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Abstract  

The harvesting of soft fruits and vegetables is a labour-intensive process, often 
representing more than 50% of the total costs for the producer. In this paper, a harvesting 
robot is proposed for tomato picking. The robotic solution is developed to address the 
needs of the tomato producers in the Shanghai region in China, one that faces population 
growth and therefore a higher demand on food supply. The robotic system presented here 
consists of a variable-stiffness manipulator arm, a soft robot gripper, and different types 
of sensors that are used to identify and locate in 3D and pick the tomatoes. The 
implemented variable compliance enables the robot manipulator to work in a semi-
structured environment without damage to itself, the crop, or the surrounding. In this 
paper, the hardware and the software of the robot is described in detail. Early results from 
the first testing of a proof-of-concept on fresh tomatoes placed on artificial stems in 
Shanghai are presented, as well as picking UK tomato varieties in greenhouse conditions. 
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Introduction  

The increasing demand on farmers motivates research on agriculture robots for different 
applications such as seeding, weed control and harvesting. (Reddy et al., 2016). Many 
robots have been developed to work in harvesting for different fruits and vegetable. For 
example, Hemming et al. (2014) designed a robot for sweet-pepper, van Henten et al. 
(2002) proposed a robot for harvesting cucumbers and Leu et al. (2017) designed a robot 
for the harvesting of green asparagus. 

Feng et al. (2015), proposed a robot for picking tomato within a greenhouse that uses an 
installed rail to travel between the tomato vines. A 4 degree-of-freedom (DOF) arm was 
used with a perception system that consisted of a CCD camera attached to the linear laser 
projector. The detection algorithm used to detect the tomato applied a threshold to HSI 
colour space. The same group (Feng et al., 2015) proposed a design for tomato grasping 
(Wang et al., 2016). A high success rate was reported (up to 83.9%), but experimental 
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conditions and procedures were not detailed. Zhao et al. (2016), proposed another robot 
for tomato harvesting using dual-arms consisting of 3 degrees of freedom for each arm. 
Each arm had a different end-effector, one to hold the tomato using a pneumatic suction 
cup and the other equipped with a cutter to cut the stem of the tomato. A stereo vision 
system was integrated with the robot to locate the tomato positions. The robot proposed 
in Zhao et al. (2016) required a human worker to identify the ripe tomato. 

Tomatoes are the world’s largest vegetable category (Eurofresh, 2016), with a total 
production of around 130 Mt. China is among the 5 largest tomato producers. The project 
described in this paper is a collaboration between UK and China based research groups 
to design and develop a soft robot manipulator for tomato harvesting. The project aimed 
to explore a soft end-effector for gentle picking and separation of tomatoes without a 
cutting mechanism, and a variable-stiffness robot arm for operating in this complex 
horticultural environment. The proposed system was intended to have a fully autonomous 
detection, planning and picking loop, and used point clouds and a watershed algorithm 
for detection. The first proof-of-concept robot was tested briefly in greenhouse 
environments in both China and the UK, awaiting longer-term quantitative experiments. 

 

Methods and Materials 

Robot arm 
The GummiArm is a robotic arm with seven DOFs inspired by the mechanisms of human 
and animal sensorimotor systems (Stoelen et al., 2016). The GummiArm can be 
considered soft robotics owing to the joint mechanisms that use agonist–antagonist 
actuators connected to the joints via flexible tendons. These actuators are able to control 
the stiffness of the joints during operation (Figure 1). Agonist-antagonist actuators can be 
described as a pair of linear actuators where the agonist actuator causes movement in a 
given direction, and the antagonist actuator opposes the torque induced by the agonist 
actuator to increase stiffness.  

The GummiArm was originally developed at the University of Plymoth, UK, for research 
groups working on robots operating in complex and unpredictable environments. It is 
largely 3D printable to enable quick iterations on hardware, and the base version is 
available open source (GummiArmCE, 2018). It utilises Dynamixel (Robotis, Korea) 
digital servos. The environment during harvesting can be unpredictable, and detecting all 
hazards in the environment using sensors can be difficult (e.g. in most fruit plants, a thin 
string is used to support the plants). The GummiArm is therefore an interesting option to 
employ in this type of environment. 

Gripper 
The proposed gripper is mounted as an end-effector on the robot arm. It is a soft gripper 
with three fingers that deform to the shape of the object upon grasping. The body of the 
gripper is made of rigid Polylactic Acid (PLA) whilst the fingers are made from an elastic 
deformable polymer coated with high friction silicone. This decreases the likelihood of 
damage to the tomato. A Red, Green, Blue (RGB) camera integrated in the gripper is used 
for visual servoing and to provide data about a cluster of tomatoes. An Infra-Red (IR) 
sensor is used to measure the distance of the tomato to the gripper.  
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Figure 1: The robot arm, gripper, and sensors. 

Camera systems 
There are two cameras integrated with the robotic manipulator. The first sensor is a 
Realsense D415 (Intel, CA, USA) color/depth camera, see Figure 1. This camera is used 
to detect and 3D locate the tomato in front of the robot. The second vision sensor is a 
USB camera integrated with the gripper (Figure 1). 

Software architecture 
The software of the robot is based on Robotic Operation System (ROS) (Quigley et al., 
2009). ROS is an open source system comprising a collection of libraries and software 
that are used to accelerate prototyping robots and share the experience between 
developers.  

 

Figure 2: State machine of tomato harvesting 



4 
 

The state machine for the system was based on ROS and specifically tuned to tomato 
harvesting. In general, the state machine is a cycle of different processes as shown in 
Figure 2. The cycle starts by (1) locating the 3D position of the fruit, (2) command the 
arm to move closer to the target, (3) a visual servoing process for precise positioning 
relative to target fruit, (4) close the gripper and pull the fruits to separate it from the plant, 
and (5) place the fruit in a tray. The following subsections describe each stage in detail.  

Detection and 3D localisation of tomatoes 
The first process in the state machine is the 3D detection of the tomato relative to the arm 
base. This process computes the position of the tomato using RGB image and depth data 
provided by Intel Realsense D415. Figure 3 shows the pipeline of the depth detection 
algorithm. The process starts by detecting the tomato in RBG image by applying a linear 
regression model to detect the tomato. The linear regression model applies to each pixel 
to compute the probability of said pixel corresponding to a tomato or not 𝑃"#$𝜖(0,1). 

 𝑃"#$ = 𝑋 ∗ 𝑤 + 𝐵 (1) 

 
Figure 3: Detection and 3D localisation pipeline used. 

The output of the linear regression process is a binary image used to mask the depth image 
using the bitwise process. The bitwise process is used to irelevant content from the depth 
image. The depth map is converted to point cloud format which is then used to compute 
the centroid of the detected tomato.  

Visual servoing  
The visual servoing is used in order to approach the tomato with greater precision than 
can be achieved from a more remote camera. The visual servoing node was designed to 
grip the tomatoes which are clustered so tightly that the 3D detection could not manage 
to detect the individual targets. The visual servoing uses the camera in the gripper where 
the process starts by detecting the tomatoes and then determines the tomato nearest to the 
centre of the image. The visual servoing detection algorithm is designed to identify each 
tomato separately using a watershed algorithm (Bleau and Leon, 2000). Figure 4 shows 
the input image from the gripper camera and the output image of the algorithm where the 
tomatoes detected are outlined. The output of the detection algorithm provides a 2D pixel 
co-ordinate (𝑥, 𝑦), whereas the end effector manipulates in 3D, 𝑃3(𝑋, 𝑌, 𝑍). An 
exponential function was used to compute the movement in the 𝑧 axis of the image frame 
by computing the Euclidean distance (𝑞) which is biased for greater movement with 
smaller distances.   

 𝑧 = 	 exp(<	×	>)× 	𝛽 (2) 
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where 𝛽 is the scaling constant which limits the range of the output to meet the image 
size and 𝜆 is the constant which describes the shape of the output. 

 
Figure 4: Visual servoing detection of individual tomato in the cluster. (A) camera 

image and (B) the output of the detection algorithm where the black cross is the centre 
of the image and the green cross indicates the target that is closest to the centre. 

The output of the detection process is the difference between the position of the target 
and the centre of the camera image. A proportional controller is used to compute the error 
of the end effector position relative to the tomato position. This error added to the current 
position of the end-effector then feeds into the inverse kinematic model to compute the 
new joint angles that feed to the joint controller to move the arm to the new position. The 
𝐾B was selected based on trial and error.  

 
Figure 5: The visual servo controller used for the last part of the tomato-picking 

process. 

Motion planning 
As the robot manipulator is integrated with ROS the position of the end-effector is 
computed and controlled using the MoveIt! motion planning framework. MoveIt! 
provides an inverse kinematics planner and motion controller for the GummiArm by 
reading the Universal Robotic Description Format (URDF) file of the manipulator. The 
motion planning and control are used in different stages within the state machine, 
including positioning the end-effector in front of the detected tomato and placing the 
tomato in the tray after picking. 
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Experiment Setup 

The system has been tested in greenhouses in the UK and China. Figure 6 shows the setup. 
The robot is placed in front of a tomato plant and initialised to pick the tomato with the 
shortest absolute distance to the robot base. This testing has been done to evaluate the 
robot performance in terms of picking success rate and the speed of picking by measuring 
the entire circle of the state machine. The time of each process in the state machine has 
been measured separately during the experiment in order to analyse the durations and 
identify any bottlenecks of the cycle. However, the first test in China has a more 
simplified setup due to the lack of ripe tomato plants at the time the test was performed 
(the setup was designed to simulate an authentic scenario). 

 
Figure 6: Experiment setup (A) China, (B) UK,  (C) Lab. 

The principal target for the robotic system was the Chinese market, and the robot was 
therefore primarily designed for larger Chinese tomatoes (approx. 75 mm diameter). A 
range of UK varieties were also tested, and it was found that the solution can be adapted 
to regular UK varieties with small changes to the size of the gripper fingers. Further 
experimental work is needed to truly assess the quantitative performance and robustness 
of the system under commercial growing conditions, in terms of detection, maturity 
classification, and picking performance. This work is underway winter 2020 in Shanghai, 
China, with an improved version of the system. 

Result and Discussion 

The main advantage of using the robot in harvesting is accelerating the picking process 
and reduction of labour cost where the robot may work continuously. Therefore, the robot 
was tested and evaluated based on the speed of picking and the success rate of picking 
the tomatoes. Figure 7 shows the time of each step in the harvesting process starting with 
the 3D detection and ending with placing the tomato in to the tray. From Figure 7, the 
timing leads to understanding bottlenecks in the state machine process which is currently 
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in the visual servoing that take the longest time to finish. The main reason is the 
complexity of placing the gripper on the tomato in the best position. However, in the next 
iteration of the system, a depth camera will be integrated into the end effector in order to 
generate improved approach paths and more accurately position the gripper with regard 
to the target tomato. 

 
Figure 7: Time for each process in the state machine. 

The complete picking process for picking one tomato was 30 ± 5 s. The 5 s margin error 
is due to the varying position of the tomato relative to the arm base. However, the time is 
comparable to the work of Feng et al. (2015), at 25 seconds. More work is needed to 
define benchmarking standards to make such comparisons more relevant. 

In future work, the visual servoing process will integrate with a depth camera to improve 
both the speed and confidence of motion and determine the best pose of the gripper around 
the tomato. The state machine of the robot will be rewritten in order to improve the speed 
and the reliability of the picking process. More extensive benchmarking will also be 
performed on production crop. 

Conclusion  

This paper presents a soft manipulator robot for selective tomato harvesting, using human 
inspired motor mechanisms. Passive compliance was introduced in the picking process to 
help increase robustness to unforeseen impacts during autonomous operation. The robot 
integrates various types of sensor in order to detect, locate and pick ripe tomatoes. The 
software architecture was based on ROS, while using the MoveIt! framework for motion 
planning. A custom soft robot hand was designed to enable one-handed picking without 
a cutting mechanism. The robot has been through first tests in greenhouses in both China 
and the UK. The full cycle time for picking a tomato was 30 ± 5 s, but more extensive 
experiments are needed to assess performance and robustness on commercial crops.  
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