crosscut by pegmatite dykes that display different amount 

of strain. In high-strain zones, ultramylonitic pegmatite forms a 1 to 2-meter-thick layer, 

whereas coarser mylonitic leucogranite displays pervasive deformation with more 

spaced shear planes (Fig. III-7 - C4). Down section, away from localized deformation 

zones, weakly deformed leucogranites outcrop and exhibit a more magmatic foliation 

(Fig. III-7 - C6). Near the contact with the hanging-wall, mylonitic foliation is affected by 

steep brittle and late normal faults (Fig. III-7 - C1).  

(2) Microstructures 

As observed at the mesoscopic scale, coeval development of muscovite fish along 

shear and schistosity planes displaying a top-to-the-WNW sense of shear (Fig. III-8 - A) 

strengthens the idea that the Quiberon leucogranite was emplaced at the same time as 

shear zone activity (e.g. Gapais, 1989). The majority of mica fish are truncated in their 

upper and lower parts, suggesting that they form by rotation and then process of 
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solution-precipitation (Group 1, Ten Grotenhuis et al., 2003) (Fig. III-8 - B and D). Some 

of these group 1 muscovite fish evolve into group 2 by drag along micro shear planes 

that develop along the upper and lower sides of the grain, resulting in bent tips, 

comparable to the deflection of the S-planes in shear bands (Fig. III-8 - C; Passchier and 

Simpson, 1986). Shear planes also affect the tourmaline grains that display sigmoidal 

shapes within the shear bands (Fig. III-8 - A). 

Sub-solidus deformation textures such as rectangular and castellate quartz grain 

boundaries indicate that grain boundary migration (regime 3, Hirth and Tullis, 1992) was 

the dominant dynamic recrystallization process that affected the mylonitic syntectonic 

leucogranite (Figs. III-8 - E and F; 500-700°C; e.g. Stipp et al., 2002). 

(3) EBSD on quartz grains 

The crystallographic-preferred orientation (CPO) of quartz grains is used here as a mean 

to assess the temperature of quartz (re)crystallization in mylonitic granite from the QD 

footwall (Fig. III-8 - G; analytical procedure in Chapter II). Sample QUIB01 is 

representative of the section and located structurally 300 m below the QD detachment 

interface, contains ~35% of quartz, 35% of plagioclase, 15% of K-feldspar, 5% of 

muscovite and less than 1% of biotite. Sigmoidal quartz ribbons (Fig. III-8 - G) contain 

grains affected by grain boundary migration (Figs. III-8 - E and F) that indicate high- 

temperature recrystallization processes.  The quartz CPO of a representative quartz 

ribbon is shown on Fig. III-8 - G. 
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Figure III-8 (last page): Microstructures from the Quiberon detachment footwall. Sections are 
cut perpendicular to foliation and parallel to lineation. In mylonitic leucogranite, (A) 
Muscovite fish are associated with tourmaline sigma clast in shear band; (B) and (D) Lenticular 
muscovite fish (group 1 of Ten Grotenhuis et al., 2003); (C) Group 2 mica fish that form C-S 
structures indicating a top-to-the-west sense of shear; (E) and (F) Sub-solidus deformation 
textures such as rectangular and castellate quartz grain boundaries suggest that grain 
boundary migration (regime 3, Hirth and Tullis, 1992) was the dominant dynamic 
recrystallization process; (G) Microstructure and Crystallographic Preferred Orientation (CPO) 
of quartz grains measured using EBSD. Equal‐area projection, Lower hemisphere. Foliation (XY 
plane) is vertical, and lineation (X) is horizontal in this plane. (1) Band contrast map with quartz 
grain boundary highlighted in red, (2) Map of a quartz ribbon quartz grain boundary with 
Inverse Pole Figure (IPF) coloring (Y represents the lineation direction) and (3) corresponding 
CPO. 

 

Quartz c-axis pole figures exhibits 4 maxima symmetrically distributed at ~25° 

around the foliation plane (S) and the lineation direction (Fig. III-8 - G3) that suggest 

plastic deformation dominated by prismatic ‹c› glide system in a coaxial context with 

constriction (see framed model on Fig. III-8 - G from Barth et al., 2010). The c-axis also 

show 2 maxima located at ~70° asymmetrically to the direction of the lineation which 

can be interpreted as the activation of basal [a] slip. However, Kilian and Heilbronner 

(2017) have shown that peripheral [c]-axis maxima can occur due to different texture 

forming processes, especially during the nucleation of new grains at high differential 

stress levels, but with no relation to the activity of slip systems related to temperature.  

Quartz a-axes form a single asymmetric girdle indicating a dextral sense of shear 

combined with constriction (see framed model on Fig. III-8 - G from Barth et al., 2010). 

Both quartz c- and a-axes points to the activation of prism <c> that typically occurs 

around 550-600°C (e.g. Okudaira et al., 1995; Stipp et al., 2002). A m.u.d. (multiples of a 

uniform density) of 7.68 suggests a weak quartz CPO that can be explained by the 

presence of well-connected mica layers that localize the deformation and that in turn 

can decrease the amount of strain in the stronger quartz matrix (Hunter et al., 2016). 
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b. Hydrogen Isotope Geochemistry 

The hydrogen isotope compositions (δD values) of muscovite (Ms) and tourmaline 

(To) were measured in 11 samples of sheared leucogranite, pegmatite, micaschist and 

quartz veins collected across 300m of structural section into the underlying mylonitic 

footwall of the Quiberon detachment zone (Fig. III-9 and Table III-3; analytical 

procedures are summarized in Chapter II). The location of the Quiberon detachment 

shear zone was estimated based on the geological map of France to 1/1000000 (BRGM, 

2003). The structural distance of the samples below the Quiberon detachment was 

estimated based on samples coordinates and assuming an angle of dip of ~38° to the 

WNW for the detachment. This dataset includes δD values of muscovite previously 

reported in Dusséaux et al. (2019). 

 

  

Figure III-9: Hydrogen isotope analysis (δD 
[‰]) of hydrous silicates (muscovite and 
tourmaline) from micaschist, leucogranite, 
quartz veins and pegmatite located in the 
footwall of Quiberon detachment zone 
with respect to the distance from the 
hanging wall (200 to 500m). 
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Muscovite from leucogranite samples yields δDMs values from -85 to -79‰, which 

are 4 to 22‰ lower than those from the pegmatite with δDMs values between -75 and -

63‰. Muscovite from quartz veins and micaschist yields intermediate δDMs values that 

range from -80 to -70‰. As observed for the muscovite, tourmaline from leucogranite 

samples yield lower δDTo values (-87 ≤ δDTo ≤ -84‰) than those from pegmatite (δDTo = 

-80‰). Tourmaline from quartz veins have intermediate δDTo values that vary between 

-85 and -81‰.  

c. Muscovite geochemistry and Ti-in-Ms geothermometry 

To determine the origin (e.g. hydrothermal or magmatic) of muscovite and check 

if a link exists between their Mg, Ti, and Na content and their hydrogen isotope values, 

their chemical composition was tested using EPMA (Table III-4; analytical procedure 

described in Chapter II). Most muscovite grains have a high titanium content and plot 

essentially in the primary field of magmatic muscovite (Fig. III-10). However, some 

muscovite point analysis plot in the secondary muscovite field indicating a more 

hydrothermal origin (Fig. III-10). 

Results from QUIB01 sample with low δDMs and δDTo of -85‰ and -87‰ 

respectively are heterogeneous with 0.02 < Ti < 0.05 mol, 0.08 < Mg < 0.10 mol and 0.02 

< Na < 0.03 mol. In contrast, QUIB03 sample with slightly higher δDMs and δDTo of -82‰ 

and -86‰, respectively, provides a more homogeneous composition with a lower Ti 

content (0.02 < Ti < 0.03 mol), higher Mg content (0.09 < Mg < 0.11 mol) and similar Na 

content (0.02 < Na < 0.03 mol) when compared to sample QUIB01. As a consequence, 

muscovites displaying heterogeneous chemical compositions (QUIB01-type sample) 

predominantly plot in the primary (magmatic) field of the Miller diagram (1981), 

whereas those which are more homogeneous (QUIB03-type sample), and characterized 
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by low titanium and high magnesium contents, have a tendency to plot in the 

hydrothermal field. The heterogeneity of sample QUIB01 muscovites is also 

strengthened at the grain scale where transects along the long axis of the grain show a 

decrease of the titanium content from the tip to the core (i.e. muscovite 11; Table III-4). 

To determine the temperature of isotopic exchange between the fluid and the 

mineral, the titanium-in-muscovite thermometer (Wu & Chen, 2015) was used on two 

representative samples of mylonitic leucogranite (QUIB01 and QUIB03). A  pressure of 

4 ± 1 kbar at which the leucogranite has been emplaced was used (e.g. Gapais et al., 

1993; Turrillot, 2010) to define the Ti-in-Ms geothermometer of Wu and Chen (2015). 

Results indicate a temperature of 569 ± 42°C for QUIB01 and 546 ± 41°C for QUIB03 

(Table III-4). 

 

 

Figure III-10: Muscovite chemical composition of Quiberon mylonitic leucogranite plotted in 
the terciary Mg–Ti–Na diagram of Miller et al. (1981) with associated Mg⁄(Mg + Ti + Na) molar 
ratios that illustrates the shift from the primary (magmatic) to the secondary (hydrothermal) 
muscovite fields. See Figure III-11 for corresponding 40Ar/39Ar ages. 
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Name Rock type 
St

ru
ct

u
ra

l d
is

ta
n

ce
 

(m
) 

δDMuscovite (‰) 
δDTourmaline 

(‰) 
δDMs 

- 
δDTo 

Quartz microstructure thermometry Ti-in-Muscovite thermometry Location 

250 
< f < 
500 
µm 

500 
µm < 

f 

250 < 
f < 

500 
µm 

500 
µm 
< f 

T 
(°C) 

±  
(°C) 

δDwater 

(‰) 
[δDMs] 

- + 
δDwater 

(‰) 
[δDTo] 

- + T (°C) ±  (°C) δDwater (‰) [δDMs] - + Latitude (DD) Longitude (DD) 

QUIB 
07 

Micaschist 200 -76     550 150 -62 9 16         47°30'21.94''N 03°09'37.87''W 

QUIB 
08 

Quarz vein 250  -76  -81 5 550 150 -62 9 16 -69 11 20      47°30'26.2''N 03°08'58.6''W 

QUIB 
09 

Quarz vein 255 -70 -76    550 150 -63 9 16         47°30'26.1''N 03°08'58.6''W 

QUIB 
01 

Mylonitic 
leucogranite 

300  -85  -87 3 550 150 -71 9 16 -75 11 20 569 42 -72 3 3 47°29'04.1''N 03°08'38.1''W 

QUIB 
02 

Mylonitic 
leucogranite 

305 -79 -79    550 150 -66 9 16         47°29'04.2''N 03°08'37.3''W 

QUIB 
06 

Ultramylonitic 
pegmatite 

320 -75     550 150 -61 9 16         47°29'04.5''N 03°08'37.9''W 

QUIB 
04 

Ultramylonitic 
pegmatite 

321 -64 -73    550 150 -50 9 16         47°29'04.0''N 03°08'37.6''W 

QUIB 
05 

Ultramylonitic 
pegmatite 

321.5 -73 -73 -80  7 550 150 -60 9 16 -68 11 20      47°29'03.9''N 03°08'37.6''W 

QUIB 
03 

Mylonitic 
leucogranite 

322 -82 -81 -84 -86 3 550 150 -69 9 16 -74 11 20 546 41 -69 3 4 47°29'04.0''N 03°08'37.5''W 

QUIB 
16 

Quarz vein 465  -79    550 150 -66 9 16         47°28'54.5''N 03°08'11.0''W 

QUIB 
17 

Quarz vein 500 -80 -79 -85 -85  550 150 -66 9 16 -73 11 20      47°28'54.3''N 03°08'07.8''W 

 

Propagated uncertainties Error Error (‰) Propagated error in δDwater 

Isotopic analysis (δD) ± 2‰ ± 2‰ 
± 16.2‰ 

Temperature deduced from quartz microstructure ± 150°C ± 16‰ 

Temperature deduced from Ti-in-Ms geothermometry ± 42°C ± 5‰ ± 5.2‰ 

 
Table III-3: GPS localization, hydrogen isotope composition of muscovite (Ms) and tourmaline (To) from leucogranite, micaschist, quartz vein and pegmatite 
granite found in the mylonitic footwall of Quiberon detachment zone. δDwater values have been calculated by using the hydrogen isotope muscovite-water and 
tourmaline-water fractionation factors (α) of Suzuoki and Epstein (1976) and Kotzer et al. (1993), respectively, and using temperatures indicated by quartz 
microstructures (550 ± 150°C) and by the Ti-in-Ms thermometer  (546 to 569 ± 42°C). Calculated δDwater values have a propagated uncertainties of ± 16.2‰ and ± 
5.2‰, taking into account the precision of isotopic analyses (δDhydrous silicate ± 2‰) and the uncertainties linked to the temperature of recrystallization (550 ± 150˚C 
results in δDwater uncertainties of ± 16‰ and T ± 42˚C results in δDwater uncertainties of ± 5.2‰). 
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Sample QUIB01 QUIB03 

Muscovite 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 8 

Point          a b c  a b c d a b    

O
xi

d
e 

(W
t.

%
) 

Al2O3 33.93 33.91 33.50 33.36 33.65 33.63 33.66 33.91 33.78 33.56 33.96 33.61 34.17 33.30 33.71 33.89 33.81 33.89 33.68 33.36 34.28 33.26 

SiO2 46.68 46.46 46.24 47.23 47.42 47.02 46.46 46.92 46.93 46.45 46.52 46.35 46.87 46.71 46.91 46.67 46.43 46.50 46.33 45.67 46.35 46.57 

TiO2 0.35 0.72 0.50 0.58 0.57 0.89 0.48 0.65 0.46 0.74 0.57 0.91 0.38 0.66 0.56 0.49 0.54 0.58 0.63 0.45 0.32 0.52 

Na2O 0.50 0.50 0.51 0.38 0.38 0.39 0.51 0.43 0.44 0.45 0.51 0.49 0.52 0.40 0.48 0.42 0.51 0.50 0.45 0.33 0.31 0.38 

MgO 0.92 0.96 1.01 1.01 1.00 0.94 0.94 0.99 1.02 0.89 0.93 0.89 0.82 1.03 1.01 1.05 0.91 0.95 0.94 0.92 0.86 1.07 

MnO 0.01 0.03 0.03 0.04 0.03 0.04 0.03 0.02 0.02 0.02 0.04 0.04 0.02 0.04 0.04 0.00 0.02 0.01 0.01 0.03 0.03 0.01 

FeO 2.22 2.24 2.36 2.36 2.26 2.39 2.35 2.39 2.20 2.15 2.19 2.26 2.06 2.60 2.60 2.27 2.19 2.09 2.14 2.07 1.97 2.17 

K2O 11.40 11.22 11.20 11.00 11.32 11.33 11.12 11.45 11.42 11.22 11.30 11.25 10.82 11.29 11.17 11.20 11.27 11.21 11.18 11.20 9.62 11.36 

CaO 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.02 0.01 0.00 0.01 0.02 0.03 0.00 

Cr2O3 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.05 0.01 0.00 0.04 

Sum 96.04 96.04 95.38 95.96 96.66 96.63 95.55 96.79 96.27 95.51 96.04 95.81 95.69 96.03 96.47 96.03 95.73 95.76 95.40 94.05 93.76 95.38 

Conversion Factor 4.01 4.01 4.04 4.00 3.98 3.98 4.03 3.98 4.00 4.03 4.01 4.02 4.00 4.02 3.99 4.00 4.02 4.01 4.03 4.09 4.05 4.03 

M
o

l (
n

o
rm

al
is

ed
 t

o
 1

1 
o

xy
ge

n
s)

 

Al 2.67 2.67 2.65 2.62 2.62 2.63 2.66 2.65 2.65 2.65 2.67 2.65 2.68 2.62 2.64 2.66 2.67 2.67 2.66 2.68 2.72 2.63 

Si 3.11 3.10 3.11 3.14 3.14 3.12 3.11 3.11 3.12 3.11 3.10 3.10 3.12 3.12 3.12 3.11 3.11 3.11 3.11 3.11 3.12 3.13 

Ti 0.02 0.04 0.03 0.03 0.03 0.04 0.02 0.03 0.02 0.04 0.03 0.05 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.03 

Na 0.03 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 

Mg 0.09 0.10 0.10 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.09 0.08 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.11 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.13 0.11 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.12 

K 0.49 0.48 0.48 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.46 0.48 0.47 0.48 0.48 0.48 0.48 0.49 0.41 0.49 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

[Mg/(Fe+Mg)] 0.43 0.43 0.43 0.43 0.44 0.41 0.42 0.43 0.45 0.42 0.43 0.41 0.41 0.42 0.41 0.45 0.43 0.45 0.44 0.44 0.44 0.47 

T(°C) at 4 Kbar 494 607 546 571 567 643 539 587 536 611 567 648 505 590 563 546 559 572 585 534 482 557 

SD (°C) (for P ± 1 kbar) 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 4 4 5 5 4 4 4 

Average T(°C) at 4 Kbar 569 546 

SD (°C) on average 42 41 

Table III-4: Microprobe analysis of muscovite grains (transects across grains are shaded) and Ti-in-Ms geothermometry (Wu and Chen, 2015).
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d. Geochronology 

(1) 40Ar/39Ar on muscovite from mylonitic leucogranite 

Two samples of mylonitic leucogranite (QUIB01 and QUIB03, highlighted by red 

squares on Fig. III-9) were dated using 40Ar⁄ 39Ar laser probe step-heating geochronology 

on single grains (Table VI-1 in the appendix; Fig. III-11; procedure described in Ruffet et 

al., 1991, 1995 and method in Chapter II). Apparent age errors are plotted at the 1σ 

level. 

Two single grains from QUIB01 provide plateau ages of 319.5 ± 0.9 Ma and 307.7 

± 0.7 Ma. Two muscovite grains from QUIB03 give constant plateau ages of 304.8 ± 1.0 

Ma and 303.4 ± 1.0 Ma. The two different ages obtained in sample QUIB01 are 

consistent with the heterogeneous composition of muscovite but also with the 

magmatic and hydrothermal signatures emphasized in the ternary diagram of Miller et 

al. (1981). The constant age of ~304 Ma provided by sample QUIB03 is also reflected in 

muscovite composition. 

 

 

 

 

 

Figure III-11: 40Ar/39Ar step-heating spectra 
of muscovite from mylonitic leucogranite 
(QUIB01 and QUIB03) with associated 
Mg⁄(Mg + Ti + Na) for each analyzed 
muscovite grain that illustrates the shift 
from (I) the primary to (II) the secondary 
muscovite fields in the tertiary Mg–Ti–Na 
diagram (e.g. Miller et al., 1981). 
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(2) U-Th/Pb and Fission Track dating in leucogranite 

Two samples of weakly deformed and mylonitic leucogranite from the Quiberon 

footwall were dated by U-Th/Pb (Table III-5; Fig. III-12; Géosciences Rennes, France). 

The weakly deformed leucogranite (sample 15-12) gives an age of 318 ± 2.2 Ma on 

monazite, and of 312.8 ± 3.0 Ma on magmatic apatite (compact REE spectra). The more 

deformed sample (15-1) yields an age of 316 ± 4.3 Ma on zircon and of 303 ± 3.6 Ma on 

hydrothermal apatite (spread REE spectra). 

Sample Description 
U-Th/Pb 
Zircon 

U-Th/Pb 
Monazite 

U-Th/Pb 
Apatite 

Fission 
track 

Apatite 

REE spectra 
Apatite 

15-12 
Weakly deformed 

leucogranite 
Non 

conclusive 
318 ± 2.2 Ma 

312.8 ± 
3.0 Ma 

160 Ma Compact 

15-1 
Mylonitic 

leucogranite 
316 ± 4.3 

Ma 
Non 

conclusive 
303.0 ± 
3.6 Ma 

160 Ma Spread 

Table III-5: Summary of zircon, monazite and apatite U-Th/Pb and apatite fission track dates, 
with associated apatite REE spectra. 

 

 

Figure III-12: Summary of the U-Th/Pb results on monazite, zircon and apatite obtained on 
weakly deformed (QSC 15-12) and mylonitic (QSC 15-1) Quiberon leucogranite. Note the 
compact REE spectra that reflect a magmatic signature in apatite of the weakly deformed 
sample (QSC 15-12) compared to the hydrothermal apatite with spread REE spectra in the 
mylonitic leucogranite sample (QSC 15-1). 
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(3) U-Th/Pb (LA-ICPMS) on monazite from migmatites 

Sample NAV04 yields a spread of concordant U-Pb analyses that range from ~320 

to ~290 Ma (n = 35; Fig. III-13; Table VI-2 in the appendix). A weighted average of 

207Pb/236U age provides a result of 308.4 ± 2.3 Ma (MSWD = 1.2, n = 35; Fig. III-13). 

Monazite is relatively enriched in LREE, and is characterized by a significant Eu anomaly 

and yields a slight range in HREE (Fig. III-13F), consistent with peritectic crystallisation 

with feldspar from (partial) melt. This is consistent with observations of selvages of 

quartz and feldspar (myrmekite) and lobate grain boundaries (grain boundary migration) 

in thin section that are textures indicative of partial melting within the migmatitic host 

rock. Monazites show some faint zoning in BSE (Fig. III-13A) and show differences in Y 

concentration (Table VI-2 in the appendix). This can be interpreted as growth zoning, 

demonstrating that monazite grew during reactions with another phase. The relative 

differences in Y and HREE concentrations may indicate reactions with garnet. The 

difference in age zoning was however within uncertainty and therefore non-resolvable. 

As monazites that yield relatively older ages within the spread are generally elongate 

and oriented within the fabric (Fig. III-13A), it could be postulated that continued 

crystallization of monazite occurred during a fabric-forming event, potentially as the 

rock began to exhume.  
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Figure III-13: Summary of the U-Th/Pb on monazite results obtained in Port-Navalo migmatite. 
(A) Microtextural aspect of monazite grains; (B) ; (D) 207Pb/236U and (E) 208Pb/232Th dates 
obtained in this study; (F) Monazite REE spectrum highlighting the magmatic signature of 
apatite. 
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4. Discussion 

a.  Meteoric fluid infiltration during high-temperature deformation  

(1) Fluid-rock interaction during high-temperature deformation 

The microstructural analysis of quartz showing grain boundary migration together 

with EBSD data indicating prism <c> glide (Fig. III-8) is compatible with high temperature 

deformation (500 ± 150°C, e.g. Hirth and Tullis, 1992; Okudaira et al., 1995; Stipp et al., 

2002). The Ti-in-Ms geothermometer applied to synkinematic mica fish also indicates 

temperatures above 500°C (546 to 569 ± 42°C; Table III-4).   

Synkinematic muscovite and tourmaline have reached hydrogen isotope 

equilibrium as: (1) the microstructures contain tourmaline and muscovite associated in 

C/S structures (Fig. III-8B), and (2) the δDTo values are 3 to 7‰ lower than the δDMs 

values (Fig. III-9), in agreement with the difference of 5‰ between those two minerals 

shown by the isotope fractionation of Blamart et al. (1989) at 550°C and 3 kbar.  

Two main observations indicate that hydrogen isotope exchange between fluids 

and hydrous minerals likely occurred during high-temperature grain-scale deformation: 

(1) elongate lenticular muscovite fish formed by recrystallization involving solution-

precipitation (ten Grotenhuis et al., 2003) and tourmaline grains form shear bands that 

indicate a top-to-WNW sense of shear (Fig. III-8); (2) consistent high deformation 

temperatures are indicated by quartz microstructures and the Ti-in-Ms 

geothermometer. 

(2) Calculation of the δDwater values of syntectonic fluids 

The isotope composition of the fluid present in the Quiberon detachment footwall 

was calculated based on the hydrogen isotope composition of synkinematic muscovite 

and tourmaline, the hydrogen water-muscovite isotope fractionation factor of Suzuoki 
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and Epstein (1976) and the hydrogen water-tourmaline isotope fractionation factor of 

Kotzer et al. (1993) and estimated temperature of isotope exchange between the fluid 

and the mineral (Table III-3).  

 Deformation temperatures of 550 ± 150°C deduced from quartz 

microstructures, coupled with the ẟDMs values and the muscovite-water 

hydrogen isotope fractionation factor of Suzuoki and Epstein (1976), allow us 

to calculate ẟDwater values ranging from -71 to -50 ± 16‰.  

 The same temperature estimates (550 ± 150°C), combined with the ẟDTo 

values and the tourmaline-water hydrogen isotope fractionation factor of 

Kotzer et al. (1993), allow us to calculate ẟDwater values ranging from -75 to -69 

± 20‰.  

 The Ti-in-Ms thermometer (569 ± 42°C for sample QUIB01), coupled with the 

ẟDMs values and the muscovite-water hydrogen isotope fractionation factor of 

Suzuoki and Epstein (1976), allows us to calculate a ẟDwater value of -72 ± 3‰ 

for QUIB01. 

 The Ti-in-Ms thermometer (546 ± 41°C for sample QUIB03) coupled with the 

ẟDMs values and the muscovite-water hydrogen isotope fractionation factor of 

Suzuoki and Epstein (1976) allows us to calculate a ẟDwater value of -69 ± 4‰ 

for QUIB03. 

The ẟDwater value calculations based on muscovite are similar to those calculated 

from tourmaline within uncertainty. The ẟDwater values calculated based on Ti-in-Ms 

geothermometry exhibit a maximum difference of 1% with the ẟDwater calculated based 

on quartz microstructure thermometry (Table III-1). 
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(3) Meteoric fluid infiltration and mixing with deep crustal fluids 

The lowest δDwater values were measured in mylonitic leucogranite (-75‰) 

whereas the ultramylonitic pegmatite yielded the highest δDwater (-50‰). This 25‰ 

difference can be explained by: (1) predominant interaction with magmatic fluids - 

pegmatite developed during syntectonic crystallization of late magmatic fluids (Gapais 

and Boundi, 2014); (2) flow partitioning in high strain zones;  (3) duration of meteoric 

fluid-rock interaction - shorter in late pegmatite dykes than in leucogranite; (3) rock 

permeability - the ultramylonitic small-grained pegmatite was less porous and 

permeable than the surrounding coarser-grained leucogranite. In contrast, the low δD 

values of muscovite and tourmaline (-87 < δDhydrous silicate < -73‰) are obtained in 

leucogranite, pegmatite, quartz veins and micaschist in the Quiberon footwall. They are 

interpreted as indicating interaction with deuterium-depleted meteoric fluids, in good 

agreement with the hydrogen isotope data published in Dusséaux et al. (2019), where 

strong meteoric fluid-rock interaction has been identified in the upper part of the 

detachment footwalls, including the Quiberon detachment  (Fig. III-9 and Table III-3).  

The calculated ẟDwater values in the Quiberon detachment footwall range from -75 

to -50‰. This 25‰ difference in ẟDwater values from leucogranite, micaschist, quartz 

veins and pegmatite are interpreted as indicating different fluid sources that interacted 

with muscovite during deformation. This interpretation agrees with the mixing 

relationship defined between two end-member fluids in the Armorican shear zones, 

with high-δD deep crustal (magmatic and/or metamorphic) fluids (ẟDwater value ~ -35‰) 

and low-δD meteoric fluids (ẟDwater value ~ -75‰) (Dusséaux et al., 2019).  

The variability in the low δDwater values calculated from muscovite and tourmaline 

in leucogranite (from -72 to -50‰ and -75 to -69‰, respectively) within the Quiberon 
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detachment footwall can be explained either by variable temperatures of fluid-rock 

interaction and/or prevalent interaction with either metamorphic or meteoric fluids; the 

lowermost δDwater value of -75‰ reflecting the greatest interaction with surface-derived 

fluids and the uppermost δDwater value of -50‰ involving predominantly metamorphic 

fluids (see discussion in part III-A; Dusséaux et al., 2019). 

(4) Hydrogen isotope composition of meteoric fluids 

The lowermost δDwater value of -75‰ provides a reasonable estimate of the δDwater 

value of the invading meteoric fluid in the crust. However, the downward penetration 

of surface-derived fluids in the crust leads to an increase in ẟDwater values due to fluid-

rock interaction. Therefore the lower δDwater value of -75‰ estimated from 

synkinematic minerals that crystallized at depth represents a maximum value that could 

have been even lower if this fluid was extracted from the near-surface geological 

environment (e.g. Gébelin et al., 2012). As discussed in section III-A (Dusséaux et al., 

2019), this ẟDwater value remains relatively high and could be explained by the 

paleogeographic framework during the Late Carboniferous. Indeed, many parameters 

could have induced an increase of the ẟDwater values of precipitation in the southern 

Armorican domain, such as its low-latitude position, a warm paleoclimate, the presence 

of an extensive ice sheet cover, and/or a medium elevation. 

b. Geochronology 

(1) Thermochronological history of the Quiberon detachment shear zone 

Various dating techniques (U-Th/Pb, Ar/Ar and fission track) applied to different 

minerals (zircon, monazite and muscovite) that have different closure temperatures 

allow us to reconstruct the thermochronological history of the Quiberon leucogranite 

(Fig. III-14).  
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 Zircon from weakly deformed leucogranite yields an U-Th/Pb age of 316 ± 

4.3 Ma with a closure temperature estimated at 800 ± 50°C (Cherniak and 

Watson, 2001).  

 Monazite from mylonitic granite yields an U-Th/Pb age of 318 ± 2.2 Ma 

with a closure temperature estimated at 700 ± 50°C (Cocherie, 2005).  

 Monazite from the Port Navalo migmatite, below the footwall of Quiberon 

detachment, gave U-Th/Pb ages ranging from ~320 to 290 Ma.  

These ages are interpreted as reflecting the emplacement of the Quiberon granite 

and the onset of partial melting at ~320 Ma. Similar ages have been reported for Varican 

partial melting events in the southern Armorican domain at ~320 Ma (e.g. Peucat, 1983; 

Turrillot et al., 2009; Turrillot, 2010; Tartèse et al., 2012). Similarly, the onset of 

migmatization was dated at ~315 Ma, based on zircon and monazite U-Th/Pb ages of 

migmatites in the French Massif Central that constitute the eastern continuation of the 

Armorican Massif (Gébelin et al., 2009). 

 Apatite has a closure temperature of 325 to 550°C for the diffusion of Pb 

(e.g. Watson et al., 1985; McDougall and Harrison, 1988; Cherniak et al., 

1991) and yields an U-Th/Pb age of 312.8 ± 3.0 Ma for weakly deformed 

leucogranite and 303.0 ± 3.6 Ma for mylonitic leucogranite. 

 Muscovite from mylonitic leucogranite yields 40Ar/39Ar ages that range from 

319.5 ± 0.9 to 303.4 ± 1.0 Ma, with a closure temperature for Ar diffusion 

estimated at 425 ± 50°C (Villa, 1998).  
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Figure III-14: Temperature (°C) – time (Ma) plot summarizing the geochronology results 
obtained in the Quiberon footwall weakly deformed to mylonitic leucogranite and the Port-
Navalo migmatite (Monazite: Mnz; Apatite: Ap; Fission Track; FS). Note the associated frames 
with REE spectras associated with magmatic orhydrothermal apatite and the microstructure 
and chemical composition associated with magmatic to hydrothermal muscovite. 

 

 Apatite from weakly deformed to undeformed leucogranites yields fission 

track ages of ~160 Ma with an estimated closure temperature of 85 ± 50°C 

(Gunnell, 2000). 

The oldest 40Ar/39Ar age of ~320 Ma obtained on muscovite is comparable to the 

U-Th/Pb ages on monazite and zircon that were interpreted to reflect leucogranite 

emplacement (Fig. III-14). Therefore, the oldest muscovite 40Ar/39Ar age is interpreted 

to show a rapid cooling of the leucogranite from ~800 to 400°C at ~320 Ma.  
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The ages obtained using various dating techniques on muscovite and apatite with 

closure temperatures estimated from ~500 to 85°C range from ~320 to 160 Ma (Fig. III-

14). Therefore, the Quiberon leucogranite cooled very slowly from the Late 

Carboniferous to the Middle Jurassic. 

The 40Ar/39Ar ages obtained on synkinematic muscovite allow us to bracket activity 

on the QD between ~320 Ma and 303 Ma. These results are consistent with previous 

U/Pb on monazite and zircons and 40Ar/39Ar thermochronology of the Quiberon 

leucogranite that support activity on the QD between ~320 Ma and 298 Ma (Turrillot, 

2010; Gapais et al., 2015). 

(2) Timing of meteoric fluid infiltration 

 Magmatic apatite (less variable REE spectra) from weakly deformed 

leucogranite yields the oldest U-Th/Pb age (312.8 ± 3.0)  

 Hydrothermal apatite (spread REE spectra) for mylonitic leucogranite 

yields the younger U-Th/Pb age (303.0 ± 3.6 Ma) 

 Muscovite in mylonitic leucogranite with heterogeneous compositions (i.e. 

magmatic to hydrothermal; 0.02 < Ti < 0.05 mol) yields the older 40Ar/39Ar 

ages that range from 319.5 ± 0.9 Ma to 307.7 ± 0.7 Ma 

 Muscovite in mylonitic leucogranite with homogeneous hydrothermal 

compositions (0.02 < Ti < 0.03 mol) yields the younger 40Ar/39Ar ages that 

range from 304.8 ± 1.0 Ma to 303.4 ± 1.0 Ma 

 However, muscovite from both dated leucogranite samples yield low δD 

values that are similar within uncertainty (± 2‰) with δDMs values ranging 

from -85 to 81‰ and δDTo value from -87 to 84‰. The δDmineral values allow 
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us to calculate δDwater values ranging from -75 to -69 ± 5‰ in mylonitic 

leucogranite that are interpreted as a signature of deuterium-depleted 

meteoric fluids. 

 The weighted average of 207Pb/235U ages of monazite from migmatite below 

the footwall is 308.4 ± 2.3 Ma. 

The minerals with a magmatic composition yield ages between ~320 and 308 Ma 

(Fig. III-14). The magmatic monazites of the undeformed granite have an age of ~313 

Ma and the youngest muscovite from mylonitic leucogranite with an heterogeneous 

(magmato-hydrothermal) composition is dated at ~308 Ma. However, monazite and 

muscovite grains are getting younger as their chemistry tends towards a more 

hydrothermal signature. Indeed, both hydrothermal monazite and muscovite only yield 

young ages between ~305 and 303 Ma. It is therefore very likely that infiltration of 

meteoric fluids was intensified between ~308 and 303 Ma. The youngest Ar/Ar age 

obtained on a deuterium-depleted muscovite fish is interpreted to record the infiltration 

of meteoric fluids until ~303 Ma (Fig. III-14). Meteoric fluids could continue infiltrating 

the crust after the closing of the argon and hydrogen systems during exhumation of the 

samples. 

However, the more evolved muscovite fish (group 1 micafish of Fig. III-8B, and 

bent tips of group 2 micafish (Fig. III-8C) in QUIB01) from mylonitic leucogranite have 

lower δD values and Ar/Ar ages that cover a large time span from ~320 to 308 Ma. 

Moreover, they display a heterogeneous composition at the grain scale with a decrease 

of the titanium content from the tip to the core, in good agreement with microstructural 

observation that show recrystallization processes by solution-precipitation. In contrast, 

the less evolved muscovite fish (group 1 only in QUIB03) which are homogeneous at the 
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grain scale have higher δD values and Ar/Ar ages from ~305 to 303 Ma. One 

interpretation is that the QUIB01 mylonitic leucogranite sheet was susceptible to 

deformation-induced recrystallization and meteoric-fluid rock exchange for a longer 

time compared to the QUIB03 mylonitic leucogranite.  

Finally, the migmatite below the footwall yield a spread of concordant U-Pb 

analyses varying from ~320–290 Ma, but the weighted average of ages records an 

important partial melting event at ~308 Ma that could have provided the necessary heat 

at depth to enhance and intensify the hydrothermal system in the QD footwall.  

c. Mechanisms of meteoric fluid infiltration 

As developed in the introduction, previous studies conducted on detachment 

zones have found 3 main conditions for explaining the infiltration of meteoric fluids 

down to the brittle-ductile transition (e.g. Mulch et al., 2004, 2006; Person et al., 2007; 

Gébelin et al., 2011, 2015, 2017): 1) brittle normal faults and fracture development in 

the upper crust 2) a high geothermal gradient and 3) the presence of a hydraulic head. 

1) In Quiberon Island, brittle normal faults have been recognized anchoring in the 

micaschists (Figs. III-7 – A and B). These brittle structures may have enhanced the 

porosity in the upper crust and served as conduits for surface-derived fluids to 

penetrate the crust.  

2) At the same time, emplacement of syntectonic leucogranites (Ar/Ar and U/Pb) and 

important partial melting events in the lower crust (U/Pb) could have provided the 

necessary high heat flow to sustain the convection of fluids at depth (Fig. III-14). 

In addition, the anastomosing C-S structures made of well-connected mica layers 

that have localized the strain and weakened the rock may have promoted an 



  

103 
 

enhanced permeability of mylonitic leucogranite in the QD footwall (e.g. McCaig, 

1988; Bauer et al., 2000; Tartèse et al., 2013; Hunter et al., 2016). 

3) The fact that previous studies have shown that a regional hydraulic head would be 

needed to allow surface fluids to migrate downwards is in good agreement with 

the fact that the southern Armorican domain is part of the internal thickened zones 

of the Variscan Belt (e.g. Ballèvre et al., 2013).  

5. Conclusion 

The late-Variscan Quiberon detachment zone juxtaposes high pressure-low 

temperature rocks over high-grade leucogranite and migmatite in the southern 

Armorican domain (France). This study documents the infiltration of meteoric fluids into 

the footwall of the Quiberon detachment at ~305 Ma, when recrystallized hydrous 

minerals (muscovite and tourmaline) equilibrated with low-δD (meteoric) water at 

depth during high temperature deformation. The downward flow of meteoric fluid at 

depth is coeval with the emplacement of migmatite. Migration of fluids from the Earth’s 

surface down to the active mylonitic detachment footwall was achieved by fluid flow 

along normal faults that developed during post-orogenic extension. The high heat flow 

from migmatization helped sustain buoyancy-driven fluid convection over the timescale 

of detachment tectonics. Low δD values in synkinematic fluids are indicative of 

precipitation-derived fluids sourced at high elevation and document that the ground 

surface above this section of the Variscan Belt attained a certain elevation at the end of 

the Carboniferous. 
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C. Fluid inclusions analysis in Quiberon and Piriac detachment zones 

1. Introduction 

Detachment zones are extensional structures that favour the downward 

penetration of meteoric fluids (e.g. Fricke et al., 1992; Nesbitt and Muehlenbachs, 1995; 

Mulch et al., 2005, 2007; Gébelin et al., 2011, 2015, 2017). As explained in the parts A 

and B of Chapter III , deciphering the meteoric component of fluids present at depth 

allows a better understanding of fluid circulation in the crust and mineralisation 

processes at the orogen scale, as well as being used for paleoaltimetry reconstruction 

(e.g. Boiron et al., 2003; Mulch et al., 2004). 

During the crystallisation of minerals, microscopic amounts of fluids are trapped 

in cavities and form fluid inclusions (FIs). Their study allows the distinguishing of 

different types of fluids and help to recover the P-T conditions at the time of trapping 

(Roedder, 1984). These fluids can originate from dehydration reactions of metamorphic 

rocks, segregation of magmatic fluids during magma crystallisation, downward 

infiltration of surface-derived fluids into the crust, in addition to devolatilizing of the 

mantle. 

The aim of this study was to analyse the fluid inclusions trapped in deformed 

metamorphic and magmatic rocks in the footwall of the Quiberon and Piriac detachment 

zones (Armorican Massif, France) where meteoric fluids have been identified through 

low ẟD values of hydrous minerals (ẟDMs down to -88‰, see sections III-A and III-B). 

2. Structural and microstructural description of samples 

Fluid inclusions were analysed on oriented thick sections of two samples from the 

Quiberon detachment zone (QUIB03 and QUIB07) and one sample from Piriac-sur-Mer 
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detachment zone (PIR16). QUIB03 is a mylonitic leucogranite found in a high-strain zone 

(field picture on Fig. III-7 - C4) and QUIB07 is a sigmoidal quartz vein in a micaschist 

enclave (Fig. III-7 - C3), both located in the footwall of the Quiberon detachment. PIR16 

is a mylonitic leucogranite in the footwall of the Piriac detachment (fig. III-3 - A). QUIB03 

yield a ẟDMs value of -82% and QUIB07 yield a ẟDMs value of -76‰. PIR16 yielded the 

lowest ẟDMs value (-88‰, i.e. the most “meteoric” value) found in the southern 

Armorican domain (ẟDMs values are detailed in section III-A).  

FIs were analysed in quartz grains and have a typical diameter of ~10 µm. They are 

all biphasic and composed of a vapour and a liquid phase (Fig. III-15). Raman 

microspectrometry does not reveal any volatile species in the vapour phase. This means 

that the only phase transitions that will be observable when conducting 

microthermometry are the temperature of ice melting (Tim) and the bulk 

homogenisation temperature (Th). 

The microstructural analysis shows that most secondary fluid inclusions define 

structural planes that are interpreted as conjugate plans or relay structures (Fig. III-15 - 

A). Some FIs seem aligned (Fig. III-15 - B) on planes as if they may have been trapped 

along an initial crack plane. They could correspond to “healed fractures” described in 

Lambrecht and Diamond (2014). In sample QUIB03, some FIs display a fish shape that 

reflects dextral shearing (Fig. III-15 - C and D). The brittle planes and deformed shapes 

of the inclusions globally appear in good agreement with the sense of shearing of the 

detachment zones (top-to-W for Quiberon and top-to-N for Piriac). The structural 

observations highlight a syntectonic entrapment of the fluid inclusions during the 

activity of the detachment zones. 
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Figure III-15: (A) Fluid inclusions in structural planes interpreted as a relay structure; (B) 
Biphasic aqueous inclusions defining a plane; (C) Biphasic aqueous inclusions with different 
shapes and ice melting temperatures; (D) Biphasic aqueous inclusions appearing sheared with 
a top-to-the-west sense of shearing or changed by the process of necking-down.  

 

After preliminary study of the three samples described above, Théo Piantoni 

performed the microthermometric study of two leucogranite samples sent by C. 

Dusséaux as part of an internship at the University of Lille (France) under the supervision 

of Pr. Michel Dubois. The data were analysed and interpreted by C. Dusséaux and M. 

Dubois. Both samples are Guérande-type mylonitic leucogranite emplaced in the 

footwall of the Piriac detachment. Sample PIR01 is the closest to the detachment 

(~500m) and yield a low ẟDMs value (-81‰). Sample PIR06 is situated at 517m beneath 

the detachment and yielded the higher ẟDMs found in Guérande granite (-76‰). The 
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optical analysis coupled with Raman microspectrometry, showed that the inclusions in 

PIR01 and PIR06 were all biphasic, volatile-free, therefore similar to samples QUIB03, 

QUIB07 and PIR16. 

 

 

Figure III-16: Histograms reporting the ice melting and homogenisation temperatures acquired 
on samples QUIB and PIR from the Quiberon and the Piriac detachment footwalls, respectively. 
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3. Results 

a. Microthermometry results 

Accumulated microthermometry data are shown in histogram format for each 

analysed sample on Fig. III-16). Salinity calculated from measured ice melting 

temperature (Tim) and homogenisation temperature (Th) are summarised in Table III-6. 

Detailed data can be found in Table VI-3 in the appendix. Microthermometry data 

distribution is shown within individual FIAs (a Fluid Inclusion Assemblage is a finely 

discriminated, petrographically associated, group of inclusions, see Chapter II for 

methodology) as microthermometric data of individual fluid inclusion should not be 

included via histograms summarizing data for the whole sample (Goldstein and Reynolds, 

1994; Goldstein et al., 2003; Chi and Lu, 2008). For this preliminary study, 20 to 35 

inclusions were analysed per sample. 

Tim values range from -5.7 to -0.3°C in sample QUIB03, depicting salinities from 0.6 

up to 8.8 wt% eq. NaCl. In sample QUIB07, Tim values (-1.8 to -1.0°C) indicate low 

salinities (1.4 to 2.7 wt% eq. Nacl). In sample PIR16, Tim values (-2.3 to -1.2°C) allow us 

to calculate salinities from 2.2 to 4.0 wt% eq. NaCl. Most of the Tim plot around -1.5°C, 

depicting salinities of ~2.5 to 3.0 wt% eq. NaCl. 

The follow-up study by T. Piantoni and M. Dubois allowed acquiring more than 150 

Th and Tim values in samples PIR01 and PIR06 (Fig. III-16; Tables III-6 and VI-3). Tim values 

range from -6.1 to 5.0°C in sample PIR01 and from -9.4 to 4.0°C in sample PIR06. In both 

samples, the majority of the Tim plot above -2°C. However, about 50% of the Tim 

measured in samples PIR01 and PIR06 are above or equal to 0°C (i.e. 84 inclusions in 

PIR01, 76 in PIR06). These positive Tim values can be explained by: (1) an incorrect 

interpretation of phase transitions (ice melting instead of hydrate melting), but Raman 
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analysis confirm the absence of volatile compounds in the fluid inclusion vapour bubble 

and therefore negates this hypothesis; (2) a change in the microthermometric plate 

calibration, but the thermocouple (although it had to be changed) was carefully checked 

and did not show any signs of abrupt “jump” or drift during the set of measurements; 

(3) The liquid-vapour equilibrium (ice + liquid + vapour) was not reached during the ice 

melting. The vapour bubble that is compressed during ice solidification sometimes does 

not reappear at the beginning of the eutectic melting, particularly in the case of FIs with 

small vapour filling. This phenomenon leads to ice metastable melting, which in turn 

significantly increases the melting temperature at steady state (up to 6°C). The Tim values 

above 0°C are therefore not directly interpretable, but the approximate correction of 

metastable Tim give values between -6 and 0°C, similar to the range of negative Tim 

obtained in the same samples. Maximum calculated salinities are 9.4 wt% eq. NaCl in 

PIR01 and 13.3 wt% eq. NaCl in PIR06. Regarding the temperature of homogenisation, 

Th values range from 160 to 400°C in sample QUIB03, from 260 to 300°C in QUIB07, from 

140 to 280°C in PIR16, from 113 to 381°C in PIR01 and from 128 to 393°C in PIR06. Most 

of the Th plot between 150 and 250°C. 

 

a. Hydrogen and oxygen stable isotope geochemistry 

The oxygen (ẟ18O) and hydrogen (ẟD) isotopic composition of fluid inclusions in 

quartz grains from samples PIR16 and QUIB07 were measured by Dr Véronique Gardien 

at the University of Lyon (France) using the crush-leach method (Table III-7, see Chapter 

II for methodology). PIR16 yields a ẟ18Owater value of -68‰ and a ẟDwater value of -1.0‰. 

QUIB07 yields a ẟ18Owater value of -76‰ and a ẟDwater value of 3.1‰. 
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Sample 
  

QUIB
03 

QUIB
03 

QUIB
03 

QUIB
03 

QUIB
03 

QUIB
07 

QUIB
07 

QUIB
07 

PIR
16 

PIR
16 

PIR
16 

PIR
16 

FIA 
  

Total 1 2 3 4 Total 1 2 
Tot
al 

1 2 3 

number of data 35 4 21 5 5 22 13 9 24 5 9 10 

Average Salinity (wt% 
eq. Nacl) 

5.4 1.5 6.6 6.5 2.1 1.9 1.9 1.9 2.9 2.9 2.8 3.1 

SD 
 

2.5 1.0 1.2 2.5 0.7 0.3 0.4 0.3 0.4 0.4 0.2 0.5 

Min 
 

0.6 0.6 2.3 3.6 0.9 1.4 1.4 1.6 2.1 2.3 2.4 2.1 

Max 
  

8.8 2.4 7.4 8.8 2.6 2.8 2.8 2.4 3.9 3.3 3.1 3.9 

number of data 
  

32 3 19 5 5 20 11 9 19 1 8 10 

Average Th (°C) 223 345 226 179 184 272 260 287 181 149 186 180 

SD 
  

51 53 26 4 11 27 31 10 36 0 45 28 

Min 
  

172 284 190 173 172 203 203 274 149 149 149 153 

Max 
  

384 384 275 183 198 297 287 297 278 149 278 250 

 

Sample PIR06 PIR06 PIR06 PIR06 PIR06 PIR06 PIR06 PIR06 PIR06 PIR06 PIR06 

FIA Total 3 4 5 6 7 8 9 10 11 12 

number of data 75 13 

Tim > 0°C Tim > 0°C 

3 2 13 14 15 15 

Tim > 0°C 

Average Salinity (wt% eq. 
Nacl) 

4.6 1.4 0 0 11.0 4.7 4.4 3.7 

SD 3.5 1.2 0 0 1.6 1.4 1.5 1.7 

Min 0.0 0.0 0 0 8.1 3.1 2.2 1.7 

Max 13.3 3.6 0 0 13.3 7.3 7.0 7.0 

number of data 149 15 13 15 17 15 12 14 15 15 18 

Average Th (°C) 227 251 258 252 236 206 273 186 201 207 213 

SD 59 49 89 47 61 49 35 34 28 28 78 

Min 128 174 134 190 175 141 220 142 163 154 128 

Max 393 342 393 374 356 286 324 242 247 253 364 

 

Sample PIR01 PIR01 PIR01 PIR01 PIR01 PIR01 PIR01 PIR01 PIR01 PIR01 PIR01 

FIA Total 3 4 5 6 7 8 9 10 11 12 

number of data 83 3 19 17 17 1 5 

Tim > 0°C 

4 

Tim > 0°C 

17 

Average Salinity (wt% eq. 
Nacl) 

2.8 1.8 1.8 3.8 4.7 0.0 1.4 3.2 1.9 

SD 2.1 0.9 1.4 2.2 2.6 0.0 0.8 1.9 1.1 

Min 0.0 0.7 0.0 0.0 0.0 0.0 0.7 0.9 0.0 

Max 9.3 2.7 5.3 9.3 8.4 0.0 2.7 5.9 4.6 

number of data 149 12 17 15 14 16 17 13 15 14 16 

Average Th (°C) 223 255 297 236 185 225 194 223 200 196 211 

SD 58 65 44 46 40 54 58 45 38 43 56 

Min 113 113 216 142 123 114 129 158 145 127 139 

Max 381 381 362 302 259 302 349 286 267 290 331 

 
 
Table III-6: Statistical analysis of studied Fluid Inclusion Assemblages (FIA) in samples QUIB03, 
QUIB0, PIR16, PIR06 and PIR01. Th: Homogenisation Temperature; SD: Standard Deviation; Tim: 
Temperature of ice melting. 
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 Sample 
ẟDwater (‰) 

Fluid Inclusion 
ẟ18Owater (‰) 

Fluid Inclusion 
H20 (µL) 

ẟDwater (‰) 
Muscovite 

Lyon water 

-87 -9.6    

-87 -10.0    

-86 -9.7    

PIR16 -68 -1.0 2.8 1016 -74 ± 16‰ 

Lyon water 

-91 -9.9 3.4 1016  

-83 -9.1 3.3 1016  

-84 -9.4 3.3 1016  

QUIB07 -76 3.1 6.4 1015 -62 ± 16‰ 

Lyon water 
-91 -9.4 3.3 1016  

-89 -9.9 3.2 1016  
     

Lyon water + air     

100% -85.68 -9.43 3.2 1016  

80% water + 20% air -86.28 -8.46 2.6 1016  

70% water + 30% air -87.01 -7.84 2.2 1016  

Table III-7: Hydrogen (ẟD) and oxygen (ẟ18O) stable isotope compositions obtained from crush 
leach analyses of aqueous fluid inclusions in quartz grains, with ẟDwater values calculated from 
muscovite from the same samples for comparison. 

 

 

4. Discussion 

a. Composition of the fluid 

Cryometric data showing only the ice melting phase transition and Raman analyses 

confirming the absence of gas suggest that all the fluid inclusions are composed of a 

salty aqueous fluid. The eutectic melting is not observable due to the inclusions size (<10 

µm). Without any further information, the fluid can be assumed to belong to the H2O-

NaCl system. This choice does not affect the estimation of the salt charge, as calculated 

salinities are low. 

The estimated salinities range from 0 to 13.3 wt% eq. NaCl in samples QUIB03, 

QUIB07, PIR01, PIR06 and PIR16. It can be observed that most of the salinity estimates 

fall in the range of ~1 to 7 wt% eq. NaCl (Fig. III-17). However, FIA8 of sample PIR06 

exhibits high salinity (11 wt% eq. NaCl). 
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Figure III-17: Measured homogenisation temperature – calculated salinity plot summarizing 
microthermometry data from Piriac and Quiberon detachments footwall. Data representation 
respects the Fluid Inclusion Assemblage concept. 

 

 

The salinity variation in a given FIA can be due to: (1) heterogeneous trapping of a 

boiling saline fluid; (2) refilling of previous cavities by a later fluid of different salinity; (3) 

water diffusion out of the inclusions (Bakker, 2017). The first two options are very 

unlikely as: (1) the heterogeneous trapping of a boiling fluid would result in a much 

greater salinity variation (up to 26wt% eq. NaCl; Sourirajan and Kennedy, 1962), and (2) 

refilling is generally observed at plane intersections which were rejected in the FIA 

selection. Therefore, salinity variations are assumed to be due to water diffusion outside 

inclusions (Bakker, 2017). 

The hydrogen and oxygen isotopic values of water extracted from fluid inclusions 

allow more information about the source of the fluid to be determined. QUIB07 and 

PIR16 plot between the deep crustal fluids (metamorphic and/or magmatic) and the 

Meteoric Water Line, suggesting a mixing of two end members as shown on Fig. III-18.  
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Figure III-18: Oxygen (ẟ18O) and hydrogen (ẟD) isotopic ratios of samples PIR16 and QUIB07 
compared to different fluid sources (after Sheppard, 1986). SMOW = Standard Mean Ocean 
Water. 

 

This is not surprising as a mixing of  deep crustal fluids (magmatic and/or 

metamorphic) and surface-derived fluids is often observed in FIs found within ductile 

shear zones (Templeton et al., 1998; Siebenaller et al., 2013; Menzies et al., 2014; 

Quilichini et al., 2016). In the Variscan Belt, this mixing process between surface-derived 

and deep-sourced fluids is known to have led to the concentration of economic 

elements creating ore deposits (e.g. Boiron et al., 2003).  

The low-salinity secondary fluid inclusions found in most of the samples define 

structural planes (Fig. III-15 - A and B) showing their synkinematic entrapment during 

activity on the shear zone. It is in good agreement with the synkinematic infiltration of 

meteoric fluids highlighted by low-salinity aqueous fluid inclusion in the Guérande 

granite in the footwall of Piriac detachment (1–6 wt.% NaCl eq.; Ballouard et al., 2017). 

It also agrees with low ẟD values of synkinematic hydrous silicates (ẟDMs down to -88%) 
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in both the Piriac and the Quiberon detachment footwalls (Dusséaux et al., 2019; 

Chapter III - A and B). The low-salinity fluid likely represents a surface-derived fluid that 

could have infiltrated during a more brittle phase of deformation during the exhumation 

of the sample. 

All the samples were taken in the apical zone of the Quiberon and Guérande 

granitic intrusions emplaced in the footwall of detachment zones. These hydrothermal 

systems typically enhance fluid circulation, from both the Earth’s surface and the 

underlying crust. Chapter III - A and B acknowledges the channelization of surface-

derived fluids through brittle normal faults in the hanging wall, while the exhumation of 

migmatite sustained fluid convection at depth between 320 and 300 Ma.  

b. Temperature of the fluid 

The spread of Th is significant in a given FIA (up to 100°C, Fig. III-16). Different 

processes can be evoked to explain such scattering: (1) the necking down process is the 

split of an inclusion when the vapour bubble has already nucleated, leading to two 

drastically distinct Th values of both sub-cavities; (2) the stretching process is a partial 

increase of the inclusion volume leading to a density drop and subsequent Th increase; 

(3) damage can be produced by rock section making and/or by experiment-induced 

heating; (4) the initial trapping of an heterogeneous fluid (i.e. water + gas). 

Stretching (process 2) generally results in the presence of two modes, the lower 

one corresponding to unaffected FIs, the higher one to reequilibrated FIs (Goldstein and 

Reynolds, 1994); this is not observed in this study. The enlargement of fluid inclusions 

during thin section making and heating experiments (process 3) is excluded as quartz is 

very resistant to heating, and laboratory drawings allow checking of the consistency of 

the vapour filling during heating runs. Finally, a heterogeneous fluid entrapment 
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(process 4) would lead to the coexistence of vapour-rich and liquid-rich end members 

(Sourirajan and Kennedy, 1962). With this in mind, the data distribution would suggest 

the necking-down process (process 1) as being responsible for the observed Th 

heterogeneity. 

As it has been assumed that the process of necking down is responsible for the 

spread of Th values, the average of all homogenisation temperatures is the most 

representative of the fluid. 

 

 The average temperatures of the five samples are as follow: 

 PIR16: 181 ± 36 °C 

 PIR01: 223 ± 58 °C 

 PIR06: 227 ± 59° C. 

 

c. Entrapment conditions of the fluid 

Conditions of fluid entrapment are determined based on microthermometry 

properties of fluid inclusions: 

 The average salinity is 3.7 ± 2.9 wt% eq. NaCl for the five samples 

 The average homogenisation temperature is 225 ± 62 °C for the five samples. 

Isochores are shown on Fig. III-19. The present-day gradient of 30°C/km includes 

two possibilities: a hydrostatic gradient (implying water infiltration from the surface) 

and a lithostatic gradient (no circulation between the surface and the depth). A higher 

 QUIB03: 223 ± 51 °C 

 QUIB07: 285 ± 11 °C 
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gradient of 40°C/km was also considered as the studied syntectonic leucogranites were 

emplaced in detachment footwalls within a hot late-orogenic crust (e.g. Vigneresse and 

Burg, 2003). 

The average salinity and homogenisation temperature isochores allow the 

determination of the following conditions for a gradient of 30°C/km: 

 3950 bar and 480°C (16 km) under a lithostatic gradient  

 950 bar and 280°C (9.3 km) under a hydrostatic gradient. 

For a higher gradient of 40°C/km, the isochores indicates P-T conditions of 2300 

bar and 380°C (9.5 km) under a lithostatic gradient, and of 600 bar and 260°C (6.5 km) 

under a hydrostatic gradient. 

Considering a lithostatic gradient seems more realistic as the samples: (1) belong 

to the footwall of two detachment systems, (2) are deformed in the ductile regime and 

(3) the aqueous fluids have a composition close to the metamorphic/magmatic 

composition (Fig. III-18). Therefore the microthermometry properties allow the 

determination of a pressure of ~4 kbar and a temperature of ~500°C when considering 

a lithostatic gradient. This is in good agreement with temperatures of 550 ± 50°C 

highlighted by quartz microstructures (grain boundary migration and prism <c> slip) and 

the Ti-in-MS geothermometer (see section III-B). Indeed, the Quiberon and Guérande 

granites were emplaced in the lower to middle crust that experienced Barrovian 

metamorphism and reached P-T conditions of 8 kbar and 700–750 °C (Jones and Brown, 

1990).  
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However, the mechanism of fault-valve rupture could lead to intermittent slips 

along the fault: protracted periods of fluid stagnation and subsequent interaction with 

the rock under lithostatic pressure could be interrupted by short periods of fluid 

pressure release under lithostatic conditions (e.g. Sibson, 1981; McCaig, 1988; Sibson et 

al., 1988; Jenkin et al., 1994; Upton et al., 1995; Menzies et al., 2014). 

 

 

 

Figure III-19: Isochores of fluids trapped in inclusions of samples from Quiberon and Piriac 
detachment zones. The data have been produced using the equation of state of Zhang and 
Frantz (1987). L+V is the liquid-vapour curve of water; C is the critical point of pure water (Haar 
et al., 1984).  
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5. Conclusion 

Detachment zones are the site of enhanced fluid circulation where meteoric fluids 

mix with magmatic and/or metamorphic fluids. Fluid inclusions were analysed in five 

samples from the mylonitic footwall of Variscan detachment zones. Most samples 

display biphasic aqueous fluids inclusions that appear secondary and synkinematic as 

they define structural planes. Synkinematic fluid inclusions are associated with 

microthermometry data depicting low-salinity water (~4 wt% eq. NaCl) trapped at ~4 

kbar and ~500°C. The fluid inclusions hydrogen and oxygen isotopic compositions 

highlight a mixed signature between deep-sourced and surface-derived fluids. These 

results are in good agreement with the infiltration of meteoric water during high-

temperature deformation documented by deuterium-depleted synkinematic muscovite 

in the same samples. Microstructural and microthermometry data of fluid inclusions 

point to the infiltration of surface-derived waters channelized via brittle fractures during 

the activity of Quiberon and Piriac detachment zones. 
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Conclusions of Chapter III 

Chapter III aimed at investigating fluid-rock interactions in late-Variscan ductile 

shear zones in the southern Armorican domain, with a focus on the Quiberon and Piriac 

detachment zones that were invaded by surface-derived fluids during post-orogenic 

extension. A multidisciplinary study including structural, microstructural, hydrogen 

isotope geochemistry, geochronology and microthermometry data of fluid inclusions 

allows  us to recover a range of information about the meteoric fluid infiltration:  

1) The hydrogen isotopic composition of late-Carboniferous precipitation (ẟDwater ≤ -

75‰) is revealed by hydrogen isotopic ratios of muscovite down to -88‰ and 

hydrogen and oxygen isotopic ratios of fluid inclusions down to -76‰ and -1‰, 

respectively. 

2) The infiltration of meteoric fluids and associated fluid-rock interaction were 

synchronous with activity on the shear zone as shown by synkinematic mica fish and 

fluid inclusion microstructures. 

3) The pressure-temperature conditions of meteoric fluid-rock interactions (~500-

600°C and 4 kbar) are recorded by quartz microstructures, titanium content of 

muscovite and fluid inclusion microthermometry. 

4) The timing of isotopic exchange between the fluid and the muscovite at ca. 305 Ma 

is highlighted by combined U-Th/Pb and Ar/Ar geochronology. 

5) Meteoric fluid infiltration was made possible by a combined effect of brittle normal 

faulting in the upper crust, as shown by field evidence, helped by a sustained 

convection of fluids at depth highlighted by geochronology of leucogranite and 

migmatite. 
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IV. THE FRENCH MASSIF CENTRAL 

A. Introduction 

The western part of the French Massif Central (Limousin) represents the south-

eastern extension of the southern Armorican domain. Both areas are characterized by 

syntectonic peraluminous granites closely associated with strike-slip and low-angle 

normal-sense shear zones (e.g. Virlogeux et al., 1999; Le Carlier de Veslud et al., 2004; 

Gébelin et al., 2007). In the previous chapter, it was shown that late-Variscan shear 

zones in south Brittany represent zones of intense meteoric fluid-rock interactions 

(Chapter III; Dusséaux et al., 2019). 

In this chapter, the aim is to study the thermomechanical behaviour and 

associated fluid flow of crustal-scale shear zones in the Limousin to see if they can be 

compared from that perspective to those that affect the southern Armorican domain. 

This involved the use of hydrogen isotopes as tracers of meteoric fluids. The hydrogen 

isotope composition of muscovite (δDMs) from syntectonic leucogranites collected at the 

regional scale were measured and compared with previous structural, microstructural, 

geochronology and gravity data (e.g. Faure, 1995; Roig et al., 2002; Faure et al., 2002; 

Gébelin, 2004; Gébelin et al., 2004, 2006, 2007, 2009, Bellot, 2007, 2008; Cartannaz et 

al., 2007; Rolin et al., 2009, 2014). Based on the preliminary hydrogen isotope data, this 

study focused on the NE corner of the Millevaches massif near Felletin where low δDMs 

values (-116‰) from mylonitic leucogranite indicated a signature of meteoric fluids 

found at depth. Follow-up oxygen isotope analyses, combined with chemical and 

geochronological data allowed the characterisation of the mechanisms of deformation 
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during high temperature deformation and fluid flow, as well as the determination of the 

timing of meteoric fluid infiltration.  

B. Geological background 

The western part of the French Massif Central is characterized by syntectonic 

leucogranites that were emplaced within crustal-scale shear zones in the form of a 

horse-tail structure that represent the continuation of the Armorican shear zones (e.g. 

Virlogeux et al., 1999; Le Carlier de Veslud et al., 2004; Gébelin et al., 2007, 2009). The 

French Massif Central exposes allochthonous units involved in a south-verging stack of 

metamorphic nappes built from the Devonian to the Carboniferous over autochthonous 

units (e.g. Ledru et al., 1989; Faure et al., 2009).  

In the Limousin region, three main tectono-metamorphic units can be described 

(Fig. IV-1): (1) the Upper Gneiss Unit (paragneiss hosting eclogite); (2) the Lower Gneiss 

Unit (orthogneiss and biotite-sillimanite paragneiss); and (3) the Para-autochthonous 

Unit (micaschist) (Fig. IV-1; e.g. Ledru et al., 1989; Faure et al., 2009). Two types of 

granite intruded these units: 1) granodiorite-monzogranite emplaced at 360-350 Ma 

derived from the mixing of mantle and crustal magmas (“Guéret type”; e.g. Downes et 

al., 1997) and, 2) two-mica leucogranites formed from the partial melting of 

metasediments only (e.g. Turpin et al., 1990; Williamson et al., 1996). Gravity data 

indicate that the leucogranites are laccoliths that do no exceed a 4-km vertical thickness 

and were emplaced as horizontal layers in the flat-lying micaschist foliation between 

330 and 300 Ma (e.g. Cuney et al., 1990; Williamson et al., 1996; Gébelin et al., 2004, 

2006).  
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This region is characterized by three main strike-slip shear zones cut by low-angle 

detachment zones (Fig. IV-1). To the north, the E-W-trending La Marche fault system 

separates the Aigurande Plateau to the north from the Guéret Massif to the south. This 

major shear zone is broken into two sections: the West and the East Marche shear zones 

indicating a northeastward sinistral reverse sense of shear and sinistral strike-slip 

movement, respectively (e.g. Gébelin et al., 2007). To the south of the La Marche shear 

zone is the NW-SE-trending dextral strike-slip fault system of Ouzilly - St Michel de Veisse 

- La Courtine. This major dextral fault system is crosscut by two main granitic laccolith 

intrusions that are the focus of this study: the Brâme Massif to the west and the 

Millevaches Massif to the east. Finally, the third major fault system is defined by the 

NNW-SSE Pradines dextral strike-slip shear zone that parallels the Millevaches Massif in 

its core. 

The Brâme granite is bounded by NNE-SSW-trending low-angle detachment zones: 

the top-to-the-NW Nantiat shear zone to the west and the top-to-the-SE Bussières-

Madeleine shear zone to the east. The Brâme syntectonic two-mica leucogranites was 

emplaced at ~324  4 Ma (U-Pb on zircon; (Holliger et al., 1986) and was progressively 

exhumed along the detachments zones between ~320 to 305 Ma (Scaillet et al., 1996; 

Gébelin et al., 2007, 2009). 

The 150 km-long N-S-trending Millevaches Massif is bounded to the west by the 

Argentat detachment zone and to the east by the Felletin detachment zone (e.g. Ledru 

and Autran, 1987; Roig et al., 2002; Gébelin, 2004; Gébelin et al., 2004, 2007, 2009; 

Cartannaz et al., 2007; Bellot, 2008; Rolin et al., 2009, 2014). The Pradines NNW-SSE-

striking dextral strike-slip shear-zone controlled the syntectonic emplacement of two-

mica leucogranite in the centre of the Millevaches massif at 313  4 Ma, coeval with 
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high-grade metamorphism and migmatization (Gébelin et al., 2009). To the east of the 

Millevaches massif, the 180 km-long and NWN-SES-trending Argentat shear zone was 

active as a westward-dipping normal to dextral movement between ~340 and 330 Ma 

(Ar/Ar on muscovite; Roig et al., 2002). It was later reactivated at vertical sinistral fault 

zone where hydrothermal fluids circulation associated with brittle fracturing that 

occurred between ~300 and 295 Ma and led to As ± Au mineralization (e.g. Roig et al., 

2002; Boiron et al., 2003; Bellot, 2008).  

 

Figure IV-1: (A) Simplified geological map of the western part of the French Massif Central 
modified after BRGM (2003), Gébelin et al. (2007) and Rolin et al. (2014) with (B) a zoom on 
the Felletin area. B.M.: Bussières-Madeleine fault; S.M.D.V.; St Michel de Veisse fault; CFS: 
Creuse Fault System; FAFS: Felletin-Ambrugeat Fault System; UGU: Upper Gneiss Unit; LGU: 
Lower Gneiss Unit. 
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In the NE part of the massif, the WNW-ESE-striking Saint Michel de Veisse and 

Courtine dextral shear zones separate the Guéret granite emplaced at ~360 Ma from 

the Millevaches Massif made of syntectonic two-mica leucogranite that was emplaced 

continuously between ~340  and 305 Ma (U/Pb on monazite and Ar/Ar on muscovite; 

e.g. Gébelin, 2004; Cartannaz et al., 2007). The NW-SE-trending dextral Creuse brittle 

fault system cross-cuts both the Guéret massif to the north and the Millevaches 

leucogranite to the south. This brittle fault system is interpreted to have been active 

during the middle-upper Visean (~338 – 325 Ma; Rolin et al., 2014). The NW-SE-trending 

dextral Felletin-Ambrugeat brittle fault system affected the eastern flank of the 

Millevaches massif between ~325 and 320 Ma (Rolin et al., 2014).  

C. Sampling strategy at the regional scale 

The description and location of samples collected in the Limousin region can be 

found on Fig. IV-1 and in Tables IV-1, 2, 3 and 4. Mylonitic leucogranite emplaced along 

the W-E trending near-vertical strike-slip La Marche shear zone that borders the Brâme 

granite to the North was sampled (Fig. IV-1). The western part of the Brâme granite in 

the mylonitic footwall of the Nantiat detachment shear zone was also sampled, where 

it displays foliations that dips 20° to the NW and supports  ~WNW-ESE trends lineations 

(Fig. IV-2 – A and B). In the eastern part, into the footwall of the Bussières-Madeleine 

detachment shear zone, mylonitic granite displays foliations that dip ~50° to the east 

and bear ~E-W lineations (Figs. IV-2 – C, D and E). 

Samples from the Millevaches leucogranite were collected along the Saint Michel 

de Veisse shear zone, especially in the NE part where the leucogranites are dissected by 

the Creuse and Felletin-Ambrugeat fault systems (Figs. IV-2 – F and G; Fig. IV-4).  
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Figure IV-2: Field pictures from the Western part of the French Massif Central shear zones. (A) 
and (B) Leucogranite in the footwall of the Nantiat detachment zone dipping to the W (MIL28); 
(C), (D) and (E) Moderately-dipping leucogranite in the footwall of Bussières-Madeleine shear 
zone (MIL27; Foliation N010; 50E; Lineation N080); (F) Brittle fault filled with quartz 
representative of the Creuse fault system (MIL13A); (G) Leucogranite affected by conjugate 
brittle normal faults in the footwall of the Felletin detachment zone; (H) Mylonitic 
leucogranite in the Felletin detachment footwall; (I) Undeformed leucogranite granite 
(MIL21B). 
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In addition, some leucogranite samples were also collected along the Courtine 

shear zone (Fig. IV-1). Samples were also collected in the vicinity of the massif along the 

dextral Pradines shear zone (Fig. IV-1). Finally, samples were collected in the footwall 

and the hanging-wall of the Argentat detachment zone (Fig. IV-1; samples from 

Courtnadge, 2016).  

For all sampling sites, mylonitic (Fig. IV-2 – H) to weakly deformed (Fig. IV-2 – I) 

two-mica leucogranites were collected within strike-slip ductile shear zones, and also 

along transects from detachment zones into the mylonitic footwall. As mentioned in 

Chapter III, samples were collected as close to the detachment interface as possible. The 

distance of the samples was estimated into the outcropping footwall with respect to the 

supposed contact between the upper plate and the lower plate or at least the highest 

point that is outcropping. In addition, samples in the host rocks (e.g. micaschist and 

biotite-sillimanite paragneiss), pegmatite, and quartz veins parallel to the granitic 

foliation (Fig. IV-4) or filling brittle fractures (Fig. IV-2 - F) were also collected. Some 

outcrops show evidence of intense brittle fracturing (Fig. IV-2 – G). 

D. Results of hydrogen isotope geochemistry at the regional scale 

The hydrogen isotope ratios (δD) of hydrous silicates (Muscovite: Ms; Biotite: Bt; 

Tourmaline: To; Chlorite: Chl) was measured on 73 different samples of leucogranite, 

pegmatite, quartz vein, micaschist, and gneiss from ductile shear zones (Fig. IV-3 and 

Tables IV-1, IV-2, IV-4, IV-4). Hydrogen isotope ratios of muscovite range from -116 to -

40‰ (see coloured dots on Fig. IV-3). Bt and Chl yield δD values within a similar range (-

104 ≤ δDBt ≤ -59‰ and -118 ≤ δDChl ≤ -67‰). In contrast, tourmaline indicates a smaller 

range of δD values (-74 to -69‰). The fractions 250 < f < 500 µm and 500 µm < f yield 

comparable δD values for all measured minerals as their difference never exceed ± 6‰. 
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Figure IV-3: Hydrogen isotope ratios (δD) of muscovite in the Limousin region. (A) Simplified 
geological map of the western part of the French Massif Central modified after BRGM (2003), 
Gébelin et al. (2007) and Rolin et al. (2014) with (B) a zoom on the Felletin area. Samples sites 
colours indicate the measured hydrogen isotope composition of synkinematic muscovite. B.M.: 
Bussières-Madeleine fault; S.M.D.V.; St Michel de Veisse fault; CFS: Creuse Fault System; FAFS: 
Felletin-Ambrugeat Fault System; UGU: Upper Gneiss Unit; LGU: Lower Gneiss Unit. 

 

1. The Brâme Massif 

a. Strike-slip shear zone 

Two mylonitic leucogranite samples along the Marche strike-slip shear zone yield 

δDMs values from -87 to -80‰ and δDBt values from -89 to -62‰ (Fig. IV-3 and Tables 

IV-1 and 2). 
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b. Detachment footwalls 

In the footwall of the Nantiat detachment that bounds the Brâme massif to the 

west, 3 mylonitic leucogranite samples yield δDMs values that range from -73 to -55‰ 

and δDBt values from -77 to -59‰. In contrast, 3 mylonitic leucogranite samples from 

the western part of the Brâme granite, in the footwall of the Bussières-Madeleine 

detachment show lower δDMs values (-84 to -74‰), as well as lower  δDBt values (-89 to 

-81‰) and δDTo values (-73 to -69‰; Fig. IV-3; Tables IV-1 and 2). 

2. The Millevaches Massif 

a. Strike-slip shear zones 

Along the dextral strike-slip Pradines shear zone in the heart of the Millevaches 

massif, 3 mylonitic leucogranite samples yielded relatively high δDMs values (-79 to -66‰) 

and δDBt values (-79 to -73‰). These values are similar to the ones obtained in one 

sample of the Grand Janon migmatite (-77 ≤ δDMs values ≤ -74‰) that represent 

granulite that have been exhumed in the north-western extension of the Pradines shear 

zone. Along the dextral strike-slip St Michel de Veisse shear zone that bound the 

Millevaches massif to the North, δDMs values range from -107 to -64‰, δDBt values from 

-94 to -81‰, and δDChl from -108 to -67‰ in mylonitic leucogranite, pegmatite, quartz 

vein and granodiorite samples. The dextral Courtine shear zone, located at the east of 

the massif, have δDMs values from -84 to -72‰ and δDBt values from -86 to -82‰ in 

mylonitic and undeformed leucogranite and gneiss (LGU; Fig. IV-3 and Tables IV-1 and 

IV-2). 

b. Detachment footwall 

In the footwall of the Felletin detachment shear zone, where the Creuse and the 

Felletin-Ambrugeat brittle fault systems and both the St Michel de Veisse and the 
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Name Description Shear zone/Granite 

δD Silicates (‰) 

Longitude Latitude 
Ar/Ar on muscovite 

(Gébelin, 2004) 
ẟD Muscovite (‰) ẟD Biotite (‰) 

250<f<500µm 500µm<f 250<f<500µm 500µm<f 

L11 Mylonitic leucogranite Buissières-Madeleine/Brâme  -84  -82 1.393083 45.937189  

227 Mylonitic leucogranite Felletin/Millevaches -96 -98   2.109872 45.915478  

417 Mylonitic leucogranite Felletin/Millevaches -97 -99   2.156508 45.844781  

427 Mylonitic leucogranite Felletin/Millevaches   -99 -99 2.163814 45.761736  

468 Mylonitic leucogranite Felletin/Millevaches -97 -98   2.156669 45.823317  

3F Mylonitic leucogranite Felletin/Millevaches  -101   2.134536 45.884153 306.5 ± 1.6 Ma to 325.0 ± 1.4 Ma 

524 Mylonitic leucogranite Felletin/Millevaches -90 -89   1.777725 45.926136 303.8 ± 6.7 Ma to 318.3 ± 2.6 Ma 

334 Mylonitic leucogranite La Marche (East)  -87  -89 1.284694 46.344920 324.9 ± 3.0 Ma 

284 Mylonitic leucogranite La Marche (West)  -80  -62 1.541364 46.268381 314 to 329 Ma 

403 Migmatite Le Grand Janon/Millevaches -74 -77   1.886467 45.929303  

352 Mylonitic leucogranite Les Pradines/Millevaches  -66   1.931464 45.398783  

356 Mylonitic leucogranite Les Pradines/Millevaches  -78   1.977808 45.345939 310.2 ± 2.9 Ma 

529 Mylonitic leucogranite Les Pradines/Millevaches -79 -75 -79 -73 1.853478 45.507547  

Table IV-1: Hydrogen isotopic composition of hydrous silicates (this study) of samples described and dated by Ar/Ar on muscovite by Gébelin (2004) 
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Name Description Shear zone/Granite 

δD Silicates (‰) 

Longitude Latitude ẟD Muscovite (‰) ẟD Biotite (‰) ẟD Tourmaline (‰) ẟD Chlorite (‰) 

250<f<500µm 500µm<f 250<f<500µm 500µm<f 250<f<500µm 500µm<f 250<f<500µm 500µm<f 

MIL09A Weakly deformed pegmatite Saint Michel de Veisse/Millevaches -76 -76 -81 -82         2.031640 45.946785 

MIL09B Mylonitic granite Saint Michel de Veisse/Millevaches   -88   -94         2.031640 45.946785 

MIL11B Quartz vein Saint Michel de Veisse/Millevaches -86           -94   2.041021 45.962696 

MIL11C Mylonitic leucogranite Saint Michel de Veisse/Millevaches -64               2.041021 45.962696 

MIL12B Quartz vein Saint Michel de Veisse/Millevaches -82               1.896550 45.985193 

MIL13A Brittle quartz vein Saint Michel de Veisse/Millevaches -85 -87             1.891688 45.997039 

MIL13B Mylonitic leucogranite Saint Michel de Veisse/Millevaches   -81           -67 1.891688 45.997039 

MIL13C Pegmatite Saint Michel de Veisse/Millevaches -92 -94             1.891688 45.997039 

MIL13D Coarse-grained pegmatite Saint Michel de Veisse/Millevaches   -71       -74     1.891688 45.997039 

MIL16 Mylonitic granodiorite (Guêret) Saint Michel de Veisse/Millevaches -107           -108   1.959138 45.987788 

MIL17 Mylonitic leucogranite Saint Michel de Veisse/Millevaches -92 -92             2.008264 45.970600 

MIL22 Undeformed leucogranite Courtine/Millevaches   -72   -82         2.152208 45.802480 

MIL23 Mylonitic leucogranite Courtine/Millevaches -78 -76             2.153440 45.771458 

MIL24 Gneiss (LGU) Courtine/Millevaches -84   -86           2.171693 45.759292 

MIL27A Mylonitic leucogranite Buissières-Madeleine/Brâme -81 -88 -89         1.399592 46.169060 

MIL27B Mylonitic leucogranite Buissières-Madeleine/Brâme -75 -74 -84 -81 -69 -73     1.399592 46.169060 

MIL28 Mylonitic leucogranite Nantiat/Brâme     -59           1.303564 46.218760 

MIL29 Mylonitic leucogranite Nantiat/Brâme -73 -71 -77 -76         1.316316 46.221588 

MIL30 
Mylonitic leucogranite Nantiat/Brâme -55               1.190938 46.127146 

Table IV-2: Hydrogen isotopic composition of hydrous silicates in the western part of the French Massif Central. 
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Name 

 

Description Shear zone/Granite 

δD Silicates (‰) 
ẟDwater 

(‰) 
[Ms;550°C] 

ẟDwater 
(‰) 

[Ms;550°C] 

ẟDwater 
(‰) 

[Bt;550°C] 

ẟDwater 
(‰) 

[Chl;550°C] 
Longitude Latitude  ẟD Muscovite (‰) ẟD Biotite (‰) ẟD Chlorite (‰) 

 250<f<500µm 500µm<f 250<f<500µm 500µm<f 250<f<500µm 500µm<f 

MIL01A  Mylonitic micaschist Felletin/Millevaches -96 -94   -98     -83 -81 -64   2.130371 45.885831 

MIL01B  Weakly deformed pegmatite Felletin/Millevaches -100 -97         -87 -84     2.130371 45.885831 

MIL01C  Mylonitic pegmatite Felletin/Millevaches -94 -91 -101     -81 -78 -67   2.130371 45.885831 

MIL02A  Mylonitic leucogranite Felletin/Millevaches -101 -101   -98     -88 -88 -64   2.137289 45.883394 

MIL02B  Undeformed pegmatite Felletin/Millevaches -101 -101         -88 -88     2.137289 45.883394 

MIL03A  Mylonitic pegmatite Felletin/Millevaches   -84   -81       -71 -47   2.122216 45.901330 

MIL03B  Mylonitic micaschist Felletin/Millevaches   -80           -67     2.122216 45.901330 

MIL04A  Mylonitic pegmatite Felletin/Millevaches   -100   -99       -87 -65   2.127975 45.895808 

MIL04B  Weakly deformed pegmatite Felletin/Millevaches -97 -100         -84 -87     2.127975 45.895808 

MIL05  Mylonitic pegmatite Felletin/Millevaches   -93   -89       -80 -55   2.129432 45.894498 

MIL06A  Mylonitic pegmatite  Felletin/Millevaches -102 -101   -85   -115 -89 -88 -51 -86 2.111130 45.916198 

MIL06C  Pegmatite vein (synfoliation) Felletin/Millevaches -101 -103         -88 -90     2.111130 45.916198 

MIL06D  Mylonitic pegmatite Felletin/Millevaches -86 -87     -76 -75 -73 -74   -47 2.111130 45.916198 

MIL07  Weakly deformed pegmatite Felletin/Millevaches   -101           -88     2.105976 45.913867 

MIL18A  Mylonitic leucogranite Felletin/Millevaches -94 -96         -81 -83     2.148242 45.852764 

MIL18B  Mylonitic leucogranite Felletin/Millevaches -102 -102 -96     -89 -89     2.148242 45.852764 

MIL18C  Mylonitic leucogranite Felletin/Millevaches -102 -104 -104       -89 -91 -70   2.148242 45.852764 

MIL18D  Mylonitic leucogranite Felletin/Millevaches   -105           -92     2.148242 45.852764 

MIL18E  Mylonitic leucogranite Felletin/Millevaches -102 -104     -107   -89 -91   -78 2.148242 45.852764 

MIL18F  Quartz vein Felletin/Millevaches -99 -99       -104 -86 -86   -75 2.148242 45.852764 

MIL18G  Mylonitic leucogranite Felletin/Millevaches -99 -96     -98   -86 -83   -69 2.145043 45.850982 

MIL18H  Mylonitic coarse-grained leucogranite Felletin/Millevaches   -116       -112   -103   -83 2.144694 45.850847 

MIL18I  Undeformed leucogranite Felletin/Millevaches -95 -96   -93     -82 -83 -59   2.142585 45.849840 

MIL19  Mylonitic leugranite Felletin/Millevaches   -109           -96     2.147190 45.853884 

MIL20A  Mylonitic leucogranite Felletin/Millevaches -106       -118   -93     -89 2.158887 45.821669 

MIL20D  Mylonitic leucogranite Felletin/Millevaches   -99           -86     2.155482 45.825732 

MIL21A  Mylonitic leucogranite Felletin/Millevaches -103 -102 -98     -90 -89 -64   2.149093 45.811931 

MIL21B  Undeformed leucogranite Felletin/Millevaches   -74   -77       -61 -43   2.146578 45.812753 

MIL26A  Quartz vein Felletin/Millevaches   -87           -74     2.170876 45.836544 

MIL26B  Micaschist Felletin/Millevaches     -98           -64   2.170876 45.836544 

Table IV-3: Hydrogen isotopic composition of hydrous silicates in the Felletin area. ẟDwater are calculated from Ms (muscovite). Bt (biotite) and Chl (chlorite) at 550°C following 
the water-mineral fractionation factors of Suzuoki and Epstein (1976) and Graham et al. (1984). Data in gray are from the detailed section in the Felletin detachment footwall 
(part IV. E). 
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Name Description Shear zone/Granite 

δD Silicates (‰) 

Longitude Latitude ẟD Muscovite (‰) ẟD Biotite (‰) 

250<f<500µ
m 

500µm
<f 

250<f<500µ
m 

500µm
<f 

ARG1 
Ordovician orthogneiss 

(LGU) 
Hanging wall 

Argentat 
-81 -83     

E1°54'41.
9" 

N45°06'09.
6" 

ARG2b 
Ordovician orthogneiss 

(LGU) 
Hanging wall 

Argentat 
-78 -78     

E1°55'13.
8" 

N45°05'48.
1" 

ARG3 
Micaschist 

Hanging wall 
Argentat 

-60 -58     
E1°56'40.

4" 
N45°05'40.

9" 

ARG4 
Micaschist 

Hanging wall 
Argentat 

-70 -67     
E1°56'34.

9" 
N45°05'38.

3" 

ARG9 
Ordovician orthogneiss 

(LGU) 
Hanging wall 

Argentat 
-80 -82     

E1°53'53.
6" 

N45°08'48.
0" 

ARG10 
Ordovician orthogneiss 

(LGU) 
Hanging wall 

Argentat 
-76 -80     

E1°53'57.
2" 

N45°08'54.
8" 

ARG11
c 

Ordovician orthogneiss 
(LGU) 

Hanging wall 
Argentat 

-78 -77     
E1°53'52.

2" 
N45°08'56.

8" 

ARG13 
Leptynite 

Hanging wall 
Argentat 

-51 -49     
E1°52'10.

3" 
N45°10'15.

8" 
ARG17
a 

Mylonitic leucogranite Footwall Argentat -53 -47     
E1°57'46.

3" 
N45°05'12.

9" 
ARG17
c 

Micaschist Footwall Argentat 
    -63   

E1°57'48.
9" 

N45°05'15.
1" 

ARG17
f 

Micaschist Footwall Argentat 
-44 -40     

E1°57'26.
0" 

N45°05'06.
3" 

Table IV-4: Hydrogen isotopic composition of hydrous silicates in Argentat detachment zone 
(Courtnadge, 2016). 

 

 

 

 

Courtine ductile shear zones meet, δD of hydrous minerals are typically the most 

negative with δDMs values ranging from -116 to -74‰, δDBt values from -104 to -77‰, 

and δDChl values from -118 to -75‰ in 18 samples of mylonitic leucogranite, 2 of 

undeformed leucogranite, 11 of pegmatite, 2 of quartz veins and 3 of micaschists (Fig. 

IV-3; Table IV-4). 

A preliminary study by Courtnadge (2016) measured lower δDMs values in 8 

samples of the orthogneiss (LGU) and micaschist of the hanging wall of Argentat 

detachment (-83 to -49‰) compared to the higher δDMs values (-49 to -40‰) obtained 

on 2 samples of micaschist and 1 mylonitic leucogranite in the footwall. A micaschist 

sample in the footwall of Argentat yielded a δDBt value of -63‰ (Fig. IV-3; Table IV-4). 
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E. The NE corner of the Millevaches granite (Felletin) 

The pilot study based on the hydrogen isotope geochemistry of the western part 

of the French Massif Central allowed the identification of the presence of meteoric fluids 

in the footwall of the Felletin detachment footwall (ẟDMs values of -116‰, sample 

MIL18H; Table IV-3). In an attempt to better characterise the mechanisms during 

deformation-related fluid flow, 10 samples were collected along a detailed section in 

the footwall of the Felletin detachment (see location of samples MIL18-19 on Fig. IV-1 

and associated field pictures on Fig. IV-4). This detailed study includes structural (see 

section IV-E1), microstructural (E2), hydrogen (E3) and oxygen (E4) isotope analyses 

coupled with the chemical composition of muscovite (E5). This allowed us to: (1) see if 

the infiltration of meteoric fluids affected the oxygen system of muscovite as much as 

the hydrogen system in the eastern part of the French Massif Central, and (2) acquire 

thermometry data using three different techniques (quartz microstructure, quartz-

muscovite oxygen isotope exchange and Ti-in-muscovite thermometry) in order to 

calculate the hydrogen isotope composition of fluids present during deformation using 

experimentally-calibrated hydrogen isotope exchange parameters. 

1. Macrostructures 

The leucogranite was sampled along a transect into the mylonitic footwall of the 

top-to-the-E Felletin detachment shear zone at the NE edge of the Millevaches massif 

(Fig. IV-4). This zone allowed a continuous section from mylonitic leucogranite at the 

top of the section (MIL19) to anisotropic leucogranite towards the bottom (MIL18I) to 

be investigated (Figs. IV-4 and 5). Within the top 100m of section, the foliation dips from 

20° to 70° to the east and displays shear bands orientated parallel to the lineation 

indicating a top-to-E sense of shear (Figs. IV-4 and 5). However, some samples contain 
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asymmetric feldspar grains with pressure shadows indicating a contradictory top-to-W 

sense of shear (Fig. IV-5 - MIL18A). Moreover, some outcrops show intense folding of 

the mylonitic foliation (Fig. IV-4). This observation agrees with previous studies on the 

Millevaches massif that describe the magma rising towards the roof the laccolith being 

accommodated by low-angle detachment shear zones, leading to a strong coaxial 

deformation (Gébelin et al., 2006).  Quartz veins (MIL18F) and coarser-grained 

leucogranite (MIL18H) are observed orientated parallel to the foliation (Fig. IV-4). In 

addition, numerous brittle conjugate faults and fractures affect the whole outcrop (Fig. 

IV-4).  

 

 

Figure IV-4: Cross-section and field pictures of the NE part of the Millevaches granite from 
anisotropic granite (MIL18I) to highly deformed granite (MIL19). Note the presence of brittle 
normal faults (red arrows). 
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Figure IV-5: Hand samples collected in the NE part of the Millevaches granite from highly 
deformed granite (MIL18B) at the top of the section to anisotropic granite (MIL18I) at the 
bottom. Muscovite fish (MIL18B) and euhedral muscovite (MIL18I) are shown in white squares. 
The distance (m) to the top of the section is indicated at the bottom left. 

 

 

2. Microstructures 

Sub-solidus deformation textures such as rectangular and castellate quartz grain 

boundaries indicate that grain boundary migration (~500 to 700°C; e.g. Jessell, 1987; 

Hirth and Tullis, 1992; Stipp et al., 2002) was the dominant dynamic recrystallization 

process that affected syntectonic leucogranites of the NE corner of the Millevaches 

Massif (Figs. IV-6 – A and B). Quartz grains often exhibit chessboard-like texture 

indicative of both <a> and <c> dislocation slip that highlight high temperature 

deformation (>650°C) under hydrous conditions (Fig. IV-6 – C; Blumenfeld et al., 1986; 

Mainprice et al., 1986). Dynamic recrystallization of quartz-feldspar boundaries is 
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common (Fig. IV-6 – D) and indicates deformation at elevated temperatures (650–750°C; 

Gower and Simpson, 1992). Orthoclase is sometimes inverted to microcline (Fig. IV-6 – 

E) indicating solid-state deformation (Eggleton and Buseck, 1980). Coarser-grained 

sample MIL18H exhibits quartz grain boundary migration (500-700°C) but also sub-grain 

rotation that typically occur between 400 and 500°C (Fig. IV-6 – F and G; e.g. Stipp et al., 

2002). Myrmerkite (intergrowth of quartz and plagioclase) are typical of deformation 

temperature above 500°C (Fig. IV-6 - H; e.g. Wirth and Voll, 1987). They occur 

asymmetrically in shortening quarters on sigmoidal K-feldspar grain rim and confirm the 

top-to-NE sense of shear (Fig. IV-6 - H; Simpson and Wintsch, 1989). These observations 

are in agreement with previous EBSD data obtained on quartz grains from similar 

samples (Gébelin et al., 2007) that revealed plastic deformation dominated by prismatic 

<a> glide, which occurs between 400°C and 700°C (Tullis et al., 1973; Mainprice and 

Paterson, 1984). 

Sample MIL18H contains evidence of brittle fracturing as feldspar grains are 

affected by conjugated normal faults (Fig. IV-4 - G) or antithetic rotation leading to the 

formation of domino structures (Fig. IV-4 - F). This is good agreement with field 

observations of brittle fractures (Figs. IV-2 and IV-4). 
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Figure IV-6 (last page): Quartz microstructures under cross-polarised light in the footwall of 
the Felletin detachment typical of high temperature deformation. (A) and (B) Grain boundary 
migration of a polycrystalline quartz aggregate; (C) Quartz with chess- board pattern; (D) Grain 
boundary migration between quartz and feldspar grains; (E) Orthoclase inversion to microcline 
and muscovite defining shear bands; (F) Domino-style rotation with antithetic shear; (G) Micro 
conjugated normal faults affecting a feldspar grain; (H) Assymetric distribution of myrmekite 
on sigmoidal felpar grain; (I) Top-to-E shear bands highlighted by muscovite grains. 

 

Shear bands highlighted by muscovite fish along shear (C) and foliation (S) planes 

support a syntectonic emplacement of leucogranite (e.g. Fig. IV-6 - I; Gapais and 

Barbarin, 1986). Lozenge-shaped muscovite grains can be explained to have formed by 

solution precipitation and/or in strain shadows during deformation. Indeed, muscovite 

grains were sheared by slip on their (001) planes to form mica fish of the group 3 (Fig. 

IV-7 – B) of the classification of ten Grotenhuis et al. (2003).  Some muscovite fish that 

fall into the group 1 (Fig. IV-7 – C) of the classification of ten Grotenhuis et al. (2003) 

formed by simultaneous grain rotation and reduction of their upper and lower sides. 

Group 1 mica fish were transformed into group 2 mica fish (Fig. IV-7 – A) by drag along 

micro shear zones (ten Grotenhuis et al., 2003). In the coarser-grained leucogranite 

MIL18H, muscovite fish show evidence of intense recrystallization (Fig. IV-7 – D and E) 

while some muscovite grains are folded (Fig. IV-7 – F).  

The weakly deformed granite sample MIL18I displays euhedral muscovite grains 

Fig. IV-7 – G and H) and large primary quartz crystals and/or quartz grain boundary 

migration (Fig. IV-6 – A, B, C, D) consistent with high temperature deformation. 

 

3. Hydrogen isotope results 

The hydrogen isotope ratios of muscovite (ẟDMs), biotite (ẟDBt) and chlorite (ẟDChl) 

have been analysed in mylonitic to undeformed leucogranite along a transect into the 

Felletin detachment footwall. Sample MIL19 collected at the top of the section was 
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considered to represent the closest point to the eroded detachment interface (at 0m; 

Fig. IV-7, Table IV-3). The ẟDMs values range from -116 to -95‰. The difference between 

the δD values of the largest muscovite size fraction (500µm < f) and the smallest size 

one (250 < f < 500µm) does not exceed ± 3‰. The lowest ẟDMs values (from -116 to -

100‰) occur within the 0-25 m and 60 m depth intervals. The ẟDMs values decrease 

along the 100m-long section, from lower ẟDMs values at the top in mylonitic leucogranite 

(MIL19; ẟDMs = -109‰) down to higher values at the bottom where leucogranite are 

undeformed (MIL18I; ẟDMs = -95‰; Fig. IV-7). The coarser-grained leucogranite sample 

MIL18H at 60m yields the lowest ẟDMs value (ẟDMs = -116‰) found in this study. 

The ẟDBt values vary from -104 to -93‰. The difference between the δDMs and the 

δDBt values range from -2 to +7‰. Considering that biotite and muscovite show a ~20 ‰ 

difference in hydrogen isotope fractionation  (21‰ at 550°C, Suzuoki and Epstein, 1976; 

lower for biotite), it can be deduced that these 2 minerals did not reach hydrogen  

isotopic equilibrium. 

The ẟDChl values vary from -112 to -98‰. The difference between the δDMs and 

the δDChl values range from -5‰ at the top of the section to +4‰ at the bottom. This 

difference has been interpreted as demonstrating that muscovite and chlorite have not 

reached isotopic equilibrium as the isotopic fractionation between muscovite and 

chlorite is -16‰ at 550°C (Suzuoki and Epstein, 1976; Graham et al., 1984). It is 

interesting to note that biotite and chlorite were rarely found together in the same 

sample.  
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Figure IV-7: Muscovite microstructures and hydrogen isotope analysis of muscovite, biotite 
and chlorite in the footwall of the Felletin detachment with respect to the distance to the 
hanging-wall (0 to 100m). See text for description of photographs. Note the sketches in A, B 
and C that describe the different mica fish groups from the classification of ten Grotenhuis et 
al. (2003). 
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4. Oxygen isotope results 

The oxygen isotope ratios (ẟ18O) of muscovite and quartz were measured on 4 

samples of leucogranite (MIL19, MIL18C, MIL18H and MIL18I) in the Felletin section 

using laser‐fluorination mass spectrometry at the University of Lausanne, Switzerland. 

The average precision of measured ẟ18O values is ± 0.1 ‰ (detailed methods in Chapter 

II). 

The ẟ18OMs values range from 8.4 to 9.0‰ (Fig. IV-8 - A; Table IV-5) and are in 

good agreement with the trend defined by the ẟDMs values as they also decrease from 

the top to the bottom of the section (Fig. IV-8 - A). Indeed, the undeformed leucogranite 

(MIL18I) yields the highest ẟ18OMs value of 9.0‰ corresponding to a high ẟDMs value of 

-95‰ whereas the coarse-grained sample (MIL18H) has the lowest ẟ18OMs value of 8.4‰ 

with the lowest ẟDMs value of -116‰ (Fig. IV-8 - B). 

 

 

Figure IV-8: Oxygen isotope geochemistry. (A) Oxygen isotope composition of muscovite (Ms) 
according to the structural distance; (B) ẟ18O values versus ẟD values of muscovite; (C) ẟ18OQz 
versus ẟ18OMs from sample MIL18C. Isotherms are based on the Qz-Ms thermometer from 
Chacko et al. (1996). 
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Isotope exchange equilibrium temperatures can be calculated based on the 

difference in δ18O values of muscovite and quartz, given that the minerals reached 

isotopic equilibrium (e.g. Chacko et al., 1996). Sample MIL18C has a ẟ18OMs value of 8.9‰ 

and a ẟ18OQz value of 11.1‰.  Assuming oxygen isotope equilibrium during deformation 

and recrystallization in sample MIL18C and using the calibration of Chacko et al. (1996), 

a Δ18OQz‐Ms value of 2.15 ‰ is consistent with a deformation temperature of 538 ± 41°C 

(Fig. IV-8 - C). Indeed, the uncertainty on the isotopic analysis ± 0.1‰ gives an 

uncertainty of ± 41°C for the geothermometer.  This temperature is in good agreement 

with those deduced from quartz microstructures (T > 400°C). However, this quartz 

sample showed some minor contamination with another phase, so this temperature has 

to be carefully interpreted and coupled with other thermometry techniques. 

Sample Distance [m] Mineral Weight [mg] ẟ18O [‰] ẟDMs [‰] Δ18OQz‐ Ms [‰] Temperature [°C] 

MIL19 0 Muscovite 1.46 8.7 -109   

MIL18C 15 Muscovite 1.67 8.9 -104 
2.15 538 

MIL18C 15 Quartz 1.35 11.1  

MIL18H 60 Muscovite 1.74 8.4 -116   

MIL18I 90 Muscovite 1.73 9.0 -95   

 
Table IV-5: Oxygen isotope data and associated quartz-muscovite oxygen isotope exchange 
temperatures (Chacko et al., 1996). 

 

5. Muscovite geochemistry and Ti-in-Ms geothermometer 

The chemical composition of muscovite was measured using CAMECA SX100 

microprobe at the University of Lille (France) in order to check the homogeneity of 

muscovite grains and use the Ti-in-Ms geothermometer of Wu and Chen (2015). Three 

polished thin-sections were made (MIL18C. MIL18H and MIL18I) in order to obtain 

muscovite major elements contents via the electronic microprobe (analytical procedure 

described in Chapter II). Muscovite compositions are heterogeneous in the studied 
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samples with 0.00 < Ti < 0.05 mol, 0.02 < Na < 0.10 mol and 0.04 < Mg < 0.18 mol (Table 

VI-4 in the appendix). Muscovite grains plot essentially in the primary field in a tertiary 

diagram (Fig. IV-9). However, the chemical composition of recrystallized tips of 

muscovite fish tend towards the secondary muscovite field compared to cores that plot 

in the primary field (see zooms and associated BSE pictures of Fig. IV-9). 

 

 

 

 

Figure IV-9: Ternary Mg–Ti–Na diagram (Miller et al., 1981) for muscovite from the NE corner 
of the Millevaches granite (Massif Central, France). Zooms on specific analysed points and 
associated oriented photographs under cross-polarised light (Zones B, D and E of sample 
MIL18C) show that grain cores plot in the primary field of the tertiary diagram whereas 
recrystallized tips of muscovite fish tend towards the field of secondary muscovite. Data can 
be found in Table VI-4 in the appendix.. 
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The titanium-in-muscovite thermometer (Wu & Chen, 2015) has been applied to 

the three samples considering a pressure of 4 ± 1kbar (Gébelin et al., 2009). The 

mylonitic leucogranite sample (MIL18C) yields average temperatures of 493 ± 57°C, the 

pegmatite sample (MIL18H) an average temperature of 568 ± 42°C and the anisotropic 

granite (MIL18I) 559 ± 55°C (Table  VI-4 in the appendix). The Ti-in-Ms allows us to 

estimate a temperature of 540 ± 51°C for the Felletin section. 

 

6. Isotopic composition of the fluids in the Felletin detachment footwall 

The isotope composition of the fluid present in the Felletin detachment footwall 

was calculated using the hydrogen isotope composition of muscovite, the hydrogen 

water-muscovite isotope fractionation factor of Suzuoki and Epstein (1976) and the 

temperature of isotope exchange between the fluid and the mineral estimated by 1) 

quartz microstructure; 2) Ti-in-Ms geothermometry and 3) oxygen isotope thermometry 

(Table IV-6):  

1) Deformation temperatures of 550 ± 150°C deduced from quartz microstructures (this 

study, e.g. Hirth and Tullis, 1992; Stipp et al., 2002; Langille et al., 2010) allow the 

calculation of ẟDwater values ranging from -103 to -83 ± 16‰. 

2) The Ti-in-Ms thermometer (Wu and Chen, 2015) yielded an average temperature of 

540 ± 51°C for the section that allows the calculation of ẟDwater values ranging from 

-104 to -89 ± 5‰. 

3) The temperature of 538 ± 41°C estimated by quartz-muscovite oxygen isotope 

exchange thermometry allows allow the calculation of ẟDwater values ranging from 

-104 to -89 ± 4‰.  
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   Muscovite Quartz microstructures thermometry Titanium-in-Ms thermometry 
Quartz-muscovite oxygen isotope exchange 

thermometry 

Sample 
Distance 

(m) 
Rock type 

ẟD Ms 
(‰) 

Fraction 
Ms (μm) 

± 
(‰) 

T (°C) 
±  

(°C) 

ẟD 
water 
(‰) 

- + T (°C) Uncertainty (°C) 
ẟD 

water 
(‰) 

- + T (°C) 
Uncertainty 

(°C) 

ẟD 
water 
(‰) 

- + 

MIL19 0 Mylonitic leugranite 
-109 

500<f 2 550 150 -96 -9 16 540 51 -95 -4 5 538 41 -95 -3 4 

MIL18B 5 Mylonitic leucogranite -102 500<f 2 550 150 -89 -9 16 540 51 -88 -4 5 538 41 -88 -3 4 

MIL18F 6 Quartz vein 
-99 

500<f 2 550 150 -86 -9 16 540 51 -85 -4 5 538 41 -85 -3 4 

MIL18E 10 Mylonitic leucogranite 
-104 

500<f 2 550 150 -91 -9 16 540 51 -90 -4 5 538 41 -90 -3 4 

MIL18C 15 Mylonitic leucogranite 
-104 

500<f 2 550 150 -91 -9 16 493 57 -86 -5 8 538 41 -90 -3 4 

MIL18A 20 Mylonitic leucogranite 
-96 

500<f 2 550 150 -83 -9 16 540 51 -82 -4 5 538 41 -82 -3 4 

MIL18D 25 Mylonitic leucogranite 
-105 

500<f 2 550 150 -92 -9 16 540 51 -91 -4 5 538 41 -91 -3 4 

MIL18G 35 Mylonitic leucogranite 
-99 

250<f<500 2 550 150 -86 -9 16 540 51 -85 -4 5 538 41 -85 -3 4 

MIL18H 60 Mylonitic pegmatite 
-116 

500<f 2 550 150 -103 -9 16 568 42 -104 -3 3 538 41 -102 -3 4 

MIL18I 90 Undeformed leucogranite 
-96 

500<f 2 550 150 -83 -9 16 559 55 -83 -4 5 538 41 -82 -3 4 

  
AVERAGE -103     550   -90 -9 16 540 51 -89 -4 5 538 41 -89 -3 4 

  
SD 6     0   6 0 0 19 4 7 0 1 0 0 6 0 0 

  
Min -116     550   -103 -9 16 493 42 -104 -5 3 538 41 -102 -3 4 

  
Max -96     550   -83 -9 16 568 57 -82 -3 8 538 41 -82 -3 4 

 
Table IV-6: Stable isotope data from the Felletin detachment footwall (Limousin, Massif Central, France). ẟDwater values are calculated based on temperatures 
deduced from quartz microstructures (Hirth and Tullis, 1992; Stipp et al., 2002; Langille et al., 2010), the Ti-in-Ms geothermeter (Wu and Chen, 2015) and the 
quartz-muscovite oxygen isotope exchange thermometer (Chacko et al., 1996), combined with the hydrogen and oxygen isotope fractionation factors of Suzuoki 
and Epstein (1976) and the measured hydrogen isotope composition (ẟD) of muscovite (Ms). 
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F. Discussion 

1. Hydrogen isotope geochemistry in the Limousin shear zones 

The 76‰ difference in δDMs values measured in all mylonitic leucogranites 

collected at the regional scale in the Limousin indicates the presence of fluids from 

different sources that interacted with muscovite during high temperature deformation 

(Fig. IV-10; Tables IV-1 to 4). 

In the Brâme massif, leucogranite emplaced along the strike-slip La Marche shear 

zone and in the footwall of the Bussières-Madeleine detachment are characterised by 

low δD values of muscovite, biotite and tourmaline. In comparison, leucogranite from 

the western part of the Brâme massif in the Nantiat detachment footwall yield higher 

δD values of muscovite and biotite (Fig. IV-10; Tables IV-1 to 4).  

In the Millevaches massif, higher δD values of muscovite and biotite (comparable 

to those found in Nantiat) are found in the Grand Janon migmatite in the NW part of the 

massif and in the leucogranite emplaced along the dextral strike-slip Pradine shear zone 

in the heart of the massif. High to low δD values of muscovite and biotite are found in 

the leucogranite collected along the La Courtine dextral strike-slip shear zone and St 

Michel de Veisse. In contrast, δD values of muscovite, biotite and chlorite are the most 

negative in the footwall of the Felletin detachment shear zone, with δDMs values ranging 

from -116 to -74‰, δDBt values from -104 to -77‰, and δDChl values from -118 to -75‰. 

A similar pattern is observed from high δDMs and δDBt values in the micaschist of the 

Argentat footwall down to low δDMs values in the orthogneiss of the hanging wall of 

Argentat detachment  as pointed out by Courtnadge (2016) (Fig. IV-10; Tables IV-1 to 4). 
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Figure IV-10: Graph showing the measured ẟDMuscovite values from strike-slip shear zones and 
detachment footwalls in the Western part of the French Massif Central (locations shown on 
map on the left), and in the southern Armorican domain for comparison. Note the progressive 
involvement of meteoric fluids from unmixed deep crustal (metamorphic and/or magmatic) 
fluids in the lower part of detachment footwall (-80 < ẟDMuscovite values < -40‰) to greater 
mixing with D-depleted meteoric fluids in the upper part of detachment footwalls (-116 < 
ẟDMuscovite values < -80‰). SMDV – Saint Michel de Veisse; SASZ – South Armorican Shear Zone. 

 

The highest δD values of hydrous silicates (i.e. δDMs > -80‰; Fig. IV-10) in the 

leucogranite collected within the main Limousin shear zones indicate a signature 

dominated by deep crustal (metamorphic or magmatic) fluids. In contrast, the most 

negative δD values of hydrous silicates (i.e. δDMs < -80‰) reflect interaction with low-

δD meteoric water during high temperature deformation (Fig. IV-10). In addition, as 

indicated by the large range of δDMs values in the footwall of the Felletin detachment (-

116 ≤ δDMs ≤ -74‰) or in the St Michel de Veisse strike-slip shear zone (-107 ≤ δDMs ≤ -

64‰), it can be suggested that hydrous minerals interacted to various degrees with 

surface-derived fluids. However, δDMs values lower than -100‰ indicate an 

incontestable signature of meteoric fluids. 
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Considering a large range of temperatures (550 ± 150°C) estimated from quartz 

microstructures and the muscovite-water isotopic fractionation factor of Suzuoki and 

Epstein (1976), the high δDMs values that range from -80 to -40‰ allow the calculation 

of δDwater values that range from –66 to -26 ± 16‰. These  δDwater values correspond to 

the classic range of deep crustal fluids (-70‰ < δDmetamorphic fluids < -20‰ and/or -80‰ < 

δDmagmatic fluids < -40‰; e.g. Field and Fifarek, 1985). In contrast, the lowest δDMs (-116 to 

-80‰) combined with the same temperature range and fractionation factor gives δDwater 

values ranging from –103 to -66 ± 16‰ that can only be interpreted at best as 

deuterium-depleted meteoric water. 

2. Comparison between the δDMs values in the Limousin (Massif Central) and 

southern Brittany (Armorican Massif) 

In the syntectonic leucogranite of the southern Armorican domain, a mixing 

relationship between deep crustal fluids in the lower part of Sarzeau detachment 

footwall (-47 ≤ δDMs ≤ -46‰) and D-depleted meteoric fluids in the upper part of Piriac 

and Quiberon detachment footwalls (-88 ≤ δDMs ≤ -76‰) has been proposed (Fig. IV-10 

and Chapter III.A; Dusséaux et al., 2019). Intermediate δDMs values in the dextral strike-

slip South Armorican Shear Zone (-84 ≤ δDMs ≤ -54‰) were also measured.  

The highest δDMs values in the Limousin (-80 ≤ δDMs ≤ -40‰) are comparable to 

the high values obtained in the southern Armorican domain (δDMs up to -46‰ in Sarzeau) 

that represent deep crustal (metamorphic and/or magmatic) fluids (Fig. IV-10). In both 

the southerm Armorican domain and the Limousin, the highest δD values (-80‰ ≤ δDMs) 

are found in the lower part of detachment or in strike-slip shear zones. In contrast, the 

lowest δDMs values in the Limousin (-116 to -80‰) in the Bussières-Madeleine and 

Felletin detachment footwalls and in the Argentat detachment hanging-wall) are similar 
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but even lower than the δDMs values down to -88‰ that were measured in the southern 

Armorican domain that were interpreted in terms of interaction with D-depleted 

meteoric fluids (Dusséaux et al., 2019). Indeed, the lowest δDMs value in the Limousin (-

116‰) is 28‰ lower than the lowest δDMs value in the southern Armorican domain (-

88‰). Such a depletion in deuterium in the Felletin leucogranite establishes the 

evidence for D-depleted meteoric fluid infiltration in the Variscan detachment shear 

zones during the Late Carboniferous. 

3. Isotopic composition of meteoric water in the NE corner of the Millevaches 

Using the hydrogen isotope composition of muscovite, the hydrogen water-

muscovite isotope fractionation factor of Suzuoki and Epstein (1976) and the average 

temperature of 540 ± 51°C given by the Ti-in-Ms thermometer (Wu and Chen, 2015), 

ẟDwater values ranging from -104 to -89 ± 5‰ were calculated (Table IV-6). It should be 

noted that different thermometry methods such as the observation of quartz 

microstructures (550 ± 150°C) or quartz-muscovite oxygen isotope exchange (538 ± 41°C) 

give similar temperatures, and consequently allow consistent ẟDwater and ẟ18Owater 

values to be calculated (Table IV-6).  

The calculated ẟDwater values in the Felletin footwall (-104 to -89 ± 5‰) can only 

be interpreted as a signature of D-depleted meteoric fluids as they are way below the 

typical hydrogen isotope composition of deep crustal fluids (-70 < δDmetamorphic fluids < -20‰ 

and/or -80 < δDmagmatic fluids < -40‰; e.g. Field and Fifarek, 1985). As the downward 

penetration of meteoric fluids in the crust generally leads to an increase in δDwater values 

due to fluid-rock interaction, these δDwater values represents a maximum value that 

could have been lower than -104‰ if they were extracted from the near-surface 

geological record (Fig. IV-11; e.g. Gébelin et al., 2012).  
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Figure IV-11: Top - 2D simplified cross-section showing the emplacement of the Millevaches 
granite between the Argentat and the Felletin detachment shear zones and associated fluid 
circulation that led to different hydrogen isotope ratios of muscovite (δDMs) (adapted from 
Gébelin et al., 2004). Middle - Proposal of a rolling-hinge detachment model for the 
Millevaches massif with sustained meteoric fluid-rock interaction along the main top-to-right 
detachment shear zone (adapted from Teyssier and Whitney (2002)). Bottom – 3D diagram 
integrating the true cross-section with the rolling-hinge detachment model. 

 

It is established that the δD values of these surface waters (estimated at -104‰) 

remain relatively high. As discussed in Chapter III for the Armorican Massif (Dusséaux et 

al., 2019), this could be explained by different factors that characterised the French 

Massif Central during the Late Carboniferous: its equatorial position (Rozanski et al., 

1993; Tait et al., 1996a; Boucot et al., 2013) and subsequent warm paleoclimate (e.g. 
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Poulsen and Jeffery, 2011), and/or the presence of extensive ice sheets in southern 

Gondwana (e.g. González-Bonorino and Eyles, 1995; Buggisch et al., 2008). Lastly, it 

could be due to a moderate to high paleoelevation (e.g. Poage and Chamberlain, 2001). 

However, the calculated ẟDmeteoric water values (~-105‰), that are ~30‰ lower compared 

to age-equivalent ẟDmeteoric water values in the Armorican Massif (~-75‰; Dusséaux et al., 

2019), likely reflect a higher elevation in the French Massif Central. 

4. Mechanisms and timing of meteoric fluid infiltration 

Previous studies have proposed a model to explain the infiltration of surface-

derived fluids down to the brittle-ductile transition in detachment shear zones (Mulch 

et al., 2004, 2006; Person et al., 2007; Gébelin et al., 2011, 2015, 2017).  Brittle normal 

faults, recognized at the field scale (Fig. IV-2 and 4) as well as at microscopic scale (Fig. 

IV-6), participated in increasing the porosity and permeability by dissecting the upper 

crust (Fig. IV-11). At the same time, high-grade metamorphic rocks (migmatite and 

leucogranite) sustained the convection of fluids at depth (Fig. IV-11). In addition, as the 

western part of the French Massif Central is part of the internal thickened zones of the 

Variscan Belt, a hydraulic head probably played a role in helping the fluids to migrate 

downwards. 

The timing of meteoric fluid infiltration can be estimated to have started at ~315 

Ma based on U/Pb ages from syntectonic leucogranites that were emplaced in the 

footwall of the Felletin detachment zone (Gébelin et al., 2009). Deformation and fluid 

infiltration likely ended at ~304 Ma with the cessation of shear zone activity (muscovite 

40Ar/39Ar ages from the same studied leucogranite outcrop; Gébelin, 2004). Microprobe 

analyses showed that the cores of muscovite grains plot in the magmatic field whereas 

the muscovite tips predominantly plot in the hydrothermal field (Fig. IV-6). Gébelin 
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(2004) found older ages (~315 Ma) in muscovite clasts compared with muscovite along 

shear planes (~305 Ma). These 2 observations argue for late recrystallization of 

muscovite grains during deformation-related meteoric fluid flow. 

A rolling-hinge detachment is proposed based on the geometry and the stable 

isotope data acquired across the Argentat and Felletin detachment zones (Fig. IV-11). 

The consistency of low δDMs values in the Felletin detachment footwall (δDMs < -80‰) 

suggest that D-depleted surface-derived fluid continued to permeate the top-to-east 

rolling-hinge detachment footwall. In contrast, meteoric fluid infiltration and interaction 

with rocks may have ceased in the Argentat section during the rolling-hinge 

development (e.g. Brun and van den Driessche, 1994; Gébelin et al., 2015) 

Six samples were sent to the University of Rennes (France) for Ar/Ar dating on 

single grains (collaboration with G. Ruffet) that will be analysed during the year 2019. 

Five samples are extracted from the detailed cross-section of the NE corner of the 

Millevaches granite for which ẟDMs values as low as -116‰ have been obtained (MIL19, 

MIL18C, MIL18D, MIL18H, MIL18I). These five samples will allow us to define the timing 

of fluid-rock interaction from undeformed granite with high δDMs values at the base of 

the section (MIL18H) to mylonitic granite at the top of the section (MIL19) with low δDMs 

values. One last sample represents a muscovite veneer (MIL13, ẟDMs value = -87‰) on 

a brittle fault plane that corresponds to the Felletin-Ambrugeat Fault System in the 

hanging-wall of the Felletin detachment. This last sample will allow us to better 

characterise the timing of brittle faulting that likely played a major role in routing the 

meteoric fluids downwards in the crust. 
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G. Conclusions 

Chapter IV aimed to decipher the source of fluids that circulated into ductile shear 

zones of the western part of the French Massif Central using structural and 

microstructural data, different geothermometry techniques and hydrogen and oxygen 

isotope geochemistry. Syntectonic leucogranites from the Millevaches massif yield 

ẟDmuscovite values as low as -116‰ coupled with low ẟ18OMs values (8.4‰) that indicate 

an incontestable signature of meteoric fluids. The infiltration of fluids was synchronous 

with the shear zones activity, as shown by muscovite fish in syntectonic leucogranite. 

The quartz microstructures, the oxygen isotope composition of quartz and muscovite 

and the titanium content of muscovite agree on a similar temperature of syntectonic 

fluid infiltration (~500-600°C). The isotopic composition of meteoric water is estimated 

at ~ -105‰. The infiltration of surface-derived fluids is estimated to have occurred 

between ~315 and 305 Ma, through brittle normal faults that dissected the upper crust 

while leucogranite emplacement sustained fluid convection in the lower crust. 
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V. PALEOALTIMETRY RECONSTRUCTIONS OF THE VARISCAN BELT OF 

WESTERN EUROPE 

A. Introduction 

This chapter aims at reconstructing the Late-Palaeozoic elevation of the Variscan 

Belt of Western Europe using stable isotope paleoaltimetry (e.g. Garzione et al., 2000; 

Poage and Chamberlain, 2001; Rowley et al., 2001; Mulch et al., 2004; Mulch and 

Chamberlain, 2007; Campani et al., 2012; Gébelin et al., 2012, 2013). Stable isotope 

geochemistry (ẟD and ẟ18O values) of hydrous silicates coupled with thermometry and 

geochronology techniques allowed us to determine the isotope composition of meteoric 

water that infiltrated the ductile segment of detachment zones in the internal zones of 

the orogen at the end of the Carboniferous (Fig. V-1; Chapters III and IV). Because single-

site paleoaltimetry estimates frequently suffer of lack of knowledge of paleoclimatic and 

paleoenvironmental conditions, the objective of this study is to reference the hinterland 

precipitation records to age-equivalent records obtained in the foreland near sea level 

(e.g. Campani et al., 2012; Gébelin et al., 2012, 2013). Comparing multiple proxies from 

different levels that have preserved the rainfalls composition in the same 

paleogeographic conditions such the latitude or the source of precipitation allow us to 

minimize some of the uncertainties related to the past climate change.  

In the external zones of the highly eroded Variscan Belt, it is hard to find geological 

material that could have preserved the stable isotope composition of late-Palaeozoic 

precipitation. Hydrated carbonates and volcanic glasses have reset their primary isotope 

composition due to later diagenetic processes. To recover the precipitation conditions 

near sea level, the oxygen isotope composition of phosphate (ẟ18Op) from teeth and 
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spines from sharks that evolved in lacustrine or fluvial environments in the Permo-

Carboniferous foreland basins was used. The hydrogen isotope composition (ẟD) of 

hydrous silicates from the Espinouse detachment footwall in the Montagne Noire was 

also investigated.  

 

 

 

 
Figure V-1: Geological map of the Armorican Massif, the French Massif Central and the 
Montagne Noire (France). Note the average calculated ẟDwater and ẟ18Owater values based 
on the isotope composition of muscovite in the footwalls of Quiberon, Piriac and Felletin 
detachment zone in the hinterland of the Variscan Belt (France). Black line: strike-slip shear 
zone. Purple line: detachment shear zone. Red: Variscan granite; Pink: Variscan terranes; Grey: 
Permo-Carboniferous basins. 
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B. Isotope record of meteoric water from the hinterland  

1. Isotope record of meteoric water in the Armorican Massif 

In the southern Armorican domain, the hydrogen isotope ratios of muscovite 

(ẟDMs) and tourmaline (ẟDTo) were measured in the mylonitic footwalls of Piriac and 

Quiberon detachment shear zones (Fig. V-1; Chapter III). The ẟDMs values range from -

88 to -73 ± 2‰ and the ẟDTo values from -87 to -57 ± 2‰ (Table V-2 - A and B). Two 

different thermometry techniques allow the calculation of the isotope composition of 

the fluids that were present in the Piriac and Quiberon detachment footwalls: 

(1) Using deformation temperatures of 550 ± 150°C deduced from quartz 

microstructures (Hirth and Tullis, 1992; Stipp et al., 2002; Langille et al., 2010), the 

hydrogen isotope fractionation factors of Suzuoki and Epstein (1976) and Kotzer et al. 

(1993) and the measured ẟDMs and ẟDTo values, the calculated ẟDwater values range from 

-74 to -59 ±16‰ and from -75 to -49 ± 20‰, respectively (Table V-2A; Chapter III).  

(2) Using temperatures deduced from the Ti-content of muscovite of 587 ± 34°C 

for Piriac and 563 ± 41°C for Quiberon, the hydrogen isotope fractionation factors of 

Suzuoki and Epstein (1976) and Kotzer et al. (1993), and the measured ẟDMs and ẟDTo 

values, the calculated ẟDwater values in both detachment zones range from -77 to -60 ± 

3‰ and from -77 to -49 ± 10‰, respectively (Table V-2B; Chapter III).  

An average ẟDwater value of -70 ± 5‰ (n=36) can be calculated for the meteoric 

water that penetrated the footwall of the two Armorican detachments and was used to 

reconstruct the paleoaltitude of the Variscan Belt. The uncertainty on this ẟDwater value 

(± 5‰) takes into account the isotope analysis (± 2‰), the temperature of isotope 
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exchange given by the Ti-in-Ms geothermometer (± 41°C equivalent to ± 3‰) and the 

average of ẟDMs values (± 4‰) (Table V-1A; Chapter III).  

Based on Ar/Ar ages acquired on synkinematic muscovite, the timing of 

deformation and meteoric fluid infiltration along the Quiberon and Piriac detachment 

zones has been estimated between ca. 320 Ma and 300 Ma (e.g. Ballouard et al., 2015, 

2017; Gapais et al., 2015, Dusséaux et al., 2019; Table V-2B; Chapter III).  

 

A Measure/Estimate 
Uncertaint

y 
Uncertaint

y (‰) 

ẟD 
wate
r (‰) 

Propagate
d 

uncertaint
y (‰) 

ẟ18O 
wate
r (‰) 

Propagate
d 

uncertaint
y (‰) 

 Isotope analysis  (ẟDmineral) 2‰ 2     

Muscovite 
Temperature from quartz 

microstructure  
150°C 16     

Average of ẟDMs values 4‰ 4 -67 17 -9.7 2.1 

Tourmalin
e 

Temperature from quartz 
microstructure 

150°C 20     

Average of ẟDTo values 9‰ 9 -67 22 -9.6 2.8 

Muscovite 
Temperature from Ti-in-Ms 41°C 3     

Average of ẟDMs values 4‰ 4 -70 5 -9.9 0.7 

Tourmalin
e 

Temperature from Ti-in-Ms 41°C 10     

Average of ẟDTo values 9‰ 9 -69 14 -9.9 1.7 
 

B 
Measure/Estimate 

Uncertain
ty 

Uncertain
ty (‰) 

ẟD 
wat
er 

(‰) 

Propagat
ed 

uncertain
ty (‰ 

ẟ18O 
wat
er 

(‰) 

Propagat
ed 

uncertain
ty (‰) 

 

 Isotope analysis (ẟMs) 2‰ 2     

 Temperature from quartz microstructure 150°C 16     

 Average of ẟDMs values 6‰ 6 -90 17 
-

12.4 
2.2 

 Temperature from Ti-in-Ms 51°C 5     

 Average of ẟDMs values 7‰ 7 -89 8 
-

12.3 
1.1 

 
Temperature from Quartz-muscovite oxygen isotope 

exchange 
41°C 4     

 Average of ẟDMs values 6‰ 6 -89 7 
-

12.3 
0.9 

 
Table V-1: Average ẟDwater values and uncertainties calculated in (A) the Armorican Massif and 
(B) the Massif Central. The average ẟDwater values are calculated based on the measured 
hydrogen isotope composition (ẟD) of muscovite (Ms) and Tourmaline (To) from Quiberon and 
Piriac detachment footwalls, combined with estimated temperature using quartz 
microstructures (Hirth and Tullis, 1992; Stipp et al., 2002; Langille et al., 2010) and the Ti-in-
muscovite geothermometer (Wu and Chen, 2015), together with the isotope fractionation 
factors of Suzuoki and Epstein (1976) and Kotzer et al. (1993). The final uncertainty includes 
the isotope analysis, the temperature of isotope exchange (deduced from quartz 
microstructures or Ti-in-Ms thermometry) and the average of stable isotope ratios in the area. 
The ẟDwater value is converted in ẟ18O value using the meteoric water line of Craig (1961). 
Shaded data are used for paleoaltitude reconstructions. 
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   Muscovite Tourmaline  Quartz microstructures thermometer Muscovite Tourmaline 

Sample 
Distance 

(m) 
Rock type 

ẟD Ms 
(‰) 

Fraction Ms 
(μm) 

ẟD To 
(‰) 

Fraction To 
(μm) 

Uncertainty 
(‰) 

Temperature 
(°C) 

Uncertainty  
(°C) 

ẟD water 
(‰) 

- + 
ẟD water 

(‰) 
- + 

PIR01 500 Mylonitic leucogranite -81 500<f     2 550 150 -68 -9 16      

PIR02 503,5 Mylonitic leucogranite -82 500<f     2 550 150 -69 -9 16      

PIR03 507,5 Mylonitic leucogranite -81 500<f -75 250<f<500 2 550 150 -68 -9 16 -63 -11 20 

PIR04 509 Mylonitic leucogranite -79 500<f     2 550 150 -66 -9 16      

PIR05 512 Mylonitic leucogranite -85 500<f -57 250<f<500 2 550 150 -72 -9 16 -45 -11 20 

PIR06 517 Mylonitic leucogranite -76 500<f     2 550 150 -63 -9 16      

PIR07 521 Mylonitic leucogranite -79 250<f<500 -75 250<f<500 2 550 150 -66 -9 16 -63 -11 20 

PIR08 523 Mylonitic leucogranite -80 500<f     2 550 150 -66 -9 16      

PIR09 526 Mylonitic leucogranite -82 500<f     2 550 150 -68 -9 16      

PIR10 528 Mylonitic leucogranite -85 500<f     2 550 150 -72 -9 16      

PIR11 531 Mylonitic leucogranite -87 500<f     2 550 150 -74 -9 16      

PIR12 536 Mylonitic leucogranite -77 500<f     2 550 150 -63 -9 16      

PIR13 540 Mylonitic leucogranite -84 500<f     2 550 150 -70 -9 16      

PIR14 544 Mylonitic leucogranite -81 500<f     2 550 150 -68 -9 16      

PIR15 550 Mylonitic leucogranite -88 500<f     2 550 150 -74 -9 16      

PIR16 560 Mylonitic leucogranite -88 500<f     2 550 150 -74 -9 16      

GUE6 570 Mylonitic leucogranite -85 500<f     2 550 150 -71 -9 16      

GUE7 1900 Mylonitic leucogranite -80 500<f     2 550 150 -66 -9 16      

GUE9 2000 Mylonitic leucogranite -85 500<f     2 550 150 -72 -9 16      

GUE21 2150 Mylonitic leucogranite -86 500<f -85 250<f<500 2 550 150 -72 -9 16 -73 -11 20 

GUE14 8000 Weakly deformed leucogranite -81 500<f     2 550 150 -68 -9 16      

GUE17 8100 Weakly deformed leucogranite -80 500<f     2 550 150 -67 -9 16      

GUE11 10000 Weakly deformed leucogranite -81 500<f     2 550 150 -68 -9 16      

GUE12 10000 Weakly deformed leucogranite -84 500<f     2 550 150 -71 -9 16      

GUE13 10000 Weakly deformed leucogranite -81 500<f     2 550 150 -68 -9 16      

QUIB01 300 Mylonitic leucogranite -85 500<f -87 500<f 2 550 150 -71 -9 16 -75 -11 20 

QUIB02 305 Mylonitic leucogranite -79 250<f<500     2 550 150 -66 -9 16       

QUIB03 322 Mylonitic leucogranite -82 250<f<500 -86 500<f 2 550 150 -69 -9 16 -74 -11 20 

QUIB04 321 Ultramylonitic pegmatite -73 500<f     2 550 150 -59 -9 16       

QUIB05 321,5 Ultramylonitic pegmatite -73 500<f -80 250<f<500 2 550 150 -60 -9 16 -68 -11 20 

QUIB06 320 Ultramylonitic pegmatite -75 250<f<500     2 550 150 -61 -9 16       

QUIB07 200 Micaschist -76 250<f<500     2 550 150 -62 -9 16       

QUIB08 250 Quartz vein -76 500<f -81 500<f 2 550 150 -62 -9 16 -69 -11 20 

QUIB09 255 Quartz vein -76 500<f     2 550 150 -63 -9 16       

QUIB16 465 Quartz vein -79 500<f     2 550 150 -66 -9 16       

QUIB17 500 Quartz vein -80 250<f<500 -85 250<f<500 2 550 150 -66 -9 16 -73 -11 20 
  AVERAGE -81   -79         -67 -9 16 -67 -11 20 
  SD 4   9         4 0 0 9 0 0 
  Min -88   -87         -74 -9 16 -75 -11 20 
  Max -73   -57         -59 -9 16 -45 -11 20 

Table V-2A: Stable isotope data from Quiberon and Piriac detachment footwalls (Armorican Massif). ẟDwater values are calculated based on deformation 
temperatures of 400-700°C deduced from quartz microstructures (Hirth and Tullis, 1992; Stipp et al., 2002; Langille et al., 2010), the hydrogen isotope 
fractionation factors of Suzuoki and Epstein (1976) and Kotzer et al. (1993) and measured hydrogen isotope composition (ẟD) of muscovite (Ms) and tourmaline 
(To) from Quiberon and Piriac detachment footwalls (Armorican Massif). 
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   Muscovite Tourmaline  
Ti-in-Ms 

thermometry 
Muscovite Tourmaline 39Ar/40Ar on Muscovite 

Sample 
Distance 

(m) 
Rock type 

ẟD Ms 
(‰) 

Fraction Ms 
(μm) 

 
ẟD To 
(‰) 

Fraction To 
(μm) 

± 
(‰) 

T (°C) ±  (°C) 
ẟD water 

(‰) 
- + 

ẟD 
water 

- + 
Age 
(Ma) 

± 
(Ma) 

Age 
(Ma) 

± 
(Ma) 

PIR01 500 Mylonitic leucogranite -81 500<f    2 587 34 -71 -2 3    322.4 1.0 306.2 0.5 
PIR02 503,5 Mylonitic leucogranite -82 500<f    2 587 34 -72 -2 3        

PIR03 507,5 Mylonitic leucogranite -81 500<f  -75 250<f<500 2 587 34 -70 -2 3 -67 -3 3     

PIR04 509 Mylonitic leucogranite -79 500<f    2 587 34 -69 -2 3        

PIR05 512 Mylonitic leucogranite -85 500<f  -57 250<f<500 2 587 34 -74 -2 3 -49 -3 3     

PIR06 517 Mylonitic leucogranite -76 500<f    2 587 34 -65 -2 3    318.5 0.9 312.8 0.5 
PIR07 521 Mylonitic leucogranite -79 250<f<500  -75 250<f<500 2 587 34 -68 -2 3 -66 -3 3     

PIR08 523 Mylonitic leucogranite -80 500<f    2 587 34 -69 -2 3        

PIR09 526 Mylonitic leucogranite -82 500<f    2 587 34 -71 -2 3        

PIR10 528 Mylonitic leucogranite -85 500<f    2 587 34 -74 -2 3        

PIR11 531 Mylonitic leucogranite -87 500<f    2 587 34 -76 -2 3    318.6 0.7   

PIR12 536 Mylonitic leucogranite -77 500<f    2 587 34 -66 -2 3        

PIR13 540 Mylonitic leucogranite -84 500<f    2 587 34 -73 -2 3        

PIR14 544 Mylonitic leucogranite -81 500<f    2 587 34 -70 -2 3        

PIR15 550 Mylonitic leucogranite -88 500<f    2 587 34 -77 -2 3        

PIR16 560 Mylonitic leucogranite -88 500<f    2 587 34 -77 -2 3    308.5 0.6 305.4 0.7 
GUE6 570 Mylonitic leucogranite -85 500<f    2 587 34 -74 -2 3        

GUE7 1900 Mylonitic leucogranite -80 500<f    2 587 34 -69 -2 3        

GUE9 2000 Mylonitic leucogranite -85 500<f    2 587 34 -74 -2 3        

GUE21 2150 Mylonitic leucogranite -86 500<f  -85 250<f<500 2 587 34 -75 -2 3 -77 -3 3     

GUE14 8000 Weakly deformed leucogranite -81 500<f    2 587 34 -70 -2 3        

GUE17 8100 Weakly deformed leucogranite -80 500<f    2 587 34 -69 -2 3        

GUE11 10000 Weakly deformed leucogranite -81 500<f    2 587 34 -70 -2 3        

GUE12 10000 Weakly deformed leucogranite -84 500<f    2 587 34 -73 -2 3        

GUE13 10000 Weakly deformed leucogranite -81 500<f    2 587 34 -70 -2 3        

QUIB01 300 Mylonitic leucogranite -85 500<f  -87 500<f 2 563 41 -72 -6 3 -76 -4 16 319.5 0.9 307.7 0.7 
QUIB02 305 Mylonitic leucogranite -79 250<f<500    2 563 41 -67 -6 3        

QUIB03 322 Mylonitic leucogranite -82 250<f<500  -86 500<f 2 563 41 -70 -6 3 -75 -4 16 304.8 1.0 303.4 1.0 
QUIB04 321 Ultramylonitic pegmatite -73 500<f    2 563 41 -60 -6 3        

QUIB05 321,5 Ultramylonitic pegmatite -73 500<f  -80 250<f<500 2 563 41 -61 -6 3 -69 -4 16     

QUIB06 320 Ultramylonitic pegmatite -75 250<f<500    2 563 41 -62 -6 3        

QUIB07 200 Micaschist -76 250<f<500    2 563 41 -63 -6 3        

QUIB08 250 Quartz vein -76 500<f  -81 500<f 2 563 41 -63 -6 3 -70 -4 16     

QUIB09 255 Quartz vein -76 500<f    2 563 41 -64 -6 3        

QUIB16 465 Quartz vein -79 500<f    2 563 41 -67 -6 3        

QUIB17 500 Quartz vein -80 250<f<500  -85 250<f<500 2 563 41 -67 -6 3 -74 -4 16     

  AVERAGE -81   -79     -70 -3 3 -69 -3 10     
  SD 4   9     5 2 0 9 0 7     
  Min -88   -87     -77 -6 3 -77 -4 3     
  Max -73   -57     -60 -2 3 -49 -3 16     

 
Table V-2B: Stable isotope and geochronology data from Quiberon and Piriac detachment footwalls (Armorican Massif). ẟDwater values are calculated based on 
the Ti-in-Ms geothermometer (Wu and Chen, 2015), the hydrogen isotope fractionation factors of Suzuoki and Epstein (1976) and Kotzer et al. (1993) and 
measured hydrogen isotope composition (ẟD) of muscovite (Ms) and Tourmaline (To). 
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  Muscovite 
Quartz microstructures thermometry 

 
Titanium-in-Ms thermometry 

Quartz-muscovite oxygen isotope exchange 
thermometry 

Sample 

Distance 
(m) 

Rock type 
ẟD Ms 

(‰) 
Fraction 
Ms (μm) 

± 
(‰) 

T (°C) 
±  

(°C) 

ẟD 
water 
(‰) 

- + T (°C) 
Uncertainty 

(°C) 

ẟD 
water 
(‰) 

- + T (°C) 
Uncertainty 

(°C) 

ẟD 
water 
(‰) 

- + 

MIL19 0 Mylonitic leugranite -109 500<f 2 550 150 -96 -9 16 540 51 -95 -4 5 538 41 -95 -3 4 

MIL18B 5 Mylonitic leucogranite -102 500<f 2 550 150 -89 -9 16 540 51 -88 -4 5 538 41 -88 -3 4 

MIL18F 6 Quartz vein -99 500<f 2 550 150 -86 -9 16 540 51 -85 -4 5 538 41 -85 -3 4 

MIL18E 
10 Mylonitic leucogranite -104 500<f 2 550 150 -91 -9 16 540 51 -90 -4 5 538 41 -90 -3 4 

MIL18C 15 Mylonitic leucogranite -104 500<f 2 550 150 -91 -9 16 493 57 -86 -5 8 538 41 -90 -3 4 

MIL18A 20 Mylonitic leucogranite -96 500<f 2 550 150 -83 -9 16 540 51 -82 -4 5 538 41 -82 -3 4 

MIL18D 25 Mylonitic leucogranite -105 500<f 2 550 150 -92 -9 16 540 51 -91 -4 5 538 41 -91 -3 4 

MIL18G 35 Mylonitic leucogranite -99 250<f<500 2 550 150 -86 -9 16 540 51 -85 -4 5 538 41 -85 -3 4 

MIL18H 60 Mylonitic pegmatite -116 500<f 2 550 150 -103 -9 16 568 42 -104 -3 3 538 41 -102 -3 4 

MIL18I 90 Undeformed leucogranite -96 500<f 2 550 150 -83 -9 16 559 55 -83 -4 5 538 41 -82 -3 4 

  AVERAGE -103  2 550 150 -90 -9 16 540 51 -89 -4 5 538 41 -89 -3 4 

  SD 6  0 0 0 6 0 0 19 4 7 0 1 0 0 6 0 0 

  Min -116  2 550 150 -103 -9 16 493 42 -104 -5 3 538 41 -102 -3 4 

  Max -96  2 550 150 -83 -9 16 568 57 -82 -3 8 538 41 -82 -3 4 

 
Table V-2C: ẟDwater values calculated based on deformation temperatures of 400-700°C deduced from quartz microstructures (Hirth and Tullis, 1992; Stipp et al., 
2002; Langille et al., 2010), the Ti-in-Ms geothermeter (Wu and Chen, 2015), the hydrogen isotope fractionation factors of Suzuoki and Epstein (1976)  and the 
measured hydrogen isotope composition (ẟD) of muscovite (Ms) from the NE corner of the Millevaches (Massif Central). 
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2. Isotope record of meteoric water in the Massif Central 

In the western part of the French Massif Central, the hydrogen isotope 

composition of muscovite (ẟDMs) was measured into the Felletin detachment footwall 

at the NE corner of the Millevaches Massif (Fig. V-1; Chapter IV). The ẟDMs values range 

from -116 to -90 ± 2‰ (Table V-2C). Three different thermometry techniques allow the 

calculation of the isotope composition of the fluids that were present in the Felletin 

detachment footwall (Table V-2C; Chapter IV): 

(1) Using deformation temperatures of 550 ± 150°C deduced from quartz 

microstructures, the hydrogen isotope fractionation factor of Suzuoki and Epstein (1976) 

and the measured ẟDMs values, calculated ẟDwater values range from -103 to -83 ± 16‰; 

(2) Using temperatures deduced from the Ti-content of muscovite of 493 ± 57°C 

for MIL18C, 568 ± 42°C for MIL18H, 559 ± 55°C for MIL18H, and an average temperature 

of 540 ± 51°C for the other samples, the hydrogen isotope fractionation factor of Suzuoki 

and Epstein (1976) and the measured ẟDMs values, calculated ẟDwater values range from 

-104 to -82  ± 5‰; 

(3) Using temperatures from muscovite-quartz oxygen isotope exchange 

thermometry of 538 ± 41°C (n=1), the hydrogen isotope fractionation factor of Suzuoki 

and Epstein (1976) and the measured ẟDMs values, calculated ẟDwater values range from 

-102 to -82 ± 4‰.  

An average ẟDwater value of -89 ± 8‰ was calculated for the Felletin detachment 

in the French Massif Central, taking into account the uncertainty on the isotope 

analysis(± 2‰), the temperature of isotope exchange given by the Ti-in-Ms 
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geothermometer (± 41°C equivalent to ± 5‰) and the average of ẟDMs values (± 7‰) 

(Fig. 1; Table V-1B; Chapter IV).  

Ar/Ar on synkinematic muscovite allow us to estimate the timing of deformation 

and fluid flow along the Quiberon and Piriac detachment zones was between ca. 325 Ma 

and 305 Ma (e.g. Gébelin, 2004). 

 

C. Isotope record of meteoric water from the foreland 

1. Oxygen isotope geochemistry of shark remains in foreland basins  

a. Introduction  

Fossil shark tooth enameloid represents an excellent proxy to recover the oxygen 

isotope composition of ambient water at the time of tooth formation due to its 

resistance to diagenetic alteration (e.g. Longinelli and Nuti, 1973; Kolodny et al., 1983; 

Kolodny and Raab, 1988; Schmitz et al., 1991; Koch et al., 1992; Kolodny and Luz, 1992; 

Vennemann and Hegner, 1998; Vennemann et al., 2001; Kohn and Cerling, 2002; 

Lécuyer et al., 2003; Kocsis et al., 2007, 2009; Zacke et al., 2009; Tütken et al., 2011). 

Also, the high crystallinity and low organic content of bioapatite ensure the preservation 

of its primary isotope composition (e.g. Kolodny and Raab, 1988; Sharp et al., 2000; Kohn 

and Dettman, 2007; Koch, 2008; Enax et al., 2012). 

Shark teeth are recognized to represent valuable paleoenvironmental archives 

because: (1) the bioapatite in shark teeth can be used to reconstruct water 

paleotemperatures as δ18OP values depends on the temperature and the oxygen isotope 

composition of ambient water (δ18Owater) (e.g. Longinelli and Nuti, 1973; Kolodny et al., 

1983), (2) they are the most common and widespread phosphate vertebrate from the 
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Devonian (e.g. Capetta, 1987; Ginter et al., 2010), (3) the isotope equilibrium between 

the shark teeth (and others remains) and the ambient water is maintained due to shark 

ectothermy (e.g. Amiot et al., 2007; Speers-Roesch and Treberg, 2010; Bernard et al., 

2010), (4) the δ18OPhosphate of the tooth enameloid seems to be independent from 

metabolic fractionation effects (Kolodny et al., 1983), (5) the fractionation is 

independent of the sharks’ taxon (Vennemann et al., 2001), and (6) shark enameloid 

consists mainly of stable fluorapatite (Ca5(PO4)F) with minor amounts of hydroxyl and 

carbonate apatite when compared to the bones (Vennemann et al., 2001; Enax et al., 

2012). 

Fossil sharks represented by teeth and spine are commonly found in Late 

Carboniferous and Early Permian continental basins in Western Europe (Fig. V-2; e.g. 

Soler-Gijón, 1997; Fischer et al., 2010, 2013). In this study, the phosphate oxygen (δ18OP) 

isotope composition of biogenic fluorapatite of shark teeth from the foreland basins 

measured by Fischer et al. (2013) is being analysed for a paleoaltimetry purpose. A 

particular focus was applied to the Bourbon l'Archambault foreland basin (northern part 

of the French Massif Central) located near the studied areas (Fig. V-2). The shark remains 

in this basin represent exceptional proxies for referencing to the hydrogen isotope 

records obtained in the internal zones of the orogen for the following reasons: (1) they 

have a similar age as they have been biostratigraphically and isotopically dated at ~295 

to 290 Ma (Sakmarian; Werneburg, 2003; Roscher and Schneider, 2005; Schneider and 

Werneburg, 2006), (2) sedimentological, paleogeographical, ecological and 

geochemistry (δ18OP and 87Sr/86Sr) studies indicate that the sharks evolved in a 

freshwater environment (lacustrine to fluvial; e.g. (Soler-Gijon, 1997; Soler-Gijón, 1997; 

Schneider et al., 2000; Schultze and Soler-Gijón, 2004; Fischer et al., 2010, 2013), (3) 
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shark teeth have not been affected by diagenetic alteration resulting in a well preserved 

bioapatite (Fischer et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

  

Figure V-2: Palaeogeographic map of the main late-Carboniferous and early-Permian basins 
with the palaeobiogeography of xenacanthiformes, hybodontids, sphenacanthids (modified 
from Schneider and Zajíc, 1994; Roscher and Schneider, 2006 and Fischer et al., 2010, 2013).  
Shark taxa: B — Bohemiacanthus, L — Lissodus, O — Orthacanthus, P — Plicatodus, S — 
Sphenacanthus, T — Triodus, and X — Xenacanthus; below the horizontal line — occurrences 
during Stephanian C (late Gzhelian 303.7 to 298.9 Ma – early Asselian 298.9 to 295 Ma), and 
above the horizontal line — occurrences during Rotliegend (middle Asselian 298.9 to 295 Ma 
– early Artinskian 290,1 to 283,5 Ma). Basins: AU — Autun basin, BU — Bourbon l'Archambault 
basin, GP — Guardia Pisano basin, LC — Lu Caparoni basin, LO — Lodève basin, MO — 
Montceau les Mines basin, PD — Perdasdefogu basin, PU — Puertollano basin, SNB — Saar–
Nahe basin, ST — St. Etienne basin and SV — Salvan-Dorénaz basin. 
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b. The Bourbon l’Archambault basin: Geological context and previous 

isotope analyses 

 

 

Figure V-3: δ18OP vs 87Sr/86Sr plot of shark teeth displaying the environmental conditions (i.e. 
the isotope composition of the ambient water in the shark habitat) at the time of tooth 
formation. The horizontal grey bar represents the range of the seawater strontium isotope 
composition (Denison et al., 1994; Veizer et al., 1999; Korte et al., 2006) while the vertical grey 
bar shows the proposed marine δ18O range (Fischer et al., 2013). The intersection between 
both bars characterises bioapatite values expected for unequivocal fully marine conditions. 

 

The shark remains were derived from black shales of the Buxières Formation in 

the former coal mine of Buxières-les-Mines (Bourbon l'Archambault basin, French 

Massif Central; Figs. V-1 and V-2). The basin has been dated at ~295 to 290 Ma and is 

filled with conglomerates, alluvial arkoses, palustrine deposits with coal seams, followed 

by bituminous black shales and fluvial sandstones, both intercalated with thin horizons 

of intermediary pyroclastics (Werneburg, 2003; Roscher and Schneider, 2005, 2006; 

Schneider and Werneburg, 2006). Even though the comparisons of aquatic faunas led to 

the hypothesis of a marine influence for this basin (e.g. Schultze and Soler-Gijón, 2004), 

sedimentology analysis and isotope studies of shark remains (teeth, scale and spine) and 
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sediments clearly point to freshwater lacustrine environmental conditions (Steyer et al., 

2000; Roscher and Schneider, 2006; Fischer et al., 2013). 

In the Bourbon l’Archambault basin, the δ18OP values of shark remains vary from 

15.5 to 17.6‰ (n = 17) and the 87Sr/86Sr ratios from 0.71058 to 0.71077 (n=4) (Fig. V-3; 

Table V-3; (Fischer et al., 2013). The results are consistent for the two different shark 

species (Orthacanthus and Lissodus, Fig. V-4). Moreover, the lifelong proxies (9 Lissodus 

fine spines and 7 Orthacanthus dorsal spines) yield similar values (15.5 ≤ δ18OP ≤ 17.6‰ 

and 0.71058 ≤ 87Sr/86Sr ≤ 0.71077) to the short-term proxies as one Orthacanthus tooth 

enameloid sample yielded a δ18OP value of 16.6‰ and a 87Sr/86Sr ratio of 0.71061 

(Fischer et al., 2013). 

 

Using the revised phosphate-water fractionation equation of Pucéat et al. (2010), 

the δ18OP values of shark remains and a typical seawater δ18Owater value of −1‰ (Kolodny 

and Luz, 1991; Kocsis et al., 2009), Fisher et al. (2013) calculated paleotemperatures that 

exceed the biological tolerance limit for modern and Jurassic euryhaline sharks (26 to 

32°C; Dera et al., 2009; Carlson et al., 2010; Fischer et al., 2012, 2013). As a consequence, 

these authors consider that the isotope composition of sea water that they used for 

their paleotemperature calculations is inappropriate. Hence, in order to fit the suitable 

Figure V-4: Illustration of the 
late-Carboniferous freshwater 
xenacanthiform shark 
Orthacanthus (~3m-long) along 
with the smaller shark Triodus. 

 

© Alain Bénéteau  
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water paleotemperatures in which these animals have evolved, δ18Owater values lower 

than the typical sea water range are required (δ18Ofreshwater ≤ -1‰). Therefore, the 

following section aims at calculating the oxygen isotope ratio of the ambient water using 

water temperatures that would be adequate for the freshwater sharks. 

c. Calculation of the δ18Owater values 

The aim of this section is to calculate the isotope composition of water in which 

these sharks lived from the isotope composition of sharks remains phosphate (ẟ18OP) 

measured by Fisher et al. (2013). Based on the study of modern and Jurassic euryhaline 

sharks (Dera et al., 2009; Carlson et al., 2010; Fischer et al., 2012, 2013) and to be 

consistent with Fischer et al. (2013) results, a temperature of phosphate-water isotope 

exchange of 29 ± 7°C was chosen. Using this temperature, the ẟ18OP values of Fischer et 

al. (2013) and the phosphate-water oxygen fractionation equation of Lécuyer et al. 

(2013), ẟ18Owater values between -4.1 and -2.1 ± 1.6‰ were calculated in the Bourbon 

l'Archambault basin. When compared to the ones obtained using the newer 

fractionation equation of Lécuyer et al. (2013), the phosphate-water fractionation 

equation of Pucéat et al. (2010) provides consistent ẟ18Owater values that range from -

4.8 to -2.8 ± 1.6‰ (Table V-3). 

d. Discussion 

The preserved original isotope composition of bioapatite from fossil shark remains 

from the Bourbon l’Archambault basin allows the estimation of an isotope composition 

of late-Carboniferous to early-Permian meteoric water of -3.1 ± 1.7 ‰, corresponding 

to the average of the calculated ẟ18Owater values based on the fractionation equation of 

Lécuyer et al. (2013) and a temperature of 29 ± 7°C.  
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ẟ18OPhosphate data measured on other sharks from the Permo-Carboniferous basins 

in Spain and Italy provide similar values. Sharks from the Puertollano basin (Spain) yield  

δ18OP values that range from 18.0 to 20.2‰ falling into the marine water domain or at 

the boundary between the marine domain/ fresh water domain (Figs. V-2 and V-3; Table 

V-3; Fischer et al., 2013). The associated 87Sr/86Sr ratios indicate that the shark teeth 

formed in a fresh water environment. Fisher et al. (2013) interpret the 18O-enriched  

δ18OP values by a strong evaporation effect that would have shifted the original δ18OP to 

higher values, which is in good agreement with a lacustrine basin environment (Fig. V-

3; Fischer et al., 2013). Results from sharks teeth in the  Guardia Pisano basin in Italy 

support the idea that late-Carboniferous to early-Permian sharks lived in rivers / lakes 

as both δ18OPhosphate (16.7 to 18.2‰) and 87Sr/86Sr values (0.71024 to 0.71036) fall into 

the freshwater environment domain (Figs. V-2 and V-3; Table V-3; Fischer et al., 2013). 

These results strengthen the hypothesis that these sharks are comparable to 

modern diadromous shark that can migrate between salt and fresh waters (e.g. Soler-

Gijon, 1997, 1999; Schneider et al., 2000; Schultze and Soler-Gijón, 2004; Fischer et al., 

2010, 2013). 

e. Conclusion 

An average ẟ18Owater value of -3.1 ± 1.7‰ (n=17) was calculated for the meteoric 

water that exchanged with sharks teeth and spines in the Bourbon l’Archambault basin. 

This value will be used to reconstruct the paleoaltitude of the Variscan Belt during the 

Late Carboniferous. The uncertainty takes into account the isotope analysis (± 0.2‰), 

the temperature of isotope exchange (± 7°C equivalent to ± 1.6‰ in δDwater values) and 

the average of the ẟ18OP values (± 0.5‰). 
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Locality 
name 

Numbe
r on 
map 

Formation Age Taxon 
Sampl

e 
Material 

δ18OP                     
(‰ 

VSMOW
) 

87Sr/86S
r 

ẟ18Owate

r 
(29 ± 
7°C) 

Lécuyer 
et al. 

(2013) 

ẟ18Owate

r 
(29 ± 
7°C) 

Pucéat 
et al. 

(2010) 

Puertollano 
(Southern 

Spain) 
1 

Emma 
Quarry, 

bituminou
s bed 

'Emma', 
above coal 

seam III 

Gzehlian-
Asselian, 

Stephania
n C (304 - 
300 Ma) 

Lissodus LP1 
40 tooth 
crowns 

18.0  -1.7 -2.4 

Triodus TP1 
2 tooth 

tips 
18.3  -1.4 -2.1 

Orthacanthu
s meridonalis 

OP1 
tooth 

enameloi
d 

18.8 
0.7116

7 
-0.9 -1.6 

OP2 
tooth 

enameloi
d 

18.5 
0.7121

6 
-1.1 -1.9 

OP3 
tooth 

enameloi
d 

18.3 
0.7119

0 
-1.3 -2.0 

OP4 
tooth 

enameloi
d 

18.6  -1.1 -1.8 

OP5 
tooth 

enameloi
d 

20.2  0.6 -0.2 

      Average 18.7 
0.7119

1 
-1.0 -1.7 

      SD 0.7 
0.0002

5 
0.7 0.7 

      Min 18.0 
0.7116

7 
-1.7 -2.4 

      Max 20.2 
0.7121

6 
0.6 -0.2 

           

Buxiéres-les-
Mines, 

Buxiéres 
lake, 

Bourbon 
l'Archambaul

t Basin 
(France) 

2 
Buxiéres 

Fm 

Early 
Permian, 

Sakmarian 
(295 - 290 

Ma) 

Lissodus 

LBS 1A fin spine 16.7 
0.7107

0 
-2.9 -3.7 

LBS 1B fin spine 16.9  -2.8 -3.5 

LBS 2 fin spine 16.4 
0.7105

8 
-3.2 -3.9 

LBS 2A fin spine 16.6  -3.1 -3.8 

LBS 2B fin spine 16.7  -2.9 -3.6 

LBS 2C fin spine 16.7  -3.0 -3.7 

LBS 3 fin spine 15.6 
0.7107

7 
-4.0 -4.7 

LBS 3A fin spine 16.0  -3.7 -4.4 

LBS 3B fin spine 15.5  -4.1 -4.8 

Orthacanthu
s buxieri 

OB1 
tooth 

enameloi
d 

16.6 
0.7106

1 
-3.1 -3.8 

OBS 1a 
dorsal 
spine 

16.6  -3.0 -3.7 

OBS 2a 
dorsal 
spine 

16.3  -3.4 -4.1 

OBS 
1b 

dorsal 
spine 

16.0  -3.6 -4.4 

OBS 
2b 

dorsal 
spine 

16.7  -2.9 -3.6 

OBS 
3b 

dorsal 
spine 

17.6  -2.1 -2.8 

OBS 
4b 

dorsal 
spine 

17.4  -2.2 -2.9 

OBS 
5b 

dorsal 
spine 

16.4  -3.3 -4.0 

      Average 16.5 
0.7106

6 
-3.1 -3.8 

      SD 0.5 
0.0000

9 
0.5 0.5 

      Min 15.5 
0.7105

8 
-4.1 -4.8 

      Max 17.6 
0.7107

7 
-2.1 -2.8 

 
Table V-3 A: δ18OP values (‰ VSMOW) and 87Sr/86Sr ratios of tooth apatite from specific shark 
taxa in Western European Palaeozoic basins. Locality numbers refer to basin numbers in Figure 
V-2. Palaeotemperature estimates from Fischer et al. (2012) and phosphate-water 
fractionation factor from Lécuyer et al. (2013) and Pucéat et al. (2010). 
 



  

170 
 

Locality 
name 

Number 
on map 

Formation Age Taxon Sample Material 
δ18OP                     
(‰ 

VSMOW) 

87Sr/86Sr 

ẟ18Owater 
(29 ± 
7°C) 

Lécuyer 
et al. 

(2013) 

ẟ18Owater 
(29 ± 
7°C) 

Pucéat 
et al. 

(2010) 

Guardia 
Pisano basin, 
southwestern 
Sardinia, Italy 

3 
Member 

B 

Early 
Permian, 

early 
Asselian 

(299 - 295 
Ma) 

Lissodus 
sardiniensis 

LS 1 
21 tooth 
crowns 

17.55 0.710280 -2.1 -2.8 

LS 2 
30 tooth 
crowns 

18.19  -1.5 -2.2 

LS 3 
30 tooth 
crowns 

17.98  -1.7 -2.4 

LS 4 
30 tooth 
crowns 

17.93 0.710236 -1.7 -2.4 

LS 5 
30 tooth 
crowns 

17.97  -1.7 -2.4 

LS 6 
28 tooth 
crowns 

18.18  -1.5 -2.2 

LS 7 
fin spine 
fragment 

16.97  -2.7 -3.4 

LS 8 
fin spine 
fragment 

17.69  -2.0 -2.7 

LS 9 
fin spine 
fragment 

17.64  -2.0 -2.7 

LS 10 
fin spine 
fragment 

17.54  -2.1 -2.8 

LS 11 
fin spine 
fragment 

17.22  -2.4 -3.1 

LS 12 
fin spine 
fragment 

17.28  -2.4 -3.1 

LS 13 
fin spine 
fragment 

17.21  -2.4 -3.1 

LS 14 
fin spine 
fragment 

17.34 0.710364 -2.3 -3.0 

LS 15 
fin spine 
fragment 

18.04  -1.6 -2.3 

LS 16 
fin spine 
fragment 

17.84  -1.8 -2.5 

LS 17 
fin spine 
fragment 

17.79  -1.9 -2.6 

LS 18 
fin spine 
fragment 

17.76  -1.9 -2.6 

LS 19 
fin spine 
fragment 

17.59 0.710354 -2.1 -2.8 

LS 20 
fin spine 
fragment 

17.03  -2.6 -3.3 

LS 21 30 scales 17.37  -2.3 -3.0 
LS 22 30 scales 17.15  -2.5 -3.2 
LS 23 26 scales 16.67  -3.0 -3.7 

      Average 17.6 0.71031 -2.1 -2.8 

      SD 0.4 0.00006 0.4 0.4 
      Min 16.7 0.71024 -3.0 -3.7 
      Max 18.2 0.71036 -1.5 -2.2 

 
 
Table V-3 B: δ18OP values (‰ VSMOW) and 87Sr/86Sr ratios of tooth apatite from specific shark 
taxa in Western European Palaeozoic basins. Locality numbers refer to basin numbers in Figure 
V-2. Palaeotemperature estimates from Fischer et al. (2012) and phosphate-water 
fractionation factor from Lécuyer et al. (2013) and Pucéat et al. (2010). 
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2. Hydrogen isotope geochemistry of hydrous silicates from the Montagne 

Noire 

a. Introduction 

In order to reference the hydrogen isotope records obtained from the south 

Armorican and Limousin detachments (Chapters III and IV), the hydrogen isotope 

composition (ẟD) of hydrous silicates that crystallized during high temperature 

deformation were measured in the footwall of the Montagne Noire Espinouse 

detachment (southern part of the French Massif Central) that separates the migmatitic 

orthogneiss (footwall) from the Graissessac-Lodève supra-detachment basin to the 

north (hanging-wall, Fig. V-5).  

b. Geological settings 

Located at the southern edge of the French Massif Central, the Metamorphic Core 

Complex of Montagne Noire (MN) is considered to have developed in the foreland of 

the Variscan belt (e.g. Ledru et al., 1989; Franke et al., 2011). It consists of a 20 km-wide 

and 80 km-long ENE-WSW trending high-grade metamorphic dome made of migmatitic 

orthogneiss and granite surrounded by a sequence of Palaeozoic metasediments (e.g. 

Geze et al., 1952; Van Den Driessche and Brun, 1992, Fig. V-5). The axial zone is overlain 

by metamorphosed sediments that are involved in large scale southwards recumbent 

folds (e.g. Arthaud, 1970; Echtler, 1990; Van Den Driessche and Brun, 1992). 

Although the  Espinouse detachment shear zone might have acted as a thrust 

during the early stage of compression, the last increment of deformation is widely 

considered to be normal with a top-to-the-north sense of shearing (e.g. Malavieille et 

al., 1990; Pitra et al., 2012; Poujol et al., 2017). It is accepted that this detachment zone 
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developed as a result of post-orogenic extension during the Late Carboniferous (e.g. 

Malavieille et al., 1990; Pitra et al., 2012; Poujol et al., 2017). 

  

Figure V-5: (A) Location of the study area within the European Variscan belt; (B) Structural 
map of the Montagne Noire gneiss dome bounded by the Espinouse detachment, with 
relationship with Variscan thrusts and nappes and late-Carboniferous to early-Permian basins 
(modified after Brun and van den Driessche, 1994). (C) Cross section (see transect location on 
B)  and (D) zoomed map showing location of sampling section (modified from Pitra et al., 2012 
and Fréville et al., 2016). M – Montalet granite; V – Vialais granite. 

 

The mylonitic footwall is represented by a highly deformed orthogneiss whose 

protolith is thought to represent a relic of an Ordovician magmatism episode dated at 

456-450 Ma (e.g. Roger et al., 2004, 2015; Pitra et al., 2012). These orthogneiss 

underwent high-temperature deformation and metamorphism during the Variscan 

orogeny between 320 and 300 Ma (U-Th-Pb on monazite and zircon; Roger et al., 2015; 

Poujol et al., 2017) that postdates the Barrovian metamorphism and nappe 
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emplacement (>320 Ma; e.g. Feist and Galtier, 1985). The activity along the Espinouse 

detachment shear zone is thought to be coeval with migmatization (e.g. Maluski et al., 

1991; Pitra et al., 2012; Roger et al., 2015), and its cessation has been estimated at 294.4 

± 4 Ma (LA-ICP-MS U-Pb-Th data on monazite on the Saint-Eutrope migmatitic 

orthogneiss, Pitra et al., 2012). These ages are similar with those at 294 ± 1 Ma obtained 

on monazite and zircon using U-Th-Pb on the syntectonic Montalet granite that outcrops 

further west in the Espinouse detachment footwall (Poilvet et al., 2011). In addition, the 

age of 295.3 ± 4.8 Ma obtained on  a volcanic ash layer from the Graissessac-Lodève 

supra-detachment basin (north of the axial zone) confirms the late-Carboniferous 

activity on the Espinouse detachment (Bruguier et al., 2003).  

 

Figure V-6: Field pictures of the Espinouse detachment footwall at the NE of the Montagne 
Noire. (A) General view of the Espinouse detachment zone; (B) Mylonitic orthogneiss with 
shear bands highlighting a top-to-the-NE sense of shear; (C) Sheared pegmatite and mylonitic 
orthogneiss exhibiting stretched tourmaline parallel to the lineation; (D) Delta type clast of 
feldspar. 
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c.  Structure and internal deformation 

At the northern edge of the Montagne Noire, the sheared orthogneiss exhibits an 

E-W-striking foliation that dips shallowly to the N (Fig. V-6 - A). This foliation (S-planes) 

is overprinted by pervasive shear planes (C-planes) that dip moderately to the north (Fig. 

V-6 - B), giving rise to shear bands indicating a top-to-the north normal sense of shear 

when looking parallel to the ENE-trending lineation. The leucocratic migmatitic 

orthogneiss is intruded by syntectonic pegmatite (Fig. V-6 - C). Stretched tourmaline (Fig. 

6-C) and asymmetric feldspar porphyroclasts (Fig. V-6 - D) confirms the normal 

kinematics to the ENE (e.g. Pitra et al., 2012). 

At the microscopic scale, muscovite, tourmaline and biotite grains (Fig. V-7 - A and 

B) are predominantly located along shear planes (C) but also foliation planes (S) that 

form together shear bands. Large muscovite and tourmaline porphyroclasts grains (> 

0.5mm) are surrounded by small biotite that developed along shear planes (Fig. V-7 - D 

and E). Micaschist samples collected in the orthogneiss “carapace” are affected by 

brittle normal faults where biotite crystallised on the walls of the fracture (Fig. V-7 - F 

and G). 

 

Sub-solidus deformation textures, such as rectangular and castellate quartz grain 

boundaries, indicate that grain boundary migration (regime 3, Hirth and Tullis, 1992) 

was the dominant dynamic recrystallization process (Fig. V-7 - C). These microstructural 

observations are compatible with ductile shearing of the orthogneiss during high-

temperature deformation (>500°C, Stipp et al., 2002). This is in good agreement with 

thermometry estimates of 566 ± 38°C conducted on a similar section using Raman 

Spectroscopy on Carbonaceous Matter (Fréville et al., 2016). 
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Figure V-7 (last page): Microstructures from the footwall of the Espinouse detachment. 
Sections are cut perpendicular to foliation and parallel to lineation. Mylonitic orthogneiss 
(sample MNC03) (A) Shear bands highlighted by muscovite, tourmaline and biotite; (B) 
Stretched tourmaline along shear planes; (C) Quartz grain boundary migration (white arrows) 
and biotite on C plane; (D) Deformed tourmaline and muscovite porphyroclasts taped by 
biotite fish along shear planes; (E) Lenticular muscovite fish reduced on the upper and lower 
side by shear planes filled with biotite; Micaschist (sample MN12-10): (F) and (G) Normal faults 
with biotite on the walls 

 

d. Hydrogen and oxygen isotope geochemistry 

Hydrogen isotope measurements of muscovite (Ms), tourmaline (To), and biotite 

(Bt) were conducted on 7 samples of mylonitic orthogneiss, 2 samples of sheared 

pegmatite and 2 samples of micaschist (δDmineral ± 2‰; Table V-4 and Fig. V-8). δDMs 

values from orthogneiss range from -59 to -47‰. Pegmatite samples have similar δDMs 

values between -54 and -48‰. In contrast, tourmaline provides lower δDTo values that 

vary between -72 and -62‰ for the mylonitic orthogneiss and from -67 to -63‰ for the 

pegmatite. Biotite yield δDBt values between -76 and -56‰ in mylonitic orthogneiss, -

64‰ in pegmatite and from -60 to -58‰ in micaschist.  

ẟDMs values remain constant from the top to the bottom of the section and range 

from -59 to -47‰ (Table V-4 and Fig. V-8). In contrast, tourmaline have ẟD values that 

are lower at the bottom of the section (-72‰) compared to those at the top (-62‰). 

The ẟDTo values are systematically 15‰ lower than those provided by muscovite, 

indicating these two minerals reached their hydrogen isotope equilibrium based on the 

fractionation factors of Suzuoki and Epstein, (1976) for muscovite-water and Jibao and 

Yaqian (1997) for tourmaline-water using a temperature of 566°C estimated by Fréville 

et al. (2016). 

Similarly to tourmaline, hydrogen isotope ratios of biotite shows a decrease from 

the top (-56‰) to the bottom of the section (-76‰). When compared to the ẟDMs values, 

the δDBt values are 22‰ lower than those provided by muscovite at the bottom, and up 
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to 8‰ lower at the top of the section (Table V-4). This 22‰ difference between the two 

minerals at the bottom has been interpreted to reflect isotope equilibrium based on the 

difference in fractionation factors of 21‰ between muscovite and biotite calculated  

by Suzuoki and Epstein (1976) at 566°C (Fréville et al., 2016). In contrast, the 8‰ 

difference between the ẟD values of biotite and muscovite at the top indicates a 

disequilibrium and suggests that biotite interacted with a different fluid at the top 

compared to the bottom of the section. 

The oxygen isotope composition (δ18O ± 0.1‰) of muscovite from sample MNC03 

was also measured and a δ18OMs value of 8.8‰ was obtained (Table V-4). 

e. Hydrogen isotope composition of the fluids 

The isotope composition of the fluid present in the Espinouse detachment 

footwall has been calculated based on the hydrogen isotope composition of hydrous 

minerals (Muscovite: Ms; Tourmaline: To and Biotite: Bt), the hydrogen isotope 

fractionation factors of Suzuoki and Epstein (1976) for muscovite and biotite and the 

one of Jibao and Yaqian (1997) for tourmaline, as well as the estimated temperature of 

isotope exchange  between the fluid and the mineral (Fig. V-8; Table V-5). Two different 

temperatures estimates that lead to sensibly similar ẟDwater values have been considered: 

 Deformation temperatures of 550 ± 150°C deduced from quartz 

microstructures (this study, e.g. Hirth and Tullis, 1992; Stipp et al., 2002; 

Langille et al., 2010) allow us to calculate ẟDwater values ranging from -42 

to -33 ± 16‰ from ẟDMs values, -41 to -22 ± 16‰ from ẟDBt values and 

from -33 to -23 ± 20‰ from ẟDTo values.  



  

178 
 

 

Figure V-8: Hydrogen isotope analysis of mylonitic orthogneiss and pegmatite samples from 
the Espinouse detachment footwall with respect to the estimated distance from the Espinouse 
detachment zone from 15m to 50m (St Eutrope chapel). (A) δD values [‰] of muscovite (Ms), 
tourmaline (To) and biotite (Bt); (B) δDwater [‰] calculated based on the δD values of 
hydrous silicates, a temperature of isotope exchange of 566°C and the hydrogen isotope 
fractionation factors of Suzuoki and Epstein (1976) and Jibao and Yaqian (1997).
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Name Description 
Distance 

(m) 
Foliation Lineation Longitude Latitude 

ẟDMs (‰) 

(500µm<f) 

ẟDMs (‰) 

(250<f<500µm) 

ẟDBt (‰) 

(500µm<f) 

ẟDMs 
- 

ẟDBt 
(‰) 

 

ẟDTo (‰) 

(500µm<f) 

ẟDMs - 

ẟDTo (‰) 

 

ẟ18OMs (‰) 

(500µm<f) 

B
O

TT
O

M
 

MNC01A 
Mylonitic 

orthogneiss 
50 N095;50N N060 43°39'41.04"N 2°59'21.39"E -54  -76 22 -72 18  

MNC01B Pegmatite 50 N095;50N N060 43°39'41.04"N 2°59'21.39"E -51  -64 13 -67 16  

MN12-15 
Mylonitic 

orthogneiss 
45 N103;45N N070 43°39'45.60"N 2°59'21.15"E -51 -51 -63 12    

MNC02 
Mylonitic 

orthogneiss 
40 N285;60N N048 N43˚39'47.0'' E02˚59'25.7''  -52 -69 17 -63 11  

MNC03 
Pegmatite 
+ Mylonitic 
orthogneiss 

32 N074;45N N060 N43˚39'49.0'' E02˚59'26.0'' -54    -71 17 8.8 

TO
P

 

MNC04 
Mylonitic 

orthogneiss 
25 N090;38N N072 N43˚39'51.8'' E02˚59'28.8'' -48  -56 8 -62 14  

MNC05 
Mylonitic 

orthogneiss 
20 N093;30N N052 N43˚39'52.6'' E02˚59'29.3'' -59 -55      

MNC06A Pegmatite 15 N082;50N N040 N43˚39'56.2'' E02˚59'20.6'' -54 -48   -62 14  

MNC06B 
Mylonitic 

orthogneiss 
15 N082;50N N040 N43˚39'56.2'' E02˚59'20.6''  -47 -60 13    

MN12-10 Micaschist 5   43°40'3.90"N 2°58'32.61"E   -58     

MN12-05 Micaschist 0  N056 43°40'6.11"N 2°58'55.61"E   -60     

 
Table V-4: Location, description, hydrogen and oxygen isotope composition of samples from the NE edge of the Montagne Noire in the footwall of the 
Espinouse detachment shear zone. The estimated distance from the hanging wall/footwall interface is indicated in m. Ms: muscovite; Bt: biotite; To: 
tourmaline.
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 Raman Spectroscopy on Carbonaceous Matter thermometry estimates of 

566 ± 38°C obtained on similar samples (Fréville et al., 2016), allow us to 

calculate ẟDwater values ranging from -43 to -34 ± 3‰ from muscovite, -43 

to -23 ± 3‰ from biotite and from -34 to -25 ± 4‰ from tourmaline.  

The oxygen isotope ratio of muscovite (δ18OMs = 8.8 ± 0.1‰) from a mylonitic 

orthogneiss, combined with the oxygen isotope fractionation factor of Zheng (1993) and 

the Raman Spectroscopy on Carbonaceous Matter thermometry estimates of 566 ± 38°C 

(Fréville et al., 2016), allows the calculation of a δ18Owater value of 9.8 ± 0.1‰. 

f. Discussion 

The homogeneous lower ẟDwater values (-43 to -34‰) calculated from muscovite 

along the section can be interpreted to reflect the hydrogen isotope composition of a 

deep crustal fluid (-70‰ < δDmetamorphic fluids < -20‰ and/or -80‰ < δDmagmatic fluids < -40‰; 

5‰ < δ18Ometamorphic fluids < 25‰ and 5‰ < δ18Omagmatic fluids < 10‰; e.g. Field and Fifarek, 

1985). The ẟDwater values calculated from biotite (-43 to -36‰) and from tourmaline (-

34 to -25‰) collected at the bottom (32 to 50m) of the section are consistent and reflect 

a signature of a deep crustal fluid. 

In contrast, the ẟDwater values calculated from biotite and tourmaline at the top of 

the section (0 to 25m) range from -27 to - 23‰, interpreted to reflect a mixing 

relationship between deuterium-depleted (ẟDwater ~ -43‰) and deuterium-enriched 

(ẟDwater ~ -23‰) fluids. 

Observations at the scale of the thin-section indicates that biotite crystallized 

along shear planes (C) affecting the orthogneiss during deformation in the footwall, and 

along brittle normal faults in micaschist in the hanging-wall (Fig. 7). It has been 
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demonstrated that the orthogneiss experienced an episode of intense ductile shearing 

along the Espinouse detachment at ~300-295 Ma (LA-ICP-MS U-Pb-Th on monazite and 

Ar/Ar on muscovite, Maluski et al., 1991; Pitra et al., 2012). This episode of shearing was 

coeval with intense fluid circulation as shown by patchy zoning of younger monazite 

gains (Pitra et al., 2012; Poujol et al., 2017). Consequently, the isotope composition of 

syntectonic biotite is interpreted to reflect the composition of the fluid that circulated 

during activity on the Espinouse detachment zone. 

The high δDwater values (~-23‰) calculated from biotite can reflect: 1) a 

metamorphic fluid signature (-70‰ < δDmetamorphic fluids < -20‰; e.g. Field and Fifarek, 

1985) or 2) a meteoric fluid signature sourced at low elevation (e.g. Poage and 

Chamberlain, 2006). The Montagne Noire being located in the foreland of the Variscan 

Belt, the ẟDwater values of precipitation at the surface at low altitude can be assumed to 

be high in agreement with those obtained near sea level (δDsea water value = 0 ± 1-2‰, 

Hoefs, 2004). As a consequence, the δDBt values at the top of the detachment footwall 

could reflect interaction with deuterium-enriched meteoric fluids during high 

temperature deformation. However, the downward infiltration of surface-derived fluids 

with high ẟDwater values would result in lowering the ẟDwater values by progressive 

interaction with metamorphic and/or magmatic fluids. Therefore, the highest ẟDwater 

value of -23‰ obtained at the top of the section is considered to approximate most 

closely the ẟDwater value of precipitation at that time.  

As proposed by previous studies, the infiltration of surface-derived fluids at depth 

can occur by percolating along fractures and normal faults that increase the 

permeability of the detachment zones (e.g. Mulch et al., 2004, 2007; Person et al., 2007; 

Gébelin et al., 2011, 2015, 2017). In the Montagne Noire, brittle normal faults in the 
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micaschists could have enhanced the permeability of the upper crust, while the 

emplacement of syntectonic granite and exhumation of high-grade metamorphic rocks 

would have provided the necessary heat to sustain the convection of fluids at depth.  

g. Further work to be conducted in the Montagne Noire 

The Montalet syntectonic leucogranite that was emplaced during late-orogenic 

extension along the Espinouse detachment at the NW corner of the Montagne Noire has 

also been sampled (see location on Fig. V-5). It was dated at 294  Ma ± 3 Ma by U–Th–

Pb on zircon (Poujol et al., 2017) and at 294 ± 1 Ma on monazite (Poilvet et al., 2011). 

Combining the study of the orthogneiss of St Eutrope that experienced a late episode of 

shearing (NE of the Montagne Noire; see above) and this new study on the Montalet 

syntectonic granite, future work will be able to characterise the fluids that circulated 

along the Espinouse detachment during post-orogenic extension. 

In order to determine the source of fluids that infiltrated the Montalet granite, this 

future study will measure the hydrogen isotope composition (ẟD) of muscovite and 

biotite from 9 leucogranite samples in the Stable Isotopes lab (Joint Goethe University 

and BIK-F) in Frankfurt (Germany) in 2019. As the hydrogen isotopic composition of 

muscovite from the foreland area is likely to fall into the range of 

metamorphic/magmatic muscovite the oxygen isotope ratios (ẟ18O values) of two 

muscovite samples from the Montalet granite will also measured at the University of 

Lausanne (Switzerland). The temperature of isotope exchange between the fluid and 

the muscovite estimated using the Ti-in-Ms thermometer (Wu and Chen, 2015) 

combined with the stable isotope data acquired on synkinematic muscovite will allow 

us to decipher the source of fluids that were present in the detachment footwall during 

deformation. The chemical composition of muscovite from the Montalet granite will be 
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measured using the microprobe CAMECA SX100 at the University of Lille (France) in 

order to detect potential grain-scale chemical variations. 

h. Conclusion 

In the Montagne Noire, mylonitic orthogneiss samples were collected in the 

footwall of the Espinouse detachment. Muscovite porphyroclasts yielded ẟDMs values 

that reflect interaction with deep crustal fluids. Biotite and tourmaline located along 

shear planes yield ẟD values that progressively increase towards the top of the section. 

This increase has been interpreted to reflect a progressive interaction with a deuterium-

enriched fluid. Using a temperature of isotope exchange of 566 ± 38°C deduced from 

Raman Spectroscopy on Carbonaceous Matter thermometry (Fréville et al., 2016), which 

is in agreement with quartz microstructure typical of high temperature deformation 

(>500°C), the hydrogen isotope composition of the fluids that exchanged with muscovite, 

tourmaline and biotite during high temperature deformation was calculated.  

The results from this study indicate a 20‰ difference in ẟDwater values that are 

interpreted in terms of mixing between metamorphic fluids with lower ẟD values (-43‰) 

and deuterium-enriched metamorphic and/or meteoric fluids with higher ẟD values 

(-23‰). Postulating that all the conditions were met to allow low-altitude meteoric 

water to infiltrate the footwall of the Espinouse detachment during post-orogenic 

extension, a potential ẟDwater value of precipitation that penetrated during the 

detachment activity was calculated. The ẟD values of synkinematic biotite (± 2‰) 

combined with the temperature of isotope exchange given by the Raman Spectroscopy 

on Carbonaceous Matter thermometry (± 38°C equivalent to ± 3‰) allowed the 

calculation of an average ẟDwater value of -30 ± 8‰ (n=8) for the precipitation that will 

be tested to reconstruct the paleoaltitude of the Variscan Belt (Table 6).  
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    Muscovite Biotite Tourmaline 

± ±  
(‰) 

Quartz microstructures thermometer 
Raman Spectroscopy on Carbonaceous Matter 

thermometry 

 Sample 

Dis 
ta
n 
ce 
(m
) 

Rock type 

ẟD 
Ms 
(‰

) 

Fraction 
Ms (μm) 

ẟD 
Bt 
(‰

) 

Frac 
tion 
Bt 

(μm) 

ẟD 
To 
(‰

) 

Frac 
tion 
To 

(μm) 

Te
m 

per
a 

tur
e 

(°C) 

±  
(°C
) 

ẟD 
wate

r 
(‰) 
from 
Ms 

ẟD 
wate

r 
(‰) 
from 

Bt 

- + 

ẟD 
wate

r 
(‰) 
from 

To 

- + 

Te
m 

per
a 

tur
e 

(°C) 

±  
(°C
) 

ẟD 
wate

r 
(‰) 
from 
Ms 

ẟD 
wate

r 
(‰) 
from 

Bt 

- + 

ẟD 
wate

r 
(‰) 
from 

To 

- + 

B
O

TT
O

M
 

MNC01
A 

50 
Leucograni

te 
-54 500<f -76 

500<
f 

-72 
500<

f 
2 550 

15
0 

-41 -41 
-
9 

1
6 

-33 
-

12 
2
0 

566 38 -42 -43 
-
3 

3 -34 
-
3 

4 

MNC01
B 

50 Pegmatite -51 500<f -64 
500<

f 
-67 

500<
f 

2 550 
15
0 

-37 -30 
-
9 

1
6 

-28 
-

12 
2
0 

566 38 -39 -31 
-
3 

3 -29 
-
3 

4 

MN12-
15 

45 
Leucograni

te 
-51 500<f -63 

500<
f 

  2 550 
15
0 

-38 -29 
-
9 

1
6 

   566 38 -39 -30 
-
3 

3    

MNC02 40 
Leucograni

te 
-52 

250<f<50
0 

-69 
500<

f 
-63 

500<
f 

2 550 
15
0 

-38 -35 
-
9 

1
6 

-24 
-

12 
2
0 

566 38 -39 -36 
-
3 

3 -25 
-
3 

4 

MNC03 32 

Pegmatite 
+ 

leucogranit
e 

-54 500<f   -71 
500<

f 
2 550 

15
0 

-41  -
9 

1
6 

-32 
-

12 
2
0 

566 38 -42  -
3 

3 -34   

TO
P

 

MNC04 25 
Leucograni

te 
-48 500<f -56 

500<
f 

-62 
500<

f 
2 550 

15
0 

-34 -22 
-
9 

1
6 

-23 
-

12 
2
0 

566 38 -35 -23 
-
3 

3 -25 
-
3 

4 

MNC05 20 
Leucograni

te 
-55 

250<f<50
0 

    2 550 
15
0 

-42  -
9 

1
6 

   566 38 -43  -
3 

3    

MNC06
A 

15 Pegmatite -48 
250<f<50

0 
  -62 

500<
f 

2 550 
15
0 

-34  -
9 

1
6 

-23 
-

12 
2
0 

566 38 -36  -
3 

3 -25   

MNC06
B 

15 
Leucograni

te 
-47 

250<f<50
0 

-60 
500<

f 
  2 550 

15
0 

-33 -26 
-
9 

1
6 

   566 38 -34 -27 
-
3 

3    

MN12-
10 

5 Micaschist   -58 
500<

f 
  2 550 

15
0 

 -24 
-
9 

1
6 

   566 38  -25 
-
3 

3    

MN12-
05 

0 Micaschist   -60 
500<

f 
  2 550 

15
0 

 -26 
-
9 

1
6 

   566 38  -27 
-
3 

3    

   AVERAGE -51  -64  -66  2 550 
15
0 

-38 -29 
-
9 

1
6 

-27 
-

12 
2
0 

566 38 -39 -30 
-
3 

3 -29 
-
3 

4 

   SD 3  7  4  0 0 0 3 7 0 0 4 0 0 0 0 3 7 0 0 4 0 0 

   Min -55  -76  -72  2 550 
15
0 

-42 -41 
-
9 

1
6 

-33 
-

12 
2
0 

566 38 -43 -43 
-
3 

3 -34 
-
3 

4 

   Max -47  -56  -62  2 550 
15
0 

-33 -22 
-
9 

1
6 

-23 
-

12 
2
0 

566 38 -34 -23 
-
3 

3 -25 
-
3 

4 

 
Table V-5: Measured hydrogen isotope composition (ẟD) of muscovite, biotite and tourmaline from the Espinouse detachment footwall (Montagne Noire, 
France), that, together with estimated temperature of hydrogen isotope exchange deduced from quartz microstructures (this study) and Raman 
Spectroscopy on Carbonaceous Matter thermometry  (Fréville et al., 2016), and the isotope fractionation factors of Suzuoki and Epstein (1976) for 
muscovite and biotite and from Jibao and Yaqian (1997) for tourmaline, allow usto calculate the hydrogen isotope composition (ẟD) of water that 
exchanged with hydrous silicates. 
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A Uncertainty 
Uncertainty 

(‰) 

ẟD 
water 
(‰) 

Propagated 
uncertainty 

(‰) 

ẟ18O 
water 
(‰) 

Propagated 
uncertainty 

(‰) 

Isotope analysis (ẟ18OP) 0.2‰ 0.2     

Estimated temperature 7°C 1.6     

Average of ẟ18OP values 0.5‰ 0.5 -15 14 -3.1 1.7 
 

B Uncertainty 
Uncertainty 

(‰) 

ẟD 
water 
(‰) 

Propagated 
uncertainty 

(‰ 

ẟ18O 
water 
(‰) 

Propagated 
uncertainty 

(‰ 

Isotope analysis (ẟDmineral) 2‰ 2     

Temperature from quartz 
microstructures 

150°C 16     

Average of ẟDMs values 3‰ 3 -38 17 -5.9 2.1 

Temperature from quartz 
microstructures 

150°C 16     

Average of ẟDBt values 7‰ 7 -29 17 -4.9 2.1 

Temperature from quartz 
microstructures 

150°C 20     

Average of ẟDTo values 4‰ 4 -27 21 -4.6 2.6 

Temperature from Raman 
Spectroscopy on 

Carbonaceous Matter 
38°C 3     

Average of ẟDMs values 4‰ 3 -39 5 -6.1 0.6 

Temperature from Raman 
Spectroscopy on 

Carbonaceous Matter 
38°C 3     

Average of ẟDBt values 7‰ 7 -30 8 -5.0 1.0 

Temperature from Raman 
Spectroscopy on 

Carbonaceous Matter 
38°C 4     

Average of ẟDTo values 4‰ 4 -29 7 -4.8 0.8 

 
 
Table V-6: Average ẟDwater and δ18Owater values and uncertainties calculated in the external 
zones of the Variscan Belt for (A) the Bourbon l’Archambault basin and (B) the Montagne Noire. 
(A) The calculated ẟ18Owater values are calculated based on the ẟ18OP values of sharks remains 
(Fischer et al., 2013), water temperatures for modern and Jurassic euryhaline sharks (Dera et 
al., 2009; Carlson et al., 2010; Fischer et al., 2012) and the isotope fractionation factor of 
Lécuyer et al. (2013). (B) The average ẟDwater are calculated based on the measured hydrogen 
isotope composition (ẟD) of muscovite (Ms), biotite (Bt) and tourmaline (To) from the 
Espinouse detachment footwall, combined with estimated temperature using quartz 
microstructures (e.g. Stipp et al., 2002) and Raman Spectroscopy on Carbonaceous Matter 
thermometry estimates (Fréville et al., 2016), together with the isotope fractionation factors 
of Suzuoki and Epstein (1976). The final uncertainty includes the isotope analysis, the 
temperature of isotope exchange and the average. The ẟDwater value is converted in ẟ18O value 
and vice-versa using the meteoric water line of Craig (1961). 
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D. Stable isotope paleoaltimetry of the Variscan Belt of Western Europe 

1. Isotope records of precipitation in the hinterland and the foreland 

To recover the isotope composition of meteoric water in the hinterland of the 

Variscan Belt of Western Europe, the hydrogen isotope composition of muscovite (δDMs) 

was measured in the detachment shear zones of the Armorican Massif and the French 

Massif Central (Fig. V-9; Tables V-1 and V-2). Using temperatures of isotope exchange 

based on the Ti-in-Ms geothermometer (Wu and Chen, 2015), combined with the 

calibration of muscovite-water hydrogen isotope exchange (Suzuoki and Epstein, 1976), 

the δDMs values from the Piriac and Quiberon detachment footwalls allowed the 

calculation of δDwater values as low as -77‰ with an average value of -70 ± 5‰ in the 

southern Armorican domain. Similarly, the δDMs values from the Felletin detachment 

footwall allowed the calculation of δDwater values as low as -104‰ with an average value 

of -89 ± 8‰ (western part of the French Massif Central). The uncertainty on both δDwater 

values takes into account the hydrogen isotope analysis, the temperature of isotope 

exchange and the average of the lower δDMs values found at the top of the detachment 

footwalls. 

In order to reduce the uncertainty linked to the lack of knowledge in atmospheric 

circulation patterns, paleoclimate, and paleoenvironmental conditions, the late-

Carboniferous high-elevation hinterland precipitation records have been compared to 

age-equivalent δDwater values preserved in the foreland geological record. One of the 

best proxies amenable to record the isotope composition of surface-derived water at 

sea level is represented by fossil sharks that evolved in late-Carboniferous freshwater 

environments in the Bourbon l’Archambault basin. Using the δ18Ophosphate values of shark 

tooth and spines from Fischer et al. (2013), a temperature of isotope exchange based 
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on modern and Jurassic euryhaline sharks water temperature (29 ± 7°C; e.g. Dera et al., 

2009; Carlson et al., 2010; Fischer et al., 2012) and the phosphate-water fractionation 

equation of Lécuyer et al. (2013) (Table V-3), an average δ18Owater value of -3.1 ± 1.0‰ 

was calculated (Fig. V-9; Table V-6).  

 

Figure V-9: Geological map of France showing the sampled proxies (hydrous silicates and shark 
remains) and associated average calculated ẟDwater and ẟ18Owater values calculated in the 
hinterland of the Variscan Belt (Armorican Massif and French Massif Central) and the foreland 
(Montagne Noire and Bourbon l’Archambault basin). Black line: detachment shear zone. 
Purple line: strike-slip shear zone. Red: Variscan granite; Pink: Variscan terranes; Grey: Permo-
Carboniferous basins. 

 

Finally, the footwall of the Espinouse detachment in the Montagne Noire was 

sampled and the δD values of synkinematic biotite (δDBt) were measured. Combined 

with isotope exchange temperatures inferred from Raman Spectroscopy on 
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Carbonaceous Matter thermometry (566 ± 38°C; Fréville et al., 2016) and the calibration 

of biotite-water hydrogen isotope exchange (Suzuoki and Epstein, 1976; Tables V-4 and 

V-5), δDwater values as high as -23‰ with an average value of -30 ± 8‰ have been 

calculated (Fig. V-9; Table V-6). 

2. Choice of the isotope lapse rate 

Stable isotope ratios of precipitation systematically scale with elevation (modern 

lapse rate for mid to low latitude of ~22‰/km in δD or ~2.8‰/km in δ18O; Poage and 

Chamberlain, 2001; Quade et al., 2011). In the case of the Variscan belt of Western 

Europe, using this lapse rate would lead us to underestimate its paleoaltitude as 

paleomagnetic data indicate that it was located near by the Equator (Fig. I-10; e.g. Tait 

et al., 1996a, b, 1999, 2000; Zwing and Bachtadse, 2000; Domeier and Torsvik, 2014; 

Edel et al., 2018). Therefore, a modern lapse rate of ~−17‰/km in δD or ~−2.2‰/km in 

δ18O calculated in Ecuador (Windhorst et al., 2013) seems to be more appropriate.  

For the paleoaltimetry estimates, the two lapses rates discussed above were 

considered: (1) a low to middle latitude lapse rate of ~22‰/km in δD (or ~2.8‰/km in 

δ18O; Poage and Chamberlain, 2001; Quade et al., 2011) that will allow us to compare 

the results of this study with previous stable isotope paleoaltimetry studies; (2) an 

equatorial lapse rate of ~−17‰/km in δD (or ~−2.2‰/km in δ18O; Windhorst et al., 2013; 

Figs. V-10 and V-11) that seems to be more appropriate for the Variscan Belt of Western 

Europe.  

Finally, the δDwater values were recast as δ18Owater values, and vice-versa, by the 

means of the global meteoric water line (δD = 8 × δ18O + 10, Craig, 1961; Table V-7) 

which has been assumed to be valid during the late-Palaeozoic period. 
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Figure V-10: Simplified late-Carboniferous paleoaltimetry reconstruction of the Armorican 
Massif (AM) and the French Massif Central (FMC) compared to foreland isotope record in the 
Montagne Noire (MN) and the Bourbon l’Archambault basin (BA). ΔẟD are obtained by 
comparing the ẟDwater values calculated from the ẟD of muscovite from the Armorican Massif 
(Chapter III) and the French Massif Central (Chapter IV) in the internal zones with the ones 
from biotite in the Montagne Noire (Chapter IV) and from the ẟ18O values of shark remains 
phosphate of sedimentary basins (Fischer et al., 2013) that are converted in ẟD using the 
meteoric water line of Craig (1961). Paleoaltitude reconstructions are based on isotope lapse 
rates of (1) ~22‰/km in δD for low to middle latitude (Poage and Chamberlain, 2001) and of 
(2) ~17‰/km in δD for at the equator (Windhorst et al., 2013). 

 

3. Paleoaltitude estimates 

a. French Massif Central 

When comparing the hydrogen isotope record of precipitation preserved in the 

internal zones in the French Massif Central (δDwater value = -89‰ or δ18Owater value = -

12.3‰) with the one from the foreland using shark fossil from the Bourbon 

l’Archambault basin (δDwater value = -15‰ or δ18Owater value = -3.1‰), the ΔδDwater is 74‰ 

and the Δδ18Owater is 9.2‰. These values correspond to late-Carboniferous elevations of: 

(1) 3300 ± 1000 m at low to mid-latitudes  

(2) 4300 ± 1300 m at the equator (Figs. V-10, V-11 and V-12; Table V-7).  

When comparing the hydrogen isotope records from the French Massif Central 

with those obtained from biotite of the Montagne Noire (δDwater value = -30‰ or 
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δ18Owater value = -5.0‰), the ΔδDwater is 58‰ and the Δδ18ODwater of 7.3‰. This is 

consistent with an elevation difference of: 

(1) 2700 ± 700 m for mid-latitude  

(2) 3400 ± 900 m at the equator (Figs. V-10,V-11 and V-12; Table V-7).  

 

b. Armorican Massif 

When comparing the hydrogen isotope record of precipitation preserved in the 

internal zones in the Armorican Massif (δDwater value = -70‰ or δ18Owater value = -9.9‰) 

with the one obtained using shark fossil from the Bourbon l’Archambault basin (δDwater 

value = -15‰ or δ18Owater value = -3.1‰), the ΔδDwater is 54‰ and the Δδ18Owater of 6.8‰. 

It translates into an elevation difference of: 

(1) 2500 ± 900m for mid-latitude  

(2) 3100 ± 1100m at the equator.  

 

When comparing the hydrogen isotope records from the Armorican Massif with 

those obtained from biotite of the Montagne Noire (δDwater value = -30‰ or δ18Owater 

value = -5.0‰), the ΔδDwater is 39‰ and the Δδ18ODwater is 4.9‰. This is consistent with 

an elevation difference of: 

(1) 1800 ± 600 m for mid-latitude 

(2) 2300 ± 800 m for low-latitude (Figs. V-10,V-11 and V-12; Table V-7). 

 

The error estimate on elevation quantification includes the isotope analyses,  the 

average of isotope ratios and the temperature estimates, but excludes uncertainty in 

the isotope lapse rate, which can attain ± 500 m for model elevations of ~3000 m 

(Rowley, 2007). 
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  Zone Proxy ẟDwater (‰) 
Uncertainty 

(‰) 
Average ẟ18Owater 

(‰) 
Uncertainty 

(‰) 
 

Hinterlan
d 

AM - Armorican 
Massif 

Muscovite -70 6 -9.9 0.7  

MC - Massif 
Central 

Muscovite -89 8 -12.3 1.1  

Foreland 

MN - Montagne 
Noire 

Biotite -30 8 -5.0 1.0  

BA - Bourbon 
l'Archambault 

basin 

Shark 
remains 

phosphate 
-15 14 -3.1 1.7  

              

ẟD  Comparison with the Montagne Noire biotite   Comparison with the Bourbon shark remains 
         

  Considering a 22 
‰/km 

gradient 
Mid 

Latitude 
Considering a 22 

‰/km 
gradient 

A
rm

o
ri

ca
n

 M
as

si
f 

 ΔẟDwater AM-MN 
(‰) 

Elevation 
(m) 

Uncertainty 
(m) 

 ΔẟDwater AM-BA 
(‰) 

Elevation (m) 
Uncertainty 

(m)  

 39 1782 600  52 2475 900 
        

 Considering a  17 
‰/km 

gradient 
Low 

Latitude 
Considering a  17 

‰/km 
gradient 

  
ΔẟDwater AM-MN 

(‰) 
Elevation 

(m) 
Uncertainty 

(m) 

 ΔẟDwater AM-BA 
(‰) 

Elevation (m) 
Uncertainty 

(m)  

  39 2269 800  54 3148 1100 
             

M
as

si
f 

C
en

tr
al

 

 Considering a 22 
‰/km 

gradient 
 Considering a 22 

‰/km 
gradient 

 ΔẟDwater MC-MN 
(‰) 

Elevation 
(m) 

Uncertainty 
(m) 

Mid 
Latitude 

ΔẟDwater MC-BA (‰) Elevation (m) 
Uncertainty 

(m) 
 58 2652 700  74 3344 1000 
        

 Considering a  17 
‰/km 

gradient 
Low 

Latitude 
Considering a  17 

‰/km 
gradient 

  
ΔẟDwater MC-MN 

(‰) 
Elevation 

(m) 
Uncertainty 

(m) 
 ΔẟDwater MC-BA (‰) Elevation (m) 

Uncertainty 
(m) 

 58 3372 900  74 4253 1300 

 
 

ẟ18

O 
 Comparision with the Montagne Noire biotite   Comparision with the Bourbon shark remains 

         

  Considering a 2,8 
‰/km 

gradient 
Mid 

Latitude 
Considering a 2,8 

‰/km 
gradient 

A
rm

o
ri

ca
n

 M
as

si
f 

 Δẟ18Owater AM-MN 
(‰) 

Elevation 
(m) 

Uncertainty 
(m) 

 Δẟ18Owater AM-BA 
(‰) 

Elevation 
(m) 

Uncertainty 
(m)  

 4.9 1751 600  6.8 2431 900 
        

 Considering a  2,2 
‰/km 

gradient 
Low 

Latitude 
Considering a  2,2 

‰/km 
gradient 

  
Δẟ18Owater AM-MN 

(‰) 
Elevation 

(m) 
Uncertainty 

(m) 

 Δẟ18Owater AM-BA 
(‰) 

Elevation 
(m) 

Uncertainty 
(m)  

  4.9 2228 800  6.8 2955 1100 
             

M
as

si
f 

C
en

tr
al

 

 Considering a 2,8 
‰/km 

gradient 
Mid 

Latitude 
Considering a 2,8 

‰/km 
gradient 

 Δẟ18Owater MC-MN 
(‰) 

Elevation 
(m) 

Uncertainty 
(m) 

 Δẟ18Owater MC-BA 
(‰) 

Elevation 
(m) 

Uncertainty 
(m) 

 7.3 2604 700  9.2 3357 1000 
        

 Considering a  2,2 
‰/km 

gradient 
Low 

Latitude 
Considering a  2,2 

‰/km 
gradient 

  
Δẟ18Owater MC-MN 

(‰) 
Elevation 

(m) 
Uncertainty 

(m) 
 Δẟ18Owater MC-BA 

(‰) 
Elevation 

(m) 
Uncertainty 

(m) 
 7.3 3314 900  9.2 4273 1200 

 
Table V-7: Stable-isotope based paleoaltitude estimates of the Armorican Massif and the 
French Massif Central (proxy: muscovite) referend with age-equivalent isotope record in the 
Montagne Noire (proxy: biotite) and the Bourbon l’Archambault basin (proxy: shark remains). 
Calculations based on the lapse rate of Poage and Chamberlain (2001) for mid to low-latitude 
and Windhorst et al. (2013) at the equator. Conversion in ẟDwater or δ18Owater values using the 
meteoric water line of Craig (1961). 
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 Figure V-11: Late-
Carboniferous 
paleoaltimetry 
reconstruction of the 
Armorican Massif and the 
French Massif Central 
compared to foreland 
isotope records in the 
Montagne Noire and the 
Bourbon l’Archambault 
basin.  
 
ẟDwater values are calculated 
from the ẟD of muscovite 
from the Armorican Massif 
(Chapter III), the French 
Massif Central (Chapter IV) 
and the Montagne Noire 
(Chapter IV) and the ẟ18O of 
shark teeth phosphate of 
sedimentary basins (Fischer 
et al., 2013) that are 
converted in ẟD using the 
meteoric water line of Craig 
(1961).  
 
Ages: Ar/Ar on synkinematic 
muscovite or biotite in the 
detachment footwalls of 
Quiberon and Piriac 
(Chapter IIII), Felletin 
(Gébelin, 2004), and 
Espinouse (Maluski et al., 
1991); biostratigraphic and 
isotope geochronological 
data from the Permo-
Carboniferous basins 
reported by Fischer et al. 
(2013).  
 
Paleoaltitude estimates are 
based on the isotope lapse 
rates at (1) low to middle 
latitude (Poage and 
Chamberlain, 2001) and (2) 
the equator (Windhorst et 
al., 2013). Isotope and 
geochronology data and 
associated references are 
detailed in Tables VI-5 in the 
Appendix. 
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Figure V-12: Uncertainties for paleoaltitude estimate calculation. (A) Uncertainties of the 
hydrogen isotope composition of muscovite and temperature leading to the hydrogen isotope 
composition of the water in the internal zones of the belt; (B) Uncertainties of the oxygen 
isotope composition of shark remains and temperature leading to the oxygen isotope 
composition of the water in the external zones of the belt; (C) Paleoaltitude estimates 
uncertainties linked to the difference between the isotope composition of rainwater in the 
internal and external zones of the belt. 
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E. Discussion and conclusion 

1. Uncertainties of paleoelevation estimates 

The strength of the stable isotope paleoaltimetry study presented here is the 

comparison of age-equivalent stable isotope data from the hinterland assumed to 

represent a topographic high (Armorican Massif and Massif Central) with stable isotope 

data from the foreland located near sea level (Montagne Noire and foreland basins). The 

uncertainties associated with these paleoaltimetry estimates include: 

a. Uncertainty of the isotope composition of meteoric waters (ẟDwater 

values) 

The uncertainty in the calculated ẟDwater values depends on 3 parameters: (1) the 

precision of isotope analysis, (2) the temperature of isotope exchange and (3) the 

average of the isotope analyses. (see discussion in parts V - B, C and D). In summary, (1) 

the isotope analysis uncertainty does not exceed ± 2‰ for the ẟDproxy values and (2) the 

temperature of isotope exchange, used to calibrate the fractionation factor between the 

proxy and the water, has an uncertainty that does not exceed ± 50°C that result in an 

uncertainty of maximum ± 5‰ for the ẟDwater values. In the case of the fossil sharks, the 

uncertainty of the water temperature (± 7°C) led to ẟ18Owater values uncertainty up to ± 

1.6‰. In addition, for the paleoaltitude calculations, (3) an average of the δDproxy values 

with a standard deviation up to ± 7‰ was considered in the hinterland and in the 

foreland (Figs. V-10, V-11 and V-12; Table V-7).  

(1) Internal zones 

In the internal zones of the belt, muscovite that (re)crystallised at depth during 

high temperature deformation was analysed. For the paleoaltitude reconstructions, an 

average of -70 ± 6‰ for the δD of precipitation was considered, although δDwater values 
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as low as -77‰ were calculated in the southern Armorican domain. Similarly, δDwater 

values as low as -104‰ were determined in the French Massif Central, but an average 

value of -89 ± 8‰ was considered for this area. However, the downward penetration of 

deuterium-depleted meteoric fluids in the internal zones leads to an increase in δDwater 

values due to fluid-rock interaction. As a consequence, the δDwater values that were 

calculated from minerals that (re)crystallised at depth represents a maximum value that 

may have been potentially lower at the Earth’s surface (e.g. Gébelin et al., 2012). 

Therefore, this study could have used the lowest calculated δDwater values (-104‰ in the 

French Massif Central and -77‰ in the southern Armorican domain) that approximate 

most closely the isotope composition of meteoric water at the surface in these two areas. 

Considering these lowest values instead of the averages would result in increasing the 

paleoaltitude estimates by 300 to 900 m. 

(2) External zones 

In the foreland of the French Variscan Belt, two proxies were chosen: (1) 

freshwater shark remains from the Bourbon l’Archambault basin and (2) biotite from 

the Espinouse detachment in the Montagne Noire.  

(1) In the Bourbon l’Archambault basin, the sharks evolved in lacustrine to fluvial 

environments connected to the ocean (e.g. Fischer et al., 2013). The paralic foreland 

basin was situated at an altitude close to sea level (e.g. Fischer et al., 2013). Therefore, 

the average ẟ18Owater values calculated from the ẟ18OPhosphate values of the sharks teeth 

and spines were considered to represent the average isotopic composition of meteoric 

water near sea level in the Northern part of the French Massif Central. However, these 

~295 to 290 Ma ẟDwater values obtained from the Bourbon l’Archambault shark remains 

are the lowest ẟDwater values recorded over the European late-Carboniferous to early-
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Permian basins (Fig. V-11). The comparison of the ~320 to 300 Ma hinterland records of 

precipitation from this study with the ~305 to 295 Ma ẟ18Owater values calculated in the 

Guardia Pisano (Italy) and the Puertollano (Spain) basins (average ẟ18Owater values = -2.1‰ 

and -1.0‰; Table V-5)  would lead to higher paleoelevation estimates of up to +1000 m. 

(2) In the Montagne Noire, the average δDwater value of -30 ± 8‰ could be 

interpreted as: (1) near sea level precipitation, or (2) metamorphic fluids. Assuming that 

this value reflect a meteoric fluid signature sourced at low elevation, the mixing of 

crustal fluids (δD ≤ -20‰) with these low-altitude meteoric fluids would have led to an 

increase in the δDBt values at the top of the footwall. Therefore, the highest calculated 

δDwater values (-23‰) in the Espinouse detachment would approximate most closely the 

isotope composition of precipitation at the surface. Considering this value as a reference 

for near sea level precipitation instead of the average δDwater value (-30 ± 8‰) would 

increase the paleoaltitude estimates by 400m.  

Referencing the hydrogen isotope record from the hinterland with those obtained 

from the Montagne Noire foreland proxy lead to paleoaltitudes estimates that are ~700 

to 900 m lower the paleoelevations obtained by comparison with the Bourbon 

l’Archambault sharks. This suggests that, in agreement with previous studies ,the 

Montagne Noire was located at the transition between the Variscan hinterland to the 

north and the foreland to the south (Fig. V-10 and V-11; e.g. Faure, 1995; Faure et al., 

2009; Whitney et al., 2015). 

b. Uncertainty of the lapse rate 

The paleomagnetic data indicate that the Variscan Belt of Western Europe was 

located near the Equator (Fig. I-10; Tait et al., 1996a, b, 1999, 2000; Zwing and Bachtadse, 

2000; Domeier and Torsvik, 2014; Edel et al., 2018) where 65% of the evaporation occurs 
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before air masses get transported to the poles (e.g. Rozanski et al., 1993; Blisniuk and 

Stern, 2005). Therefore, the isotope composition of meteoric water tends to increase 

with decreasing latitude (e.g. Rozanski et al., 1993; Blisniuk and Stern, 2005). In addition, 

the late Palaeozoic glacial age (~340-300 Ma) was one of the prominent glacial event in 

Earth history with an apex of glaciation at the Carboniferous-Permian boundary 

(Montañez and Poulsen, 2013). Indeed, the Southern part of Gondwana was covered by 

thick ice sheets that are believe to be 40% more extensive than today (Fig. I-10; Du Toit, 

1921; Martin, 1975; Banks, 1985; Visser, 1987a,b; González-Bonorino and Eyles, 1995). 

As a consequence, an increase of +1.5‰ in the δ18O values (or +12‰ in the ẟD values) 

of ocean waters is expected as light isotopes (1H and 16O) preferentially concentrate in 

continental glaciers (Buggisch et al., 2008). These paleoenvironmental conditions would 

lead to a lower lapse rate between the isotope composition of meteoric water and 

elevation (Poulsen and Jeffery, 2011). 

Therefore, two different modern lapse rates were considered to bracket the 

paleoaltitude estimations: (1) the lapse rate of Poage and Chamberlain (2001) obtained 

at mid to low latitude and (2) the equatorial lapse rate of Windhorst et al. (2013) (Figs. 

V-10,V-11 and V-12; Table V-7). Both lapse rates resulted in similar paleoaltitude 

estimates within uncertainty. However, the equatorial lapse rate of ~17‰/km in δD 

values (Windhorst et al., 2013) gives paleoaltitude estimates that are ~400 to 900 m 

higher than the ones calculated with the low to mid latitude lapse rate (~22‰/km in δD; 

Poage and Chamberlain, 2001). 
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c. Paleoaltitude estimates of the French Variscan Massifs 

The paleoaltitudes that will be discussed in the following section are the ones 

estimated using the isotopic lapse rate of Poage and Chamberlain (2001) that has been 

calculated based on 68 studies conducted in many of the world’s mountain belts located 

at low to mid-latitudes. The higher paleoaltitude estimates calculated using the lower 

isotope lapse rate calculated at the equator by Windhorst et al. (2013) provide an upper 

limit regarding the paleoaltitude of the Variscan Belt of Western Europe (Fig. V-12).  

The paleoaltitude obtained by comparison between the hinterland isotope 

records of precipitation with the one obtained in the foreland from shark remains of the 

Bourbon l’Archambault basin will be discussed. Indeed, the sharks teeth and spines 

allow recovering directly the average isotopic composition of meteoric water near sea 

level in the northern part of the French Massif Central, whereas the paleogeography of 

the Montagne Noire is less constrained (including its position relative to the Sillon 

Houiller fault and to the foreland itself, see discussion above).  

In conclusion, this study argues that the paleoelevation estimates using the 

lapse rate of Poage and Chamberlain (2001) and referencing the hinterland records 

to the Bourbon l’Archambault record reflect minimum mean elevations despite all 

the above potential biases, and taking into account the above parameters that may 

have changed the isotope composition of Variscan rainfall. This study therefore 

estimates the following minimum mean paleoelevation (Figs. V-10, V-11 and V-12; 

Table V-7): 

 2500 ± 900 m for the Armorican Massif (southern Armorican domain); 

 3300 ± 1000 m for the French Massif Central (Limousin). 
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2. Paleoaltitude of the Variscan Belt of Western Europe 

a. Comparison with stable isotope paleoaltimetry studies of other orogens 

The results from the present study fall within the same range as the calculated 

mean Miocene paleoaltitudes of 1850 - 3050m in the European Alps of Campani et al. 

(2012), obtained by comparing the ẟD values of precipitation recovered from chlorite in 

the Simplon fault (ẟDwater ~ -107‰) to those obtained from carbonate nodules in the 

North Alpine foreland basin (ẟDwater ~ -69 to -61‰). In comparison, this study’s elevation 

estimates are much lower than the 5100–5400m calculated in the Himalayas during the 

Miocene (Gébelin et al., 2013), obtained by referencing the rainfalls isotope 

compositions calculated from muscovite from the South Tibetan Detachment (ẟDwater ~ 

156‰) to age-equivalent ẟ18O values of foreland basin paleosols (ẟDwater ~ -36‰). 

b. Comparison with the fossil record and paleoclimate modelling 

The late-Carboniferous minimum mean elevations of 2500 ± 900 m calculated for 

the Armorican Massif and 3300 ± 1000 m for the Massif Central points to a subdued 

elevation. These results agree with the uniform flora (mostly fern-type plants) found in 

the late-Carboniferous/early-Permian coal-bearing basins of the European Variscan belt. 

Some of these basins located in the foreland during the Late Carboniferous also 

preserved fossils of shark species, whose distribution was consistent in all the European 

basins (e.g. Schneider et al., 2000). The shark taxa distribution became more diverse 

during the Early Permian as various types of sharks (diadromous to marine) were 

preserved in the European basins (Fischer et al., 2010, 2013). To conclude, in agreement 

with the results of this study, the European basins do not show any significant evidence 

of high topography-related differentiation and argue for “Alpine-type” elevation during 
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the end of the Carboniferous (e.g. Franke and Engel, 1986; Kerp, 2000; Fischer et al., 

2013; Franke, 2014).  

This study’s paleoaltitude estimates of ~2500 and ~3300 m also fit well with 

paleoclimate studies. Indeed, the Late Permian atmospheric general circulation model 

of Fluteau et al. (2001) favours a mean elevation of ~2000 to 3000 m for the Variscan 

belt of Europe. In their model, for any configuration of Pangea, a Variscan paleoaltitude 

of ~2000 m is needed to account for the arid climate of Laurussia to the north of the 

E-W trending Variscan Belt (Fluteau et al., 2001). Indeed, the presence of a subdued-

altitude range would still allow the deflection of the moisture coming from the Tethys 

ocean to the south of the Variscan orogen (Fluteau et al., 2001). Based on denudation 

rates inferred from stratigraphic correlations, Roscher and Schneider (2006) argued for 

a mean Variscan elevation of ~2000 m that falls within the uncertainty window 

suggested by this study. However, in contrast to Fluteau et al. (2001), Roscher and 

Schneider (2006) argue that the Variscan Belt has never reached a sufficient elevation 

to trigger an orographic rain shadow, explaining the progressive aridification of 

Laurussia by the closure of the Rheic ocean. 

c. Comparison with geodynamic models 

This study’s paleoaltitude estimates (2500 ± 900 m for the AM and 3300 ± 1000 m 

for the FMC) are in good agreement with crustal thickening evidenced by the discovery 

of nappes stacking and of high-pressure metamorphism that occurred from the Late 

Carboniferous to the Early Devonian in both massifs (e.g. Ledru et al., 1989; Aerden and 

Malavieille, 1999; Matte, 2001, 2007; Lotout et al., 2018). Indeed, the Variscan belt 

displays tectonic similarities with the Himalaya-Tibet orogen as a result of collision 

tectonics such as leucogranite emplacement within large-scale ductile shear zones (e.g. 
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Dewey and Burke, 1973; Mattauer, 1986; Mattauer et al., 1988; Ménard and Molnar, 

1988; Matte, 2001; Dörr and Zulauf, 2010). However, the topography estimates are not 

comparable to the modern mean elevation of the Himalayan range (~5200 m at the 

longitude of Mount Everest). 

One explanation lies in the development of orogen-parallel extensional faults and 

strike-slip shear zones that could have counterbalanced crustal thickening (e.g. Lardeaux 

et al., 2001; Franke, 2014). Indeed, large-scale NW-SE dextral shear zones (such as the 

South Armorican Shear Zone or la Marche shear zone) developed as a result of tectonic 

escape during the late Carboniferous (e.g. Matte, 1986; Gébelin et al., 2007; Rolin et al., 

2009; Augier et al., 2015). At the same time, widespread syn- to post-orogenic NW-SE 

extension is recorded by laccolith leucogranite emplacement along low-angle 

detachment shear zones and exhumation of partially molten crust in migmatite domes 

(e.g. Malavieille et al., 1990; Faure, 1995; Gébelin, 2004, 2009; Rolin et al., 2009; Faure 

et al., 2009; Turrillot et al., 2011; Tartèse et al., 2012; Lardeaux et al., 2014; Ballouard et 

al., 2015; Gapais et al., 2015). However, many topographic highs exceed 8000m of 

altitude in the Himalayas, despite similar structures such as the strike-slip Red River 

Fault  (e.g. Searle, 2006), the E-W striking South Tibetan detachment (e.g. Chi-Hsiang 

and Shih-Tseng, 1978; Burchfiel and Royden, 1985; Carosi et al., 1998) and N-S striking 

normal faults perpendicular to the trend of the Himalayan orogen (e.g. Jessup and Cottle, 

2010). Despite some similarities, these structures also found in the Variscan are not 

sufficient to explain the subdued elevation of the AM and FMC estimated in this study. 

An explanation for the results of this study is the material rheology during the Late 

Carboniferous: the Variscan belt is often described as a “hot orogen” (e.g. Lardeaux et 

al., 2001; Chardon et al., 2009; Franke, 2014).  The high Variscan geothermal gradient 
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(35°C/km; e.g. Vigneresse and Burg, 2003) and the low viscosity of crustal materials 

would have triggered deformation mechanisms associated with plastic flow. Indeed, the 

Archean ultra-hot crust accommodated strain through a different type of of tectonics 

(“dome and keel”), where crustal thickening was evenly distributed, homogeneous over 

long distances but limited with flat interfaces, lateral flow and gravitational spreading 

(e.g. Chardon et al., 1996, 2009; Cagnard, 2005). In contrast, the modern cold crust 

accommodates collision tectonics along narrow but elevated orogens that allow the 

juxtaposition of highly contrasting metamorphic rocks.  

In conclusion, the paleoaltitude of ~2500 - 3300 m estimated in this study for the 

Palaeozoic Variscan Belt argue for an intermediate model between Archean and modern 

tectonics, where the continental collisions were accommodated by a mix of density 

contrasts and tectonic movements that would have not allowed Himalayan-type 

elevations. Therefore, the rheology of the crust would have allowed only narrow 

thickened zones along shear zones or active margin (Franke, 2014; Franke et al., 2017), 

such as the southern Armorican domain and the Limousin.  
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VI. APPENDICES 

This chapter includes supplementary material for Chapters III, IV and V: 

 

Table VI-1. Result tables of Ar/Ar geochronology on muscovite from the Quiberon 

detachment footwall (discussed in Chapter III-B). 

 

Table VI-2. Result tables of Ar/Ar geochronology and trace elements of monazite from 

Port-Navalo migmatite below the Quiberon detachment footwall (discussed 

in Chapter III-B). 

 

Table VI-3. Fluid inclusions microthermometry results for samples QUIB03, QUIB07, 

PIR01, PIR06 and PIR16 (discussed in Chapter III-C). 

 

Table VI-4. Result tables of microprobe analysis of muscovite grains from the NE corner 

of the Millevaches Massif (French Massif Central) and calculation of 

temperature using the Ti-in-Ms geothermometer (discussed in Chapter IV). 

 

Table VI-5. Isotope and geochronology data used to build the graph of Figure V-11. 
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Table VI-1: 40Ar/39Ar muscovite step heating data from mylonitic leucogranite of the footwall of Quiberon detachment zone (1/3) 

 

QUIB01  
Muscovite 

 J parameter  error J  
Mass Discrimination 

(1+e) 
Err Discrimination      

  2,76E - 02  1,14E - 04  1,007978 1,32E - 03       

Laser  
power 

40Ar 
Error 
40Ar 

39Ar 
Error 
39Ar 

38Ar Error 3 8Ar 37Ar 
Error 
37Ar 

36Ar 
Error 
36Ar 

40Ar*/3 9A
rK  

Error 
40Ar*/3 9ArK  

Appare
nt 

age 
(My) 

Error  
Age 

(My) 

Delay to  
irradiati

on 
(day) 

280 255.545034 
0.40328

6 
14.402492 

0.04786
7 

0.0000
01 

0.016572 0.015417 
0.02143

3 
0.7705

31 
0.01644

4 
2.345477 0.355844 113.6 16.7 326.2 

330 137.375000 
0.17980

5 
13.334150 

0.08397
2 

0.0000
01 

0.033689 0.000001 
0.03011

1 
0.2035

45 
0.01750

0 
5.918678 0.410386 273.9 17.7 326.2 

360 180.030537 
0.26374

7 
24.598807 

0.06869
1 

0.0000
01 

0.017944 0.000051 
0.01851

3 
0.0709

78 
0.01215

9 
6.518824 0.153466 299.5 6.6 326.3 

390 143.353241 
0.15436

0 
19.885900 

0.06076
1 

0.0000
01 

0.019464 0.000001 
0.02614

0 
0.0359

60 
0.01569

8 
6.721500 0.245507 308.1 10.4 326.3 

400 147.640595 
0.23734

6 
20.931277 

0.04574
4 

0.0000
01 

0.014571 0.039845 
0.01835

8 
0.0391

62 
0.01209

0 
6.667706 0.178442 305.8 7.7 326.3 

430 445.350368 
0.50681

2 
64.807842 

0.13284
0 

0.0000
01 

0.018901 0.000001 
0.03272

7 
0.0444

92 
0.01715

3 
6.708938 0.085451 307.6 3.9 326.3 

440 413.060014 
0.50454

3 
60.702175 

0.13431
5 

0.0086
20 

0.024727 0.055686 
0.03145

3 
0.0361

10 
0.01575

9 
6.726224 0.084691 308.3 3.8 326.3 

460 794.779944 
0.89827

8 
117.55823

9 
0.06273

5 
0.0000

01 
0.016187 0.039753 

0.01804
2 

0.0492
14 

0.01621
2 

6.696532 0.043203 307.0 2.3 326.4 

490 
1289.31057

3 
0.82383

5 
181.20134

9 
0.18084

3 
0.0005

04 
0.028623 0.000001 

0.03020
4 

0.2885
53 

0.01675
7 

6.690306 0.032077 306.8 1.9 326.4 

550 
1684.10532

1 
1.90262

8 
252.10215

0 
0.04920

2 
0.0000

01 
0.012411 0.036987 

0.02323
6 

0.0348
85 

0.01269
7 

6.684978 0.019778 306.6 1.6 326.4 

560 
26747.9029

19 
13.3483

84 
3994.8047

37 
1.74144

9 
0.0000

01 
0.020735 0.194222 

0.03034
1 

0.2466
40 

0.01912
1 

6.716558 0.010200 307.9 1.5 326.5 

590 
4280.94181

5 
2.83384

8 
642.09440

9 
0.38875

6 
0.0000

01 
0.019552 0.023534 

0.03294
0 

0.0784
57 

0.01141
3 

6.669526 0.012498 305.9 1.5 327.1 

700 
9802.01275

0 
3.48439

7 
1471.6044

73 
0.65259

2 
0.0000

01 
0.021853 0.162777 

0.03700
5 

0.1193
94 

0.00935
7 

6.679800 0.010096 306.3 1.4 327.1 

900 
15305.8667

02 
10.0830

13 
2287.1332

37 
2.10011

6 
0.0000

01 
0.013113 0.140531 

0.02510
2 

0.1748
00 

0.01740
9 

6.709587 0.012046 307.6 1.5 327.1 

1100 
5032.07152

4 
2.62591

6 
754.51873

7 
0.59700

8 
0.0037

63 
0.021697 0.037061 

0.02224
8 

0.0628
50 

0.01505
2 

6.683748 0.012620 306.5 1.5 327.1 

Fusion 
12474.2676

80 
5.95526

9 
1856.3879

98 
1.15747

3 
0.0000

01 
0.017311 0.077576 

0.03144
0 

0.0920
68 

0.01466
8 

6.743769 0.010811 309.0 1.5 327.2 
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Table VI-1: 40Ar/39Ar muscovite step heating data from mylonitic leucogranite of the footwall of Quiberon detachment zone (2/3) 

QUIB01 
Muscovite 

 J parameter  error J  
Mass Discrimination 

(1+e) 
Err Discrimination      

  2.76E - 02  1.14E - 04  1.007978 1.32E - 03       

laser power  40Ar 
Error 
40Ar 

39Ar 
Error 
39Ar 

38Ar 
Error 
38Ar 

37Ar 
Error 
37Ar 

36Ar 
Error 
36Ar 

40Ar*/3 9

ArK  
Error 

40Ar*/3 9ArK  

Appare
nt 

age 
(My) 

Error  
Age 

(My) 

Delay to 
irradiati

on 
(day) 

280 75.806313 
0.14960

6 
7.221265 

0.0518
52 

0.0000
01 

0.019863 
0.00000

1 
0.0311

84 
0.0769

48 
0.0216

29 
7.45568

5 
0.917356 338.8 38.0 327.2 

330 
143.94759

4 
0.11925

9 
18.40457

2 
0.0606

77 
0.0000

01 
0.010697 

0.02026
1 

0.0254
14 

0.0594
28 

0.0142
98 

6.99541
7 

0.244690 319.6 10.3 327.2 

350 
390.77476

7 
0.77550

6 
53.74692

7 
0.1221

99 
0.0000

01 
0.016134 

0.00000
1 

0.0169
24 

0.0575
22 

0.0152
06 

6.99835
9 

0.088152 319.7 4.0 327.3 

360 
274.22997

6 
0.49781

4 
32.36591

6 
0.1560

20 
0.0000

01 
0.012553 

0.00000
1 

0.0167
95 

0.1653
04 

0.0156
37 

7.03310
6 

0.150186 321.2 6.4 327.3 

390 
1293.6218

23 
1.49186

1 
180.5913

61 
0.1907

89 
0.0000

01 
0.024026 

0.00000
1 

0.0268
51 

0.1350
57 

0.0126
33 

6.98412
3 

0.027187 319.1 1.8 327.3 

410 
107.54163

3 
0.20459

5 
15.17503

8 
0.0390

91 
0.0038

63 
0.021237 

0.00189
8 

0.0228
49 

0.0000
01 

0.0205
77 

7.13285
6 

0.407124 325.3 17.1 327.3 

500 
2559.9316

04 
2.69846

3 
364.5973

15 
0.7143

52 
0.0000

01 
0.021468 

0.01576
1 

0.0275
78 

0.0932
63 

0.0164
95 

6.98724
0 

0.023099 319.3 1.7 327.4 

Fusion 
2954.0260

95 
2.76125

2 
420.6956

39 
0.3549

66 
0.0000

01 
0.022382 

0.03373
9 

0.0242
78 

0.0890
99 

0.0148
89 

7.00295
0 

0.017074 319.9 1.6 327.4 

                

QUIB03 
Muscovite 

 J parameter  error J  
Mass Discrimination 

(1+e) 
Err Discrimination       

  2.76E - 02  1.14E - 04  1.007978 1.32E - 03       

laser power  40Ar 
Error 
40Ar 

39Ar 
Error 
39Ar 

38Ar 
Error 
38Ar 

37Ar 
Error 
37Ar 

36Ar 
Error 
36Ar 

40Ar*/3 9

ArK  
Error 

40Ar*/3 9ArK  

Appare
nt 

age 
(My) 

Error  
Age 

(My) 

Delay to 
irradiati

on 
(day) 

280 
103.56005

2 
0.15766

8 
9.811209 

0.0467
61 

0.0000
01 

0.014428 
0.00166

4 
0.0195

57 
0.1723

22 
0.0184

66 
5.51503

2 
0.564145 256.0 24.4 327.4 

350 
115.77205

1 
0.11730

0 
16.61589

5 
0.0460

06 
0.0122

82 
0.018532 

0.02335
8 

0.0171
06 

0.0484
02 

0.0140
72 

6.24833
3 

0.256317 287.4 11.0 327.4 

370 
1974.9230

56 
1.86244

9 
294.9579

72 
0.3179

16 
0.0000

01 
0.020675 

0.06801
6 

0.0210
25 

0.0898
16 

0.0231
86 

6.65767
2 

0.026883 304.7 1.8 327.5 

420 
438.75271

1 
0.55205

0 
65.85687

0 
0.0868

05 
0.0000

01 
0.019703 

0.00000
1 

0.0212
12 

0.0000
01 

0.0107
38 

6.69769
4 

0.054081 306.4 2.7 328.1 

470 
580.12375

8 
0.28654

2 
87.50357

6 
0.1395

54 
0.0130

46 
0.020934 

0.02047
3 

0.0286
15 

0.0061
35 

0.0148
64 

6.65998
3 

0.055729 304.8 2.7 328.1 

Fusion 
1212.6536

58 
0.77678

6 
181.1882

36 
0.1549

38 
0.0001

51 
0.017138 

0.04283
5 

0.0177
99 

0.0606
71 

0.0127
21 

6.64654
1 

0.024430 304.3 1.7 328.1 
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Table VI-1: 40Ar/39Ar muscovite step heating data from mylonitic leucogranite of the footwall of Quiberon detachment zone (3/3) 

 

QUIB03 
Muscovite 

 J parameter  error J  
Mass Discrimination 

(1+e) 
Err Discrimination      

  2.76E - 02  1.14E - 04  1.007978 1.32E - 03       

laser power  40Ar 
Error 
40Ar 

39Ar 
Error 
39Ar 

38Ar Error 3 8Ar 37Ar 
Error 
37Ar 

36Ar 
Error 
36Ar 

40Ar*/3 9A
rK  

Error 
40Ar*/3 9ArK  

Appare
nt 

age 
(My) 

Error  
Age 

(My) 

Delay to 
irradiati

on 
(day) 

280 163.194140 
0.23315

8 
19.554194 

0.03002
3 

0.0000
01 

0.032593 0.000001 
0.02523

9 
0.1206

35 
0.01467

0 
6.596364 0.235308 302.2 10.0 328.1 

350 285.695948 
0.26436

7 
41.900289 

0.09453
7 

0.0093
42 

0.020071 0.023842 
0.02297

3 
0.0460

66 
0.00834

5 
6.572429 0.070850 301.1 3.3 328.2 

380 198.063872 
0.43955

8 
26.490224 

0.04534
7 

0.0000
01 

0.018182 0.020427 
0.02892

6 
0.0855

73 
0.01544

6 
6.628029 0.185824 303.5 8.0 328.2 

400 
2848.06512

4 
4.16310

0 
425.32246

5 
0.45726

6 
0.0000

01 
0.019455 0.012635 

0.03026
2 

0.1335
33 

0.01608
2 

6.642545 0.019445 304.1 1.6 328.2 

430 365.479555 
0.41992

6 
54.785413 

0.08051
9 

0.0023
88 

0.021114 0.023367 
0.02935

3 
0.0231

95 
0.03126

1 
6.611532 0.170426 302.8 7.3 328.2 

510 
1542.90987

6 
1.18563

2 
233.22867

6 
0.26636

2 
0.0000

01 
0.019675 0.016746 

0.03590
8 

0.0232
41 

0.01607
4 

6.626376 0.025863 303.4 1.8 328.3 

Fusion 721.109509 
0.49048

9 
108.73870

8 
0.11800

1 
0.0000

01 
0.018792 0.000001 

0.03133
2 

0.0266
06 

0.01505
0 

6.595701 0.046222 302.1 2.4 328.3 
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Table VI-2: U-Th/Pb geochronology monazite data from Port Navalo migmatite. Uncertainties include instrumental drift and were increased in quadrature to 
include 2% reproducibility of the secondary reference material. Isoplot function 207Pb-corrected 206Pb/238U dates are reported (Compston et al., 1992) (1/2) 

 

 Ratios Ages (Ma) 

 
238U/ 
206Pb 

2σ1 207Pb/206Pb 2σ1 
207Pb/

235U 
2σ1 

206Pb/238

U 
2σ1 Rho 

208Pb/ 
232Th 

2σ1 
207Pb/ 
206Pb 

2σ1 
206Pb/

238U 
2σ1 

207Pb/
235U 

2σ1 208Pb/232Th 2σ1 age7corr2 2σ1 

NAV04_mnz1182A 21.97 0.61 0.0525 0.0023 0.333 0.02 0.0455 0.001 0.403 0.0148 0.0004 306.4 98.0 287.0 7.8 291.9 11.7 296.4 7.0 286.8 0.4 
NAV04_mnz1399A 20.19 0.57 0.0534 0.0024 0.357 0.02 0.0495 0.001 0.425 0.0154 0.0004 345.0 99.8 311.6 8.6 310.3 12.4 308.1 7.5 311.3 0.4 
NAV04_mnz1399B 20.86 0.60 0.0535 0.0024 0.351 0.02 0.0479 0.001 0.302 0.0151 0.0004 350.1 103.4 301.9 8.5 305.3 13.0 302.3 7.3 301.4 0.4 
NAV04_mnz1410A 21.19 0.60 0.0535 0.0024 0.350 0.02 0.0472 0.001 0.265 0.0154 0.0004 350.1 103.4 297.2 8.2 304.4 12.4 308.1 7.4 296.8 0.4 
NAV04_mnz1410B 20.56 0.58 0.0529 0.0024 0.354 0.02 0.0486 0.001 0.456 0.0155 0.0004 324.5 100.9 306.2 8.4 308.0 12.4 309.9 7.4 306.0 0.4 
NAV04_mnz1410C 21.08 0.59 0.0531 0.0024 0.345 0.02 0.0474 0.001 0.457 0.0154 0.0004 333.5 100.5 298.7 8.2 301.2 12.4 309.1 7.3 298.4 0.4 
NAV04_mnz1646B 20.40 0.61 0.0528 0.0024 0.355 0.02 0.0490 0.001 0.532 0.0153 0.0004 320.2 101.2 308.4 9.0 308.1 13.0 307.5 7.7 308.3 0.4 
NAV04_mnz1646C 20.29 0.57 0.0537 0.0024 0.364 0.02 0.0493 0.001 0.390 0.0156 0.0004 358.9 99.1 310.1 8.4 315.3 12.3 312.9 7.5 309.7 0.4 
NAV04_mnz1646D 20.19 0.57 0.0526 0.0023 0.360 0.02 0.0495 0.001 0.321 0.0153 0.0004 312.4 101.6 311.6 8.6 311.9 12.3 306.7 7.9 311.6 0.4 
NAV04_mnz2014A 21.07 0.60 0.0524 0.0023 0.340 0.02 0.0475 0.001 0.348 0.0149 0.0004 302.5 102.1 298.9 8.3 297.2 11.7 299.3 7.0 298.9 0.4 
NAV04_mnz2014B 21.09 0.65 0.0542 0.0025 0.350 0.02 0.0474 0.001 0.494 0.0151 0.0004 379.4 105.5 298.6 8.9 304.9 13.1 303.7 8.8 297.9 0.4 
NAV04_mnz2045A 20.69 0.66 0.0528 0.0024 0.352 0.02 0.0483 0.002 0.545 0.0159 0.0004 320.2 105.0 304.3 9.5 305.9 13.0 318.6 8.2 304.1 0.5 
NAV04_mnz2045B 21.28 0.57 0.0526 0.0023 0.341 0.02 0.0470 0.001 0.287 0.0155 0.0004 313.3 97.7 296.1 7.8 298.0 11.7 311.5 7.2 295.9 0.4 
NAV04_mnz2048A 20.06 0.57 0.0536 0.0024 0.364 0.02 0.0498 0.001 0.396 0.0158 0.0004 355.1 99.3 313.5 8.7 315.2 13.0 317.5 7.7 313.2 0.4 
NAV04_mnz2048B 20.38 0.56 0.0528 0.0024 0.353 0.02 0.0491 0.001 0.312 0.0157 0.0004 321.1 101.1 308.7 8.3 307.0 12.4 314.5 7.2 308.6 0.4 
NAV04_mnz2080A 20.46 0.62 0.0530 0.0024 0.355 0.02 0.0489 0.001 0.471 0.0154 0.0004 328.8 104.5 307.6 9.0 308.2 13.0 308.1 7.9 307.4 0.4 
NAV04_mnz2080B 20.00 0.57 0.0531 0.0024 0.363 0.02 0.0500 0.001 0.372 0.0156 0.0004 333.1 100.5 314.5 8.7 314.5 13.0 312.3 8.2 314.4 0.4 
NAV04_mnz2245A 19.88 0.55 0.0551 0.0025 0.377 0.02 0.0503 0.001 0.294 0.0158 0.0004 416.3 99.8 316.4 8.6 325.0 13.0 317.5 7.7 315.5 0.4 
NAV04_mnz2245B 19.89 0.59 0.0526 0.0023 0.362 0.02 0.0503 0.001 0.458 0.0157 0.0004 311.6 101.6 316.2 9.1 313.4 13.0 315.3 8.9 316.3 0.5 
NAV04_mnz2245C 20.08 0.56 0.0531 0.0023 0.361 0.02 0.0498 0.001 0.430 0.0159 0.0004 334.8 96.6 313.3 8.6 312.7 12.3 318.8 7.5 313.1 0.4 
NAV04_mnz2318 20.47 0.59 0.0532 0.0024 0.360 0.02 0.0489 0.001 0.369 0.0154 0.0004 339.0 100.2 307.5 8.6 311.8 12.3 307.9 7.8 307.2 0.4 

NAV04_mnz2395A 20.31 0.56 0.0533 0.0024 0.357 0.02 0.0492 0.001 0.267 0.0160 0.0004 339.5 100.1 309.9 8.4 309.7 12.4 319.8 7.6 309.6 0.4 
NAV04_mnz2395B 19.77 0.54 0.0533 0.0024 0.367 0.02 0.0506 0.001 0.274 0.0161 0.0004 341.2 100.0 318.1 8.4 317.1 12.3 322.0 7.7 317.9 0.4 
NAV04_mnz2592A 20.19 0.57 0.0543 0.0024 0.369 0.02 0.0495 0.001 0.420 0.0156 0.0004 383.5 97.8 311.7 8.6 318.6 13.0 313.1 7.4 311.1 0.4 
NAV04_mnz2913A 20.26 0.56 0.0533 0.0024 0.357 0.02 0.0494 0.001 0.181 0.0158 0.0004 341.2 100.0 310.5 8.3 309.6 12.4 316.7 7.7 310.3 0.4 
NAV04_mnz2913B 20.59 0.56 0.0529 0.0023 0.349 0.02 0.0486 0.001 0.460 0.0155 0.0004 325.8 97.1 305.7 8.1 304.2 11.7 311.5 7.4 305.5 0.4 
NAV04_mnz3007A 20.07 0.54 0.0536 0.0024 0.362 0.02 0.0498 0.001 0.379 0.0162 0.0004 354.3 99.4 313.5 8.3 314.0 12.3 324.4 7.8 313.1 0.4 
NAV04_mnz3007B 20.30 0.56 0.0530 0.0023 0.355 0.02 0.0493 0.001 0.293 0.0156 0.0004 328.4 96.9 309.9 8.3 308.3 12.4 313.5 7.6 309.8 0.4 
NAV04_mnz3028A 21.40 0.60 0.0532 0.0024 0.346 0.02 0.0467 0.001 0.339 0.0152 0.0004 337.3 100.3 294.4 8.1 301.4 12.4 305.3 7.5 294.0 0.4 
NAV04_mnz3028B 20.70 0.58 0.0527 0.0023 0.355 0.02 0.0483 0.001 0.439 0.0156 0.0004 317.6 97.5 304.2 8.3 308.5 12.4 313.7 7.4 304.1 0.4 
NAV04_mnz3028C 20.63 0.59 0.0531 0.0023 0.356 0.02 0.0485 0.001 0.434 0.0155 0.0004 333.5 96.7 305.1 8.5 308.8 12.4 309.9 7.2 304.9 0.4 
NAV04_mnz3028E 20.82 0.59 0.0539 0.0024 0.356 0.02 0.0480 0.001 0.365 0.0154 0.0004 366.0 98.7 302.5 8.4 309.1 12.4 309.1 7.4 301.9 0.4 
NAV04_mnz3034A 20.38 0.56 0.0533 0.0023 0.364 0.02 0.0491 0.001 0.410 0.0158 0.0004 340.3 96.3 308.8 8.3 315.0 12.3 316.1 7.8 308.5 0.4 
NAV04_mnz3034B 20.76 0.58 0.0531 0.0023 0.356 0.02 0.0482 0.001 0.498 0.0156 0.0004 333.5 96.7 303.3 8.3 309.4 12.4 312.9 7.6 303.1 0.4 
NAV04_mnz3034C 21.26 0.65 0.0524 0.0023 0.341 0.02 0.0470 0.001 0.339 0.0153 0.0004 302.9 102.1 296.3 8.9 298.2 11.7 307.5 8.0 296.3 0.4                                   
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Table VI-2:  Trace element data from monazite in Port Navalo migmatite (Normalised to McDonough and Sun, 1995) (2/2) 

 

    Trace element value 

 Y (ppm) 2σ La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

NAV04_mnz1182A 14000 1300 516878 316129 249234 126351 18839 62211 37222 19350 10418 4738 2020 1037 496 
NAV04_mnz1399A 4540 310 598312 310753 218184 100203 14232 40201 18306 8049 3564 1663 608 304 180 
NAV04_mnz1399B 10560 660 530380 313978 235667 123649 13268 60603 35722 18577 7836 2531 732 323 156 
NAV04_mnz1410A 4260 300 561603 300000 211379 96824 14000 39397 18139 7236 3200 1525 584 209 104 
NAV04_mnz1410B 8290 810 534599 303226 214223 109392 16714 49950 26750 13252 6545 2806 1120 565 252 
NAV04_mnz1410C 9800 700 509283 296774 225602 122568 17321 56633 31056 15569 7200 3475 1384 547 408 
NAV04_mnz1646B 5620 280 505485 300000 225383 129054 20786 66884 44167 25163 14200 6556 2892 1130 604 
NAV04_mnz1646C 5960 540 567511 298925 236324 113514 12179 49045 24000 10203 4527 1819 684 398 212 
NAV04_mnz1646D 5230 450 541350 296774 224726 110135 12250 45126 21111 8740 3818 1594 644 329 164 
NAV04_mnz2014A 9930 640 498734 298925 221663 118919 21446 56131 32639 16098 7018 2975 1204 652 376 
NAV04_mnz2014B 12280 990 538819 320430 235230 120946 30536 59950 37222 18415 8873 4106 1544 913 612 
NAV04_mnz2045A 15200 1000 529114 296774 231729 130405 18768 66533 40000 21585 11109 5275 2012 795 460 
NAV04_mnz2045B 4260 360 628692 321505 242670 108784 13643 43116 20528 7480 2836 1225 468 248 88 
NAV04_mnz2048A 7660 650 562025 332258 246171 128378 17268 55126 28694 11911 5709 2569 1032 590 232 
NAV04_mnz2048B 9770 720 529536 334409 258206 135135 19286 61508 33333 15081 7782 3450 1652 727 416 
NAV04_mnz2080A 7380 480 607595 337634 256674 132432 15929 57085 26667 11951 5400 2475 1048 491 252 
NAV04_mnz2080B 17000 1400 508861 303226 229978 131757 20179 67286 41111 23171 12036 6425 3060 1435 832 
NAV04_mnz2245A 8450 600 564135 315054 237637 123649 16054 56633 28944 13252 6036 2575 1024 472 228 
NAV04_mnz2245B 9300 1000 570886 325806 242888 131081 13286 59497 32444 14431 6727 2700 1228 460 236 
NAV04_mnz2245C 9800 1000 599156 333333 264770 131081 15071 59146 34694 15610 7818 3138 1088 429 284 
NAV04_mnz2318 12850 790 533755 308602 245295 125000 19964 62663 37528 20569 9909 4444 1500 634 296 
NAV04_mnz2395A 15200 1300 569620 333333 255361 135135 16696 67839 43611 21748 10836 3900 1520 696 184 
NAV04_mnz2395B 9110 760 599156 347312 266521 133108 18357 59296 31444 14512 6945 3013 1336 652 364 
NAV04_mnz2592A 4330 410 536709 303226 217746 100676 13214 40352 17111 8008 3545 1506 560 267 224 
NAV04_mnz2913A 26900 1700 578059 317204 239606 111486 13036 45729 21056 9390 3945 1706 720 366 180 
NAV04_mnz2913B 5200 500 561181 331183 253173 143243 18036 74372 49167 25366 12164 5100 1972 820 492 
NAV04_mnz3007A 18400 2000 607595 334409 265208 147973 23214 79899 48056 26016 14418 6250 2688 1143 816 
NAV04_mnz3007B 20100 1800 545992 331183 244420 140541 23804 75879 47778 27114 14873 6500 2436 1056 420 
NAV04_mnz3028A 14300 1200 587764 330108 260613 133108 18643 69849 40611 21707 9927 4150 1676 807 324 
NAV04_mnz3028B 5550 420 573418 304301 238512 123649 15125 48191 23722 10163 4309 1713 724 217 156 
NAV04_mnz3028C 4430 320 546835 297849 217287 106757 12643 42915 19500 8293 3873 1450 560 174 216 
NAV04_mnz3028E 17100 1400 535021 324731 255142 146622 22304 75879 48611 25447 12509 4900 1472 584 184 
NAV04_mnz3034A 6860 460 539241 303226 226039 111554 15196 47789 24222 11260 5655 2469 1008 497 228 
NAV04_mnz3034B 7510 660 569620 307527 233917 117568 15214 51357 25583 11707 6000 2475 1060 559 392 
NAV04_mnz3034C 6700 600 224945 106081 14232 44874 22833 10203 5109 2419 984 373 308   
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Table VI-3: Fluid inclusions microthermometry results for samples QUIB03, QUIB07, PIR01, PIR06 and PIR16. 
FIA: Fluid Inclusion Assemblage; Inclusion: Inclusion number within the FIA; Tim: ice melting temperature 
(°C); Salinity (wt% eq. NaCl); Th: homogeneisation temperature (°C); n: number of data; SD: Standard 
Deviation. (1/3) 

 

Sample FIA Inclusion Tim Salinity Th     Sample FIA Inclusion Tim Salinity Th 

QUIB03 1 2 -1.4 2.4 384     QUIB07 1 1 -1.0 1.8 203 
  6 -1.3 2.3 284       2 -1.0 1.8 208 
  1 -0.3 0.6 366       3 -1.3 2.3 234 
  9 -0.3 0.6        4 -1.1 1.9 277 
 2 1 -4.3 6.9 218       5 -0.8 1.4 287 
  2 -4.6 7.3 208       6 -1.3 2.3 287 
  3 -4.2 6.7 262       7 -1.6 2.8  
  4 -4.5 7.2        8 -0.8 1.4  
  5 -4.5 7.2 201       9 -1.0 1.8 287 
  6 -4.5 7.2 197       10 -0.9 1.6 267 
  7 -4.5 7.2 253       11 -1.2 2.1 267 
  8 -4.5 7.2 190       12 -1.1 1.9 267 
  9 -4.3 6.9 258       13 -1.1 1.9 270 
  10 -4.7 7.4 203      2 1 -0.9 1.6 297 
  11 -4.6 7.3 216       2 -1.0 1.8 296 
  12 -4.4 7.0 226       3 -1.2 2.1 295 
  13 -1.3 2.3        4 -0.9 1.6 292 
  14 -4.7 7.4 208       5 -1.2 2.1 277 
  15 -4.3 6.9 213       6 -0.9 1.6 276 
  16 -4.3 6.9 207       7 -1.3 2.3 280 
  17 -4.3 6.9 207       8 -0.9 1.6 274 
  18 -4.0 6.4 243       9 -1.4 2.4 296 
  19 -4.0 6.4 275           
  20 -4.4 7.0 260           
  21 -2.5 4.2 245           
 3 1 -2.1 3.6 182           
  2 -4.8 7.6 180           
  3 -5.4 8.4 178           
  4 -5.7 8.8 173           
  5 -2.4 4.0 183           
 4 1 -1.5 2.6 172           
  2 -1.3 2.3 180           
  3 -1.2 2.1 198     Sample FIA Inclusion Tim Salinity Th 
  4 -0.5 0.9 176     PIR16 1 1 -1.8 3.1 149 
  5 -1.5 2.6 192       2 -1.9 3.3  

            3 -1.9 3.3  
            4 -1.3 2.3  
            5 -1.5 2.6  
                

           2 1 -1.5 2.6 157 
            2 -1.6 2.8 225 
            3 -1.7 2.9  
            4 -1.7 2.9 149 
            5 -1.4 2.4 159 
            6 -1.6 2.8 278 
            7 -1.6 2.8 157 
            8 -1.6 2.8 169 
            9 -1.8 3.1 199 

Average of the 5 five samples           

           3 1 -2.3 3.9 166 
   Tim Salinity Th       2 -1.8 3.1 177 

  n 402 239 369       3 -1.5 2.6 178 

  average -0.6 3.7 225       4 -2.0 3.4 167 
  SD 2.6 2.9 62       5 -1.7 2.9 194 

  Minimum -9.4 0.0 113       6 -1.2 2.1 153 
  Maximum 5.0 13.3 393       7 -1.6 2.8 160 
            8 -1.7 2.9 195 
            9 -2.2 3.7 250 
            10 -1.9 3.3 160 
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Sample FIA Inclusion Tim Salinity Th    Sample FIA Inclusion Tim Salinity Th 

PIR06 F3 1 0.0 0.0 307    PIR06 F8 1 -6.7 10.1 282 
  2 -0.2 0.4 303      2 -5.3 8.3 240 
  3 -0.4 0.7 342      3 -9.4 13.3 220 
  4 -0.8 1.4 200      4 -7.2 10.7 298 
  5 0.0 0.0 301      5 -8.7 12.5 324 
  6 -0.7 1.2 290      6 -5.2 8.1 303 
  7 -1.2 2.1 221      7 -8.2 11.9 292 
  8 0.5   263      8 -6.6 10.0 232 
  9 -0.7 1.2 260      9 -7.3 10.9 287 
  10 -0.8 1.4 244      10 -7.1 10.6 289 
  11 -0.5 0.9 225      11 -8.8 12.6  
  12 1.0   174      12 -7.6 11.2 284 
  13 2.8          13 -8.4 12.2 223 
  14 -2.1 3.6 201     F9 1 -2.5 4.2 207 
  15 -1.8 3.1 198      2 -4.4 7.0 223 
  16 -1.7 2.9 233      3 -3.1 5.1 143 
 F4 1 1.4  194      4 -2.2 3.7 148 
  2 1.6  391      5 -3.0 5.0 163 
  3 3.3  336      6 -2.3 3.9 217 
  4 3.3  393      7 -4.6 7.3 242 
  5 2.5  343      8 -3.0 5.0 172 
  6 1.6  181      9 -3.8 6.2 214 
  7 2.3  179      10 -2.5 4.2 200 
  8 1.8  182      11 -2.7 4.5 168 
  9 2.1  263      12 -1.8 3.1 152 
  10 3.1  178      13 -1.9 3.2 209 
  11 3.2  285      14 -1.8 3.1 142 
  12 0.8  298     F10 1 -1.6 2.7 163 
  13 0.6  134      2 -4.4 7.0 247 
 F5 1 2.0   210      3 -1.3 2.2 170 
  2 0.8   190      4 -1.7 2.9 174 
  3 1.3   223      5 -2.0 3.4 193 
  4 1.3   241      6 -1.6 2.7 166 
  5 1.1   220      7 -1.8 3.1 176 
  6 1.4   263      8 -3.8 6.2 235 
  7 0.8   236      9 -3.2 5.3 182 
  8 0.6   201      10 -3.6 5.9 222 
  9 1.0   239      11 -3.4 5.6 228 
  10 2.6          12 -2.8 4.7 201 
  11 2.6   293      13 -2.7 4.5 207 
  12 2.7   289      14 -2.8 4.7 220 
  13 2.8   374      15 -2.9 4.8 225 
  14 1.9   300     F11 1 -4.2 6.7 248 
  15 1.8   253      2 -3.2 5.3 238 
  16 1.9   255      3 -3.0 5.0 218 
 F6 1 0.6  233      4 -2.7 4.5 210 
  2 0.3  193      5 -1.0 1.7 179 
  3 0.7  353      6 -1.3 2.2 187 
  4 0.4  356      7 -1.1 1.9 185 
  5 0.0 0.0 348      8 -1.7 2.9 214 
  6 0.0 0.0 175      9 -1.7 2.9 218 
  7 0.0 0.0 179      10 -1.6 2.7 218 
  8 1.4  183      11 -1.8 3.1 221 
  9 0.3  195      12 -4.4 7.0 253 
  10 0.4  244      13 -1.8 3.1 179 
  11 0.4  224      14 -1.5 2.6 183 
  12 1.6        15 -2.7 4.5 154 
  13 0.7  192     F12 1 2.8  258 
  14 0.8  198      2 2.8  263 
  15 2.2  265      3 3.2  276 
  16 1.4  245      4 2.8  135 
  17 1.3  220      5 3.1  273 
  18 0.9  207      6 3.1  364 
 F7 1 1.2   286      7 3.2  354 
  2 0.4   174      8 3.4  302 
  3 0.2   197      9 2.8  185 
  4 0.0 0.0 188      10 3.6  198 
  5 1.0   274      11 3.4  152 
  6 0.0 0.0 199      12 4.0  205 
  7 0.5   232      13 3.1  137 
  8 0.8   264      14 2.9  143 
  9 1.3   178      15 3.0  128 
  10 1.7   162      16 3.8  139 
  11 0.7   149      17 2.6  179 
  12 0.6   176      18 2.9  141 
  13 0.6   283          
  14 1.3   183          
  15 0.1   141          
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Sample FIA Inclusion Tim Salinity Th  FIA Inclusion Tim Salinity Th  FIA Inclusion Tim Salinity Th 

PIR01 F3 1 2.4  260  F7 12 1.7  210  F12 10 -0.8 1.4 284 
  2 2.2  381   13 0.7  142   11 -1.0 1.7 285 
  3 -1.6 2.7    14 3.8     12 -2.8 4.6 199 
  4 5.0  113   15 2.1  259   13 0.0 0.0 144 
  5 2.1  227   16 1.3  244   14 -1.4 2.4 182 
  6 -0.4 0.7    17 1.2  228   15 -1.1 1.9 152 
  7 3.2  337   18 1.8  191   16 -1.3 2.2 139 
  8 4.1  261  F8 1 4.0  349   17 -0.6 1.1 202 
  9 4.2     2 4.2  141       
  10 1.8  272   3 3.2  129       
  11 2.8  273   4 2.5  210       
  12 3.6  232   5 1.8  189       
  13 1.8  256   6 2.2  192       
  14 -1.2 2.1 212   7 2.4  153       
  15 1.6  229   8 0.5  164       
 F4 1 -0.4 0.7    9 -0.7 1.2 158       
  2 -0.1 0.2 362   10 0.7  324       
  3 -1.0 1.7    11 -0.4 0.7 197       
  4 0.0 0.0 312   12 -0.4 0.7 199       
  5 -0.1 0.2 348   13 0.6  206       
  6 -0.8 1.4 261   14 -1.6 2.7 168       
  7 -0.6 1.1 230   15 -0.9 1.6 164       
  8 -0.4 0.7 286   16 1.8  178       
  9 -1.9 3.2 324   17 0.8  183       
  10 -3.2 5.3 313  F9 1 4.4         
  11 -2.6 4.3 302   2 0.6  262       
  12 -1.2 2.1 327   3 0.4  214       
  13 -1.1 1.9 270   4 0.3  258       
  14 -0.8 1.4 294   5 1.6  163       
  15 -0.7 1.2 327   6 3.5  182       
  16 -0.9 1.6 241   7 1.2  173       
  17 -1.2 2.1 216   8 3.0  158       
  18 -2.0 3.4 274   9 1.7  232       
  19 -1.0 1.7 360   10 0.6         
 F5 1 0.0 0.0 289   11 1.1  286       
  2 -2.2 3.7 300   12 1.7  270       
  3 -1.3 2.2 174   13 2.7         
  4 -2.8 4.6 183   14 0.6  254       
  5 -2.5 4.2 142   15 0.3  264       
  6 -3.0 5.0 228   16 0.6  189       
  7 -2.6 4.3 247  F10 1 -3.2 5.3 209       
  8 -2.6 4.3 211   2 -0.5 0.9 173       
  9 -6.1 9.3    3 -0.5 0.9 188       
  10 -0.7 1.2 240   4 -3.6 5.9 205       
  11 -0.7 1.2 269   5 1.0         
  12 -0.6 1.1 222   6 1.0  183       
  13 -3.1 5.1 302   7 1.3  176       
  14 -3.2 5.3 245   8 0.1  189       
  15 -3.4 5.6    9 1.4  242       
  16 -2.6 4.3 222   10 1.4  267       
  17 -2.2 3.7 260   11 2.7  254       
 F6 1 -3.2 5.3 259   12 2.5  174       
  2 -3.9 6.3 145   13 4.2  172       
  3 -5.1 8.0 123   14 1.3  163       
  4 -5.0 7.9 184   15 1.5  145       
  5 -2.2 3.7 164   16 1.7  256       
  6 -2.2 3.7 171  F11 1 1.4  234       
  7 -2.0 3.4 200   2 0.3  228       
  8 -4.2 6.7 217   3 1.5  212       
  9 -1.0 1.7 227   4 1.7  192       
  10 -5.4 8.4    5 2.1  200       
  11 -3.6 5.9    6 2.5  162       
  12 -2.4 4.0 155   7 1.6  146       
  13 -1.6 2.7 234   8 1.9  290       
  14 0.8  201   9 0.2  174       
  15 -3.7 6.0    10 1.9  183       
  16 -0.8 1.4 133   11 0.6  153       
  17 -2.5 4.2    12 3.3  127       
  18 0.0 0.0 174   13 1.3  213       
 F7 1 3.0  248   14 2.1  235       
  2 3.0  276   15 2.2         
  3 1.8  223  F12 1 -0.9 1.6 241       
  4 2.8  275   2 -0.9 1.6 246       
  5 0.0 0.0 207   3 -1.2 2.1 211       
  6 0.8  264   4 -2.2 3.7 224       
  7 2.2  270   5 -1.6 2.7 185       
  8 0.2  302   6 -0.1 0.2 213       
  9 0.6  150   7 -0.6 1.1 141       
  10 0.8  114   8 -0.8 1.4        
  11 0.9     9 -1.1 1.9 331       
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Table VI-4: Microprobe analysis of muscovite grains and calculation of temperature using the Ti-in-Ms geothermometer (Wu and Chen, 2015) for sample MIL18H 
(1/6) 

Sample MIL18H 

Zone A B C D E 

DataSet/Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

O
xy

d
es

 (
W

t.
 %

) 

SiO2 45.72 46.41 46.02 46.14 45.54 46.10 46.61 46.21 45.78 46.00 45.38 45.51 45.78 45.98 45.27 46.50 45.43 45.69 45.49 45.40 46.24 45.54 

Al2O3 35.66 35.76 35.11 35.79 35.39 34.98 35.49 35.61 35.05 35.28 35.15 34.98 34.76 35.37 35.35 34.13 35.24 35.46 35.04 34.83 34.37 35.32 

K2O 11.56 11.38 11.57 11.22 11.32 11.32 11.14 11.25 11.39 11.25 11.72 11.26 11.31 11.73 11.18 11.02 11.20 11.25 11.63 11.73 11.22 11.54 

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TiO2 0.55 0.56 0.57 0.57 0.55 0.42 0.51 0.45 0.28 0.27 0.58 0.54 0.52 0.65 0.63 0.52 0.59 0.57 0.52 0.61 0.67 0.46 

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnO 0.01 0.01 0.02 0.02 -0.02 0.02 0.03 0.00 0.02 0.02 0.01 0.01 0.02 0.00 0.03 0.02 0.01 0.04 0.01 0.01 0.00 -0.03 

FeO 1.27 1.27 1.32 1.31 1.42 1.35 1.47 1.44 1.45 1.44 1.43 1.31 1.56 1.37 1.38 1.65 1.32 1.37 1.43 1.39 1.52 1.37 

Na2O 0.55 0.58 0.52 0.69 0.46 0.58 0.52 0.49 0.54 0.51 0.53 0.60 0.46 0.46 0.65 0.54 0.73 0.70 0.52 0.42 0.54 0.51 

MgO 0.77 0.80 0.79 0.76 0.79 0.81 0.80 0.83 0.89 0.80 0.77 0.75 0.86 0.79 0.75 1.10 0.75 0.77 0.80 0.79 0.91 0.84 

Sum 96.05 96.76 95.87 96.48 95.47 95.55 96.55 96.27 95.37 95.57 95.56 94.92 95.25 96.28 95.25 95.51 95.22 95.85 95.44 95.17 95.47 95.53 

Conversion factor 4.00 3.96 4.01 3.97 4.02 4.01 3.96 3.98 4.03 4.01 4.03 4.03 4.03 4.00 4.02 4.01 4.03 4.00 4.04 4.04 4.01 4.02 

M
o

le
s 

(n
o

rm
al

is
ed

 f
o

r 
1

1 
o

xy
ge

n
s)

 Si 3.04 3.06 3.07 3.04 3.05 3.08 3.07 3.06 3.07 3.07 3.05 3.05 3.07 3.06 3.03 3.10 3.05 3.04 3.06 3.05 3.09 3.05 

Al 2.79 2.77 2.76 2.78 2.79 2.75 2.76 2.78 2.77 2.77 2.78 2.77 2.75 2.77 2.79 2.68 2.79 2.78 2.77 2.76 2.70 2.79 

K 0.98 0.96 0.98 0.94 0.97 0.96 0.94 0.95 0.97 0.96 1.00 0.96 0.97 1.00 0.95 0.94 0.96 0.96 1.00 1.01 0.95 0.99 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ti 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.09 0.08 0.08 0.09 0.07 0.08 0.08 0.08 0.08 0.08 

Na 0.07 0.07 0.07 0.09 0.06 0.08 0.07 0.06 0.07 0.07 0.07 0.08 0.06 0.06 0.08 0.07 0.10 0.09 0.07 0.05 0.07 0.07 

Mg 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.08 0.07 0.09 0.08 0.07 0.11 0.08 0.08 0.08 0.08 0.09 0.08 

[Mg/(Fe+Mg)] 0.52 0.53 0.52 0.51 0.50 0.52 0.49 0.51 0.52 0.50 0.49 0.50 0.49 0.51 0.49 0.54 0.50 0.50 0.50 0.50 0.52 0.52 

T(°C) at 4 kbar 571 572 575 574 567 529 552 535 469 465 577 567 560 596 592 564 580 574 559 587 602 543 

SD (P ± 1kbar) 5 5 5 5 5 5 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 

Average T per sample 568 

SD (°C) on average 42 
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Table VI-4: Microprobe analysis of muscovite grains and calculation of temperature using the Ti-in-Ms geothermometer (Wu and Chen, 2015) for sample MIL18H 
(2/6) 

Sample MIL18H 

Zone F G H 

DataSet/Point 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 47 48 

O
xy

d
es

 (
W

t.
 %

) 

SiO2 46.00 45.75 45.74 45.62 45.28 45.82 46.02 45.52 46.03 46.08 45.95 45.70 45.76 46.10 45.86 45.99 46.27 46.35 46.08 46.15 46.11 46.25 46.52 

Al2O3 35.62 35.21 35.27 35.47 34.61 34.94 33.64 34.11 35.00 35.05 34.75 35.02 35.10 35.13 35.08 34.76 35.20 34.67 34.13 34.73 35.39 35.08 35.40 

K2O 11.30 11.14 11.17 11.12 10.90 11.11 11.66 11.53 11.30 11.50 11.42 11.32 11.01 11.43 11.67 11.18 11.29 11.25 11.32 11.44 11.73 11.23 11.32 

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TiO2 0.56 0.56 0.58 0.61 0.52 0.59 0.70 0.62 0.53 0.54 0.62 0.49 0.50 0.51 0.12 0.50 0.62 0.70 0.70 0.70 0.66 0.75 0.36 

Cr2O3 0.02 0.00 0.01 0.01 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.01 0.01 0.03 0.00 0.00 0.01 0.01 0.03 0.01 0.00 0.00 0.00 

MnO 0.02 0.00 0.01 0.03 0.03 0.03 0.00 0.02 0.01 0.03 0.02 0.00 0.02 0.02 0.04 0.04 0.02 0.02 0.01 0.03 0.05 0.02 0.02 

FeO 1.26 1.39 1.35 1.50 1.38 1.38 1.67 1.68 1.37 1.42 1.59 1.32 1.42 1.45 1.33 1.58 1.38 1.50 1.58 1.44 1.50 1.44 1.25 

Na2O 0.63 0.61 0.59 0.55 0.66 0.53 0.55 0.40 0.57 0.56 0.40 0.57 0.63 0.55 0.46 0.50 0.60 0.54 0.51 0.54 0.47 0.55 0.37 

MgO 0.73 0.76 0.76 0.74 0.73 0.75 1.07 0.92 0.76 0.79 0.84 0.76 0.79 0.81 0.88 0.91 0.83 0.93 1.04 0.89 0.78 0.92 0.76 

Sum 96.12 95.35 95.43 95.62 94.10 95.12 95.33 94.80 95.54 95.94 95.56 95.17 95.21 95.99 95.44 95.46 96.20 95.91 95.39 95.93 96.66 96.19 95.98 

Conversion factor 3.98 4.02 4.02 4.01 4.07 4.03 4.05 4.25 4.01 4.00 4.02 4.03 4.02 4.00 4.03 4.01 3.99 4.00 4.03 4.00 3.98 4.16 3.98 

M
o

le
s 

(n
o

rm
al

is
ed

 f
o

r 
1

1 
o

xy
ge

n
s)

 Si 3.05 3.06 3.06 3.04 3.06 3.07 3.10 3.22 3.07 3.07 3.07 3.06 3.06 3.07 3.07 3.07 3.07 3.08 3.09 3.08 3.06 3.21 3.08 

Al 2.78 2.77 2.78 2.79 2.76 2.76 2.67 2.84 2.75 2.75 2.74 2.77 2.77 2.76 2.77 2.73 2.75 2.72 2.70 2.73 2.76 2.87 2.77 

K 0.96 0.95 0.95 0.95 0.94 0.95 1.00 1.04 0.96 0.98 0.97 0.97 0.94 0.97 1.00 0.95 0.96 0.95 0.97 0.97 0.99 0.99 0.96 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ti 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.01 0.03 0.03 0.04 0.04 0.04 0.03 0.04 0.02 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.07 0.08 0.08 0.08 0.08 0.08 0.09 0.10 0.08 0.08 0.09 0.07 0.08 0.08 0.07 0.09 0.08 0.08 0.09 0.08 0.08 0.08 0.07 

Na 0.08 0.08 0.08 0.07 0.09 0.07 0.07 0.06 0.07 0.07 0.05 0.07 0.08 0.07 0.06 0.06 0.08 0.07 0.07 0.07 0.06 0.07 0.05 

Mg 0.07 0.08 0.08 0.07 0.07 0.07 0.11 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.08 0.09 0.10 0.09 0.08 0.09 0.08 

[Mg/(Fe+Mg)] 0.51 0.49 0.50 0.47 0.48 0.49 0.53 0.49 0.50 0.50 0.49 0.50 0.50 0.50 0.54 0.51 0.52 0.52 0.54 0.52 0.48 0.53 0.52 

T(°C) at 4 kbar 572 570 577 582 560 581 613 598 562 564 588 551 553 557 372 553 588 611 614 611 595 630 505 

SD (P ± 1kbar) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 6 4 

Average T per sample 568 

SD (°C) on average 42 
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Table VI-4: Microprobe analysis of muscovite grains and calculation of temperature using the Ti-in-Ms geothermometer (Wu and Chen, 2015) for sample MIL18H 
(3/6). 

Sample MIL18H 

Zone I J K 

DataSet/Point 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 

O
xy

d
es

 (
W

t.
 %

) 

SiO2 45.75 46.10 45.73 45.77 45.90 46.08 46.32 46.73 46.23 45.76 45.48 45.93 45.84 45.85 45.52 45.94 46.13 45.74 

Al2O3 34.58 35.24 34.95 35.52 33.85 35.32 34.31 33.46 33.77 35.13 34.46 34.91 35.04 34.87 35.63 35.14 34.93 35.23 

K2O 11.34 11.48 11.44 10.95 11.54 11.25 11.71 11.40 11.57 11.56 11.24 11.14 11.09 11.32 11.66 11.50 11.38 11.32 

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TiO2 0.60 0.44 0.71 0.67 0.68 0.66 0.69 0.71 0.62 0.51 0.57 0.55 0.52 0.67 0.32 0.43 0.47 0.58 

Cr2O3 0.02 0.00 0.01 0.01 0.00 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00 

MnO 0.00 0.02 0.00 0.04 0.02 0.05 0.06 0.04 0.02 0.02 0.00 0.02 0.01 0.03 0.05 0.00 0.01 0.01 

FeO 1.53 1.35 1.50 1.37 1.67 1.42 1.44 1.99 1.69 1.36 1.70 1.58 1.42 1.41 1.42 1.39 1.58 1.43 

Na2O 0.45 0.61 0.48 0.66 0.39 0.65 0.49 0.31 0.39 0.47 0.61 0.51 0.59 0.54 0.44 0.50 0.56 0.51 

MgO 0.92 0.86 0.83 0.70 0.98 0.78 0.94 1.20 1.14 0.76 0.80 0.85 0.82 0.85 0.70 0.77 0.90 0.84 

Sum 95.13 96.06 95.65 95.68 94.99 96.18 95.91 95.81 95.41 95.53 94.84 95.47 95.31 95.53 95.71 95.59 95.96 95.66 

Conversion factor 4.03 4.00 4.02 3.99 4.06 3.98 4.02 4.01 4.03 4.02 4.05 4.01 4.02 4.02 4.02 4.01 4.00 4.01 

M
o

le
s 

(n
o

rm
al

is
ed

 f
o

r 
1

1 
o

xy
ge

n
s)

 Si 3.07 3.07 3.06 3.04 3.10 3.05 3.10 3.12 3.10 3.06 3.06 3.07 3.07 3.07 3.05 3.07 3.07 3.05 

Al 2.74 2.76 2.75 2.78 2.69 2.76 2.70 2.63 2.67 2.77 2.74 2.75 2.76 2.75 2.81 2.76 2.74 2.77 

K 0.97 0.97 0.98 0.93 0.99 0.95 1.00 0.97 0.99 0.99 0.97 0.95 0.95 0.97 0.99 0.98 0.97 0.96 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ti 0.03 0.02 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.09 0.08 0.08 0.08 0.09 0.08 0.08 0.11 0.10 0.08 0.10 0.09 0.08 0.08 0.08 0.08 0.09 0.08 

Na 0.06 0.08 0.06 0.09 0.05 0.08 0.06 0.04 0.05 0.06 0.08 0.07 0.08 0.07 0.06 0.06 0.07 0.07 

Mg 0.09 0.09 0.08 0.07 0.10 0.08 0.09 0.12 0.11 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.09 0.08 

[Mg/(Fe+Mg)] 0.52 0.53 0.49 0.48 0.51 0.49 0.54 0.52 0.54 0.50 0.46 0.49 0.51 0.52 0.47 0.50 0.50 0.51 

T(°C) at 4 kbar 584 535 610 599 608 597 610 614 594 557 573 568 561 604 485 529 544 578 

SD (P ± 1kbar) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 

Average T per sample 568 

SD (°C) on average 42 
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Table VI-4: Microprobe analysis of muscovite grains and calculation of temperature using the Ti-in-Ms geothermometer (Wu and Chen, 2015) for sample MIL18C 
(4/6). 

Sample 
MIL18C 

Zone A B D 

DataSet/Point 69 70 71 72 73 74 75 76 77 78 79 80 84 85 86 87 88 89 90 91 92 93 94 95 

O
xy

d
es

 (
W

t.
 %

) 

SiO2 45.59 45.79 45.46 45.53 45.75 45.62 45.61 45.61 45.84 45.82 45.69 45.18 45.32 45.68 45.52 45.68 45.71 46.01 45.62 45.50 45.67 45.99 45.82 46.13 

Al2O3 35.05 34.99 34.93 35.04 33.50 34.54 35.11 35.36 35.21 35.17 33.98 28.92 34.77 35.32 35.19 34.54 34.38 33.94 34.28 34.44 35.42 35.65 35.37 33.71 

K2O 11.58 11.37 11.53 11.49 11.71 11.55 11.45 11.38 11.06 10.98 11.41 10.98 11.66 11.08 10.85 11.42 11.27 11.47 11.60 11.40 11.37 11.45 11.45 11.34 

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TiO2 0.43 0.33 0.41 0.44 0.24 0.48 0.53 0.43 0.44 0.44 0.51 0.59 0.38 0.46 0.43 0.47 0.38 0.44 0.34 0.37 0.35 0.38 0.36 0.26 

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 

MnO 0.06 0.05 0.02 0.01 0.08 0.00 0.08 0.07 0.02 0.02 0.02 0.15 0.07 0.02 0.05 0.04 0.01 0.03 0.07 0.03 0.01 0.03 0.04 0.09 

FeO 1.86 1.81 1.73 1.85 2.89 1.97 1.72 1.53 1.43 1.39 2.32 6.38 1.92 1.43 1.42 1.67 2.04 2.06 2.14 2.16 1.70 1.66 1.64 2.45 

Na2O 0.43 0.42 0.55 0.42 0.33 0.42 0.49 0.61 0.67 0.77 0.33 0.14 0.34 0.73 0.80 0.69 0.55 0.50 0.45 0.38 0.52 0.52 0.66 0.37 

MgO 0.69 0.64 0.63 0.65 0.98 0.68 0.63 0.60 0.63 0.64 0.84 1.77 0.71 0.64 0.64 0.68 0.77 0.88 0.83 0.78 0.72 0.60 0.62 0.95 

Sum 95.65 95.38 95.23 95.37 95.41 95.20 95.57 95.58 95.28 95.19 95.05 94.11 95.14 95.36 94.87 95.19 95.09 95.30 95.31 95.06 95.75 96.25 95.93 95.26 

Conversion factor 3.95 4.02 4.04 4.03 4.06 4.04 4.02 4.02 4.01 4.02 4.06 4.19 3.96 4.01 4.03 4.05 4.04 4.05 4.05 4.05 4.01 3.99 4.01 4.04 

M
o

le
s 

(n
o

rm
al

is
ed

 f
o

r 
1

1 
o

xy
ge

n
s)

 Si 3.00 3.07 3.06 3.06 3.09 3.07 3.05 3.05 3.06 3.07 3.09 3.15 2.99 3.05 3.06 3.08 3.08 3.10 3.08 3.07 3.05 3.05 3.06 3.11 

Al 2.71 2.76 2.77 2.77 2.67 2.74 2.77 2.79 2.77 2.77 2.71 2.37 2.70 2.78 2.78 2.74 2.73 2.69 2.72 2.74 2.79 2.79 2.78 2.67 

K 0.97 0.97 0.99 0.98 1.01 0.99 0.98 0.97 0.94 0.94 0.98 0.98 0.98 0.94 0.93 0.98 0.97 0.98 1.00 0.98 0.97 0.97 0.97 0.97 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ti 0.02 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.10 0.10 0.10 0.10 0.16 0.11 0.10 0.09 0.08 0.08 0.13 0.37 0.11 0.08 0.08 0.09 0.11 0.12 0.12 0.12 0.09 0.09 0.09 0.14 

Na 0.05 0.05 0.07 0.05 0.04 0.06 0.06 0.08 0.09 0.10 0.04 0.02 0.04 0.09 0.10 0.09 0.07 0.06 0.06 0.05 0.07 0.07 0.08 0.05 

Mg 0.07 0.06 0.06 0.07 0.10 0.07 0.06 0.06 0.06 0.06 0.08 0.18 0.07 0.06 0.06 0.07 0.08 0.09 0.08 0.08 0.07 0.06 0.06 0.09 

[Mg/(Fe+Mg)] 0.40 0.39 0.39 0.39 0.38 0.38 0.39 0.41 0.44 0.45 0.39 0.33 0.40 0.45 0.44 0.42 0.40 0.43 0.41 0.39 0.43 0.39 0.40 0.41 

T(°C) at 4 kbar 518 481 515 524 439 537 553 521 527 529 547 571 499 535 527 538 505 528 487 498 495 502 493 451 

SD (P ± 1kbar) 5 4 5 5 4 5 5 5 5 5 5 5 4 5 5 5 4 5 4 4 4 4 4 4 

Average T per sample 493 

SD (°C) on average 94 
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Table VI-4: Microprobe analysis of muscovite grains and calculation of temperature using the Ti-in-Ms geothermometer (Wu and Chen, 2015) for sample MIL18C 
(5/6) 

Sample MIL18C 

Zone E F 

DataSet/Point 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 

O
xy

d
es

 (
W

t.
 %

) 

SiO2 46.18 45.86 45.91 45.77 46.13 44.68 45.62 45.70 45.47 45.49 45.37 46.50 45.22 44.94 45.75 46.27 46.09 45.55 

Al2O3 33.64 34.93 34.40 34.52 34.35 33.36 34.43 34.78 34.39 33.09 33.02 34.37 34.73 34.20 34.81 34.90 35.41 33.71 

K2O 11.20 11.59 11.42 11.36 11.51 11.64 11.32 11.47 11.58 11.49 11.34 11.36 11.40 11.13 11.34 11.82 11.63 10.77 

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

TiO2 0.25 0.41 0.30 0.26 0.22 0.65 0.36 0.35 0.34 0.27 0.26 0.33 0.48 0.37 0.54 0.14 0.05 0.17 

Cr2O3 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

MnO 0.05 0.06 0.07 0.04 0.05 0.02 0.04 0.02 0.04 0.06 0.06 0.04 0.04 0.05 0.02 0.05 0.05 0.05 

FeO 2.14 1.81 1.98 2.34 2.09 2.11 1.84 1.70 1.90 2.55 2.51 2.13 1.71 1.89 1.62 2.10 2.03 2.93 

Na2O 0.38 0.51 0.42 0.44 0.43 0.41 0.49 0.60 0.48 0.40 0.47 0.49 0.43 0.44 0.37 0.41 0.50 0.42 

MgO 0.97 0.63 0.79 0.73 0.84 0.76 0.68 0.67 0.75 0.98 0.90 0.86 0.61 0.69 0.65 0.63 0.43 0.84 

Sum 94.78 95.76 95.22 95.43 95.60 93.59 94.76 95.25 94.90 94.34 93.89 96.08 94.57 93.67 95.06 96.28 96.13 94.46 

Conversion factor 4.05 4.03 4.04 4.04 4.03 4.13 4.05 4.04 4.06 4.10 4.11 4.00 4.07 4.10 4.04 4.01 4.00 4.07 

M
o

le
s 

(n
o

rm
al

is
ed

 f
o

r 
1

1 
o

xy
ge

n
s)

 Si 3.12 3.07 3.08 3.08 3.09 3.07 3.08 3.07 3.07 3.10 3.10 3.10 3.06 3.07 3.08 3.09 3.07 3.08 

Al 2.67 2.76 2.72 2.73 2.72 2.70 2.74 2.76 2.74 2.66 2.66 2.70 2.77 2.75 2.76 2.75 2.78 2.69 

K 0.96 0.99 0.98 0.97 0.99 1.02 0.97 0.98 1.00 1.00 0.99 0.97 0.98 0.97 0.97 1.01 0.99 0.93 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ti 0.01 0.02 0.02 0.01 0.01 0.03 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.03 0.01 0.00 0.01 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.12 0.10 0.11 0.13 0.12 0.12 0.10 0.10 0.11 0.15 0.14 0.12 0.10 0.11 0.09 0.12 0.11 0.17 

Na 0.05 0.07 0.05 0.06 0.06 0.05 0.06 0.08 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 

Mg 0.10 0.06 0.08 0.07 0.08 0.08 0.07 0.07 0.08 0.10 0.09 0.09 0.06 0.07 0.07 0.06 0.04 0.08 

[Mg/(Fe+Mg)] 0.45 0.38 0.42 0.36 0.42 0.39 0.40 0.41 0.41 0.41 0.39 0.42 0.39 0.39 0.42 0.35 0.27 0.34 

T(°C) at 4 kbar 450 513 472 450 428 591 495 493 488 459 455 485 539 501 558 371 266 393 

SD (P ± 1kbar) 4 5 4 4 4 5 4 4 4 4 4 4 5 4 5 3 2 3 

Average T per sample 493 

SD (°C) on average 57 
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Table VI-4: Microprobe analysis of muscovite grains and calculation of temperature using the Ti-in-Ms geothermometer (Wu and Chen, 2015) for sample MIL18I 
(6/6) 

Sample MIL18I 

Zone A B C D 

DataSet/Point 115 116 117 118 119 120 121 122 124 125 126 127 128 131 132 

O
xy

d
es

 (
W

t.
 %

) 

SiO2 46.56 46.29 46.50 46.19 46.59 46.17 46.83 46.66 46.34 45.88 45.30 45.92 46.49 46.32 46.42 

Al2O3 34.92 34.54 34.71 35.19 34.92 35.30 34.30 33.58 33.74 34.32 34.66 34.21 34.46 33.46 35.20 

K2O 11.22 11.29 11.39 11.10 11.23 11.21 11.28 11.50 11.50 11.33 11.43 11.70 11.43 11.50 11.16 

CaO 0.00 -0.03 -0.03 0.00 -0.02 -0.02 -0.01 0.01 -0.03 -0.02 -0.04 -0.05 0.00 -0.03 -0.03 

TiO2 0.41 0.47 0.45 0.55 0.48 0.44 0.55 0.44 0.55 0.93 0.92 0.48 0.27 0.87 0.42 

Cr2O3 0.02 0.01 0.02 -0.02 0.01 0.00 0.00 0.01 0.00 0.01 0.00 -0.01 0.02 -0.01 0.00 

MnO 0.02 0.04 0.06 0.05 0.07 0.02 0.04 0.07 0.04 0.02 0.04 0.04 0.03 0.05 0.02 

FeO 1.60 1.65 1.83 1.60 1.65 1.56 1.67 2.12 1.88 1.66 1.54 1.81 1.82 1.99 1.50 

Na2O 0.61 0.53 0.46 0.63 0.57 0.53 0.61 0.39 0.40 0.65 0.66 0.48 0.46 0.40 0.68 

MgO 0.91 0.84 0.92 0.74 0.84 0.75 0.97 1.09 0.98 0.74 0.73 0.91 0.97 1.05 0.81 

Sum 96.26 95.64 96.31 96.04 96.32 95.95 96.25 95.87 95.42 95.52 95.22 95.51 95.95 95.61 96.16 

Conversion factor 4.07 4.01 3.99 3.99 3.98 3.99 3.99 4.02 3.95 4.02 4.04 3.97 4.00 3.97 3.98 

M
o

le
s 

(n
o

rm
al

is
ed

 f
o

r 
1

1 
o

xy
ge

n
s)

 Si 3.16 3.09 3.09 3.07 3.09 3.07 3.11 3.12 3.05 3.07 3.05 3.03 3.09 3.06 3.07 

Al 2.79 2.72 2.72 2.75 2.73 2.77 2.68 2.65 2.62 2.71 2.75 2.66 2.70 2.61 2.75 

K 0.97 0.96 0.96 0.94 0.95 0.95 0.96 0.98 0.97 0.97 0.98 0.99 0.97 0.97 0.94 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ti 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.05 0.05 0.02 0.01 0.04 0.02 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.09 0.09 0.10 0.09 0.09 0.09 0.09 0.12 0.10 0.09 0.09 0.10 0.10 0.11 0.08 

Na 0.08 0.07 0.06 0.08 0.07 0.07 0.08 0.05 0.05 0.08 0.09 0.06 0.06 0.05 0.09 

Mg 0.09 0.08 0.09 0.07 0.08 0.07 0.10 0.11 0.10 0.07 0.07 0.09 0.10 0.10 0.08 

[Mg/(Fe+Mg)] 0.50 0.48 0.47 0.45 0.47 0.46 0.51 0.48 0.48 0.44 0.46 0.47 0.49 0.49 0.49 

T(°C) at 4 kbar 524 541 533 564 542 527 567 531 566 657 656 543 460 646 522 

SD (P ± 1kbar) 5 5 5 5 5 5 5 5 5 6 6 5 4 6 5 

Average T per sample 559 

SD (°C) on average 55 
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Table VI-5: Isotope and geochronology data used to build the graph of Figure V-11. Ms: Muscovite (1/5) 

 

Hinter 
Land 

/Forel 
and 

Zone Rock type and sampling area Sample Proxy ẟDwater [‰] Uncertainty  [‰] ẟ18Owater [‰] Uncertainty  [‰] Age [Ma] Uncertainty [Ma] 
Isotope data (reference) 
Ages (reference) 

H
IN

TE
R

LA
N

D
 

So
u

th
er

n
 p

ar
t 

o
f 

th
e 

A
rm

o
ri

ca
n

 M
as

si
f,

 F
ra

n
ce

 

Quiberon granite, Quiberon 
detachment footwall 

QUIB01 Ms -72 6 -10.3 0.8 319.5 0.9 

ẟDMs values (this study) 
Ar/Ar on muscovite (this study) 

QUIB01 Ms -72 6 -10.3 0.8 307.7 0.7 

QUIB03 Ms -70 6 -10.0 0.8 304.8 1.0 

QUIB03 Ms -70 6 -10.0 0.8 303.3 1.0 

QUIB02 Ms -66 6 -9.5 0.8 308.8 1.0 
ẟDMs values (this study) 
Average from Ar/Ar dates (samples QUIB01 and 03, this study) 

Guérande granite. Piriac-sur-
mer detachment footwall 

PIR01 Ms -71 3 -10.1 0.3 322.4 1.0 

ẟDMs values (this study) 
 
Ar/Ar on muscovite (this study) 

PIR01 Ms -71 3 -10.1 0.4 306.2 0.5 

PIR06 Ms -65 3 -9.4 0.4 318.5 0.9 

PIR06 Ms -65 3 -9.4 0.4 312.8 0.5 

PIR11 Ms -76 3 -10.8 0.4 318.6 0.7 

PIR16 Ms -77 3 -10.9 0.4 308.5 0.6 

PIR16 Ms -77 3 -10.9 0.4 305.4 0.7 

PIR02 Ms -72 3 -10.2 0.4 313.2 1.3 

ẟDMs values (this study) 
 
Average from Ar/Ar ages (samples PIR01, 06, 11 and 16, this study) 

PIR03 Ms -70 3 -10.0 0.4 313.2 1.3 

PIR04 Ms -69 3 -9.8 0.4 313.2 1.3 

PIR05 Ms -74 3 -10.5 0.4 313.2 1.3 

PIR07 Ms -68 3 -9.8 0.4 313.2 1.3 

PIR08 Ms -69 3 -9.9 0.4 313.2 1.3 

PIR09 Ms -71 3 -10.1 0.4 313.2 1.3 

PIR10 Ms -74 3 -10.5 0.4 313.2 1.3 

PIR12 Ms -66 3 -9.5 0.4 313.2 1.3 

PIR13 Ms -73 3 -10.4 0.4 313.2 1.3 

PIR14 Ms -70 3 -10.0 0.4 313.2 1.3 

PIR15 Ms -77 3 -10.9 0.4 313.2 1.3 

GUE6 Ms -74 3 -10.5 0.4 313.2 1.3 

GUE7 Ms -69 3 -9.9 0.4 313.2 1.3 

GUE9 Ms -74 3 -10.5 0.4 313.2 1.3 

GUE21 Ms -75 3 -10.6 0.4 313.2 1.3 

GUE12-11 Ms -70 3 -10.0 0.4 313.2 1.3 

GUE12-12 Ms -73 3 -10.4 0.4 313.2 1.3 

GUE12-13 Ms -70 3 -10.0 0.4 313.2 1.3 

GUE12-14 Ms -70 3 -10.0 0.4 313.2 1.3 

GUE12-17 Ms -69 3 -9.9 0.4 313.2 1.3 
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Table VI-5: Isotope and geochronology data used to build the graph of Figure V-11. Ms: Muscovite (2/5) 

 

 

Hinter 
Land 

/Forel 
and 

Zone 
Rock type and 
sampling area 

Sample Proxy ẟDwater [‰] Uncertainty  [‰] ẟ18Owater [‰] Uncertainty  [‰] Age [Ma] Uncertainty [Ma] 
Isotope data (reference) 
Ages (reference) 

H
IN

TE
R

LA
N

D
 

W
es

te
rn

 p
ar

t 
o

f 
th

e 
Fr

en
ch

 M
as

si
f 

C
en

tr
al

 

Mille 
vaches granite, 

Felletin detachment 
footwall 

MIL18A Ms -82 5 -11.5 0.6 313.6 9.2 

ẟDMs values (this study) 
 
Average from samples 524 and 3 (Gébelin, 2004) 

 

MIL18B Ms -88 5 -12.2 0.6 313.6 9.2 

MIL18C Ms -86 8 -11.9 1.0 313.6 9.2 

MIL18D Ms -91 5 -12.6 0.6 313.6 9.2 

MIL18E Ms -90 5 -12.5 0.6 313.6 9.2 

MIL18F Ms -85 5 -11.8 0.6 313.6 9.2 

MIL18G Ms -85 5 -11.8 0.6 313.6 9.2 

MIL18H Ms -104 3 -14.2 0.4 313.6 9.2 

MIL18I Ms -83 5 -11.7 0.6 313.6 9.2 

MIL19 Ms -95 5 -13.1 0.6 313.6 9.2 

3 Ms -87 8 -12.1 1.0 321.1 3.1 

ẟDMs values (this study) 
 
Ar/Ar on muscovite (Gébelin. 2004) 

 

3 Ms -87 8 -12.1 1.0 310.7 2.9 

3 Ms -87 8 -12.1 1.0 321.8 1.3 

3 Ms -87 8 -12.1 1.0 325.0 1.4 

3 Ms -87 8 -12.1 1.0 310.9 2.5 

3 Ms -87 8 -12.1 1.0 306.5 1.6 

3 Ms -87 8 -12.1 1.0 307.8 0.8 

3 Ms -87 8 -12.1 1.0 309.0 1.0 

3 Ms -87 8 -12.1 1.0 315.7 3.2 

524 Ms -76 8 -10.8 1.0 310.1 1.7 

524 Ms -76 8 -10.8 1.0 315.1 1.6 

524 Ms -76 8 -10.8 1.0 303.9 6.8 

524 Ms -76 8 -10.8 1.0 318.3 2.6 

524 Ms -76 8 -10.8 1.0 313.9 4.2 

524 Ms -76 8 -10.8 1.0 314.7 2.5 
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Table VI-5: Isotope and geochronology data used to build the graph of Figure V-11. Ms: Muscovite (3/5) 

 

Hi
nt
erl
an
d 

/Forel
and 

Zone 
Rock type and 
sampling area 

Sample Proxy ẟDwater [‰] 
Uncer 

tainty  [‰] 
ẟ18Owater [‰] 

Uncertainty  
[‰] 

Age [Ma] 
Uncertaint

y [Ma] 

Isotope data (reference) 
 
Ages (reference) 

FO
R

EL
A

N
D

 

So
u

th
er

n
 S

p
ai

n
 

Puertollano 
basin 

LP1 Shark tooth -3.6 13 -1.7 1.6 302 2 
ẟ18OPhosphate values of shark remains 
(Fischer et al. 2013) 
 
Stephanian C (Gzhelian/Asselian; 
(e.g. Schneider et al., 2000) 

 

TP1 Shark tooth -1.2 13 -1.4 1.6 302 2 

OP1 Shark tooth 2.8 13 -0.9 1.6 302 2 

OP2 Shark tooth 1.2 13 -1.1 1.6 302 2 

OP3 Shark tooth -0.4 13 -1.3 1.6 302 2 

OP4 Shark tooth 1.2 13 -1.1 1.6 302 2 

OP5 Shark tooth 14.8 13 0.6 1.6 302 2 

N
W

 p
ar

t 
o

f 
th

e 
Fr

en
ch

 M
as

si
f 

C
en

tr
al

 

Bourbon 
l'Archambault 

basin 

LBS 1A Shark spine -13.2 13 -2.9 1.6 292.5 2.5 

ẟ18OPhosphate values of shark remains 
(Fischer et al. 2013) 
 
Sakmarian (e.g. Roscher and 
Schneider, 2005; Schneider and 
Werneburg, 2006)  

LBS 1B Shark spine -12.4 13 -2.8 1.6 292.5 2.5 

LBS 2 Shark spine -15.6 13 -3.2 1.6 292.5 2.5 

LBS 2A Shark spine -14.8 13 -3.1 1.6 292.5 2.5 

LBS 2B Shark spine -13.2 13 -2.9 1.6 292.5 2.5 

LBS 2C Shark spine -14 13 -3 1.6 292.5 2.5 

LBS 3 Shark spine -22 13 -4 1.6 292.5 2.5 

LBS 3A Shark spine -19.6 13 -3.7 1.6 292.5 2.5 

LBS 3B Shark spine -22.8 13 -4.1 1.6 292.5 2.5 

OB1 Shark tooth -14.8 13 -3.1 1.6 292.5 2.5 

OBS 1a Shark spine -14 13 -3 1.6 292.5 2.5 

OBS 2a Shark spine -17.2 13 -3.4 1.6 292.5 2.5 

OBS 1b Shark spine -18.8 13 -3.6 1.6 292.5 2.5 

OBS 2b Shark spine -13.2 13 -2.9 1.6 292.5 2.5 

OBS 3b Shark spine -6.8 13 -2.1 1.6 292.5 2.5 

OBS 4b Shark spine -7.6 13 -2.2 1.6 292.5 2.5 

OBS 5b Shark spine -16.4 13 -3.3 1.6 292.5 2.5 
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Table VI-5: Isotope and geochronology data used to build the graph of Figure V-11. Ms: Muscovite (4/5) 

 

Hi
nt
erl
an
d 

/Forel
and 

Zone 
Rock type and 
sampling area 

Sample Proxy ẟDwater [‰] 
Uncer 

tainty  [‰] 
ẟ18Owater [‰] 

Uncertainty  
[‰] 

Age [Ma] 
Uncertaint

y [Ma] 

Isotope data (reference) 
 
Ages (reference) 

FO
R

EL
A

N
D

 

so
u

th
w

es
te

rn
 S

ar
d

in
ia

, I
ta

ly
 

Guardia Pisano 
basin 

LS 1 Shark tooth -6.8 13 -2.1 1.6 297 5 

ẟ18OPhosphate values of shark remains 
(Fischer et al. 2013) 

 
U–Pb SHRIMP - Gzhelian to Asselian 
(Pittau et al., 2002; Fischer et al., 
2010) 

 

LS 2 Shark tooth -2 13 -1.5 1.6 297 5 

LS 3 Shark tooth -3.6 13 -1.7 1.6 297 5 

LS 4 Shark tooth -3.6 13 -1.7 1.6 297 5 

LS 5 Shark tooth -3.6 13 -1.7 1.6 297 5 

LS 6 Shark tooth -2 13 -1.5 1.6 297 5 

LS 7 Shark spine -11.6 13 -2.7 1.6 297 5 

LS 8 Shark spine -6 13 -2 1.6 297 5 

LS 9 Shark spine -6 13 -2 1.6 297 5 

LS 10 Shark spine -6.8 13 -2.1 1.6 297 5 

LS 11 Shark spine -9.2 13 -2.4 1.6 297 5 

LS 12 Shark spine -9.2 13 -2.4 1.6 297 5 

LS 13 Shark spine -9.2 13 -2.4 1.6 297 5 

LS 14 Shark spine -8.4 13 -2.3 1.6 297 5 

LS 15 Shark spine -2.8 13 -1.6 1.6 297 5 

LS 16 Shark spine -4.4 13 -1.8 1.6 297 5 

LS 17 Shark spine -5.2 13 -1.9 1.6 297 5 

LS 18 Shark spine -5.2 13 -1.9 1.6 297 5 

LS 19 Shark spine -6.8 13 -2.1 1.6 297 5 

LS 20 Shark spine -10.8 13 -2.6 1.6 297 5 

LS 21 Shark scale -8.4 13 -2.3 1.6 297 5 

LS 22 Shark scale -10 13 -2.5 1.6 297 5 

LS 23 Shark scale -14 13 -3 1.6 297 5 
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Table VI-5: Isotope and geochronology data used to build the graph of Figure V-11. Ms: Muscovite (5/5) 

 

 

Hinterland 
/Foreland 

Zone 
Rock type and 
sampling area 

Sample Proxy ẟDwater [‰] 
Uncer 

tainty  [‰] 
ẟ18Owater [‰] Uncertainty  [‰] Age [Ma] Uncertainty [Ma] 

Isotope data (reference) 
Ages (reference) 

 

So
u

th
er

n
 p

ar
t 

o
f 

th
e 

Fr
en

ch
 M

as
si

f 
C

en
tr

al
 

Espinouse 
detachment, 

Montagne 
Noire 

MNC01A Muscovite -42 3 -6.5 0.4 297 2.8 

ẟD values of muscovite. biotite and tourmaline (this study) 
 
Ar/Ar on muscovite (Maluski et al. 1991) 

MNC01B Muscovite -39 3 -6.1 0.4 297 2.8 

MN12-15 Muscovite -39 3 -6.1 0.4 297 2.8 

MNC02 Muscovite -39 3 -6.2 0.4 297 2.8 

MNC03 Muscovite -42 3 -6.5 0.4 297 2.8 

MNC04 Muscovite -35 3 -5.7 0.4 297 2.8 

MNC05 Muscovite -43 3 -6.6 0.4 297 2.8 

MNC06A Muscovite -36 3 -5.7 0.4 297 2.8 

MNC06B Muscovite -34 3 -5.6 0.4 297 2.8 

MN12-10 Muscovite -35 3 -5.7 0.4 297 2.8 

MN12-05 Muscovite -43 3 -6.6 0.4 297 2.8 

MNC01A Biotite -43 3 -6.6 0.4 297 2.8 

MNC01B Biotite -31 3 -5.1 0.4 297 2.8 

MN12-15 Biotite -30 3 -5.0 0.4 297 2.8 

MNC02 Biotite -36 3 -5.8 0.4 297 2.8 

MNC04 Biotite -23 3 -4.1 0.4 297 2.8 

MNC06B Biotite -27 3 -4.7 0.4 297 2.8 

MN12-10 Biotite -25 3 -4.4 0.4 297 2.8 

MN12-05 Biotite -27 3 -4.6 0.4 297 2.8 

MNC01A Tourmaline -34 4 -5.5 0.5 297 2.8 

MNC01B Tourmaline -29 4 -4.9 0.5 297 2.8 

MNC02 Tourmaline -25 4 -4.4 0.5 297 2.8 

MNC03 Tourmaline -34 4 -5.4 0.5 297 2.8 

MNC04 Tourmaline -25 4 -4.3 0.5 297 2.8 

MNC06A Tourmaline -25 4 -4.3 0.5 297 2.8 
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