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Abstract 

Transparent Authentication Utilising Gait Recognition 

Hind Al-Obaidi (MSc) 

Securing smartphones has increasingly become inevitable due to their massive 

popularity and significant storage and access to sensitive information. The 

gatekeeper of securing the device is authenticating the user. Amongst the many 

solutions proposed, gait recognition has been suggested to provide a reliable yet 

non-intrusive authentication approach – enabling both security and usability. 

While several studies exploring mobile-based gait recognition have taken place, 

studies have been mainly preliminary, with various methodological restrictions 

that have limited the number of participants, samples, and type of features; in 

addition, prior studies have depended on limited datasets, actual controlled 

experimental environments, and many activities. They suffered from the absence 

of real-world datasets, which lead to verify individuals incorrectly. 

This thesis has sought to overcome these weaknesses and provide, a 

comprehensive evaluation, including an analysis of smartphone-based motion 

sensors (accelerometer and gyroscope), understanding the variability of feature 

vectors during differing activities across a multi-day collection involving 60 

participants. This framed into two experiments involving five types of activities: 

standard, fast, with a bag, downstairs, and upstairs walking. The first experiment 

explores the classification performance in order to understand whether a single 

classifier or multi-algorithmic approach would provide a better level of 

performance. The second experiment investigated the feature vector (comprising 

of a possible 304 unique features) to understand how its composition affects 

performance and for a comparison a more particular set of the minimal features 

are involved. The controlled dataset achieved performance exceeded the prior 
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work using same and cross day methodologies (e.g., for the regular walk activity, 

the best results EER of 0.70% and EER of 6.30% for the same and cross day 

scenarios respectively). Moreover, multi-algorithmic approach achieved 

significant improvement over the single classifier approach and thus a more 

practical approach to managing the problem of feature vector variability. 

An Activity recognition model was applied to the real-life gait dataset containing 

a more significant number of gait samples employed from 44 users (7-10 days for 

each user). A human physical motion activity identification modelling was built to 

classify a given individual's activity signal into a predefined class belongs to. As 

such, the thesis implemented a novel real-world gait recognition system that 

recognises the subject utilising smartphone-based real-world dataset. It also 

investigates whether these authentication technologies can recognise the 

genuine user and rejecting an imposter. Real dataset experiment results are 

offered a promising level of security particularly when the majority voting 

techniques were applied. As well as, the proposed multi-algorithmic approach 

seems to be more reliable and tends to perform relatively well in practice on real 

live user data, an improved model employing multi-activity regarding the security 

and transparency of the system within a smartphone. Overall, results from the 

experimentation have shown an EER of 7.45% for a single classifier (All activities 

dataset). The multi-algorithmic approach achieved EERs of 5.31%, 6.43% and 

5.87% for normal, fast and normal and fast walk respectively using both 

accelerometer and gyroscope-based features – showing a significant 

improvement over the single classifier approach. Ultimately, the evaluation of the 

smartphone-based, gait authentication system over a long period of time under 

realistic scenarios has revealed that it could provide a secured and appropriate 

activities identification and user authentication system. 
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1 The Need for Authentication 

1.1 Introduction and overview 

In the last decade, smartphone devices have become a ubiquitous technology, 

with more than 9.5 billion users globally (GSMA 2018). Currently, smartphones 

provide a wide range of services and features including (but not limited to): 

communication (e.g., texting, email, and calling), entertainment (e.g., internet-

connected game consoles such as Xbox One and PS4, music, and online 

streaming), work (e.g., viewing clients’ documents), financial services (e.g., 

transferring money and shopping online), sensors (e.g.,  accelerometers, 

gyroscopes, magnetometers, rotation sensors, light sensors, and temperature 

sensors), accessing multiple networks (e.g., GPS, Wi-Fi, and Bluetooth), and 

location-based services (LBS) (i.e., identifying the location of a person or object, 

such as discovering the nearest banking cash machine automated teller machine 

(ATM)) (WebMapSolutions 2011). Further, with the explosive growth in the 

number of internet users worldwide reaching around 3.4 billion (40% of the world 

population) (Internet live stats 2016), mobile traffic is expected at a high 

acceleration of 150% per year (Meeker 2013), enabling more smartphone users 

to access internet services. Inevitably, these activities will be associated with 

personal, financial, medical, and business information that is sensitive and 

confidential; this means the data stored on smartphones could be more expensive 

than the cost of the device (Saevanee et al. 2015). As a result, smartphones 

should be kept secure at all times. 

However, smartphones and their services and information are becoming targets 

of cybercrimes. For example, the UK government found that in 2012, there were, 
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on average, over 260 mobile phones being stolen across England, Scotland, and 

Wales daily (BBC NEWS 2012). Alarmingly, the number of smartphones being 

stolen each day increased to two thousand in 2014 within the UK (Mail Online 

News2014). Furthermore, 35% of (CSID 2017) survey respondents’ accounts or 

personal information were compromised or stolen by imposters. A study by 

Symantec Corporation (2013) showed that attacks increased by 42% with about 

604,826 of accounts hacked, of which 23% was caused by theft or loss of 

smartphone devices. In addition, a report was published in 2016 depicting that 

data breach threats increase dramatically with the use of stolen, weak, and 

default credentials, which represented 63% of data breach corpus (Verizon 2016). 

Recently, a Home Office report revealed that mobile devices surged last year with 

over 700,000 handsets stolen. The study rated that the total number of stolen 

mobiles was more than double the 330,000 figure officially recorded by the police 

(MailOnline News, 2019). Moreover, (COMPUTERWORLD, 2019) reported that 

the incidence of smartphone theft has been increasing rapidly through recent 

years and is fast becoming an epidemic. Serious crimes in San Francisco from 

November to April recorded 579 thefts of mobile phones or tablets, and this 

represents 41 percent of all serious crimes. On some days, like Feb. 27, the only 

serious crimes stated in the daily police log were cell phone thefts. 

As a result, it is mission-critical to secure smartphones and their services and 

information. To secure any system or information, it is essential that 

confidentiality, integrity, and availability (CIA) is achieved. Without implementing 

a proper authentication mechanism, it is difficult to achieve these aims. Three 

major approaches can be used for authentication: something the user knows (e.g., 

password or PIN), something the user has (e.g., token or smart card), and 

something the user is (i.e., biometrics). Some systems utilise a single approach 
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to achieve authentication while others combine two or more techniques in order 

to strengthen the authentication (Karatzouni 2014).  

Current protection mechanisms of smartphone devices are usually based on the 

knowledge-based authentication technique (e.g., PIN, password, and graphical 

password) (Meng et al. 2015). However, the main disadvantages of this approach 

can be summarised in the following points: 

•    Secrecy and public use; users log into various websites using passwords 

while they are in public places such as libraries or cafes. This leads to many 

password authentication issues. First, the password could be observed by 

other users by looking over the shoulder or looking at the keyboard and noting 

the keystrokes. Second, the password information could be intercepted by 

someone connected to the network while the user logs in using network 

programs that monitor the local Wi-Fi hotspot (itstillworks, 2019). 

 User Engagement; many people use common password tropes, such as 

"password", "1234", or "pass" as passwords for sites they use. Also, the same 

password may be used for multiple sites. That means compromising one site 

will probably leading to compromising any other site that uses that password 

(itstillworks, 2019). 

 Security could be easily compromised. For instance, currently, individuals 

have an average of 21 passwords to remember and 81% of them select 

common words as their passwords (Rana 2015).  

 A typical user may use several devices with approximately 13 accounts with 

different usernames and passwords (Ghazizadeh et al. 2012). Surveys 

carried out by Cobb (2012) and CSID (2012) found that 46% and 61%, 

respectively, of their participants, used the same password for multiple 



4 

 

accounts to reduce the burden on memory to save and retrieve various 

passwords. 

 Furthermore, improper use may occur if users do not use the techniques in 

the right way, such as never changing the PIN code, sharing it with friends, 

and writing it down. Indeed, 30% of users write their passwords down in an 

insecure manner (Rana 2015). 

           The weakness of point-of-entry techniques is documented extensively and is 

considered as a significant problem of the PIN approach. The user logs in once 

and gains access to all applications without the need to log in again to each of 

them or legitimise the user’s identity again after obtaining trust and private 

information (Crouse et al. 2013). Additionally, according to the present NIST 

guidelines for mobile security, there is no set form to lock the device automatically 

as long as the device has been used regardless of whether that person is 

authorised. They suggest locking the device after staying idle for a specific time 

(NIST 2014). Indeed, a lot of smartphones offer this functionality now; however, 

it is unknown whether users take the full advantage of it.  

From the above limitations, these approaches suffer from the probability of lost, 

stolen, guessed, shared, forgotten, misplaced, eavesdropping, and repudiation. 

Also, 67% of mobile users leave their devices without password protection, so 

their personal information could be accessed by malicious individuals (Crouse et 

al. 2013). 

In order to solve some password problems, token-based authentication could be 

used. Instead of the human brain, the secret-knowledge is placed in a memory 

chip. But they are high in cost and the user needs to carry multiple tokens to 

access many services, which is considered as inconvenient. Additionally, the 
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verification depends on the token itself rather than the individual (Clarke & Furnell 

2005). Consequently, in token-based approaches, the user is primarily 

responsible for maintaining the security of the system (i.e., making sure the token 

is secure). When the token is lost or stolen, the system is compromised.  

Various biometric modalities are currently used generally in order to improve 

system security. Additionally, biometrics have essential features that can be used 

to assess a specific link to the identity of the person concerned because 

biometrics use human physiological and behavioural characteristics to identify 

individuals. The main advantage of biometric-based approaches is that they 

cannot be easily stolen or forgotten, unlike passwords, PINs, and tokens (Rana 

2015). In smartphone devices, fingerprint and face recognition are already used 

as an alternative authentication method in addition to the PIN. For example, 

Samsung Galaxy Note 8 and iPhone 8 and 8s devices provide biometric-based 

unlock style devices using the face and fingerprint, respectively (SKY BIOMETRY 

2018).  

However, the face and fingerprint are used to offer a point of entry authentication; 

hence, they cannot provide continuous protection for smartphones. Also, the high 

possibility of deceptive actions against biometric security implementations on 

smartphones could occur. Moreover, several factors may affect facial recognition 

algorithms, such as the stability of the extracted facial features over time, adjacent 

lighting, image resolution, face distance and position from the camera, and 

liveness test provisioning. Also, both fingerprints and facial recognition are 

intrusive and need user intervention, which could be considered inconvenient with 

recurrent use. Meeker (2013) pointed out that the smartphone user checks their 

devices on average 150 times per day. These users could spend over five 

minutes daily to unlock their devices (based on an average of two seconds for 
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every single unlock process). Besides, mobile devices are still susceptible to data 

theft when in an unlocked state (Crouse et al. 2013). Therefore, to improve 

security, more convenient, secure and effective biometric modalities are needed 

that operate transparently for mobile authentication to minimise user 

inconvenience and increase user acceptance and security (Rana 2015).  

Transparent authentication provides security by “authenticating the user 

periodically throughout the day/session/use of the device in order to maintain 

confidence in the identity of the user” (Clarke & Furnell 2005). Transparent and 

continuous authentication is considered as non-intrusive, more secure, and 

places less encumbrance on the user. Moreover, the decision based on multiple 

sources/biometric modalities can provide better confidence in the authenticity of 

the user (Clarke 2011). Several studies have proposed advanced authentication 

mechanisms that can provide transparent and continuous authentication to the 

user by using behavioural biometrics. According to these studies, a number of 

biometrics could have the probability to be used for transparent authentication on 

mobile devices, including keystroke dynamics (Crouse et al. 2013; Saevanee et 

al. 2015), behavioural profiling (Clarke 2011), 3D-facial recognition (Muaaz 2013), 

Voice recognition (Clarke & Furnell 2005), linguistic profiling (Saevanee 2014), 

and gait recognition (Mohammad Omar Derawi et al. 2010; Nickel et al. 2011). 

While much effort has been expanded on conducting and implementing the 

existing behavioural biometric approaches, less focus has been given by 

researchers into using a smartphone device to collect realistic data for gait and 

activity recognition. 

Gait recognition recognises a person by how they walk. Many studies in 

psychology, medicine (kale, 2003), and biometrics indicate that human gait is 

unique for every person, as well as non-invasive techniques that can be used for 
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identification and verification purposes (Gafurov, 2008; Mäntyjärvi et al., 2005). 

As a result, this approach has an excellent opportunity to be implemented in a 

continuous authentication manner (rather than user re-authentication), thus, 

decreasing the burden on the user and increasing the security. Currently, most 

smartphones and portable devices have built-in sensors (e.g., accelerometers) 

that can be used to record the user’s gait. Therefore, there is no need to attach 

further hardware to collect gait features (Rana 2015). By using gait recognition, 

the user does not need an explicit action for mobile authentication because the 

related data is continuously recorded while the person is walking (Derawi et al., 

2010; Clarke, 2011; Zhong and Deng, 2014). During times when he is not walking, 

other biometric modalities can be used (Derawi et al.2010).  

Moreover, gait recognition can be seen as an advantageous biometric 

identification technique for the following two reasons: (1) user-friendliness, 

because the gait of a person can be captured unobtrusively and continuously; 

and (2) security, because of the fact that the gait of an individual is challenging to 

mimic (Hoang et al. 2015). However, there are several challenges related to 

personal identification via gait recognition. Gait will be affected by several 

situations (1) stimulants, like drugs and alcohol; (2) physical changes, for 

example pregnancy, an accident or disease affecting a leg or foot, or severe 

weight gain/loss; (3) psychological changes, where the mood of a person 

influences his/her gait; (4) clothing, in particular, shoes (Derawi 2012); and the 

condition of the road surface (e.g., grass or concrete). Also, very few studies have 

used actual commercial smartphone devices to collect realistic data for gait and 

activity recognition. In addition, both the number of participants and the amount 

of data used in existing studies are somewhat limited. The use of real-world data 

is likely to result in far higher variability in the gait signature because of the variety 
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of situations in which a person might find themselves in (e.g., in a rush to a 

meeting, carrying luggage to an airport, running because of poor weather, 

exercising, to name but a few). As such, envisaging the context within which the 

user finds themselves will be an important factor to take into consideration in 

order to achieve good recognition performance in practice. 

1.2 Research Aims and Objectives 

The main aim of this research was to develop a Context Awareness Gait 

Recognition model that could adapt to different circumstances (e.g., changes in 

shoe, stress, or carrying a bag). To achieve this, the following research objectives 

were established: 

 To review the current state-of-the-art literature in gait authentication 

including mobile-based gait authentication. 

 To review the biometric authentication techniques including their 

application in the current research on continuous and transparent 

authentication systems (TAS). 

 The study sought to investigate the performance of gait recognition across 

a wider range of activities and participants. 

 To experimentally investigate the nature of gait features under more 

realistic real-world scenarios and understand how well existing 

approaches would work. 

 To evaluate the developed system in order to determine the usability, 

functionality, and appropriateness of the approach. 

1.3 Thesis Structure 

This thesis is organised into eight chapters. In addition to Chapter One; 
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Chapter Two reviews the biometric system from many perspectives, including its 

system components, requirements, techniques, performance measures, and 

standards for physical and behavioural biometrics with a view of examining its 

potential to be incorporated in the continuous and transparent authentication 

proposal. 

Chapter Three provides a comprehensive literature review of the existing 

research on mobile-based gait authentication. The chapter concludes with a 

discussion section that scientifically identifies the gap that exists in the literature. 

Chapter Four represents the data gathering and methodologies that were used to 

collect and categorise data and the method of preparing the data, the devices, 

and the software that were employed. The chapter then proceeds to describe the 

pre-processing, time, and frequency domains feature vector extraction and 

effective selection feature technique to support the experiments mentioned below. 

Chapter Five provides a comprehensive evaluation at gait recognition, including 

an analysis of motion sensors (i.e., accelerometers and gyroscopes), an 

investigation and analysis of features, and an understanding of the variability of 

feature vectors during differing activities across a multi-day collection. 

Furthermore, it explores the impact of dynamic feature selection for each user to 

investigate their efficiency to reduce the feature vector size and enhance 

performance. Moreover, it implements the proposed multi-algorithmic approach 

and compares its performance with single algorithmic approach (i.e., a dataset 

treated as one activity). 

Chapter Six builds upon the knowledge of Chapter Five to present a novel real-

world gait authentication approach that manages the main research gap. This 

chapter will focus on providing the empirical basis for whether the proposed 
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approach could work — initially through exploring smartphone-based real-world 

data (rather than highly constrained control data) to understand the variability and 

difficulty in successfully authenticating individuals. 

Chapter Seven discusses the main contributions of this study by comparing the 

research achievement with relevant studies that employed the mobile-based gait 

authentication. It also defines the development plan of the proposed context-

awareness gait authentication model, including the processes of modelling. 

Chapter Eight is the final chapter presents the conclusions accomplished from 

the research and highlights the key achievements and limitations. It also contains 

a recommendation on future research and development of this research. 
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2 Biometrics Authentication 

2.1 Introduction 

Authentication is a cornerstone of information systems security and authorisation 

is a process of identifying legitimate users by an effective user authentication 

technique to prevent unauthorised access to personal or sensitive data. All 

approaches for human authentication rely on at least one of the following: 

something the person knows (secret knowledge-based approach, e.g., a 

password/PIN), something the person has (e.g., a smart card), or something the 

person is (i.e., biometrics) (Hocking 2014). In the first and second authentication 

approaches, maintaining the security of the system is dependent on the user. 

Hence, a lost or stolen token or shared password will compromise the system. 

Moreover, they have several vulnerabilities (Al Abdulwahid 2015), the 

(password/PIN and smart card) techniques suffer from many disadvantages, as 

mentioned previously. Therefore, the operational performance being achieved is 

highly correlated to the biometric software, which adds another level of security. 

But, it is not guaranteed that it is impervious to compromise (Clarke 2011).  

The chapter presents background information about typical biometric system 

components and performance metrics used to evaluate such a system, based 

upon their physiological or behavioural characteristics. It also provides an 

overview of existing authentication approaches and devices to explore whether 

they solve some issues related to the research area. Finally, this chapter 

highlights some of the applicability of the biometric techniques in order to operate 

transparently. 

 



12 

 

2.1.1  History of biometrics 

The word biometric comes from the Greek word (bio), which means life, combined 

with metrics, which means measures (McCabe 2005). The first signs of biometrics 

emerged in 500 B.C. when cavemen used their fingerprints to symbol their 

drawings (Babich, 2012). Babylonians behaved in the same way to sign business 

deals, which existed on clay tablets. Ancient Egypt is the birthplace of the first 

evidence of using biometric authentication ever seen by archaeologists. In that 

time, in order to summarise the process of providing food, the supervisor of the 

workers would record information about them, including their name, age, work 

unit, position, and occupation. Moreover, to avoid cheating, he was enforced to 

record more individual information/characteristics, such as physical and 

behavioural ones (Babich, 2012, Page 3).  

Early biometric characteristics were simple; one of these is biometrics, inked 

paper allowed to yield palm prints that can acquiesce from inked paper, while 

children could be distinguished from each other by their footprints. According to 

the National Science and Technology Council (NSTC) (2006), in a study on the 

history of biometrics, the period between the end of the 19th century and the 

beginning of the 20th saw an acceleration in the use of fingerprint authentication. 

For instance, in 1892, Galton developed a classification system for fingerprints 

and, in 1896, Henry developed a fingerprint classification system. Then, in 1903, 

NY State Prisons began the use of fingerprints. More recently, the first model of 

acoustic speech production was created in 1960, when researchers drew 

attention to behavioural biometrics and then the behavioural components of 

speech were modelled for the first time in 1970. Also, a study on the compatibility 

of biometrics and a machine-readable travel document was launched in 1999. In 
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the same year, the Integrated Automated Fingerprint Identification System’s 

(FBI's IAFIS) major components became operational (NSTC, 2006).  

The International Standard Organisation (ISO) and the International Electro 

technical Commission (IEC) (ISO/IEC 2012) defined biometrics as encompassing 

“counting, measuring and statistical analysis of any kind of data in the biological 

sciences including the relevant a biometric system that provides biometric 

technology using components from multiple vendors”. They also go further to 

describe biometric characteristics as the distinguishable, repeatable biometric 

features that can be extracted from an individual for the purpose of identification 

or verification. This characteristic can be either physiological or behavioural and 

can be achieved from any part of the individual. ISO-based biometrics should 

have a high level of performance of data interchange amongst applications and 

systems, which is an essential characteristic for implementing biometric systems 

(interoperability). Also, the dependability of utilising biometrics that support 

frustrate the spoofing and avoidance risks (reliability), alongside with the user-

friendliness (usability) and security for future standards-based systems and 

applications. With better interoperability between biometrics systems, the 

success of these applications would be much more similar. 

2.1.2 Biometric system requirement  

Many essential biometric requirements are needed in order to select the best 

authentication approach to utilise. The suitability of the biometric authentication 

technique is specified according to the availability of the following requirements 

on the associated trait, as suggested by Jain et al. (2002): 



14 

 

 Universality: which means that each person utilising the application should 

have the chosen biometric feature. For example, as all users have fingers, 

it is possible to use the fingerprint as a biometric identifier. 

 Uniqueness: to distinguish people from one another, the specified trait 

should be befittingly different for persons’ relative application environment 

(e.g., the iris is much more unique than the fingerprint). 

 Permanence: shows the constancy of a biometric characteristic over time. 

For example, while an individual’s retina remains stable for the entire life, 

people’s keystroke behaviour varies because of many factors, such as 

device, mood, and text familiarity. 

 Measurability: the ease of collection of a particular biometric trait by 

employing an appropriate device and how easy it is to extract the feature 

set from raw traits. For example, the retina needs a specific device and 

explicit user interactions. In comparison, a person’s walk can be collected 

unobtrusively and easily using standard devices. 

 Performance: refers to the recognition accuracy, robustness, and speed, 

in addition to the appropriateness of the resources used to achieve that 

accuracy. For instance, individual retina screening is considered constant 

compared to the keystroke, which can differ because of the device, mode, 

or text experience.  

 Acceptability: this specifies how people are interested in using biometrics 

as an authentication method in their lives. For example, confidentiality and 

suitability. Otherwise, they will avoid using it. 
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 Circumvention: The possibility of imitating a trait and the degree of its 

vulnerability. For example, the iris scan is almost impossible to imitate and 

mimic in comparison to behaviour-based biometrics (e.g., keystroke 

dynamics). 

As a result, a perfect biometric authentication system should meet all the 

requirements mentioned above. However, Jain et al. (2008) claimed there is no 

biometrics that will fit all the above seven characteristics. In practice, these 

requirements are varied depending on the specific needs and security of the 

application. 

2.1.3  Verification and Identification 

A biometric system could work in two modes, namely verification and 

identification. Verification is defined briefly by (Clarke 2011): "determining 

whether a person is who they claim to be”. Verification is also referred to as a 

one-to-one matching. The current captured biometric sample(s) of the claimed 

person compared with the stored template of the registered person. For example, 

an individual could access to his/her bank account at an ATM by using an iris 

scan or scanning a finger to confirm his/her work daily attendance (Jain et al., 

2008). Both Jain et al. (2008) and Clarke (2011) pointed out that the biometric 

verification system is considered more reliable than the traditional systems that 

use token-based (e.g., ID card) and knowledge-based (e.g., password or PIN). 

In contrast, in identification mode, the comparison is one-to-many (i.e., explore 

whether the identity exists in the database). The current person’s biometric 

sample should be compared with all templates that are stored on the system 

database to decide if a match exists. Therefore, because of these additional 

complexities and computation, more time will be needed for the identification 
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mode. It is clear that identification requires a higher level of the system’s accuracy 

and feature uniqueness than verification. As physiological biometrics (e.g., 

fingerprint, facial recognition, iris and retina scan, and hand geometry) are more 

unique than behavioural biometrics (e.g., voice, gait recognition and keystroke 

dynamics), they tend to be more appropriate for identification.  

2.1.4 Components of the Biometric System 

To complete a biometric process, there are five incorporated components 

declared in Figure 2-1 (Clarke 2011): 

 Sample Capturing: This is the stage of collecting the biometric sample from 

the genuine user utilising an appropriate capture device or method 

according to the biometric system (e.g., optical finger scanner for 

fingerprint recognition, webcam or mobile front camera for facial 

recognition, and mobile accelerometer sensor for gait recognition). 

 Feature Extraction: In this stage, distinctive features of the captured 

sample(s) are processed to generate a feature extraction template. For 

instance, after a gait signal is captured, many algorithms are executed to 

extract many unique features, like average resultant acceleration, binned 

distribution, and time between peaks for gait recognition. 

 Storage: the feature vector (reference template) that resulted from the 

feature extraction process is stored in the database. This stored template 

is used as a reference in the matching process. 

 Classification (matching): In the comparison phase, the individual's current 

sample (probe template) is compared with the reference template taken at 
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the enrolment phase. Consequently, a match score is given, indicating the 

degree of similarity. 

 Decision: in this stage, access is permitted or denied according to the 

comparable score value, which should be equal or more than the 

previously identified threshold; otherwise, access will be denied. 

 

 

Figure 2-1: The Components of a Biometrics System (Clarke 2011) 

2.2 Classification Approaches 

This section provides a high-level description of some of the popular classification 

algorithms. There are two types of classification: Statistical modelling and 

Machine Learning. Firstly, a statistical model is a family of probability distributions. 

Basically, Statistical models use mathematical equations (Analytics Vidhya, 2015) 

by a formalisation of relationships between variables in the form of mathematical 

equations in order to find the relationship between variables to predict an outcome 

and applied for smaller data. On the other hand, machine learning is an 

application of artificial intelligence by learning from data without relying on 

explicitly programmed instructions (Jordan and Mitchell, 2015; Statistical Models, 

2019).  
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2.2.1 Statistical  

2.2.1.1 Dynamic Time Warning (DTW) Distances 

Dynamic time warping (DTW) has been widely used for computing similarities 

between two temporal sequences in time series analysis even with various 

speeds. For example, similarities in walking could be identified using DTW, 

even if one person was walking faster than the other was or if there were 

accelerations and decelerations during the course of observation (Anantasech 

and Ratanamahatana, 2019). 

2.2.2 Machine learning   

The main objective of machine learning is to create systems that are able to learn 

automatically (Henrique, Sobreiro and Kimura, 2019). More specifically, machine 

learning teaches computers to do what comes naturally to humans by learning 

from experience and using computational methods to “learn” information directly 

from data without relying on a predetermined equation as a model. However, the 

types of machine learning algorithms might differ in their approach, the type of 

data they input and output, and the type of task or problem that they are intended 

to solve. Machine learning can be divided into two subdomains: supervised 

learning and unsupervised learning, as shown in Figure 2-2. Supervised learning 

requires training with labelled data, which has inputs and desired outputs. There 

are two types of supervised learning, namely: classification (discrete output 

variable) and regression (continuous output variable). On the other hand, with 

unsupervised learning, there is no need for labelled training data and inputs are 

provided without desired targets, such as the clustering approach, by allocating 

to groups without class information (Qiu et al., 2016). In the literature, support-

vector machines (SVM) and neural networks are considered as the most 

commonly used models for prediction (Henrique, Sobreiro and Kimura, 2019). 
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Figure 2-2: Classification approaches Taxonomy (Technology at Nineleaps, 2019) 

2.2.2.1 Support-vector machines (SVM) 

Support-vector machines are supervised machine-learning algorithms that can 

be used with learning algorithms by analysing the data used in order to solve 

classification and regression problems (Tavara, 2019). In SVM, there are two 

phases: training and testing. 

SVM is training by specifying a set of training examples to one or the other of two 

classes, and an SVM training algorithm builds a model that allocates new 

samples to one category. These algorithms can efficiently perform a linear and 

non-linear classification. In addition to performing linear classification, SVMs can 

efficiently perform a non-linear classification using what is called the kernel trick, 

implicitly mapping their inputs into high-dimensional feature spaces. The kernel 

methods are a sort of algorithm for pattern analysis, known as the best member,  

the support vector machine (SVM) (Barber, 2012; Technology at Nineleaps, 

2019). After the engine is trained, the SVM model predicts which class label a 

new unseen test sample should have in the testing phase (Tavara, 2019). 
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2.2.2.2 A classification tree or a decision tree 

For building classification models in the real world, the decision tree is one of the 

more widely used methods because of its simplicity and ease of interpretation 

(Kim, 2016). Each interior node corresponds to one of the input variables and is 

split into child nodes based on the values of the input variable. Each leaf or 

terminal node represents the particular value of a target variable—for example, the 

specific class of a categorical variable for the classification problem and the 

specific real value of a continuous variable for regression problems. During the 

classification tree learning process, samples at each interior node are split into 

subsets based on an attribute, and this process is repeated on each derived 

subset in a recursive manner called “recursive partitioning”. The recursion is 

finished when a subset at a node has the same target value, when splitting does 

not improve prediction, or when splitting is impossible because of user-defined 

constraints (Kim, 2016). Generally, decision trees are used in operations 

research or statistical probability analysis, especially in decision analysis, to help 

identify a most probable strategy to reach a goal, but are also a popular tool in 

supervised machine learning (Pao, 2005). 

2.2.2.3 A hidden Markov model (HMM) 

A Markov chain is a stochastic model explaining a sequence of probable 

situations in which the possibility of each situation depends only on the state 

achieved in the prior situation. In a hidden Markov model, there are unobserved 

or “hidden” states while all states are apparent to the observer in a standard 

Markov chain. In comparison with the Markov chain, the hidden Markov model 

aims to predict the future state of the variable utilising probabilities based on the 

present and previous state. The variability between a Markov chain and the 

hidden Markov model is that the state in the final is not directly noticeable to an 
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observer, even though the output is. Many machine learning and data mining 

tasks have been effectively applied to problems including speech, handwriting, 

optical character and gesture recognition (Franzese and Iuliano, 2019; 

Techopedia, 2019). 

2.2.2.4 Nearest Neighbour  

The nearest neighbour (KNN) algorithm is the simplest classification algorithm 

and one of the popular learning algorithms (Altman, 1992). KNN is a non-

parametric, lazy learning algorithm. Non-parametric means it does not make any 

expectations on the fundamental data distribution and the data usually used to 

structure the model. The KNN algorithm stores all presented cases and 

classification procedures based on a similarity measure (e.g., distance functions). 

The distance function is used by the distance metric, which provides a 

relationship metric between each element in the dataset. It should be suitable with 

real-world data when the data mostly does not obey the classic theoretical 

expectations made (e.g., linear regression models). Therefore, KNN has been 

used in statistical estimation and pattern recognition and could be more suitable 

when there is limited or no preceding knowledge about the distribution data. 

2.2.2.5 Neural Network multilayer perceptron (NN-MLP) 

Artificial neural networks (ANN) are based on a collection of connected units or 

nodes called artificial neurons. Each connection can transfer a signal from one 

artificial neuron to another. In addition, there is pattern recognition, feature 

mapping, clustering, and classification examples of applications of neural 

networks (Han et al., 2016; Techopedia, 2019). In this approach, the neural 

network consists of units (neurons) arranged in layers, which convert an input 

vector into some output.  Each unit takes an input, applies an (often nonlinear) 

function to it, and then authorises the output on the next layer.  Mostly, the 
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networks are identified to be feed-forward: a unit supplies its output to all the units 

on the next layer; however, no feedback will be transmitted to the previous layer.  

Weightings are implemented to the signals feed-forwarding among layers, and it 

is the same weightings that are matched in the training stage to adapt a neural 

network to the particular problem at hand.  This is the learning phase. Multilayer 

perceptron (MLP) is the most used model in neural network applications using 

the back-propagation training algorithm (Ramchoun et al., 2016). In this approach, 

the neural network creates a set of outputs from a set of inputs. An MLP is 

categorised by several layers of input nodes linked as a directed graph between 

the input and output layers. As there are multiple layers of neurons, MLP is a deep 

learning technique (Data Science Bootcamp, 2019).  

2.3 Biometric system performance measurement factors  

Having highlighted that, all biometrics work is based on the result of comparing 

the individual’s current sample (probe template) and the reference template. Two 

essential error rates reflect the performance of the template matching process: 

the false acceptance rate or false match rate (FAR or FMR) and the false rejection 

rate or false non-match rate (FRR or FNMR). Woodward (2003) identifies these 

error rates as follows: 

 FAR: It measures the percentage of biometric technique errors when the 

imposter is falsely accepted. 

 FRR: It measures the rate of biometric technique errors when genuine 

individuals are incorrectly rejected. 

The FAR and FRR are calculated as (Miguel & Neves 2013): 
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FAR =
accepted imposter attempts

total imposter users attempts
∗ 100% 

                 

FAR =
rejected genuine attempts

total genuine users attempts
∗ 100% 

As highlighted by Clarke and Furnell (2005), in case of legalising a person’s 

identity, it is an unlikely situation to get a perfect 100% match between two 

samples of an individual’s biometric trait because of various issues, such as 

environmental noise and trait variability. As a result, the security level of a 

biometric system is based on a pre-set threshold value for the biometric system, 

which controls the acceptable degree of similarity. The system designer should 

balance the security of biometric systems and their user's suitability by setting the 

threshold tightness. As shown in Figure 2-3 , these two-performance metrics (i.e., 

FAR and FRR) are inversely proportional: as one rate decreases the other 

increases. A system with tight security can be achieved by increasing the 

threshold value, which may result in more genuine users being denied access 

(i.e., high FRR); also increasing the protection will minimise the potential of 

obtaining access for unauthorised users (i.e., low FAR). In addition to FAR and 

FRR metrics, a third error rate named the equal error rate (EER) is a measure of 

where the FAR and FRR curves intersect (i.e., FAR equals FRR) and is frequently 

used to evaluate and compare the performance of biometric systems (Clarke & 

Furnell 2005; Jain et al. 2002).  
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Figure 2-3: Biometrics Performance Metrics Factors (Clarke 2011) 

In addition to FAR, FRR, and EER, other metrics are frequently used when testing 

and evaluating biometric systems. For example, Clarke (2011) defined two rates 

as follows: The failure to acquire (FTA) represents the rate at which the creation 

of a valid template is incapable in the capture or extraction stage; on the other 

hand, the failure to enrol (FTE) effectively means the rate at which the user cannot 

enter into the system. They measure the error rates that probably happen during 

the enrolment stage. It usually results when there are inappropriate user features 

and samples to be used to create a template. For instance, when the system is 

unable to capture the user’s sample(s) affected by an equipment problem. 

2.4 Biometric Techniques 

Biometric techniques are classified into two main groups based on the 

environment of the deployed discriminative attribute. The physiological and 

behavioural details of these two types are described below.  
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2.4.1 Physiological Biometrics 

Physiological biometric approaches aim at distinguishing an individual based on 

specific physical characteristics, such as the fingerprint and the face, which tend 

to be invariant and thus applicable to be utilised for both identification and 

verification (NSTC, 2006).  

2.4.1.1 Fingerprint Recognition 

Fingerprint identification is the oldest and most widespread, well known, deployed 

and used a biometric feature for authentication on many systems, such as 

securing laptops and mobile phones (Clarke 2011). It refers to the automated 

process of identifying or confirming identity-based on the comparison of two 

fingerprints (as shown in Figure 2-4). The reasons for it being so popular are the 

ease of achievement, conventional use and acceptance when compared to other 

biometrics, and the fact that there are numerous sources (i.e., ten fingers) for 

biometric data. 

 

Figure 2-4: An example of fingerprint recognition (NEURO technology 2015) 
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There are three basic outlines of fingerprint points, which are (BiometricSolutions 

2015): 

 The arch: a pattern where the ridge reaches one side of the finger, then 

increases in the centre, creating an arch, and exits on the other side of the 

finger. 

 The loop: Loops are a highly familiar pattern in fingerprints; the ridge arrives 

on one side of the finger, then creates a curve and exits on the same side of 

the finger from which it entered.  

 The whorl: the pattern when ridges form a circle around a central point. 

Minutiae mean specific points in a fingerprint, and it is the slight details in a 

fingerprint that is of the highest importance for fingerprint recognition (biometric-

solutions.com, 2015). 

There are four main types of fingerprint reader hardware: 

 Optical reader: is a digital camera that obtains a visual image of the fingerprint. 

They start at low prices, but dirty or marked fingers impact the readings. This 

type of reader is easier to fool than other types. 

 Capacitive reader (CMOS readers): it uses an electrical current to form an 

image of the fingerprint; they are more expensive than optical readers. A 

significant advantage, they require a real fingerprint shape rather than only a 

visual image. This makes CMOS readers harder to trick. 

 Ultrasound readers: they use high-frequency sound effects to access the 

outer layer of the skin. They read on the dermal skin layer, which removes 

the need for a clean, unharmed surface. All other readers acquire an image 
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of the outer surface, therefore requiring hands to be cleaned and free of scars 

before read-out.  

 Thermal readers’ sensor: on a contacting exterior, there is a variance of 

temperature between fingerprint ridges and valleys. Thermal fingerprint 

readers have disadvantages such as higher power consumption and 

performance that depends on the environmental temperature. 

After developing a fingerprint image using the reader hardware, it must be 

interpreted. Then it is handled in such a way that read-outs can be efficiently 

related and matched against each other. Generally, one of the three matching 

classification approaches is utilised: minutiae matching depends on recognition 

of the minutiae points, this is the most widely used method; ridge-based-matching 

depends on the number of ridges instead of minutiae points; the correlation-based 

approach (pattern matching) compares merely two images to see how related 

they are. It is often used in fingerprint systems to detect duplicates 

(BiometricSolutions 2015). 

All studies asserted that the fingerprint is more secure than typing a PIN (Ferrero 

et al. 2015). Besides, the fingerprint is robust, unique, and only needs a short time 

for enrolment with a fingerprint scanning system. Furthermore, it is generally 

accepted as technology as most people are familiar with the use of the fingerprint 

for identification purposes. However, fingerprint systems do suffer from many 

problems, such as injury (whether temporary or permanent), dirtiness, and the 

poor quality of the finger samples of some people. Moreover, as mentioned 

previously, there is the possibility of using fake fingers (e.g., silicon or jelly fingers). 

Fingerprint recognition systems may suffer other problems; for example, 

fingerprint readers might undergo wear and tear effects over time. As a result, this 
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would weaken the efficiency as error rates go higher and thus increase user 

inconvenience. In addition, from the user acceptance point, fingerprint scanning 

mostly resembles the impersonal and non-intrusive nature of passwords and 

PINs. 

2.4.1.2 Palm print and Hand Geometry 

Palm prints were used in 1858 physically with ink on employment agreements in 

India (NSTC, 2006). It was not automated until 1994. However, regardless of the 

early robotized usage (i.e., personality) in the mid-1970s and other progressive 

licenses, hand geometry frameworks must be used to check not to distinguish 

clients because these qualities are not extremely particular. Therefore, hand 

geometry-based systems usually are used in authentication systems rather than 

identification. 

 

Figure 2-5: Example Distance Measurements Source: (NSTC, 2006) 

The palm print recognition method identifies individuals based on the unique 

features of their palm as shown in Figure 2-5. Hand geometry measures a portion 

of the hand attributes yet from the external surface, specifically, length, width, 



29 

 

thickness, and surface range of the back of the hand and four fingers. It shares 

the comparison criteria with a fingerprint recognition system, such as size, as well 

as ridges and the minutiae feature of the palm. In this way, it can be used in 

verification and identification modes. Be that as it may, it makes them deficient 

notwithstanding those of the unique mark strategies; for example, the large 

capturing machine, the generally bigger format size contrasted with finger 

impression, and the likelihood of palms’ geometric elements changing because 

of maturing or weight (Jain et al. 2005). 

2.4.1.3 Facial Recognition  

Perceiving and recognising known individuals in light of their faces has been used 

since the beginning of creating people; however, it was carried out after the first 

of semi-automated facial recognition systems was evolved in the 1960s. The 

development of its classification systems has been investigated, developed, and 

approved gradually to be used in different fields, from visa distinguishing proof 

and observation applications to physical/virtual access control, to all the more as 

of late smartphone confirmation. It is viewed as the second biometric after 

fingerprint concerning users’ acceptance and the sale rate (Biometric Institute 

2013). This is attributed to its possibility to be used straightforwardly (i.e., without 

collaboration or association of the client) and using standard cameras (e.g., 

webcam as the catching sensor). The features depended are general 

measurements of the eyes, nose, mouth, ears, cheekbones, and separation 

between most or every one of them takes into account diverse restrictive 

calculations (as shown in Figure 2-6). The viability of such calculations changes 

contingent on a few variables: the dependability of the removed face highlights 

after some time, encompassing enlightenment, picture determination, face 

separation and position from the camera, and liveness test provisioning. 
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Figure 2-6: An example of facial recognition (GreekoSystem 2011) 

Different answers to control some of these components have been proposed. 

Utilising a three-dimensional picture may help with alleviating the impacts of face 

introduction and lighting conditions, although the requirement for 3D 

camera/sensor would obstruct its acknowledgement and proliferation, as they 

tend to be more costly and slower. Moreover, a more complex composite model 

in which some of the client's face pictures in various sizes, brightening and 

dimensions are by and large put away as a format when an example is taken then 

the latter will be compared with the stored template. However, the balance 

between ease of use and security is an issue, as there is the probability of 

declining a genuine user and an increased risk of accepting an imposter 

(Biometric Institute 2013). 

2.4.1.4 Iris Recognition and Retina Recognition 

In biometrics, iris and retinal are known as "visual-based" advanced distinctive 

patterns, which means they depend on unique physiological qualities of the eye 

to recognise a person (as shown in Figure 2-7). Despite the fact that they both 

share part of the eye for ID purposes, these biometric modalities are distinctive in 
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the way they work. The concept of using the iris pattern for identification was 

proposed in 1938 and a patent stating that the iris can be used for identification 

was awarded in 1978. After several years, many studies on automated iris 

recognition systems have been developed, but John Daugman applied the most 

successful patented algorithms that can implement iris recognition automatically 

in 1994 (Daugman 2003). 

 

 

Figure 2-7:  An example of a human eye (NSTC 2006; Monitgomery, 2014). 

Iris acknowledgement is based on recognising people using their irises, which is 

the round hued tissue framed with numerous wrinkles and edges and surrounding 

the pupil of the eye. It trusted as the most accurate biometric strategy because of 

the exceptionally particular intricate iris designs that are steady for the duration 

of life and accessible in all healthy individuals. As a result, it can be used to 

confirm and distinguish people. 

The human retina is coloured tissue made out of neural cells that are situated in 

the back segment of the eye. In view of the perplexing structure of the vessels 

that supply the retina with blood, every individual's retina is exceptional (Clarke 

2011). The system of veins in the retina is complex to the point that even 

indistinguishable twins do not share a comparative example. Albeit retinal 
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patterns might change in instances of diabetes, glaucoma, or retinal degenerative 

issue, the retina ordinarily stays unaltered from birth until death (Hocking 2014). 

The retina recognition process reads the distinctive pattern of veins in the back of 

the eye using an infrared camera for a light at a nearby separation. The mastery 

level of the example is high, as catching it is not visibly accessible without special 

devices and client collaboration. Thus, it is viewed as exceptionally meddlesome 

leading to reducing the applicability areas and henceforth low selection. Besides, 

guiding the infrared wave to such a delicate organ, the eye, may raise some 

sound issues, which may cause clients’ reluctance to acknowledge being 

presented to it. Despite that, it has been utilised widely in high-security areas (e.g., 

military buildings) for physical access control. Since 2012, the UK Border Agency 

has been using the Iris Recognition Immigration System (IRIS) in several airports 

around the UK for authenticating passengers (UKBA 2011). 

However, practically, because of the fact that this particular modality requires the 

user to directly and intrusively align their eyes with the camera, it is classified as 

an intrusive approach to be utilised in continuous and transparent systems. 

Moreover, broadly speaking, the importance of the eye for humans makes the 

idea of using the iris for authentication purposes not comfortable for some people. 

2.4.1.5  Ear Geometry 

The ear geometry apperception technique distinguishes individuals predicated on 

the unique structural pattern of their auditory perceivers, including the concha, 

helix, antihelix, and other discriminative features (Ross 2011) (as shown in Figure 

2-8). It has been evidenced that the auditory perceiver’s unique characteristics 

are relatively stable throughout the life span, unlike those of the face that have 

salient effects of ageing. This approach offers a high level of flexibility, which 
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Fahmi et al. (2012) encouraged employing for transparent user authentication 

with mobile devices. During a telephone call time, they captured a series of ear 

images to be used for authentication purposes. The more perfect images were 

captured, the more succeeded authentications achieved.  

 

Figure 2-8: Images of Human Ears (da/sec. 2015) 

2.4.2 Behavioural Biometrics 

Behavioural biometrics modalities are based on people’s psychological attributes 

because of their variability over time. This includes voice, signature, keystroke 

dynamics, and hand-written signatures (Gamboa & Fred 2004). Regardless of the 

lower level of uniqueness and perpetual quality created by behavioural 

characteristics, for example, evolving state of mind, well-being, and environment, 

they tend to be more general, straightforward, and usable than physiological ones 

(Clarke 2011).  

2.4.2.1 Voice Recognition 

The use of voice recognition is increasing with the sensor modules that are used 

for verification in mobile devices because of their mobility, miniaturisation, 

decreasing price, and increasing computational power. Voice recognition is 
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divided into two modes: obliged (content ward) and unconstrained (content 

autonomous). Gunnar Fant, in 1960, spearheaded an x-beams based model for 

the acoustics of discourse creation. From that point forward, numerous related 

explorations have been carried out (e.g., the NIST Speech Group has been 

established, multiple relevant licenses have been issued, numerous exploratory 

and assessment studies have been conducted to upgrade the voice recognition 

frameworks, and numerous exploratory and assessment studies have been 

conducted to improve the voice recognition frameworks). 

The voice recognition system digitises the voice and segments them into frames 

from the vocal signal frequencies. These vocal signals need to be of good quality 

for successful comparison in the future because vocal sounds can be dynamic 

(Marzotti and Nardini, 2006). The voice pattern is obtained from the organs that 

enhance speech. These include the laryngeal pharynx (below the epiglottis), the 

oral pharynx (behind the tongue, between the epiglottis and vellum), the oral 

cavity (forward of the velum and bounded by the lips, tongue, and palate), the 

nasal pharynx (above the velum, at the rear of the nasal cavity), and the nasal 

cavity (above the palate and extending from the pharynx to the nostrils) (Saquib 

et al., 2011). 

There is an advantage inherent in the use of voice for user authentication; it is 

non-intrusive and is among one of the most used methods. It can be used in any 

smart mobile phone, and it can be carried out via the internet too, which gives it 

an advantage over others for over-the-phone verification from the other end of the 

communication channel (Kounoudes et al., 2006) as shown in Figure 2-9. Usually, 

the performance of voiceprint recognition is influenced by the quality of the 

available hardware on the smartphones the user usually interacts with. Additional 

to the aforementioned and ease of use, the speech recognition techniques 
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embedded in modern smartphones (e.g., Siri on the Apple iPhone) offer a 

promising future for voice recognition (Huntington 2012). However, some issues 

can affect the quality of the sample (i.e., pattern) of people’s voice, such as their 

emotional state, health conditions, and possible background noise. Consequently, 

it used in verification rather than identification purposes. Nevertheless, it may be 

an efficient, transparent, authentication technique. 

 

Figure 2-9: Voice Recognition Platform (BiometricSolutions 2015) 

2.4.2.2 Signature Recognition 

Signatures have been in use for decades now and many approaches have been 

developed over time on the use of this method of verification (Plamondon, 1994). 

This method is considered as an attribute of an individual, which has been 

developed over a long period. Thus, handwritten signatures have been used 

commonly for many laws, official business, and financial transactions for identity 

authentication (e.g., signing a contract).  
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Osborn published the first acknowledgement of its potential in verification in 1929 

and then it evolved from being purely manual, using pen and paper, to a digitised 

recognition system in the 1980s. Subsequently, the proliferation of touchscreen 

devices has led to applying the similar individuality to handwriting verification as 

shown in Figure 2-10. Verifying the authenticity of the handwritten signature and 

handwriting can be conducted using static (off-line) or/and dynamic (on-line) 

approaches. The former is merely carried out by examining the handwriting 

appearance (e.g., the curvatures, angles, and patterns of letters or symbols) and 

comparing it with the genuine image. In comparison, information about how the 

handwriting was generated is involved with the latter, including pace, movement 

changes, and pressure. 

The advantage of using the signature is that it is non-intrusive and less time 

consuming while its disadvantage is that sometimes there is inconsistency in the 

signature. As a result, it becomes challenging to enrol and verify a user (Hirsch and 

Pearce, 2000). 

 

Figure 2-10: Signature Recognition (Signing Hub 2016) 
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2.4.2.3 Keystroke Analysis  

Keystroke dynamic is the ability to verify a subject based on the discrimination of 

the typing pattern on a keyboard or keypad. This is done while using a computing 

device with the typing characteristic is recorded. There have been works done in 

this domain with a different characteristic of the typing pattern achieving 

satisfactory performance. This work includes work by (Clarke and Furnell 2006) 

using inter-keystroke latency (the interval time between two successive 

keystrokes) and Saevanee and Bhatarakosol (2008) using finger pressure on 

keys. Other studies have been done on using keystrokes to enhance the security 

of mobile devices using different keystroke characteristics. The classification of 

keystroke dynamics uses methods like statistics and neural network as presented 

in works by (Bergadano et al. 2002; Brown et al. 1993; Joyce et al. 1990; Leggett 

et al. 1988; Spillane 1975) with good result output. Keystroke analysis is 

categorised as static (text-dependent) and dynamic (text-independent) (Banerjee 

et al. 2012). This categorisation is based on a predetermined and non-

predetermined text typing either at the point of entering or after entering by 

comparing those against the reference template as defined as follows: 

 Static (text-dependent): The subject’s typing behaviour is analysed at the 

point of entry during authentication using password and user identification (ID) 

or later after gaining entry into the system through regular interaction  

 Dynamic (text-independent): This typing is analysed with no predetermined 

text used by the subject. A comparison template stored in the computing 

system is used for analysing the input to authenticate the subject. 

The use of keystroke analysis has an advantage of easy deployment because it 

can be easily integrated using the existing computing system without any 

additional hardware. Another advantage of the keystroke is uniqueness, low 
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implementation and deployment cost, transparency and non-invasiveness, 

increase password strength and lifespan, replication prevention and extra 

security, continuous monitoring, and authentication (Teh et al. 2013). The use of 

keystroke analysis has some drawbacks, which include low accuracy as a result 

of some variation. The position of the subject (either sitting or standing) while 

typing can affect the pattern and typing frequency can increase. Also, using 

different languages might affect the typing rhythm.  

2.4.2.4 Behavioural Profiling 

Behavioural profiling classifies users based on the distinct pattern(s) of their 

usage of devices’ applications and/or services, such as specific applications and 

websites they access, specific time of day, and for how long (Aupy and Clarke 

2005). A profile template is created from the user’s historical behavioural 

interactions to be used subsequently for the authentication process while the 

regular interactions determine whether it is the genuine user identity or vice versa 

when the usage pattern differs. 

Research into behavioural profiling started in the late 1990s. However, the focus 

has been mainly on utilising the mechanism in intrusion detection systems (IDS) 

and fraud detection of telephony and credit card systems (Stolfo et al. 2000). The 

technique takes various aspects into consideration, such as network-based, 

device/host-based, desktop or mobile environments, and deploying it alone or 

coupled with other authentication techniques (Aupy & Clarke 2005, Li et al. 2011, 

Saevanee et al. 2012). The user’s location information also can be incorporated 

based on either the mobile cellular network (i.e., cell ID), the global positioning 

system (GPS) (i.e., longitude, latitude), or/and the IP address. Nevertheless, it 

might be considered as a third approach of authentication as proposed by the 

International Information Systems Security Certification Consortium (ISC2) and 
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can be referred to as “what the user is” (Conrad et al. 2012). Notwithstanding, it 

can be argued that it is under the behavioural profiling biometrics because 

location alone would not be sufficient to verify the user; hence, it is a measurable 

feature rather than a category. There are some advantages and disadvantages 

of this method. Behavioural profiling biometrics have the potential to monitor 

behavioural patterns on most types of devices without interrupting the user from 

their everyday interaction, which makes them a good alternative for transparent 

and continuous authentication. While a disadvantage is that it suffers from privacy 

and acceptability issues. The fear of private information leakage during behaviour 

monitoring tends to affect the level of user acceptance. Furthermore, because of 

the high comparative probability of changing over time along with the low 

individuality of user behaviour (as most of the behavioural biometrics), it is 

probably more feasible to be incorporated with a multi-factor/biometric 

authentication system. 

2.4.2.5 Biometric Gait Recognition 

Gait recognition discriminates people based on the patterns associated with their 

walking stride. Figure 2-11 shows the periodic motion of the legs. The person’s 

gait data is initially collected and enrolled to generate a template, which is used 

to compare with other samples; if the samples match it, the user is considered as 

legitimate; otherwise, some security processes should be completed (Nickel et al. 

2011). The first serious discussion and analysis of human gait emerged during 

1977 with Cutting & Kozlowski (1977); they experimented and proved the 

plausibility of identifying individuals based on their gait. Later, many studies have 

emerged concerning gait recognition from various perspectives. It is primarily 

used for surveillance purposes, then deployed to authenticating users using 

wearable sensors (Gafurov et al. 2007a) or on mobile devices ( Derawi et al. 
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2010). Regarding surveillance, a camera is used to capture the gait motion from 

a distance (without the user’s intervention). Regarding user authentication, 

wearable sensors can be worn in various places such as on the ankles, hip, or 

arms (Gafurov et al. 2007a). When smartphones are employed, the user’s gait 

information can be captured while they interact with the device or even carry it in 

their pocket. 

It is considered an unobtrusive authentication method with more user-friendliness. 

Recently, researchers have shown an increased interest in mobile gait 

authentication (Hoang et al. 2013). Gait recognition can be seen as an 

advantageous biometric identification technique for many reasons. Firstly, the 

gait of a person can be captured unobtrusively and continuously via acceleration 

sensors, which are already contained into most smartphones as long as the user 

walks; therefore, there is no need for additional hardware costs for using this 

method (Derawi et al. 2010). Secondly, gait recognition does not require explicit 

user interaction during verification or identification (Nickel & Busch 2013). The 

third reason is the security, because of the fact that the gait of an individual is 

challenging to mimic (Hoang et al. 2015). However, this technique is relatively 

affected by many factors such as clothing (e.g., footwear), health condition (e.g., 

pregnancy), and ground condition (e.g., grass or concrete) (Derawi 2012). 

 

Figure 2-11: Illustrations of periodic motion of the legs (Hoang et al. 2013) 
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2.5 Summary of the Biometric Techniques 

In order to highlight the effectiveness of these biometric techniques to a universal 

advanced authentication solution, Table 2-1 shows the aforementioned biometric 

techniques’ transparency feature against a continuous smartphone-based 

authentication approach (where and X represent yes and no, respectively). 

Regardless of the lower level of uniqueness and perpetual quality created by 

behavioural characteristics, for example, evolving state of mind, well-being, and 

environment, they tend to be more general, straightforward, and consequently 

usable than the physiological ones (Clarke 2011). 

 

Biometric Techniques Transparency 

Usability 

(Intrusive/ 

Non-intrusive) 
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safeguard 
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Fingerprint Recognition X  X    

Palm Print & Hand Geometry X X X        X 

Facial Recognition X 
 

X  

Iris & Retina Recognition X X 
 

 
Ear Geometry 

 
 

X 

 

B
e

h
a

v
io

u
r 

Voice Recognition 
 
 

 
 

X 
 

Signature Recognition X 

 

X 

 
Keystroke Analysis  

 

X 
 

Behavioural Profiling  

 

X 

 
Biometric Gait Recognition 

 
 X 

 
Table 2-1: shows the aforementioned biometric techniques transparency feature 

It is also apparent that biometric behaviour techniques outperform physiological 

techniques based on usability and transparency requirements. It is also obvious 

that none of them is free from scoring X (no). However, dependent on context 
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requirements, behaviour biometric gait recognition would feasibly be suitable to 

some extent. Moreover, this would be more practical to apply significantly if a real-

life dataset is used as a transparent authentication approach. 

 

2.6 Conclusions 

The smartphone and its services and information are becoming targets of 

cybercrimes and have serious security concerns as any other technology. As 

mentioned before, current approaches of user authentication (e.g., secret 

knowledge and token-based authentication) suffer from security and usability 

issues. Many studies confirmed that the password might be easy to guess by 

attackers, forgotten, written down, shared with friends, discovered by 

eavesdropping, or even social engineering while the token can be lost or stolen. 

As a result, system security will be compromised and misused by attackers. They 

are also used to offer a point of entry authentication; hence, they cannot provide 

continuous protection for smartphones. Furthermore, they tend to be intrusive and 

fail to take into account user satisfaction. In consequence, an authentication 

method needs to improve the level of security being afforded while reducing user 

inconvenience. Therefore, users do not need to carry or remember anything. 

Therefore, the operational performance being achieved is highly correlated to the 

biometric software. Biometrics is a method of recognising and thus authenticating 

subjects based on their physiological (e.g., face, fingerprint, or hand geometry) or 

behavioural (e.g., gait, signature, and voice) features. 

Modern smartphones contain various mobile sensors, such as accelerometers, 

gyroscopes, magnetometers, rotation sensors, vision sensors (cameras), audio 

sensors (microphones), light sensors, temperature sensors, GPS receiver, Wi-Fi 

and Bluetooth receivers. Hence, a number of biometric techniques can be applied 
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to these devices, such as gait, face, iris, and voice verification. It is hard to deploy 

all of them on mobile phones because existing mobile resources cannot 

guarantee the acquisition of specific data, such as iris data, fingerprints, etc., 

accurately. Moreover, all these seem to be intrusive (e.g., typing passphrases, 

facing the front camera, etc.). Therefore, we need more convenient, secure, and 

effective biometric modalities that operate transparently for mobile authentication. 

Motion sensors, such as accelerometers and gyroscopes, are most commonly 

used as sensors for data collection and can be used to collect the data 

transparently. Moreover, the definite advantage is that no more hardware is 

needed; merely a software needs to be developed. Hence, researchers started 

using mobile phones to record the accelerometer data, which offers a user-

friendly, unobtrusive, and a periodic way of authenticating individuals on personal 

mobile devices — all they need to carry is their cell phone. 
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3 A Literature Review of Gait Recognition 

This chapter presents the state of the art in the academic literature on transparent 

and continuous authentication utilising gait recognition where gait data is 

recorded using accelerometer and gyroscope sensors, which are included in 

smartphone devices. The chapter begins with a detailed description of the 

methodology used for this review, followed by the literature review of the mobile 

gait-based authentication studies. Then the chapter concludes with a discussion 

that presents and analyses the research gaps. 

3.1 Background of Biometric Gait Recognition 

3.1.1 Gait collection methods 

Biometric gait recognition can be categorised into three main approaches 

(captured using three different types of equipment): machine vision-based, 

wearable sensor-based, and mobile sensor-based.  

3.1.2 Machine Vision (video sensors) 

Machine vision (MV) uses video from one or more cameras to capture gait data 

(movement of the whole body), as shown in Figure 3-1. The video/image 

processing methods are applied in order to detect and extract static-like stride 

length, which is determined by body geometry and dynamic features from body 

silhouettes (Nickel et al. 2011a). MV systems can be used remotely without any 

user interaction; however, they are expensive and involve the use of background 

subtraction. MV-based gait recognition is mainly used in surveillance and 

forensics applications (Holien 2008). 
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Figure 3-1: Background segmentation for extracting the silhouette picture 

(Bajrami 2011) 

3.1.2.1 Wearable sensors 

The second class uses wearable sensors (WS), where the gait data is collected 

using a body-worn recording sensor(s). High-quality dedicated devices are used 

for data collection containing high-grade accelerometers, which can be placed on 

the hip, waist, pockets, arm, or ankle to record the acceleration while the subjects 

are walking, as shown in Figure 3-2 (Gafurov et al. 2007a). The accelerometers 

used for gait recognition usually are tri-axial and the acceleration signals are 

measured backwards-forward, sideways, and vertical. The collected acceleration 

signals are the result of the acceleration of the person’s body, gravity, external 

forces like the vibration of the accelerometer device and sensor noise (Nickel, 

Brandt, et al. 2011c). Then the raw accelerometer data is segmented into cycles 

or fixed time windows to extract discriminative gait information (e.g., average 

cycle, standard deviation, energy, frequency-domain entropy, mean, variance, 

window mean difference, and the Bark frequency cepstral coefficients) (Gupta & 

Dallas 2014). The wearable dedicated sensors for gait are simple, small, and 

inexpensive devices and can be employed in the field of transparent and 

continuous user verification and identification settings, respectively. However, 

they require a lot of computational power, so they are not well suited for real-time 
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detection of activities on low-powered devices and can be readily integrated into 

smartphone devices to reduce cost. 

       

Figure 3-2:  Different locations of the attached wearable sensor (Gafurov et al. 

2007b; Gupta & Dallas 2014) 

3.1.2.2 Mobile-based sensors 

Modern smartphones contain various built-in mobile sensors (such as 

gyroscopes and magnetometers) that are most commonly used for gait data 

collection. The substantial advantage of this method is that no additional 

hardware is needed, merely software. In addition, they provide user-friendly, 

unobtrusive, and a periodic way of authenticating individuals on personal mobile 

devices. All they need is to carry their mobile phones, as shown in Figure 3-3. 

Also, Figure 3-4 shows the gait recognition is captured when a user carries their 

mobile device in their trouser pocket. Their gait information can be collected as 

they walk.  
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Figure 3-3: The three axes in which acceleration is measured and phone 

position when receiving data (Miguel & Neves 2013) 

 

Figure 3-4:  A complete gait cycle showing the eight gait phases (Miguel & Neves 

2013) 

Furthermore, most people have smartphones, but not all of them like to wear 

additional equipment. Hence, the smartphone will be suitable for designing an 

efficient, transparent, and continuous user authentication system. 

3.1.3 Gait process approaches  

There are various methods to process the gait data retrieved from the sensor. 

Most of the studies apply one of the following two methods to the gait signal: 1) 

cycle-based and 2) segment based. A brief description of each method is 

described below: 

3.1.3.1 Cycle-based Method 

The cycle-based process can be considered as the most common approach used 

in gait recognition. In cycle-based segmentation, the gait is supposed to be a 

periodic signal in which each gait cycle begins as soon as the foot touches the 

ground and finishes when the same foot touches the ground for the second time 

(i.e., two steps of a human) (Derawi et al. 2010).  
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Usually, two different methods are used to detect gait cycles from acceleration 

signals, namely local minima and the salience vector (Ferrero et al. 2015). The 

first step in cycle-based segmentation requires recognising local minima and 

maxima over a selected period, thus requiring a peak-detection algorithm. In 

many studies, only the minima are used to identify a cycle start. In case that the 

minima are not clear enough, there are often distinct local maxima (Nickel 2012). 

Then the data points between two sequential minima/maxima salience vectors 

are considered as one cycle. These determining cycles are considered the actual 

walking pattern (Nickel et al. 2011). Further analysis may be needed if there are 

some cycles in the acceleration signal that are different than others. This has 

been generally accomplished by using a distance function (e.g., dynamic time 

warping (DTW) or Manhattan) to omit in irregular cycles that are significantly 

different than other cycles (i.e., unequal length) as indicated in Derawi et al. 2010, 

Nickel et al. 2011, and Nickel 2012. 

Afterwards, the regular cycles are averaged and the gait template concluded from 

subsequent average cycles for each acceleration direction, which is used for 

biometric template creation and sample comparison. Gait cycles based on pattern 

similarity estimation usually rely on simple metrics that measure dissimilarity of 

compared gait patterns (i.e., reference and probe templates), including standard 

classification methods (e.g., Manhattan, DTW, Euclidean distance, principal 

component analysis (PCA), and the cyclic rotation metric (CRM)) (Derawi & Bours 

2013; Derawi et al. 2010; Nickel et al. 2011; Marsico & Mecca 2015). 

As long as the achieved distance scores for the user’s samples is low enough, 

that means the reference and probe samples are related to the same person. 

Otherwise, (when the distance score is high) it signifies they are not associated 
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with the same person. Below is an explanation of the most common classification 

algorithms used in the cycle extraction approach (Derawi 2012) : 

 Absolute distance (Manhattan distance metric) 

 

Absolute distance is a straightforward metric that computes the sum of the 

absolute values of the differences between all the values in the template and the 

input value. However, it requires that the reference and probe templates have a 

similar length, as shown in Equation 1 (Derawi 2012).  

 

 Euclidean Distance  

The Euclidean distance is a modified process of the absolute range. It calculates 

the square root of the sum of all differences squared between the values of the 

stored template and the equivalent values in the test template, as given in 

Equation 2 ( Derawi 2012).  

 

 DTW Distance 

 

DTW is an algorithm for calculating the optimal distance between two feature 

vectors regardless of their variation in length or speed. The DTW distance is 

different from absolute or Euclidean metrics and there is less restriction to the 

differences of features of the matching cycles. 
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In conclusion, the cycle-based segmentation suffers from some drawbacks, such 

as finding the best approach to specify the start and endpoint of each cycle. 

Moreover, irregular cycles and unclear boundaries between two cycles result in 

the possibility of cycle extraction failure methods and increase the error rates of 

these methods.  

3.1.3.2 Segment-based Method 

In this approach, the gait data is divided into a fixed time-length window (e.g., 5 

or 10 seconds) from which the gait features are extracted depending on the 

acceleration values within the window. A time-window approach is considered 

simple and more accessible to apply than the cycle-based method (Nickel & 

Busch 2013).  

Ordinarily, two types of gait features can be extracted from these windows: 

statistical and cepstral coefficients. The statistical characteristics, such as 

standard deviation (Std), minimum (Min), maximum (Max), mean value (Mean), 

and root mean squared (RMS). Furthermore, these features are created easily 

and do not need complicated calculations; they can achieve a high level of 

accuracy. These features are computed for a single axis (e.g., vertical, horizontal, 

and sideways directions) or with the three-acceleration axis (x, y and z). Likewise, 

the cepstral coefficient features, which are already used and had great success 

in speech recognition and speaker identification systems, have shown promising 

results in gait recognition, such as Mel-frequency cepstral coefficients (MFCCs) 

and Bark-frequency cepstral coefficients (BFCCs) (Nickel 2012; Nickel & Busch 

2013). In order to construct more sophisticated feature vectors and perfect 

recognition, some studies merge both types of features (i.e., statistical and 

cepstral coefficients) (Nickel, Brandt, et al. 2011; Nickel et al. 2012; Hestbek et al. 

2012). For classification of non-cycle-based feature vectors, the supervised 
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machine learning algorithms are usually used, such as the support vector 

machine (SVM), hidden Markov model (HMM), and neural network, to classify the 

segment-based features.  

The supervised learning in wearable gait recognition is a type of machine learning 

method, and it is used to get a general function derived from gait signal training 

data (i.e., the data obtained from the accelerometer signals). The function output 

should be a value continuously extracted, which is used to predict a class label 

for each person, and later utilised for classification, as well as a supervised 

learning technique that is commonly used for activity recognition in a majority of 

the researches (Bajrami 2011). 

Mobile-based gait authentication utilises different supervised learning techniques, 

which are perfect performance results. These promising approaches include 

neural networks (Kwapisz et al. 2010; Watanabe 2014; Watanabe, 2015). Other 

studies by Nickel, Brandt, et al. (2011) and Nickel and Busch (2013) used the 

HMM classifier. Also, SVMs perform well in gait recognition, according to Hoang 

et al. (2013) and Phan and Dam (2015). Furthermore, many classification 

techniques from the collection of machine learning algorithms in the WEKA 

(Waikato Environment for Knowledge Analysis) data mining suite, such as 

decision trees (J48), neural networks, Bayesian networks (BN), random forest 

(RF), and radial basis function (RBF) were also used by (Kwapisz et al. 2010; 

Kwapisz et al. 2011; Watanabe 2014; Watanabe 2015). 
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3.2 Review Methodology 

The methodology presents a comprehensive review of relevant studies. In order 

to ensure relevant literature was identified and analysed, a review protocol was 

developed to describe how the collected data were selected. 

The main research questions highlighted by most researchers were: 

 How reliable is the gait-based user authentication? (M. O. Derawi, 2012; 

Nickel, 2012; Muaaz, 2017) 

 What are the best feature extraction and classification algorithms for gait 

recognition and to what extent can they adapt to recognise a person under 

different circumstances? (Holien, 2008; Bajrami, 2011; Nickel, 2012) 

 How do external factors, such as different walking speeds and surfaces, 

influence accelerometer and/or gyroscope-based gait recognition? (Holien, 

2008; Nickel, 2012; William A. Parker, 2014) 

 

The following databases were considered in this review because of their 

popularity and relevance to the chosen research domain: 

1. IEEE Xplore: http://ieeexplore.ieee.org/Xplore/home.jsp 

2. ScienceDirect: http://www.sciencedirect.com/ 

3. ACM Digital Library: http://dl.acm.org/ 

4. SpringerLink: http://link.springer.com/ 

5. Google Scholar: http://scholar.google.co.uk 

The following compound search expression was used to find the current state of 

the art in “Transparent Authentication Utilising Gait Recognition”: 

“(mobile OR smartphone OR gait) AND (transparent OR continuous OR 

unobtrusive) AND (authentication OR verification)” 
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The number of the most related references published to date is shown in Table 

3-1. The initial number of references was 98. After applying an additional filter 

(i.e., transparent authentication using gait recognition on smartphone devices), a 

final 35 papers were selected. 

Database Number of References Final Selected 
References IEEE 13 12 

Science Direct 30 2 

Springer 3 2 

Scholar 48 15 

ACM Digital Library 4 4 

Total 98 35 

Table 3-1: The number of returned references 

3.3 Overview of Mobile-based Gait Authentication Related Work 

This section will present a comprehensive analysis of the prior studies on gait 

recognition systems using the acceleration sensors embedded in a smartphone 

environment. Furthermore, several key areas will be discussed, including devices 

types and positions, types of sensors, the datasets and numbers of participants 

employed, pre-processing data approaches, features created, classification, and 

an evaluation of using test data recorded under different conditions. These 

studies are fully described and they are listed in chronological order. 

Sprager (2009) reported the first successful attempt of gait recognition based on 

the inertial data acquired by smartphones. In work, the Nokia N95 was attached 

to the hip to collect the vertical and horizontal acceleration data that were divided 

into cycles. A cumulant-based method for the identification of accelerometer-

based gait data was used. Cumulant coefficients of order 1 to 4 were extracted 

from each gait cycle, and each cycle was converted into a feature vector. They 

used a Gaussian radial basis kernel function of the SVM classification as the 

classifier. Using a cross-day test database of six subjects in two different days for 

two weeks, they obtained a recognition rate of 92.9%. The tested rate was high, 
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but it was expected that the performance would drop if more subjects were used 

in the evaluation process (i.e., it is clear that the data set and the participant 

number are limited). Besides, several walk styles (e.g., normal, fast, and slow) 

were tested; but that was determined with pre-identified speeds, which are not 

realistic to apply in practical life. Also, they walked on a surface made of stone 

plates and ignored the effect of other surfaces. 

 

The research study by Derawi et al. (2010) also utilised a mobile phone to collect 

gait data. In their experiment, the G1 phone with embedded accelerometers was 

placed horizontally on the right-hand side of the hip for each of their subjects to 

collect the data (as shown in Figure 3-5). The software was written for the Android 

platform in order to transfer the data from the accelerometer to a file. The program 

for data analysis was based on the work of (Holien 2008), which utilised a 

dedicated accelerometer. The data was collected from two different days (a 

cross-day test) from 51 volunteers at their normal walking speed. Each subject 

was asked to walk two sessions a day (37 meters for each session). The signal 

was captured through a 3-axis accelerometer (for each of the three directions x, 

y and z) with 40-50 samples per second (as shown in Figure 3-6). The repeated 

gait cycles that were extracted from the acceleration in the x-direction showed 

better results. The data average cycle length was computed, after time 

interpolation and filtering, by using dynamic time warping (DTW). This was used 

to identify minima, which equate to cycle starts (as shown in Figure 3-7). For each 

walk, the most regular cycle was used as a feature vector (in terms of dynamic 

time warping distance). The average cycle vector length was about 45 samples 

used as the feature vector for this walk, and again dynamic time warping was 

used for distance calculation. For data from those four sessions, one session was 

used as the training dataset and the other three sessions were used for the testing 
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purpose. The result of an EER of 20.1% for the gait recognition indicates 

promising performance for the mobile accelerometer. Nonetheless, the EER is 

still high as only the normal walking speed of the participants was tested. Hence, 

more research on other walking styles should be considered. 

 

 

Figure 3-5: Phone attached to the subject and the three axes in which 

acceleration  measured (Derawi et al. 2010) 

 

Figure 3-6: Sample data collected with the G1 from x, y and z directions 
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Figure 3-7: Gait Cycle Detection 

Nickel et al. (2011) suggested using HMM for classification, which has been 

applied successfully in speaker recognition systems. This work applied the same 

data set from Derawi et al. (2010). The advantage of using HMM is to overcome 

that restriction of irregular and unclear cycle minima and decrease the error rates 

by using the accelerometer data directly to build up the model and thus help to 

obtain better recognition. The authors stated that HMM or DTW could be directly 

applied to raw time series data of acceleration, instead of feature extraction. The 

data collected using a G1 mobile phone with a 3-axis accelerometer was placed 

horizontally in a pouch, attached to the belt of 48 subjects on the right-hand side 

of the hip. Two sessions were captured on two different days and the subjects 

walked at their normal speed. All data from the first session and parts of the 

second session were used for training and the remaining parts of the second 

session were used for testing. The data were interpolated to have a fixed 

sampling rate of 200 samples per second; then it was divided into fixed-length 

parts of three seconds, which were used directly for training and testing. The 
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results achieved an FRR of 10.42% and a FAR of 10.29%, almost a 50% 

performance improvement from EER of 20% (Derawi et al. 2010). The authors 

claimed that processing steps do not need distinctive minima or more particular 

properties as in cycle extraction methods. However, the performance could be 

improved if several pre-processing methods were utilised, e.g. extracting up-to-

date feature extraction with advanced HMM patterns. 

A further experimental study was carried out by (Nickel et al. 2011b); they 

employed the same data set used in (Derawi et al. 2010). They proposed a 

surrogate approach, a non-cycle-based gait representation. There was no need 

for previous identification for the gait cycles. Otherwise, the features were 

extracted from the time-series data from a selected time window. For the two data 

sessions, half of the data from both sessions was used for training; the other half 

of the data from both sessions was used for testing. In this study, the segment 

length was set to 5s, 7s, 10s and overlaps of 50% result were evaluated. The 

partition into training and testing data was not the same in the three evaluations. 

The finding of the present study highlighted that the segment length of 10s 

outperformed the other two settings. However, if a more extended time (e.g., 15s) 

was tested, maybe a more meaningful result could be obtained. Single features 

and various combinations of the features were also examined. For each segment, 

one feature vector was created. As a starting point, statistical features were 

calculated for the acceleration signals (mean, maximum (Max), minimum (Min), 

binned distribution (BD), root mean squared acceleration (RMS), zero-cross and 

Std) and extracted in addition to the Mel- and Bark-Frequency Cepstral 

coefficients (MFCC, BFCC), which are usually used in speech and speaker 

recognition. Previous studies on gait recognition have not dealt with MFCCs and 

BFCCs. These authors were the first to use them in the context of gait recognition. 

They found that the features that were extracted from the accelerometer and 
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magnitude sensors values presented the best performance. SVMs were used as 

the classification method. Usually, the FAR and FRR are directly calculated from 

each classification result for each segment. An alternative approach was 

proposed based on a quorum voting system method presented by the authors 

who merged many genuine classification results (#gV) into one and accepted a 

user as legitimate if the obtained classification results are positive #GV; otherwise, 

the probe signal was rejected as shown in Figure 3-8. 

 

 

 

Figure 3-8: Quorum voting scheme method (#V total segments of a probe gait 

signal, #Vg, number of votes for genuine, #GV positive classification results) 

(Nickel, et al. 2011b)  

 The voting results were reported separated by three experimental setups: cross-

day (enrolment and probe data were collected in two different days), same-day 

(enrolment and probe data were collected on the same day), and mixed-day 

(database consists of data of two separate sessions, but enrolment and probe 

data were taken at least partly from the same session). The reason for analysing 

the three different setups was to get an impact on the influence of time on the 
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recognition results. The experiments contradicted these results; the cross-day 

scenario showed 5.0% FAR and 25.0% FRR, which is considered high. For the 

mixed-day setup, the results showed an FRR of 6.3% at FAR of 5.9%, which can 

be regarded as better in comparison to the previous studies by (Derawi et al. 2010) 

and (Nickel et al. 2011) with an EER of 20% and 10%, respectively. However, the 

experiments were conducted in a very controlled environment: participants 

walked at their normal speed, and no mention was made to the surface type that 

would positively affect the results. 

Furthermore, as highlighted by the author, the same-day scenario had more 

training data with higher intra-class variability results in better trained SVMs and, 

hence, better recognition rates. Also, they mentioned that the error rates 

increased significantly when data is collected on continual days. So, the system 

was more suitable for a single-day scenario. 

Sprager & Zazula (2011) extended their previous work to investigate the influence 

of the different solid surfaces on the human gait pattern efficiency and gait 

identification based on accelerometer data. Data were collected by using the 

same method as described by their previous experiments (Sprager 2009). They 

obtained the gait samples by using accelerometer data from Nokia N95 with a 

built-in 3-axis accelerometer attached to the right hip of the subjects. Five users 

were asked to walk across four different surfaces with their usual speed on three 

different days with various walking distances shown in Table 3-2.  

Surface Length 

Ground 25 m 

Stone Plates 30 m 

Gravel 15 m 

Grass 25 m 

Table 3-2: Surface and walking distances used in the experimental protocol 

(Sprager and Zazula 2011) 
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The gait cycles were extracted based on wavelet transform, and high-order 

statistics were used to calculate all gait cycle features. Cumulant coefficients of 

the order of 2, 3 and four were calculated for all time lags. Discrimination of the 

different subjects was done by principal component analysis (PCA). The study 

claimed that the identification performance of subjects based on their gait was not 

affected significantly by different solid surfaces when no evaluation was 

presented. Even so, the short distances were used in the experiment with the 

same (standard) pace. Additionally, the mobile phone was attached steadily to 

the hip, i.e., it did not rotate; however, in real life, it does rotate when in the pocket 

according to pocket movement. Thus, the accelerometer noise within their 

experiment was reduced. 

 

Kwapisz et al. (2011) evaluated and described their scheme-based 

accelerometers to identify users on smartphones based on physical activity 

performed by the user. They collected data from twenty-nine users as they 

performed and executed daily activities like jogging, walking, climbing stairs, 

standing, and sitting. They used Android phones from different brands (Nexus 

One, HTC Hero, and Motorola Backflip); the data were collected using the 

Android applications for the accelerometer sensor on the mobile phone. In all 

cases, the accelerometer data used a default frequency of 50ms (20 

sample/second). The data were supervised by one of the research team 

members to ensure the quality of the data. The classification algorithms that were 

used in their study could not directly learn from time-series data; to achieve this, 

they divided the data into 10-second segments and then generated features from 

the accelerometer values contained in each 10-second interval (since 

acceleration data is collected for three axes 20 times per second for a 10-second 

range, there are 600 total values). Then they generated useful features based on 
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the 600 raw accelerometer readings. Then they created forty-three features 

based on variations of six basic features (i.e., average, standard deviation, 

average absolute difference, average resultant acceleration, time between peaks, 

and binned distribution). Once the data set was prepared, they used three 

classification techniques from the Waikato Environment for Knowledge Analysis 

(Weka) data mining suite to induce models for predicting user activities: decision 

trees (J48), logistic regression, and multilayer neural networks. In each case, they 

used the default setting ten-fold cross-validation for all experiments, and all 

results are based on these ten runs. They claimed that most cases achieved good 

accuracy. For the two most common activities, walking and jogging, they 

generally achieved accuracies above 90%. Jogging appeared to be easier to 

identify than walking, which seems to make sense, as jogging involves more 

extreme changes in acceleration. However, there were few examples of sitting 

and standing; they identified these activities quite well because the two activities 

cause the device to change orientation and this is easily detected from the 

accelerometer data.  

The authors indicated that it was more challenging to identify the two stair-

climbing activities (i.e., ascending the stairs and descending the stairs). This was 

because the two similar activities are often confused with each other. The 

confusion matrices specify that many of the prediction errors are because of 

confusion between these two activities. The experiments showed that when a 

subject is climbing upstairs, the most mutual improper classification happens 

when expecting “downstairs,” which occurs 107 times and accounted for a 

decrease in accuracy of 19.6% (107 errors out of 545). However, when the actual 

activity was ascending downstairs, walking out-paces slightly “upstairs” in terms 

of the total number of errors (99 vs 92), but this is because walking occurs more 

than three times as often as climbing upstairs as in their data set. Figure 3-9 
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shows that the patterns in the acceleration data between “walking”, “ascending 

stairs”, and “descending stairs” were somewhat similar. To limit the confusion 

between the ascending and descending stair activities, another set of 

experiments was made. They combined ascending stairs and descending stairs 

into one activity. The resultant confusion matrix for the J48 algorithm was 

significantly improved. Despite the fact of providing some activities in this 

experiment, it was limited for a few supervised activities, which were 

fundamentally far from realistic to be applicable and usable. 

 

 

 

Figure 3-9: Acceleration plots for the (a) walking, (b) ascending, and (c) 

descending activities (Kwapisz et al. 2011) 
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Kwapisz et al. (2010) aimed to assess their previous experiments to identify and 

authenticate users’ mobile phones. The data collected by an Android phone 

device was placed in the front pocket for thirty-six users, monitoring several daily 

activities (e.g., walking, jogging, and climbing stairs) for a predetermined time in 

one session only. In total, 10 minutes of activity was captured, and the time-series 

acceleration data were segmented into 10-second partitions. The data collection 

and feature extraction were performed as described in their previous work 

(Kwapisz et al. 2011). In this study, four separate data sets were created, each 

containing examples from only one activity (i.e., walking, jogging, ascending 

stairs, and descending stairs) for the authentication purpose. Their results were 

used to examine the suitability for each activity discerning between users. The 

authors created a fifth data set, which they refer to as “aggregate (Oracle)”, 

identical to the complete data set but which contained the activity label as a 

feature. They used two classification techniques from the WEKA data mining suite 

to induce models for person identification: decision trees (J48) and neural 

networks. They changed the multiclass identification problem into a binary 

classification problem. Where the positive class indicated to the user was 

authenticated and the negative class to the other (thirty-five) users. As the 

positive class is so infrequent (on average it contains 1/36 of the data), most 

classification approaches tend to generate classifiers that do not perform well at 

predicting this (occasional) class. This was not desirable; therefore, they under-

sampled the negative type, such that the resultant ratio of positive examples to 

negative examples was 1:3. The identification results indicated that the models 

were successful at recognising users’ identities based on only 10 seconds of 

accelerometer data. However, while some of the precisions may not appear to be 

that good, they were fundamentally quite impressive when considering that for 

this 36-class classification problem, the straw man strategy of always guessing 
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the most frequent class yields accuracy in the 4-7% range. The results achieved 

for identification-decision trees (J48) and neural networks were 72% and 69% 

identification rates, respectively.  

The second finding was the authentication results, which were reported for only 

five users, which was a minimal data sample. It was a similar case for person 

identification. They first presented the effects related to individual examples and 

then applied the most frequent user strategy to determine the actual 

authentication presentation statistics. The key statistic for authentication was the 

positive authentication (a user is correctly granted) and the result was 85.9% 

positive authentication rate at 95% negative authentication rate (the imposter was 

correctly recognised as an imposter). They achieved 100% positive and negative 

authentication degrees for all five users by applying majority voting to all test data. 

In contrast, the authentication was based on a limited number of users (only five 

people). Furthermore, they implemented majority voting, which is legitimising the 

user when half of the test samples or more are positive. This might significantly 

increase the acceptance of the users’ verification claim wrongly when the system 

is applying on a more considerable amount of data.  

Derawi and Bours (2013) were the first to utilise the mobile smartphone in both 

data collection and real-time analysis. This work extended the experiments of 

(Derawi et al. 2010) and (Kwapisz et al. 2011). In comparison with the authors’ 

previous work (Derawi et al. 2010), various walking speeds and analysis methods 

were evaluated. In the work of (Kwapisz et al. 2011), the walking data was 

analysed into segments of 10-seconds that affected the activity recognition 

negatively. So, any changes of activity or speed within the 10-second segment 

may have caused the segment to be unidentified as the features extracted from 

that segment may have been a mixture of two different activities. In this work, the 

author focused on single cycles in the walking data, so if the walking speed 
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changed, then only a few walking cycles would be affected, and recognition 

before and after these few cycles would not be disturbed. In this study, five 

participants were asked to walk at three different speeds (i.e., three templates for 

each user). The purpose of the system was to identify the user or the walking 

activity. They tested 20 new users and with the five enrolled users. The Manhattan 

distance metric was used for the comparison applied on the phone, and Euclidean 

distance and DTW were used for the comparison on the PC. The accuracy of the 

activity recognition was 99%, and the users were identified successfully with 89.3% 

of the cases with 1.4% false positive probability. While the results look good, the 

experiment worked on activity recognition rather than verifying the person who 

was doing the activity.  

In comparison with previous studies, Nickel et al. (2011) experienced a more 

realistic application scenario with gait recognition on mobile devices. The 

Motorola Milestone sensor was used to collect data from 48 subjects who walked 

at their normal speed in the same shoes in two different days. The participants 

needed to walk straight on a flat floor for 10 seconds through the enrolment. Then 

they were asked to walk on a predefined route in a realistic scenario (i.e., walk on 

linoleum and tiled floor in a non-straight line, open the glass door, walk upstairs, 

and stop at some points). During the walk, they were asked to stay in nine 

authentication points defined previously. They collected 28 data sets in each 

session for each of the 48 subjects, for a total of 2,688 data sets. 

 

An effective cycle extraction was used, which is capable of handling irregularities 

occurring in the data. In case the gait data do not have specific minima (maxima), 

the usual formula for cycle extraction methods will be less effective. Therefore, 

the authors proposed using the salience vector (which is known as the right 
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salience vector) to determine the cycles starting point in order to get an adapting 

process that depends on the data. Only a vertical acceleration (x-direction) is 

considered from the measured acceleration. The acceleration values of the 

cycles were compared using two different gait recognition methods: DTW and the 

cyclic rotation metric (CRM). First, DTW was used as a distance function for 

comparison and for applying majority voting; after computing the distance 

between the reference cycles with all probe cycles, matching occurred only if a 

pre-selected threshold was above the distance between two cycles. Otherwise, 

there was non-matching (i.e., if at least 50% of the results were a match, the whole 

comparison was accepted, and the subject was authenticated). Secondly, they 

applied a CRM distance metric which cross-compared two sets of cycles (a 

reference cycle and an input cycle) with a cyclic-rotation mechanism to find the 

best matching pair. This comparison was used to find the most optimal and the 

best distance score when cross-comparing two sets of the cycle. 

The subject was authorised if at least half of the results was matched. Their 

database contains 48 subjects gait data collected from the same day and cross 

days. Because it corresponds to a realistic scenario, they involved walking for 

about 15 minutes on a predefined route around corners, opening and closing 

doors, walking up and down stairs, having to cross doorways, and walking on 

different surfaces (linoleum and tiles). Data were collected in two sessions and 

compared with the data from the same session and the other session (on a 

different day) to see the influence of the period between enrolment and 

authentication. The best results obtained in terms of same-day were EER of 21.7% 

for the module using CRM as a distance and EER of 28.0% for the module using 

majority voting. The distinctiveness of this evaluation is that it is completely 

performed on the smartphone. The authentication results relied on the subjects 

as they could change their shoes and trousers during the different sessions. The 
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device position may be influenced by many factors such as the height and angle 

of the pouch, as well as its stability. That means that each subject could enrol 

many times with different pants and shoes. 

As a consequence, the threshold needed to adapt to the subjects, and that was 

impractical as a higher limit increases the probability of authentication for the 

attacker. In addition, the computational time for the CRM module was longer, 

around 32 seconds, and for the MV-module about 27 seconds. These intervals 

were far too high for a real authentication application. Another hurdle was that the 

authentication was started just once, when the user needed to use his phone 

again and switched off the screen saver. It can be noted that the error rate that 

was achieved was significantly high for both classification methods. Furthermore, 

the user needed to wait 30 seconds until the phone unlocked itself because the 

system would extract cycles from 30 seconds of data and the comparison that 

was done with the reference template took about 30 seconds, which took more 

time than entering a PIN, and this as less user-friendly. 

 

Nishiguchi et al. (2012) presented a study to demonstrate the reliability and 

validity of a smartphone accelerometer for gait recognition. They used two 

devices: a smartphone and a tri-axial accelerometer and taped them together for 

the data collection. Data were collected from 30 volunteers in controlled walking 

conditions, and the trunk accelerations were more secure over the L3 spinous 

(i.e., body centre mass) at normal speed. After signal processing, the study 

computed the gait parameters of each measurement: peak frequency (PF), root 

mean square (RMS), autocorrelation peak (AC), and coefficient of variance (CV) 

of the acceleration peak intervals. All the results of the gait parameters captured 

by the smartphones significantly correlated with the same parameter results 

gained by the tri-axial accelerometer. The authors had demonstrated that the 
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smartphone with a gait analysis application used in their study could quantify gait 

parameters with a relative degree of accuracy that is equivalent to that of the tri-

axial accelerometer key, as shown in Figure 3-10. As a result, this evaluation 

showed the reliability and validity of gait analysis by Android-based smartphones. 

 

Figure 3-10: Acceleration waveforms of the smartphone and tri-axial 

accelerometer (Nishiguchi et al. 2012) 

Hoang et al. (2012) analysed acceleration signals of gait biometric using the two 

main methods in gait identification: template matching in the time domain and 

machine learning in the frequency domain. DTW was used to calculate the 

similarity score of the extracted gait templates while the SVM was used to classify 

extracted features in the frequency domain. Eleven participants were employed 

and they achieved the recognition rate of both methods, respectively 79.1% and 

92.7%, which are considered good results. But the data collection session from 

the volunteers was from the same day, and it did not take into account the 

biometric gait fluctuation for each person day by day. Also, weaknesses of their 

work include the static position of the mobile phone and the limited evaluated 

dataset (only 11 subjects). 

The first attempt at providing a more detailed investigation regarding the effects 

of different walking speeds and surfaces on gait recognition was conducted by 

Muaaz and Nickel (2012). They utilised Google’s G1 smartphone-based 
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accelerometers and cycle extraction approach. The cell phone was placed inside 

the pouch and attached to the subject’s belt or trousers as its screen facing the 

subject. The accelerated values were accessed by Android API software. The 

cycles were extracted to create a template for each subject based on the same 

cycle extraction process of (Nickel et al. 2011) and considered the measured 

acceleration of the vertical x-axis as it was more distinguishable than y and z-axis. 

Cycle length was estimated and detected by computing the min-salience and 

max-salience vectors. Outliers (e.g., unusual cycles) were removed from a set of 

cycles using DTW distance. 

After computing the distances between cycles, a threshold value was specified. 

The cycle distance had to be less than the threshold value, otherwise at least half 

of the cycle was cancelled. At least three cycles were needed as remaining cycles 

(i.e., name of all cycles remaining after deleting unusual cycles) or the threshold 

value increased, and the deletion of the unusual cycles was repeated. The mean 

or median cycle of the normalised cycles or the lowest DTW distance value 

compared with other cycles was considered as typical cycles. After a generation 

of reference and probe cycles by the cycle extraction process, they were 

compared against each other to compute intra-class (genuine attempts) and inter-

class distances (impostor attempts). The distances calculated for all cycles of one 

walk by DTW then passed to the majority voting module, which was used as a 

present threshold to calculate for each cycle if it matched the reference cycle. The 

result of the walk was accepted in the case that at least 50% of the cycles 

matched. Gait data were collected from 48 subjects walking at different velocities 

(slow, normal, and fast) on four variant surfaces (flat carpeted grass, gravel, and 

inclined). Six different walk settings for each subject were appraised in order to 

get a realistic experiment. The data capturing was in two sessions on two 
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separate days to show the efficiency of the same-day and cross-day 

measurements. A walk setting framework measures changes in speed and 

surfaces when gait data is collected. The subjects regularly walked on different 

surfaces (carpeted, grass, gravel, and inclined) in four walk settings and changed 

the speed (slow, fast) on a carpeted surface.  

Two experiments were implemented. In their first experiment, the typical cycle 

was used as a reference cycle and the remaining cycles as probe cycles. For 

each walk set, 34 different tests were performed, 24 of them used normalised 

cycles, and the other ten tests used cycles in their original length. The flow control 

of cycle extraction for each test in each group is shown in Figure 3-11. Cycle 

length parameters estimated and detected cycles were counted on the 

interpolation rate. The normalisation lengths of the cycles were 120, 100, 80, and 

40 data values in different tests and evaluated threshold values were 80, 50, and 

30 for the deletion of unusual cycles. In their second experiment, they extended 

their first experiment by attempting to improve the results by increasing the 

number of reference cycles. They used all the remaining cycles as reference and 

probe cycles. So, their second experiment was implemented only on the lowest 

EER tests of their first experiment. In both experiments, the resultant EER were 

high, as presented in Table 3-3. Nevertheless, increasing the number of reference 

cycles didn’t enhance the results. Generally, most cases of their first experiment 

were better than those of the second experiments. 
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Figure 3-11: Flow control of cycle extraction steps, dashed arrow lines indicate 

optional steps (Muaaz & Nickel 2012) 

The results of six different walk settings indicated that time interpolation with rate 

100, cycle normalisation with length 100, a threshold value of 50 to delete unusual 

cycles and best cycle as the typical cycle produced the best results. The 

experiments in this study were more realistic, and the findings highlighted the 

effect of different walking speed and surfaces on gait recognition. In addition, they 

changed the space on a flat surface and regularly walked on different surfaces. 

The collected data was for each of the six walk settings: six different reference 

cycles for the same day and another six reference cycles for the cross day (e.g., 

normal walk, fast walk, slow walk, gravel walk, grass walk, and inclined walk). 

That means the importance of creating a reference template of data for each 

specific walking speed and surface type. Consequently, activity recognition 

should be applied to recognise the type of the test vector before matching with 

the correct authentication template. Furthermore, the finding of the same day 

EER ranged between 16.26% for the normal walk and 37.24% for the inclined 

walk. The cross day EER results were noticeably higher, ranging between 29.39% 

for the normal walk and 35.18% for the inclined walk.  

Also, this work used a cycle-extraction approach to recognise accelerometer-

based gait recognition. In comparison, Nickel et al. (2011b) performed a study on 

the same database where support vector machines were used for classification 

of non-cycle-based feature vectors. By applying the more flexible quorum voting, 

the FRR could be lowered to 16.2% while increasing the FAR to 20.8%. This is in 

comparison with previous publications that used another approach by creating 

feature vectors from segments of a fixed time length and using machine learning 

algorithms like HMMs for classification to give promising results (Nickel & Busch 
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2013). Because of the smaller size of the database containing different surfaces 

and paces, it could not be used to train HMMs. Nickel et al. (2011c) tested using 

the k-nearest neighbour algorithm as a classifier and applying majority voting 

produced non-acceptable FRR of over 80% (normal walk) while the FAR was 0%, 

which is considered unacceptable at the yielded 40% EER. Other experiments 

were done by Muaaz and Mayrhofer (2013) to classify the normal walk style. The 

Android phone Google G1, which was utilised to collect the data from 51 

participants was attached to their hips, with an application that was improved to 

record three-dimensional (X, Y, and Z) accelerometer data to a text file with time 

stamps. Gait data was recorded at 40-50 Hz sampling frequency interpolated at 

100 Hz. The recorded text files were stored on the SD-card. They used the same 

data pre-processing and segmentation method for gait cycle extraction as had 

been done in their previous study (Nickel, Brandt, et al. 2011b). Two types of 

experiments were conducted used two different classification methods: DTW and 

SVM. 

Experiment one was based on the template-based classification. They 

investigated the effects of using the piecewise linear approximation (PLA) 

technique after the data pre-processing steps and just before the cycle length 

estimation module in cycle extraction steps. After cycle detection, the DTW was 

used as a distance function. The authors noted that the process of gait cycle 

extraction and their recognition was faster than the approach presented in (Muaaz 

& Nickel 2012) with about 2-3 minutes. However, the results obtained on the 

same-day and cross-day scenarios (with PLA) were EER 22.49% and 33.3%, 

respectively, which are more than those achieved without using PLA. Table 3-3 

gives a comparison of results with and without PLA gait cycles. 
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Cycle extraction 
Same-day 

 

Mix-day 

 

Different-day 

EER (%) 

With PLA 22.49 29.4 33.3 

Without-PLA 
(Muaaz & Nickel 

2012) 

16.26 29.39 28.21 

Table 3-3: A comparisons of results with and without PLA-based gait cycle 

extraction (Muaaz & Mayrhofer 2013) 

Experiment two used the gait cycle as a feature and classified them using a 

machine learning (SVM) approach with the custom kernel (i.e., Gaussian dynamic 

time warping (GDTW) kernel). Entire gait cycles were used as a single feature. 

Also, a Gaussian kernel function was used with the Euclidian distance, which 

requires the same length input feature vector. In this experiment, DTW was used 

as an elastic similarity with the Gaussian kernel function instead of the Euclidian 

distance, as it works efficiently with unequal gait cycles to solve the problem of 

the fixed-length input feature vector. However, the approaches presented in this 

study are more appropriate for gait cycles of different length. Even though 

variable-length gait cycles were not used, the GDTW kernel approach that had 

been presented achieved a total error rate EER of 18.41%. In addition, this 

approach suffers from the indefinite kernel matrix. Furthermore, the data was 

collected in two different sessions and in controlled conditions (the subjects were 

asked to walk two times at their normal pace on a straight carpeted corridor) for 

a limited period (one minute in two days). Nonetheless, the achieved results were 

in terms of EER of 22.49% for same-day, 29.4% for different-day, and 33.3% for 

mix-days which are considered high.  

The above finding is consistent with the study by (Ottomoeller 2014). The author 

examined a fixed-mobile location on the waist with standard walking conditions, 

referred to as a fixed method. A more natural position like a pocket, referred to as 
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an unfixed method, with various subject tasks such as standing, sitting, walking, 

biking, running, driving, and random movements. They used PLAs for gait 

classification for the first experiment; in comparison, the other test used SVMs for 

classification. Although the processing time was faster with about 2-3 minutes 

when using PLAs, the EERs increased from 16.26% (without PLAs) to 22.49% 

(with PLAs), which is considered high especially for a controlled experiment 

(walking straight on the flat floor). The achieved results were EER of 18.41% 

when SVMs were used, which is also very high. The two experiments focused on 

the training data. The author mentioned that using larger data sets, up to 10% of 

the data, achieved better accuracy. The best EER was 14%, and by using the 

unfixed approach, the EER was 12%. Whilst they experienced different 

implementations of the strategies, the achieved results added no more to their 

previous work. 

Nickel and Busch (2013) used the same data collected in (Nickel et al. 2011). The 

authors took into account data sets that must be capable of enough training data 

for HMMs and contained more realistic data from two different days to calculate 

cross-day results. This data was pre-processed as in prior studies, and the 

features were extracted from each segment for each of the three-acceleration 

axes (x, y and z) and the magnitude vector. There were five steps to pre-

processing the data. Firstly, the walks were extracted from the data (i.e., non-

walking parts were removed from the recorded section). Then the data was 

interpolated to a fixed sampling rate, centred around zero, and divided into 

segments. Features were extracted from each segment. This study focused on 

Mel-frequency (MFCCs) and bark-frequency cepstral coefficients (BFCCs), which 

were used before in prior work by the author (Nickel, Brandt, et al. 2011c). The 

HMM was used as a classification approach. Different amounts of training data, 
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various feature sets, and segment length were tested in addition to same-day and 

cross-day results, which were computed in order to analyse the influence of time 

on gait. Each of those sections was evaluated separately, and the results for the 

parts with no stairs were even better as follows: 

Firstly, the subjects had to walk straight on the flat floor in the enrolment phase of 

the data collection. Only 10s (one section) of training data per subject when all 

data from the second day was used as probe data, which was not enough, and 

resulted in an EER of 31.6%. When they increased the training data sections 

gradually, it was found that the minimum time required for adequate training of 

HMMs was 33s of enrolment data, and the more data, the better the performance.  

Secondly, the HMM classification results were calculated for each subject using 

a BFCC2MFCC feature set. The overall FAR for most of the users was 10%, with 

a high variability detected with FRR. They assumed that the outliers might be 

caused by changing shoes or the phone position because of the different trousers. 

For all tested feature sets and segment lengths (2, 3 and 4 seconds), the range 

of the EER was from 15.77% to 18.94%, and the best performance was 

BFCC2MFCC employing a segment length of two seconds. In the same-day 

experiments, they obtained an EER of 7.88% for a BFCC2MFCC, which was 

about half of the reported cross-day results. In addition, the HMM was trained with 

approximately two minutes (10 sections) of walking data (including walking 

around corners and upstairs), an EER of 7.45% was achieved with mixed test 

data of all route sections. 

All previous FAR and FRR results were calculated directly from classification 

results for each segment. As in their prior work (Nickel et al. 2011c), they 

combined many classification results into a single decision by using the voting 
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approach. There were multiple classification decisions (#V) instead of one, by 

employing quorum voting. This quorum needed to have at least #GV of the #V 

classifications vote in order to authenticate the users; otherwise, the test signal 

was excluded. The calculation in this work suggested using #V = 60 and #GV = 

1; good results were achieved with a segment size of 4s. The EER could be 

decreased from 15.77% to 7.45%. Best results also were obtained when using a 

segment size of 2s; the reported EER was 7.33%. The same-day results could 

even be decreased to 0.71% EER. After voting, the best results were achieved 

for the feature MFCC. When using about one minute of walking data for training, 

they got an EER of 6.15%. However, it was found that increasing the amount of 

training data (about two minutes in this work) achieved lower EER of 5.81%. 

Nevertheless, even if the suggested values (#V = 60 and #GV = 1) may be 

considered odd, the achieved results were good. Furthermore, in comparison with 

the author’s previous work (Nickel et al. 2011), which utilised a cycle extraction 

approach, their finding for EER was 21.7%. This result reduced to 6.15% by using 

the segment-based approach. Consequently, it can be noted that the segment-

based approach provides better performance compared to a cycle-based method.  

In another significant study, Nickel et al. (2011a) presented a comparison 

between two classification methods (SVM and HMM) on the same database. Data 

was collected using a typical mobile phone on a cross day from 36 subjects. Each 

subject walked about 32 minutes on a flat carpet during two sessions in normal 

and fast speed. More than 19 hours of accelerometer data were collected. The 

data was divided into fixed-length time segments. Different feature sets were 

evaluated, and the best for each classifier was assigned. Furthermore, different 

amounts of training data were tested. As the fixed-size sections are less 

complicated and less error-prone than discovering the beginning of the cycle. The 
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data was divided into segments of size 3, 5, and 7.5s with an overlap of 50%, then 

two types of features were extracted: Several statistical features were extracted 

from each segment for each of the three-acceleration axis (x, y and z) and the 

magnitude vector. These were Min, Max, Mean, Std, Bin, RMS, zero crosses. 

They also extracted MFCCs and BFCCs from the segments for each axis. In this 

study, different feature sets were evaluated and the best for each classifier was 

assigned:  

 Single Features  

In this experiment, they investigated the discrimination possibility of single 

features by testing them individually. Cross-day datasets were tested with a 

different interpolation rate (50, 100 and 200 samples) for each segment length (3, 

5 and 7.5 seconds). 

Regarding the HMMs, changing the interpolation rate and segment size did not 

affect the error rates. Whilst, the SVMs presented results when using a segment 

length of 5s and a low interpolation rate of 50. So, the setting of 50 as the 

interpolation rate and segment length 5s was applied to all the results of this work. 

In case of SVMs, they attained for cross-day results for single features the FRR 

obtained for the SVMs, which were between 99.18%- 47.90% for the Diff and the 

BFCC2, respectively. For the HHMs, the EER was between 46.23%- 17.06% for 

the Diff and the MFCC, respectively.  

 

 Combined Features 

Features were combined with having enough information because single 

statistical features alone did not have sufficient information. For SVMs, the 

achieved results were 20.26% of EER using a combination of the BFCC2 of x-

axis acceleration and the magnitude vector. For HMMs, the achieved results were 
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17.30% of EER using MFCC of all axes when a normal walk was used for testing. 

However, the best error rates were obtained when testing with fast steps for SVMs 

and HMMs with 15.43% and 14.52% of EER, respectively. 

 This study highlights that the Cepstral coefficients showed better performance 

than the statistical features. Also, the finding indicates that without voting, both 

classifiers results were approximately similar, with the SVMs being slightly better 

for normal walking. To obtain a more acceptable result, the quorum voting was 

applied to 70 samples from a user’s test data (equivalent to about three minutes 

of the walking data), which showed a notable reduction. For the SVMs, the EER 

was reduced to 10% for normal walking while the EER of HMMs decreased to 

12.63%. Most experiments used about four minutes of training data for each 

subject. The error rates reduced by 25% for SVMs when they doubled this 

quantity; in contrast, the minor improvement was experienced in the HMMs. While 

using mixed training data containing fast and normal walks raises the error rates 

when the subjects were walking fast or normal during the authentication phase, 

suggesting dedicated training samples for different walk styles are required for 

obtaining better performance and more realistic situations. By applying the 

quorum or majority voting methods, the results were enhanced. However, they 

needed to double the testing data for more accurate results (i.e., decrease the 

error rates by 25% for SVMs, but insignificant enhancement for HMMs). 

Moreover, compared to previous research findings into HMMs (Nickel et al. 2011) 

and SVMs (Nickel et al. 2011c) had been stated as EER are 20.71% for HMMs 

and 30.0% for SVMs, which are incredibly high. In this work, the evaluated results 

were about 10% better for the SVMs. However, the HMMs were evaluated on an 

experimental database (i.e., containing walking straight on the flat floor). 
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In 2012, Hestbek et al. (2012) published a paper that is similar to the one in (Nickel, 

Brandt, et al. 2011a). They used the same database, modifying the feature 

extraction by applying wavelet transform. Gait templates were created by BFCC 

and standard deviation (SD) from the wavelet coefficients, as shown in Figure 3-6. 

The data were divided into fixed-length time segments size of 5 seconds with a 

50% overlap then SVM was used for gait template classification. The experiments 

showed the possibility of using wavelet transform as a feature extractor for gait 

recognition. The achieved result was a FAR of 9.82% and FRR of 10.45%. The 

error value was not affected by the inclusion of the wavelet transform in the 

feature extraction process. The results in Table 3-4 also show the approximate 

EER with the results calculated when using the wavelet transform as a method to 

extract the gait feature templates and when no wavelet transform is applied. 

 

 

Figure 3-12 the process of extracting BFCC features (Hestbek et al. 2012) 

Study FAR FRR EER 

Wavelet 9.82% 10.45% 10.14% 

Acceleration 10.01% 10.00% 10.01% 

Table 3-4 Evaluation of results with and without wavelet transforms (Hestbek et 

al. 2012) 



80 

 

In comparison with the authors’ prior studies (Nickel; Brandt, et al. 2011a) and 

(Nickel, Brandt, et al. 2011c) in which no wavelet transform is employed, no 

performance improvement was made, as they reported a FAR of 10.01% at an 

FRR of 10.00% after applying quorum voting (see Table 3-4).  

In another study, Nickel et al. (2012) extended their previous work using the k-

nearest neighbour (k-NN) algorithm to evaluate the same database obtained in 

(Nickel et al. 2011a). Thirty-six users were asked to walk normally on a flat floor 

attaching a mobile phone at their hip pouch and data were collected on two 

different days (five minutes of gait data for each day). The segment of raw data 

was divided into 7.5 seconds; the segments overlap by 50%. In this work, some 

single features that provided better performance were combined (they selected 

the features that had low intra-class variability and a high inter-class variability). 

Otherwise, related features were extracted from gait data based on their 

discriminating potential score (DPS) and added to feature vectors. The 

experience shows that the results based on DSP features are sensible (Nickel et 

al. 2012). The feature vectors were considered only of function BFCC, calculated 

for all three-acceleration axes and the magnitude vector was preferred for normal 

walking. Three different algorithms HMM, SVM, and K-NN were evaluated to find 

out the more convenient method to classify users’ gait templates. The k-nearest 

neighbour algorithm showed better efficiency than the machine learning 

algorithms, e.g. hidden Markov models and support vector machines (Nickel, 

Brandt, et al. 2011a), as shown in Table 3-5. The table presents the results after 

applying a quorum voting method. The walking data used for voting were based 

on 1.7 to 3.2 minutes, which is the same walking data time that the authentication 

must be based on. 
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Algorithm  
Length of the 
best feature 

vector 

Authentication 
based on x 

minutes 

Lowest  
EER (%) 

HMM 104 2.5 8.75 

SVM 52 2.5 8.85 

k-NN 52 1.7 8.24 

Table 3-5 shows the evaluation of the essential facts of the SVMs, HMMs, and 

k-NN in the same database (Nickel et al. 2012)  

The lowest EER is between 8.24% and 8.85%. Also, there was no distinct 

difference between the results of the three methods. Albeit, the k-NN was based 

on a short walk duration and gave good results when classified before and after 

voting. The enrolment of the steps and authentication were applied to a standard 

smartphone. However, the proposed approach achieved low processing time and 

revealed that it was efficient enough to be used in practice. But the K-NN 

technique needs calculating the distance between vectors of attributes (test case) 

and stored training case. Also, predominantly, the FRR was still very high while 

the FAR was low. Although one classification applied to each segment, it is based 

on less than eight seconds walking period, which is considered to be short. 

Therefore, to obtain the best results, they can combine several successive 

classification results and transform them into a single result. In contrast, this work 

showed that the k-NN implementation in a controlled walking condition when 

subjects were walking on flat floor achieved good results. Therefore, analysing 

the influence of covariates like clothes, carrying bag, and surfaces are needed, in 

addition to different spaces and the position of the phone. 

 

Frank et al. (2010b) presented two papers to investigate the activity and gait 

recognition. Acceleration data was collected from 25 subjects by placing the 

smartphone in the trouser pocket while they were walking, lingering, running, 

upstairs, downstairs, and riding in a vehicle. Also, additional data was collected 
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during the other study by the authors (Frank et al. 2010a) from four persons while 

they were carrying out a sequence of fitness activities: riding a stationary bike, 

using an elliptical machine, using a stationary rowing machine, using a stair-

climbing machine, and running on a treadmill. In both studies, the author created 

a time-delay embedding model for each subject. Then the nearest neighbours in 

the model were calculated and the new data segments of time series were 

compared using an algorithm called geometric template matching (GTM). The 

two experiments focused on identifying activities and users, respectively. Even 

so, the activity classification algorithm and gait identification achieved 85.48% 

and 100%, respectively. On the contrary, the recorded data was limited (20 

seconds for each subject). Also, the participants joined with an observer who 

recorded the labels as the activities were performed, which is not realistic. 

Including other types of sensors, e.g., GPS, may help to provide further context 

for identifying more activities such as doing sport in a gym or driving to work. 

Recently, there has been increasing attention in mobile-based activity recognition. 

An experimental investigation was conducted by Watanabe (2014) to explore the 

possibility of authenticating a mobile user while the phone is not fixed in the 

pocket (i.e., walking, making a call, and touching the mobile screen). They 

achieved initial experiments using enhanced application of four subjects only to 

collect the client-generated acceleration data on a normal walk. A better 

accelerometer record function on the iPhone was used to collect the superior 

three-axis accelerometer data during walking. Each had made one round trip 

along the corridor with about 50m distance for two minutes, whereas they took 

the phone in three holding states as follows: in the pocket, squeezing the phone 

to the ear, and imagining touching on the screen. Additional information has been 

calculated, such as the phone rotation around the 3-axis utilising the gyroscope 
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and the electromagnetic compass. In their work, they split the data from time 

series acceleration for each axis into windows of 3-second intervals. 

Furthermore, they extracted characters from the data in each window. They used 

ten-fold cross-validation (i.e., windows divided into ten equal size samples) to 

train and test the system. This method used 90% of samples for training and 10% 

for testing and the cross-validation process was repeated ten times. This study 

employed J48, NN, RBF, BN, and RF algorithms and neural networks (NN) from 

the Weka. Table 3-6 shows the achieved results for each activity; the best results 

gained when the phone was in the pocket were 1.30% FAR at 2.34% FRR. 

Results for touching on the screen were extremely bad (state 3), indicating that 

the location of the mobile was adversely affecting the outcome significantly in 

addition to the limited collected data set (four users) within the same day. 

Algorithm State 1 State 2 State 3 

FAR FRR FAR FRR FAR FRR 

J58 3.39 15.63 7.03 22.66 6.51 29.69 

NN 1.30 2.34 3.65 7.81 9.38 22.66 

RBF 0.52 8.59 4.17 13.28 2.86 22.66 

BN 0.26 7.81 8.85 14.06 5.99 21.09 

FR 0.26 7.81 1.82 17.19 2.86 32.03 

Table 3-6 The stated results FAR (%) and FRR (%) for each holding state by 

using five algorithms (Watanabe 2014) 

Watanabe (2015) extended his previous work by carrying out additional 

experiments by increasing the number of subjects to eight participants and adding 

the data recorded on a different day. The same techniques for collecting data, 

pre-processing, and feature extraction were used as their previous work 

(Watanabe 2014).  
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One metric used correctly classified the rate to evaluate the recognition 

performance. In this work, two experiments were carried out for identification of 

users and states.  

The goals of the first and the second experiments were different; these were the 

identification of users and states. In all the tests for each subject, the collected 

dataset was: logged time, gravity, user-generated acceleration, rotation rate, 

magnetic field, and three angles. Each individual made one round trip along the 

corridor with about 50m distance for about one minute.  

• The first was implemented as increasing the number of subjects and added 

the data recorded about one month later.  

•    The second was carried out to examine the influence of different walking states 

when a subject placed the phone in the right or left pants pocket or shirt pocket, 

called or touched using his right or left hand, or wore slippers or shoes. 

However, they observed that the additional data collected before have a different 

effect on identification performance according to phone position states. Also, they 

have noted there are influences of various walking states for one subject. The 

author discussed in his paper the application of an “immunity-based diagnosis 

model to gait recognition to integrate the identification results from multiple 

smartphone sensors”.  

Their study results show that: 

The classification rate according to the phone’s position (in the pocket) was not 

affected by an individual number.  

A small number of subjects influenced performance when calling and touching.  
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The author employed four algorithms (BN, NN, RBF and RF). The results are 

shown in Table 3-7. For each algorithm, the default settings were used, that is, 

automatic optimisation methods. In comparison with the author’s previous work, 

this study set that radial basis function (RBF) was the best and Bayesian network 

(BN) and random forest (RF) also performed better, but decision trees (J48) was 

the worst in all cases.  

 

Table 3-7 Correctly classified rate (%) of states by four algorithms when a 

subject walked in nine different states (Watanabe 2015) 

Wolfe (2013) accomplished a study on both authentication and identification 

modes. Both built-in accelerometers and magnetometers were used to deal with 

disorientation and misplacement errors in mobile installation problems. Realistic 

data, including the influences of mobile installation errors and shoes, were 

collected from 38 subjects asked to walk in their average speed on the ground 

floor, and the mobile was located in a narrow pocket (e.g., the jean trouser). Then 

the processing steps to the authentication model were analysed thoroughly. 

The signal was segmented into separate gait cycles instead of a fixed time 

interval and both time and frequency domain features were employed. The 

support vector machine classifier and the radial basis function kernel were used 

to classify users from their gait features. The good results are shown in Table 3-8 

(a), which were achieved by using segmentation based on the gait cycle. 

However, the users walked in a regular style (i.e., the cycles were distinguished 

easily). Table 3-8 (b) proves the performance of their method with/without fixing 
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disorientation error (in transformed Z-signal). It can be noticed that better 

accuracy was attained when they applied the proposed method with the 

transformed Z-signal (i.e., the phone position was always fixed in parallel to the 

ground and its Z-axis direction to the sky and perpendicular to the ground). 

However, adjusting the phone position always parallel was considered unrealistic 

because the users needed to put their phone in various places around their body 

wherever there was a pocket (i.e., back pocket and inside coat pocket). They 

achieved accuracy of about 94.93% under the identification mode, the FAR, FRR 

of 0%, 3.89% and processing time of fewer than four seconds under the 

authentication mode. And the best-achieved classification rate at length 3s was 

also worse (79.53%). 

 
                         (a)                                                                     (b)                                 

Table 3-8 (a) Improvements of segmentation based on gait cycles compared 

with a fixed length, (b) The influence of disorientation error to the effectiveness 

of classification mode 

Hoang et al. (2013) examined the influences of the sampling rate on creating an 

adaptive gait recognition model with two different mobile phones. They discussed 

the impact of the sampling rate on the pre-processing steps, such as noise 

elimination, data segmentation, and feature extraction. Gait features were 

extracted from two different mobiles signals. The feature extraction and 

classification methods were used as same as in their previous work (Wolfe 2013). 

In addition, both the average error rate (AER) and intra-class correlation 

Segmentation 
Method 

Fixing 
disorientation 

Accuracy 

Fixed length No 79.53% 

Our algorithm No 
Yes 

 

84.03% 
94.93% 

Segmentation Method Accuracy 

Fixed length 3000ms 
6000ms 
9000ms 

87.88% 
87.78% 
84.73% 

Gait cycle 2 gait cycles 
4 gait cycles 
8 gait cycles 

92.26% 
94.93% 
90.94% 
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coefficients (ICC) were calculated to evaluate the probability of creating a device-

independent mechanism. They claimed that the sampling rate of 32-36 Hz was 

most appropriate to build an efficient gait recognition system, which is considered 

low. They achieved the classification accuracy of about 91.33 ± 0.67% for both 

devices. 

More recently, Hoang et al. (2015) proposed a different security and privacy gait 

authentication system on a smartphone by using the fuzzy commitment scheme. 

The fuzzy commitment scheme is one of the biometric cryptosystems aimed at 

securing cryptographic keys using biometrics. They stored a key that was 

biometrically encrypted by gait templates gathered from a mobile accelerometer 

in order to authenticate the user as an alternative of storing archetype gait 

patterns for user authentication as usual methods. The binary BCH code was 

used in this work as the error-correcting code to discriminate differences between 

biometric measurements. The system was evaluated on the dataset including gait 

signals of 34 subjects and achieved the zero- FAR and the FRR of around 16.18%. 

However, as they used a simple quantisation scheme, the achieved error rate of 

FRR was still rather high, which could affect the friendliness of the system. 

Marsico and Mecca (2015), tested different methods of walk recognition to 

investigate gait identification by utilising smartphone accelerometers. Twenty-six 

subjects were asked to fix the phone vertically in the belt, either on the right or the 

left side of the hip. The participants were then asked to keep the feet together and 

start walking by the leg opposite to the phone location and walk in controlled or 

adverse conditions. The system records ten steps along a straight line in the most 

regular way. The DTW for each axis was used for classification. They achieved a 

recognition rate above 0.95 and EER 7.69%. However, the system was so 
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controlled and constrained with a fixed number of steps in the walks. In other 

words, it was not realistic and not suited for individual mobile devices. 

The smart kiosk model was used by (Phan & Dam 2015) to research choosing 

gait item as a biometric factor, then to design a well-matched scheme for their 

smart kiosk system. There were two mechanisms in their smart kiosk system: 

continuous authentication based on gait in mobile devices, and interactive kiosk 

to afford users with facilities corresponding to their identities. 

The authors used different procedures to recognise clients from their gait 

characters and other schemes. They used Android mobile devices for real-time 

authentication. This article specified that the authentication with biometric 

structures, a source of high-entropy information, for authentication and identity 

has the following advantages: cannot be lost or forgotten, difficult to copy or share, 

hard to forge, and cannot be guessed easily. The smart kiosk system allows 

clients to access online services related to their individual identities using 

indirectly continuous gait-based recognition. The authors proposed a user 

organisation method based on gait using multiple SVM classifiers and a secure 

scheme with biometric information. Experiments with a dataset of 38 people 

presented the results accuracy of this method was up to 92.028 %. 

3.4 Discussion 

As illustrated in the previous section, gait recognition can be captured using 

different acceleration sensors embedded in devices (e.g., wearable devices and 

smartphones). Table 3-9 displays a comprehensive analysis of the prior studies 

on gait recognition systems using the mobile sensors that have been discussed 

in this literature. A thorough discussion on several key areas based on the 

information presented in Table 3-9 (including sensors, data pre-processing, 
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features, and classification) of the gait recognition within the smartphone 

environment is presented as follows: 
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Table 3-9: Comprehensive analysis of the prior studies on gait authentication systems using mobile sensors.  

Legend: T-Pocket: Trouser Pocket; Acc: Accelerometer; ML: Machine Learning, SD: Same day; CD: Cross day; CCR: Correct 

Classification Rate 

No. Author/year Device Position 
Sensor/ 
Sampling rate 

 
Segmentation 
 

Match algorithm  
# 
user
s 

   Performance Data 
Collection 
Scenario 

Walking Type 
Measure  Value  

1 (Sprager 2009) Nokia N95 Right hip Acc. /37 Hz 
Cycle-based 
 

ML 

SVM & PCA 
6 CCR 93.3% 

Normal 
walk, 
fast walk, 
slow walk 

Normal walk, 
fast walk, 
slow walk 

2 (Derawi et al. 2010) Google G1 
Right hip 
(horizontall
y) 

Acc. /45Hz 
Cycle-based 
 

DTW 51 EER 20% 
Normal 
walk 

Normal walk 

3 (Frank et al. 2010b) HTC G1 T pocket 

Acc. /25 Hz, 
Barometric 
pressure 
 

Fixed-length 
segment  

ML 
SVM &PCA 

25 CCR 100% 

Running, 
walking 
up or 
down 
stairs 

Running, walking 
up or down stairs 

4 (Frank et al. 2010a) Android phone T pocket Acc. / 32Hz  
Fixed-length 
segment 

ML 
Nearest-Neighbour 

40 CCR 100% 
Normal 
walk 

Normal walk 

5 (Kwapisz et al. 2011) 

Nexus One, 
HTC Hero, and 
Motorola 
Backflip 

Front 
pants leg 
pocket 

Acc.  
Fixed-length 
segment 

Decision Trees 
(J48), 
 Multilayer NN  

29 CCR 90% 
Normal 
walk 

Normal walk 

6 (Kwapisz et al. 2010) 

Nexus One, 
HTC Hero, and 
Motorola 
Backflip 

Front 
pants leg 
pocket 

Acc.  
Fixed-length 
segment 

 J48,NN  36 CCR 82% 
Normal 
walk 

Normal walk 

7 (Nickel et al. 2011) Google G1  
Right hip-
pouch 

Acc.  
/40 sample per 
second 

Fixed-length 
segment 

ML 
HMM 
 
 

48 EER 6.15% 
Normal 
walk 

Normal walk 

8 
(Nickel, Brandt, et al. 
2011b) 

Google G1 
 

Hip- pouch Acc. / 45Hz 
Fixed-length 
segment 

ML 
SVM 
 

48 EER 6.1% 
Normal 
walk 

Normal walk 

9 
(Nickel, Brandt, et al. 
2011a) 

Motorola 
Milestone  

Right hip-
pouch 

Acc.  Cycle-based  
ML 
SVM, HMM 

36 
 
EER 
 

10 % 
12.36% 

Normal 
walk 

Normal walk 

10 (Wolfe 2013) 
Google Android 
HTC Nexus one 
mobile  

T pocket 
Acc./27 Hz 
Magnetometer  
 

Cycle-based 
ML 
SVM, RBF 

38 CCR 94.93% 

Normal 
walk, 
Three 
types of 
footgear: 

Normal walk, 
Three types of 
footgear: sleeper, 
sandal, shoe 
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No. Author/year Device Position 
Sensor/ 
Sampling rate 

 
Segmentation 
 

Match algorithm  
# 
user
s 

   Performance Data 
Collection 
Scenario 

Walking Type 
Measure  Value  

sleeper, 
sandal, 
shoe 

11 (Nickel et al. 2011) 
Motorola 
Milestone  

Right hip-
pouch 

Acc.  Cycle-based  
 
DTW, 
Manhattan 

48 
EER 
 

21.7%, 
28% 

Normal 
walk, 
climbing 
of stairs  

Normal walk, 
climbing of stairs  

12 (Boyle et al. 2011) 
Motorola Droid 
phone  
(API) O.S 

Motorola 
Droid 
phones, 

Acc.  
Fixed-length 
segment. 

K-NN 
2 
 

CCR  
Normal walk 90%, 
Different speed. 

85%-98% 

Normal 
walk 

Normal walk 

13 
(Nishiguchi et al. 
2012) 

Smartphone 
 Body 
centre 
mass. 

Acc./ 7.68 
sample per 
second 

Cycle-based  
Spearman’s 
correlation  
coefficient 

30 - - 
Normal 
walk 

Normal walk 

14 (Nickel et al. 2012) Moto Milestone 
Right hip-
pouch 

Acc. / 127 
sample per 
second  

Fixed-length 
segment. 

ML 
HMM, SVM, k-NN 

36 EER 8.24% 
Normal 
walk 

Normal walk 

15 (Hestbek et al. 2012) 
Motorola 
Milestone 

T pocket Acc.  
Fixed-length 
segment.  

ML 
SVM 

36 EER  
 

10.45% 
 

Normal 
walk 

Normal walk 

16 (Hoang et al. 2012) Google Nexus T pocket Acc. / 27 Hz Cycle-based 
DTW  
SVM 

11 
CCR 
 

 
79.1%, 
92.7% 

Normal 
walk 

Normal walk 

17 
(Muaaz & Nickel 
2012) 

WS &Google 
G1 
Android by HTC 

Right hip-
pouch 

Acc. / 
 40-50 samples 
per second  

Cycle-based DTW 48 EER 
Normal 29.39%, 
Fast   33.81%, 
Slow  35.31% 

Normal 
walk 
Different 
walk 
speed 
and 
surface 
 

Normal walk 
Different walk 
speed and surface 
 

18 (Ho et al. 2012) Android phone - 
Acc.  
 

 Cycle-based 
 
SVM 

32 CCR 100% 
Normal 
walk 

Normal walk 

19 
(Derawi & Bours 
2013) 

Samsung 
Nexus S  

T pocket 

Acc./ 150 Hz 
Magnitude 
 
 

Cycle-based 
Manhattan distance ,  
Euclidean distance,  
 DTW  

5 
 

CCR 89.3% 

Normal 
walk, 
fast walk, 
slow walk 

Normal walk, 
fast walk, 
slow walk 

20 
(Nickel & Busch 
2013) 

Motorola 
Milestone 

Hip-pouch 
Acc.  
 Magnitude 
 

Cycle-based, 
Fixed-length 
segment. 

ML 
HMM 

48 EER 15.8% 
Normal 
walk 

Normal walk 

21 (Hoang et al. 2013) 

Google Android 
HTC Nexus 
One,  
 LG Optimus G 

T pocket  
Acc. /  
32-36Hz , 
100Hz 

Cycle-based, 
 

SVM& RBF 14                                                                                                              CCR 91% 
Normal 
walk 

Normal walk 
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No. Author/year Device Position 
Sensor/ 
Sampling rate 

 
Segmentation 
 

Match algorithm  
# 
user
s 

   Performance Data 
Collection 
Scenario 

Walking Type 
Measure  Value  

22 
(Muaaz & Mayrhofer 
2013) 

Google G1 
Right hip-
pouch 

Acc. / 
40-50 Hz 

Cycle-based 
DTW 
 

51 EER 33.3% 
Normal 
walk 

Normal walk 

23 (Watanabe 2014) IOS app. Pocket 
Acc./20 
samples per 
second 

Fixed-length 
segment. 

J48, NN, RBF, BN, 
and RF. 
  

  - 
FAR,  
FRR 
 

1.30%, 
2.34% 

Normal 
walk 

Normal walk 

24 (Ottomoeller 2014) Android phones 
Fixed on 
the waist  

Acc.  Cycle-based 

 
PLA- DTW, 
SVM, 
Gaussian  kernel 
 
 

51  
 
 

EER 
 

14% 
 

 
Normal 
walk 

 
Normal walk 

25 (Hoang et al. 2015). 
HTC Google 
Nexus one 

Pocket 
(Vertically)  

Acc. / 32 Hz 
 

Cycle-based  
 
 

 
Hamming distance 

34 
FAR, 
FRR 

0%, 
16.18 

Normal 
walk 

Normal walk 

26 
 
(Phan & Dam 2015) 

Android phones - 
Acc.  
 

Smart kiosk 
system 

 SVM  38 CCR 92.028% 
Normal 
walk 

Normal walk 

27 (Watanabe 2015) 
iOS 
iPhone 5 

T pocket,  
Shirt 
pocket  

 

Gyroscope, 
Magnetometer 
/20 sample per 
second 
 
 

Fixed-length 
segment 

 
NN  

8 
 

CCR 94.44% 
Normal 
walk 

Normal walk 

28 
(Marsico & Mecca 
2015) 

One pulse 
smart phone 

 
Right 
pouch, 
Left pouch 
(vertically) 

Acc.  
Fixed-length 
segment 

DTW  26 EER 
10.46% 

 

Normal 
walk 
Different 
shoes no 
high heel 

Normal walk 
Different shoes no 
high heel 
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The majority of studies have used a fixed position to collect gait data. The 

smartphones were attached to the person's hip or trouser pocket. This position 

turned out to be the most appropriate for the cell phone users and performed 

better when the orientation of the device remained constant throughout the 

transition between activities (France 2014). As such, many studies have required 

the attachment of the device in a known position on the human body. However, 

this is not the normal behaviour of individuals in the real world, who may place 

their mobile devices casually and even randomly (e.g., put their mobile phones 

on the desk). 

Sensors that were used in early studies were limited; in comparison, current 

smartphones contain various sensors, such as accelerometers, gyroscopes, 

magnetometers, rotation sensors, and GPS receivers. Amongst these sensors, 

no study has been carried out using GPS information despite the fact that it can 

reveal critical location information that might aid in the decision-making process. 

This might be because GPS was not available on those devices. Nonetheless, 

GPS may be helpful to provide further context for identifying more activities, such 

as doing sport in a gym and driving to work. The triaxle motion-based signal can 

be obtained using accelerometers or gyroscopes. Both of them seem to provide 

the same information. Previous studies have primarily concentrated on using 

accelerometers alone. By using the data from two sensors or more, the 

performance and accuracy are expected to be better than using a single sensor. 

However, it remains a challenge for real-world applications imputable to data 

reliance on sensor placement (i.e., the device position may be influenced by many 

factors such as height and angle of the pouch, as well as its stability). Hence, 

there is little research that has used multi-sensors.  



94 

 

In terms of pre-processing the gait data, most of the studies applied one of the 

following two methods: cycle extraction and segmentation. In cycle-based, the 

gait is supposed to be a periodic signal in which each gait cycle begins as soon 

as the foot touches the ground and finishes when the same foot touches the 

ground for the second time (i.e., two steps of a human). Many studies depend on 

the cycle-based approach (Derawi et al. 2010; Nickel et al. 2011; Muaaz & Nickel 

2012; Muaaz & Mayrhofer 2013; Hoang et al. 2015), and generally, the accuracy 

results of using the cycle-based method are relatively low. In the best cases, they 

achieved a 16.18% EER. These high error rates mostly result from using the 

cycle-based approach, which suffers from some drawbacks, such as finding the 

best approach to specify the start and endpoint of each cycle. Moreover, the cycle 

can be irregular (i.e., vary in length and width following different user speeds). 

Hence, unclear boundaries between two cycles result in the possibility of cycle 

extraction failure methods and increases the error rates. In comparison, the 

segmentation-based approach divides the gait data into fixed time-length 

windows. A time-window approach is considered uncomplicated and more 

comfortable to apply than a cycle-based method. In spite of the simplicity of the 

segmentation approach, it seems to be the most commonly used by studies 

(Nickel et al. 2011; Nickel, Brandt, et al. 2011b; Nickel & Busch 2013; Watanabe 

2014; Watanabe 2015). It can be noted that the segment-based approach 

provides better performance in comparison to the cycle-based method (e.g., the 

worst EER achieved was about 10%).  

Concerning features, two main approaches can be used to extract information 

from the acceleration signal; the statistical features and cepstral coefficient 

features from a fixed-size window could achieve better results. The statistical 

features, such as Std, Min, Max, Mean, and RMS, were used by (Nickel, Brandt, 
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et al. 2011b; Sprager & Zazula 2011; Nishiguchi et al. 2012). The cepstral 

coefficient features, which have already been used and have had great success 

in speech recognition and speaker identification systems, have shown promising 

results in gait recognition, such as Mel-frequency cepstral coefficients (MFCCs) 

and Bark-frequency cepstral coefficients (BFCCs)(Nickel, Brandt, et al. 2011a; 

Nickel & Busch 2013; Hestbek et al. 2012). In order to construct more 

sophisticated feature vectors and better recognition, some studies merge both 

types of features (i.e., statistical and cepstral coefficients) (Nickel, Brandt, et al. 

2011b; Nickel 2012; Hestbek et al. 2012). More features often provide better 

performance and accuracy. However, consideration must be given to take into 

account the length of the feature vector and, subsequently, the processing power 

and memory that will be needed, especially when the whole biometric process 

may exist in the smartphone. 

For the matching algorithms, they can be classified into the following categories: 

cycle based (TM) and fixed time windows (ML). The gait cycles correspond to two 

steps of a human and, based on pattern similarity estimation, usually rely on 

simple metrics that measure dissimilarity of compared gait patterns, including 

Manhattan and Euclidean distance (Derawi & Bours 2013). Besides simple 

metrics, advanced metrics are commonly used such as DTW or DTW-derived 

metrics (Derawi et al. 2010; Nickel et al. 2011; Marsico & Mecca 2015), principal 

component analysis (PCA) (Sprager & Zazula 2011), or the cyclic rotation metric 

(CRM) (Nickel et al. 2011). However, these classification algorithms achieved 

high EERs ranged between (19%- 33%). The high error rate may be consequent 

to the complicated nature of cycle extraction. Gait signal is assumed to be 

periodic, and the mobile base signal is very noisy and commonly influenced by 

many factors (i.e., device orientation, type of the sensors, and many other 
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environmental factors). Also, the cycle changes according to the person's speed 

(i.e., cycle length varies according to walking speed). Then each separate gait 

cycle length will need to be normalised, and this increases the computational 

effort. This indicates these algorithms do not operate well with different walking 

templates and behavioural biometric techniques in general because of fluctuating 

human behaviour. Therefore, it is more suitable to collect multiple templates for 

different days and apply advanced algorithms as in the recent studies that utilised 

the prominent approach for comparison of feature vectors, such as machine 

learning algorithms that are well established in other pattern recognition domains 

such as speaker recognition (Nickel, Brandt, et al. 2011a). These promising 

approaches include neural networks, k-NN, HMMs classifier, SVM, and the 

Gaussian mixture model (GMM) classifier (Ottomoeller 2014) (Kwapisz et al. 

2010; Kwapisz et al. 2011; Watanabe 2014; Watanabe 2015)(Boyle et al. 2011; 

Nickel et al. 2012)(Nickel, Brandt, et al. 2011a; Nickel et al. 2011;(Sprager 2009; 

Frank et al. 2010b; Nickel, Brandt, et al. 2011c; Nickel, Brandt, et al. 2011a; 

Hestbek et al. 2012; Hoang et al. 2012; Muaaz & Nickel 2012; Ho et al. 2012; 

Hoang et al. 2013; Muaaz & Mayrhofer 2013; Phan & Dam 2015). Many 

classification techniques from the WEKA data mining suite (decision trees (J48), 

neural networks, Bayesian network (BN), random forest (RF), RBF) were also 

used by (Kwapisz et al. 2010; Kwapisz et al. 2011; Watanabe 2014; Watanabe 

2015). Generally, they achieved better accuracy. So, it can be noticeable from 

the previously conducted evaluations that the recognition rates obtained from 

segments based are better than those of cycle-based. As gait is assumed to be 

periodic, each time segment is reasonably expected to contain similar signal 

features. This approach requires fewer computational operations than cycle-

detection and thus is more suited to use with mobile devices. Moreover, irregular 
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cycles and unclear boundaries between two cycles result in the possibility of cycle 

extraction failure methods and increase the error rates in these methods.  

Regarding the experiment setup, three configurations can be applied: whether 

enrolment and probe data are collected on the same day, on different days (i.e., 

cross-day scenario when the acceleration signals obtained on the first day are 

used for training and the signal obtained from the second day are used for testing), 

or if the database consists of data of two different sessions but enrolment and 

probe data are taken at least partly from the same session (mixed-day). Analysing 

these three setups gives the possibility of evaluating the impact of template 

ageing on the recognition results. The cross-day performance represents the 

most realistic results because in real-life training and testing data are from 

different days. However, the cross-day results are much lower than the same-day 

results. Furthermore, there is no common standard on how to collect the data sets’ 

subject of experiments regarding the number of walk sessions, distance, speed 

and the time of the dataset measured in different ways such as seconds, minutes, 

hours, and days for each subject.  

Prior literature has shown the accelerometer-based biometric gait recognition is 

still a new field of research and the majority of researchers were focused on the 

evaluation of using test data recorded under laboratory conditions (i.e., “assumes 

the fact that natural and unaffected gait has been performed during the 

measurement” (Sprager & Juric 2015)), containing just walking straight on a flat 

floor ((Mohammad Omar Derawi et al. 2010; Nickel, Brandt, et al. 2011c; Nickel 

et al. 2011; Boyle et al. 2011; Nishiguchi et al. 2012; Nickel et al. 2012; Hestbek 

et al. 2012; Hoang et al. 2012; Ho et al. 2012; Nickel & Busch 2013; Hoang et al. 

2013; Muaaz & Mayrhofer 2013; Ichino et al. 2013; Hoang et al. 2015; Phan & 
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Dam 2015). The reported EER ranged between 6% and 20%, and the reported 

FRR ranged between 6.33% and 10.29%. The recognition rate ranged between 

79% and 100%. 

In contrast, less focus has been given to several studies proposing partly realistic 

strategies, such as different walking speeds (normal, fast and slow) (Sprager 

2009) and the impact of different surfaces (ground, stones plates, gravel, grass, 

etc.) and different shoes (Sprager & Zazula 2011; Muaaz & Nickel 2012; Wolfe 

2013). Also, researchers have studied the effect of holding the phone in different 

places (Watanabe 2014; Ottomoeller 2014; Watanabe 2015). Finally, in terms of 

researcher concentration, the realistic activity can be considered a very new and 

limited approach such as climbing stairs, jogging, running, sitting, standing, 

opening the door and walking around corners (Frank et al. 2010b; Frank et al. 

2010a; Kwapisz et al. 2010; Kwapisz et al. 2011; Nickel et al. 2011; Derawi & 

Bours 2013). However, the reported EER fluctuated because of the noisy data 

resulting from the influence of different conditions. Moreover, the participants 

were joined with an observer who recorded the labels as the activities were being 

performed, which was considered non-realistic.  

3.5 Conclusion  

In recent years, several studies have focused on smartphone-based biometric 

gait authentication. It should be noted from the above literature review that there 

has been a dramatic improvement in their level of performance. This improvement 

accrued as a result of the development of smartphone devices with built-in 

sensors and constructing more sophisticated feature vectors and better 

recognition algorithms (e.g., artificial algorithms). Thereby, they prefer better 

recognition. It appears from the investigations mentioned above that the 
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accelerometer-based biometric gait recognition is still a new field of research and 

most attention has been paid to the evaluation of using test data recorded under 

laboratory conditions. Limited studies have used an actual commercial mobile 

device to collect realistic data for variant gait signal such as climbing stairs, 

jogging, and running. Also, most of the studies used only the accelerometer 

sensor and very little works utilised two sensors. However, no research has been 

found that seeks to employ additional information in the process (such as GPS or 

weather info) to advance the state of knowledge and enable a better decision-

making process. Furthermore, we have seen, in previous work, their experiments 

were (same day, cross day, and next day) with a limited number of users and 

restricted datasets. In simple comparison, none of the previous systems had 

attempted to cover a wide variety of data sets in seven consecutive days a week 

(i.e., study the potential for the general use in realistic circumstances).  
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4 Research Methodologies 

4.1 Introduction 

The use of gyroscope and accelerometer signals for gait authentication was 

investigated to provide an empirical basis for supporting its use in transparently 

authenticating users. The feasibility of using a wearable mobile device has 

increased because of increased demand for smartphone devices; however, the 

majority of previous studies were applied within a highly controlled environment 

(i.e., a present set of activities for the participant to undertake, such as walking 

on a flat floor at their normal pace). While this approach is suitable when first 

evaluating whether an approach has merit (i.e., discriminate information exists), 

it does not reflect the type of use one might expect in practice with a large number 

of variables playing a role that could impact the reliability of the approach. Very 

few studies have used actual commercial smartphone devices to collect real data 

for gait recognition (i.e., suffered from the absence of real-world datasets, which 

lead to verifying individuals incorrectly). In those studies that have, the volume of 

data and number of participants have been minimal. Therefore, the PhD research 

was focus on getting data that is richer and more experiential in terms of real-life 

experiences (i.e., free (uncontrolled) conditions) to assist in improving the validity. 

However, there is concern that real live data will be very noisy - it was the critical 

reason previous studies have focussed on particular well-defined activities. To 

assist, two main experiments were conducted: 

 Control conditions experiment to largely duplicate previous studies; this 

helped to provide a baseline understanding performance and aid in direct 

comparison to the prior art. Multiple gait-based activities were collected in a 

controlled and separate manner (such as normal and fast walking speed, 
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climbing up and down stairs, and carrying a bag in different days). These 

activities have been identified from the analysis of the prior art. The research 

examined a variety of activities (i.e., five types of walking activities) rather 

than doing a subset, to offer the opportunity to learn the users’ walking 

behaviour across more realistic scenarios than simply walking under 

laboratory conditions. Consequently, this will help to determine how gait 

works in a wider set of activities, as the prior work was limited in that sense. 

This was framed into two phases. The first explored the classification 

performance of individual activities to understand whether a single classifier 

or an activity-based classifier (multi-algorithmic approach) would provide a 

better level of performance. The second phase explored the features vector 

(comprising of a possible 304 unique features) to understand the variability 

of feature vectors during differing tasks (walking with variable speed, stairs) 

across same and multi-day collections.  

 An uncontrolled conditions experiment duplicated the control experiment 

phases with an entirely different data set. Real-life data was used to evaluate 

how well the approach works in practice. The first phase of the research work 

(activities identification), a human physical motion activity identification model, 

was built to classify a given individual's activity signal into a predefined class. 

A model was designed for identifying four types of unlabelled activities 

depending on the controlled experiment samples for each activity. These 

samples provided the basis for training multiple reference templates for each 

user, each template containing a specific gait activity. 

This chapter represents the following novel and investigated aspects of this study: 

 Gathering the largest controlled dataset containing different gait activities of 

60 users over multiple days.  
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 Gathering a unique real-life dataset covering unconstrained data over seven 

days for 44 users.  

 Discussing the devices and the software that are employed; methodologies 

were used to collect the datasets and categorise them.  

 Focusing on the method of preparing the data to support the experiments 

mentioned above. 

 Highlighting related work in the area of human activity identification using 

mainly smartphone sensors. 

 Explaining the activities identification model. 

 Investigating of the feature vector, time, and frequency domains feature 

vector extraction and dynamic section feature technique. 

 Exploring the multi-algorithmic approach for classification. 

 Introducing novel techniques that mainly focus on utilising the use of real-life 

uncontrolled data. 

4.2 Research Methodology  

Choosing and deciding on the research methodology is important as this leads to 

finding the correct answers for research questions accurately and precisely. 

Conversely, inadequate selection leads to an inaccurate response to research 

questions and queries. Generally, there are four research methodologies: 

quantitative, qualitative, pragmatic (mixed approach), and the 

advocacy/participatory approach (Morgan 2007). 

 Qualitative research includes collecting and altering or converting data into 

numerical values. Therefore, a statistical scheming can be made and 

conclusions strained. This method has a process in which the researcher has 

to present one or more hypotheses. Hypotheses are questions researchers 
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want to address; they include guesses around possible relationships between 

the elements that need to be investigated (variables). Data are posed by 

various means following a firm procedure and organised for statistical 

analysis. For instance, there are online surveys, mobile surveys, paper 

surveys, face-to-face conversations, telephone interviews, longitudinal 

studies, online elections, and systematic observations (Creswell, 2013). 

Objectivity is very significant in qualitative research. Accordingly, researchers 

take reasonable care to avoid their occurrence or presence, behaviour or 

attitude from influencing the results.  

 Quantitative research is typically related to the positivist/post positivist pattern. 

It is mainly investigative research, and it is used to achieve an understanding 

of essential reasons, opinions, and motivations (Given, 2008). Quantitative 

analysis is usually related to the social constructivist model, which highlights 

the socially constructed nature of reality. This approach is used to measure 

the problem by way of producing numerical data or data that could be 

transformed into statistics. It is used to quantify attitudes, opinions, 

behaviours, and other defined variables and generalise results from a large 

population sample  (DeFranzo, 2011). This method is about recording, 

investigating, and trying to uncover the hidden connotation and consequence 

of human behaviour and experience, with conflicting beliefs, behaviours and 

emotions. Researchers using this method are concerned with acquiring a rich 

and complex understanding find tolerant of people’s knowledge and not in 

gaining information that could be generalised to other larger groups (e.g., 

individual interviews and participation/observations).  

 The pragmatic research approach accepts ideas to be relevant only if they 

support action. Pragmatics “recognise that there are many different ways of 

https://www.snapsurveys.com/online-surveys/
https://www.snapsurveys.com/mobile-surveys/
https://www.snapsurveys.com/paper-surveys/
https://www.snapsurveys.com/paper-surveys/
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interpreting the world and undertaking research, that no single point of view 

can ever give the entire picture and that there may be multiple realities” 

(Saunders, Lewis, & Thornhill, 2012). It involves using the method that looks 

best suitable to the research problem and not getting trapped up in 

philosophical arguments about which is the best approach. 

 The advocacy/participatory approach is sometimes called (emancipatory) 

researchers adopting “an advocacy/participatory approach feels that the 

approaches to the research described so far do not respond to the needs or 

situation of people from marginalised or vulnerable groups. As they aim to 

bring about positive change in the lives of the research subjects, their 

approach sometimes described as emancipatory” (alzheimer-europe.org, 

2009). 

The qualitative approach is utilised as a primary method in this research; 

furthermore, the participants in this study were comfortable with this approach. 

To achieve experiments mentioned above effectively, two types of procedures 

were conducted: a control experiment that investigates different classifier 

strategies and real-life user’s gait signal; both kinds of datasets were collected 

locally from the mobile device itself. Users’ gait signal was continuously gathered 

from the accelerometer and gyroscope as long as the user walked or was doing 

his/her different types of gait activities. This mainly aimed to explore the following 

related aspects.  

 Understanding the performance of gait recognition under both controlled 

and uncontrolled environments. 

 Investigation of the feature vector and its impact on performance.  
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 The comprehensive set of activities to understand how gait recognition can 

operate and how better performance could be achieved across a complete 

set.  

4.3  Technology Assessment 

As clarified from previous studies presented in the literature review survey, Table 

3-9, sensors that were used in early studies were limited. Amongst these sensors, 

very limited studies were carried out using the gyroscope information, despite it 

being able to reveal additional details and more features that might aid in the 

decision-making process. This study used accelerometer and gyroscope 

readings to explore the efficiency of these two sensors within the Transparent 

Authentication System (TAS). Accelerometers measure linear acceleration, 

which is a different physical measurement from the device orientation rate 

measured by gyroscopes (Heng et al. 2014). 

To select an appropriate smartphone and application, this should be installed on 

the mobile phone for the data collection phase. Two phones were considered: the 

Samsung Galaxy S6 (32GB) smartphone and the Motorola G5 Inch 13MP (8GB) 

Android mobile phone, as a result of the wide range of built-in sensors (e.g., 

accelerometers, gyroscopes, barometers, gesture sensor, GPS, heart rate 

monitor, and proximity sensor) (Carphone warehouse, 2018). In addition to its 

lighter weight with more significant storage that is enough to extract the real gait 

signals for seven to fourteen days, the Samsung Galaxy S6 smartphone was 

employed to gather individuals’ data. Seven third-party applications were 

evaluated in order to select the most suitable one for the gait signal acquisition. 

Table 4-1 shows the tested software that was reviewed after theoretical 

examination of several days experiment with sensors data that could be extracted 

by a mobile application when installed on the smartphone. 
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1 Accelerometer Yes Yes Yes Yes Yes Yes Yes 

2 Gyroscope Yes Yes Yes Yes Yes Yes Yes 

3 GPS Position Yes No Yes Yes Yes Yes No 

4 Orientation  No Yes No Yes No Yes Yes 

5 Gravity  No Yes Yes Yes No Yes Yes 

6 Magnetometer Yes Yes Yes Yes Yes Yes Yes 

7 Pressure  Yes Yes No Yes Yes Yes Yes 

8 Light sensor  Yes Yes Yes Yes Yes No No 

9 Relative 
humidity  

Yes Yes No Yes No No Yes 

10 Temperature Yes Yes No Yes No No Yes 

11 Proximity Yes Yes Yes Yes Yes No No 

12 Elevation Yes No No No No No No 

13 Speed Yes Yes No No Yes No No 

14 Sound No No No Yes Yes No No 

Table 4-1: The tested software with sensors that could be extracted by the 

smartphone 

From the table, the accelerometer, gyroscope, GPS position and orientation 

sensors were the most important for the research. The accelerometer and 

gyroscope were the main sensors for extracting the gait signal. The orientation 

was the physical position of the mobile phone, which was used to determine the 

position of the phone in the pouch or pocket. GPS can be used for the context-

awareness purpose. Figure 4-1 shows that the Sensor Tracker, Galaxy Sensor 

Explorer and AndroSensor which were used to gather information from most of 

the sensors. Nonetheless, the Galaxy Sensor Explorer does not have GPS 

positioning; therefore, the Sensor Tracker, and AndroSensor were considered for 

use.  
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                                                (a)                                     (b)      

   Figure 4-1: (a) and (b) show Sensor Tracker and AndroSensor, respectively 

The AndroSensor resolution was higher than the Sensor Tracker for the 

gyroscope and accelerometer. Additionally, this application was developed to 

record the biometric gait samples from the sensors and store them in comma-

separated value (CSV) format on the participants’ devices’ local storage in order 

to analyse them later. Therefore, the AndroSensor smartphone application was 

adopted in order to be installed on smartphone devices for the research data 

collection process.  

The Google Android OS was employed, as it is open-source and easy to use. 

Both an Android Samsung Galaxy S6 smartphone and the ‘AndroSensor’ 

application were able to capture reliably the related signal information required 

for a real data collection; therefore, it was decided to use the mentioned device 

and app. There was no need for any modification on the device’s OS/applications 

before, during, or after the collection of data because the software collected the 

data most satisfactorily. To start recording sensor data, the participant merely 

needed to click on the application ‘AndroSensor’, swipe their finger, and tap the 

record button to started recording then end the recording by the end of the day. 



108 

 

4.3.1 Preliminary Testing  

Prior to the engagement in activity application, the application was installed on 

the smartphone to examine the application functionalities. Three participants 

were asked to walk normally on a predefined route (along a flat corridor). The 

accelerometer and gyroscope signals were continuously collected during his/her 

walking to investigate the signals extracted from the mobile device using the 

software installed. From the graphical representation of the signals derived from 

the accelerometers X, Y, and Z-axis and the gyroscope’s X, Y, and Z-axis, they 

show a good level of discrimination between the three users that participated as 

illustrated by Figure 4-2 and Figure 4-3.  

 

Figure 4-2: Illustrates the accelerometers X, Y and Z-axis signals of three users 
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Figure 4-3: Illustrates the gyroscopes X, Y and Z-axis signals of three users 

After testing the functionality and reliability of the mobile and the software signal 

for both the accelerometer and gyroscope sensors and guaranteeing that the 

application was working correctly and as required, ethical approval was attained 

from the university’s research ethics committee (Appendix A), and participants 

were needed and invited by sending emails through Plymouth University’s 

internal communication and the Plymouth Conservatoire web page to collaborate 

in this biometric data collection experiment. 

In order to enable analysis, the targeted total number of themes was 60 for the 

control experiment and 44 for the uncontrolled experiment, as a minimum which 

was considered a satisfactory baseline grounded on other preceding research 

using similar sample sizes. The participants were instructed about the 

environment of this research, which was monitored by giving them the agreement 
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form at the beginning of the examination (Appendix B) should the participant wish 

to complete the investigation.  

4.4 Control Conditions Experimental Methodology 

In addition to the primary research objectives, the researcher mainly aimed to 

explore the following related aspects with the controlled dataset: 

1. Evaluate the performance of gait recognition across a wide range of 

walking activities;  

2. Investigate the reliability of both accelerometer and gyroscope sensors; 

3. Investigate the effectiveness of time and frequency domains-based 

features on system performance; 

4. Explore the impact of dynamic feature selection techniques and the value 

of the feature space on the performance for different activities; 

5. Investigate whether a multi-algorithmic approach is more viable than a 

single classifier approach; 

6. Investigate the impact of static vs dynamic feature vectors; 

7. Investigate the most discriminative features of each activity; 

 

Aiming to contribute to the field of smartphone security, a comprehensive 

evaluation of users’ gait biometric signal across a wider range of user walking 

activities has been conducted. The research examined a variety of activities to 

offer the opportunity to learn the users’ walking behaviour across more realistic 

scenarios than simply walking under laboratory conditions. Consequently, this will 

help to know how gait works in a wider set of activities, as prior work is limited in 

that sense. 
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To create and evaluate the effectiveness of a more significant feature vector, the 

research provided a complete evaluation, including an analysis of motion sensors 

(accelerometers and gyroscopes). An investigation and analysis of the 

effectiveness of the time and frequency domain features on the system 

performance, understanding the variability of feature vectors during differing 

tasks (walking with variable speed, stairs) across same and multi-day collections 

were conducted. Furthermore, the impact of the dynamic feature selection 

technique (i.e., the dynamic feature vector contains the most distinctive features 

for each user) was explored, which successfully reduced the feature vector size 

and enhanced the performance for different activities. 

This is framed into two experiments involving five types of activities: normal, fast, 

with a bag, downstairs, and upstairs walking. The five activities were derived from 

an analysis of prior work. These activities have been identified and rather than do 

a subset, we did all the five activities. However, no other studies have ever done 

that. Firstly, the motion sensor analysis experiments focused on the classification 

performance of individual activities against all through using a multi-algorithmic 

approach to classify individual activities (separate the classifiers depending on 

activities), and then a combination of all activities was verified. Secondly, the 

feature vector experiment was focused on discovered the feature vector 

(comprising of a possible 304 unique features) to understand how its composition 

affects performance. 

To collect a more distinctive walking style, the phone must be placed close to the 

body. Otherwise, much noise might be collected randomly (Muaaz and Mayrhofer, 

2015). Accordingly, people need to always wear trousers with “not-too-loose” 

front pockets. On the other hand, the controlled experiment was in two days and 

a real-life test was carried out for seven days, including the weekend and the 
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participants needed to be free to choose clothes. Consequently, one of the more 

practical ways was that the smartphone needed to be put in the belt pouch around 

the waist ‘upside-down facing the body’ while the data was continuously collected 

during their movements, as shown in Figure 4-4 (a) and (b). That guaranteed the 

devices were always placed in a fixed place and orientation. 

 

(a)                                                        (b) 

Figure 4-4: (a) and (b) the phone is placed in the right or left belt pouch and its 

orientation  

4.4.1 Data Collection  

During the data collection process, users were asked to walk normally, fast, and 

normally with a bag on a predefined route (along a flat corridor) for a period of 

three minutes for each activity; this was followed by walking downstairs for three 

levels and upstairs for the same three levels, which resulted in a total number of 

126 steps (63 for each direction). Between each activity, the participants were 

asked to stop for 15 to 20 seconds to rest, as well as to later separate the 

generated signals into their corresponding activities. As illustrated in Figure 4-6, 

the period of inactivity can be seen visibly between two activities as a more or 

less flat line. For a more realistic scenario, the participant had to stop in order to 
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open the door and walked along the corridor back and forth many times for three 

minutes for walking, faster walk, walking with a bag, downstairs and upstairs 

activities. Ten sessions of activities were collected per user: five sessions were 

from one day, and the other five sessions were collected a week later. The users 

were free to change their footwear and clothes for the second day’s data 

collection. In total, 60 users participated in the data collection exercise. Soft 

biometrics (i.e., age, gender, height, weight) were gathered in addition to gait 

pattern behavioural characteristics; 35 participants were male, and 25 

participants were female, and they were aged between 18 and 56. The 

participants’ weight was between 42-101 Kg and height between (145-187) cm. 

The age and gender demographics of the users are shown in Table 4-2 below. 

Age 

(years) 

<20    21-30 31-40 41-50 51-60 Total 

No. 
Male 3 6 20 3 2 34 

Female 3 11 8 4 0 26 

Table 4-2: Age and gender distribution of participants 

The accelerometer and gyroscope gait data were recorded along the x, y, and z-

axis, respectively; this means that six different signals were captured for the 

chosen activities. Figure 4-5 shows the accelerometer and gyroscope x-axis 

signals being generated from the following activities, normal, fast, with a bag, 

downstairs, and finally upstairs walking.  
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Figure 4-5: The Accelerometer and gyroscope raw gait data recorded along X-

axis 

Upon completing the data collection process, user’s activities were divided into 

five files for each activity (namely: normal walk, fast walk, walk with a bag, 

downstairs walking, and upstairs walking) as explained in Section 4.4.1.1 below. 

Then the tri-axial raw accelerometer and gyroscope signals were segmented into 

10-second segments by using a sliding window approach with no overlapping. As 

a result, 74 samples were collected for each user per day. In total, 8,880 samples 

were collected for the entire control conditions dataset (60 users, across two days) 

as shown in Table 4-3. 

Activity Type # Samples 

Normal 2,640 

Fast 2,640 

Carrying a Bag 2,640 

Down Stairs 480 

Upstairs 480 

Total Samples 8,880 

Table 4-3: Activity states for all users across two days 



115 

 

To validate the effectiveness of the created features for authentication methods, 

the datasets were collected in two scenarios; same-day (SD) and cross-day (CD). 

In the SD scenario, the dataset split in 60-40: 60% of the data was used for the 

classifier training and the remaining 40% was utilised for testing. In the CD 

scenario, the first-day data was used for training and the second-day data was 

used for testing. For each scenario, all users’ gait activities were treated as a 

single dataset; then each activity was studied individually (i.e., a multi-classifier 

created to every single gait motion type (e.g., walking, running, walking with a bad 

etc.)), as shown in Figure 4-6. 

Activities 
Labilling

 Normal 
walk

Fast walk

W/Bag

Down Stairs

Upstairs

Segmentation Feature Extraction Classification

Segmentation Feature Extraction Classification

Segmentation Feature Extraction Classification

Segmentation Feature Extraction Classification

Feature Extraction ClassificationSegmentation

Decision

Decision

Decision

Decision

Decision

All 
Activities

Segmentation
Feature Extraction

Classification
Decision

 

Figure 4-6: Authentication Process Systems. Each activity investigated 

individually then all users’ gait activities were treated as a single dataset 

4.4.1.1  Activity labelling  

After the data collection phase, the user’s gait signal log file was extracted from 

the mobile phone and then divided into five activity files in the CSV format for 

further data processing and analysis. As shown in Figure 4-5, the signal pattern 

of the chosen five activities is clearly different from the pattern of the standing 

activity. As a result, the setting was three minutes as an initial time for each 

activity and the space of standing period among them (i.e., 20 seconds). An 
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algorithm for activity extraction was devised. The algorithm read and analysed 

the (.CSV) file depending on activity time and the break was started with setting 

up an activity type parameter to 1, then for each file there was a loop to read one 

record and save the record with the current data file during the time in a range of 

activity. Otherwise, go to the next file and stop the current step and as in break 

time will keep reading the main file without saving record until break time finish; 

followed by saving and close the existing file. The algorithm kept doing the same 

process for the next activity types until the end of the (.CSV) data. 

4.5 Uncontrolled Condition Experimental Methodology 

The research also sought to explore how users’ gait signal was intelligently 

utilised for authentication for real and live free use of the mobile device. 

Accordingly, the work aimed to explore the following related aspects with 

uncontrolled conditions dataset: 

1. Explore the accuracy of the user authentication designed model by 

analysing real-life mobile sensor signals; 

2. Investigate the impact of static vs dynamic feature vectors;  

3. Investigate the most discriminative features of each activity;  

4. Evaluate the performance of gait recognition across different walking 

activities identify from a real and live unconstrained use of the smartphone 

signal;  

5. Investigate whether the multi-algorithmic approach is more viable than a 

single classifier approach through real-life use; 

6. Highlight the influence of the majority voting technique on system accuracy; 

 

The eventual aim of uncontrolled (real-life) gait recognition research work is to 

shape a new approach to transparent authentication. The majority of the previous 
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transparent authentication system (TAS) outlines based on controlled 

environment data (i.e., not real-world data). Also, it is envisaged that the real 

practise and system performance might differ from those that are obtained under 

controlled environments and limited numbers of users, samples, and prearranged 

tasks. Consequently, conducting an extensive evaluation for the previous work 

would be ideal for the research to build on. Thus, it would be wise to clarify the 

control study with live usage and unrestricted data, and a bigger dataset and 

number of participants to investigate and understand the actual performance in 

practice with real-world dynamic data. Furthermore, the findings from the 

unrestricted experiments could provide more accurate and fair insight into the 

performance evaluation. 

A data gathering process was required to create a real dataset with a reasonable 

number of people during real-life gait activities (i.e., completely free activities) 

over a significant period. The hardware and software that were used for collecting 

user’s gait data in the real-life environment were the same as the ones utilised for 

a controlled environment (described in detail in 4.3). The individuals’ gait samples 

were collected continuously and transparently and stored on their devices’ local 

storage. In total, seven days of user gait data were collected as the amount of 

unconstrained data over seven days was deemed to be sufficient and the 

relatively shorter timeframe could have attracted more participants to take part in 

the data collection exercise. Five smartphones were purchased; that means five 

users participated at a time. The average days of data collected were seven days 

per user. Accordingly, the approximated time taken for data collection from 44 

users was nine weeks. 

Participants were not given any specific task to carry out during the seven-day 

experiment period. Moreover, no particular constraints or conditions were 
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specified, so data was collected in an uncontrolled manner. That was confirmed 

to be followed to guarantee meeting the stated requirements of the aimed 

dataset being a real picture of natural practice patterns. Accordingly, once 

participants accepted the consent, the application was installed on Android 

smartphones and given to them with the belt pouch. The gait biometric data 

samples were captured and stored as CSV files on the local storage of 

participants’ smartphones. The users were also asked to synchronise their 

smartphones with the Dropbox cloud storage service to share the data 

automatically.  

4.5.1 Real-World Data Collection  

In the uncontrolled condition experiment, the real-life data was used to evaluate 

how well the experiment one approach worked in practice. It was anticipated that 

the use of gyroscope and accelerometer signals without additional information 

would be sufficient for reliable authentication. 

As mentioned in Section 4.4, the control conditions experiment investigated the 

performance of transparent gait verification. However, this experiment used the 

identical experimental setting because it was believed that these parameters and 

classifiers may differ when they applied in such a dataset of real and uncontrolled 

live usage data with all illuminated varying conditions (changing clothed and 

shoes, in a rush, carrying luggage, running because of poor weather, exercising, 

to name but a few). 

A user purely needed to put the smartphone in the belt pouch while his/her data 

was continuously collected at a rate of 30-32 samples per second for the x, y, 

and z-axis of both the accelerometer and gyroscope sensors. They were asked 

to start recording by the ‘AndroSensor’ application every day and to stop 
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recording by the end of the day, for the purpose of automatic data sharing and 

storing the data daily in cloud storage services in .CSV file format, which 

contained raw and sensor data. The user’s needed to synchronise with a cloud 

storage application service (e.g., Dropbox). If the transfer failed for any reason, 

it will be retried the next time.  

Then the uncontrolled tri-axial raw accelerometer and gyroscope signals were 

segmented into 10-second segments by using a sliding window approach with 

no overlapping as provided in 4.6 (signal pre-processing). Then a significant 

feature vector of time and frequency domains were extracted and analysed for 

both motion sensors. Afterwards, a predictable model was designed that was 

able to classify a given individual’s activity signal into a predefined class 

belonging to, based on the features extracted from the raw sensor data collected 

from the control environment, as training data (e.g., normal walk, fast walk, walk 

with bag, downstairs, upstairs, and sitting). 

The previous controlled experiment hypotheses were duplicated with real-life 

data over a significant period. It was almost replication to what was done before 

but using an utterly different dataset. In other words, exploring to what extent the 

multi-algorithmic approach and variability of feature vectors (dynamic feature 

selection technique) during differing tasks (walking with variable speed, stairs) 

were reliable compared to the single classifier approach. 

4.5.2 Activity Identification          

The purpose of smartphone-based activity recognition is analysing the 

continuous inertial sensor data and identifying the actions carried out by a person 

(Poppe 2007). The activity recognition procedure has become a vital process in 

determining what activity a user is doing while the people perform a different set 
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of activities in various environments, whether in laboratories and in real life. The 

raw signal of the inertial smartphone sensors (in the controlled or uncontrolled 

real-life settings) was employed for recognition of human life activities.  

In this research, the activity recognition process was essential to classify different 

gait activities from the real-life smartphone signal. Therefore, a process was 

required to be able to identify what activity a user was doing to enable the 

selection of the correct classifier. This improved the potential to develop more 

specialised activity-based classifiers (multi-algorithmic approach). Consequently, 

predictable data modelling was built to classify a given individual’s activity signal 

into the predefined class it belongs to, based on the features extracted from the 

raw sensor data (in this study, normal walk, fast walk, walking with a bag, 

downstairs, upstairs, and sitting). That was used in the advanced authentication 

phase.  

The activity identification model was shared with another researcher, including 

preparing the data, the pre-processing steps, time and frequency domains feature 

vector extraction, and the activity identification model. 

4.5.3 Activity-Based Recognition  

It is evident from the literature in Table 4-4 that for activity identification prior 

research has suggested various approaches to identifying different activities. 

However, these latest studies amongst the others were evaluated based on using 

mainly smartphone sensors, so most of the systems experimented on same-day 

data, a small number of users, short durations, specified tasks, and controlled 

environments. Moreover, to the best of the author’s knowledge, there is an 

apparent lack of realistic data, which was considered a significant barrier that 

prevented applying activity recognition in practice. Therefore, this study presents 
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a real-world unconstrained environment over a reasonable period (i.e., real live 

movement training and testing data over a continuous seven days). Accordingly, 

there is a need to implement this model with real data to comprehend how they 

work in practice. 

In Kwapisz et al. (2010), the study used a neural network to model human activity 

and achieved high accuracy (CCR 100%) in identifying the correct class to which 

the activity signals belonged. However, the limited number of population samples 

(i.e., 5-30 users) opens the possibility that the learned algorithm is overfitted and 

has memorised the training samples. 

Other studies (Anguita et al. 2012; Ganti et al. 2010; Nakano 2017; Bhanu Jyothi 

& Hima Bindu 2018; Ogbuabor & La 2018a) have used a sliding window 

approach with an overlap of 50% in segmenting the raw activity signals. This 

could, however, lead to an overlap in the subsampling between the training and 

testing sets, which means that unless the splitting of the two sets occurs before 

the segmenting of the raw data, the data are only partially seen by the learning 

algorithm in both the training and testing sets. In terms of the correct 

classification rate, it can be seen that SVM, neural network, and CNN achieve 

the highest performance among the techniques shown. 
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Activity Type 

(Kwapisz et al. 2010) NN 100 5 Standing, sitting, walking, jogging, downstairs, 

upstairs 

(Anguita et al. 2012) SVM 89 

30 
Standing, sitting, walking, lying down, downstairs, 

upstairs 

[16] SVM 96 

(Nakano 2017) CNN 90 

(Bhanu Jyothi & Hima 

Bindu 2018) 

RF 

PCA 

94 

89 

(Ogbuabor & La 2018a) MLP 95 

(Jiang & Yin 2015) CNN 99 10 Standing, sitting, walking, jogging, running, biking, 

downstairs, upstairs 

(Heng et al. 2016) SVM 85 5 Standing, walking, running, upstairs, downstairs 

(Saha et al. 2018) Ensemble 94 10 Sitting on a chair, sitting on the floor, lying right, 

lying left, slow walk, brisk walk 

Table 4-4: Comparison of prior studies in activity recognition using smartphone 

sensors 

In this study, a segment-based approach was used to extract features from raw 

sensor signal data with a sliding window of 10 seconds with no overlap. The 

extracted features were used to compute various statistical features, such as the 

mean, median, maximum, and minimum of a given sensor axis within a specific 

segment window. 

4.5.4 Activities Identification Data Modelling 

Data modelling aims to build a predictive model that can classify a given 

individual’s activity signal into a predefined class, based on the features extracted 

from the raw sensor data (e.g., normal walk, fast walk, walking with the bag, 

downstairs, upstairs, and sitting), as illustrated in Figure 4-7. 
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Figure 4-7: Activities Identification Model 

The overall process starts by capturing the raw activity signals from smartphone 

sensors, followed by the subsequent steps undertaken to pre-process the data 

and form the model: 

 Data pre-processing 

Two approaches (i.e., normalisation and standardisation) were examined for 

transforming data. The dataset was normalised by scaling the input vectors 

individually to the unit norm (vector length). The other transformation approach 

was to standardise the features by removing the mean and scaling to the unit 

variance. The latter approach (standardisation) emerged as better than the former 

(normalisation) in discriminating the activity samples for the tested dataset. 

 Feature importance analysis (Ranked Features) 

To reduce the feature vector dimensions, only those ranked as being of higher 

importance in contributing most effectively to discriminating individuals’ activities 

by the random forest algorithm were included in training the predictable model. 

The variable importance measure of the random forest calculates how 

significantly a given feature is biased towards correlated predictor variables 

(Strobl et al. 2008). Feature importance analysis using random forest reduced the 

feature vector from 304 to 190 features in the final model. Reducing the feature 



124 

 

space dimensionality not only improved the overall model performance but also 

lowered the probability of the algorithm being over fitted to the training data. 

 

 Train/Test splitting ratio: for training the base model, the controlled data were 

split into 60/40 training and testing sets, respectively. Once the best model 

was chosen (the one that achieved the highest performance), the model was 

retrained using all the controlled dataset for training the final model, which 

was used to predict the uncontrolled activities. 

 Classification Modelling: several supervised classification algorithms were 

examined. Finally, three algorithms were the best candidates for the 

ensemble; these are feedforward neural network (FF-NN), SVM, eXtreme 

Gradient Boosting (XGB). By using the ensemble model, it improved the 

overall accuracy compared to a single model-based approach. Two 

ensemble methods were examined: 

i. Hard voting, if two algorithms (out of three) agreed for a given activity. 

ii. Soft voting, the probability of a given sample that belongs to a specific 

class was averaged using the mean among the three classifiers, and the 

highest rank is chosen. 

The soft voting approach was slightly better than the single algorithm and hard 

voting approach. Figure 4-8 exhibits the real-world gait data identification and 

recognition model. Chapter 6 provides more details about the activity 

identification results. 
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Figure 4-8: Real-World gait data identification and recognition 

Table 4-5 shows the activity states for each user for one week. Moreover, Table 

4-6 provides the summary statistics for data encapsulated from the 44 

contributors, which could be considered deep enough to enable a significant 

analysis. Even if the engaged subjects were asked to let the software run for at 

least seven days, some had more the demanded period and a little less. There 

have not been any researches examining this real dataset (to the best of our 

knowledge). 

It is hard to expect the per cent of the data included in one day; every day has a 

different number of samples depending on how much each user walked. As 

shown in Table 4-5, the normal walking (i.e., including carrying a bag) samples 

reported significantly more than the other types of gait walking activities, about 

80% of the total gathered samples. As expected, people mostly walk normally. 

While fast walking was only 7%, down and upstairs were 3% and 10%, 

respectively. Concerning other types of samples, which were classified as non-

gait activities, has the most proportion of all gathered samples (i.e., 67%) whereas 

people were doing different scenarios in their life except gait activities. To name 

but a few, there was sitting, standing, shopping, and using various means of 

transport (i.e., car, bicycle or motorbike) and fitness.  
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#User #Days Normal Fast Downstairs Upstairs Other 

1 11  2,864   62   1,027   240   18,749  

2 9  3,139   66   1,003   195   14,706  

3 8  4,450   162   19   713   18,146  

4 10  1,418   205   57   202   19,545  

5 7  2,087   28   11   96   3,825  

6 9  2,678   501   56   521   17,233  

7 10  4,979   76   120   844   24,547  

8 10  4,224   114   63   386   23,634  

9 9  2,192   310   68   258   31,758  

10 8  1,504   168   113   304   14,644  

11 9  1,999   293   86   216   11,079  

12 7  1,607   334   153   238   15,391  

13 8  2,940   245   55   357   11,941  

14 7  1,830   276   51   75   9,133  

15 6  1,726   95   16   10   628  

16 6  2,653   41   17   47   6,447  

17 6  2,464   42   46   21   12,232  

18 6  3,038   402   169   326   8,098  

19 10  3,429   95   1,668   930   20,419  

20 7  2,634   502   224   102   14,923  

21 6  1,627   20   18   125   10,545  

22 6  2,398   72   37   309   9,637  

23 7  6,267   522   205   1,319   18,517  

24 7  4,398   626   266   762   12,073  

25 6  1,830   111   39   229   7,925  

26 8  6,335   208   179   431   6,756  

27 6  4,628   264   118   595   1,783  

28 6  4,582   554   265   538   20,571  

29 7  3,349   474   99   116   9,207  

30 7  1,163   56   49   236   5,651  

31 8  4,572   261   44   388   15,472  

32 6  2,939   615   454   197   18,439  

33 6  1,290   181   8   54   11,155  

34 7  4,178   136   75   243   6,389  

35 6  2,964   515   105   234   7,574  

36 7  2,325   644   181   486   21,055  

37 7  4,584   272   185   256   10,210  

38 6  2,962   717   38   98   11,189  

39 6  2,634   18   11   479   5,351  

40 7  2,654   106   7   950   9,985  

41 8  4,562   190   33   705   9,481  

42 6  3,925   320   34   379   18,799  

43 7  3,960   1,067   95   388   11,629  

44 9  3,407   256   83   469   19,968  

Total  325   137,388   12,222   7,650   16,067   576,439  

 

Table 4-5: Activities states for each user for one week 
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Total Number of All Users 44 

Total Numbers of All Days 325 

Average Number of Days per User 7 

Total Number of Normal walk samples   137,388 

Total Number of Fast walk samples  12,222  

Total Number of Downstairs samples  7,650  

Total Number of Upstairs samples 16,067  

Total Number of Classified Other samples  576,439 

Total Number of Gathered samples 749,766 

The Number of Hours for the recognised normal, 
fast, down and upstairs activities  

481.46  

Table 4-6: The overview of the unconstrained dataset 

4.6 Signal pre-processing and Feature Exploration  

An examination tool was required to enable the pattern classification procedure 

of these studies. Consequently, the specialised mathematical modelling package 

was developed widely for the modelling and validation of the analyses of this 

research because of its common use and recognition right through engineering 

and scientific communities in the study of mathematical problems. The 

mathematical modelling is from MATLAB (R2016b release), developed by Math 

Works, which was employed on Intel Core i5-4310 CPU, 2.7 GHz and 16 GB RAM 

hardware and Windows 7 Enterprise 64-bit operating system.  

In this study, some scripts were improved in order to perform a variety of functions 

to implement the experiments. The same as the control condition experiment, the 

data of each user was split into two subsets: 60% for training the classifiers and 

generating the user profile and 40% for validation and testing the performance. 

Given that, we considered one contributor acting as the valid legal user while the 
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remaining other members as imposters. This was repeated to guarantee all users 

have the opportunity of acting as the authorised user. Results were then averaged 

across the population sample. 

4.6.1  Segmentation 

Once the raw gait signals were gathered, pre-processing could be started. 

According to the analysis of the literature review, the segment-based method 

outperforms the circle-based technique; as a result, the raw gait signals were 

divided into a fixed-length window. Obviously, the performance would differ when 

choosing various segments sizes; hence, an optimum segment length was 

selected based on the best results of the primary testing. Then the tri-axial raw 

accelerometer and gyroscope signals were segmented into 10-second segments 

by using a sliding window approach with no overlapping for both datasets. As a 

result, for experiment one, 74 samples were collected for each user per day. In 

total, 8,880 samples were collected for the controlled experiment dataset. 

Furthermore, approximately 174,713 samples were collected for the un-controlled 

dataset and the recognised samples for normal and fast activities were 139,907 

and 12315, respectively.  

4.6.2 Feature extraction 

Regarding the feature extraction process, both time domain and frequency 

domain features were extracted from the users’ accelerometer and gyroscope 

data segments. In total, 304 unique features were generated from both the 

accelerometer and gyroscope data samples. Details of those features are 

presented in the following sections.  
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4.6.2.1 Time-domain features 

The time-domain features, which refer to variation of the amplitude of the signal 

with time, were calculated directly from the raw data samples. All the details of 

those features (including their names and descriptions) are demonstrated in 

Table 4-7 below: 

Features Description Studies references 

Mean (3) The mean values in the segment. (Nakano 2017; Kwapisz et al. 
2010; Lu 2014) 

Standard Deviation 
(3) 

The standard deviation of the data in the segment. (Nakano 2017; Kwapisz et al. 
2010) 

Median (3) The median values of the data points in the segment. (Nakano 2017) 

Variance (3) A measure of how far each value in the segment points is 
from the mean. 

(Sprager 2009; Lu 2014) 

Covariance (3) A measure of how much two variables change together. (Lu 2014; Bashir et al. 2010) 

Zero crossing rate (3) The rate value of sign changes in the segment. (Derawi 2012) 

Interquartile range The range amidst the data. It is the distinction between the 
upper and lower quartiles in the segment. 

(Nakano 2017) 

Average Absolute 
Difference (3) 

The average absolute difference between the value of each 
of the segment points from the mean value over the 
segment values (for each axis). 

(Kwapisz et al. 2010) 

Root mean square (3) The square root of the mean of the squares of the 
acceleration values of the segment. 

(Nishiguchi et al. 2012; 
Bajrami 2011) 

Skewness (3) A measure of the symmetry of distributions around the 
mean value of the segment. 

(Nakano 2017; Lu 2014) 

Kurtosis (3) A measure of the shape of the curve for the segment point’s 
values. 

(Nakano 2017; Lu 2014) 

Percentile 25 (3) The percentile rank measured by the following formula: R= 
(P/100) *(N+1). Where R is the rank order of values, P 
percentile rank, N total number of the data points in the 
segment. 

(Khandnor & Kumar 2017; 
Schneider et al. 2013) 

Percentile 50 (3) Similar to the Percentile 25feature; but with the setting of 
P=50. 

(Schneider et al. 2013) 

Percentile 75 (3) Similar to the percentile 25 feature but with the setting of 
P=75. 

(Schneider et al. 2013) 

Maximum (3) The largest four values of the segment are calculated and 
averaged. 

(Nakano 2017) 

Minimum (3) The smallest four values of the segment are calculated and 
averaged. 

(Nakano 2017) 

Correlation 
coefficients (3) 

The relationship between the two axes is calculated. The 
correlation coefficient is measured between X and Y axes, 
X and Z axes and Y and Z axes. 

(Nakano 2017) 

Average resultant 
acceleration (1) 

Average of the square roots of the sum of the values of 
each x, y and z-axis in the segment squared. 

(Kwapisz et al. 2010) 

Difference (3) The difference between the maximal and minimal value of 
the segment (each axis). 

(Frank et al. 2010b) 

Maximum value (4) The largest four values of the segment are calculated and 
averaged. 

(Hoang et al. 2013) 

Minimum value (4) The smallest four values of the segment are calculated and 
averaged. 

(Hoang et al. 2013) 
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Binned distribution 
(30)  

Relative histogram distribution in linear spaced bins 
between the minimum and the maximum acceleration in the 
segment. Ten bins are used for each segment. 

(Kwapisz et al. 2010) 

Maximum peaks (3) The average of the largest four peaks in the segment. (Nickel 2012) 

Minimum peaks (3) The average of the smallest four peaks in the segment. (Nickel 2012) 

Peak Occurrence (3) Calculate how many peaks are in the segment. (Nakano 2017) 

The time between 
peaks (3) 

Time in milliseconds between peaks in the sinusoidal 
waves associated with most activities calculated and 
averaged (for each axis). 

(Kwapisz et al. 2010) 

The interquartile 
range (3) 

Calculating the median of the lower and upper half of the 
data. 

(Nakano 2017) 

Entropy (3)  The average amount of information produced by a 
probabilistic stochastic source of data 

(Nakano 2017) 

Energy (3)  The signal energy is equal to the summation across all 
frequency components of the signal's spectral energy 
density. 

(Nakano 2017) 

Table 4-7: Time domain features 

4.6.2.2 Frequency domain features 

The frequency domain feature refers to the analysis of mathematical functions or 

signals with respect to frequency, rather than time. There is dissimilarity in the 

feature extraction process between the time and frequency domains. As in the 

frequency domain, the data should be processed using a Fourier transform prior to 

the feature extraction process. Many frequency domain features were calculated 

in order to produce a unique feature vector; these frequency domain features are 

presented in Table 4-8, and the feature descriptions are included in Table 4-7 

above.  
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Type and number features Studies 
references 

Features Studies 
references  

Entropy (3) (Nakano 2017; 
Lu 2014) 

Root mean square (3) (Nishiguchi et al. 
2012; Bajrami 2011) 

Energy (3) (Youn et al. 
2014; Lu 2014) 

Skewness (3) (Nakano 2017) 

Mean (3) (Lu 2014) Kurtosis (3) (Lu 2014; Nakano 
2017) 

Standard Deviation (3) (Nakano 2017) Percentile 25 (3) (Schneider et al. 
2013) 

Median (3) (Nakano 2017) Percentile 50 (3) (Schneider et al. 
2013) 

Variance (3) (Lu 2014) Percentile 75 (3) (Schneider et al. 
2013) 

Covariance (3) (Lu 2014; Bashir 
et al. 2010) 

Maximum (3) (Nakano 2017) 

Zero crossing rate Minimum (3) (Derawi 2012) Minimum (3) (Nakano 2017) 

 The Interquartile range (3) (Nakano 2017) Correlation coefficients 
(3) 

(Nakano 2017) 

Average Absolute Difference (3) (Kwapisz et al. 
2010) 

Average resultant 
acceleration (1) 

(Nakano 2017) 

Table 4-8: Frequency Domain Features 

 

4.6.3 Normalisation 

In this work, the normalisation approach referee to convert and translate the 

selected feature values, which were on different or unusual scales in the range of 

0-1. This would obtain more effective performances, as well as the mathematical 

scheming could be faster (Sola & Sevilla 1997). This research involved dividing 

each feature of a vector by the maximum value of that vector.  
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4.6.4 Feature selection 

To validate the effectiveness of the generated feature vectors (comprising of a 

possible 304 unique features), the data set was divided to form both reference 

and testing templates for all users in two scenarios (i.e., same and cross- day). 

The impact of the time and frequency domain features on the system performance 

for accelerometer and gyroscope data was investigated and highlighted. 

Furthermore, the system performance was evaluated by using the most 

discriminative feature set (dynamic feature selection technique), and it was also 

assessed without involving the feature selection technique (i.e., using all feature 

sets) separately for each activity and all activities. 

A large number of features would place a burden on the classification (particularly 

on processing/battery limited mobile devices). Therefore, a dynamic feature 

selection approach was devised that can select features based on their 

uniqueness for individual users. It was envisaged that the effectiveness of each 

feature towards the classification would vary, with some features having a more 

significant impact for some users over others. The dynamic feature selection 

mechanism selected features based on a calculation of the standard deviation of 

users’ features with the smaller standard deviation being selected. Standard 

deviation was utilised because of the need to reduce the variability of the feature 

vector and to improve the permanence.  

Once the feature vector was formed, it was forwarded to the next phase: either 

for training or testing purposes. 

4.6.5 Classification  

In the matching phase, the individual samples compared with the reference 

template were taken primarily at the setup phase (i.e., the feature vector that 
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resulted from the feature extraction process, which was clarified in Section 4.6.2). 

Consequently, a match score was given indicating the degree of similarity, which 

decided acceptance of the users’ verification claim based on what the 

authentication decision was. 

As a result of the prior art and preliminary experiments, the support vector 

machine (SVM) and feedforward neural network classifiers were employed as the 

default classifier. The system performance was evaluated using the false 

acceptance rate (FAR), false rejection rate (FRR), and equal error rate (EER) 

metrics. These metrics were essential to be involved in comparing biometric 

modalities in the transparent authentication system (TAS). 

An examination tool was required to enable the pattern classification procedure 

of these studies. Consequently, the specialised mathematical modelling package 

was developed widely for the modelling and validation of the analyses of this 

research because of its common use and well-recognition right through 

engineering and scientific communities in the analysis of mathematical problems. 

The mathematical modelling was from MATLAB (R2016b release), developed by 

Math Works, and was employed on Intel Core i5-4310 CPU, 2.7 GHz and 16 GB 

RAM hardware and the Windows 7 Enterprise 64-bit operating system.  

In this study, some scripts were improved and in order to perform a variety of 

functions to implement the experiments. The same as the control condition 

experiment, the data of each user was split into two subsets: 60% for training the 

classifiers and generating the user profile and 40% for validating and testing the 

performance. In view of that, we considered one contributor acting as the valid 

legal user and the remaining other members as imposters and then repeated to 
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ensure all users had the opportunity to act as the authorised user. Results were 

then averaged across the population sample. 

4.7  Conclusion  

This chapter aims to contribute to the field of smartphone authentication. Two 

experiments were designed, aimed at improving smartphone-based gait 

authentication, namely control conditions, which explored the classification 

performance of individual activities (such as normal and fast walking speed, 

climbing up and down stairs, and carrying a bag on different days) using a multi-

algorithmic approach to classify individual activity and the uncontrolled condition 

experiment, which explored how well the real-life gait recognition approach 

worked in practice. 

In the control conditions experiment, after separating the activities’ raw signal, 

five files were ready: normal, fast, walking with a bag, downstairs, and upstairs. 

The signal of accelerometer and gyroscope sensors were segmented into 10-

second segments by using a sliding window approach with no overlapping. The 

feature extraction process was carried out on accelerometer and gyroscope data. 

The number of time-domain features was 97 and the frequency domain was 55 

features. In total, 152 features were created for each sensor and 304 features for 

both sensors. Two scenarios were implemented (same-day and cross-day) and 

SVM and feedforward neural network classifiers were used to evaluate the 

extracted features. For each scenario, the features were investigated for the time, 

and the same process was done for the frequency domain features, then both 

types of features were investigated.  

For the pre-processing phase, 304 features were used as basic samples for 

training multiple reference templates for each user for different activities in the 
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real-world model. A realistic gait data set was used to evaluate these approaches. 

The main results in this regard were presented in Chapter 5 and Chapter 6. 
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5 Experimental Results of Exploring Classification 

Strategies 

5.1  Introduction 

This chapter will explore the details of consecutive experiments that were 

conducted to investigate the uniqueness of users’ gait within the controlled 

environment; the dataset used for the experiment study contains the gait activity 

of 60 users across multiple days. At the time of writing, the dataset was the most 

extensive dataset being used within the smartphone gait study domain.  

This is through providing a comprehensive evaluation, including: 

 An analysis of motion sensors (i.e. accelerometer and gyroscope) signals. 

 An investigation and analysis of features understanding the variability of 

feature vectors during differing activities across a multi-day collection.  

 The impact of dynamic feature selection for each user explored, which 

successfully reduced the feature vector size and enhanced the performance.   

 An investigation of a single classifier and a proposal of the multi-algorithmic 

approach performance.  

This is framed into two experiments involving five types of activities: normal, fast, 

with a bag, downstairs, and upstairs walking. The first experiment explored the 

features vector (comprising of a possible 304 features) to understand how its 

composition affects performance and more discriminative features for different 

activities were identified. The second experiment explored the classification 

performance of individual activities to understand whether a single classifier or 

multi-algorithmic approach provides better performance. Both tests were 
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investigated with SD and CD evaluation using accelerometer and gyroscope 

sensors.  

5.2  Investigation of Feature Vector Composition  

The following section of the experiments was conducted to address the core 

research questions which are related to the first dataset (i.e. within the controlled 

environment). Whereas there were sixty participants employed, each user’s data 

was split into two subsets: 60% for training the classifiers and generating the user 

profile and 40% for validating and testing the performance.  

5.2.1 Investigating the Sensors and Feature Vectors  

Several experiments were conducted to evaluate the proposed system by 

examining the reliability of the accelerometer and gyroscope sensors individually. 

Then results from both sensors were analysed in the next trial as follows: 

 The effectiveness of the time and frequency domain-based features on the 

system performance was investigated. 

 The impact of the dynamic feature selection technique and the value of the 

feature space on the performance across various activities (i.e. normal, fast, 

walking with a bag and walking up and downstairs) were explored to 

investigate the best number of feature subset (NF). 

 Two evaluation scenarios (i.e. same day and cross day) were tested; the SVM 

classification algorithm was used across a combined five gait activities as its 

execution time is relatively shorter than that of the neural network classifiers.  

 

To achieve this, the following experiments were implemented: 

1. The Accelerometer Data Exploration: The first experiment was conducted to 

analyse and highlight the impact of the accelerometer data samples using the 
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time and frequency domains feature on the system performance by involving 

the proposed dynamic selection technique (discussed in section 4.6.4). Figure 

5-1 and Figure 5-2 presents the results achieved under a complete set of 

experiments involving various feature vector lengths. Table 5-1 provides the 

best performance on users’ accelerometer data for all activities achieved under 

a complete set of experiments involving multiple feature vector lengths (under 

both the same day (SD) and cross day (CD) scenarios).  

 

Figure 5-1: The EER results on Accelerometer data for all activities by using SD 

scenarios 
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Figure 5-2: The EER results on Accelerometer data for all activities by using CD 

scenarios 

 
Accelerometer 
Feature type 

Dynamic Feature Static Feature 

Number of 
Features 

(NF) 

EER 
(%) 

All-Time 
domain 

Features 

EER 
 (%) 

SD Time Domain 40 8.4 97 9.9 

SD Frequency domain 30 11.3 55 13 

CD Time Domain 70 11.5 97 12.77 

CD Frequency domain 50 14.4 55 14.93 

Table 5-1: System performance utilising dynamic feature selection technique on 

Accelerometer data 

From Table 5-1, it appears that better performance is achieved using the 

dynamic feature selection techniques across the SD and CD scenarios, by 

decreasing the number of features used and concentrating on more 

discriminative information. System performance of the non-realistic SD was 

significantly better than the results obtained in CD under the time and 

frequency feature sets. Indeed, the best performance of 8.40% and 11.3% 

EER was found by using users’ accelerometer data with 40 and 30 features 
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under the SD scenario. Meanwhile, 9.9% and 13% EER was achieved by using 

the complete feature vector data via 97 TD features and 152 FD feature 

respectively. In addition, when the dynamic feature selection method was used, 

the biggest performance gap was observed on the users under the more 

realistic CD scenario: 11.55% and 14.4% EER were obtained using the 70 and 

50 dynamic features while 12.77% and 14.93% EER were achieved by utilising 

all 97 TD features and 152 FD features respectively. It appears that the TD 

features set achieved better performance than the FD features set in both 

scenarios. Concerning the feature subset size, it can be seen from Figure 5-2 

that the CD test requires more features (i.e. 70 features) than SD (i.e. 40 

features) to achieve lower EER. It was apparent that the users’ gait manner 

could differ and fluctuate over time as a result of many reasons (e.g. mood, 

clothes and shoes). 

2. The Gyroscope Data Exploration: as shown in Table 3-9 (the literature 

survey), there has been limited used of gyroscope sensors by previous 

studies. To understand whether the gyroscope could be useful to contribute 

to differentiating users, a study investigating the impact of the gyroscope data 

samples using the time and/or frequency domain features on the system 

performance was conducted. The results achieved under a complete set of 

experiments involving various feature vector lengths and the achieved 

performance on users’ gyroscope data for all activities (under both the same 

and cross day scenarios) are presented in detail in Figure 5-3, Figure 5-4, 

and Table 5-2. 
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Figure 5-3: The EER results on Gyroscope data for all activities by using SD  

 

 

Figure 5-4: The EER results on Gyroscope data for all activities by using CD 
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Gyroscope 

Feature type 

Dynamic Feature Static Feature 

Number of 

Features 

Gyro. 

EER% 

 

All Features  

 

Gyro. 

EER% 

SD Time Domain 30 9 97 11.9 

SD Frequency Domain  55 14.7 55 14.7 

CD Time Domain 40 14 97 14.92 

CD Frequency domain  55 16.5 55 16.5 

Table 5-2: System performance utilising dynamic feature selection technique on 

Gyroscope data 

Interestingly, better system performance was achieved using the dynamic feature 

selection techniques crossing gait activities. The time-domain feature vectors 

produced better performance in both the same and the more realistic cross day 

scenarios (i.e. 9% and 14% EER with SD and CD using 30 and 40 feature sets). 

Compared to the time domain results, there was 11.9% and 14.92% EER for the 

SD and CD, respectively, without using dynamic feature selection techniques. In 

comparison, no difference in the performance was demonstrated in the frequency 

domain results with and without dynamic feature selection, whereas employing 

the full feature vector features had the best results in both SD and CD scenarios. 

The gyroscope has not been widely studied, which makes the experimental 

results more interesting to understand the extent to which this signal type affects 

system achievement. Moreover, the signals extracted from both the 

accelerometer and gyroscope sensors contribute to creating a more significant 

feature vector, as well as aim to create a more discriminative feature subset by 

calculating non-gravitational accelerations using accelerometer data and 

providing rotational velocities using gyroscope data sensors. All things 

considered, it seems reasonable to use both sensors together to explore the 

degree to which they could be utilised for differentiating mobile users. 
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3. Both Time and Frequency Domains for Accelerometer and Gyroscope Data: 

after checking the relative performance of the two measures, the impact of 

both TD and FD features for the two different sensors were studied.  

 

Figure 5-5: The EER results on Accelerometer and Gyroscope data for all 

activities by using SD and CD scenarios 

(TD & FD)/ 
Features 
Acc.& Gyro 
Sensors 

Dynamic Features Static Features 

Number of 
Features (NF) 

EER (%) All Features EER (%) 

SD Acc. 45 7.80 152 10.20 

SD Gyro. 45 8.39 152 12.50 

CD Acc. 75 11.76 152 12.85 

CD Gyro. 70 14.25 152 15.45 

Table 5-3: System performance utilising dynamic feature selection technique on 

Accelerometer and Gyroscope data 

Figure 5-5 demonstrates that better performance is achieved regarding users’ gait 

activity (both accelerometer and gyroscope data) when the dynamic feature 

selection technique is applied. Table 5-3 presents the best results achieved under 

a complete set of experiments involving various feature vector lengths). Indeed, 

the best performance of 7.80% EER is shown with the user’s accelerometer data 
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with 45 features under the SD scenario. Further, when the dynamic feature 

selection method is used, the most significant performance gap can be observed 

on the user’s gyroscope data under the SD scenario: 8.39% EER is obtained 

using the 45 selected features while 12.50% EER is achieved using the whole 

152-feature set (from both the time and frequency domains).  

4. Accelerometer and Gyroscope Features Dataset: This concerns the research 

question of exploring the impact of dynamic feature selection techniques and 

the value of the feature space on the performance of different activities. Both 

accelerometers and/or gyroscopes (tri-axial sensors based) are reliable to be 

employed by sensor-based authentication systems (Lau & Tong 2008). 

Therefore, more gait features were required as the variability of the signal 

increased with the real-world dataset. As a result, more experiments were 

conducted for further verification to conceive that the system performance 

can be improved if both sensors are used together. To give an illustration of 

the meaning of a full feature set (i.e. 304 features from both accelerometer 

and gyroscope signals) both the time and frequency domains were 

investigated. Figure 5-6 and Figure 5-7 compare the experimental results and 

the impact of dynamic feature selection techniques on full feature vectors in 

the same and cross day scenarios.  
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Figure 5-6: The impact of using dynamic feature for all activities (same day 

scenario) 

 

Figure 5-7: The Impact of using dynamic feature for all activities (cross day 

scenario) 

 
Acc. & Gyro 

Sensors 

Dynamic Feature 
Static with All 
feature (304) 

No. of features EER (%) EER (%) 

SD 240 4.41 4.70 

CD 60 12.00 12.18 

 Table 5-4: The impact of using dynamic feature for all activities (same and 

cross day) 
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Table 5-4 highlights the results with and without using the DF technique. The gait 

dataset (five gait activities data samples) reported the best EER of 4.41% using 

240 feature subsets. It is worth mentioning that a reasonable performance of 5.53% 

EER can also be achieved using only 35 features where the trend started 

decreasing under the SD scenario. As shown in Table 5-4, the trend decreases 

to EER of 12.22% using a 30-feature subset and the best EER of 12.00% via 60 

features under the CD scenario. Moreover, using the full feature vector of both 

situations, the EER was 4.70% and 12.18%. It is worth mentioning that the EER 

can be reduced by 1.13% by using 240 features although it will require more time 

to process the data and will increase the computational load on the classifier. 

Notably, no significant differences were found between the dynamic and static 

results with all activities in SD and CD methodologies. However, there is a 

substantial difference with the number between the two groups of selected 

features (35 and 60 features versus 304 features). Indeed, the numbers using 

selected features were around 11.5% and 19.7% of the total number of features 

for SD and CD. That means the proposed feature selection method effectively 

discarded a high percentage of inappropriate and/or redundant features and 

enhanced the system’s accuracy.  

Regarding the performance of the SD and CD scenarios, the SD scenario always 

outperforms its CD counterpart regardless of the dynamic feature selection 

process used; this is understandable, as human walking behaviour will change 

over time as a result of various reasons, including changes in shoes, clothes, 

mood, or health and is in line with what the previous researchers have found. 

However, notably, better performance is achieved using fewer features in both 

SD and CD scenarios—although the CD required a more significant number of 
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features than the SD. This phenomenon suggests more gait features are required 

as the variability of the signal increases and, therefore, additional features are 

needed when the technique is applied in real life. 

5.2.2 Investigation of the Feature Vector across Activities 

As demonstrated earlier, the feature sets that were extracted from the 

accelerometer and gyroscope signals are composed of 304 features. As each 

sensor has three axes, most features are performed by a vector of three values. 

Regardless of whether the sample is being created from accelerometer and 

gyroscope sensor data, the features are the same. From (1-152) are 

accelerometer (TD and FD) features and from (153-304) are gyroscope (TD and 

FD) features, as illustrated in Table 5-5. 
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No. Time Domain 
Features 

Feature 
Order 
for Acc 

Feature 
Order for 
Gyro 

No. Frequency Domain 
Features 

Feature 
Order 
for Acc 

Feature 
Order 
for Gyro 

1 Mean  1-3 153-155 25  Mean  98-100 250-252 

2 Standard Deviation 4-6 156-158 26 Standard Deviation 101-103 253-255 

3 Average absolute 
difference 

7-9 159-161 27 Average absolute 
difference 

104-106 256-258 

4 Variance 10-12 162-164 28 Variance 107-109 259-261 

5 Covariance 13-15 165-167 29 Covariance 110-112 262 

6 Average resultant 
acceleration 

16 168 30 Average resultant 
acceleration 

113 263-265 

7 Binned distribution 17-46 169-198 31 Median 114-116 266-268 

8 Difference 47-49 199-201 32 Root mean square 117-119 269-271 

9 Median 50-52 202-204 33 Skewness 120-122 272-274 

10 Root mean square 53-55 205-207 34 Kurtosis  123-125 275-277 

11 Skewness 56-58 208-210 35 Percentile 25  126-128 278-280 

12 Kurtosis  59-61 211-213 36 Percentile 50  129-131 281-283 

13 Percentile 25  62-64 214-216 37 Zero crossing rate  132-134 284-286 

14 Percentile 50  65-67 217-219 38 Maximum value 135-137 287-289 

15 Percentile 75  68-70 220-222 39 Minimum value  138-140 290-292 

16 Zero crossing rate  71-73 223-225 40 Interquartile range 141-143 293-295 

17 Maximum value 74-76 226-228 41 Correlation 
coefficients 

144-146 296-298 

18 Minimum value 77-79 229-231 42 Entropy 147-149 299-301 

19 Maximum peaks 80-82 232-234 43 Energy 150-152 302-304 

20 Minimum peaks 83-85 235-237  

21 Peak Occurrence 86-88 238-240 

22 Time between 
peaks  

89-91 241-243 

23 Interquartile range 92-94 244-246 

24 Correlation 
coefficients 

95-97 247-249 

Table 5-5: Accelerometer features list (1-152) and Gyroscope features list (153-

304) 

It is worth noting that the effectiveness of each feature towards the classification 

can vary, with some features having a more significant impact for some users 

over others. Therefore, a dynamic feature selection approach was devised that 

can select features based on their uniqueness for individual users. The effect of 

the dynamic feature selection process (explained in Section 5.2) on performance 

was successful through consuming fewer resources and time. Therefore, it is 

essential to know what is composed of mostly repeated features for each user.  
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In the previous section, all users’ gait activities were treated together. In this part 

of the experiment, each activity was studied individually to address the research 

question of exploring the impact of dynamic feature selection techniques and the 

value of the feature space on the performance of different activities, which is 

related to the first datasets (the controlled environment).  

Fundamentally, the research in this part seeks to understand the impact of 

dynamic feature selection techniques and the value of the feature space on the 

performance of each gait activity (i.e., normal, fast, walking with a bag, and 

walking up and downstairs). It also seeks to explore the classification 

performance of individual activities to understand whether a multi-algorithmic 

approach would provide a better level of performance. All the following 

experiments are investigated with SD and CD evaluation and accelerometer and 

gyroscope feature data for individual activities evaluated by the SVM classifier. 

Figures 5.8- 5.17 present the system performance depending on various feature 

subsets. The best EER is selected and summarised in Table 5-6. 

 Figure 5-8 shows the impact of different feature subsets on the same day 

scenario system achievement. The performance improved by leveraging more 

feature subsets. Significant changes started from feature subset 80 with an EER 

of 1.4%, and the curve seemed to change between 0.70% and 1.8% using 

different feature subsets. By using 110 features, the best performance of 0.70% 

was achieved. Figure 5-9 shows the system performance for the cross day 

scenario. The best EER was 6.30%, and the result of utilising all features was 

7.50%. The performance level fluctuated between these values, but beyond 

feature 100 the resulting effect becomes clear. 
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Figure 5-8: Impact of the dynamic feature selection technique upon the 

performance, normal walking (same day scenario) 

 

Figure 5-9: Impact of the dynamic feature selection technique upon the 

performance, normal walking (cross day scenario) 
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Figure 5-10: Impact of the dynamic feature selection technique upon the 

performance for fast walking (same day scenario) 

 

Figure 5-11: Impact of the dynamic feature selection technique upon the 

performance for fast walking (cross day scenario) 

Significant improvement in the result has been shown in Figure 5-10, and the 

effect started from feature subset 85 downward to feature subset 130, which 

obtained the best EER of 0.42%. The EER began to increase when more than 

130 features were applied gradually. In contrast, there was a small variation, and 

a small amount was returned in the cross day scenario, which obtained better 

performance with only a ten feature subset of 12.70% EER. Despite less 

performance being obtained with the cross day scenario, this finding revealed that 
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fast walking could have more distinctive features with better recognition, using 

fewer features. 

 

Figure 5-12: Impact of the dynamic feature selection technique upon the 

performance for walking with a bag (same day scenario) 

 

Figure 5-13: Impact of the dynamic feature selection technique upon the 

performance for walking with a bag (cross day scenario) 

The same as previous activities, the same day scenario obtained better 

performance than the cross day scenario in the walking with a bag activity. Figure 

5-12 shows a fluctuating trend in the same day performance; the effect started 

from feature subset of 30, then begins to reach the plateau and reduces to have 

the best EER of 1.10% using 85 features. The cross day results presented in 

Figure 5-13 show the best EER of 6.46% by using 65 features and the result of 
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applying all features is 6.94% EER. The performance level fluctuated between 

these values.  

 

Figure 5-14: Impact of the dynamic feature selection technique upon the 

performance for down stairs (same day scenario) 

 

Figure 5-15: Impact of the dynamic feature selection technique upon the 

performance for down stairs (cross day scenario) 

Same day performance for the user’s walking down the stairs activity using the 

dynamic feature selection technique is presented in Figure 5-14. The best EER 

of 3% was achieved by using 90 features subset and the performance gradually 
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increased. Compared with the cross day scenario, Figure 5-15 shows the range 

seems to be different with various feature subsets. Moreover, a relatively better 

result of 31.70% EER was obtained by using only a 10-feature subset. 

 

Figure 5-16: Impact of the dynamic feature selection technique upon the 

performance for upstairs (same and cross day scenario) 

 

Figure 5-17: Impact of the dynamic feature selection technique upon the 

performance for upstairs (cross day scenario) 

Figure 5-16 and Figure 5-17 provided the same and cross day results for users’ 

upstairs activities. Generally, the cross day scenario achieves less performance 

than the same day scenario while both scenarios obtained better results 
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employing fewer features (4.50% EER with 50 and 30.40% EER with 20 feature 

subsets for the same and cross day, respectively).  

To investigate the impact of individual gait activities on the classification 

performance, a multi-algorithmic approach was used to evaluate across the 

different activities (i.e. normal walking, fast walking, walk with a bag, walk down 

the stairs, and walking up the stairs). All users’ activities from both accelerometer 

and gyroscope sensors were examined to set a benchmark for comparison 

purposes. 

 
TD and FD 
Features/ 

Acc &Gyro 
Sensors 

Same Day Cross Day 

 
Dynamic 

Static 
with All 
feature 
(304) 

 
Dynamic 

 

Static 
with All 
feature 
(304) 

No. of 
Features 

EER 
(%) 

EER (%) No. of 
Features  

EER 
(%) 

EER (%) 

Normal 110 0.70 1.60 160 6.30 7.50 

Fast 130 0.42 1.22 10 12.70 13.92 

With Bag 85 1.10 2.29 65 6.46 6.94 

Down Stairs 90 3.50 21.60 10 31.10 34.10 

Upstairs 50 4.50 25.0 20 30.40 33.70 

All activities 240 4.40 4.70 60 12.00 12.18 

Table 5-6: A Comparison between dynamic and static features techniques for 

individual and all activities (SD and CD scenarios) 

Initially, similar patterns are exhibited by the results regarding the impact of the 

dynamic feature selection process, with the results using the dynamic feature 

selection process outperforming those obtained using the full feature set (i.e. 304 

features from both accelerometer and gyroscope signals). 

As expected, the results from the SD scenario outperform the results obtained 

from the CD scenario. Usually, the user same-day pattern will not vary as the 

cross-day activity pattern. The number of features is reduced significantly for the 

CD scenario, although the performance only increases marginally, which is 

considered a satisfactory indication regarding using a dynamic feature. 
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Regarding performance, the best results are 0.70% EER for the normal walking 

activity with 110 features for the SD scenario and 1.60% EER (using the full 304 

features) both of which are better than the performance of existing studies with 

1.95% EER (Derawi 2012) and 1.82% EER (Watanabe 2014), using a larger 

dataset both in terms of participants and samples per user. In addition, regarding 

the same activity, 6.30% EER is obtained by using 160 features for the CD 

scenario and 7.50% EER with the full 304 features; these results are in line with 

prior work including 6.1% EER (Nickel, Brandt, et al. 2011c) and 6.15% EER 

(Muaaz & Nickel 2012; Watanabe 2015). Nevertheless, those three studies 

applied decision-level logic (majority or quorum voting), which these results have 

not applied (at this stage). The decision-level logic techniques may improve their 

classification results by up to 50%; in addition, they used 20% fewer users for 

their experiments than this study. Hence, it could be easier to distinguish 

individual users. Concerning the ‘all activities’ performance (SD scenario) using 

the dynamic feature approach, for both sensors (accelerometer and gyroscope), 

it shows a significant improvement in EER of 4.4% compared to an EER of 7.80% 

using the accelerometer signal alone. This is consistent with this study’s 

hypothesis, which supports the various features’ sources to improve the user 

recognition process. 

As demonstrated in Table 5-6, a significant difference in results can be observed 

between the multi-algorithmic classifier for individual activity and the single 

classification approach. With the dynamic feature selection process being used, 

for the SD scenario, all individual activities (apart from walking down and up the 

stairs) achieve better performance than the results obtained when all activities 

are combined. In addition, all individual activities use a smaller number of features 

in comparison with the number of features used by all activities with a minimum 
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difference of 110 features. In contrast, only two individual activities (i.e., normal 

walking and walking with a bag) perform better when compared with the result 

achieved by all users’ activities for the CD scenario. Nevertheless, they at least 

double the number of features used by all activities. The results show gait 

recognition while walking up and down the stairs was not particularly good, even 

when applying the dynamic feature selection approach. Further, data analysis 

showed that this data still suffered from a high degree of variability, which 

subsequently made classification a challenge (Nickel et al. 2011).  

Indeed, it will be more beneficial to define the most discriminative dynamic-based 

features for most users across each activity type. Therefore, a preliminary 

analysis will be provided. According to the most repeated features for each 

activity and all data samples across all user models, the top ten most 

discriminative features across normal walking activity the complete set  presented 

in appendixes C, D, E, and F. To have more specific features, about 10% of the 

number of features employed by the classifier are coded in colours where red 

represents the most repeated features (>40), yellow the second most repeated 

(<40 and >30), and the green the third most repeated features (>20), all other 

features coloured in white (<20) repeated. The numbers correspond to the 

features as listed in Table 5 5. For example, it can be seen from the data in Table 

5-7 that the reference pattern of user one could be created using features (10, 13, 

159, 220, 217, 56…etc.) while features (67, 70, 43, 13, 10, 114. etc.) may be used 

to produce user two’s reference formula.   
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#user Accelerometer and Gyroscope Top Ten Discriminative Features 

1 10 13 159 220 217 56 162 165 266 161 

2 67 70 43 13 10 114 34 25 40 162 

3 169 105 120 268 266 56 171 170 18 13 

4 13 10 41 56 114 17 117 185 34 170 

5 266 56 169 34 159 220 217 162 165 105 

6 114 10 13 18 170 171 266 57 5 41 

7 165 162 220 217 159 43 67 70 164 167 

8 56 10 13 117 105 120 32 268 114 41 

9 268 162 165 10 13 265 169 43 34 67 

10 27 109 56 57 5 123 42 129 117 266 

11 34 10 13 56 123 169 41 32 117 171 

12 13 10 170 268 171 162 165 41 169 159 

13 223 114 10 13 221 218 283 170 254 56 

14 56 34 105 120 123 283 268 13 10 169 

15 123 170 171 56 135 266 105 120 10 13 

16 220 217 159 162 165 287 254 281 266 153 

17 162 165 159 217 220 10 13 56 114 41 

18 170 171 268 17 169 56 265 18 105 120 

19 56 10 13 41 43 57 67 70 5 162 

20 114 266 34 169 170 18 268 19 56 111 

21 159 162 165 220 217 67 70 10 13 266 

22 10 13 32 56 105 120 206 41 57 162 

23 43 70 67 164 167 34 12 15 161 219 

24 13 10 34 162 165 220 217 159 57 208 

25 34 162 165 159 217 220 56 114 287 161 

26 19 266 171 114 17 169 13 10 115 18 

27 268 56 13 10 170 105 120 171 169 117 

28 34 56 13 10 268 41 114 17 171 18 

29 56 34 105 120 169 268 170 18 117 171 

30 170 171 34 169 111 17 267 114 221 218 

31 266 268 171 221 218 169 20 56 123 18 

32 10 13 41 114 56 123 165 162 17 4 

33 20 22 126 67 70 21 134 221 218 114 

34 159 220 217 56 162 165 105 120 268 266 

35 114 170 268 171 17 18 13 10 169 56 

36 162 165 217 220 159 246 70 67 135 73 

37 162 165 217 220 159 246 70 67 135 73 

38 10 13 32 170 56 246 105 120 19 18 

39 10 13 41 4 70 67 104 56 26 108 

40 268 10 13 266 267 56 171 218 221 170 

41 169 17 283 56 266 170 34 10 13 171 

42 162 165 220 217 159 170 10 13 169 34 

43 34 268 18 56 31 169 170 171 114 17 

44 34 268 171 169 10 13 56 170 220 217 

45 266 169 18 283 105 120 123 10 13 170 

46 217 220 159 162 165 123 10 13 18 167 

47 13 10 268 41 266 4 267 171 56 17 

48 56 114 10 13 221 218 283 170 266 160 

49 169 18 19 93 266 287 17 298 223 67 

50 169 170 266 268 283 171 221 218 10 13 

51 266 18 268 169 282 19 194 171 221 218 

52 221 218 266 160 170 255 268 282 163 166 

53 169 268 266 19 123 170 18 105 120 283 

54 266 13 10 56 41 159 217 220 263 287 

55 266 114 171 123 170 13 10 56 41 169 

56 268 34 161 223 219 222 167 164 266 215 

57 32 34 29 266 105 120 283 17 10 13 

58 266 73 171 168 221 218 160 188 194 176 

59 266 167 164 169 161 222 219 115 221 218 

60 34 56 123 13 10 105 120 169 19 171 

 

 Table 5-7: Top ten discriminative features for each user in normal walk 

          (10, 13, 56) (266, 169) (170, 171, 268) 

Top Repeated Second Repeated Third Repeated 
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As demonstrated in Table 5-7, the most repeated features used with normal 

walking activity are as follows: 

 Feature numbers 10, 13, 56 are repeated over 40 times. These three features 

refer to the time domain, accelerometer (x-axis). First is the variance value, 

which calculates the measure of how far each value in the segment points is 

from the mean (feature 10). Second is the covariance value, which calculates 

the measure of how much two variables change together (feature 13). The 

third is the skewness value, which calculates the measure of the symmetry of 

distributions around the mean value of the segment (feature 56). Interestingly, 

the abovementioned three features represent accelerometer (x-axis) 

measurements. The most discriminative features concentrate on the 

mathematical value of the distance of each value and the symmetry of 

distributions around the mean value for each point in the segment (feature 10 

and 56). Further, feature 13 calculates the amount of variation between each 

value in the segment. 

 

 Feature numbers 169, 170, 171, 266, and 268 are repeated between 20 and 

40 times and all these features represent gyroscope measurements. Feature 

numbers 169, 170, and 171 are used to calculate the first three x-axis values 

located within relative histogram distribution in linear spaced bins between 

the minimum and the maximum acceleration in the segment. Moreover, 

features 266 and 268 calculated x and y-axis median values of the data points 

in the segment. 
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It is clear from the above table that each user has completely different patterns 

as compared with other users. In addition, the same user has different pattern 

according to the activity type.  For example,  

Table 5-8 compares between user 1 and user 3’s top repeated features. It can be 

seen from the table that each person has completely different patterns for each 

activity (red related to the first repeated features, yellow is the second repeated 

features, and the green for the third repeated features). 

Gait 
Activity 

Type 

User 1 User 3 

Top Ten repeated Features Top Ten repeated Features 

Normal 

10 13 159 220 217 56 162 165 266 161 169 105 120 268 266 56 171 170 18 13 

Fast 

159 217 220 56 281 32 162 165 70 67 56 117 268 105 120 10 13 123 265 166 

Carrying 
Bag 10 13 159 217 220 41 281 162 165 287 105 120 138 56 57 107 122 13 10 117 

Down Stairs 

32 10 13 268 64 165 162 43 217 220 70 67 61 13 10 3 185 9 268 123 

Upstairs 

266 27 109 66 69 30 33 42 281 201 16 5 13 10 266 41 123 14 11 27 

All 
Activities 266 193 57 217 220 43 162 165 5 268 127 268 105 120 56 57 138 10 13 106 

 

Table 5-8: A comparison between two users’ best features patterns 

The most unique dynamic-based features obtained from the preliminary analysis 

of the above different gait activities tables are summarised in Table 5-9 below. As 

an example, a part of the full-feature vector (i.e. 304 F) is sorted in ascending 

order. The total count of feature repetition for each activity is 600. This means 

3000 repetition times across five activities (i.e. 5*600). From the data in Table 5-9, 

it is apparent the accelerometer x-axis covariance feature (13F) was the most 

repeated feature and the accelerometer x-axis variance feature (10F) was the 

second repeated across all activities, etc. The three users’ patterns plotted in 

Figure 5-18 (a) and (b) clarify the most discriminated features and Figure 5-18(c) 

and (d) clearly show user’s patterns on less repeated features.  
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Table 5-9: Summary of the top repeated features for each activity-control dataset 

 

 

 

  Feature 
Repetition 

Order 

Feature 
No. 

Normal Fast Walk 
with 
Bag 

Down 
Stairs 

Upstairs All 
Activities 

Total 
Repetition 

Feature Repetition  

1 13 37 45 52 44 34 42 254 

2 10 36 43 51 45 32 43 250 

3 56 34 39 36 25 15 25 174 

4 268 22 38 1 28 6 46 141 
5 41 14 21 36 14 23 13 121 

6 34 20 23 23 13 10 18 107 

7 57 5 4 23 10 12 34 88 

8 105 15 17 21 13 8 14 88 

9 57 5 4 23 10 12 34 88 

10 217 15 22 26 2 4 14 83 

11 120 14 17 19 12 8 13 83 

12 220 15 21 26 2 4 12 80 

13 266 28 0 4 5 17 24 78 

14 221 11 15 13 14 4 13 70 

15 218 11 14 12 14 5 11 67 

16 159 15 23 25 0 3 0 66 
17 162 19 14 20 1 3 8 65 

18 117 6 16 12 15 9 5 63 

19 165 16 16 19 3 0 9 63 

20 67 11 11 13 12 4 8 59 
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(a)                                                                       (b) 

                                                                                     

         (c)       (d)  

Figure 5-18: (a) Acc (x-axis) covariance feature values for five users (13F) 

      (b) Acc (x-axis) skewness feature values for five users (56F) 

     (c) Acc (y-axis) Percentile 50 feature values for five users (66F) 

     (d) Acc (y-axis) Interquartile range feature values for five users (93F) 

Mathematically, covariance (13F) is a measure of how much 

two variables change together (i.e. when the variables are linearly transformed). 

From the respect of mean value is the product of the deviations of two variates 

while the variance (10F) formally measures how far each value in the segment 

spreads out from the mean. That means that the two functions calculate an 

approximate value. Therefore, to clarify, the most discriminated features, 

covariance (13F) and skewness (56F), were selected. As Figure 5-18 (a) and (b) 

show, there is a significant difference between the three users’ patterns; there are 

almost no common points between them. Consequently, they were vastly 

differentiated features. Conversely, less repeated features (i.e., percentile 50 

(66F) and interquartile range (93F)) were selected to compare with (13F) and 

https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Covariance
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(56F), as there were many of the same or nearly the same values between the 

users’ patterns. Thereby, they appear lower discriminated features. 

5.2.3 Investigation Using the Feedforward Neural Network Classifier 

As mentioned above, the objective of the experiments is to examine the impact 

of the dynamic feature selection technique on performance using the SVM 

classifier owing to its execution time, which is relatively shorter than the neural 

network classifiers. Depending on those results, a range of the most 

discriminative features subset for classification will be examined for the different 

gait activities using the feedforward multilayer perceptron neural network (FF-

MLP) to ensure more reliable evaluation, as it exceeded other techniques in 

previous studies (Karatzouni 2014; Saevanee et al. 2015). For each activity, 

eleven different FF MLP neural network hiding layer size (i.e.10, 15, 20, 25, 30, 

35, 40, 45, 50, 55, and 60) were examined with each being 10 epochs on average 

to explore the best range (i.e. what is most suitable) of training size for each 

activity and all activity datasets. The same previous experiment was used. Sixty 

participants were employed; the data of each user was split into two subsets: 60% 

for training the classifiers and generating the user profile and 40% for validating 

and testing the performance. A comparison between the previous section’s 

results using SVM and FF-MLP is presented in Table 5-10 for individual and all 

activities’ datasets. 
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Type of 

Activity 

FF-MLP SVM 

SD CD SD CD 

Hiding 
layer 
size 

EER 
(%) 

Hiding 
layer 
size 

EER 
(%) 

NF EER 
(%) 

 

NF EER 
(%) 

Normal 40 0.08 35 2.09 110 0.70 160 6.30 

Fast 40 0.03 40 3.91 130 0.42 10 12.70 

With a Bag 50 0.18 45 0.89 85 1.10 65 6.46 

Down Stairs 20 1.35 15 23.45 90 3.50 10 31.10 

Upstairs 25 4.69 20 23.32 50 4.50 20 30.40 

All 20 4.55 
 

50 6.58 35 5.53 60 12.00 

Table 5-10: Comparison between FF MLP and SVM performances                  

(for similar feature vector set FN) 

The SVM results were discussed previously in Table 5-6, which is compared 

between the dynamic and static features techniques for individual and all 

activities in both the SD and CD scenarios. The same set of best feature subsets 

are being used in the SVM for each activity, concluded from section (5.2.1), with 

the above FF-MLP experiments and the best hiding layer size for each activity 

obtained from the previous series of experiments that were conducted. 

In general, as can be seen in Table 5-10, better results were achieved by FF-MLP 

that outperforms the performance of SVM for both SD and CD scenarios. 

However, it took a long time in the training and testing phases when the FF-MLP 

was used. Concerning FF-MLP performance, impressive results were achieved 

under the SD scenario. The FF-MLP achieved better performance compared with 

the SVM results that reported an EER in the range of 0.08%-4.69% using FF-MLP 

against to 0.42%-5.35% using SVM for the individual and all activities dataset 

As usual, by applying the more realistic CD scenario, the EERs are increased to 

a range of 0.89%-6.64% using FF-MLP against to 6.30%-12% using SVM, apart 
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from a walk down and upstairs which achieved poor results especially using the 

SVM classifier. However, the SVM results still achieved a high level of security. 

The dynamic feature technique has shown superior performance over the static 

feature technique for accelerometer and gyroscope sensors signals. Furthermore, 

the impact of the proposed multi-algorithmic approach with the FF-MLP classifier 

is sufficient for the SD and CD scenarios, as most of the individual activities (apart 

from walking down and up the stairs) achieve better performance than when they 

are treated as one activity. It is clear that each training size presented different 

results for each activity. Consequently, each activity is based on different FF-MLP 

hidden layer size.  

The above experiment demonstrated the research questions related to the 

reliability of both accelerometer and gyroscope sensors, as well as the impact of 

static versus dynamic feature vectors and the viability of multi-algorithmic versus 

a single classifier approach. Table 5-10 exhibits the best results obtained from 

FF-MLP and SVM classifiers that confirmed this research’s hypotheses across a 

wide range of walking activities.  

5.2.4 Performance of the Neural Network Feedforward Classifier  

This section presents the impact of the dynamic feature selection technique, 

individual activities, and all activities’ dataset with different networks hiding layer 

sizes on the detailed performance of the SD and CD evaluation scenarios. As 

aforementioned, the previous comparison between SVM and FF-MLP depended 

on the best feature subset results obtained from the SVM classifier. It is clear that 

better performance can be obtained using the FF-MLP classifier with the same 

feature’s subsets. The performance tables are presented in a red-and-white 
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gradient over a range of cells so that white cells represent the smallest value, and 

the red ones represent the larger values.   

As shown in Table 5-11, it is apparent that the best EER is 0.07% using the 

network hiding layer size with 45 neurons and 130 features. No significant 

difference with the EER of 0.08% was obtained with the optimum feature subset 

for the SVM classifier (i.e. 110). 

Network 
hiding 

layer 
Size 

Number of Features (Normal walk) 

80  85  90  95  110  115  120  130  140  304  

30 0.31 0.20 0.20 0.25 0.15 0.14 0.21 0.28 0.15 0.09 

35 0.16 0.19 0.18 0.22 0.16 0.13 0.26 0.12 0.17 0.12 

40 0.19 0.16 0.20 0.19 0.13 0.16 0.11 0.08 0.10 0.11 

45 0.11 0.14 0.21 0.15 0.08 0.14 0.12 0.07 0.12 0.11 

50 0.20 0.13 0.16 0.11 0.13 0.17 0.08 0.09 0.09 0.12 

Table 5-11: The EER (%) of the SD test for the normal walking activity 

The fast walking data in Table 5-12 shows the best EER of 0.02% could be 

obtained using various parameters (e.g., 160, 180, and 190 features subset 

network size with 55, 40, and 35 neurons, accordingly). The results were 

considered in line with an EER of 0.03% obtained with the best of feature subset 

for the SVM classifier (i.e.130). 

Network hiding 
layer 
Size 

Number of Features (Fast walking) 

120 130 140 150 160 170 180 190 304 

25 0.08 0.10 0.07 0.09 0.17 0.07 0.06 0.06 0.21 

30 0.08 0.09 0.05 0.04 0.04 0.05 0.05 0.05 0.13 

35 0.13 0.09 0.09 0.09 0.04 0.17 0.05 0.02 0.16 

40 0.04 0.03 0.03 0.05 0.04 0.03 0.03 0.02 0.17 

45 0.08 0.09 0.05 0.03 0.05 0.04 0.02 0.04 0.20 

50 0.04 0.03 0.04 0.05 0.05 0.07 0.02 0.02 0.19 

55 0.03 0.05 0.04 0.04 0.02 0.03 0.03 0.02 0.19 

Table 5-12: The EER (%) of the SD test for the fast walking activity 

 

The walking with a bag activity had the best EER result of 0.19% using a 

relatively small feature subset of only 80 features and a network hiding layer 
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size of 50, as shown in Table 5-13. In addition, this is in line with the best EER 

of 0.18%, using the ideal feature number (85) to obtain the best results with the 

SVM classifier.   

Network 
hiding 
layer 
Size 
 

Number of Features (Carrying a bag) 

80  85  90  100  110  120  130  140  150  160  170  180  190  200  230  304  

30 0.34 0.38 0.34 0.42 0.47 0.50 0.44 0.49 0.39 0.38 0.41 0.39 0.35 0.31 0.38 0.35 

35 0.35 0.33 0.37 0.32 0.42 0.26 0.35 0.31 0.26 0.34 0.36 0.37 0.33 0.23 0.25 0.54 

40 0.31 0.35 0.33 0.47 0.39 0.47 0.37 0.31 0.34 0.36 0.37 0.32 0.28 0.24 0.35 0.41 

45 0.27 0.40 0.30 0.32 0.37 0.41 0.47 0.22 0.29 0.36 0.30 0.40 0.37 0.28 0.25 0.56 

50 0.19 0.28 0.34 0.33 0.29 0.34 0.38 0.27 0.31 0.36 0.36 0.33 0.37 0.24 0.24 0.54 

Table 5-13: The EER (%) of the SD test for the walking with a bag activity 

Network 
hiding 

layer size 

Number of Features 

80 85 90 304 

15 2.21 2.58 2.59 6.62 

20 2.15 1.35 2.22 6.46 

25 3.11 2.72 2.77 8.6 

Table 5-14: The EER (%) of the SD test for the walking down stairs 

Network 
hiding 
layer 
size 

Number of Features 

45 50 55 60 304 

15 2.29 1.7 2.26 2.13 9.38 

20 2.13 1.76 2.36 2.44 11.7 

25 1.9 1.76 1.64 2.28 9.94 

30 2.06 1.98 2.51 2.59 11.32 

 

Table 5-15: The EER (%) of the SD test for the walking upstairs 

Table 5-14 and Table 5-15 provide the stairs performance. The walking activities 

performance exceeded the stairs activities. However, the proposed system can 

still distinguish the users precisely with an EER of 1.35% and 1.64% with network 

hiding layer sizes of 20 and 25. This is compared to 1.35% and 4.69% using the 

FF-MLP classifier for walking down and up the stairs, respectively, for the typical 

feature subset for each activity used by the SVM classifier. The walking down the 
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stairs performance difference was 3.05%; on the other hand, no difference was 

shown with walking up the stairs activity results.  

Table 5-16 presents the dataset authentication performance for all activities. The 

best EER was 1.59% using a 230-feature subset and a hiding layer size of 20, 

compared with the EER of 4.55% conducted using a 35-feature subset (the ideal 

feature number for the SVM classifier). The FF-MLP, with a variety of activity 

signals, needs more features to achieve better authentication performance.  

Network 
hiding 

layer Size 
 

Number of Features (All Activities) 

30  40  50  60  70  80  110  160  170  180  190  200  210  220  230 304 

5 5.82 4.73 4.36 3.65 3.55 3.3 2.92 2.52 2.59 2.3 2.33 2.13 2.07 2.04 1.93 2.11 

10 
4.92 4.13 3.7 3.46 3.17 3.03 2.59 2.24 2.32 2.17 2.26 2.01 1.89 2.11 1.9 1.84 

15 
4.57 3.8 3.58 3.15 2.99 2.73 2.43 2.18 2.11 2.18 1.98 1.98 1.85 1.78 1.82 1.77 

20 4.55 3.51 3.34 3.01 2.8 2.61 2.42 2.02 2 2.01 2.01 1.89 1.83 1.83 1.59 1.76 

25 4.41 3.44 3.27 2.93 2.77 2.61 2.34 2.08 1.91 1.97 1.87 1.82 1.65 1.68 1.74 1.64 

Table 5-16: The EER (%) of the SD test for all activities 

From the above results (Tables 5.11 – 5.16), it is clear that the selection of the 

dynamic features algorithm shows better results in this analysis with individual 

activities. The best performances were achieved with small numbers of feature 

subsets with the normal, fast, with a bag, and stairs activities. In all activities, the 

dataset required more features than individual ones to recognise the users. In 

other words, more feature subsets (i.e. 180, 190, 200, 230, and all features—304) 

achieved better performance than fewer feature subsets (30, 40, 50, 60, etc.). 

This is mostly because the variety of walking data signals with a combination of 

different activity datasets will give more complex gait signals compared to more 

distinguishable individual activity data signals. Consequently, more feature 

subsets are needed to perceive the users.  
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The experimental results for the different walking activities with the more realistic 

CD scenario are shown through tables 5.17 – 5.22.  

Table 5-17 presents the normal activity performance using FF-MLP, best EER of 

2.09% obtained using 150 features and a network hiding layer size 35 neurons. 

That means the same performance conducted using the best feature subset for 

the SVM classifier used a 160-feature subset. 

By analysing individual EERs within the normal activity results, there is an 

outlier’s subject with an EER of 61.99%, 28.85%, 10.33%, and 9.74%. This high 

error, in comparison to the majority of other subjects, has reduced the averaged 

EER by 1.84%. Consequently, without an outlier’s subject, the calculated average 

was enhanced with an EER of 0.25% and the computed median shows the EER 

is 0%.  

Network 
hiding 
layer 
size 

Number of Features 

110 150 160 220 230 304 

30 2.57 2.59 2.65 2.68 2.41 2.62 

35 2.77 2.09 2.69 2.67 2.46 2.49 

40 2.66 2.23 2.7 2.65 2.48 2.61 

45 2.59 2.3 2.71 2.64 2.5 2.59 

Table 5-17: The EER (%) of the CD test for normal walking 

The data in Table 5-18 shows the FF-MLP surpasses the results of the SVM 

classifier with the fast walking activity with the best EER of 3.91%, using the 

optimum number of features (only ten features) and a network hiding layer size 

of 40.  

The same sufficient feature subset is required for both the FF-MLP and SVM 

classifiers to obtain the best results. 
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By analysing individual EERs in the fast activity results, there is an outlier’s 

subject with EER of 58.89%, 36.35%, 30.72%, and 18.77%. This is considered a 

very high error in comparison to the majority of other subjects. Therefore, the 

calculated average EER without an outlier subject is 1.49%, and the computed 

median shows that the EER is 0%. The average EER dropped down to 2.42%.  

Network 
hiding 

layer Size 

Number of Features 
 

10 25 30 120 304 

35 4.58 5.36 4.8 4.57 4.91 

40 3.91 4.61 4.8 4.57 4.74 

45 4.14 5.85 4.55 5.25 5.28 

50 5.88 6.28 4.8 5.6 5.94 

55 5.3 5.45 5.18 5.16 5.15 

 

Table 5-18: The EER (%) of the CD test for fast walking 

Table 5-19 shows the performance of walking with a bag activity. The best EER 

was 0.89% by using a 65-feature subset and network hiding layer size of 45 in 

comparison with an EER of 6.46% with a fixed selected feature subset using the 

SVM classifier. That means the percentage level dropped down by 86.23%. 

By analysing individual EERs in the walking with a bag activity results, there was 

an outlier subject with an EER of 17.31%. Thus, the calculated average EER of 

0.69% without an outlier subject and the computed median shows that the EER 

was 0.03%.  

Network 
hiding 

Layer Size 
 

Number of Features 

65 150 230 304 

35 
1.02 0.9 0.92 0.95 

45 
0.89 1.11 0.92 1.05 

50 
1.09 0.96 1.02 1.07 

 

Table 5-19: The EER (%) of the CD test for walking with a bag 
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Network 
hiding 

Layer Size 
 

Number of Features 

10  15  20  150   304  

15 23.45 22.84 22.92 22.93 22.56 

20 24.11 24.03 24.14 23.21 23.6 

25 24.19 23.89 24.44 23.81 23.99 

30 23.76 24.09 24.94 24.39 24.22 

Table 5-20: The EER (%) of the CD test for walking down stairs 

  

Network 
hiding 

Layer 
Size 

Number of Feature 

10  15  20  60  70  80  304  

15 22.89 22.75 22.81 22.46 23.04 23.08 23.09 

20 23.06 23.07 23.32 23.2 23.4 23.14 22.94 

25 23.61 23.63 23.65 23.27 24.33 23.28 22.85 

30 24.13 24.73 24.36 23.33 24.12 24.78 23.18 

Table 5-21: The EER (%) of the CD test for walking upstairs 

Table 5-20 and Table 5-21 provided the walking down and upstairs walking 

performance. The walking activities performance exceeded the stairs activities. 

The walking on the stairs obtained less recognition performance with more 

realistic CD and EERs of 22.56% and 22.46% with the network hiding layer size 

of 15 for the down and upstairs walking, respectively. Notably, the results are 

somehow better than the previous experiments’ results using the SVM classifier. 

However, more features are needed than the SVM classifier. For instance, 

downstairs utilised the all features vector and upstairs employed the 60-feature 

subset, compared with 10 and 20 features used with the SVM experiment. 

Because of the belt phone pouch was mostly wobbling (i.e. unstable) while the 

participants were walking down or upstairs, the signal was predominantly noisy.  

Concerning all activities, it is evident in Table 5-22 that the network hiding layer 

size of 50 achieves the best EER of 6.58% employing the same feature subset 

(60) that was most ideal to the SVM classifier and made better results. 



172 

 

By analysing individual EERs in the all activity dataset results, there are ten outlier 

subjects with EER ranging from 13.10%-35.97%. This is a high error, in 

comparison to the majority of other subjects. Therefore, the calculated average 

EER without an outlier subject of 3.35% and the computed median shows that the 

EER is 2.66%. Accordingly, the average EER decreased by 3.23%, which is 

considered a superior result. 

Network 
hiding 

layer size 

Number of Features 

30  60  304  

10 7.82 7.86 7.91 

20 7.66 7.68 7.2 

30 7.2 7.13 6.76 

40 6.82 6.76 6.82 

50 6.64 6.58 6.64 

Table 5-22: The EER (%) of the CD test for All Activities  

 

5.4 Discussion 

This research utilised a dataset containing a larger number of gait samples (8,880 

samples) across more users (60 users) and covered both same day and cross 

day scenarios. In addition to regular walking activity, more user gait activities were 

collected, including fast walking, walking with a bag, and walking up/downstairs, 

offering the opportunity to learn the user’s walking behaviour in a more realistic 

way rather than under laboratory conditions. Moreover, signals were extracted 

from both the accelerometer and gyroscope sensors contributing to the creation 

of a larger feature vector for the time and frequency domains for each sensor. In 

comparison with existing prior studies; e.g. Osaka University (Ngo et al., 2014) 

published a dataset employed 744 subjects, accelerometer sensor data, each 

participant walked normally in a controlled environment for 1 min session, which 

is not enough for network training. And a study by (Muaaz et al., 2013) employed 

51 users walked normally in laboratory conditions.   
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 To improve the system performance, different stratagems were used and their 

impact investigated on the system’s performance, such as a dynamic feature 

selection technique, the effectiveness of time and frequency domain-based 

features, in addition to the impact of the proposed multi-algorithmic approach 

through involving all activities (i.e., five types of activities: normal, fast, with a bag, 

downstairs, and upstairs walking). In summary, these results show that:  

 Accelerometer signal data: the TD features set achieved better performance 

than the FD features set in both scenarios. As shown in Table 5-1, for the 

same day scenario, the dynamic feature selection method is applied on all 

activities with least than 41% and 54% of the number of features being used 

for TD and FD, respectively. System efficiency using the DF technique 

outperformed with differences can be obtained of 1.5% and 1.7% in TD and 

FD, respectively. For the cross-day scenario, the EER difference of 1.22% and 

the features decreased by 28% with the TD. No significant differences were 

noticed in EER and the features utilised in FD features. 

 Gyroscope signal data: The TD features set achieved better performance than 

the FD features set in both scenarios. As shown in Table 5-2, for the same 

day scenario, when the dynamic feature selection method is applied, features 

decreased by 69% and EER was reduced by 2.9% for the TD features. While, 

for the CD, time-domain features showed no significant performance. 

However, the number of features used dropped down by 58.8%. 

Consequently, the dynamic feature selection succeeded to obtain better 

results with the TD feature vector while the FD feature vector used all 55 FD 

features to achieve the best results in both SD and CD scenarios. 

 The time and frequency domain features for the accelerometer signal data: 

Table 5-3 shows the impact of the domains, the TD and FD features, 
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combined. With respect to the performance, by using dynamic feature 

selection techniques, the EER differs by 2.40% and 1.09% for the SD and CD 

accordingly. Furthermore, about 29.60% and 49.34% of features were used 

with SD and CD, respectively.  

Table 5-3 demonstrates that a better performance is achieved by using 

features from both sensors for both the same day and cross day scenarios.     

 Accelerometer and gyroscope features dataset: Notably, as shown in Table 

5-4, no significant differences were found between the dynamic and static 

results with all activities in the SD and CD methodologies. However, the 

number of feature subsets used was reduced dramatically. This suggests the 

proposed feature selection technique has an optimistic effect on the system 

accuracy when applied to all activities (i.e., single algorithmic) with a reduction 

of 88.5% and 80.3% of the whole features for SD and CD, accordingly. These 

results indicate that more gait features are required for the more realistic CD 

scenario as a result of the potential of changing the user behaviour signal over 

time. 

 With respect to the research question (exploring the impact of the dynamic 

feature selection technique and the value of the feature space on the 

performance for different activities), which is related to the controlled 

environment dataset, the impact of the dynamic feature selection technique 

and the value of the feature space are analysed based on the performance for 

different activities (i.e. multi-algorithmic). The results using the dynamic 

feature selection process outperformed those obtained using the full feature 

set (i.e. 304 features) from both the accelerometer and gyroscope signals, SD 

and CD scenarios. The ratio of utilised features and the EER differences with 

and without applying the proposed dynamic feature selection approach are 
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illustrated in Table 5-23. The ‘EER difference’ was computed by subtracting 

the dynamic from the static EER results (i.e. the difference between the 

performance with and without using dynamic feature selection techniques), 

displayed in Table 5-6. 

 
Activity 
Type 

Same Day 
 

Cross Day 

Features 
Used (%) 

EER 
Difference 

Features 
Used (%) 

EER 
difference 

Normal 36 -0.90 52 -1.20 

Fast 42 -0.80 3 -1.22 

With Bag 27 -1.19 21 -0.48 

Down stairs  29 -18.10 3 -3 

Upstairs 16 -20.50 6 -3.30 

All Activities 78 -0.30 19 -0.18 

Table 5-23: The positive impact of using dynamic features selection techniques                          

on the system performance and the features used ratio 

This work shows that the proposed feature selection approach has an optimistic 

effect on system accuracy (under the SD and CD scenarios). With the SD 

methodology, the utilised features dropped down to a range from 35 features 

used for the all activities dataset to 160 features used for normal activity (i.e., 

range ratio from 16%-78% out of the 304 features). Even so, the EER reduced 

with a range of 0.30%-20.50% with and without using the dynamic features 

selection technique, but if 35 features were used to classify all activities, the EER 

differences increased by 0.83% compared with EER using the all features vector. 

The impact of using the CD scenario on the system performance was also 

examined. The number of features used to achieve the best performance for 

individual activities from 10 features was used for the fast and walking down the 

stairs activities and the maximum features used 160 features for the normal 

walking activity (i.e., a ratio range of 3%-52% of all 304 features). Nonetheless, 

only a small improvement on the performance was visible ranging between -0.18% 

and -0.30%.  
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Similar patterns were also observed from the impact of dynamic feature selection 

process on the performance. As shown in Table 5-6, for the same day scenario, 

at least a 56% decrease in EER can be obtained when the dynamic feature 

selection method is applied on individual activities with less than 45% of the total 

number of features being used. In comparison, for the cross-day scenario, the 

number of features used to achieve the best performance for individual activities 

(apart from normal walking) decreases dramatically (e.g. with only 65 or 10 

features out of the total 304 features); nonetheless, only a small improvement on 

the performance is visible. It is common that people’s walking behaviour can 

change over time owing to various factors such as weight, mood, and footwear. 

In addition, there was a 7-day gap between the training and testing data for the 

cross-day scenario. It is envisaged that the time gap will be reduced for the real-

life case, e.g. only the previous two days’ data will be used for training and, as a 

result, better performance will be observed.      

 With respect to the research question 5 (To what extent the multi-algorithmic 

approach is reliable compared to the single classifier approach?) the research 

examined various activities offering the opportunity to learn the users’ walking 

behaviour across more realistic scenarios than simply walking under 

laboratory conditions, especially when the prior work is very limited in that 

regard. As stated earlier, the system evaluated the performance of gait 

recognition across a wide range of walking activities through involving five 

types of activities: normal, fast, with a bag, downstairs, and upstairs walking. 

As demonstrated in Table 5-6, the impact of the proposed multi-algorithmic 

approach is sufficient for the SD and CD scenario, as most of the individual 

activities (apart from walking up the stairs for SD) and (fast walking for CD) 

achieved better performance than when they were treated as one activity. The 
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experiment results have shown that fast walking with the CD scenario is 

slightly higher than normal and with bag walking. As the methodology 

suggested, the participants walked in one (the same) corridor, which caused 

them (in order to add reality to the environment) to turn and walk back when 

they reached to the end of the corridor. This was repeated about 5-6 times on 

average with every participant. Consequently, this leads that the speed was 

not constant for each participant on different days. However, walking on the 

stairs resulted in poor recognition performance, suggesting that the approach 

should not be applied to such scenarios.  

 The most discriminative features for different activities were investigated. It 

appears, from Table 5-7, which summarised the top repeated features for 

normal activity, that the most discriminated features are accelerometer (x-axis) 

variance (10F), accelerometer (x-axis) covariance (13F), and accelerometer 

(x-axis) skewness (56F).   

As mentioned before, a gyroscope is used to maintain a reference direction in the 

motion systems by sensing the degree of orientation in the x, y, and z directions 

of the smartphone. The axis signal is affected by the direction of the device 

orientation. In addition, the accelerometer sensor measures the acceleration in 

metres per second squared (m/s2) in the x, y, and z directions of the smartphone.  

Figure 5-19 and Figure 5-1920 show the orientation of the positive and negative 

x, y, and z-axes for a typical smartphone device using the gyroscope and 

accelerometer sensors, respectively. An Android application called AndroSensor 

was used to record the sensor data, as it supports most of the sensors an Android 

device can offer (AndroSensor 2018). 



178 

 

Accordingly, x-axis covariance (13F) measures how much the horizontal 

movement of the user’s leg changes (i.e. when the variables are linearly 

transformed). This is supposedly distinctive among the users. Regarding the 

skewness (56F), the measure of the symmetry of distributions around the mean 

value of the accelerometer x-axis segment, feature 268 calculates the root mean 

square for the forward movement of the gyroscope z-axis of the leg. 

 

  

                            Figure 5-19                                             Figure 5-20                

   

 Several experiments were conducted to investigate FF-MLP. It can be seen 

from Table 5-10 that better results were achieved by FF-MLP that outperform 

the performance of SVM for both the SD and CD scenarios.    

5.5 Conclusion 

The study sought to investigate the performance of gait recognition across a wide 

range of activities and participants. Based on 60 participants, the investigation 

The Orientation of the axes relative to a 
typical smartphone device using a gyroscope 
sensor. 

The Orientation axes relative to a typical 
smartphone device using an accelerometer 
sensor 
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has provided significant evidence to suggest gait-based data can be used as a 

reliable means of transparently verifying users while moving. However, the 

performance of the cross-day over the same-day methodology demonstrates 

feature vector variance that a practical system would need to manage in practice 

carefully. To aid in this, the study has explored the use of a multi-algorithmic 

approach (where different classifiers are used based on the nature of the activity) 

and found that such an approach can achieve a better level of performance over 

a single classification approach. 

The study has also sought to evaluate the feature vector and found that a dynamic 

approach rather than a static (all feature) approach is beneficial to both the 

performance that can be achieved but with the added benefit of reducing the 

computational load on the classifier. 

While the study has provided significant evidence to advocate the approach, the 

experimental methodology still involved relatively controlled data collection. As 

such, the next chapter will focus on the collection of longitudinal real-life gait-

based data to more thoroughly evaluate the recognition performance.  
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6 Experimental Results: Real-Life Gait Recognition 

6.1 Introduction 

This chapter explores the details of the consecutive experiments that will be 

undertaken in developing the proposed real-life gait recognition system. These 

experiments will focus on providing the empirical basis for whether the proposed 

approach could work—initially through exploring real-world data (rather than highly 

constrained control data) to understand the variability and difficulty in successfully 

authenticating individuals. 

This chapter aims to evaluate a real-life gait dataset captured from real and live 

usage without any restriction conditions. The collected data was employed in a 

series of investigations to assess the suitability and effectiveness of utilising such 

kind of gait data for user verification with a view of identifying the attribute types 

required with a decision being made to verify subject samples, for a successful 

authentication mechanism. The rest of the chapter is organised as follows The 

activity identification results are explained, to be able to classify the type of user 

gait activities. The effectiveness of accelerometer and gyroscope-based features 

on the system performance was investigated with the impact of static versus 

dynamic feature vectors. A range of the most discriminative features subset for 

classification was also examined for the different gait activities using the FF-MLP 

neural network as the default authentication classifier because of its reliable 

performance (as demonstrated in Chapter Five). As an additional step, majority 

voting was applied to the decision to evaluate what impact it would have on 

performance (inline it being applied by the prior art) to enhance the results of real 

condition activities. Furthermore, we explored the viability of a multi-algorithmic 

approach compared with a single classifier approach through actual practice. 
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6.2 Activities Identification Results  

Three different experimental settings were undertaken to study how various 

activity types affected the identification rate. First, as normal walking and walking 

with a bag were the most similar activity types, they were merged to form a single 

activity. The second test combined normal, fast, and walking with the bag into a 

single activity. As long as the person walked normally, faster or slower in a short 

period of time during their daily movement (various times of the day, moods, and 

places), a gradation in the walking speed was expected. The final test examined 

the correct classification rate for all the activities. As mentioned in Chapter 4 

(activity identification model), to train the base model, the controlled data were 

split into 60/40 training and testing sets, respectively. Once the best model was 

chosen (the one that achieved the highest performance), the model was retrained 

using all the controlled dataset for training the final model, which was used to 

predict the free activities. Three algorithms were the best candidates for the 

ensemble; these are the feedforward neural network (FF-NN), SVM, and eXtreme 

gradient boosting (XGB). The highest accuracy was achieved with the FF-NN 

algorithm (87.67%) and the lowest prediction accuracy was with SVM (84.88%) 

for all activities (i.e., normal, fast walk, stairs and sitting). The results are 

illustrated in detail in Table 6-1. 

Two types of voting were used: hard and soft majority voting. Hard voting uses 

predicted class labels for majority rule voting while soft voting predicts the class 

label based on the argmax of the sums of the predicted probabilities, which is an 

approach recommended for an ensemble of well-calibrated classifiers (Caruana 

et al. 2006; Whalen & Pandey 2013). It can be seen in Table 6-1 that the soft 

voting approach outperformed the other models in all tests. 
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Activity type 
Activity 
merge 

XGB (%) SVM (%) NN (%) 
Soft 

voting 
(%) 

Hard 
voting 

(%) 

Normal, Fast, 
Downstairs, 

Upstairs, Sitting 

W/bag 
merged 

with Normal 
93.54 93.35 93.88 94.60 94.27 

Walk, Downstairs, 
Upstairs, Sitting 

Fast and 
W/bag 
merged 

with Normal 

97.06 97.30 97.65 97.79 97.54 

All None 86.18 84.88 87.67 87.79 87.24 

Table 6-1: Overall classification accuracy for each model 

The confusion matrix summarises the performance of the classification model for 

the multi-class classification task in this study (in particular, the soft voting model). 

It also shows how the predictable model performs on a class level, in which both 

true-positive and false-negative values can be measured. Figure 6-1 presents the 

normalised confusion matrix for the percentages for all six activities (normal, fast, 

W/bag, downstairs, upstairs, and sitting). It is not surprising that sitting had the 

highest prediction rate of the activities. This is because the uniqueness of its 

generated sensor signals of the sitting activity. Concerning the downstairs 

activity, the false-positive samples are misclassified as walking types (either 

normal, fast, or with a bag), and this could be interpreted as some of the 

downstairs samples actually containing normal and fast walking types. For 

example, once a subject reaches the bottom of the stairs, the individual walks a 

few more steps to complete the activity, which might become a noisy/outlier 

sample in the downstairs activity dataset. 
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Figure 6-1: Normalised confusion matrix (%) of the soft voting model 

6.3 Exploring More Discriminative Features for Different Real-World 

Activities 

In comparison between the controlled and real-world dataset, the best-selected 

features that significantly contributed to the decision being made in verifying 

subjects’ samples were almost identical among users with the real data signal. 

This study indicates that the most repeated features for each user were changed 

with real-world signal dataset along with each single activity data set. Table 6-2 

explores the top ten most discriminative features across regular activity model, 

and the complete set is presented in appendixes G, H, I, J. They are coded in 

colours where red represents the most repeated features, yellow the second most 

repeated, and the green the third most repeated features. The numbers 

correspond to the features as listed in Table 5-5. 

Data from Table 6-2 can be compared with the data in Table 5-7, the top ten most 

discriminative features across the normal activity model for controlled and 

uncontrolled dataset, respectively. It has been found from the comparison that 

the most repeated features for an examined subject differed between these two 

sets (controlled and real). The justification behind such patterns is that the 

captured signal values increased the variance between the two sets. That is 
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because the real gait patterns were more complex and highly inconsistent than 

the controlled dataset. 

According to the more repeated features regarding every single activity and all 

activity data samples across all users’ models were explored. For example, Table 

6-2 explores the top ten most discriminative features across the normal real data 

activity model. To have more precise features form, about 10% of the number of 

features employed by the classifier were coded in colours where red represented 

the most repeated features (>40), yellow the second most repeated (<40 and >30), 

and the green the third most repeated features (>20). All other white coloured 

features were repeated less than 20 times. 

As demonstrated in Table 6-2, the most repeated features used with normal real 

data activity as follows: 

 Feature numbers 212 and 213 referred to the time domain, gyroscope (y and 

z-axis), and kurtosis value, which calculated the measurement of the shape 

of the curve for the segment point’s values. 

 Feature numbers 89, 90, and 91 referred to the time domain, accelerometer 

(x, y and z-axis), and the time between peaks, which calculated the time in 

milliseconds between peaks in the sinusoidal waves associated with most 

activities calculated and averaged.  

 Feature numbers 241, 242, and 243 referred to the time domain, gyroscope 

(x, y and z-axis), and the time between peaks value, which calculated the 

time in milliseconds between peaks in the sinusoidal waves associated with 

most activities calculated and averaged. 

Consequently, the top 6 ranked features (i.e., the most repeated features) are 

based on the time between peaks feature type for both accelerometer and 
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gyroscope sensors. This could be interpreted that the cycle of walking, as 

measured by the peak to peak, is distinctively higher for each person. 

#user Accelerometer and Gyroscope Top Ten Discriminative Features_ Real Data 

1 89 90 91 243 72 212 213 241 242 155 

2 293 90 89 91 72 241 243 213 242 212 

3 90 89 72 91 241 243 213 242 212 2 

4 89 91 90 243 241 213 242 212 72 155 

5 141 143 212 213 90 89 72 241 16 243 

6 89 90 91 243 212 241 242 213 204 219 

7 293 72 212 90 213 243 89 241 91 155 

8 89 72 90 91 241 243 242 212 213 51 

9 293 89 91 90 243 242 213 212 241 2 

10 89 90 91 72 241 243 242 213 212 16 

11 89 90 91 241 243 242 212 72 213 27 

12 293 294 295 213 212 51 66 155 72 2 

13 293 294 295 213 212 51 66 155 72 2 

14 90 241 89 91 243 242 212 213 51 66 

15 89 213 91 212 90 243 242 241 155 153 

16 72 212 90 213 241 89 91 162 165 290 

17 294 90 89 213 91 72 212 241 243 242 

18 293 90 89 91 241 242 243 213 212 155 

19 141 294 89 91 90 72 241 109 112 213 

20 235 237 236 213 72 212 241 91 204 219 

21 212 90 213 89 16 241 91 2 59 243 

22 293 90 89 91 241 212 243 213 242 2 

23 89 91 241 90 213 243 72 242 212 155 

24 89 91 90 72 241 212 213 243 2 153 

25 72 295 294 293 204 219 141 143 142 16 

26 141 212 90 213 241 243 89 51 66 91 

27 89 91 90 213 243 241 212 242 2 51 

28 293 89 90 91 241 242 243 213 155 2 

29 233 82 80 85 235 81 236 237 83 293 

30 89 90 91 212 213 243 59 241 2 242 

31 89 91 90 212 241 213 243 72 2 242 

32 293 89 90 91 241 242 243 213 212 204 

33 212 89 90 243 213 241 91 242 59 16 

34 293 89 212 90 213 72 241 243 242 155 

35 293 89 90 91 243 241 242 213 212 155 

36 294 295 89 90 91 241 213 212 243 242 

37 295 89 91 90 241 243 212 242 213 72 

38 294 89 90 91 241 243 212 213 72 2 

39 212 213 90 89 16 241 59 2 91 155 

40 89 72 212 243 213 90 91 241 59 155 

41 90 89 72 91 212 213 241 243 155 109 

42 89 91 72 90 213 212 243 241 242 155 

43 89 91 90 243 212 241 242 213 2 51 

44 293 89 90 91 241 242 243 212 213 27 

(213, 212, 241) (89, 90, 91) (243, 242, 72) 

Top Repeated Second Repeated Third Repeated 

Table 6-2: Top ten discriminative features for each user in the normal and walking with 

a bag  
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The above top-ten features tables exhibited the variation of the patterns of the 

dynamic-based feature selection decision between the users and activities. Table 

6-3 illustrates a comparison between user 1 and user 3’s top repeated features. 

It appears from the table that each person has a relative difference pattern for 

each activity (red colour related to the first repeated, yellow is the second 

repeated, and the green for the third repeated features with all users). 

 
Activity 
Type 

User 1 
 

User 3 

Top Ten repeated Features  
 

Top Ten repeated Features 

Normal & 
W/ Bag 

89 90 91 243 72 212 213 241 242 155 90 89 72 91 241 243 213 242 212 2 

Fast 
 

89 91 90 243 242 260 263 290 241 162 89 90 91 242 243 164 167 292 241 261 

Down 
Stairs 

 

293 90 91 89 243 242 11 14 241 72 90 89 91 243 151 241 242 169 179 202 

Upstairs 
 

270 213 243 170 151 195 109 112 211 187 241 294 89 27 243 2 90 51 66 72 

All 
Activities 

 

293 90 91 89 243 164 167 292 242 212 294 90 91 89 292 164 167 241 212 243 

 

Table 6-3: A comparison between two users’ best feature patterns (real dataset) 

From the preliminary analysis of the above different gait activities’ top repeated 

tables, the most discriminative distribution-based features that contributed to 

decision selection are summarised in Table 6-4 below. As an example, a part of 

the full feature vector (i.e., 304 F) is sorted in ascending order. The total count of 

feature repetition for each activity is 440, which means 2200 repetition times 

across four activities (i.e., 4*440). From the data in Table 6.9, it is apparent that 

the top 6 of the best-selected features significantly contributed to the discussion 

being made in, verifying subjects’ samples are almost identical among users with 

the real data signal. Our findings revealed that the top 6 are the time between 

peaks feature type for both sensors (i.e., Gyro, x, y, z-axis and Acc x, y, z-axis). 

The order is 243F, 89F, 241f, 90F, 91F, and 242F, respectively. To give an 

illustration of their percentage of accruing are 6.18%, 6.04%, 6%, 5.7%, 5.2% and 

4.22% accordingly, across all activities.  
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Feature 

Repetition 
Order 

 
Feature 

No. 

Normal& 
W/ Bag  

 
Fast 

 
Down 
Stairs 

 
Upstairs 

 
All 

Activities 

 
Total 

Repetition 

Feature Repetition 

1 243 36 31 39 30 21 136 

2 89 39 38 38 18 33 133 

3 241 40 22 37 33 18 132 

4 90 39 35 41 11 37 126 

5 91 38 39 38 0 34 115 

6 242 28 28 33 4 12 93 

7 27 2 2 20 25 0 49 

8 212 40 1 0 3 26 44 

9 213 42 1 0 0 0 43 

10 72 25 0 11 6 0 42 

11 164 0 39 0 2 40 41 

12 167 0 38 0 0 38 38 

13 292 0 35 0 0 37 35 

14 162 1 9 8 16 4 34 

15 165 1 8 7 15 4 31 

16 165 1 8 7 15 4 31 

17 2 14 0 0 15 0 29 

18 290 1 10 5 13 9 28 

19 151 0 0 22 4 0 26 

20 261 0 24 0 0 24 24 

Table 6-4: Summary of the top repeated features for each activity -real dataset 

In terms of the user profile, Figure 6-2 (a) and (b) depict examples of the most 

repeated features, 243F and 89F (i.e., the time between peaks), for the real 

dataset and, similarly, 13F (accelerometer X-axis covariance) and 56F 

(accelerometer X-axis skewness) for the controlled dataset. In comparison 

between the most discriminative feature measurements for the controlled and 

real-world signal. Figure 6-3 (a) and (b) show a considerable difference of (243F) 

and (89F) feature measurements between two datasets. Likewise, (a) and (b) 

show the difference between (13F) and (56F). This finding confirmed that the real-

world is not reflected in the control data because it is more variable; it also then 

highlights the validity of the prior art.  
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(a)                                                               (b) 

Figure 6-2: (a) and (b) show User1’s profile signals for feature 243 and 89 from both the 

controlled and uncontrolled datasets 

 

 

                (a)                                                                          (b) 

Figure 6-3 (a) and (b) show User1’s signals for feature 13 and 56 from both the 

controlled and uncontrolled datasets 
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Figure 6-4: The distribution of data points using a 2D plot from 243F and 89F 

The most repeated features in the real dataset are 243F and 89F. Figure 6-4 

shows the data points of these two features in a 2D plot. Where the red points 

correspond to the control data and the blue points are the real data. It can be seen 

that the distributions of these two covariates (features) had shifted in a real 

dataset in comparison to the control. This means that the STD and mean of these 

features also changed and this was considered further confirmation that the 

patterns of the captured signal values were entirely different between the two 

sets. The dynamic-based feature selection technique output varied between 

controlled and real datasets. Therefore, all the features were fed into the machine 

learning algorithm as they were considered more relying than utilising part of 

them. The following subsection will demonstrate results in the real-world gait 

authentication system. 

6.4 Real-World Gait Authentication and Multi-Algorithm Performance 

One of the main contributions of this thesis is to evaluate the performance of gait 

recognition across different walking activities identified from a real and live 

unconstrained use of the smartphone sensors’ signal (i.e., acceleration and 
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gyroscope). Moreover, it is aimed at investigating the viability of a multi-

algorithmic approach through involving all activities vs. a single classifier 

approach across the real-world dataset. Therefore, the best performance of EERs 

resulted from the controlled data experiment. The selected FF-NN network sizes 

classifier (reviewed in Chapter 5) were adopted to be utilised in this and 

forthcoming real-world experimental studies (as presented in this subsection). 

An activity recognition model was applied on the uncontrolled gait dataset, which 

was already collected from 44 users (7-10 days for each user). Four types of 

activities were identified (normal, fast, walking with a bag, and down and upstairs) 

for each user. 

As conducted in an uncontrolled experiment to evaluate gait activity verification, 

the dataset of each subject was divided into four days of the data for training the 

classifier and creating the user template and the remaining three days for testing 

and validation (i.e., 100% of genuine data; four days for training/three days for 

testing). In other words, the training data needs a longer time (around 10 to 15 

days) to process, depending on the activity data volume, especially when different 

activity datasets are merged together. In this setting, mostly the EER is high 

because of the imbalanced data set problem.  

Consequently, and in order to improve the system efficiency, using the 

undersampling technique as another experiment setting is suggested (e.g., 

reducing imposters’ training set) to perhaps improve the overall EER and to speed 

up the runtime. Accordingly, the training and testing splitting ratio for the imposter 

data sample method was determined to 10% randomly selected samples of the 

first four days were used for training instead of 100% of four days’ data. 
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The previous experiment (demonstrated in Chapter 5) was evaluated by two 

algorithms, SVM, which is based on a statistical learning technique and FF MLP 

neural network classifiers. The SVM algorithm was used to train the real dataset. 

However, because of the nature of it, the process could not accommodate the 

sizeable real dataset because it can work with a limited volume of data. As a 

result, an alternative decision tree algorithm, random forest classifier, different 

tree numbers, and feature subsets were used, but the EER results were high. 

Therefore, the FF-NN was used instead, as it proves the best results.  

The above experiment setting was applied on individual activities; normal and 

carrying a bag, fast, and down and upstairs, and all activities together, coupled 

with evaluating a multi-classifier algorithm. The results were somewhat good and 

better than a single classifier algorithm apart from the walking stairs activities. 

Ogbuabor and La (2018b) illustrate the ‘Kurtosis’ feature, which is a measure of 

the shape for the values in a particular segment. It is apparent from the ‘Kurtosis’ 

descriptive statistic that there is clear variability across the activities examined for 

this feature. Although normal walk and walk with the bag are two different 

activities, they are, by their nature, very similar in terms of pace and type of body 

movement. As well as, the median and first and third quartiles were almost equal 

for this feature as computed by the random forest algorithm and most of the false 

positive examining samples for the confusion matrix for the predictable model 

were also between these two activities, which supports the point being made 

here. In other words, although normal walk and walking normally with carrying a 

bag are two different activities, they are, by their nature, very similar in terms of 

pace and type of body movement. Therefore, they were merged to form a single 



192 

 

activity. The activity authentication results are first presented for the “single-

sample mode”, and then the majority voting scheme was used. 

 Table 6-5 and Table 6-56 show the accelerometer and gyroscope sensors of the 

normal walking activity result and the FF-MLP classifier using different feature 

subsets. The results indicate that utilising a 100% training dataset is not as 

effective as 10% for classification. For example, the 110-feature subset reported 

EERs of 15.94% in comparison with 14.53% utilising only 10% training dataset 

for the same feature subset. Albeit there is no big difference in the performance, 

there was a significant reduction in the processing time (one to two days), 

depending on the activity data volume. Depending on the best performance 

obtained from the previous set of experiments, a network size with 40 neurons 

was considered, and the full feature vector achieved the best performance of 

11.38% utilising 10% of the training dataset.  

 

 

    

 

Table 6-5 and 6-6: The EER (%) of normal walking activity utilising different 

feature subsets 

Concerning the fast walk activity, the reported results can be directly compared; 

10% of training dataset results was better. The network size with 40 neurons and 

the full feature vector achieved the best performance of 11.32% as illustrated in  

Table 6-7 and  

Network 
size 

Number 
of 

Features 

10% 
Training 
Dataset 

40 10 28.69 

40 50 17.50 

40 100 16.39 

40 110 14.53 

40 160 15.90 

40 200 14.50 

40 250 14.04 

40 304 11.38 

Network 
size 

Number 
of 
Features 

10% 
Training 
Dataset 

 

100% 
Training 
Dataset 

 
40 100 16.39 17.46 
40 110 14.53 15.94 
40 160 15.90 16.55 
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Table 6-78. 

Network 
Size 

Number 
of 

features  

10% 
Training 
Dataset 

 
40 10   26.8 

40 40 19.47 

40 50 17.56 

40 100 15.20 

40 150 14.60 

40 200 13.84 

40 250 13.38 

40 304 11.32 

 

Table 6-7 and Table 6-8: The EER (%) of fast walking activity utilising different 

feature subset size  

 
Network 

Size 

 
Number 

of 
Features 

Normal and  
Fast  

10% Training 
Dataset 

  

40 10 27.74 

40 50 17.56 

40 100 15.20 

40 160 14.56 

40 200 14.17 

40 250 13.69 

40 304 12.49 

Table 6-9: The EER (%) of normal and fast walking activities utilising different 

feature subset size 

The same network size with 40 neurons and the full feature vector achieved the 

best performance of 12.49% when normal and fast activities were combined, as 

shown in Table 6-9. 

Activity Type EER (%) 

Normal 11.38 

Fast 11.32 

Down Stairs 24.52 

Upstairs 27.33 

Normal & fast 12.49 

All Activity 15.08 

Network 
size 

Number 
of 

Features 

10% 
Training 
Dataset 

 

100% 
Training 
Dataset 

 
40 10   26.8 29.8 

40 40 19.47 21.3 

40 50 17.56 20.10 

40 100 15.20 18.25 

40 150 14.60 16.10 
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Table 6-10: The best EER (%) for individual and all activities 

Table 6-10 shows the classification system performs with the multi-classifier in 

comparison with single classifier. As expected, the system performance dropped 

with the walking up and down stairs activities. Consequently, the proposed multi-

algorithmic approach tended to perform better than the individual activities (apart 

from walking down and upstairs) across the real-world dataset, as most of them 

achieved better performance than when they were treated as one activity. 

Figure 6-5 illustrates the users’ profiles for the normal activity as an example of 

the multi-algorithmic and Figure 6-6 illustrates the users’ profiles for all activities 

as a single classifier. 

 

Figure 6-5: The EER (%) of individual performance for normal walking activity 
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Figure 6-6: The EER (%) of individual performance for all activities 

Figure 6-5 illustrates the individual performance from the best EER of 11.38%. 

The figure exhibits that a significantly wide range of users’ performance was 

under 10%. With 1.94% of User 29 being the best and 46.80% of User 30 being 

the worst. It was found that 12 participants (Users 5, 10, 15, 16, 20, 23, 25, 26, 

28, 29, 39 & 42) achieved an EER of less than 5% each whilst another 6 (Users 

26, 22, 30, 33, 37 & 38) accomplished an EER of more than 20% each. From the 

analysis, it is clear that the majority of the participants scored less than 10% in 

the multi-algorithmic approach. In contrast, with a single classifier, the majority of 

participants scored greater than 10%, as shown in Figure 6-6. 

The real-world results were not as good as the controlled experiment as human’s 

behaviour does change over time, in addition to the influence of many 

environmental factors (e.g., human emotion, time effect, and ground substance, 

changing clothes and shoes. etc.). In spite of this, the results above are presented 

for “single-sample mode” and none of the voting techniques were employed. 

However, the presented results are still promising. Therefore, the majority of 

voting was exploited, and the results are presented in the next subsection. 
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6.5 Applying Majority Voting  

The decision to accept or reject the output done by the system depending on the 

rating results. Previous studies (Nickel, Brandt, et al. 2011a; Nickel et al. 2011) 

have primarily concentrated on two standard programs: majority or quorum 

voting. Improved performance is typically achieved using quorum voting 

technology. However, the system is more resilient to errors when applying 

majority voting. With quorum voting, a small number of valid rating results are 

required for user acceptance. While this improves the users’ consolation (a user 

will maybe get to deploy such a system), this will lead to a high false acceptance 

rate, and that is, the spoofer is likely to misuse the system. From another view, 

user behaviour is more distinct when using majority voting; then, the system will 

produce a high false rate of rejection. The system would provide greater security 

when using majority voting; at the same time, the system is more invasive (not 

user-friendly). Consequently, it is necessary to have suitable decision logic to 

stabilise the system security and user for the authentication procedure. 

Ultimately, this study applied majority voting rather than the quorum voting 

schema. 

So far, all the results submitted were founded on a single sample classification 

for the EER calculation; the achievement in Table 6-10 gives good results. It is 

motivating to regulate the possibility of reducing the number of trials rejected by 

an original user.  

The first is a structure that accepts the user as original if at least half of the user's 

test samples are positive (i.e., at least 50% of the results are a match); then the 

biometric resolution merges several classification outputs into one. The latter is a 
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method that authenticates a native user if the required number of user samples 

is positive. 

Three different investigational tests were conducted to explore how various 

activity types affected the authentication rate. 

 First, each activity was tested as a single formula (i.e., normal, fast, down and 

upstairs walking), which represented a multi-algorithm approach.  

 The second test merged normal and fast into a single activity formula. 

 The third test studied the correct classification rate for all the activities, which 

represented a single-algorithm approach. 

As expected, the performance of the real-world dataset was poorer than the 

controlled circumstance. Mean and median measures were considered in this 

experiment, as the mean was more sensitive to outliers while the median was not, 

in order to explore to what extent the system performance was affected by the 

outliers. Figure 6-7 investigated the first experimental setting, comparing different 

real-world activities and authentication efficiency. Figure 6-8 exhibits the mean of 

the second and third tests. The majority voting results were obtained when 

involving a different number of sections (i.e., 15 sections ranging from three to 

thirty-one, 10 seconds each). Furthermore, Figures 6.9, 6.10 (a) and (b), and 6.10 

represented the median for different real-world gait activities’ authentication 

efficiency. In addition, Figure 6-11 (a) and (b) exhibit the normal and fast activities 

and four activities types, respectively. 
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Figure 6-7: Majority voting mean values using different numbers of data 

samples for multi-algorithm walking activities (10-second sample period) 

 

Figure 6-8: Majority voting mean values using different numbers of data 

samples for single algorithm walking activities (10-second sample period) 
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(a)                                                                      (b)        

Figure 6-9: Majority voting median values using different numbers of data 

samples for (a) normal walking, (b) fast walking. 

 

(a)                                                                   (b)    
Figure 6-10: Majority Voting Median Values Using Different Numbers of Data 

Samples for (a) Down Stairs, (b) Upstairs walking  
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(a)                                                      (b) 
Figure 6-11: Majority voting median values using different numbers of data 

samples for (a) normal and fast walking, (b) all walking activities  

Generally, the normal walking activity achieved better median values with more 

numbers of samples. It is clear from Figure 6-9 (a) that the lowest median was 

2.14% employing 31 samples (5:10 minutes). Also, it can be seen that Figure 6-9 

(a) has several outliers values ranging from 22% to 24%, which could affect the 

performance negatively, while the resulted median reduced by 50% in 

comparison with the mean considering the same number of samples.   

In contrast, the fast walking median range decreased gradually to obtain the best 

median utilising 17 samples (2:50 minute) as presented in Figure 6-9 (b). Then 

the median values increased with using more samples. Furthermore, fewer 

outliers appeared. This means fast walking could have more distinctive features 

helped with better recognition leveraging fewer samples. 

Figure 6-10 (a) and (b) show the median values for down and upstairs walking 

activities in which the downstairs activity experiment achieved better performance 

than upstairs, by reducing the error rate by 70%. This can be explained as the 

high values of outliers affected the overall error.  
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That resulted in the median values of 5.65% utilising 25 samples comparing with 

14.81% achieved by upstairs activity using 19 samples.  

There was no significant difference between the median values for normal and 

fast and all activities. It is clear from Figure 6-11 (a) that the lowest median for 

normal and fast activities was 3.50% employing 31 samples (5:10 minutes) and 

for all activities, it was 3.63% considering 37 samples (4:30 minutes), as shown 

in Figure 6-11 (b). The summary of majority voting results for all the experimental 

settings is presented in Table 6-11. 

Table 6-11 shows the mean and median dataset observations for the six activities 

utilising the majority voting scheme. As shown in Table 6-11, they produces 

significant enhancement on the system performance. In comparison with a single- 

sample evaluation, normal, fast, down and upstairs walking activities were 

improved by an average rate of 53.34%, 45.52%, 53.39%, and 24.81%, 

respectively. Moreover, analysing the performances for the merged normal and 

fast and the four combined activities demonstrates quite better improvement with 

an average rate of 46.99% and 49.40% accordingly. 

If the median is considered as a scale of a system performance, which is less 

sensitive to the outliers and could affect the achievement by shifting the average 

EER, it can be seen that EER median-based were quite better than the EER mean 

values. The EER dropped down to 2.14%, 1.89%, 5.65% and 14.81% for 

individual activities (i.e., normal, fast, down and upstairs). These results 

demonstrated the adverse effect of the outlier’s values, which are shown in the 

figures above. Whereas, the approximated range of outlier values between is 

(22%- 80%).  
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    Activity Type 
 
# Samples 
 / Time (second) 

 
Normal 

 
Fast 

 
Down 
Stairs 

 
Upstairs 

 

Normal 
And 
Fast 

All 
Activities 

3 
(30) 

Median 7.93 5.50 15.65 24.72 8.02 8.53 

Mean 9.90 9.77 18.97 26.48 9.99 11.99 

5 
(50) 

Median 6.41 4.19 13.24 21.08 7.39 7.50 

Mean 8.52 7.95 15.85 23.41 8.82 10.60 

7 
(1:10) 

Median 5.38 3.38 10.57 18.69 6.64 7.08 

Mean 7.78 7.96 15.08 23.62 8.07 9.95 

9 
(1:30) 

Median 5.29 3.38 8.74 18.98 5.48 6.27 

Mean 7.30 7.35 13.95 23.05 7.54 9.52 

11 
(1:50) 

Median 4.52 2.91 7.02 19.05 5.10 4.93 

Mean 7.06 7.11 12.71 23.10 7.37 9.04 

13 
(2:10) 

Median 3.56 2.96 6.32 16.13 4.70 5.24 

Mean 6.62 6.96 12.05 21.28 6.99 8.72 

15 
(2:30) 

Median 4.65 3.30 6.65 16.64 4.57 4.70 

Mean 6.44 6.79 12.75 21.65 6.79 8.24 

17 
(2:50) 

Median 3.46 1.89 5.71 16.18 4.26 4.71 

Mean 6.34 6.40 13.24 21.79 6.80 8.33 

19 
(3:10) 

Median 3.13 2.24 6.88 14.81 3.92 4.10 

Mean 6.05 6.89 13.67 20.55 6.37 8.04 

21 
(3:30) 

Median 3.06 2.48 6.48 15.12 4.05 3.96 

Mean 5.79 7.16 13.69 20.49 6.35 7.74 

23 
(3:50) 

Median 3.21 3.25 5.94 16.58 4.06 3.95 

Mean 6.08 7.59 12.54 21.59 6.26 7.84 

25 
(4:10) 

Median 3.32 2.48 5.65 18.42 3.82 3.52 

Mean 5.80 7.04 12.12 22.27 6.11 7.61 

27 
(4:30) 

Median 2.48 3.48 6.59 19.02 3.67 3.36 

Mean 5.37 7.05 12.03 23.22 6.19 7.48 

29 
(4:50) 

Median 2.90 3.15 6.15 16.25 3.99 3.49 

Mean 5.55 7.09 11.43 21.89 6.34 7.69 

31 
(5:10) 

Median 2.14 2.89 6.06 16.76 3.50 3.38 

Mean 5.31 6.43 11.91 22.33 5.87 7.45 

Table 6-11: Majority voting results for each number of samples across all gait 

activities  

This is an interesting result outcome with the real-world dataset, that multi-

algorithm authentication seems to be more reliable than a single algorithm, apart 

from the stairs activities, whether before and after applying the majority voting 

scheme and with using mean or median performance scales.  

6.6 Discussion  

In this study, a novel multi-algorithm approach was evaluated using real-world 

data gait recognition. Although the quality of real-life data was considered noisier 

and less reliable than the controlled data, the accomplished results are promising. 
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It reflects high possibilities to deploy the proposed mechanism to support existing 

active mobile authentications such as PIN or password in reality. As there is 

currently no real-life dataset in the mobile gait authentication field, the comparison 

with related works will be no relative. In comparison with existing prior studies, 

this research utilised a real-world dataset containing a more significant number 

of gait samples employing 44 participants during (7-11) days. 

As the performed real-life activity dataset in various environments, the activity 

recognition is considered a crucial process to split the data into multiple activities 

(i.e., normal, walking with a bag, fast, down and upstairs). As presented before in 

Section 4.5.3, predictable data modelling has been built that can classify a given 

individual’s activity signal into a predefined class, based on the features extracted 

from the raw sensor data. Three different investigational settings were conducted 

to study how various activity types affected the identification rate. First, as normal 

walking and walking with a bag were the most similar activity types, they were 

joined as a single activity formula. The second test merged normal, fast, and 

walking with a bag into a single activity. The final analysis examined the correct 

classification rate for all the activities. Two types of voting were employed: hard 

and soft majority voting. It can be seen that the soft voting approach outperformed 

the other models in all tests.  

The findings of this study provide evidence that it is possible to recognise a 

person’s physical activity with a high degree of accuracy, reaching nearly 98%, 

based on smartphone-embedded gyroscope and accelerometer sensor signals 

gathered over two days. This was achieved by leveraging the capabilities of 

machine learning algorithms in two stages: feature ranking, in which the feature 

space was ranked based on the multiclass classification approach, followed by 
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activity identification, in which only top-ranked features were included within the 

classification phase. The soft majority voting approach provides the highest 

accuracy in comparison with other models, such as single classifier or hard 

majority voting.  

With respect to feature types, all the features for accelerometers and gyroscopes, 

time, and frequency domains to were utilised, as a result of the potential of 

changing the user behaviour signal over time with the real-life scenario. Another 

key thing to remember is the most repeated features, in the comparison between 

the controlled and real-world dataset, it has been found that the most frequently 

repeated features for each user changed with the real-world signal dataset along 

with each single activity data set. The nature of feature measurement was 

different, which obviously worked better for more variable signals. Whereas, in 

the controlled data, the feature worked with more limited numbers. Hence, in 

reality, the feature vectors need to be quite different. This different scenario 

feature could be explained because of the type of characteristic, realistically and 

more variable based inputs. Furthermore, in light of Figure 6-4, the data points in 

the 2D plot of time between peaks for accelerometer and gyroscope sensors (i.e., 

the most repeated features in the real dataset), demonstrates the obvious shifting 

between the two covariates (features) with real and controlled datasets.  

Above all, these features might be quite different from previous studies because 

most of the previous studies focus on the control environment and this probably 

advocates very similar feature sets. 

Moreover, one of the most interesting findings of this study is that the top six 

ranked features (i.e., the most repeated features), as illustrated in Table 6-12, are 

based on the time between peaks feature type for both accelerometer and 
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gyroscope sensors. This could be interpreted that the cycle of walking, as 

measured by the peak to peak, is higher for each person.  

Feature 
Order 

#of Repetition 
# Of 

Accruing 
(%) 

Sensor/ Axis 
Feature 
Name 

243 136 6.18 Gyro/z-axis    T
im

e
 b

e
tw

e
e

n
 P

e
a

k
s
 

89 133 6.04 Acc/x-axis 

241 132 6 Gyro/x-axis 

90 126 5.7 Acc/y-axis 

91 115 5.2 Acc/z-axis 

242 93 4.22 Gyro/y-axis 

Table 6-12: Top six ranked features (time between peaks) 

Importantly, the number of features utilised substantially throughout the range of 

top-ten repeated features for all users with real-life dataset effectuated a sharp 

decrease in a number, about 50% of the same top-ten features calculated with 

controlled dataset experiments, as provided in Table 6-13 bellows: 

 

Activity Type 

# Features Used 

Controlled 
Dataset 

Real-life 
Dataset 

Normal 
 

84  

39 Walking with a 
Bag  

81 

      Fast 
70 48 

Down Stairs 
139 58 

Upstairs 
146 70 

All Activities 
66 33 

Table 6-13: Number of features included in the repeated top-ten  

With real-world data, the features are more variable, and in terms of the half, the 

number of features in the previous is consistent and appears in the top ten. 
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Overall, these indicate that the data is more variable, and the nature of features 

is varying. So, the nature of the classification problem is more challenging. 

With respect to the performance of gait recognition across different walking 

activities, Table 6-10 shows that the individual activities normal and fast, apart 

from the stairs walking activities, succeeded in accomplishing better performance, 

hence surpassing the results of combing normal, fast and all activities. Therefore, 

in the comparison between a single classifier and multi-algorithmic approaches 

across the real-world dataset, the normal and fast activities performance were 

11.38% and 11.32% accordingly. While the EER obtained when normal and fast 

activities were merged was 12.49% and the EER of 15.08% when all activities 

were combined. 

The down and upstairs walking results are considered high during both datasets. 

That could be attributed to the belt phone pouch mostly wobbling more with 

walking up and down the stairs and stairs style (e.g., once a subject reaches the 

bottom of the stairs, the individual walks a few more steps to complete the activity, 

which might become a noisy/outlier sample in the stairs activity dataset). 

Activity 
Type 

# Users 

ERR (%) 
  <=5 

ERR (%) 
 >5-10 

ERR (%) 
>10-15 

ERR (%) 
>15-20 

ERR (%) 
  >20 

Normal 12 16 4 6 6 

Fast 13 13 7 5 6 

Normal and Fast 8 18 7 5 6 

All Activates 5 12 10 7 10 

Table 6-14: Individual performance for each activity 

Table 6-14 illustrates the best EER (%) of FF-NN individual performance range 

for single and multi-algorithmic approaches, with regard to the individual normal 

and fast activities average EER of 11.38% and 11.32%, respectively. The 

analysis of individual error rate shows that the majority of the subjects performed 
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better than the average performance for both individual activities. About 63% of 

the normal users' results and 59% of the fast user’s results obtained an EER lower 

than 10%. Also, the merged normal and fast user’s performance found that about 

59% of the users obtained lower than the average EER (i.e., 12.49%). Conversely, 

with all activities and the average EER of 15.08%, only 38% of users had EERs 

less than 10% compared with individual activities. Also, more than two-thirds of 

the users encountered less than 10% and under 5% of users’ results represented 

the lowest ratio of users’ results.  

All things considered, it seems reasonable to assume that the multi-algorithmic 

approach results are better than the single classifier approach. 

As mentioned before, the real-life performance was lower than the controlled 

dataset. Therefore, implementing the majority voting on the calculation of error 

rates was deemed essential to enhance the results of real condition activities. 

Furthermore, the median measurement was considered on result calculations, in 

order to explore the outliers’ effect on system performance.  

Activity Type Best Voting 
EER (%) 

Time 

Normal 
Median 2.14 5:10s 
Mean 5.31 5:10s 

Fast 
Median 1.89 2:50s 
Mean 6.43 5:10s 

Down Stairs 
Median 5.65 4:10s 
Mean 11.43 4:50s 

Upstairs 
Median 14.81 3:10s 
Mean 20.55 3:10s 

Normal &Fast 
Median 3.50 5:10s 
Mean 5.87 5:10s 

All Activities 
Median 3.50 4:30s 
Mean 7.45 5:10s 

Table 6-15: System performance utilising the majority voting module  

When comparing the majority voting module performance in Table 6-15, one can 

see that the results decreased when they were based on a longer time (i.e., larger 
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walking samples). If the mean measure considers the overall average population 

of EER, then it can be seen from Table 6-11 that 31 samples (i.e., 5 minutes and 

10 seconds) give the best results, for normal and fast individual activities of EER 

5.31% and 6.43%, respectively. Moreover, the same period (5 minutes and 10 

seconds) achieved better when combining normal and fast activities and all 

activities together. The down and upstairs best performance was achieved with 

29 (i.e., 5 minutes and 50 seconds) and 19 (i.e., 3 minutes and 10 seconds) data 

samples accordingly. 

On the other hand, if the median is selected to be a metric, mostly a smaller time 

was needed to have best EER median-based results (i.e., 2:50 s, 3:10s, 3:20s 

and 4:30s) for fast, upstairs, downstairs and all activities, respectively. However, 

normal and merged normal and fast activities employed longer time (i.e., 5:10s) 

to obtain the best results. It is apparent that some outliers sit far from their group. 

However, outliers were included in the classification tests and were not excluded 

from any process within this experiment, as they were real-world samples. 

6.7 Conclusion 

The evaluation of the smartphone-based, gait authentication system over a long 

period of time under realistic scenarios has revealed that it could provide a secure 

and appropriate activity identification and user authentication system. 

As predicted, the real-life results were higher than the control dataset for all 

activities. This is because walking behaviour is changed from day to day as the 

participants mostly were wearing different shoes and clothes. Coupled with the 

participants’ mode in this different day was perhaps different. However, the 

presented results are still promising with respect to rejection of impostors and 

accepting genuine subjects, notably when the majority voting techniques were 
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applied, which improved the classification up to 50%, and proved before with the 

controlled experiment results that multi-algorithm authentication seems to be 

more reliable. With the results above, especially when a median measurement 

was employed, normal and fast walking had better performance apart from stairs 

walking activities. This may give evidence to exploit a multi-algorithmic approach 

with context awareness data to enhance the performance.  

As well, the nature of features measurement was different between the control 

and real-life data types, which obviously worked better for more variable signals. 

Whereas, with the control data, the feature is there to work with more confined 

numbers. The results are shown using the entire feature vector performed better 

performance (i.e., the longer feature vector is provided to have more reliable 

achievement). Furthermore, the attribute types required with a decision being 

made to verify subject samples for a successful authentication mechanism were 

identified. 
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7 Discussion 

7.1 Introduction 

As the smartphone and its services and information are becoming targets of 

cybercrimes, it is mission-critical to secure smartphones and their services and 

information. Gait authentication has gained significant attention for use in 

authentication on mobile devices and this is because of its usability and 

convenience. The user does not need to provide an explicit action for mobile 

authentication because the related data is continuously recorded while the person 

is walking.  

A set of experiments were conducted in this work for transparent user recognition 

utilising gait patterns, evaluated in Chapters 5 and 6. The results of these 

experiments, nature, and the amount of the collected dataset and classification 

techniques employed will be compared with previous work related to smartphone-

based gait signals to evaluate the viability of the proposed system.  

However, the complexity and the high inconsistency of gait patterns limit the 

capability of gait recognition systems and adversely affect their validation, 

especially on real environment systems. It is envisaged that other sources of 

information (including surface material/condition, walking speed, carrying an 

object, moods, and weather) could be used to understand the context in which 

the gait information is collected, and more informed and accurate authentication 

could subsequently be made. Also, there is additional information that can be 

collected via various sources within the mobile device itself, such as GPS, 

weather forecast, calendar, and emails.  
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Therefore, this chapter will present a discussion surrounding factors that can 

improve performance through integration research by context-awareness gait on 

real environmental systems information to provide continuous and transparent 

security for mobile devices using the gait information collected via accelerometers, 

gyroscopes, and GPS sensors, while the context-awareness data can be 

gathered from various sources, including, Wi-Fi information and installed mobile 

applications. Additionally, this could offer the ability to explore the efficiency of 

these two techniques within the transparent authentication system (TAS). 

7.2 Comparison with the Prior Art 

As reviewed in Chapter 3, Table 3-9, a comprehensive analysis of prior studies 

on gait authentication systems using mobile sensors, previous literature on gait 

recognition has potential and a lot of work in gait recognition has been undertaken. 

However, the studies were somewhat limited in scope (e.g., limited dataset and 

very controlled experimental environments). Although their results were desirable, 

the situation could be very different if the technique was applied to live data, as 

the information can be very noisy. Also, most of the studies used only the 

accelerometer sensor and minimal works utilised two sensors. However, no 

research has been found that seeks to employ additional information on the 

process (such as GPS or weather info) to advance the state of knowledge and 

enable a better decision-making process. It is difficult to compare with these 

studies as a result of the different datasets (e.g., a number of subjects, walking 

time, and activity type) and data collection settings (e.g., smartphone type or 

device location). It is clear from  

Table 7-1, a comparison between some common selected smartphone-based 

prior datasets, that none of the previous systems had attempted to cover a wide 
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variety of real-world datasets in seven consecutive days a week (i.e., study the 

potential for the general use in realistic circumstances).  

However, to the best of the author’s knowledge, no research has been found that 

has so far explored mobile-based real-world signals. Accordingly, there is a need 

to propose a real-life system with more user-friendly, real scenarios (i.e., 

unconstrained conditions). 

 

No. 

 

Author/ Year 

 

Sensors 

 

#Users 

 

Data Description 

1 (Frank, Mannor 

and Precup, 

2010) 

Acc 20 A controlled environment, two sessions of 15 minute 

walks on two different days 

2 (Derawi et al., 

2010) 

Acc 51 A controlled environment, normal walk, two sessions of 

two minutes each with CD  

3 (Nickel et al., 

2011) 

Acc 48 A controlled environment, normal walk and climbing 

stairs, two sessions of 15 minute walks on two different 

days 

4 (Ngo et al., 2014) Acc.  744 A controlled environment, only two data sequences for 

each participant (session of about 1 min) 

5 (Gadaleta and 

Rossi, 2018) 

Acc, Gyro, 

and 

manometer 

50 A controlled environment, several acquisition sessions, 

five minutes for each participant 

6  Our dataset (1) Acc, Gyro, 

GPS 

60 A controlled environment,  walking normally, fast, and 

normally with a bag on a predefined route, six minutes each 

activity; walking downstairs and upstairs for three levels on 

two different days. In variable conditions, e.g., with different 

shoes and clothes 

7 Our dataset (2) Acc, Gyro, 

GPS 

44 An uncontrolled environment, longitudinal live usage data 

(real-life), 7-10 days for each user 

 

Table 7-1: A comparison between some common selected smartphone-based 

databases 



213 

 

 The dataset is an essential part of the identification and authentication process; 

an algorithm could give different results depends on the set of data (Gadaleta 

& Rossi 2018). However, some datasets are publicly available such as the 

largest set available at the Osaka University (Ngo et al. 2014). This dataset is 

based on three internal sensors placed on the subject’s belt, with a triaxle 

accelerometer and a gyroscope. However, a smartphone was worn in the 

centre back waist and only measured the triaxle accelerometer data. This data 

set contains data collected from 744 subjects. With this high number of 

contributors, this data set has a significant problem, which is based on a 

controlled environment. Also, for each participant, there were only two data 

sequences available (session of about one min), which was not enough for 

network training. Moreover, the gyroscope (from smartphones) data was not 

provided. Some other datasets are accessible, but for a much smaller number 

of participants.  

Consequently, two datasets were constructed: a controlled dataset (as 

explained in sections 4.4.1 and 4.5.1) and a realistic dataset (unrestricted to 

influence of many environmental issues, such as changing clothed and shoes, 

in a rush, carrying luggage, running as a result of poor weather, exercising to 

human mood, time effect, and ground substances, to name but a few), in order 

to have a fair and comprehensive evaluation mechanism. There has not been 

any research examining this real dataset (to the best of our knowledge). Soft 

biometrics such as (i.e., age, gender, height, weight) were gathered in addition 

to gait pattern behavioural characteristics, which are easy to collect but not 

distinct as the physical and behavioural biometric data (Karabatis 2017). 

However, there is a minor unrealistic restriction in this study; the device is 

supposed to be fixed in the belt pouch during the data collection phase.  
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 Research on gait authentication with smartphone-based signal data and 

dynamic features is relatively very low. Nakano, (2017) studied the impact of 

the dynamic features on the activity recognition system performance. Their 

analysis revealed that the performance of the efficiency of dynamic features 

was better than static features in the classification of different activities, 

especially with the CNN classifier, which is better than static features with SVM. 

However, with the cycle- and segment-based approaches, some researchers 

have utilised deep learning to meet the challenges of the feature extraction 

process. With recent advances in deep learning algorithms, the use of a 

convolutional neural network (CNN) learning algorithms to extract a latent 

pattern from raw data has become common practice (Jiang & Yin 2015; Ronao 

& Cho 2016). Typically, deep learning approaches require less effort in feature 

extraction and engineering in comparison to cycle and segment-based 

approaches. However, a challenging aspect in deep learning-based models is 

that it is hard to explain and interpret how decisions are made (Weld, D. S., & 

Bansal 2018). Knowing what drives decisions in models (i.e., the features on 

which the model relies) is an essential element in some activity recognition 

applications, such as healthcare-related research. 

As a result of the lack of applying the feature selection process in the literature 

(reducing the number of features used and attaining more discerning 

information) and even using this large number of various features for mobile-

based two sensors. As extensive feature vectors increase the complexity of 

classification algorithms and negatively affect the decision speed. 

Consequently, in a controlled experiment (Chapter 5), in each of accelerometer 

and gyroscope sensor data signals investigated, nearly half of the feature 

vectors were used to get the best results with the time domain feature values. 
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Even so, when time and frequency domains feature vectors were combined for 

each of accelerometer and gyroscope sensors, the dynamic feature 

performance was better than static features in classification of various activity 

datasets (i.e., normal walk, fast, carrying a bag, down and upstairs) while there 

were no significant differences found between the dynamic and static results 

with all activities dataset when the signals of two sensors were merged. 

Nevertheless, in practice, this dramatic dropping down of features utilised (only 

11% and 19% of the features were used with the SD and CD respectively) will 

reduce the system complexity and the burden on the classifier.  

Consequently, our finding revealed that the controlled dataset experiment and 

the dynamic feature selection process outperformed those obtained by using 

the full feature set (i.e., 304 features) from both accelerometer and gyroscope 

signals, SD, and CD scenarios.  

 It is apparent from the prior studies discussed in Table 3-9 that most of the 

classifiers utilised are a neural network algorithm, k-NN, HMMs, SVMs, GMM, 

and random forest (RF). This work employed the SVM, the feedforward neural 

network, and RF classifiers. Regarding SVM, the results were satisfactory with 

the controlled dataset, but the performance conducted by the feedforward 

neural network outperformed the SVM classifier, with different feature vectors 

subsets and various activities considered in the first experiment. With the real-

life seven-day dataset, the SVM did not work correctly because it cannot work 

with a large data volume, as this type of classifier can be implemented only 

with a limited capacity of data. Hence, it might not be easy to manage with 

SVM in practice. Subsequently, an alternative decision tree algorithm, random 
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forest classifier, was selected, but the EER results were high. Accordingly, the 

FF-NN was used instead, as it gave the best results. 

 

 For smartphone-based gait authentication, single and multi-algorithmic 

approaches were developed in this thesis. The generative model is a novel 

multi-algorithmic approach (i.e., where different classifiers were used based on 

the nature of the activity). Various activity datasets (i.e., normal, fast, carrying 

a bag, down and upstairs) were employed to evaluate these approaches. The 

main findings in this regard are presented in Chapter 5. Furthermore, to the 

best of the author’s knowledge, there is no prior work that extensively 

examined a universal algorithm that can authenticate a smartphone subject 

with multi-algorithmic gait activity signals. In conclusion, the findings of this 

study explored that a multi-algorithmic approach can achieve a better level of 

performance over a single classification approach.  

 

A comparison between the controlled experiment results and the prior studies 

on gait authentication systems using the mobile sensors is discussed in Table 

3-9. In terms of performance, the best results were 0.70% EER for the normal 

walk activity, which was better than the performance of existing studies’ 1.95% 

EER of (M. O. Derawi 2012) and 1.82% EER of (Watanabe 2014). Under the 

cross day, 6.30% EER for the same activity was in line with prior work, 

including 6.1% EER (Nickel, Brandt, et al. 2011c) and 6.15% EER (Muaaz & 

Nickel 2012; Watanabe 2015). Those three prior studies employed the majority 

and quorum voting technique, which may improve the classification by up to 

50%. In addition, they utilised 20% fewer users for their experiments than this 

study. Hence, it could be more accessible to distinguish individual users. 



217 

 

 

The best results were obtained for fast walking of 0.42% EER and 12.70% EER 

under SD and CD scenarios accordingly, which was better than the 

performance of the presented study’s 14.39% EER and 15.43% EER using 

HMMs and SVM, respectively (Nickel, Brandt, et al. 2011a), which compared 

the efficiency of HMMs and SVMs for accelerometer-based biometric gait 

authentication under the CD scenario.  

Concerning the stairs results, these percentages seem large in comparison 

with other activities. On the other hand, there were considerable reductions of 

the supposed features used (i.e., 3% and 6% features used for down and 

upstairs, respectively, under the cross-day scenario). 

As mentioned above, an identity recognition algorithm could give different 

results depending on the set of data. Furthermore, several studies have 

revealed that each different classifier performance may differ. For instance, 

down and upstairs classifiers have less discriminative attributes than the 

walking classifier (e.g., normal or fast walking) (Kwapisz et al. 2010; Nickel et 

al. 2011; Watanabe 2014; Watanabe 2015). Therefore, the normal, fast 

walking, and carrying a bag classifiers performed better than the down and 

upstairs classifiers.  

Regarding the ‘all activities’ dataset EER of 4.4%, this was compared with EER 

of 18.38% obtained by mixing two speed data (i.e., normal and fast) (Nickel, 

Brandt, et al. 2011a). As a result, it is apparent from the above analysis that 

Experiment 1 collecting significant multi gait activities dataset from 60 users 

over two days obtained better performance than prior work. 
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The control dataset (Experiment 1) aimed to understand more activities, using 

more data and more people, to provide intelligence on features and classifiers 

that could be more feasible with real-life based activity signals. Consequently, 

the second experiment applied the best parameters learned from experiment 

one in terms of features, classifiers, the multi algorithmic approach on the real-

life dataset, and a sufficient number of people and data to investigate how 

performance will be in practice.  

7.2.1 Real-World Usability Performance 

 

This section will discuss the real-world dataset verification to investigate the 

capability of performing the proposed smartphone-based gait authentication 

system in practice.  

As the performed real-life activity dataset in various environments, the activity 

recognition is considered a crucial process to split the data into multiple activities. 

The proposed approach is evaluated by building a predictive model that can 

categorise a given individual’s activity signals into predefined classes, based on 

the features extracted from the raw sensor data of the controlled dataset (e.g., 

normal walk, fast walk, walk with the bag, downstairs, upstairs, and sitting). In 

comparison with existing studies in which the data were gathered from 

smartphones (Chapter six, Table 6-1), most of these studies have fewer 

participants (i.e., 30 or fewer) and the data were all captured on the same day. In 

this study, most of the data were collected between two days for everyone within 

the sample set because the probability that users’ activity patterns change is 

higher for data collected across days than it is for data gathered on the same day. 

Notably, the developed approach reached a high level of accuracy in identifying 

human physical activity based on raw smartphone motion sensor signals. The 
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findings of this study provide evidence that it is possible to identify an individual’s 

physical activity with a high degree of accuracy, reaching nearly 98%, based on 

smartphone-embedded gyroscope and accelerometer sensor signals gathered 

over two days. 

The person must be moving to enable the system recognising all of the time. The 

real dataset for seven days across 44 people was analysed to have a clear 

conception about the approximate time that the humans are doing the actual 

walking activities throughout the whole day. Base on real data analysis, it can be 

seen in Figure 7-1, the average of daily gait activity time for all users is 80 minutes 

per day. It was also found that for typical users probably walking about 35 minutes 

a day, another user may walk about 3:30 or more especially during the weekend.  

 

Figure 7-1: The average of daily gait activity time in minutes for all users 

In order to have a more accurate insight into the dataset, the percentage of 

normal, fast, down and upstairs walking activity samples (for a week) are 

highlighted in Figure 7-1. It is apparent from this table that there is a significant 
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difference between the four groups. What is interesting in this data is that normal 

walking (including walking with a bag activity) represented the largest percentage 

of activity samples of 80%, and the lowest ratio of samples was the downstairs 

activity. Indeed, people are generally walking normally unless they need to walk 

fast or use stairs. 

Activity Type #Samples %Samples 

Normal 139,907 80% 

Fast 12,315 7% 

Down Stairs 5,175 3% 

Up Stairs 16,999 10% 

Table 7-2: Percentage of identified real activities samples 

Concerning smartphone resources (e.g., the CPU, battery, and memory), 

machine learning algorithms require much less computational and memory 

resources during inference mode. The proposed approach only authenticates 

smartphone users when a gait activity is detected. In this way, the device 

processing units (i.e., CPU) and the proposed system uses memory. It can be 

seen from Figure 7-1 that most of the population performs gait activities from 

about 35 minutes-3 hours each day. For most of the remaining time, the user 

either does not use the device or does not perform a gait type activity, in which 

the proposed system only becomes active during this small period of the day. 

Therefore, the system consumes a small portion of the device resources during 

a day of usage. 

The performance of the proposed approach with a realistic scenario was the 

primary concern of Chapter 6. As mentioned before, there has not been any 

research examining this real dataset. Hence it is challenging to have a fair and 

comprehensive evaluation mechanism. Therefore, a comparison between the 

obtained real data error rates with controlled data to perform that the proposed 
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realistic system is not confined to experiment with control conditions. Initially, the 

results were promising; however; the real-life performance was lower than the 

controlled dataset. Therefore, in order to have more reliable results, further 

processing was conducted by combining several consecutive classification 

results and converting into a single result by employing a majority voting 

technique. In other words, instead of having one classification result obtained per 

segment (i.e., the concise walking period of 10-second segments), we designed 

a more practical classifier arranged around different times. 

The majority voting results were obtained when involving a different number of 

sections (i.e., 15 sections ranging from three to thirty-one, 10 seconds each). The 

best median and mean performance were calculated to overcome the outlier 

effect on system performance. Table 7-3 compares the controlled experiment with 

realistic system performance with and without using the majority voting module 

for various gait activities. 

 
 

Activity Type 

 
Controlled 

Dataset 
(Cross Day) 

 

 
Realistic System    
Without Voting  

 

 
Realistic System    

Best Voting 
 

 
 

Decision 
Time 

 

EER (%) 

Normal 2.09 11.38 
 

Median 2.14 5:10s 

Mean 5.31 5:10s 

Fast 3.91 11.32 
 

Median 1.89 2:50s 

Mean 6.43 5:10s 

Down Stairs 23.45 24.52 
 

Median 5.65 4:10s 

Mean 11.43 4:50s 

Upstairs 23.32 27.33 
 

Median 14.81 3:10s 

Mean 20.55 3:10s 

Normal 
&Fast 

- 12.49 
 

Median 3.50 5:10s 

Mean 5.87 5:10s 

All Activities 6.58 
15.08 

Median 3.50 4:30s 

Mean 7.45 5:10s 

Table 7-3: Comparing controlled and realistic system performance with and 

without using majority voting 
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It is clear that the majority voting module enhances the results of real condition 

activities. For example, normal walking results improved by 54% and 88% 

considering the mean and median measurements, respectively. In general, one 

can see that the results dropped down when they are based on a more extended 

period (i.e., larger walking samples). As shown in Table 7-3, thirty-one samples 

(i.e., 5 minutes and 10 seconds) mostly gave the best results performance for 

normal and fast individual activities. Moreover, the same period achieved better 

when combining normal and fast activities and all activities together. 

To put it another way, the decision gets better as long as the person walks (better 

results over a long time). Hence, initially, the classifier could work properly on five 

minutes because more than this will be quite a long period moreover the high 

volume of realistic data that supports it. 

In contrast, because it is uncontrolled data, there is a need to design a more 

practical classification system (i.e., majority-based classification system) with the 

ability to arrange around different times. The time needed for the system to know 

the user, in case using majority voting, will be determined. For instance, 30 

seconds of decision time means three samples (10-seconds-based segment) 

needed to have a decision in the case that the user walks continuously. Also, 

1one minute collected (using six samples), two minutes collected (using 12 

samples), five minutes collected (use 31 samples) and so on, and the long period 

of walking means a better classification rate and tends to produce a better 

decision. As soon as the sensor information is a flat line (the user stopped 

walking), the decision will be made. However, in practice, the user maybe walks, 

for example, 30 seconds and stops. That means it will be challenging to decide 

using another 30 seconds possibly hours between them. In other words, sample 
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1 was at 9 o’clock, sample 2 at 10 o’clock, sample 3 at 11:15, the waiting time 

must be 2:15 hours (from 9 to 11:15). Or short gait disruption such as curbs, 

sidewalk or slipping because it is uncontrolled data. Thus, there is a need to know 

how long it takes to this decision to happen or in practice doing classifier arrange 

around these different times. However, without using majority voting, no need to 

wait for more samples, the decision could be made in every sample. 

With respect to the impact of the proposed multi-algorithmic approach is sufficient 

for the controlled and real-life experiments as most of the individual activities 

(apart from walk upstairs for SD) and (fast walking for CD) achieve better 

performance than when they are treated as one activity. 

7.3 Proposed Context-Awareness Model 

Providing context is the core of the proposed system. Whilst evaluating the 

approach, given a collected dataset is possible, the key is to enable an 

understanding of the context in real-time automatically (not through a manual 

inspection by a researcher). This process focused on developing automated 

context-awareness. Whilst information from a variety of mobile sensors and 

applications can provide underlying information (such as GPS), context needs to 

provide an understanding of what that information will mean in practice—or at least 

a probabilistic measure of what it thinks the user is doing. It is envisaged that this 

will include an investigation of decision support systems and inference engines. 

For example, the inference engine uses logical instruction or rules to the 

knowledge base and determines new knowledge. This procedure would 

emphasise as each new actuality in the information base could trigger additional 

rules in the inference engine. Inference engines operate mainly in one of two 

styles (special rule or facts) either: forward chaining and backward chaining. 
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Forward chaining begins with known facts and broadcasts new facts. Backward 

chaining starts with goals and performs backwards to verify what points must be 

maintained so that the goals can be achieved (Jang & Yang 2015).  

This experiment suggests involving the use of additional context-based 

information to enable the biometric system to make a more reliable decision. For 

example, if a user’s gait appears to be faster than normal, an analysis of the 

calendar might reveal they are running late for a meeting. Therefore, the system 

could either adopt the classifier (using the fast algorithm) or threshold accordingly 

because a high degree of availability expected. Likewise, realising a user is 

heading towards the airport might provide additional information required to 

understand they are likely to be carrying or pulling a bag and again, the system 

can adapt appropriately to compensate. This experiment focuses on extracting 

samples based on context and seeks to develop an algorithm to assist in the 

decision-making process. This method will lead to an adaptive use that will 

implement the use of multiple reference templates for users. The proposed 

experiment aims to provide an empirical evaluation of a realistic gait 

authentication system. The proposed gait and context model aim to get more 

reliable authentication decisions acquired from the biometric systems, 

nevertheless the availability of the signal that causes missing or distorting 

features of the behavioural biometrics is expected.  Details of the key components 

of the system are described in Figure 7-2, which illustrates the context-awareness 

gait recognition suggested model. 
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Context Awareness Raw Data

Data 

Collection

Feature 

Generation
Decision

 

Multi-Algorithmic Approach

Walk to Work

Other Activities Classifiers

 Normal walk

Fast walk

Down Stairs

Upstairs

Walk to Home

Shopping

 

Figure 7-2: Context-awareness gait recognition model 

7.3.1 Data collection  

In order to allow the proposed model to work effectively, two types of data are 

required: user’s gait signal and context awareness information. Two kinds of data 

will be collected locally from the mobile device itself. User’s gait signal will be 

continuously gathered from the accelerometer and gyroscope as long as the user 

walks while the context-awareness information will be fetched under several 

conditions, including when the gait signal initially occurs, and a drastic change in 

gait signal happens. Once this information is collected, it will be temporarily saved 

for further processing.  

7.3.2  Feature extraction  

Once the raw gait signals are gathered, pre-processing can be started. The raw 

gait signals will be divided into a fixed-length window. Obviously, the performance 

will differ when choosing various segments sizes. Then the feature extraction 
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phase, and once the features vector is formed. They will then be forwarded to the 

next step: either for training or testing purposes. 

Regarding the context-awareness raw information, it will be processed into a 

unified format; the combined information will be used for creating various contexts 

and contributing the formation of the inference engine, to assist the classification 

and decision-making processes of the proposed model.   

7.3.3  Classification and Decision Making 

In the matching phase, the individual samples must compare with the reference 

template taken primarily at the setup phase (i.e., the feature vector that resulted 

from the feature extraction process). Consequently, a match score is given 

indicating the degree of similarity, which decides acceptance of the user’s 

verification claim based on what the authentication decision is. Generally, as 

noted in chapters five and six, the artificial algorithms (i.e., the feedforward neural 

network) achieved better performance than statistical methods.  

In the proposed system a multi classifier will be created to every single gait motion 

type (e.g., walking, running, walking under the influence etc.) In each case, an 

attribute will be added (tag added) to the classification. These attributes will be 

the output of the context-awareness process (knowledge base and an inference 

engine results); by adding a tag, it will provide clear identification and indication 

of making a decision for individual authentication, taking into account the 

accumulative data will help to create a pattern for an individual. It is envisaged 

that these will assist in decision making and a more accurate authentication 

outcome can be obtained.  
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The proposed system will investigate several techniques to develop a decision 

support system. It is envisaged that this might involve machine learning, an 

inference engine, or an expert system. 

7.4  Gait Recognition Using Context Information  

In a realistic scenario, the classification methods might not be enough to 

differentiate persons. Therefore, the information that will be provided to the 

classification methods and decision-making phases (i.e., context awareness, the 

perception of environmental elements, and the knowledge base) as shown in 

Figure 7-2, will allow the system to select a proper classifier. Moreover, this will 

give the decision-making phase a more accurate and precise decision based on 

the inference engine using forward and backward chaining. For example, some 

different situations presented as activity detection and gait would make phones 

applicable as security mechanisms. 

 Shopping case: a person shopping would perform large amounts of “walking 

and standing”; in this circumstance, a user performs different activities by 

walking from one section to another, or from one shop to another etc. In this 

case data protection is needed to ensure the security of the phone. 

 Going to work case: quite often people go to work by different transportation; 

some people use a personal car, public transportation, bicycle or motorbike. 

In case a person is sitting in the car and the phone is standing still, the phone 

will also recognise that a “standing still” activity is continuing, and the phone 

should not be used at all for authentication. For this scenario, a backup 

solution should be applied, such as using the PIN-code. 

 Fitness case: people might lose their phone while they are doing various 

exercises such as running, playing football, walking outside their home or 
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going to the gym. “Fitness exercises” are activities and can also be used as a 

security mechanism towards authentication of the phone for usage. 

 Going to the pub case: the person is in a pub. The classifier is still walking, but 

the additional knowledge (e.g., GPS information) is expected to be slightly 

intoxicated; therefore, they might be variability in his signal. 

These circumstances are a small sample to illustrate which activities can be 

recognised from gait signal data. Accordingly, it is possible to develop different 

classifier ideas to have several classifiers per activity. In other words, each person 

probably could have many repeated journeys. Each journey could be improved 

by different classifier because that journey was repeated many times. The GPS 

information and time of the day will help to know what classifier to apply. 

Furthermore, the pattern of life could mean the classifier ultimately becomes more 

refined over time. 

The interesting and attractive point of these cases is that using the smartphone 

for “activity recognition” for identifying activities and gait recognition for identifying 

the individuality of a person, which can establish an access control as a security 

mechanism for mobility devices. To the best of our knowledge, there is no 

research using the gait data signal and the context information in one full system. 

Above all, to acquire a better understanding of the availability of using context 

data in order to apply better classifiers, the commonality of existing participants 

and GPS patterns during the weekdays were examined. The time windows for the 

same time during the working days were checked (e.g., the pattern for window 

8:30-9:30 on Monday the same pattern for window for Tuesday 8:30-9:30). Most 

of them had a particular common pattern throughout the weekdays (e.g., walking 

to work, walking home from work, walking to the existing building, going for lunch, 
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shopping, etc.). The time might vary sometimes, but there was a typical pattern. 

Furthermore, there were some common parts, and there were some errors 

(differences) between patterns. For example, the morning samples were regularly 

repeated with mostly walking from home to work as shown in Figure 7-3 and 

Figure 7-4, two days’ GPS tracking data, and Google Maps direction for User1 

and User2, respectively.  

 

Figure 7-3: Two days’ GPS tracking data and Google Maps direction for User1  

 

Figure 7-4: Two days’ GPS tracking data and Google Maps direction for User 2 
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Figure 7-5: Four days’ GPS tracking data for User 1 
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Figure 7-6: Six days’ GPS tracking data for User2 
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Figure 7-7: Four days’ GPS tracking data for User3 
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Figure 7-8: Four days’ GPS tracking data for User4 

As shown above, are examples of participants’ GPS patterns during the working 

days. Users 1, 3, and 4 have the same patterns during the weekdays while user 

2 has two patterns throughout the weekdays, as depicted in Figure 7-5. It appears 

from Figure 7-6 the user root is repeated through the first part of the week (i.e., 

Monday, Tuesday, and Wednesday) and the rest of the weekdays have a different 

root. As there are common GPS patterns for most of the users, the GPS picks up 

patterns and when there are sufficient numbers of these patterns quite for training 

(e.g., thirty samples) after thirty days walking to work will have additional classifier, 

rather than just have normal, fast, carrying a bag and stairs walking classifiers. It 

can be designed for different walking activity classifiers, for instance, the walking 

to work classifier and the walking home classifier. To put it another way, most 

people have some actions repeated periodically; consequently, the classifier 
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could be broken still further. According to the GPS pattern, the context-awareness 

will choose the most proper classifier and decide which algorithm to use. In the 

decision box, the weather could be an information source that is used to vary the 

decision, and the context-awareness helps the decision, in raining weather, the 

person is walking to work in the rain likely bit faster than usual.  

As shown in Figure 7-2 is how context awareness might work in practice. The first 

part of the analysis breaks down the classifier and the second step of context-

awareness can help to make more informed decisions in two different stages: the 

algorithmic approach and decision box. 

                                                                                                                                 

7.5 Conclusion  

With the aims to contribute to the field of smartphone authentication systems 

without complex algorithms or adding additional cost, a novel multi-algorithmic 

approach gait recognition system that identifies and recognises the subject 

utilising a real-life mobile-based signal was introduced. The comparison between 

this study and previous studies’ performance revealed that this research achieved 

better results than the related works. 

Context data with gait recognition may show an improvement over gait-only 

biometric recognition, where user contextual and behavioural patterns are 

modelled based on the daily user routine. The data do suggest there is enough 

pass of life to explore that and context could also be used with a variety of other 

information resources. Therefore, a context awareness system was proposed. 

This could offer the ability to get a more reliable authentication decision acquired 

from these two techniques within the transparent authentication system (TAS). 
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8 Conclusions and future work 

This chapter concludes the key contributions and achievements of the research. 

This is followed by highlights the research limitations and potential areas for 

further studies within the continuous authentication field utilising smartphone gait 

recognition. 

8.1 Contributions and Achievements of the Research  

The research has fulfilled all the aims mainly set out in chapter 1, with a sequence 

of experimental studies leading to the enhancement of the transparent mobile 

user authentication using gait recognition employing a real-life dataset. 

The key contributions and achievements of this research are:  

 Provided a comprehensive analysis of the prior studies related to transparent 

and continuous authentication utilising gait recognition where gait data is 

recorded using smartphone devices sensors. It also identifies the gap that 

exists in the literature and the need for more transparent and realistic user 

identification and verification mechanisms and should hopefully suitable for 

users. 

 A mobile software application was installed to extract a real gait activity signal 

and contextual data. The controlled and real-life collected datasets 

considered the enormous volume of real and live unconstrained use of the 

smartphone devices aiming at utilising them in the research experiments. 

Sixty subjects and forty-four subjects for a controlled and real-world dataset, 

accordingly, were employed and their walking activities data collected in a 

period around 7-11days. 
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 A series of experiments were conducted to comprehend the effectiveness, 

viability, suitably and security of the smartphone-based user authentication 

utilising gait signal to determine to what degree the collected gait signal could 

be contributing to the system performance. Largest feature vector 

investigated and evaluated by applying dynamic features selection and using 

two classification algorithms (FF-MLP, SVM). Many factors were tested 

including; the impact of accelerometer and gyroscope sensors data (i.e. time 

and frequency domains), different feature subsets were selected and the 

neural network sizes of a classifier on the system accuracy.  

 One of the more significant findings to emerge from this study is that a 

dynamic feature methodology rather than a static (all feature) approach 

achieved better performance and subsequently reducing the computational 

load upon the classifier especially with controlled experiments. 

 The second significant finding was providing a novel comprehensive 

assessment of the multi-algorithm approach classification design (where 

different classifiers are used based upon the nature of the activity) support 

the use of smartphone gait signals. These experiments confirmed that such 

an approach could achieve a better level of performance over a single 

classification approach. 

 The proposed system employed multi activities extracted from real-life gait-

based signals to more thoroughly evaluate the recognition performance 

under non-lab-based conditions and to add further comprehensiveness 

feasibility and acceptability of such a proposal system. Moreover, the non-

intrusive data collection supported the user-friendliness and transparency of 

the system.  
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 Developing an activity identification model which identifying the gait and non-

gait activities samples using multi-activity classification algorithm. This 

resulted in 576,439 samples classified as a non-gait activity sample. 

A number of papers related to the research published, and this provided in 

Appendix A. Overall, the contribution of this study has been to confirmed positive 

contributions to transparent user authentication for smartphone devices in the 

application of gait recognition. 

8.2 Limitations of research 

While the aims of this research have been achieved, some restrictions associated 

with the research have arisen, which had some had some effect on the work and 

findings. The fundamental limitations of the study included:  

 The collected dataset was acquired using a single type of mobile device 

(Samsung Galaxy S6). Investigating other widely used devices willing to 

contribute to the data collection experiments probably conceive of with a 

larger and better dataset. This can be analysed to show the effect of different 

devices gait signal. 

 Whilst the use of a multi-algorithmic classification scheme would provide 

better recognition performance, and the problem has now transitioned into 

how the system will know which classifier to utilise. Therefore, further 

research will focus on how to determine the nature of the activity the user is 

undertaking through devising context-awareness. 

 

 The evaluation of this study was conducted offline using a desktop computer. 

It has not been thoroughly tested in a live environment (smartphone) to 

measure other operational metrics, such as computational overheads, 
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memory consumption and the time required for the whole pipeline to be 

completed, starting from acquiring motion signals, to feature extraction, 

segmentation, pre-processing, and finally inferencing, where the examined 

data are classified.  

8.3 Suggestions, Scope for future work 

Although the developed approach reached a high level of accuracy in gait-based 

activity identification and user authentication based on raw smartphone motion 

sensor signals, other aspects could be examined and investigated in future 

research to generate more findings, including the following: 

In practice, a two-stage model can be developed, one for detecting state type 

(non-gait/ gait) activity, followed by an activity identification model to identify the 

activity type. Once the activity type is identified, the authentication model is 

legitimate the subject. 

As the evaluation of this study was conducted offline using a desktop computer. 

Further studies need to be carried out in order to validate it in a live environment 

(smartphone) to fully understand the efficiency of all operational metrics. It is 

envisaged, much like popular mobile apps, the use of cloud resources will provide 

a mechanism for off-loading any computationally challenging aspects to relieve 

local demands upon computation and memory. 

Investigating other widely used devices, such as an Apple iPhone, could reveal 

how similar/different the generated motion signals might be for different devices 

and to what extent feature space distribution varies. 

Future work could also investigate other factors, such as testing various segment 

numbers of seconds and samples required per individual in order to train a user-
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dependent predictable model successfully so that it can accurately match a given 

signal with the similar physical activity.  

Further research could investigate context awareness information to enable an 

intelligent decision process. Through introducing, additional information that can 

be collected via smartphone itself, leveraging various sources, including, Wi-Fi 

information, and installed mobile applications, motion sensors, calendar, email, 

natural languages processing of text messages and weather forecast. In which, 

this enables biometric systems to make a more reliable decision to leverage a 

wider range of information. For example, if a user’s gait appears to be faster than 

normal, an analysis of the calendar might reveal they are running late for a 

meeting— and therefore the system could adapted either the classifier (using fast 

algorithm) or threshold accordingly because a high degree of availability expected. 

Likewise, realising a user is heading towards the airport might provide additional 

information required to understand they are likely to be carrying or pulling a bag 

and again, the system can adapt appropriately to compensate. Therefore, this 

could offer a more reliable and robust gait-based Transparent Authentication 

System (TAS).  

8.4 The Future of Authentication  

During the last decade, smartphones have become a ubiquitous technology 

providing a wide range of services and features (e.g. personal communications, 

entertainment, and business) that are used to access/store sensitive and 

confidential information. This trend is only set to continue as technology becomes 

increasingly pervasive and the desire to access information and consume 

services becomes the norm. Authentication of the user will remain an essential 
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technology to determine who the user is and subsequently what they can and 

cannot access. 

What is clear from current literature is that the authentication burden placed upon 

the user has increased substantially with an impact on the user experience. It is 

essential that technologies are continued to be developed that provide a 

frictionless authentication experience. Gait recognition, as presented in this 

thesis, provides one such approach that can be used in specific scenarios to aid 

the authentication decision process, but true frictionless authentication can only 

be achieved through careful and usable design and multi-modal/factor techniques 

that are able to adapt to the varying situations, environments, people and 

technologies. 
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Appendices 

Appendix A- Publications 

1- Al-Obaidi, H. et al., 2018. A Multi-Algorithmic Approach for Gait 

Recognition. In ECCWS 2018 17th European Conference on Cyber 

Warfare and Security (p. 20). Academic Conferences and publishing 

limited. 

Abstract: Securing smartphones has increasingly become inevitable due to their 

massive popularity and significant storage and access to sensitive information. 

The gatekeeper of securing the device is authenticating the user. Amongst the 

many solutions proposed, gait recognition has been suggested to provide a 

reliable yet non- intrusive authentication approach – enabling both security and 

usability. Whilst several studies exploring mobile- based gait recognition have 

taken place, studies have largely been preliminary, with various methodological 

restrictions that have limited the number of participants, samples and type of 

features. Furthermore, prior studies have relied upon evaluating the approach on 

a limited number of activities - namely walking and running, and there is some 

concern over the capacity of the approach to correctly verify individuals when the 

nature of the signals across a wider range of activities is likely to be more variable. 

This paper has sought to overcome these weaknesses and provide a 

comprehensive evaluation, including an analysis of motion sensors 

(accelerometer and gyroscope), an investigation and analysis of features, 

understanding the variability of feature vectors during differing activities across a 

multi-day collection involving 60 participants. This is framed into two experiments 

involving five types of activities: normal, fast, with a bag, downstairs, and upstairs 

walking. The first experiment explores the classification performance of individual 

activities in order to understand whether a single classifier or multi-algorithmic 

approach would provide a better level of performance. The second experiment 

explored the features vector (comprising of a possible 304 unique features) to 

understand how its composition affects performance and for a comparison a more 

selective set of the minimal features are involved. Overall, results from the 

experimentation have shown an EER of 4.40-12.2% for a single classifier (using 
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same/cross day methodologies). The multi-algorithmic approach achieved EERs 

of 0.70%/6.3%, 0.42%/12.68% and 1.10%/6.46% for normal, fast and with a bag 

walk respectively (using the Same/ Cross Day methodology) using both 

accelerometer and gyroscope-based features – showing a significant 

improvement over the single classifier approach and thus a more effective 

approach to managing the problem of feature vector variability. 

2- Alruban, A. et al., 2018. Human Activity Recognition for Healthcare using 

Smartphones. In ICPRAM 2019 8th International Conference on Pattern 

Recognition Applications and Methods, pp.20–21. 

Abstract: Human physical motion activity identification has many potential 

applications in various fields, such as medical diagnosis, military sensing, 

sports analysis, human-computer interaction and security. With the recent 

advances in smartphones and wearable technologies, it has become 

common for such devices to have embedded motion sensors that are able to 

sense even small body movements. This study collected human activity data 

from 60 participants across two different days for a total of six activities 

recorded by gyroscope and accelerometer sensors in a modern smartphone. 

The paper investigates to what extent different activities can be identified by 

utilising machine learning algorithms using approaches such as majority 

algorithmic voting. More analyses are also provided that reveal which time 

and frequency domain-based features were best able to identify individuals’ 

motion activity types. Overall, the proposed approach achieved a 

classification accuracy of 98% in identifying four different activities: walking, 

walking upstairs, walking downstairs, and sitting (on a chair) while the subject 

is calm and doing a typical desk-based activity. 
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Appendix B- Consent Form and Information Sheet (Data Collection) 

PLYMOUTH UNIVERSITY 

 
FACULTY OF SCIENCE AND ENVIRONMENT  

 
Human Ethics Committee Consent Form 

 
CONSENT TO PARICIPATE IN RESEARCH PROJECT / PRACTICAL STUDY 

 
 

_______________________________________________________________
_________ 
Name of Principal Investigator 
 
Hind Al-Obaidi 
_______________________________________________________________
_________ 
Title of Research  
 
 Mobile Authentication  
_______________________________________________________________
_________ 
Brief statement of purpose of work 
 
The usability of a system is noticed from the first point of contact of that system 
more especially if the system is intrusive in perform a task. The usability of a user 
authentication system should address some key issues which include 
intrusiveness and user’s ability to easily remember user login details. If these 
issues are met, it will greatly improve the authentication usage 
 
This research seeks to meet these issues by using gait signals from smartphone 
sensors to overcome intrusiveness and avoid user’s ability to know when 
authentication is done. To use gait signals for user authentication, it has to meet 
the basic requirement and characteristics needed to create a pattern for user 
authentication 
 
This study will install software in the smartphone for data collection. As a 
participant, no modification will be made upon the device before, during and after 
the collection of data. Please merely put the smartphone in the belt pouch while 
the data will be continuously extracted during one week duration. Also, a specified 
exercise of not more than 15 minutes with is done at the beginning and at the end 
of the data collection. Based upon Plymouth University guidelines, collected data 
should be stored for ten years. Upon the completion of the ten-year period, the 
collected data will be securely destroyed. 
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At all stages of the study, confidentiality of the collected data and subsequent 
analysis will be maintained. At no time, will any identifying information about the 
participants be used in any publication or research output.  
 
You have the right to withdraw at any stage upon until the completion of the 
data collection process. Should you wish to withdraw from the study, please 
contact Hind Al-Obaidi. Moreover, declining participation and/or asking to 
withdraw from this study will not affect your study or your relationship with your 
supervisors or tutors.  
For information regarding the study, please contact: 
 
Hind Al-obaidi   hind.al-obaidi@plymouth.ac.uk 
 
For any questions concerning the ethical status of this study, please contact the 
secretary of the Human Ethics Committee – paula.simson@plymouth.ac.uk  
 
_______________________________________________________________
_________ 
 
 
The objectives of this research have been explained to me.  
 
I understand that I am free to withdraw from the research at any stage, and ask 
for my data to be destroyed if I wish.  
 
I understand that my anonymity is guaranteed, unless I expressly state 
otherwise.  
 
I understand that the Principal Investigator of this work will have attempted, as 
far as possible, to avoid any risks, and that safety and health risks will have been 
separately assessed by appropriate authorities (e.g. under COSHH regulations)
   
 
Under these circumstances, I agree to participate in the research. 
 
 
 
Name:    ……………………………………….  
 
 
Signature:  .....................................……………..         Date:  ............………….. 
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Appendix C- Top Ten Discriminative Features for each user in Fast 

walk 

#user Accelerometer and Gyroscope Top Ten Discriminative Features 

1 159 217 220 56 281 32 162 165 70 67 

2 43 70 67 34 15 12 57 117 10 13 

3 56 117 268 105 120 10 13 123 265 166 

4 10 13 56 41 117 123 105 120 4 34 

5 34 135 32 159 217 220 268 281 283 254 

6 10 13 268 159 220 217 41 56 93 165 

7 268 34 10 13 56 57 80 163 166 265 

8 10 13 41 268 117 32 265 56 4 283 

9 268 117 105 120 10 13 159 43 217 220 

10 56 105 120 10 13 20 41 109 27 5 

11 34 10 13 56 105 120 268 117 185 41 

12 165 162 217 220 159 43 67 70 15 12 

13 268 10 13 221 218 56 160 41 123 166 

14 34 123 56 268 105 120 166 163 135 10 

15 268 56 34 10 13 123 105 120 159 217 

16 159 217 220 165 162 218 221 10 13 160 

17 159 217 220 10 13 165 162 268 56 41 

18 34 123 56 32 166 163 10 13 221 218 

19 67 70 43 10 13 56 12 15 123 41 

20 34 268 111 144 31 116 57 115 113 106 

21 10 13 67 70 41 43 117 56 159 217 

22 56 32 123 268 159 217 220 165 162 117 

23 167 164 268 159 217 220 219 222 10 13 

24 34 159 217 220 268 165 162 10 13 254 

25 159 217 220 268 34 32 56 10 13 222 

26 43 12 15 70 67 5 57 123 56 10 

27 268 56 10 13 185 105 120 265 138 41 

28 268 34 56 105 120 10 13 32 123 185 

29 34 117 105 120 185 56 268 138 32 166 

30 268 218 221 160 163 166 265 283 10 13 

31 20 268 218 221 286 160 166 163 256 265 

32 10 13 56 41 217 220 123 159 218 221 

33 70 67 20 43 56 126 217 220 55 159 

34 165 162 217 220 159 268 70 67 10 13 

35 56 34 286 10 13 185 117 123 267 32 

36 268 10 13 41 283 265 159 165 162 220 

37 268 32 10 13 56 105 120 34 41 116 

38 268 32 10 13 286 256 166 163 115 283 

39 10 13 254 221 218 67 70 41 56 160 

40 268 56 117 32 10 13 163 166 223 221 

41 34 117 67 70 43 185 165 162 159 15 

42 10 13 34 220 217 159 165 162 56 41 

43 268 34 56 267 32 144 150 123 135 265 

44 34 268 265 31 56 10 13 32 256 123 

45 105 120 56 166 163 268 10 13 283 123 

46 12 15 43 159 217 220 67 70 165 162 

47 268 10 13 56 34 132 302 256 41 266 

48 10 13 56 41 166 163 218 221 105 120 

49 20 221 218 160 268 163 166 93 217 220 

50 10 13 268 41 56 221 218 117 160 166 

51 34 268 221 218 10 13 160 282 223 194 

52 10 13 41 56 268 105 120 166 163 218 

53 10 13 117 56 281 73 287 105 120 41 

54 159 217 220 281 287 165 162 10 13 221 

55 56 217 220 159 10 13 254 34 268 165 

 

 

(10, 13) (56, 268) (34, 159,217) 
Top Repeated Second Repeated Third Repeated 
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Appendix D- Top Ten Discriminative Features for each user in walking 

with a bag Activity 

#user Accelerometer and Gyroscope Top Ten Discriminative Features 

1 10 13 159 217 220 41 281 162 165 287 

2 10 13 41 12 15 56 43 70 67 34 

3 105 120 138 56 57 107 122 13 10 117 

4 13 10 34 41 31 185 138 57 4 106 

5 34 56 32 57 159 217 220 109 27 13 

6 13 10 41 159 220 217 162 165 117 56 

7 13 10 41 5 57 43 27 109 70 67 

8 13 10 56 41 32 117 105 120 4 57 

9 13 10 162 165 117 105 120 159 217 220 

10 41 10 13 56 57 218 221 20 27 109 

11 13 10 34 56 41 105 120 117 123 100 

12 162 165 217 220 159 57 70 67 13 10 

13 13 10 41 56 57 5 218 221 281 27 

14 13 10 159 217 220 162 165 41 281 287 

15 162 165 159 217 220 13 10 41 21 287 

16 34 127 13 10 31 32 56 57 123 41 

17 70 67 159 217 220 162 165 43 13 10 

18 56 13 10 105 120 92 34 58 93 41 

19 13 10 41 70 67 162 165 159 217 220 

20 13 10 41 34 56 123 218 221 32 57 

21 13 10 159 41 220 217 165 162 167 164 

22 159 220 217 162 165 13 10 105 120 41 

23 162 165 34 217 220 159 10 13 56 167 

24 20 115 123 67 70 56 57 138 107 122 

25 162 165 34 217 220 159 10 13 56 167 

26 20 115 123 67 70 56 57 138 107 122 

27 34 13 10 159 217 220 162 165 41 57 

28 34 56 13 10 268 117 41 123 146 267 

29 34 117 56 13 10 105 120 57 31 5 

30 34 160 221 218 163 166 105 120 13 10 

31 20 221 218 160 163 166 56 34 285 43 

32 162 165 217 220 159 13 10 41 70 67 

33 20 70 67 22 43 134 132 56 66 69 

34 13 10 70 67 217 220 159 56 138 162 

35 56 13 10 105 120 41 34 129 116 135 

36 13 10 56 41 217 220 159 105 120 32 

37 13 10 56 105 120 32 138 41 117 123 

38 13 10 56 41 167 164 57 66 69 109 

39 13 10 56 41 67 70 218 221 57 104 

40 13 10 41 56 159 217 220 162 165 106 

41 290 34 217 220 159 56 107 122 125 105 

42 10 13 162 165 217 220 159 41 57 5 

43 34 127 56 13 10 116 105 120 57 41 

44 13 10 56 117 41 159 217 220 34 185 

45 13 10 127 41 223 117 105 120 218 221 

46 57 13 10 5 27 109 162 165 217 220 

47 34 266 56 13 10 105 120 117 57 31 

48 34 13 10 218 221 168 56 67 70 160 

49 109 27 5 57 159 217 220 42 56 105 

50 10 13 56 41 105 120 123 4 135 176 

51 34 13 10 218 221 188 176 191 41 194 

52 159 217 220 13 10 162 165 41 221 218 

53 10 13 105 120 56 41 57 266 117 74 

54 159 217 220 13 10 162 165 281 287 266 

55 13 10 56 266 105 120 57 41 123 5 

56 159 164 167 217 220 13 10 161 32 219 

57 34 105 120 13 10 106 121 123 185 138 

58 218 221 160 163 166 215 212 154 261 179 

59 20 167 164 161 219 222 43 67 70 221 

60 105 120 13 10 56 41 34 221 218 123 

(13, 10) (41, 56) (217,220, 159, 34, 57) 
Top Repeated  Second Repeated Third Repeated 
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Appendix E- Top Ten Discriminative Features for each user in Down 

Stairs Activity 

#user Accelerometer and Gyroscope Top Ten Discriminative Features 

1 32 10 13 268 64 165 162 43 217 220 

2 287 195 12 15 10 13 43 93 34 41 

3 70 67 61 13 10 3 185 9 268 123 

4 115 32 34 10 13 195 161 262 180 219 

5 10 13 117 236 267 82 234 41 47 15 

6 100 205 34 281 10 13 138 56 117 125 

7 10 13 32 41 67 70 138 12 15 43 

8 268 56 10 13 41 115 100 265 32 102 

9 41 15 12 43 10 13 67 70 265 108 

10 48 20 105 120 244 164 167 10 13 56 

11 93 32 56 34 268 170 117 265 10 13 

12 113 268 116 93 123 12 15 56 73 117 

13 215 221 218 124 10 13 106 121 56 67 

14 41 108 26 116 114 10 13 82 43 37 

15 105 120 10 13 203 56 77 34 268 99 

16 57 282 67 70 288 10 13 168 43 194 

17 268 10 13 135 36 221 218 70 67 18 

18 32 34 10 13 29 31 92 47 138 117 

19 29 136 10 13 268 116 67 70 43 41 

20 115 74 36 106 121 10 13 100 268 17 

21 13 10 41 67 70 47 106 121 114 31 

22 32 10 13 160 218 221 171 105 120 117 

23 34 268 107 122 265 32 10 13 92 31 

24 275 283 268 160 163 166 221 218 12 15 

25 263 10 13 227 266 269 57 41 205 47 

26 115 57 123 5 90 56 11 14 138 102 

27 268 43 129 67 70 106 121 15 12 73 

28 200 34 109 27 80 89 141 144 113 42 

29 56 113 124 32 116 93 267 268 92 246 

30 218 221 160 35 57 13 10 268 166 163 

31 139 20 100 12 15 218 221 43 206 287 

32 117 13 10 64 15 12 160 56 32 49 

33 67 70 43 22 136 107 122 115 132 3 

34 206 32 100 13 10 117 145 268 222 219 

35 105 120 268 10 13 117 4 41 116 115 

36 32 34 136 268 117 29 56 105 120 97 

37 32 56 10 13 105 120 27 109 29 57 

38 34 207 100 267 5 56 92 10 13 31 

39 159 13 10 154 137 168 220 217 67 70 

40 268 10 13 194 12 15 168 265 160 117 

41 268 221 218 117 267 56 105 120 212 160 

42 144 43 12 15 117 201 110 28 138 49 

43 57 105 120 56 5 27 109 11 14 42 

44 268 34 166 163 157 265 10 13 107 122 

45 268 116 57 265 13 10 266 106 121 32 

46 56 254 266 57 268 115 10 13 105 120 

47 134 268 265 57 116 221 218 144 168 10 

48 275 10 13 221 218 56 30 116 33 117 

49 10 13 207 56 100 4 106 121 199 138 

50 10 13 135 41 47 266 62 56 163 166 

51 246 10 13 266 254 168 221 218 12 15 

52 247 160 134 154 268 221 218 43 67 70 

53 56 245 94 106 121 116 244 100 105 120 

54 287 10 13 268 221 218 160 41 56 281 

55 34 105 120 290 56 13 10 31 268 231 

56 168 221 218 154 160 10 13 170 215 105 

57 13 10 34 32 265 41 232 116 56 268 

58 218 221 160 163 166 268 215 155 171 212 

59 20 10 13 56 57 216 160 116 155 4 

60 10 13 117 4 105 120 41 56 160 12 

(10, 13) (268, 56) (32, 117, 41, 218, 221) 
Top Repeated Second Repeated Third Repeated 
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Appendix F- Top Ten Discriminative Features for each user in 

Upstairs Activity 

#user Accelerometer and Gyroscope Top Ten Discriminative Features 

1 266 27 109 66 69 30 33 42 281 201 

2 169 69 66 60 164 167 16 158 171 109 

3 16 5 13 10 266 41 123 14 11 27 

4 13 10 123 32 17 41 56 117 195 171 

5 10 13 106 121 47 266 57 183 5 186 

6 99 184 5 144 304 109 27 57 206 42 

7 56 133 241 114 37 104 70 67 146 8 

8 32 10 13 29 5 57 109 27 41 11 

9 13 10 41 266 117 58 32 70 67 170 

10 283 116 69 66 104 239 223 60 30 13 

11 201 32 10 13 265 34 56 57 283 117 

12 66 69 171 23 38 18 12 15 106 121 

13 13 10 41 105 120 48 56 4 35 3 

14 105 120 123 267 34 124 118 20 162 165 

15 159 56 10 13 260 178 220 217 43 135 

16 131 30 137 66 69 33 5 27 109 132 

17 165 162 159 217 220 69 66 156 132 16 

18 57 5 13 10 11 14 123 41 109 27 

19 27 109 42 52 5 140 14 11 57 68 

20 5 57 11 14 109 27 117 103 265 42 

21 109 27 263 42 48 5 106 121 266 57 

22 13 10 30 266 33 66 69 41 48 47 

23 138 266 12 15 123 43 70 67 13 10 

24 10 13 41 56 169 138 4 254 117 34 

25 34 30 33 66 69 63 288 60 31 5 

26 255 119 169 116 266 18 17 170 171 27 

27 118 34 10 13 131 47 268 56 41 124 

28 13 10 34 41 47 4 304 125 268 264 

29 20 297 266 32 30 146 33 29 171 79 

30 136 41 17 13 10 30 266 130 33 66 

31 20 29 188 133 66 69 223 42 32 27 

32 10 13 56 12 15 4 41 105 120 218 

33 20 117 171 17 52 35 114 256 177 192 

34 32 266 106 121 303 105 120 29 263 57 

35 70 67 34 30 43 99 33 61 169 19 

36 32 10 13 134 104 41 129 119 79 29 

37 170 41 10 13 104 109 27 68 65 17 

38 10 13 138 5 268 11 14 57 30 109 

39 10 13 41 56 109 27 105 120 117 42 

40 266 13 10 171 162 165 5 156 57 109 

41 10 13 56 4 117 41 116 20 27 109 

42 177 192 171 13 10 56 105 120 32 251 

43 34 31 268 138 214 105 120 156 82 169 

44 34 5 31 27 109 57 14 11 42 13 

45 13 10 34 56 144 247 47 4 105 120 

46 266 153 69 66 133 217 220 30 33 211 

47 124 13 10 283 266 123 221 218 117 223 

48 217 220 211 159 260 178 13 10 41 56 

49 285 125 136 130 48 5 287 123 266 109 

50 30 33 48 69 66 285 221 218 263 160 

51 10 13 41 171 222 219 155 161 134 164 

52 10 13 104 56 124 4 47 41 304 268 

53 123 169 266 124 10 13 292 269 151 135 

54 10 13 56 41 199 266 116 161 222 219 

55 171 13 10 155 37 222 219 161 47 195 

56 65 68 59 161 219 222 180 262 41 164 

57 10 13 170 125 66 69 30 123 138 41 

58 66 69 18 29 42 171 140 2 32 160 

59 41 26 108 133 166 163 218 221 160 223 

60 112 154 17 221 218 170 268 194 212 160 

(13, 10) 41 (266, 109, 27, 56, 5, 66) 
Top Repeated Second Repeated  Third Repeated 
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Appendix G- Top Ten Discriminative Features for Each User in Fast 

Walking Activity 

#user Accelerometer and Gyroscope Top Ten Discriminative Features_ Real Data 

1 89 91 90 243 242 260 263 290 241 162 

2 91 89 243 90 242 241 164 167 292 60 

3 89 90 91 242 243 164 167 292 241 261 

4 91 243 89 90 241 242 290 162 165 164 

5 164 167 60 292 290 162 165 211 261 264 

6 89 91 164 167 243 292 90 261 264 241 

7 243 164 167 90 292 89 91 162 165 242 

8 164 167 292 89 91 243 261 264 90 242 

9 164 167 292 89 91 90 243 261 264 213 

10 241 90 91 243 89 242 151 179 150 189 

11 90 91 89 241 164 167 242 292 243 261 

12 164 167 292 290 162 165 261 264 235 259 

13 164 167 292 290 162 165 261 264 235 259 

14 292 164 167 91 241 90 242 261 264 89 

15 91 89 243 90 242 11 14 164 167 292 

16 164 167 292 241 242 89 91 290 162 165 

17 91 164 167 292 163 166 291 260 263 290 

18 91 89 90 243 241 242 114 179 211 268 

19 91 90 292 164 167 89 261 264 241 11 

20 89 243 90 242 91 241 236 235 164 167 

21 91 90 164 167 89 292 242 59 282 261 

22 89 91 292 164 167 290 243 162 165 261 

23 91 89 241 164 167 292 243 261 264 90 

24 89 91 294 164 167 292 90 243 242 290 

25 164 167 292 261 264 290 162 165 61 11 

26 90 243 91 164 167 292 89 59 241 242 

27 91 89 90 243 241 242 281 282 164 167 

28 91 89 243 90 241 242 164 167 292 211 

29 81 82 80 84 236 85 235 83 237 293 

30 164 167 292 89 243 90 91 261 264 282 

31 164 167 292 91 261 264 241 89 242 90 

32 89 91 242 90 243 164 167 292 241 261 

33 60 89 90 91 164 167 292 211 11 14 

34 91 164 167 292 90 89 261 264 242 212 

35 164 167 292 91 89 261 264 243 242 90 

36 91 90 89 242 241 243 27 164 167 282 

37 91 164 167 292 243 89 261 264 242 90 

38 89 91 90 242 243 211 292 164 167 241 

39 164 167 292 261 264 60 243 91 89 211 

40 164 167 292 91 243 89 90 261 264 242 

41 91 89 90 243 163 166 241 291 260 263 

42 164 167 292 261 264 91 243 242 90 89 

43 91 89 164 167 292 90 243 261 264 211 

44 89 91 241 242 243 292 164 167 90 27 

 

  

(91, 164, 89, 167) (90, 292, 243) (242, 261) 

Top Repeated Second Repeated Third Repeated 
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Appendix H- Top Ten Discriminative Features for Each User in Down 

Stairs Walking Activity 

#user Accelerometer and Gyroscope Top Ten Discriminative Features_ Real Data 

1 293 90 91 89 243 242 11 14 241 72 

2 91 90 89 243 242 241 72 189 11 14 

3 90 89 91 243 151 241 242 169 179 202 

4 89 91 90 27 243 241 242 26 190 169 

5 163 166 291 90 16 243 162 165 290 260 

6 90 89 243 91 242 241 151 27 179 189 

7 90 91 16 89 151 243 241 242 303 281 

8 90 89 243 91 242 151 72 241 204 219 

9 90 89 91 243 151 241 242 16 162 165 

10 151 91 90 243 242 89 241 16 203 218 

11 91 90 242 243 241 89 151 11 14 189 

12 237 90 91 89 243 72 241 80 151 235 

13 90 91 89 243 151 189 242 72 241 303 

14 90 27 91 89 243 72 242 241 84 151 

15 90 89 91 243 27 242 241 301 94 26 

16 90 243 89 91 241 151 162 165 242 26 

17 90 91 89 242 241 179 243 189 16 151 

18 90 89 91 242 243 241 27 179 283 26 

19 143 91 90 89 72 243 242 241 11 14 

20 295 90 235 91 89 243 236 241 242 80 

21 90 243 151 91 241 89 72 26 148 16 

22 90 89 27 91 243 72 204 219 241 162 

23 90 89 91 243 27 242 241 93 259 262 

24 90 91 89 243 242 241 162 165 290 259 

25 151 11 14 259 262 178 93 162 165 290 

26 143 90 243 151 27 12 15 16 242 241 

27 90 91 89 27 243 283 241 242 93 151 

28 90 91 89 242 243 241 281 179 189 93 

29 143 235 141 142 237 295 293 294 236 83 

30 90 89 91 243 27 242 241 151 283 189 

31 90 91 89 242 243 241 27 189 281 169 

32 27 89 90 151 281 198 241 290 259 262 

33 90 89 91 27 243 241 242 28 84 93 

34 90 242 243 91 89 241 27 283 51 66 

35 90 91 89 243 27 242 151 241 179 80 

36 90 89 91 243 242 241 169 189 27 283 

37 90 91 89 243 242 27 241 151 189 204 

38 72 11 14 163 166 291 90 16 91 151 

39 90 243 89 91 259 262 162 165 290 204 

40 90 91 27 89 243 72 242 301 283 241 

41 90 27 89 91 243 242 241 259 262 28 

42 90 91 89 243 242 241 169 204 219 151 

43 90 91 89 27 243 259 262 2 162 165 

44 27 89 90 151 281 198 241 290 259 262 

 

  

(90, 243) (89, 91, 241) 242 

Top Repeated Second Repeated Third Repeated 
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Appendix I- Top Ten Discriminative Features for Each User in Walking 

Upstairs Activity 

#user Accelerometer and Gyroscope Top Ten Discriminative Features_ Real Data 

1 270 213 243 170 151 195 109 112 211 187 

2 241 243 89 16 204 219 90 162 165 290 

3 241 294 89 27 243 2 90 51 66 72 

4 162 165 290 259 262 241 109 112 302 93 

5 27 63 84 241 212 151 16 243 145 149 

6 241 243 27 89 189 212 90 17 188 242 

7 127 11 14 130 164 167 261 264 292 162 

8 127 11 14 130 63 84 241 243 162 165 

9 72 241 243 84 235 27 89 150 93 188 

10 241 243 89 281 63 235 90 188 189 242 

11 63 84 241 127 27 130 243 11 14 2 

12 235 237 236 241 27 243 188 82 151 89 

13 11 14 164 167 93 292 243 162 165 241 

14 243 241 89 281 2 84 51 66 27 169 

15 90 243 241 17 27 89 152 179 283 188 

16 162 165 290 27 12 15 127 130 11 14 

17 188 302 151 16 241 290 162 165 148 152 

18 241 243 89 93 188 90 242 27 204 219 

19 109 112 241 27 235 243 89 90 140 155 

20 243 235 179 302 189 150 198 188 236 72 

21 11 14 127 130 162 165 12 15 241 290 

22 162 165 241 290 84 243 72 27 63 259 

23 2 84 63 51 66 27 241 102 109 112 

24 2 84 51 66 109 112 162 165 290 93 

25 241 27 243 169 89 188 304 204 219 72 

26 243 241 51 66 109 112 84 2 283 3 

27 241 243 27 283 84 89 90 17 235 2 

28 241 27 2 84 243 51 66 63 109 112 

29 127 130 237 11 14 259 262 162 165 290 

30 27 241 243 89 51 66 189 2 281 109 

31 2 51 66 162 165 290 259 262 93 109 

32 241 243 27 235 162 165 89 302 290 259 

33 212 2 17 51 66 179 54 124 241 27 

34 127 130 11 14 63 84 162 165 290 51 

35 243 84 51 66 241 2 27 189 169 93 

36 27 241 89 243 188 90 83 189 242 143 

37 241 243 27 89 84 63 72 51 66 90 

38 243 2 241 27 84 235 89 51 66 102 

39 127 130 11 14 63 162 165 290 84 259 

40 93 109 112 204 219 11 14 63 140 155 

41 162 165 290 259 262 63 12 15 84 109 

42 84 2 51 66 27 93 241 109 112 243 

43 243 241 27 89 90 294 304 204 219 189 

44 241 63 243 109 112 2 51 66 302 17 

 

  

(241, 243) 27 (84, 89, 162) 

Top Repeated Second Repeated Third Repeated 
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Appendix J- Top Ten Discriminative Features for Each User in All 

Activities 

#user Accelerometer and Gyroscope Top Ten Discriminative Features_ Real Data 

1 293 90 91 89 243 164 167 292 242 212 

2 90 89 91 164 167 292 242 241 243 261 

3 294 90 91 89 292 164 167 241 212 243 

4 91 89 90 243 241 212 242 164 167 292 

5 141 143 164 167 292 212 261 264 163 166 

6 90 89 91 164 167 292 243 212 241 261 

7 295 293 164 167 292 261 264 90 61 212 

8 167 164 292 90 91 261 264 89 241 243 

9 293 294 91 89 164 167 292 90 212 243 

10 241 91 90 61 242 212 89 211 243 164 

11 90 91 89 241 164 167 292 242 243 261 

12 141 142 143 293 294 295 164 167 292 290 

13 164 167 292 90 91 261 264 89 212 163 

14 90 241 91 164 167 292 243 89 242 212 

15 164 167 91 292 89 90 212 61 261 264 

16 164 167 91 292 89 90 212 61 261 264 

17 164 167 292 290 162 165 261 264 259 262 

18 293 90 91 89 241 242 243 212 211 164 

19 143 293 141 294 91 90 89 292 164 167 

20 141 142 143 235 237 236 164 167 292 261 

21 164 167 292 212 90 261 264 61 290 11 

22 293 90 292 164 167 89 91 290 162 165 

23 295 164 167 292 261 264 89 91 90 290 

24 294 295 91 212 164 167 292 90 89 290 

25 164 167 292 261 264 293 294 295 143 141 

26 141 143 167 164 292 61 261 264 90 212 

27 293 91 90 89 164 167 292 243 241 212 

28 294 293 91 90 241 89 242 243 164 167 

29 164 167 292 293 294 295 261 264 163 166 

30 90 91 89 167 164 292 261 264 243 212 

31 293 164 167 292 290 162 165 261 264 91 

32 293 90 164 167 292 91 89 241 242 243 

33 212 61 90 211 89 91 242 60 241 243 

34 293 164 167 292 89 261 264 90 212 91 

35 293 164 167 292 90 91 242 243 89 261 

36 143 295 294 90 91 89 241 212 242 243 

37 295 164 167 292 91 261 264 89 90 241 

38 91 90 89 212 241 243 292 164 167 211 

39 143 164 167 292 261 264 212 61 90 12 

40 164 167 292 212 261 264 89 90 243 91 

41 141 142 294 90 91 212 61 89 163 166 

42 164 167 292 261 264 91 90 212 89 290 

43 294 295 91 89 90 164 167 292 243 241 

44 293 91 90 89 241 290 162 165 259 262 

164 (89, 90, 91) (243, 242, 72) 

Top Repeated Second Repeated Third Repeated 
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