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We present a new lattice QCD analysis of heavy-quark pseudoscalar-pseudoscalar correlators, using gluon
configurations from the MILC collaboration that include vacuum polarization fromu, d, s andc quarks (nf =
4). We extract new values for the QCD coupling and for thec quark’sMS mass:α

MS
(MZ , nf = 5) =

0.11822(74) andmc(3GeV, nf = 4) = 0.9851(63) GeV. These agree well with our earlier simulations
usingnf = 3 sea quarks, vindicating the perturbative treatment ofc quarks in that analysis. We also obtain a
new nonperturbative result for the ratio ofc ands quark masses:mc/ms = 11.652(65). This ratio implies
ms(2GeV, nf = 3) = 93.6(8)MeV when it is combined with our newc mass. Combiningmc/ms with our
earliermb/mc givesmb/ms = 52.55(55), which is several standard deviations (but only 4%) away from the
Georgi-Jarlskop prediction from certain GUTs. Finally we obtain annf = 4 estimate formb/mc = 4.528(54)
which agrees well with our earliernf = 3 result. The new ratio impliesmb(mb, nf = 5) = 4.162(48) GeV.

PACS numbers: 11.15.Ha,12.38.Aw,12.38.Gc

I. INTRODUCTION

The precision of lattice QCD simulations has increased
dramatically over the past decade, with many calculations
now delivering results with 1–2% errors or less. Such preci-
sion requires increasingly accurate values for the fundamental
QCD parameters: the quark masses and the QCD coupling.
Accurate QCD parameters are important for non-QCD phe-
nomenology as well. For example, theoretical uncertainties
in several of the most important Higgs branching fractions
are currently dominated by uncertainties in the heavy-quark
masses (especiallymb andmc) and the QCD coupling [1].

In this paper we present new lattice results formc,mc/ms,
ms, mb/mc, mb, andαs. In a previous paper [2] we ob-
tained 0.6%-accurate results for the masses and coupling
by comparing continuum perturbation theory with nonper-
turbative lattice-QCD evaluations of current-current correla-
tors for heavy-quark currents. Current-current correlators
are particularly well suited to a perturbative analysis because
non-perturbative effects are suppressed by four powers of
ΛQCD/2mh wheremh is the heavy-quark mass. Our earlier

∗ g.p.lepage@cornell.edu

simulations treatedu, d ands sea quarks nonperturbatively
(nf = 3), while assuming that contributions fromc and heav-
ier quarks can be computed using perturbation theory. Here
we test the assumption that heavy-quark contributions are per-
turbative by repeating our analysis with lattice simulations
that treat thec quark nonperturbatively (nf = 4 in the sim-
ulation).

In Section 2 we present our newnf = 4 lattice-QCD anal-
ysis of current-current correlators, leading to new results for
the heavy-quark masses and the QCD coupling. We introduce
an improved procedure that gives smaller errors and simplifies
the analysis. We also demonstrate how our Monte Carlo data
correctly reproduce the running of theMS masses and cou-
pling. In Section 3, we use the same simulations to calculate
a new nonperturbative result for the ratio of thec to s quark
masses,mc/ms. In Section 4, we use these simulations to
calculate the mass ratiomh/mc for heavy quarks with masses
mh betweenmc andmb. We express the ratio as a function
of the heavy quark’s pseudoscalar massmηh

. We extrapo-
late our result tomηh

= mηb
to obtain a new nonperturbative

estimate formb/mc. In Section 5, we summarize our conclu-
sions, derive new values for thes andb masses, and present
our thoughts about further work in this area. We also include,
in Appendix A, a detailed discussion about how the coupling
constant, quark masses, and the lattice spacing depend upon

http://arxiv.org/abs/1408.4169v3
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sea-quark masses in our approach. Our current analysis in-
cludesu/d sea-quark masses down to physical values, so we
are able to analyze this in far more detail than before. Finally,
Appendix B briefly summarizesnf = 4 results obtained using
our previous methods [2].

II. LATTICE RESULTS

Our new analysis follows our earlier work [2], but with a
simpler and more accurate method for connecting current cor-
relators toMS masses. In particular, this method allows us
to determine theMS c mass at multiple scales, from correla-
tors with different heavy-quark masses, providing a new test
of our use of continuum perturbation theory. While the lattice
spacings are not as small as before, our new analysis treats
c-quarks in the quark sea nonperturbatively. We also use the
substantially more accurate HISQ discretization for the sea-
quark action [3], in place of the ASQTAD discretization in
our earlier analysis, and a more accurate method for setting
the lattice spacing. The gluon action is also improved over
our earlier analysis, as it now includesO(nfαsa

2) correc-
tions [4]. Our new results also have more statistics, and in-
clude ensembles withu/d masses very close to the physical
value.

A. Heavy-Quark Correlator Moments

As before, we compute (temporal) moments

Gn ≡
∑

t

(t/a)nG(t) (1)

of correlators formed from the pseudoscalar density operator
of a heavy quark,j5 ≡ ψhγ5ψh:

G(t) = a6
∑

x

(am0h)
2〈0|j5(x, t)j5(0, 0)|0〉. (2)

Herem0h is the heavy quark’s bare mass (from the lattice
QCD lagrangian),a is the lattice spacing, timet is Euclidean
and periodic with periodT , and the sum over spatial posi-
tionsx sets the total three-momentum to zero. We again re-
duce finite-lattice spacing, tuning and perturbative errors by
replacing the moments in our analysis with reduced moments:

R̃n ≡











G4/G
(0)
4 for n = 4,

1

m0c

(

Gn/G
(0)
n

)1/(n−4)

for n ≥ 6,
(3)

whereG(0)
n is the moment in lowest-order weak-coupling per-

turbation theory using the lattice regulator, andm0c is the bare
mass of thec quark.

Low-n moments are dominated by short-distance physics
because the correlator is evaluated at zero total energy, which
is well below the threshold for on-shell hadronic states: the
threshold is atEthreshold = mηh

where

2.9 GeV≤ mηh
< 6.6 GeV (4)

TABLE I. Perturbation theory coefficients forrn with nf = 4 sea
quarks, where the heaviest sea quark has the same massmh as the
valence quark (that is, the quark used to make the currents inthe
current-current correlator). Coefficients are defined byrn = 1 +
∑

j rnjα
j

MS
(µ) whereµ = mh(µ). These coefficients are derived

in [6–10].

n rn1 rn2 rn3

4 0.7427 0.0088 −0.0296
6 0.6160 0.4976 −0.0929
8 0.3164 0.3485 0.0233

10 0.1861 0.2681 0.0817

for our range of massesm0h. Furthermore, the moments are
independent of the ultraviolet cutoff whenn ≥ 4. Apply-
ing the Operator Product Expansion (OPE) to the product of
currents in the correlator, we can therefore write ourn = 4
reduced moment in terms of continuum quantities,

R̃4 → r4(αMS, µ)







1 +

+ dcond4 (αMS, µ)
〈αsG

2/π〉eff
(2mh)4

+d̃cond4 (αMS, µ)
∑

q=u,d,s

〈mqψqψq〉eff

(2mh)4
+ · · ·







, (5)

in the continuum limit (a→ 0). HereαMS is theMS coupling
at scaleµ, andmh is theMS h-quark mass. Heavy-quark
condensates are absorbed into the gluon condensate [5]. We
will retain terms only through the gluon condensate in what
follows since its contribution is already very small and con-
tributions from other condensates will be much smaller. We
discuss the precise meaning of〈αsG

2/π〉eff below. Reduced
moments withn ≥ 6 can be written:

R̃n →
rn(αMS, µ)

mc(µ)

{

1

+ dcondn (αMS, µ)
〈αsG

2/π〉eff
(2mh)4

+ · · ·

}

, (6)

wheremc(µ) is theMS mass of thec quark. The contin-
uum expressions for̃Rn should agree with tuned lattice sim-
ulations up to finite-lattice-spacing errors ofO((amh)

2αs).
The perturbative expansions for the coefficient functionsrn
are known through third order: see Table I and [6–10]. The
expansions fordcondn are known through first order [11].

Parameterµ sets the scale formc and forαMS in rn. As in
our previous paper, we take

µ = 3mh(µ) (7)

in order to improve the convergence of perturbation theory.In
fact, however, our method is almost completely independent
of the choice ofµ, by design. We can reexpressµ in terms of
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theMS mass of thec quark,

µ = 3mc(µ)
m0h

m0c
, (8)

since ratios of quark masses are regulator independent: that
is,

m0h

m0c
=
mh(µ)

mc(µ)
(9)

up toa2 errors (for anyµ).
Our reduced moments differ forn ≥ 6 from our ear-

lier work: here we multiply by1/m0c in Eq. (3) instead of
mηh

/2m0h. The ratio ofGs in R̃n≥6 introduces a factor
of m0h/mh(µ). This becomes1/mc(µ) when multiplied by
1/m0c (by Eq. (9)). Consequently we can use moments cal-
culated with any heavy-quark massm0h to estimate theMS
c mass (atµ = 3mh(µ)). Consistency amongmcs coming
from differentm0h values is an important test of the formal-
ism.

We could have used the bare mass of any quark, in place of
m0c, in Eq. (3). Then then ≥ 6 moments would give values
for theMS mass of that quark. Alternatively we could leave
the quark mass factor out, in which case these moments give
the factorsZm(µ) that convert any bare lattice quark mass into
the correspondingMS mass at scaleµ. Heavy-quark current-
current correlators, as used here, provide an alternative to RI-
mom [12] and similar methods for determining both light and
heavy quark masses.

The new definition for the reduced moments simplifies our
analysis since the variation of factormc(µ) with µ is well
known from perturbative QCD. Themηh

dependence of the
analogous factor (mηh

/2mh) in the old analysis is unknown
a priori, and so must be modeled in the fit. We analyzed our
data using the old definitions; the results, which agree withthe
results we find with the new methods, are described briefly in
Appendix B.

B. Lattice Simulations

To extract the coupling constant andc mass from simula-
tions, we use the simulations to compute nonperturbative val-
ues for the reduced momentsR̃n with smalln ≥ 4 and a range
of heavy-quark massesm0h. We vary the lattice spacing, so
we can extrapolate to zero lattice spacing, and the sea-quark
masses, so we can tune the masses to their physical values.

The gluon-field ensembles we use come from the MILC
collaboration and includeu, d, s, andc quarks in the quark
sea [13, 14]. The parameters that characterize these ensembles
are given in Table II. The highly accurate HISQ discretiza-
tion [3] is used here for both the sea quarks and the heavy
quarks in the currents used to create the correlators. This dis-
cretization was designed to minimize(amh)

2 errors for large
mh. Our previous work used HISQ quarks in the currents, but
a less accurate discretization (ASQTAD) for the sea quarks.

We also quote tuned values for the bares and c quark
masses in Table II. These are the quark masses that give the

physical values for theηs andηc masses, as discussed in Ap-
pendix A 1. This is the barec mass we use in Eq. (3) for̃Rn.

In Table III we list our simulation results for theηh mass
and the reduced moments for various bare quark massesam0h

on various ensembles. Results from different values ofam0h

on the same ensemble are correlated; we include these corre-
lations in our analysis. Theamηh

values are computed from
Bayesian fits of multi-state function

10
∑

j=1

bj

(

e−mjt + e−mj(T−t)
)

(10)

to the correlatorsG(t) for t ≥ 8, whereT is the temporal
length of the lattice [15]. The fitting errors are small foramηh

and have minimal impact on our final results.

The fractional errors in thẽRn for n ≥ 6 are 20–40 times
larger than those for̃R4. This is because of the factor of
1/mtuned

0c used in Eq. (3) to define these moments. As men-
tioned above, we could have used bare masses for other
quarks in this definition, to obtain values for theirMS masses.
Heavy-quark masses likem0c, however, can usually be tuned
more accurately than light-quark masses, as discussed in Ap-
pendix A. Masses for other quarks can be obtained from the
c mass and nonperturbatively determined quark mass ratios,
as we show for thes andb masses in the next two sections.

As in our previous paper, we limit the maximum size
of amh in our analysis: we requireamh ≤ 0.8. This keeps
a2 errors smaller than 10%.

We determine the lattice spacing by measuring the Wilson
flow parameterw0/a on the lattice (Table II) [16]. From pre-
vious simulations [17], we know that

w0 = 0.1715(9) fm, (11)

which we combine with our measured values ofw0/a to ob-
tain the lattice spacing for each ensemble (Appendix A). This
approach is far more accurate than that used in our earlier pa-
per, which relied upon ther1 parameter from the static-quark
potential.

C. Fitting Lattice Data

Our goal is to find values forαMS(µ) andmc(µ) that make
the theoretical results (from perturbation theory) for there-
duced moments̃Rn (Eqs. (5–6)) agree with the nonperturba-
tive results from our simulations. We do this by simultane-
ously fitting results from all of our lattice spacings and quark
masses for moments with4 ≤ n ≤ 10. To get good fits, we
must correct the continuum formulas in Eqs. (5–6) for sev-
eral systematic errors in the simulation. We fit the lattice data
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TABLE II. Simulation parameters for the gluon ensembles used in this paper [13, 14], with lattice spacings of approximately 0.15, 0.12, 0.09
and 0.06 fm, and various combinations of sea-quark masses. The parameters for each simulation are: the inverse lattice spacing in units of
w0 = 0.1715(9) fm, the spatialL and temporalT lattice lengths, the number of gluon configurationsNcf (each with multiple time sources),
the bare sea-quark masses in lattice units (am0ℓ, am0s, am0c), and the tuned bares andc quark masses in GeV. The tuneds andc masses
gives physical values for theηs andηc mesons, respectively. Theℓ mass is the average of theu andd masses, which are set equal in our
simulations.Zm(µ) is the ratio of theMS quark massmq(µ, nf = 4) to the corresponding bare (lattice) massm0q (see Section II D). The
last two entries for each ensemble indicate the degree to which the sea-quark masses are detuned (see Appendix A).

ensemble w0/a L/a T/a Ncf am0ℓ am0s am0c mtuned
0s mtuned

0c Zm(3GeV) δmsea

uds/ms δmsea
c /mc

1 1.1119(10) 16 48 1020 0.01300 0.0650 0.838 0.0895(7) 1.138(4) 0.866(5) 0.228(16) −0.058(8)
2 1.1272(7) 24 48 1000 0.00640 0.0640 0.828 0.0890(7) 1.130(4) 0.872(6) 0.046(14) −0.050(8)
3 1.1367(5) 36 48 1000 0.00235 0.0647 0.831 0.0885(7) 1.125(4) 0.876(5) −0.048(13) −0.034(8)
4 1.3826(11) 24 64 300 0.01020 0.0509 0.635 0.0866(7) 1.057(3) 0.933(6) 0.236(16) −0.044(8)
5 1.4029(9) 32 64 300 0.00507 0.0507 0.628 0.0861(7) 1.051(3) 0.938(6) 0.067(14) −0.035(8)
6 1.4149(6) 48 64 200 0.00184 0.0507 0.628 0.0857(7) 1.047(3) 0.941(6) −0.040(13) −0.024(8)
7 1.9330(20) 48 96 300 0.00363 0.0363 0.430 0.0823(9) 0.977(3) 1.009(6) 0.104(11) −0.021(8)
8 1.9518(7) 64 96 304 0.00120 0.0363 0.432 0.0818(7) 0.973(3) 1.013(6) −0.011(13) −0.003(8)
9 2.8960(60) 48 144 333 0.00480 0.0240 0.286 0.0778(7) 0.912(3) 1.080(7) 0.365(19) 0.045(9)

TABLE III. Simulations results forηh masses and reduced moments
with various bare heavy-quark massesam0h and gluon ensembles
(first column, see Table II). Only data foram0h ≤ 0.8 are used in
fits to the correlators.

am0h amηh R̃4 R̃6 R̃8 R̃10

1 0.826 2.22510(10) 1.1627(1) 0.937(3) 0.885(3) 0.856(3)
0.888 2.33188(9) 1.1477(1) 0.937(3) 0.893(3) 0.867(3)

2 0.818 2.21032(6) 1.1643(0) 0.943(3) 0.890(3) 0.860(3)
3 0.863 2.28770(4) 1.1528(0) 0.947(3) 0.900(3) 0.872(3)
4 0.645 1.83976(11) 1.1842(2) 0.986(3) 0.915(3) 0.874(2)

0.663 1.87456(12) 1.1783(2) 0.988(3) 0.919(3) 0.880(2)
5 0.627 1.80318(8) 1.1896(1) 0.989(3) 0.915(3) 0.874(2)

0.650 1.84797(8) 1.1819(1) 0.992(3) 0.921(3) 0.881(2)
0.800 2.13055(7) 1.1409(1) 1.001(3) 0.951(3) 0.920(3)

6 0.637 1.82225(5) 1.1860(1) 0.994(3) 0.921(3) 0.880(2)
7 0.439 1.34246(4) 1.2134(1) 1.013(3) 0.921(3) 0.877(2)

0.500 1.47051(4) 1.1886(1) 1.029(3) 0.946(3) 0.903(3)
0.600 1.67455(4) 1.1565(1) 1.048(3) 0.978(3) 0.939(3)
0.700 1.87210(4) 1.1315(0) 1.059(3) 1.002(3) 0.968(3)
0.800 2.06328(3) 1.1118(0) 1.064(3) 1.019(3) 0.991(3)

8 0.433 1.32929(3) 1.2160(1) 1.015(3) 0.922(3) 0.877(2)
0.500 1.47012(3) 1.1885(0) 1.033(3) 0.950(3) 0.906(2)
0.600 1.67418(3) 1.1564(0) 1.052(3) 0.982(3) 0.943(3)
0.700 1.87177(2) 1.1315(0) 1.063(3) 1.006(3) 0.972(3)
0.800 2.06297(2) 1.1117(0) 1.068(3) 1.023(3) 0.995(3)

9 0.269 0.88525(5) 1.2401(4) 1.011(3) 0.913(3) 0.869(2)
0.274 0.89669(5) 1.2368(4) 1.014(3) 0.917(3) 0.873(2)
0.400 1.17560(5) 1.1752(2) 1.068(3) 0.985(3) 0.944(3)
0.500 1.38750(4) 1.1440(2) 1.094(3) 1.023(3) 0.985(3)
0.600 1.59311(4) 1.1204(1) 1.112(3) 1.051(3) 1.017(3)
0.700 1.79313(4) 1.1018(1) 1.122(3) 1.073(3) 1.043(3)
0.800 1.98751(3) 1.0867(1) 1.127(3) 1.088(3) 1.063(3)
0.900 2.17582(3) 1.0823(0) 1.399(4) 1.246(3) 1.169(3)
1.000 2.35773(3) 1.0284(0) 1.442(4) 1.295(4) 1.215(3)

using the following corrected form:

R̃n =

{

1 for n = 4

1/ξmmc(ξαµ) for n ≥ 6

}

(12)

× rn(αMS(ξαµ), µ) (13)

×

(

1 + dcondn

〈αsG
2/π〉

(2mh)4

)

(14)

×

(

1 + dh,cn

m2
0h −m2

0c

m2
0h

)

(15)

+
(amηh

2.26

)2 N
∑

i=0

ci(mηh
, n)

(amηh

2.26

)2i

. (16)

We use a Bayesian fit with priors for every fit parame-
ter [15]. The priors area priori estimates for the parameters
based upon theoretical expectations and previous experience,
especially from our earlier, very similarnf = 3 analysis. In
each case we test our choice of prior width against the Em-
pirical Bayes criterion [15], which in effect uses fluctuations
in the data to suggest natural widths for priors. None of our
priors is narrower than this optimal width, and most are wider,
which leads to more conservative errors.

We now explain each part of the lattice formula in turn.

1. Detuned Sea-quark Masses

The termsαMS(ξαµ) andξmmh(ξαµ) in R̃n are theMS
coupling and heavy-quark mass for detuned sea-quark masses;
see Eqs. (A9) and (A19) in Appendix A. Scaleµ is chosen so
that

µ = 3 ξmmc(ξαµ)
m0h

m0c
= 3mh(µ, δm

sea). (17)

Scale factorsξα andξm are defined in Appendix A, which
discusses howMS couplings and masses are affected by sea-
quark masses. The coefficientsgα, gm . . . in ξα andξm are
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treated as fit parameters, with priors taken from the output of
the fits described in the appendix.

The light sea-quark masses enter linearly inξα andξm, be-
cause of (nonperturbative) chiral symmetry breaking. Quark
mass dependence also enters through the perturbation theory
for the moments (rn), but is quadratic in the mass and there-
fore negligible for light quarks.

2. µ Dependence

The scaleµ enters Eqs. (12)–(16) through the coupling con-
stantαMS(ξαµ) and thec massmc(ξαµ). We parameterize
the coupling and mass in the fit by specifying their values at
µ = 5GeV with fit parametersα0 andm0,

αMS(5GeV, nf = 4) = α0

mc(5GeV, nf = 4) = m0, (18)

whose priors are

α0 = 0.21± 0.02, m0 = 0.90± 0.10. (19)

Our previous analysis gave0.2134(24) and 0.8911(56) for
these parameters, so the priors are broad. The coupling and
mass for other values ofµ are obtained by integrating (nu-
merically) their evolution equations from perturbative QCD,
starting from the values atµ = 5GeV:

µ2 dαMS(µ)

dµ2
=− β0α

2
MS

(µ)− β1α
3
MS

− β2α
4
MS

− β3α
5
MS

− β4α
6
MS
, (20)

d logmh(µ)

d logµ2
=− γ0αMS(µ)− γ1α

2
MS

− γ2α
3
MS

− γ3α
4
MS

− γ4α
5
MS
. (21)

The first four coefficients on the right-hand-sides of these
equations are known from perturbation theory [18–21]. In
each case, we treat the fifth coefficient as a fit parameter whose
prior’s width equals the root-mean-square average of the first
four parameters:

β4 = 0± σβ , γ4 = 0± σγ . (22)

Neitherβ4 norγ4 has signficant impact on our final results.

3. Truncated Perturbation Theory

The Wilson coefficient functionrn (Eq. (13)) has a pertur-
bative expansion of the form

rn(αMS, µ) ≡ 1 +

Npth
∑

j=1

rnj(µ)α
j

MS
. (23)

The perturbative coefficientsrnj are known through third or-
der, and are given forµ = mh(µ) in Table I.

The lack of perturbative coefficients beyond third order is
our largest single source of systematic error. Our data are suf-
ficiently precise that higher-order terms are relevant. Further-
more the relative importance of the higher-order terms varies
with quark mass, asαMS varies withµ = 3mh. Therefore
we include the higher-order terms in our analysis with coeffi-
cients that we fit to account for variations with quark mass. As
in our earlier analysis, we note that the known perturbativeco-
efficients are small and relatively uncorrelated from moment
to moment and order to order forµ = mh, leading us to adopt
fit priors

rnj(µ = mh) = 0± 1 (24)

for then > 3 coefficients atµ = mh. We double the width
of these priors relative to our previous analysis because the fit
suggested that some higher-order coefficients are larger here
(especially forn = 4).

We setNpth = 15 terms in the expansion, although our
results are essentially unchanged once 8 or more terms are
included (or 5 withµ = mh). As before we use renormal-
ization group equations to express the coefficientsrnj(µ =
3mh) in terms of the coefficientsrnj(µ = mh) from Table I
and Eq. (24). This procedure generates (correlated) priors
for the unknown coefficients atµ = 3mh that account for
renormalization-group logarithms. The procedure makes our
results largely independent ofµ: our results change by less
than a third of a standard deviation asµ is varied over the
interval2mh ≤ µ ≤ 10mh.

4. Nonperturbative Effects; Finite-Volume Corrections

We use the Operator Product Expansion (OPE) in Eqs. (5–
6) to separate short-distance from long-distance physics.In
principle, the perturbative coefficients inrn(αMS, µ) above
should have subtractions coming from the higher-order terms
in the OPE expansion:

rn → rn

(

1− dcondn

〈αsG
2/π〉

(λ)
pth

(2mh)4
− · · ·

)

(25)

whereλ is a fixed cutoff scale in the perturbative regime, say
λ = 1GeV, and〈αsG

2/π〉
(λ)
pth anddcondn are computed in per-

turbation theory to the same order asrn. These subtractions
come from perturbative matching, and remove contributions
to rn due to low-momentum gluons (q≤ λ), thereby also re-
moving infrared renormalons order-by-order in perturbation
theory. The size of the subtraction depends upon the detailed
definition ofαs(G

(λ))2. This procedure is completely unam-
biguous given a specific definition for this operator, but we
have not included the subtraction inrn since it is negligible
for any reasonable definition at our low orders of perturbation
theory. For example, a simple momentum-space cutoff, that
keepsq2 < λ2, gives [22]

〈αsG
2〉

(λ)
pth =

3αs

2π3
λ4, (26)
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which ranges from 0.001 to 0.019GeV4 for λs between
500 Mev and 1 GeV. This would changern by no more than
0.1–0.4% atmh = mc and much less at our highermhs.

Not surprisingly, perturbative estimates of the condensate
value (Eq. (26)) are similar in size to nonperturbative esti-
mates of the condensate value. So it is simpler for us to com-
bine the subtraction in Eq. (25) with the condensate itself to
form an effective condensate value [23]:

〈αsG
2〉eff ≡ 〈αsG

2〉(λ) − 〈αsG
2〉

(λ)
pth (27)

In our fits we take〈αsG
2〉eff as a fit parameter with prior

〈αsG
2〉eff = 0.0± 0.012, (28)

and we approximatemh ≈ mηh
/2.26 in the condensate cor-

rection (becausemb(mb) ≈ mηb
/2.26). Our results are com-

pletely unchanged if the width of this prior is ten times larger.
In either case we obtain a value for the effective condensateof
order0.002 with errors of a similar size. This is completely
consistent with expectations, and it reduces condensate con-
tributions to the moments to 0.01–0.05% atmh = mc, and
much less at highermh — negligible at our level of precision.

This procedure is sensible at our level of precision. As pre-
cision increases, however, there is a point where it becomes
important to remove renormalon corrections from the coeffi-
cients inrn. Otherwisej! factors injth order, coming from
infrared renormalons, cause perturbation theory to diverge. A
simple analysis [24] indicates that perturbation theory starts
to diverge at orderj ∼ 2/(β0αMS), which is around8th or-
der for our analysis. Consequently we expect the impact of
infrared renormalons to be negligible at3rd order.

Perturbation theory is not the whole story even if in-
frared renormalons are removed. The OPE separates short-
distances from long-distances, but the short-distance coef-
ficientsrn, dcondn . . . have nonperturbative contributions, for
example, from small instantons [22]. It is also possible
that the OPE is an asymptotic expansion and does not con-
verge ultimately, although recent results suggest it mightcon-
verge [25, 26]. Whatever the case, such effects are expected
to appear at even higher orders than infrared renormalons, and
so are completely negligible at our level of precision.

Condensates, renormalons, small instantons,etc.afflict all
perturbative analyses at some level of precision. Our analysis
is particularly insensitive to such effects because the leading
nonperturbative contributions are suppressed by four powers
of ΛQCD/(2mh).

Note finally that the coefficient functions, being short-
distance, are insensitive to errors caused by the finite volume
of the lattice. While the finite volumecan affect the value
of 〈αsG

2〉eff , the impact on our results is negligible since the
condensate itself is negligible. We verified this by recalcu-
lating the reduced moments for emsemble 5 in Table II with
spatial lattice sizes ofL/a = 24 and 40 (ensemble 5 uses 32).
The moments for different volumes agree to within statistical
errors of order 0.01%. The same is true for the measured val-
ues ofmηc

from these ensembles; finite volume effects will
be smaller still formηh

.

5. m0h −m0c Correction

Our results are also affected by the difference between the
c massm0c used in the sea, and the mass of the heavy quark
m0h used to make the currents in the current-current correla-
tor. The perturbative calculations we use assumem0c = m0h,
but we want to study a range ofm0h values with fixedm0c.
The correction enters inO(α2

s), is quadratic in the mass dif-
ference for small differences, and goes to a (small) constant
asm0h → ∞. Therefore we correct for it using (Eq. (15))

R̃n → R̃n

(

1 + dh,cn

m2
0h −m2

0c

m2
0h

)

(29)

wherehn is a fit parameter with a prior of0 ± 0.03. The
width 0.03 is ten times larger than the correct value (from per-
turbation theory) in them0h → ∞ limit. It is twice as wide
as the width indicated by the Empirical Bayes criterion [15].
We also tried fits wheredh,cn was replaced by a spline func-
tion ofmηh

. These give similar results but with larger errors
(especially forαMS).

6. Finite Lattice Spacing Errors

The final modification in our formula for̃Rn corrects for
errors caused by the finite lattice spacings used in the simula-
tions. We write

R̃n → R̃n + δR̃n (30)

where

δR̃n ≡
(amηh

2.26

)2 N
∑

i=0

c
(n)
i (mηh

)
(amηh

2.26

)2i

(31)

and againmηh
/2.26 is a proxy for the quark mass. We pa-

rameterize themηh
dependence of thec(n)i (mηh

) using cubic
splines with knots, at

mknots ≡ {2.9, 3.6, 4.6, 7.9}GeV, (32)

that come from the analysis in Section IV. We set

c
(n)
i (m) = c

(n)
0i + δc

(n)
i (m) (33)

with the following fit parameters and priors:

c
(n)
0i = 0± 1/n

δc
(n)
i (m) = 0± 0.10/n m ∈ mknots

δc
(n)′
i (m) = 0± 0.10/n m = 2.9GeV. (34)

These priors are again conservative since the Empirical Bayes
criterion [15] suggests priors that are half as wide. We take
N = 20 but our results are insensitive to anyN ≥ 10.
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D. nf = 4 Lattice Results

We fit all of the reduced moments from our simulation
data — with lattice spacings from 0.12 fm to 0.06 fm, and
n = 4, 6, 8 and 10 in Table III — simultaneously to for-
mula (12–16) by adjusting fit parameters described in the pre-
vious sections. The fit is excellent with aχ2 per degree of
freedom of 0.51 for 92 pieces of data (p-value is 1.0).

The fit has two key physics outputs. One is a new result for
the running coupling constant:

αMS(5GeV, nf = 4) = 0.2128(25). (35)

To compare with our old determination and other determi-
nations, we use perturbation theory to addb quarks to the
sea [27], withmb(mb) = 4.164(23)GeV [2], and evolve to
theZ mass (91.19 GeV) to get

αMS(MZ , nf = 5) = 0.11822(74). (36)

This agrees well with0.1183(7) from ournf = 3 analysis [2].
It also agrees well with the current world average 0.1185(6)
from the Particle Data Group [28].

The second important physics output is thec quark’s mass,
whose value atµ = 5GeV is a fit parameter:

mc(µ, nf = 4) =











0.8905(56)GeV µ = 5GeV

0.9851(63)GeV µ = 3GeV

1.2715(95)GeV µ = mc(µ),

(37)

where we have used Eq. (21) to evolve our result to other
scales for comparison with other determinations. These
again agree well with our previousnf = 3 analysis [2],
which gave 0.986(6)GeV for the mass at 3 GeV. The errors
for mc(3GeV) andαMS(MZ) are correlated, with correla-
tion coefficient 0.19.

We use our result frommc to calculate the mass renormal-
ization factors

Zm(µ) ≡
mc(µ)

m0c
(38)

that relateMS masses to bare lattice masses for each config-
uration. These factors can be used to convert the bare mass
for any quark to itsMS equivalent. We tabulate these results,
with µ = 3GeV, for our configurations in Table II. These
Zm values are much more accurate than can be obtained from
orderαs lattice QCD perturbation theory [29], but they agree
qualitatively and suggest that higher-order corrections from
lattice perturbation theory are small.

Our results confirm that a perturbative treatment ofc quarks
in the sea, as in our previous paper, is correct, at least to our
current level of precision.

Our result atµ = mc has a larger error becauseαMS in
the mass evolution equation (Eq. (21)) becomes fairly large
at that scale (αMS ≈ 0.4) and quite sensitive to uncertainties
in its value. We use the coupling from our fit for this evolu-
tion. Were we instead to use the Particle Data Group’s (more
accurate)αMS, our value formc(mc) would be

mc(mc, nf = 4) = 1.2733(76)GeV. (39)
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h
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1.0 1.5 2.0 2.5 3.0
mh/mc
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m
c
(3

m
h
) n = 10

FIG. 1. Thec quark massmc(µ = 3mh) as determined from mo-
ments with heavy-quark masses ranging frommc to 2.9mc. The
data points show results obtained by substituting nonperturbative
simulation values for̃Rn into Eq. (40), after correcting for mistun-
ings of the sea-quark masses (using the fit). Errors are aboutthe
size of the plot symbols, or smaller. Results are shown for three
lattices spacings: 0.12 fm (green points, throughmh/mc = 1.2),
0.09 fm (blue points, throughmh/mc = 1.8), and 0.06 fm (red
points, throughmh/mc = 2.9). The dotted lines show our fits to
these data points. The gray band shows the values expected from our
best-valuemc(5GeV) = 0.8905(56) GeV evolved perturbatively to
the other scales.

In any case, it is probably better to avoid such low scales, if
possible.

Note that ourc mass comes from moments whose heavy-
quark mass varies frommh = mc tomh = 3mc. Each (non-
perturbative)R̃n with n ≥ 6, for each heavy-quark massmh,
gives an independent estimate of thec mass:

mc(3mh) =
rn(αMS(3mh), µ = 3mh)

R̃n

. (40)

The extent to which these estimates agree with each other is
shown in Figure 1, where the nonperturbative results (data
points) are compared with our best-fit result formc(5GeV)
evolved perturbatively to other scales using Eq. (21) (gray
band). As expected, finitea2 errors are larger for smaller val-
ues ofn and larger values ofmh [2, 30]. Taking account of
these errors, agreement between different determinationsof
the mass is excellent.

The dominant sources of error for our results are listed in
Table IV. The most important systematics are due to the trun-
cation of perturbation theory and our extrapolation toa2 = 0.
As in our previous analysis, thea2 extrapolations are not
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TABLE IV. Error budget [31] for thec mass, QCD coupling, and
the ratios of quark massesmc/ms andmb/mc from thenf = 4
simulations described in this paper. Each uncertainty is given as a
percentage of the final value. The different uncertainties are added in
quadrature to give the total uncertainty. Only sources of uncertainty
larger than 0.05% have been listed.

mc(3) α
MS

(MZ) mc/ms mb/mc

Perturbation theory 0.3 0.5 0.0 0.0
Statistical errors 0.2 0.2 0.3 0.3

a2 → 0 0.3 0.3 0.0 1.0
δmsea

uds → 0 0.2 0.1 0.0 0.0
δmsea

c → 0 0.3 0.1 0.0 0.0
mh 6= mc (Eq. (15)) 0.1 0.1 0.0 0.0

Uncertainty inw0, w0/a 0.2 0.0 0.1 0.4
α0 prior 0.0 0.1 0.0 0.0

Uncertainty inmηs 0.0 0.0 0.4 0.0
mh/mc → mb/mc 0.0 0.0 0.0 0.4

δmηc : electromag., annih. 0.1 0.0 0.1 0.1
δmηb : electromag., annih. 0.0 0.0 0.0 0.1

Total: 0.64% 0.63% 0.55% 1.20%

0.0 0.1 0.2 0.3 0.4

a2 (GeV−2)

0.8

0.9

1.0

1.1

1.2

1.3

R̃
n

R̃8
R̃10

R̃4

R̃6

FIG. 2. Lattice-spacing dependence of reduced momentsR̃n for
ηh masses within 5% ofmηc , andn = 4, 6, 8, 10. The dashed
lines show our fit, and the points ata = 0 are the continuum extrap-
olations of the lattice data.

large, as is clear from Figure 1 and also Figure 2. Also the de-
pendence of our results on the light sea-quark masses is quite
small and independent of the lattice spacing, as illustrated by
Figure 3.

Our results change byσ/3 if we fit only then = 4 and 6
moments, but the errors are 35% larger. Leaving outn = 4,
instead, leaves thecmass almost unchanged, but increases the
error in the coupling by 60% (with the same central value).
We limit our analysis to heavy quark masses witham0h ≤
0.8, as in our previous analysis. Reducing that limit to0.7, for
example, has no impact on the central values of results and
increases our errors only slightly (less than 10%).

We tested the reliability of our error estimates for the per-
turbation theory by refitting our data using only a subset of
the known perturbative coefficients. The results are presented
in Fig. 4, which shows values formc(3GeV) andαMS(MZ)

1.18

1.19

1.20

1.21

1.22

R̃
4

0.98

0.99

1.00

1.01

1.02

R̃
6

0.91

0.92

0.93

0.94

0.95

R̃
8

0.0 0.1 0.2 0.3
δmsea

uds/ms

0.86

0.87

0.88

0.89

0.90

R̃
1
0

FIG. 3. Light sea-quark mass dependence of reduced momentsR̃n

for mh = mc, andn = 4, 6, 8, 10. Results are shown for our two
coarsest lattices:a = 0.12 fm (three points in blue) anda = 0.09 fm
(two points in red). The dashed lines show the correspondingresults
from our fit. Note that the slopes of the lines are independentof the
lattice spacing, as expected.

from fits that treat perturbative coefficients beyond orderN
as fit parameters, with priors as in Eq. (24). Results from dif-
ferent orders agree with each other, providing evidence that
our estimates of truncation errors are reliable. This plot also
shows the steady convergence of perturbation theory as addi-
tional orders are added.

As a further test of perturbation theory, we refit our nonper-
turbative data treating the leading perturbative coefficients,γ0
andβ0, in the evolution equations for the mass (Eq. (21)) and
coupling (Eq. (20)) as fit parameters with priors of0± 1. The
fit gives

γ0 = 0.292(19) β0 = 0.675(54), (41)

in good agreement with the exact results of0.318 and0.663,
respectively. So our nonperturbative results for the correlators
show clear evidence for the evolution ofmc(µ) andαMS(µ)
asµ = 3mh varies from3mc to 9mc.
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FIG. 4. Results for theMS c mass and coupling fromnf = 4 fits
that treat perturbative coefficients beyond orderN as fit parameters,
with priors specified by Eq. (24). The gray bands and dashed lines
indicate the means and standard deviations of our final results, which
correspond toN = 3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(am0c)
2

11.6

11.8

12.0
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12.4

12.6

12.8

m
c
/m

s

FIG. 5. The ratio of thec ands quark masses as a function of the
squared lattice spacing (in units of the barec mass). The data come
from simulations at lattice spacings of 0.15, 0.12, 0.09 and0.06 fm,
after tuning thes andc masses to reproduce physical values for theηs
andηc masses on each ensemble. The errors for the data points are
highly correlated, as they come primarily from uncertainties inw0,
mηs , andmηc . The red dashed line shows our fit, which has aχ2 per
degree of freedom of 0.21 for 9 degrees of freedom (p-value of 0.99).
The black dashed line and gray band show the mean value and stan-
dard deviation for our result extrapolated to zero lattice spacing.

III. mc/ms FROM nf = 4

As discussed above (Section II A), we can use lattice QCD
to extract ratios ofMS quark masses completely nonperturba-
tively [32], since ratios of quark masses are scheme and scale

independent: for example,

m0c

m0s

∣

∣

∣

∣

lat

=
mc(µ, nf )

ms(µ, nf )

∣

∣

∣

∣

MS

+O((amc)
2αs). (42)

While ratios of light-quark masses can be obtained from chiral
perturbation theory, only lattice QCD can produce nonpertur-
bative ratios involving heavy quarks. These ratios are very
useful for checking mass determinations that rely upon per-
turbation theory, as illustrated in [2]. They also allow us to
leverage precise values of light-quark masses from very accu-
rately determined heavy-quark masses.

In [32] we used nonperturbative simulations, withnf = 3
sea quarks, to determine thes quark’s mass from thec quark’s
mass and the ratiomc/ms. We repeat that analysis here, but
now fornf = 4 sea quarks, using the tuned values of the bare
s andcmasses for each of our lattice ensembles:amtuned

0s and
amtuned

0c in Table II, respectively. We expect

amtuned
0c

amtuned
0s

=
mc

ms

(

1 + hm
δmsea

uds

ms
+ ha2,m

δmsea
uds

ms

(

mc

π/a

)2

+h1αs(π/a)

(

mc

π/a

)2

+

N
a2
∑

j=2

hj

(

mc

π/a

)2j


 ,

(43)

where again we ignoreδmsea
c andδm2 dependence since they

are negligible. We fit the data from Table II using this formula
with the following fit parameters and priors:

hm = 0± 0.1, ha2,m = 0± 0.1, (44)

h1 = 0± 6, hj = 0± 2 (j > 1). (45)

The extrapolated valuemc/ms is also a fit parameter. We set
Na2 = 5, but get identical results for anyNa2 ≥ 2.

The result of this fit is presented in Fig. 5, which shows
thea2 dependence of the lattice results. The sensitivity of our
new results toa2 is about half what we saw in our previous
analysis. Our new fit is excellent and gives a final result for
the mass ratio of:

mc(µ, nf )

ms(µ, nf )
= 11.652(65). (46)

The leading sources of error in this result are listed in Ta-
ble IV. These are dominated by statistical errors and uncer-
tainty in theηs mass. Many other potential sources of error,
such as uncertainties in the lattice spacing, largely cancel in
the ratio.

Note that the discussion in Appendix A and Eq. (A19),
in particular, imply that the leading effect of mistuned sea-
quark masses cancels in ratios of quark masses. This is sub-
stantiated by our fit which makes parameterhm negligibly
small (−0.0080(34)). Settinghm = 0 shifts our result for
mc/ms by onlyσ/7.

Our result is a little more than a standard deviation lower
than the recent result,11.747(19)

(

+59
−43

)

, computed by the Fer-
milab/MILC collaboration (using many of the same configu-
rations we use) [33]. Our analysis uses a different scheme for



10

1

2

3

4
m

h
/

m
c

n f = 4 fit

3 4 5 6 7 8 9
mηh

(GeV)

1

2

3

4

m
h
/

m
c

n f = 3 fit

FIG. 6. The ratio of theh andc quark masses as a function of the
mass ofhh pseudoscalar meson mass. The data come from simu-
lations at lattice spacings of 0.15, 0.12, 0.09 and 0.06 fm; the data
points are colored magenta, blue, green, and red, respectively. The
gray band and dashed line in the top panel show function Eq. (47)
with the best fit parameters, extrapolated to zero lattice spacing
and the correct sea-quark masses. The bottom panel comparesthe
nf = 4 data with extrapolated results obtained in [2] from current-
current correlators innf = 3 simulations.

tuning the lattice spacing and quark masses, which leads to
the lack of sea-quark mass dependence inmc/ms discussed
just above. The absence of sea-mass dependence is apparent
from Fig. 5, where the clusters of data points correspond to en-
sembles with the same bare lattice coupling but different sea-
quark masses. This figure can be compared with Fig. 6 in [33],
which shows much larger sea-mass dependence. Both ap-
proaches should agree when extrapolated to zero lattice spac-
ing and the physical sea-quark masses.

IV. mh/mc FROM mηh

An analysis similar to that in the previous section allows us
to relate heavy-quark massesmh to thehh pseudoscalar mass
mηh

with data from Table III. This can be used, for example,
to estimate theb mass by extrapolating tomηb

.
Here we fit the lattice mass ratiosm0h/m

tuned
0c to the fol-

lowing function ofmηh
from the simulation:

mh

mc
=
mηh

mηc

N
∑

n=0

fn(mηh
)
(amηh

4

)2n

+ fsea(ηh)
mηh

mηc

δmsea
uds

ms

(amηh

4

)2

(47)

whereN = 20, although anyN > 3 gives the same result.
Herefn(mηh

) andfsea(mηh
) are cubic splines with knots at

mknots = {2.9, 3.6, 4.6, 7.9}GeV. (48)

The maximum and minimum knots correspond to the maxi-
mum and minimum values ofmηh

, while the locations of the

internal knots were obtained by treating those locations asfit
parameters. Eachf is parameterized by

f(m) = f0 + δf(m) (49)

and fit parameters

f0 = 0± 1

δf(m) = 0± 0.15 m ∈ mknots

δf ′(m) = 0.15± 0.15 m = 2.9GeV. (50)

We reduce the priors for the leadinga2 errors by a factor
of 1/3 since these errors are suppressed byαs in the HISQ dis-
cretization. The choice of priors for the spline parametersis
motivated by results from [2] (see Figure 4 in that paper).

The fit is excellent with aχ2 per degree of freedom of 0.44
for 29 pieces of data: see the top panel in Figure 6. Finite
lattice spacing errors are much smaller for this quantity than
for the moments, and it is again largely independent of mis-
tunings in the sea-quark masses. Extrapolating tomηb

gives

mb/mc = 4.528(54) (51)

which agrees with ournf = 3 result of 4.51(4), but with
larger errors [2]. Our newnf = 4 data go down to lat-
tice spacings of0.06 fm; our earlier analysis also had results
at0.045 fm.

The bottom panel of Figure 6 compares our newnf =
4 data withnf = 3 results obtained from fits to the current-
current correlators [2]. The agreement is excellent, showing
again thatnf = 3 andnf = 4 are consistent with each other.

V. CONCLUSIONS AND OUTLOOK

The initial extractions of quark masses from heavy-quark
current-current correlators relied upon experimental data from
ee annihilation [34, 35]. Our analysis here, like the two that
preceded it [2, 30], replaces experimental data with nonper-
turbative results from tuned lattice simulations.

Lattice simulations offer several advantages over experi-
ment for this kind of calculation [1]. For one thing, simu-
lations are easier to instrument than experiments and much
more flexible. Thus we can generate lattice “data” not just
for vector-current correlators, but for any heavy-quark cur-
rent or density; we optimize our simulations by using the
pseudoscalar density instead of the vector current. Experi-
ment provides results for only two heavy-quark masses —mc

andmb — but we can produce lattice data for a whole range
of masses betweenmc andmb. This means thatαMS(µ)
varies continuously, by almost a factor of two, in our analysis
sinceµ ∝ mh. Here we use this variation to estimate and
bound uncalculated terms in perturbation theory, providing
much more reliable estimates of perturbative errors than the
standard procedure of replacingµ by µ/2 and2µ. (Our anal-
ysis is essentially independent ofµ.) Nonperturbative contri-
butions are also strongly dependent uponmh, and therefore
more readily bound if a range of masses is available; they are
negligible in our analysis.
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FIG. 7. Lattice QCD determinations of the ratio of thec ands quarks’
masses. The ratios come from this paper and references [32, 33, 36–
38]. The gray band is the weighted average of the threenf = 4
results:11.700(46).

In this paper, we have redone our earliernf = 3 analysis [2]
using simulations withnf = 4 sea quarks:u, d, s andc. Our
new results,

mc(3GeV, nf = 4) = 0.9851(63)GeV (52)

αMS(MZ , nf = 5) = 0.11822(74), (53)

agree well with our earlier results of0.986(6)GeV and
0.1183(7), suggesting that contributions fromc quarks in
the sea are reliably estimated using perturbation theory (as
expected). Ourc mass is about1.8σ lower than the re-
cent result from the ETMC collaboration, also usingnf =
4 simulations but with a different method [36]: they get
mc(mc) = 1.348(42)GeV, compared with ournf = 4 re-
sult of 1.2715(95)GeV.

We updated our earliernf = 3 analysis [32] of the ra-
tio mc/ms of quark masses using ournf = 4 data. This
is a relatively simple analysis of data from Table II. Our new
value is:

mc(µ, nf )

ms(µ, nf )
= 11.652(65). (54)

It agrees well with our previous result11.85(16), but is much
more accurate. We compare our new result with others in
Fig. 7.

We obtain a new estimate for thes mass by combining our
new result formc/ms with our new estimate of thec mass
(Eq. (52), converted fromnf = 4):

ms(µ, nf = 3) =

{

93.6(8)MeV µ = 2GeV

84.7(7)MeV µ = 3GeV.
(55)

Values forms(µ, nf = 4) are smaller by about 0.2 MeV. Our
new result agrees with our previous analysis and also with

other recentnf = 3 or 4 analyses:

ms(2GeV) =











92.4(1.5)MeV HPQCD [32],
99.6(4.1)MeV ETMC [36],
95.5(1.9)MeV Durr et al [39],

ms(3GeV) = 83.5(2.0)MeV RBC/UKQCD [40]. (56)

Finally, we have also updated our previous (nf = 3) non-
perturbative analysis ofmb/mc using our newnf = 4 data.
We obtain:

mb(µ, nf )

mc(µ, nf )
= 4.528(54), (57)

which agrees with our previous result of 4.51(4) [2]. Combin-
ing this result with our new value formc (Eq. (52)) gives

mb(mb, nf = 5) = 4.162(48). (58)

This again agrees with our earlier result of 4.164(23)GeV, but
with larger errors. We can also multiply our results formb/mc

andmc/ms to obtain

mb(µ, nf )

ms(µ, nf )
= 52.55(55). (59)

This is almost four standard deviations (but only 4%) away
from the result predicted by the Georgi-Jarlskog relation-
ship [41] for certain classes of grand unified theory: the
Georgi-Jarlskog relationship says thatmb/ms should equal
3mτ/mµ = 50.45.

The prospects for improving our results over the next
decade are good. Detailed meta-simulations, described in [1],
indicate that errors from our analysis can be pushed below
0.25% by a combination of higher-order perturbation the-
ory, and, especially, smaller lattice spacings (0.045, 0.03
and 0.023 fm) — both improvements that are quite feasible
over a decade [1]. There are also many other promising ap-
proaches within lattice QCD. Several exist already for extract-
ing the QCD coupling: see, for example, [42–47]. One can
also use simulations of other renormalized quantities, such as
themhψhγ5ψ vertex function, to compute quark masses [12].

Small lattice spacings are particularly important for the
b mass, because lattice spacing errors are typically of or-
der(amb)

2. One approach is to use highly-improved relativis-
tic actions for theb quarks, like the HISQ action used here. As
shown in [3], all but one of theO(a, a2) operators that arise in
the Symanzik improvement of a quark action are suppressed
by extra factors of the heavy-quark velocity: factors of(v/c)2

for mesons made of heavy quarks, andv/c for mesons made
of a combination of heavy and light quarks. The one opera-
tor that does not have extra suppression is

∑

µ ψγ
µ(Dµ)3ψ,

which violates Lorentz invariance and so is easily tuned non-
perturbatively using the meson dispersion relation. This is the
strategy adopted in the HISQ discretization we use here. The
extra factors ofv/c suppress(amb)

2 errors by an extra or-
der of magnitude, beyond the suppression, by a power ofαs,
coming from tree-level corrections fora2 errors in HISQ.
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(amb)
2 errors can be avoided completely by using effec-

tive field theories like NRQCD [48] or the Fermilab formal-
ism [49] for b dynamics. Such approaches should be suf-
ficiently accurate provided they are corrected to sufficiently
high order in(vb/c)2. Our recent NRQCD analysis ofmb,
using current-current correlators, is encouraging [50].

Overall the prospects are excellent for continued improve-
ment.
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Appendix A: Sea-Quark Mass Dependence

In this appendix we discuss the dependence of theMS cou-
pling and heavy-quark masses on the sea-quark masses. We
vary theu/d sea-quark mass in our simulations to help us as-
sess systematic errors associated with tuning that mass. Inad-
dition, the precision with which thes andc sea-quark masses
have been tuned varies by several percent over the various en-
sembles we use. These detunings shift theMS coupling and
masses. We need to understand how they are shifted in or-
der to extract results forαMS andmh with physical sea-quark
masses.

It is essential when discussing detuned sea-quark masses to
be specific about what is held fixed as the quark masses are
shifted from their physical values. An obvious choice is to
fix both the lattice spacinga and the bare couplingαlat in the
lattice lagrangian, while varying the quark masses. We find
it more convenient, however, to explore a slightly different
manifold in theory space by fixingαlat and the value of the
Wilson-flow parameterw0.

Lattice simulations are done for particular values of the bare
coupling constant (and bare quark masses), but with all di-
mensional quantities expressed in units of the lattice spacing
(lattice units). This removes explicit dependence on the lat-
tice spacing from the simulation, so we can run the simulation
without knowing the lattice spacing. To extract physics, how-
ever, we must determine the lattice spacing (from the sim-
ulation) and convert all simulation results from lattice units
to physical units. In our simulations, we calculate the lattice
spacing by measuring the value ofa/w0 in the simulation, and
multiplying it by the known value ofw0 for physical sea-quark
masses (that is, 0.1715(9) fm). As a result the lattice spacing
becomes (weakly) dependent upon the sea-quark masses since
w0 is affected by sea quarks.

This procedure is convenient because the lattice spacing for
a given ensemble is determined using information from only

that ensemble, thereby decoupling the analyses of different
ensembles to a considerable extent. As we discuss below there
is an added benefit when vacuum polarization fromc (or heav-
ier) quarks is included in the simulation, as we do here: heavy
quarks automatically decouple from low-energy physics (like
w0 [51]). With our procedure, physical quantities that probe
energy scales smaller than2mc — that is, almost everything
studied with lattice QCD today — are essentially independent
of mc, which means that they are completely unaffected by
tuning errors inmc. This would not be the case if we fixed the
lattice spacing instead ofw0, since it is small variations in the
lattice spacing that correct for mistuning inmc.

It is also very convenient that we set the lattice spacing us-
ing a flavor singlet quantity. Becausew0 is a flavor singlet, the
leading sea-mass dependence induced in the lattice spacingis
analytic (linear) in the quark mass and small; in particular,
there are no chiral logarithms [52]. One consequence is that
leading-order chiral perturbation theory for physical quanti-
ties (fπ, fDs

. . . ) is unchanged from standard treatments ex-
cept for shifts (that are easily accommodated) in the coeffi-
cients of certain analytic terms.

In this appendix we show how theMS coupling and heavy-
quark mass depend upon the sea-quark masses in our simu-
lations. This dependence implies sea-quark mass dependence
in the lattice spacing and the heavy quark’s bare mass, which
we then use to determine some of the parameters involved.
Finally we review heavy-quark decoupling, and estimate the
parameters forc-mass dependence using first-order perturba-
tion theory.

1. Tuning Bare Quark Masses

We define tuned values for the barec ands masses on each
ensemble by adjusting those masses to give physical values in
simulations for theηc andηs masses. The tuned values are
listed in Table II.

The current experimental value for theηc mass
is 2.9836(7)GeV [28]. In our analysis, we remove electro-
magnetic corrections from this value, and adjust its error
to account forcc annihilation, since neither effect is in our
simulations [53, 54]. We use:

mphys
ηc

= 2.9863(27)GeV. (A1)

We compute the tunedc massmtuned
0c by linear interpolation

using ηh masses from the simulation (Table III) for heavy-
quark massesm0h in the vicinity ofm0c. In a few cases we
have results for only a single value ofm0h; then we compute
the tunedc mass using estimates ofdmηc

/dm0c from other
ensembles with (almost) the same lattice spacing.

Note that the uncertainty inmtuned
0c is usuallysmallerthan

that in amtuned
0c . This is a peculiar feature of heavy-quark

masses in lattice simulations (see, for example, [55]). It fol-
lows from the formula for the linear interpolation that defines
the tuned mass in terms of a nearby mass:

mtuned
0c = (am0c)a

−1+
dm0c

dmηc

(

mphys
ηc

− (amηc
)a−1

)

(A2)
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whereamηc
is the simulation result for theηc mass (in lattice

units) when thec quark has massam0c. Heredm0c/dmηc
is

obtained from simulation results for a few nearbyc masses.
The uncertainty ina−1 is usually larger than the uncertainties
in the other lattice quantities, but herea−1 is multiplied by

(am0c)− (amηc
)
dm0c

dmηc

(A3)

which would vanish ifmηc
= 2m0c. This cancellation

is only partial for real masses, but it doesn’t occur at all
if Eq. (A2) is multiplied on both sides bya to give a for-
mula for amtuned

0c . As a result, fractional errors are roughly
3× smaller formtuned

0c .
The ηs is an ss pseudoscalar particle where the valence

quarks are (artificially) not allowed to annihilate; its physi-
cal mass is determined in lattice simulations from the masses
of the pion and kaon [17]:

mphys
ηs

= 0.6885(22)GeV (A4)

This mass is defined for use in lattice simulations and needs no
further corrections for electromagnetism. We tune thes mass
by simulating with a nearby bare massm0s to obtain the cor-
respondingηs mass, and then extracting the tuned mass using:

mtuned
0s = m0s

(

mphys
ηs

mηs

)2

. (A5)

Our ηs data are presented in Table V, which shows that the
tuned mass is quite insensitive to small variations inm0s. We
do not haveηs results for ensemble 7; there the tuneds mass
is based on an interpolation between results from ensemble 8
and another ensemble that has similar parameters but with
am0ℓ = 0.0074.

Table II shows thatmtuned
0c is more accurate thanmtuned

0s .
This is because the uncertainties in the value of the lattice
spacing have a smaller impact on thec mass because the
cancellation described above only happens for heavy quarks
(wheremηh

≈ 2m0h).
We set theu andd masses equal to their average,

mℓ ≡
mu +md

2
, (A6)

and setmℓ equal to the tuneds mass (above) divided by the
physical value of the quark mass ratio [33]

ms

mℓ
= 27.35(11). (A7)

2. α
MS

(µ, δmsea) and a(δmsea)

The beta function in theMS scheme is, by definition, inde-
pendent of sea-quark masses. Thus the coupling’s evolutionis
unchanged by detuned sea-quark masses —

dαMS(µ, δm
sea)

d logµ2
= β(αMS(µ, δm

sea)) (A8)

TABLE V. Simulation results for theηs massamηs corresponding to
different values of the bares massam0s and different gluon ensem-
bles. The ensembles are described in Table II, although we use many
more configurations for ourηs analysis than are indicated there. Es-
timates for the tuned bares mass (Eq. (A5)) are also given.

ensemble am0s amηs amtuned
0s

1 0.0705 0.54024(15) 0.0700(9)
0.0688 0.53350(17) 0.0700(9)
0.0641 0.51511(16) 0.0700(9)

2 0.0679 0.52798(9) 0.0686(8)
0.0636 0.51080(9) 0.0687(8)

3 0.0678 0.52680(8) 0.0677(8)
4 0.0541 0.43138(12) 0.0545(7)

0.0522 0.42358(11) 0.0545(7)
5 0.0533 0.42637(6) 0.0533(7)

0.0507 0.41572(14) 0.0534(7)
0.0505 0.41474(8) 0.0534(7)

6 0.0527 0.42310(3) 0.0527(6)
0.0507 0.41478(4) 0.0527(6)

8 0.0360 0.30480(4) 0.0364(4)
9 0.0231 0.20549(8) 0.0234(3)

— but mass dependence enters through the low-energy start-
ing point for that evolution implied by the scale-setting pro-
cedure used in the lattice simulation. Such mass dependence
can enter only through an overall renormalization of the scale
parameterµ:

αMS(µ, δm
sea) = αMS(ξαµ) (A9)

where

αMS(µ) ≡ αMS(µ, δm
sea = 0) (A10)

is theMS coupling for physical sea-quark masses. The scale
factor,

ξα ≡ 1 + gα
δmsea

uds

ms
+ ga2,α

δmsea
uds

ms

(

mc

π/a

)2

+ gc,α
δmsea

c

mc
+O(δm2), (A11)

depends upon the differences between the massesmq used in
the simulation and the tuned values of those massesmtuned

q

(Table II and Sec. A 1):

δmsea
uds ≡

∑

q=u,d,s

(

mq −mtuned
q

)

(A12)

δmsea
c ≡ mc −mtuned

c . (A13)

FunctionαMS(ξαµ) satisfies the standard evolution equation
(Eq. (A8)) becauseξα is independent ofµ.

We work to first order inδmsea because higher-order terms
are negligible in our simulations. As suggested above, he
leading-order dependence is particularly simple because we
use iso-singlet mesons (ηc andηs) to set thec ands masses;
in particular, there are no chiral logarithms of theu/dmass in
leading order.
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We expect coefficientsgα and ga2,α in ξα to be of or-
der1/10 since corrections linear in light-quark masses must
be due to chiral symmetry breaking and so should be of or-
der δmsea/Λ whereΛ ≈ 10ms. As we discuss below,gc,α
can be estimated from perturbation theory and is again of or-
der1/10. We treat these coefficients as fit parameters in our
analysis, with priors:

gα = 0± 0.1, ga2,α = 0± 0.1, gc,α = 0± 0.1. (A14)

The rescaling factorξα is closely related to the dependence
of the lattice spacing on the sea-quark masses used in the sim-
ulation. The lattice spacing is primarily a function of the bare
couplingαlat used in the lattice action, but it also varies with
the sea-quark masses, in our scheme, when the bare coupling
is held constant. As discussed above, this is because of sea-
mass dependence in the quantity used to define the lattice
spacing,a/w0 in our case. The relationship withξα can be
understood by examining theMS coupling at scaleµ = π/a.
There it is related to the bare coupling by a perturbative ex-
pansion,

αMS(π/a, δm
sea) = αMS(ξαπ/a)

= αlat +

∞
∑

n=2

cMS
n αn

lat, (A15)

that is mass-independent up to corrections ofO((amc)
2αs),

which are negligible in our analysis. This formula implies that
αMS(ξαπ/a) is constant ifαlat is, and therefore thatξα/a
must be constant as well. Consequently the lattice spacing
must vary withδmsea like

a(δmsea) ≈ ξα aphys (A16)

if the bare coupling is held constant, whereaphys is the lattice
spacing when the sea-quark masses are tuned to their physical
values — that is,aphys ≡ a(δmsea = 0).

We use this variation in the lattice spacing to read off the
parameters inξα. Our simulation results fall into four groups
of gluon ensembles, with lattice spacings around 0.15 fm,
0.12 fm, 0.09 fm and 0.06 fm. Each group corresponds to a
single value of the bare lattice couplingαlat, and several dif-
ferent values of light sea-quark mass. Within a single group,
then, the values we obtain fora/w0 from our simulations
should vary as

(a/w0)sim = ξα × (a/w0)phys, (A17)

where the parametersgα, ga2,α andgc,α in ξα (Eq. (A11)) are
the same for all four groups of data.

We fit our simulation results fora/w0, simultaneously for
all four groups, as functions ofgα, ga2,α andgc,α. We also
treat the value of(a/w0)phys for each group as a fit parameter.
The resulting fit is shown in Fig. 8 where we plot

(a/w0)sim
(a/w0)phys

versusδmsea
uds/ms.
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FIG. 8. The ratio of the simulation lattice spacing with detuned sea-
quark masses to the lattice spacing with physical sea-quarkmasses
as a function of the light-quark mass detuning (in units of thes quark
mass). Results are shown for four different sets of data, each corre-
sponding to a different bare lattice coupling. The approximate lat-
tice spacings for these sets are: 0.15 fm (red points), 0.12 fm (cyan),
0.09 fm (green), and 0.06 fm (blue). The dashed line and gray band
show the mean and standard deviation of our best fit to these data.
The fit has aχ2 per degree of freedom of 0.23 for 9 degrees of free-
dom (p-value of 0.99).

The fit is excellent, and shows thatgα = 0.082(8). Our fit
is not very sensitive toga2,α andgc,α — their impact onξα is
too small — and gives results for these that are essentially the
same as the prior values.

3. mh(µ, δm
sea) and m0c(δm

sea)

The evolution equations for the heavy quark’sMS mass are
unchanged by sea-mass detunings:

d log(mh(µ, δm
sea))

d logµ2
= γm(αMS(µ, δm

sea)) (A18)

Consequently any sea-mass dependence must enter through
rescalings:

mh(µ, δm
sea) = ξmmh(ξαµ) (A19)

whereξα is defined above (Eq. (A11)),ξm is independent
of µ, and

mh(µ) ≡ mh(µ, δm
sea = 0) (A20)

is theMS mass for physical sea-quark masses. We parame-
terizeξm similarly to ξα but allowing for the coefficients to
depend upon the heavy-quark mass:

ξm = 1+
gm

(mηh
/mηc

)ζ
δmsea

uds

ms

+
ga2,m

(mηh
/mηc

)ζ
δmsea

uds

ms

(

mc

π/a

)2

+ · · · (A21)
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Again we expectgm andga2,m to be of order1/10, and we
treat them as fit parameters with priors:

gm = 0± 0.1, ga2,m = 0± 0.1. (A22)

We parameterize the dependence on heavy-quark mass with
the factors(mηh

/mηc
)ζ whereζ is a fit parameter with prior:

ζ = 0± 1. (A23)

The sea-mass dependence inξm comes from the quantity
used to tune the heavy-quark mass in simulations. We tune
these masses to give the correct physical mass forηh — that
is, the mass obtained when the sea-quark masses are tuned
to their physical values and the lattice spacing is set to zero.
This means that any sea-mass dependence inmηh

is pushed
into the rescaling factorξm in Eq. (A19). The physical size
of ηh mesons decreases asmηh

increases, and this decreases
the coupling with light sea-quarks. Thus we expectζ > 0
in Eq. (A21); our fit findsζ = 0.3(1).

In principle, ξm should depend uponδmsea
c , as well

as δmsea
uds. Perturbation theory, however, indicates that this

dependence is negligible in our simulations. Thus we have
omitted such terms fromξm. We have verified that they are
negligible by comparing fits that includeδmsea

c terms with the
fit without them.

The rescaling factorξm is closely related to the sea-mass
dependence of the heavy quark’s bare mass, in much the same
way ξα is related to the lattice spacing. The bare massm0h is
proportional to theMS mass evaluated atµ = π/a:

m0h ∝ mh(π/a, δm
sea)

∝ ξmmh(ξαπ/a). (A24)

Sinceξα/a is sea-mass independent, we see thatmh0 is pro-
portional toξm,

m0h(δm
sea) = ξmm

phys
0h , (A25)

when the sea-quark masses are varied while holding the bare
coupling fixed.

This variation can be used to determine the parameters
in ξm, again in analogy to the previous section. As discussed
in the previous section, our ensembles fall into four groups
each corresponding to a different value of the bare coupling
constantαlat. The massesamtuned

0c for each ensemble in Ta-
ble II are tuned to give the physicalηc mass for that ensemble.
Therefore, within each group of ensembles, we expect

amtuned
0c = ξαξm × (am0c)phys (A26)

where(am0c)phys is the value for properly tuned sea-quark
masses.

We fit our simulation results foramtuned
0c as functions of

gm, ga2,m, gα, ga2,α, andgc,α. We use best-fit values from the
fit in the previous section as priors for the last three of these fit
parameters. The values of(am0c)phys for the different groups
of ensembles are also fit parameters.

The resulting fit is shown in Fig. 9, where we plot
amtuned

0c /(am0c)phys as a function ofδmsea
uds/ms. The fit is

excellent and shows thatgm = 0.035(5), while ga2,m is es-
sentially unchanged from its prior value (because our data are
not sufficiently accurate).
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FIG. 9. The ratio of the barec mass in lattice units used in the simu-
lations to the bare mass with physical sea-quark masses as a function
of the light-quark mass detuning (in units of thes quark mass). Re-
sults are shown for four different sets of data, each corresponding to
a different bare lattice coupling. The approximate latticespacings for
these sets are: 0.15 fm (red points), 0.12 fm (cyan), 0.09 fm (green),
and 0.06 fm (blue). The dashed line and gray band show the mean
and standard deviation of our best fit to these data. The fit hasaχ2

per degree of freedom of 0.15 for 9 degrees of freedom (p-value of
1.0).

4. c Quarks and Decoupling

Heavy quarks decouple from low-energy physics, and
therefore variations inδmsea

c should have no impact on
physics (like w0) that probes momentum scales smaller
thanmc. We can, however, introduce (apparent) violations
of the decoupling theorem through the scheme used to set the
lattice spacing. In particular, decoupling is violated by any
scheme that holds the lattice spacing fixed (together with the
bare couplingαlat) asδmsea

c is varied. On the contrary, decou-
pling is preserved by schemes that hold a low-energy (< 2mc)
quantity likew0 fixed, instead of the lattice spacing [56].

The difference between these schemes arises because the
running of the QCD coupling is modified in a detuned theory
for scales betweenmsea

c andmsea
c +δmsea

c , resulting in a mis-
match between low and high energy values of the coupling.
Physics belowmc is determined by thenf = 3 coupling con-
stant, which, by decoupling, should be independent ofδmsea

c .
To see how this works, we examine lowest-order perturba-

tion theory where

α
(nf )
s (µ) =

2π

β(nf ) log(µ/Λ(nf ))
(A27)

with β(nf ) ≡ 11− 2nf/3, and

α(3)
s (µ) = α(4)

s (µ, δmsea
c ) (A28)

atµ = mc+δm
sea
c . HereΛ(3) must be independent ofδmsea

c ,
by decoupling, whileΛ(4) must vary withδmsea

c to cancel the
effect of the shift in the match pointµ = mc + δmsea

c . It is
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straightforward to show that

Λ(4)(δmsea
c ) ≈ mc

(

Λ(3)

mc

)β(3)/β(4)(

1−
2

25

δmsea
c

mc

)

≈ Λ
(4)
phys ×

(

1−
2

25

δmsea
c

mc

)

(A29)

whereΛ(4)
phys is the value for physical sea-quark masses. Thus

the decoupling theorem requires that

α(4)
s (µ, δmsea

c ) = α(4)
s

(

µ×

(

1 +
2

25

δmsea
c

mc

))

. (A30)

By comparing with Eqs. (A9) and (A11), we see that

gc,α =
2

25
+O(αs), (A31)

and, therefore, that the lattice spacing varies withδmsea
c

(Eq. (A16)).
There is an analogous effect in the heavy-quark mass, but

the mass dependence inξm is suppressed byα2
s and so is neg-

ligible in our analysis.
This analysis shows that a constant lattice spacing is in-

compatible with the decoupling theorem. The scheme we use
avoids this problem by allowing the lattice spacing to vary
with δmsea

c , while holding the value ofw0 constant (as re-
quired by the decoupling theorem applied tow0 itself). The
violation of the decoupling theorem in the former case is only
apparent; results from all schemes should agree when the sea-
quark masses are tuned to their physical values.

Appendix B: Previous Method

The analysis in our previous (nf = 3) paper used a different
definition for the reduced moments withn ≥ 6:

Rn≥6 =
mηh

2m0h

(

Gn/G
(0)
n

)1/(n−4)

(B1)

instead of Eq. (3). As a result these moments equal
z(mηh

, µ) rn(αMS, µ) in perturbation theory where

z(mηc
, µ) ≡

mηh

2mh(µ)
(B2)

replaceszc(µ), which is defined at thec mass instead ofmh.
Fits to these moments give both the coupling and the function
z(mηh

, µ), from which thec andb masses can be extracted.
We analyzed our data using the old definition, parameter-

izing themηh
dependence ofz(mηc

, µ) with a cubic spline.
The values for theRn moments used are given in Table VI.
We obtained results that agree with the results obtained from
our new method to within a standard deviation, but are not
quite as accurate:

αMS(5GeV, nf = 4) = 0.2148(29) (B3)

mc(3GeV, nf = 4) = 0.9896(69). (B4)

TABLE VI. Simulations results forηh masses and reduced moments
Rn (old definition) with various bare heavy-quark massesam0h and
gluon ensembles (first column, see Table II). Data from gluonen-
sembles 1–3 are not listed because they were not used in the analysis
in Appendix B.

am0h amηh R4 R6 R8 R10

4 0.645 1.83976(11) 1.1842(2) 1.4857(2) 1.3785(1) 1.3179(1)
0.663 1.87456(12) 1.1783(2) 1.4755(2) 1.3732(1) 1.3148(1)

5 0.627 1.80318(8) 1.1896(1) 1.4944(1) 1.3825(1) 1.3201(1)
0.650 1.84797(8) 1.1819(1) 1.4813(1) 1.3759(1) 1.3162(1)
0.800 2.13055(7) 1.1409(1) 1.4012(1) 1.3304(1) 1.2880(1)

6 0.637 1.82225(5) 1.1860(1) 1.4882(1) 1.3793(1) 1.3181(0)
7 0.439 1.34246(4) 1.2134(1) 1.5122(1) 1.3758(1) 1.3089(0)

0.500 1.47051(4) 1.1886(1) 1.4782(1) 1.3586(1) 1.2968(0)
0.600 1.67455(4) 1.1565(1) 1.4282(1) 1.3334(0) 1.2801(0)
0.700 1.87210(4) 1.1315(0) 1.3827(0) 1.3089(0) 1.2647(0)
0.800 2.06328(3) 1.1118(0) 1.3401(0) 1.2834(0) 1.2482(0)

8 0.433 1.32929(3) 1.2160(1) 1.5153(1) 1.3772(0) 1.3099(0)
0.500 1.47012(3) 1.1885(0) 1.4777(1) 1.3582(0) 1.2965(0)
0.600 1.67418(3) 1.1564(0) 1.4279(0) 1.3331(0) 1.2799(0)
0.700 1.87177(2) 1.1315(0) 1.3824(0) 1.3087(0) 1.2645(0)
0.800 2.06297(2) 1.1117(0) 1.3399(0) 1.2832(0) 1.2480(0)

9 0.269 0.88525(5) 1.2401(4) 1.5182(4) 1.3711(2) 1.3046(2)
0.274 0.89669(5) 1.2368(4) 1.5139(3) 1.3686(2) 1.3028(1)
0.400 1.17560(5) 1.1752(2) 1.4312(2) 1.3199(1) 1.2660(1)
0.500 1.38750(4) 1.1440(2) 1.3854(2) 1.2943(1) 1.2465(1)
0.600 1.59311(4) 1.1204(1) 1.3464(1) 1.2734(1) 1.2316(1)
0.700 1.79313(4) 1.1018(1) 1.3107(1) 1.2535(1) 1.2183(1)
0.800 1.98751(3) 1.0867(1) 1.2771(1) 1.2328(0) 1.2046(0)

The older method is more complicated because it attempts
to determine the coupling at the same time as it determines
the functional dependence ofz(mηh

, µ = 3mh). In the new
method,z(mηh

, µ = 3mh) is replaced byzc(µ), whose de-
pendence onµ is knowna priori from perturbative QCD.
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