
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2018-01-01

Disconnected hadronic vacuum

polarization contribution to the muon g-2

with HISQ

Yamamoto, S

http://hdl.handle.net/10026.1/14863

Proceedings of Science

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Disconnected hadronic vacuum polarization
contribution to the muon g-2 with HISQ

Shuhei Yamamoto∗

Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
E-mail: sy3394@physics.utah.edu

Carleton DeTar
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
E-mail: detar@physics.utah.edu

Aida X. El-Khadra
Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801-3003, USA
& Fermilab, Batavia, IL 60510-5011 USA
E-mail: axk@illinois.edu

Craig McNeile
Centre for Mathematical Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
E-mail: craig.mcneile@plymouth.ac.uk

Ruth S. Van de Water
Fermilab, Batavia, IL 60510-5011 USA
E-mail: ruthv@fnal.gov

Alejandro Vaquero
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
E-mail: alexvaq@physics.utah.edu

Fermilab Lattice, HPQCD, and MILC Collaborations

We describe a computation of the contribution to the anomalous magnetic moment of the muon
from the disconnected part of the hadronic vacuum polarization. We use the highly-improved
staggered quark (HISQ) formulation for the current density with gauge configurations generated
with four flavors of HISQ sea quarks. The computation is performed by stochastic estimation
of the current density using the truncated solver method combined with deflation of low-modes.
The parameters are tuned to minimize the computational cost for a given target uncertainty in
the current-current correlation function. The calculation presented here is carried out on a single
gauge-field ensemble of size 323×48 with an approximate lattice spacing of ∼ 0.15 fm and with
physical sea-quark masses. We describe the methodology and the analysis procedure.
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1. Introduction

The anomalous magnetic moment of the muon, defined as

aµ =
gµ −2

2
,

is measured with great precision. It can also be computed from the Standard Model very precisely.
At present, there is discrepancy of about 3σ between the theoretical and experimental determina-
tion of the quantity. The current status of the computation, summarized in Ref. [1], is

aexp
µ −aSM

µ = 31.3(4.9)thy(6.3)exp[7.7]×10−10 [2]

= 26.8(4.3)thy(6.3)exp[7.6]×10−10 [3]

= 27.1(3.6)thy(6.3)exp[7.3]×10−10 [4].

The FNAL E989 [5] experiment, which recently started its first run, aims to reduce the experi-
mental uncertainty by a factor of four. The goal of the planned J-PARC E34 [6] experiment is to
provide a completely independent measurement also with improved precision compared with the
Brookhaven experiment. So a comparable reduction in the theoretical uncertainty is desirable in
order to sharpen or resolve the tension. The largest source of theory error is due to the leading-order
hadronic vacuum-polarization (LO HVP) contribution. In this paper, we focus on the quark-line
disconnected part of the HVP contribution to the anomalous magnetic moment of the muon, which
complements our ongoing calculation of the leading-order connected HVP contribution.

We describe the first steps in our computation of the contribution to aµ from the disconnected
part of the hadronic vacuum polarization (HVP). Other groups have computed this quantity and
estimated its value using lattice QCD:

adisc HVP
µ =−11.0(1.1)sys(0.6)sta [7, 8]

=−11.2(3.3)sys(0.4)F.V.(2.3)L [9],

where F.V. indicates a finite volume error and L, long-distance-error [10]. To further reduce the er-
ror and cross-check the various lattice results, we use the highly-improved staggered-quark (HISQ)
formulation for the current density with gauge configurations generated with four flavors (2+1+1)
of HISQ sea quarks. Here we present our methodology and a preliminary result from one lattice
spacing, namely a∼ 0.15 fm.

2. Methodology

In the continuum, the HVP is given by

Π
µν(q2) = (δ µνq2−qµqν)Π(q2) =

∫
d4xeiqx 〈Jµ(x)Jν(0)〉 (2.1)

The leading-order contribution to the anomalous magnetic moment from the HVP [11] is

aHVP
µ = 4α

2
∫

∞

0
dq2 f (q2)Π̂(q2).

1
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Here, f (q2) is the kernel function,

f (q2) =
m2

µq2A3(1−q2A)
1+m2

µq2A2 ,

where mµ is the mass of the muon, α is the fine-structure constant,

A =

√
q4 +4m2

µq2−q2

2m2
µq2 ,

and Π̂(q2) = Π(q2)−Π(0) is the renormalized photon vacuum polarization. Thus, in the contin-
uum, Π̂(q2) at zero spatial momentum can be computed via [12]

Π̂(q2) =
∫

∞

0
dt
(

t2− 4sin2(qt/2)
q2

)
C(t),

where C(t) is the time-slice correlation function of the quark-line electromagnetic current. On the
lattice, C(t) is given by

C(t) =
1
3 ∑
~x,k
〈Jk(~x, t)Jk(0)〉 (2.2)

with k = 1,2,3 and Jk = i∑ f Q f ψ̄ f γkψ f with f = u,d,s,c. Here, Q f is the charge of the quark of
flavor f in units of the electron charge e. The correlator can be divided into two parts: connected
and disconnected. Fig. 1 shows the schematic diagrams associated with these two pieces.

(a) Connected Contribution (b) Disconnected Contribution

Figure 1: The Feynman diagrams for the contribution to aµ from the leading-order HVP. The quark
loop in (a) is radiatively corrected by virtual gluons and sea quarks (not shown). In the same way,
the quark loops of flavor f and f ′ in (b) are connected by virtual gluons and sea quarks (not shown).

In the staggered rooted fermion formulation of lattice fermions, the disconnected part of the
HVP correlator is

Cdisc(t) =
1

48

3

∑
i=1

∑
~x

Z2
V 〈〈J

stg
i (t,~x)〉F〈Jstg

i (0)〉F〉G (2.3)

The additional rooting factor of 1/16 arises when taking the functional derivative twice with respect
to the vector potential to obtain Eq. (2.3). The disconnected part of the HVP can then be obtained
from

Π
disc HVP(q2) = a4

∑
t

eiqtCdisc(t)

2
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In Eq. (2.3), F indicates the integration over the fermionic degrees of freedom, which is per-
formed explicitly, whereas averaging over gauge configurations is indicated by G. ZV is the vector-
current renormalization factor. Jstg

i (r) is the one-link current with Γµ ⊗Γt = γµ ⊗1.
We use stochastic estimation of the current density using Z(2) random sources with support

on the entire four-volume Ω. We use the truncated solver method (TSM) [13, 14] combined with
low-mode deflation. Dilution with stride 2 is also applied to the random sources to reduce the
variance [15]. That is, on each lattice, we use 16 random sources, each with support on a subset
Ωη = {r ∈ Ω |η ≡ r (mod 2)} where ηµ = 0 or 1. The low-mode part is computed exactly by
constructing it from the eigenvectors of /D.

Then, with Jstg
i (r) = ∑ f Q f j f ,i(r), the current density is computed via j f ,i(r), which is given

as follows:
j f ,µ(r) = j(p)

low, f ,µ(r)+ j(sloppy)
f ,µ (r)+ j(diff)

f ,µ (r), (2.4)

where j(p)
low, f ,µ(r) is the low-mode part of the current constructed from the eigenpairs, and the rest

is the stochastically estimated high-mode part. If we let ξ represent the random source, without
deflation the stochastic estimation of j f ,µ(r) is given by

j f ,µ(r) =
1
Nr

Nr

∑
k=1

Im Trc

[
ξ

†
k (r)αµ(r)Uµ(r)(M−1

f ξr)(r+ µ̂)
]

where αµ(r) = (−1)∑ν<µ xν are the usual staggered phases, Uµ(r) the gauge link, and M f is the
fermion matrix for the flavor f . The trace is taken over colors. In Eq. (2.4), j(sloppy)

f ,µ = j(high)
f ,µ

∣∣Nr=Nsloppy

(sloppy) (r)
is the stochastically estimated high-mode part with sloppy inversion with Nsloppy random sources,
and j(diff)

f ,µ (r), the difference in the stochastic estimates with Nfine sloppy and fine inversions, i.e.,

j(diff)
f ,µ (r) = j(high)

f ,µ

∣∣Nr=Nfine

(fine) (r)− j(high)
f ,µ

∣∣Nr=Nfine

(sloppy) (r).

3. Parameter Optimization

The calculation presented here is carried out on a single gauge-field ensemble of size 323×48
with an approximate lattice spacing of 0.15 fm using TSM and deflation along with dilution with
stride 2. Accordingly, there are several parameters in this simulation that need to be tuned to achieve
the target statistical uncertainty due to stochastic estimation in the current-current correlation func-
tion at minimum computational cost. The final statistical error coming from gauge fluctuations is
reduced by increasing the number of gauge configurations analyzed in the tuned parameter setting.

The tuning starts by setting a goal uncertainty in the statistical estimate of the correlator for
a single configuration. We have set this to be 1% of the average value of the correlator. Then, we
go on to determine the precision of the fine solve required to ensure that the systematic uncertainty
due to the finite solver precision is less than the 1% accuracy. The residual of the sloppy solve and
the ratio of the number of sloppy solves to fine solves are determined to minimize the uncertainty
at a given computational cost. The remaining parameter of the simulation, namely the number of
sloppy solves and deflating eigenpairs are tuned so as to give the desired precision in the correlator
at a minimal computational cost [16]. The residuals of the eigenpairs

∣∣DeoDeoṽ(e)n − λ̃ 2
n ṽ(e)n

∣∣ are set

so that the first few smallest estimated eigenvalues are closer to their true eigenvalues where ṽ(e)n

3
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and λ̃n are the estimated nth eigenpair. They were set to 10−9. After tuning, the optimum parameter
values are found to be

• The number of eigenpairs for deflation: 350

• The residual of fine and sloppy solve: 2.70×10−2 and 1×10−5, respectively

• The number of fine and sloppy solves per configuration: 72 and 1408, respectively.

In order for deflation to be effective, the residual of the eigensolutions should be smaller than the
desired residual of the sparse-matrix solution [17]. So the residual can be set higher than 10−9

without affecting performance of the inversion. This residual is not tuned in this work.

4. Result

In this preliminary calculation, Cdisc(t) is computed using 1326 gauge configurations with
physical sea-quark masses. Fig. 2 shows our result for Cdisc(t) at a lattice spacing of ∼ 0.15 fm.
In the plot, an opposite-parity oscillating component is clearly visible, as expected with staggered
fermions.

5. Analysis

To compute the disconnected contribution to aHVP
µ , we use the time-moment representation

(TMR) [10], i.e.,

adisc. HVP
µ =

T

∑
t=0

wtCdisc(t)

where

wt = 4α
2
∫

∞

0
dq2 f (q2)

(
t2− 4sin2(qt/2)

q2

)
.

With the value of Z−1
V = 0.852(2) [18], the values of adisc

µ as a function of T/a is shown in Fig. 3.
By choosing the fit range of (12,20), we obtain a preliminary weighted average of

adisc
µ =−2.5(5)×10−10 (5.1)

This value is less negative than the value cited in Sec. 1. This is expected. As is observed in
Ref. [8], adisc

µ has a strong lattice-spacing dependence; the smaller the lattice spacing is, the more
negative adisc

µ becomes.

6. Conclusion

We have computed the disconnected part of the anomalous magnetic moment of the muon
on a lattice of size 323× 48 with the lattice spacing of a ∼ 0.15fm. The value we obtained was
−2.5(5)× 10−10. For the future, we need to increase the statistics and compute adisc

µ at multiple
lattice spacings.

4
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Figure 2: Time-slice disconnected current den-
sity correlator vs. the temporal separation in lat-
tice units.

Figure 3: adisc
µ ×1010 as a function of the cut-off

time T in the TMR. A constant fit is taken from
aT = 12 to 20. The shaded region indicates the
error.
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