
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Arts and Humanities Plymouth Business School

2019-12-03

A FuzzyBased Risk Assessment

Framework for Autonomous Underwater

Vehicle UnderIce Missions

Loh, TY

http://hdl.handle.net/10026.1/14803

10.1111/risa.13376

Risk Analysis: an international journal

Wiley

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Risk Analysis DOI: 10.1111/risa.13376

A Fuzzy-Based Risk Assessment Framework for
Autonomous Underwater Vehicle Under-Ice Missions

Tzu Yang Loh ,1,∗ Mario P. Brito ,2 Neil Bose ,3 Jingjing Xu ,4

and Kiril Tenekedjiev 1,5

The use of autonomous underwater vehicles (AUVs) for various scientific, commercial, and
military applications has become more common with maturing technology and improved ac-
cessibility. One relatively new development lies in the use of AUVs for under-ice marine
science research in the Antarctic. The extreme environment, ice cover, and inaccessibility as
compared to open-water missions can result in a higher risk of loss. Therefore, having an
effective assessment of risks before undertaking any Antarctic under-ice missions is crucial
to ensure an AUV’s survival. Existing risk assessment approaches predominantly focused on
the use of historical fault log data of an AUV and elicitation of experts’ opinions for prob-
abilistic quantification. However, an AUV program in its early phases lacks historical data
and any assessment of risk may be vague and ambiguous. In this article, a fuzzy-based risk
assessment framework is proposed for quantifying the risk of AUV loss under ice. The frame-
work uses the knowledge, prior experience of available subject matter experts, and the widely
used semiquantitative risk assessment matrix, albeit in a new form. A well-developed exam-
ple based on an upcoming mission by an ISE-explorer class AUV is presented to demonstrate
the application and effectiveness of the proposed framework. The example demonstrates that
the proposed fuzzy-based risk assessment framework is pragmatically useful for future under-
ice AUV deployments. Sensitivity analysis demonstrates the validity of the proposed method.
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1. INTRODUCTION

1.1. Autonomous Underwater Vehicle

Autonomous underwater vehicles (AUVs) are
best described as self-powered robotic devices that
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are piloted and overall controlled by onboard com-
puter systems. Sometimes also referred to as an
unmanned underwater vehicle (UUV) or named un-
der model aliases, they are untethered and are pre-
programmed to perform various underwater data ac-
quisition missions. First developed in the late 1950s
by Stan Murphy, Bob Francois, and, later, Terry
Ewart from the University of Washington (Dixit,
Hazarika, & Davim, 2017), the use of AUVs has
grown with maturing technology and improved ac-
cessibility. Today, they are the tool of choice for
many scientific, commercial, and military applica-
tions such as mine clearing operations, feature track-
ing, cable or pipeline inspection, deep ocean explo-
ration, and even in air crash investigations (Le Hardy
& Moore, 2015; Naeem, 2002). AUVs come in dif-
ferent shapes and sizes depending on their built pur-
pose. They can have depth ability of 100 m to more
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than 5,000 m (Bellingham, 2010) and cost anything
from a hundred to hundreds of thousands of dollars
to construct.

When the first AUV, the Unmanned Arctic Re-
search Submersible (UARS) vehicle, was deployed
under the Arctic’s ice in 1972 (Francois & Nod-
land, 1972), it demonstrated not only the feasibil-
ity but also the potential of deploying AUVs in the
Antarctic for research applications. Concealed un-
der the Antarctic’s ice lies one of the more unique
ecological, geological, and physical oceanographic
ecosystems on the planet (Kunz et al., 2008). It har-
bors not only valuable information necessary for bet-
ter understanding of the Earth’s climate system and
biogeochemical cycles, but also offers insights into
other similar extreme environments such as that of
Jupiter’s moon, Europa (Lorenz et al., 2011).

However, under-ice AUV missions in the
Antarctic present a new set of challenges as com-
pared with open-water missions. The extreme envi-
ronment tests not only the technological limits of the
AUV, but it also challenges the onsite AUV team
both physiologically and psychologically (Gunder-
son, 1967). In addition, considerations are needed to
account for ice cover, inaccessibility, and emergency
abort procedures during missions. It is not surprising,
then, that the risk of AUV loss during under-ice mis-
sions in the Antarctic is higher when compared with
open-water missions (Brito, Griffiths, & Challenor,
2010). The term “AUV loss,” usually associated with
the complete loss of an AUV, can also represent an
AUV being destroyed or damaged beyond economic
repair. The risk of AUV loss, therefore, refers to the
likelihood that, during a mission, the AUV will be
rendered unusable for future missions.

Previous risk analysis on the Autosub3, an AUV
developed and owned by the National Oceanogra-
phy Centre, Southampton, UK, showed the median
probability of AUV loss for under sea-ice missions
to be 4.9 times higher than that of open-water mis-
sions. Risk of loss for under-ice shelf missions is even
higher, with a median probability 9.4 times higher
than open-water missions (Brito et al., 2010). As a re-
sult, the loss of AUV in the Antarctic is not without
its precedence: one of which was that of Autosub2,
lost in 2005 under the Fimbulisen ice-shelf with un-
known exact cause of loss (Griffiths & Collins, 2006).
A subsequent board of inquiry established that the
cause of Autosub2 loss was most likely due to a fault
introduced during the manufacturing/assembly phase
(Strutt, 2006). Seaglider SG522, owned by the Uni-
versity of East Anglia, UK, was lost at the Weddell

Sea in the Antarctic in 2012. The subsequent inquiry
panel concluded that an erroneous command script
placed Seaglider SG522 in an unsafe state that even-
tually resulted in its loss (Brito, Smeed, & Griffiths,
2014).

The loss of an AUV is not only financially costly
due to the resulting higher insurance premium for
all (if it is insured, or loss/rebuild costs if it is not),
it can also delay research projects, damage the rep-
utation of the AUV community, cause the loss of
valuable research data, and there is a possibility of
harming the delicate Antarctic environment (Grif-
fiths & Collins, 2006). As each Antarctic deployment
consists of several missions, the risk of loss for in-
dividual missions may accumulate beyond the pre-
determined acceptable risk level for the entire de-
ployment. Therefore, quantifying risk of loss prior
to under-ice missions in the Antarctic has important
implications for decision making, which may also in-
fluence the outcome of insurance coverage. In this
article, a fuzzy-based risk assessment framework is
proposed.

1.2. Risk Assessment Methodologies

Although debate exists over the precise defini-
tion for the term “risk,” the most widely adopted def-
inition is that risk is a combination of the severity
of an event (or scenario) and the likelihood of that
scenario occurring (Kaplan & Garrick, 1981). The
systematic process to comprehend the nature of risk
and to express the risk, under given circumstances,
is often called risk assessment (Glossary—The Soci-
ety for Risk Analysis, 2015), the intent of which is
to enhance the ability of an organization to achieve
its objectives. Over years of development, myriad
risk assessment methodologies have been proposed
in adaptation to different systems, industry, environ-
ments, components, or stages of processes. However,
there is no single method that suits all needs and mul-
tiple methods are often adopted for the assessment
of risks. The choice of method has often depended
on a variety of factors, such as the purpose of analy-
sis, nature of risk, and the availability and quality of
data.

Within the AUV domain, Griffiths and Brito
(Brito & Griffiths, 2016; Griffiths & Brito, 2008,
2011; Griffiths, Brito, Robbins, & Moline, 2009)
carried out extensive studies that laid the neces-
sary groundwork for structured, quantitative risk as-
sessment of AUV deployment. Probabilistic models
such as the Kaplan–Meier estimator, Bayesian belief
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Fig. 1. Risk management process for AUV operations, presented by Griffiths and Trembanis (Griffiths & Collins, 2006) (with permission
to reproduce).

network (BBN), and Markov chains were applied
on historical failure fault log data of the AUV, and
in synthesis with experts’ judgments, to predict the
probability of AUV loss. Thieme and colleagues
(Thieme & Schjølberg, 2015) proposed a risk as-
sessment framework consisting of human reliability
analysis, fault tree analysis, and event tree analysis
that also depended on professional judgment. Grif-
fiths and Trembanis (Griffiths & Collins, 2006) es-
tablished a risk management process to support de-
cision making with regard to AUV deployment. The
framework starts with the establishment of a risk-
acceptance level by the AUV owner and setting of
campaign requirements. In the risk assessment step,
the probability of AUV loss is derived from indepen-
dent experts’ opinion through prior experience and
the track record of the AUV (Fig. 1).

The origin of risk stems from uncertainties
(Leveson, 2011), which can be broadly classified

into aleatory and epistemic uncertainties. Aleatory
uncertainty, also known as irreducible uncertainty,
arises from the inherent variability associated with
the physical system or the environmental con-
text (Oberkampf, DeLand, Rutherford, Diegert, &
Alvin, 2002). For example, despite knowing the mean
time between failure (MTBF) for a specific AUV
component, the precise moment of component fail-
ure is still uncertain. Epistemic uncertainties, also
known as reducible uncertainty, exists due to a
lack of knowledge, incomplete information, limited
data, or ambiguity and vagueness attached to ex-
perts’ judgment (Oberkampf et al., 2002). An AUV
that has yet to be commissioned or relatively new
in operation will have a higher level of risk aris-
ing from epistemic uncertainties. With the opera-
tion of the AUV over time, the inflow of infor-
mation and gaining of experience will result in a
gradual reduction of epistemic uncertainties (Fig. 2).
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Fig. 2. The level of epistemic and aleatory uncertainties through-
out an AUV program life cycle.

Although generic data from other AUVs can be used
as a reference to reduce epistemic uncertainties, the
difference in specifications, manufacturers, design,
and systems can result in inaccurate risk assessment
outcomes.

Probabilistic approaches are often applied to as-
sess both aleatory and epistemic uncertainties, typi-
cally the relative frequency approach for the former
and the subjective probability approach for the lat-
ter (Li, Chen, & Feng, 2013). As a result, there are
many established probabilistic methodologies such as
Monte Carlo simulation or BBNs used for the as-
sessment of risk (Li et al., 2013). For handling the
vagueness and ambiguity of risk assessment, a fuzzy-
based approach is still the method of choice (Hel-
ton, Johnson, Oberkampf, & Sallaberry, 2010; Purba,
Sony Tjahyani, Ekariansyah, & Tjahjono, 2015; Un-
win, 1986), although the use of interval probabili-
ties may also provide a solution (Fletcher & Davis,
2002).

1.3. Fuzzy Set Theory

The concept of multivalued logic was introduced
by Lukasiewicz (Cignoli, 2007). Later, this concept
was generalized by Zadeh (1965) with mathematical
logic, establishing the fuzzy set theory. One key dif-
ference between fuzzy set theory and classical proba-
bility theory lies in its ability to account for vagueness
and ambiguity by representing a proposition with a
degree of ignorance.

Fundamental to the theory are the two main con-
cepts of linguistic variables and fuzzy sets. Linguistic
variables are used in day-to-day conversations to rep-
resent opinions, which are independent of the mea-
suring system and are easily comprehensible by most
listeners. For instance, “Weather Condition” during
AUV deployment is a linguistic variable if it is de-
scribed in linguistic terms of “bad,” “average,” and
“good.”

The second fundamental concept is fuzzy sets. In
contrast with traditional set theory where an object
either belongs to a set or not, every object (in the uni-
verse of discourse) belongs to a fuzzy set but with dif-
ferent membership function of 0–1 (Zadeh, 1965). To
illustrate this, consider the “five-by-five” risk assess-
ment matrix, which is a commonly used semiquan-
titative tool for assessing risks. The matrix, with an
example from the University of Tasmania shown in
Fig. 3, defines risk level by considering the likeli-
hood of occurrence and severity of consequence. It
is a practical and simple tool with widespread usage
across industries to assess risk and assist management
in decision making.

Based on traditional set theory, the risk assess-
ment matrix presents crisp boundaries between risk-
level categories, with the term “crisp” referring to

Fig. 3. A “five-by-five” risk matrix with the risk level of low, moderate, high, and extreme, represented by risk ratings of 1–25.
Source: University of Tasmania.
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Fig. 4. An example of membership value for “moderate” risk
(top) and graphical representation of the risk assessment matrix
shown in Fig. 3, illustrating the crisp boundaries between risk-level
categories (bottom).

quantitative or countable data (Ross, 2004). In the
matrix presented in Fig. 3, each risk rating number
from 1 to 25 belongs to a specific category of either
“low,” “moderate,” “high,” or “extreme.” Adopting
this strict interpretation means that two risks with
ratings of 11 and 12 will belong to two separate risk
levels of “moderate” and “high” despite being only
one rating apart. On the contrary, two risks with rat-
ings of 12 and 17 will belong to the same risk level of
“high” despite being five ratings apart. The graphical
representation in Fig. 4 shows an example of such a
crisp boundary. Such an approach cannot represent
vague concepts and can be unnatural, as it does not
match a human’s perception due to the sharply fixed
boundaries (Werro, Stormer, & Meier, 2006).

In contrast, fuzzy set theory takes a less rigid
view and reflects more naturally each element’s as-
sociation with a particular set. It does so by using
membership function µ(x) that assigns membership
values between 0 and 1 to its elements x, defined as:

µ (x) : X → [0, 1] . (1)

Applying fuzzy set theory to the risk assessment
matrix in Fig. 3 resulted in a gradual and smooth tran-
sition between risk-level categories as illustrated in
Fig. 5. A risk rating of 11 under the new fuzzy risk
assessment matrix now belongs to both risk-level cat-
egories of “moderate” and “high” with membership
function of 0.6 and 0.4, respectively.

Fig. 5. Graphical representations of the risk assessment matrix
(Fig. 3) after application of fuzzy set theory. Membership val-
ues (top) and smooth transition between risk-level categories
(bottom).

The application of fuzzy set theory for risk as-
sessments has garnered attention over the years with
application in various domains from nuclear power
plants (Rastogi & Gabbar, 2013) through construc-
tion (Zhang, Wu, Qin, Skibniewski, & Liu, 2016) to
medical fields (Lee & Wang, 2011; Steimann & Ad-
lassnig, 1998). It is also often used in synthesis with
other methodologies such as Bayesian network (BN)
(Eleye-Datubo, Wall, & Wang, 2008; Zhang et al.,
2016), system dynamics (Tessem & Davidsen, 1994),
or fault and event tree analyses (Ferdous, Khan,
Sadiq, Amyotte, & Veitch, 2011) to improve assess-
ment of risks. In the AUV domain, Bian, Mou, Yan,
and Xu (2009) proposed the use of a fuzzy fault tree
for technical reliability analysis of AUVs. The incor-
poration of fuzzy set theory into fault tree analysis
copes with the lack of data and accounts for uncer-
tainties in AUVs’ subsystem failure. Although the
study focused solely on technical reliability and not
on deployment risks, it demonstrated the potential
for application of fuzzy set theory in risk assessment
of AUV deployments. This work aims to present and
demonstrate the use of fuzzy set theory in a risk
assessment framework for AUV under-ice deploy-
ment. In Section 2, the details of the fuzzy-based
risk assessment framework are presented. Section 3
demonstrates application of the framework, with
a sensitivity analysis. Finally, Section 4 concludes
the article with a discussion of the benefits, draw-
backs, implications, and potential areas of continuing
research.
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Fig. 6. Overview of the steps involved in the fuzzy-based risk as-
sessment framework. Curved arrows represent the iterative nature
of the steps.

2. METHODOLOGY

2.1. Overview

The proposed fuzzy-based risk assessment
framework incorporates the generic architecture
of a fuzzy expert system (Mendel, 2001) with the
risk assessment process presented in widely used
international standards such as ISO31000 (Risk
Management) (International Standards Organisa-
tion, 2009) and ISO45001 (Occupational Health and
Safety) (International Standards Organisation, n.d.).
Based primarily on experts’ judgment, the three-step
iterative framework requires extensive discussion
with subject matter experts. The overview of the
framework is presented in Fig. 6.

2.2. Scenario Identification

Adopting and referencing international stan-
dards (International Standards Organisation, 2009;

International Standards Organisation, n.d.), the sce-
nario identification phase lays the foundation for risk
assessment by finding, recognizing, and describing
sources of risk. It consists of several tasks and should
be executed iteratively to ensure that objectives of
the risk assessment are met.

The first task aims to establish the available
sources of knowledge. In the early stages of an AUV
program, expert knowledge is often the only source
of information, and this can come from AUV engi-
neers and AUV program owners, as well as manu-
facturer or contractors. Additional information can
also be sought indirectly from experts in the form of
documentation such as technical specifications of the
AUV, safe work procedures, fault logs, risk assess-
ment records, program schedules, budget plans, pre-
vious audit findings, online articles or publications,
organization charts, or incident reports. For instance,
examining a budget plan can reveal budget priori-
ties and the AUV program’s financial condition. This
may be relevant to the risk assessment in terms of in-
frastructure investment, human resources, and tech-
nical maintenance. In addition, specific deployment
plans and expected performance requirements can
also hold important information about possible risk
variables influencing the risk of AUV loss.

The second task involves the identification of
risk variables in the form of linguistic variables and
the universe of discourse. The universe of discourse
is the numerical range of possible values associated
with the risk variable. There are two ways to accom-
plish this task:

(1) Through semistructured interviews and discus-
sion with subject matter experts.

(2) Through the extraction of information from
texts in documentation.

Important considerations for interviews are the
choice and number of experts necessary to capture
both spatial and temporal risk variables of interest.
Although there is no formal guidance tailored specifi-
cally to risk assessment of AUV operations, guidance
can be taken from the recommended selection cri-
teria published by Pulkkinen and Simola (2000) and
Kotra, Lee, and Dewispelare (1996). The number of
experts to interview lies between 6 and 12 as rec-
ommended by Cooke and Probst (2006). The even-
tual outcome of this task is a comprehensive list of
risk variables relevant to the AUV under assessment.
Using published risk studies, some risk variables in-
fluencing the risk of AUV loss during under-ice
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Table I. An Example of Risk Variables and Their Associated Universe of Discourse

Risk Variable Reference(s) Possible Universe of Discourse (Units)

Situation Awareness Ho, Pavlovic, and Arrabito (2011); Wu, Stuck,
Rekleitis, and Beer (2015); Parasuraman,
Sheridan, and Wickens (2008)

1–3 (dimensionless, level) (Endsley, 1995)

Annual Insurance Premium Griffiths, Bose, Ferguson, and Blidberg (2010) 0–12 (dimensionless, % capital cost)
Trust in the AUV Ho et al. (2011); Wu et al. (2015); Johnson, Patron,

and Lane (2007); Parasuraman (1997)
Arbitrary, 0–10 (dimensionless)

Distance of Mission Brito et al. (2010) 0–400 (km)
Maximum Depth of Mission Brito (2015) 0–5,000 (m)
Weather Condition Bolstad, Cuevas, Gonzalez, and Schneider (2005);

Brito and Griffiths (2016)
Arbitrary, 0–10 (dimensionless)

Average Experience of AUV Team
with Under-Ice Missions

Utne and Schjolberg (2014) 0–30 (years)

Operator Stress and Fatigue Level Bolstad et al. (2005); Palinkas (1992) Arbitrary, 0–10 (dimensionless)
Level of Interactions Within AUV

Team
Bolstad et al. (2005) Arbitrary, 0–10 (dimensionless)

Technical Reliability Ruff, Narayanan, and Draper (2002); Brito (2015);
Griffiths, Millard, McPhail, Stevenson, and
Challenor (2003)

0–20 (MTBF, years)

Level of Automation Ruff et al. (2002) 0–10 (automation level) (Endsley &
Kaber, 1999)

Mental Workload Ho et al. (2011); Wu et al. (2015); Parasuraman
(1997)

Arbitrary, 0–10 (dimensionless)

Operator Complacency Level Endsley and Kiris (1995) Arbitrary, 0–10 (dimensionless)
Time Duration Under Ice Brito, Griffiths, and Trembranis (2008) 0–48 (hours)

Table II. Example of Risk Variables and
Their Associated Fuzzy Sets

Risk Variable Fuzzy Set

Situation Awareness Poor, normal, good
Distance of Mission Short, average, long
Maximum Depth of Mission Shallow, intermediate, deep
Weather Condition Good, average, bad, severe
Average Experience of AUV

Team with Under-Ice Missions
Inexperienced, average,

experienced
Operator Stress and Fatigue Level Low, average, high, extreme
Time Duration Under Ice Short, medium, long

mission in the Antarctic and their possible associated
universe of discourse are presented in Table I.

The next task involves the definition of fuzzy sets
and membership functions using the same sources of
information as in the previous task. To ascertain the
fuzzy set, a list of typical adjectives associated with
each risk variable is identified. Using some of the risk
variables from Table I as an example, this task will
result in an output similar to one shown in Table II.

To define the membership functions, experts’
opinion can be elicited using matrices, which are de-
pendent on the adopted distribution shapes, for in-

stance, bell shaped, Gaussian, triangular, or trape-
zoidal (Jang, Sun, & Mizutani, 1997). The choice of
distribution shape is problem dependent and reflects
how experts relate the range of possible values to
the fuzzy set. However, both triangular and trape-
zoidal shapes are most commonly used because of
their effectiveness in capturing subjective and impre-
cise information, as well as being simple to compute
(Barua, Mudunuri, & Kosheleva, 2014; Chang, Yeh,
& Wang, 2007; Kannan, De Sousa Jabbour, & Jab-
bour, 2014). A triangular membership function is de-
fined by a lower limit a, an upper limit c, and a most
likely value b, as shown in Fig. 7(a). A trapezoidal
membership function is defined by a lower support
margin a, a lower core margin b, an upper core mar-
gin c, and an upper support margin d, as shown in
Fig. 7(b). Table III shows an example of a matrix
to define membership function for the risk variable
“Maximum Depth of Mission,” with the graphical
representation shown in Fig. 8.

Finally, if more than one expert is elicited in the
earlier described tasks, aggregation of different opin-
ions will be required. Several aggregation methods
have been proposed in the literature, a summary of
which are described below:
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Fig. 7. Types of membership functions (a) Triangular membership function. (b) Trapezoidal membership function.

Table III. Matrix to Elicit Experts’ Opinion for Risk Variable
“Maximum Depth of Mission”

Maximum Depth of Mission (0–5,000 m)

Membership Functions

Fuzzy Sets Min (m) Most Likely (m) Max (m)

Shallow 0 500 750
Intermediate 250 750 1,500
Deep 750 1,500 5,000

Fig. 8. Membership function for the risk variable “Maximum
Depth of Mission.”

(1) For each fuzzy set, use the lowest and greatest
value provided by experts as the lower bound
and upper bound. The average value is then
used as the modal value (Tadic, Milanovic,
Misita, & Tadic, 2011).

(2) The similarity aggregation method (SAM)
(Hsu & Chen, 1996), which uses a similarity in-
dex to measure the consistency of each opinion
from others. Other aggregation methods based
on SAM can also be used, such as the con-

sistency aggregation method (CAM; Lu, Lan,
& Wang, 2006) and the optimal aggregation
method (OAM; Lee, 2002).

(3) The Delphi method (Rowe & Wright, 1999)
where opinions of experts are made to con-
verge through iteration until it meets pre-
defined criteria. The fuzzy Delphi method
(FDM) draws ideas from fuzzy theory in syn-
thesis with the original Delphi method. It uses
a similarity function to assess the level of con-
sistency between experts. The similarity coef-
ficient is then used to derive the fuzzy evalua-
tion value of all experts. (Ishikawa et al., 1993).

2.3. Analysis

The analysis step aims to understand the nature,
effects, and relationships of risk variables by eliciting
and constructing fuzzy rules. A fuzzy rule infers in-
formation using linguistic variables and fuzzy sets to
derive an output. Although there are several forms of
fuzzy rules, one of the simplest representations uses
IF–THEN rule statements in the form of:

IF Risk Variable is x THEN Risk of Loss is y,

where x and y are adjectives associated with the risk
variable and risk of loss, respectively. The fuzzy rule
can also be in the form of AND and OR statements,
such as:

IF weather condition is bad, AND the AUV team is
inexperienced,

THEN risk of AUV loss is high.

For intuitive elicitation of a fuzzy rules base,
a hypercube matrix can be used. A hypercube is
a geometric shape of n-dimensions, determined by
the number of input risk variables (McNeil & Thro,
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1994). For instance, a four-dimensional hypercube
can be used for a fuzzy system consisting of four
input risk variables and a three-dimensional (3D)
hypercube for a three-input risk variable fuzzy sys-
tem. Although fuzzy rules can be established using
the same sources of information as earlier steps in
the risk assessment framework, the process can be-
come increasingly complex with the number of iden-
tified risk variables. This phenomenon, where the
number of fuzzy rules increases exponentially with
the number of inputs, is known as the “curse of di-
mensionality” (Kosko & Isaka, 1993). One common
method to overcome the curse of dimensionality is
to implement the use of a hierarchical fuzzy system
(Raju, Zhou, & Kisner, 1991). The idea is to decom-
pose a large fuzzy logic unit (Fig. 9(a)) into several
smaller, related fuzzy logic units that are then inter-
connected according to a given topology (Raju et al.,
1991) (Figs. 9(b) and (c)). Each single fuzzy logic
unit consists of a fuzzifier, membership functions, a
fuzzy rule base, an inference engine, and a defuzzi-
fier (Ross, 2004). Adopting a hierarchical fuzzy sys-
tem reduces the total number of fuzzy rules that con-
sequently reduces computational time and increases
the efficiency of the system (Raju et al., 1991). As an
example, an aggregated hierarchical fuzzy system is
presented in Fig. 10 using some risk variables from
Table I.

In the process of establishing of fuzzy rules, ex-
perts may provide differing opinions, resulting in
redundant, inconsistent, or conflicting rules. This
can affect the risk assessment outcome and inter-
pretability of the model (Alcalá, Casillas, Cordón,
González, & Herrera, 2005). Several methods have
been proposed in the literature to overcome this,
such as complexity reduction with fuzzy clustering
techniques, rule reduction by orthogonal transforma-
tion methods, algorithms based on similarity mea-
sures, and genetic optimization (Roubos & Setnes,
2000).

Upon establishment of fuzzy rules, the next task
is to formulate the mapping from inputs to out-
put in a process called fuzzy inference. Two most
commonly used fuzzy inference methods are the
Mamdani (Mamdani & Assilian, 1975) and Sugeno
(Sugeno, 1985) inferences. The fundamental differ-
ence between these two methods lies in the way out-
puts are represented and determined (Kaur & Kaur,
2012; Ying, Ding, Li, & Shao, 1999). Mamdani infer-
ence uses defuzzification of a fuzzy output to gen-
erate a crisp output while Sugeno inference uses a
weighted average to compute the crisp output (Mam-

Fig. 9. (a) A single-layer fuzzy system consisting of four risk vari-
ables as input and risk of loss as output. (b) An aggregated hierar-
chical fuzzy system based on (a). (c) An incremental hierarchical
fuzzy system based on (a).

dani & Assilian, 1975; Sugeno, 1985). The Mam-
dani method is widely accepted for capturing expert
knowledge and is more intuitive, while the Sugeno
method works well with optimization and adaptive
techniques, particularly for dynamic nonlinear sys-
tems (Kaur & Kaur, 2012; Ying et al., 1999). An ex-
ample of the fuzzy inference process is presented in
Section 3.3. Defuzzification is the process of deriv-
ing a quantifiable output from the fuzzy system. Con-
sider the following rule:

IF weather condition is bad, THEN risk of AUV loss is
high.
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Fig. 10. Example of an aggregated hierarchical fuzzy system.

Defuzzification translates “high” into a quan-
tifiable risk level, such as a risk rating value based
on the organizational risk matrix (Fig. 3.). There
are several defuzzification methods, such as the cen-
troid method, weighted average method, center of
sums, center of largest area, mean-max member-
ship, and max-membership principal (Leekwijck &
Kerre, 1999; Zhao & Govind, 1991). Each method
has its advantages and disadvantages, and the ap-
propriate defuzzification method should be chosen
based on nature of the problem, the number of input
and output variables, and sensitivity of the method
(Chmielowski, 2015).

The final task of the risk analysis step is to eval-
uate and fine-tune the system. Despite being a time-
consuming process, proper execution of this task im-
proves reliability of the risk assessment and ensures
that original objectives are met. Carried out in close
consultation with experts and decisionmakers, this
task involves one or more adjustments of fuzzy rules
and fuzzy sets (Table IV).

2.4. Evaluation

The objective of the risk evaluation step is to
support decision making through significance of the
results derived from the risk analysis step, the signif-
icance of which is based on its acceptability in rela-
tion to predetermined evaluation criteria set by the
AUV owner, higher management of the organiza-
tion, or external groups. External groups that may

Table IV. List of Fine-Tuning Actions

Fuzzy Rules Adjustment

(1) Add, reduce, or optimize fuzzy rules.
(2) Add hedge operators by using adverbs such as “very,”

“somewhat,” or “indeed.”
(3) Adjust rule execution weights to increase or reduce the

force of any fuzzy rules.

Fuzzy Sets Adjustment

(1) Add fuzzy sets.
(2) Widen or narrow existing sets by reviewing membership

functions.
(3) Shift existing fuzzy sets to ensure sufficient overlaps.
(4) Review and adjust the shape of existing fuzzy sets.

exhibit interest in the results of the risk assessment
may include insurance companies and the regulators.
An acceptable probability of AUV loss based on the
capital and operating cost of the AUV (Griffiths &
Collins, 2006) is an example of evaluation criteria.
However, for an AUV program in its early phases,
the evaluation criteria may be uncertain and yet to
be established. In such circumstances, the organiza-
tional safety and health standard can be used as a
good starting reference for criteria setting.

At the fundamental level, the risk of AUV loss
will be either acceptable or unacceptable, as de-
cided by the AUV owner. If deemed acceptable, the
Antarctic under-ice mission can proceed under close
monitoring and regular review to ensure that risk re-
mains acceptable. If unacceptable, the AUV owner
has to make decisions taking into consideration
available resources and time constraints, which may
include:

(1) Whether the deployment should proceed by
accepting a higher risk of loss.

(2) Whether treatments are required, taking into
consideration the adequacy of existing control
measures.

(3) The priorities for risk treatment.

Although risk evaluation is the last step of the
proposed risk assessment framework (Fig. 6), analy-
sis of new information and filling of data gaps needs
to be performed on a regular basis. This iterative pro-
cess helps ensure relevancy and effectiveness of the
risk assessment.
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3. EXAMPLE OF APPLICATION

3.1. Description

To demonstrate application of the fuzzy-based
risk assessment framework, an example based on the
nupiri muka AUV program is presented. The pro-
gram was funded by the Antarctic Gateway Part-
nership, an Australian government initiative to build
further polar research capability in Tasmania. The
explorer-class AUV was named nupiri muka, which
means “Eye of the Sea” in palawa kani, the language
of Tasmanian Aborigines (UTAS, 2017). The pro-
gram aims to acquire high-resolution data under sea
ice and ice shelves in Antarctic regions. Capable of
exploring depths of up to 5,000 m and with a present
cruising range of 140 km, the AUV is able to conduct
long-range under-ice operations with its diverse sci-
entific payload. Delivered in May 2017, the AUV was
relatively new at the time of writing and has very lim-
ited historical failure fault log data. Initial semiquan-
titative risk assessment was performed in accordance
to the Work Health and Safety Policy stipulated by
the University of Tasmania (Work Health and Safety
Policy—University of Tasmania, 2013) and leverag-
ing on prior experience of the AUV team.

To apply the proposed fuzzy-based risk assess-
ment framework, the risk assessment matrix recom-
mended under the University of Tasmania’s Work
Health and Safety Policy (Fig. 3) was converted to
a fuzzy risk assessment matrix (Fig. 5) as the out-
put of the risk model. Assessment on risk of AUV
loss was carried out on a planned deployment to the
Sørsdal Glacier in Antarctica (Fig. 11), expected to
take place between December 2018 and February
2019. Although the exact details of the marine scien-
tific research missions have yet to be decided at the
time of writing, there will likely be five to six mis-
sions comprising both open-water and under-ice op-
eration. One of the proposed missions requires the
nupiri muka to travel approximately 100 km from

Fig. 11. Map showing location of the Sørsdal Glacier in the
Antarctic (photo: AADC).

launch to recovery, with six hours under an ice shelf
at a maximum depth of around 800 m. Likely the
longest mission for this deployment in terms of both
distance and time duration, the fuzzy-based risk as-
sessment framework was applied to determine the
risk level of this mission.

3.2. Scenario Identification

In this initial step, five risk variables, their as-
sociated universe of discourse, and fuzzy sets were
identified (Table V). These were based on best avail-
able deployment information at the time of writing,
as well as through available sources of knowledge
and information, which included in-house AUV engi-
neers, technical specifications of the AUV, safe work
procedures, risk assessment records, and literature.

To define membership functions, a mixture of tri-
angular and trapezoidal membership functions was
used for elicitation after considering their advan-
tages (Section 2.2). The resultant membership func-
tions are represented graphically and presented in
Figs. 12(a)–(e). For the risk variable “Weather Con-
dition,” there are existing weather classification sys-
tems being used, such as the classification by Mc-
Murdo Weather Office (Mac Weather) (McCormick

Table V. Identified Risk Variables, Universe of Discourse, and Fuzzy Sets

Risk Variable Universe of Discourse Fuzzy Set

Distance of Mission 0–140 (km) Short, average, long
Maximum Depth of Mission 0–5,000 (m) Shallow, intermediate, deep
Time Duration Under Ice 0–24 (hours) Short, medium, long
Weather Condition 0–10 (dimensionless) Good, average, bad, severe
Average Experience of AUV Team with Under-Ice

Missions
0–10 (years) Short, average, long
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Fig. 12. Membership function for the identified risk variables. (a) “Distance of Mission.” (b) “Maximum Depth of Mission.” (c) “Time
Duration Under Ice.” (d) “Weather Condition.” (e) “Average Experience of AUV Team with Under-Ice Missions.”

& Mastro, 2002) for Antarctica. However, an arbi-
trary scale of 0–10 was in this case used for simplicity,
where 0 represents excellent weather and 10 repre-
sents extreme weather.

3.3. Analysis

To facilitate the construction of fuzzy rules, an
incremental hierarchical fuzzy system, as shown in

Fig. 13, was used. “Distance of Mission,” “Maximum
Depth of Mission,” and “Time Duration Under Ice”
were grouped under “Mission Profile Risk” while
“Weather Condition” and “Average Experience of
AUV Team with Under-Ice Missions” were separate
input to “Risk of AUV Loss.”

For elicitation of a fuzzy rules base, a 3D hyper-
cube matrix consisting of three input risk variables
and one risk-level output were used (Fig. 14). The
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Fig. 13. The risk variables in an incremental hierarchical fuzzy sys-
tem.

Fig. 14. A 3D hypercube matrix to elicit experts’ opinion on the
construction of fuzzy rules for “Mission Profile Risk.”

cube was further sliced into separate tables as shown
in Table VIA, where there were three slices, and
Table VIB, where there were four slices. These ta-
bles represent a series of IF–THEN rules such as:

IF Distance of Mission is Short AND Time Duration
Under Ice is Short AND Max. Depth of Mission is Shal-
low THEN Mission Profile risk is Low.

For the next task of fuzzy inference, the Mam-
dani method was adopted as it is widely accepted
for capturing experts’ knowledge (Kaur & Kaur,
2012). Many methods exist for the composition of

fuzzy relations for use in Mamdani inference. Ex-
amples include min–max, max–max, min–min, max–
min, and max–product. Among these, the max–min
and max–product inference are the most commonly
used (Nasr, Rezaei, & Barmaki, 2013). In max–min
inference, the inferred output of each rule is a fuzzy
set chosen from the minimum firing strength, which
is the degree to which the rule matches the input
(Mamdani & Assilian, 1975). The resultant output set
has its membership function cut off at the top, result-
ing in some information loss. In the max–product in-
ference, the inferred output of each rule is a fuzzy
set scaled down by its firing strength via an algebraic
product (Mamdani & Assilian, 1975). This way, the
original shape of the fuzzy set is preserved, resulting
in less information loss as compared to max–min in-
ference (Senthil Kumar, 2014; Zimmermann, 2001).
Therefore, the max–product inference was adopted
for this example. To apply the max–product infer-
ence, consider two rules with three risk variable (RV)
inputs and one risk-level (RL) output of the follow-
ing form:

IF RV1 is LA and RV2 is LB and RV3 is LC THEN
RL = PD,

IF RV1 is LW and RV2 is LX and RV2 is LY THEN
RL = PZ.

Note that L and P are adjectives of the fuzzy set
associated with the risk variables and risk level, re-
spectively. The alphabetical subscripts differentiate
different values of L and P. The aggregated output
membership function µQ(RV,RL), which is a func-
tion of both the input risk variables and output risk
levels, can then be calculated as:

Max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(µLA (RV1) , µLB (RV2) ,

µLC (RV3))µPD (RL) ,

min(µLW (RV1) , µLX (RV2) ,

µLY (RV3))µPZ (RL)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

To demonstrate the Mamdani max–product
inference, two fuzzy rules were extracted from
Table VIA of the following form:

IF Distance of Mission is Long and Maximum Depth
of Mission is Intermediate and Time Duration Under
Ice is Medium, THEN Mission Profile Risk = High
IF Distance of Mission is Long and Maximum Depth
of Mission is Deep and Time Duration Under Ice is
Medium, THEN Mission Profile Risk = Extreme.
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Table VIA. Fuzzy Rule Table for “Mission Profile Risk”

Time Duration Under Ice

Short Medium Long

Maximum Depth of Mission—shallow
Distance of Mission Short Low Low Moderate

Average Low Moderate High
Long Moderate High Extreme

Maximum Depth of Mission—intermediate
Distance of Mission Short Low Moderate High

Average Low High Extreme
Long Moderate High Extreme

Maximum Depth of Mission—deep
Distance of Mission Short Moderate High High

Average High High Extreme
Long High Extreme Extreme

Table VIB. Fuzzy Rule Table for “Risk of AUV Loss”

Average Experience of AUV Team

Experienced Average Inexperienced

Weather Condition—good
Mission Profile Risk Low Low Low Moderate

Moderate Low Low Moderate
High Moderate Moderate High

Extreme High High Extreme
Weather Condition—average
Mission Profile Risk Low Low Low Moderate

Moderate Moderate Moderate Moderate
High Moderate High High

Extreme High High Extreme
Weather Condition—bad
Mission Profile Risk Low Moderate Moderate High

Moderate Moderate High High
High High High Extreme

Extreme Extreme Extreme Extreme
Weather Condition—severe
Mission Profile Risk Low High High Extreme

Moderate High Extreme Extreme
High Extreme Extreme Extreme

Extreme Extreme Extreme Extreme

Using the max–product inference, the aggre-
gated output membership function µQ can be calcu-
lated as:

Max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(µLong (Dist) , µInt (Depth) ,

µMed (Time)) µHigh (Risk) ,

min(µLong (Dist) , µDeep (Depth) ,

µMed (Time)) µExt (Risk)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The graphical representation in Fig. 15 shows the
aggregation of output membership functions for each

rule to result in µQ. Essentially, µQ is comprised of
the outer envelopes of the individual truncated mem-
bership forms for each rule.

For defuzzification, the commonly used cen-
troid method was chosen for this example. It
has the advantage of being well balanced, sensi-
tive to the height and width of the fuzzy out-
put, and provides consistent results (Negnevitsky,
2005). The centroid method defuzzifies by finding a
point representing the center of gravity of the ag-
gregated fuzzy set. For a fuzzy set A, the center
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Fig. 15. The graphical representation of Mamdani max–product inference.

Fig. 16. The centroid method of defuzzification.

of gravity X* can be expressed mathematically as
(Fig. 16):

X∗ =
∫

µA(x)x dx∫
µA(x)dx

.

The fuzzy inference and defuzzification process
were implemented using MATLAB R© fuzzy logic
toolbox 2017 (Fuzzy Logic Toolbox User’s Guide,
2017). An example of the graphical interface is shown
in Fig. 17. In the interface, membership functions
from Figs. 12(a)–(c) and fuzzy rules from Table VIA
were used as inputs to the model to assess “Mission
Profile Risk.” The fuzzy risk assessment matrix in
Fig. 5 was used as the output. Using the above in-
formation, the proposed mission with a distance of
100 km, maximum depth of 800 m, and six hours un-

der ice will have a mission profile risk rating of 14.97.
Under the University of Tasmania’s organization’s
risk assessment matrix, a risk rating of 14.97 falls into
the “high risk” category.

In the next level of the hierarchical fuzzy system
(Fig. 13), the risk of AUV loss was computed using
“Mission Profile Risk,” “Weather Condition,” and
“Average Experience of AUV Team with Under-
Ice Missions” as inputs. The average experience of
the team is approximately three years, information
attained by speaking with the team. In the Antarc-
tic, December to February is the summer season
with generally lower precipitation and wind speeds
as compared to the winter season. Sørsdal Glacier,
which is near to Davis Station, has a relatively milder
climate due to the surrounding Vestfold Hills (Aus-
tralian Antarctic Division, 2015). Despite this, the
weather conditions in Antarctica can be highly dy-
namic and unpredictable (Carrkre, 1990). Therefore,
it can be assumed at this stage that the weather is
“good” with a rating of 2 of 10, with 10 being the
most extreme weather expected. Using Simulink R©

software to construct the hierarchical fuzzy system as
presented in Fig. 18, it was now possible to estimate
the risk of AUV loss.
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Fig. 17. The graphical interface of MATLAB Fuzzy Logic Toolbox showing “Mission Profile Risk.”

Fig. 18. The hierarchical fuzzy system constructed using Simulink R© to assess “Risk of AUV Loss.”

The resultant risk level for the risk of AUV loss
has a rating of 11.5. Apart from achieving a numer-
ical risk level, the behavior of the risk variables and
the risk of AUV loss can also be studied using 3D
plots. An example showing the influence of “Mission
Profile Risk” and “Weather Condition” over “Risk
of AUV loss” is shown in Fig. 19.

3.4. Evaluation

In the evaluation step, the significance of the re-
sult is used to support decision making. Referring to
the University of Tasmania’s “five-by-five” risk as-
sessment matrix (Fig. 3), the risk rating of 11.5 falls
between the “moderate” and “high” risk-level cate-
gories (Fig. 20).
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Fig. 19. A 3D plot showing the behaviour of model output with
changes to model inputs.

Fig. 20. Risk rating of 11.5 on the University of Tasmania’s risk
matrix.

Consequently, a set of actions can be determined
using the Risk Management Standard from the Uni-
versity of Tasmania (Table VII) (Work Health and
Safety Policy—University of Tasmania, 2013) as the
evaluation criteria.

To err on the conservative side, the requirements
for “high” risk level should be considered. Under the
standard, a mission with “high” risk level requires ap-
proval from heads of school, budget centers, or staff
on authorized job risk analysis. The audit and risk
committee of the council and senior management
team have to be kept informed of the mission and
risk control measures reviewed annually. The risk of
AUV loss is also to be included in strategic and capi-
tal planning and fiscal strategies.

3.5. Sensitivity Analysis

A sensitivity analysis was performed on the
model to examine how changes to each risk variable
input can affect the risk rating output. Using the es-
tablished model in Fig. 20 as the base model, each in-
put risk variable was then changed sequentially while
the values of other risk variables remained constant.
The universe of discourse for each risk variable was
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Fig. 21. Sensitivity analysis of how changes to each risk variable
input affect the risk rating output.

divided into 10 equal incremental parts for the anal-
ysis, starting with minimum value. Graphical repre-
sentation of the results is shown in Fig. 21.

The result of the analysis shows that the risk rat-
ing output is most sensitive to “Time Duration Un-
der Ice,” with an increase of 215% from a risk rating
of 5.81–18.31 when time duration under ice increases
from 0 to 9.6 hours. This is followed by risk vari-
ables “Distance of Mission,” “Maximum Depth of
Mission,” “Average Experience of AUV Team with
Under-Ice Missions,” and, finally, “Weather Condi-
tion” toward which risk rating is least sensitive. The
close similarity of sensitivity between “Time Dura-
tion Under Ice,” “Distance of Mission,” “Maximum
Depth of Mission” to risk rating is expected due to
some degree of proportionality. The result of the sen-
sitivity analysis can also be used for identification of
leverage points setting priorities for risk control. For
instance, a reduction of “Time Duration Under Ice”
from six hours to five hours reduces the eventual risk
rating for AUV loss from 11.5 to 9.9.

It is difficult to validate the model at this stage
without actual under-ice deployment and a lack of
historical data record for the nupiri muka AUV.
However, when results of the sensitivity analysis
were compared to the risk and reliability analysis of
Autosub 6000 AUV (Brito, 2015), the findings were
found to be quite similar. In the report on Autosub
6000 AUV, mission distance and depth were ana-
lyzed against risk of AUV loss. The result shows the
probability of loss increasing at a near constant rate
before plateauing off at about 90 km. For depth of
mission, the probability of loss remains nearly con-
stant from 1,000 m to 2,500 m before a large in-
crease in risk occurs at greater than 2,500 m depth.
In the sensitivity analysis for nupiri muka AUV, risk-
level plateaus off at 84 km for distance of mission
and remains constant after 1,500 m of mission depth
(Fig. 21).

4. DISCUSSION AND LIMITATIONS

cation of fuzzy-based risk assessment has its
disadvantages. In this section, we will discuss the ap-
proach proposed, focusing on its limitations. Subject
matter experts can sometimes have incomplete and
episodic knowledge, especially when there is a lack
of data. This can result in incorrect or incomplete
fuzzy rule bases for the inference system, which
lowers the model performance. Therefore, it is im-
perative that a suitable judgment elicitation process
is adopted to enable reproducibility of the results.
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In addition, redundant, inconsistent, or conflicting
rules may be encountered during elicitation of fuzzy
rules. Consequently, a significant amount of time is
required to overcome this and fine-tune the model.
Therefore, similar to formal judgment elicitation
methods, the proposed method must be applied
iteratively. The inability to self-learn means the
model requires consistent regular review of rules and
membership functions to ensure relevancy.

To overcome some of these drawbacks and
present a better risk assessment approach for the
AUV community, further research can follow three
tracks. (1) Expand on the list of risk variables as input
into the fuzzy-based risk model. This includes having
a more robust method for identifying risk variables
and the use of both crisp and fuzzy risk variables in
the model. (2) Develop and explore risk aggregation
methods for the fuzzy-based risk models to establish
a risk level for an entire AUV deployment. This usu-
ally includes a number of open-water missions and
under-ice missions during the deployment. Other as-
pects of the deployment such as launch and recovery
as well as transportation of the AUV should also be
considered. (3) Identify and quantify potential causal
relationships between risk variables to better under-
stand systemic behaviour. This can be performed
with fuzzy cognitive maps or synthesising fuzzy
logic with system dynamics or structural equation
models.

There are different types of AUVs. Many faster
vehicles (1 m/sec and more) have an endurance of
days while slower buoyancy-driven vehicles (such
as underwater gliders) or propeller-driven vehicles
(speed less than 1 m/sec) tend to have an endurance
of months. AUVs also vary in terms of operating
depth and the required human effort for opera-
tion. Different AUV characteristics imply different
membership functions and different risk variables
influencing its risk of loss. When using the proposed
method one must be aware of this and update the
membership functions and, potentially, the fuzzy
rules according to the vehicle characteristics. As
a result, the risk profiles for different AUVs also
differ.

5. CONCLUSION

In this article, a fuzzy-based risk assessment
framework for under-ice AUV missions in the
Antarctic is presented. The use of a fuzzy-based ap-
proach is especially well suited for an AUV program
in its early phases due to the lack of historical fault

log data for precise quantification of risks. It also
takes into account the vagueness and ambiguity of
many risk variables that are difficult to quantify and
are usually described in natural language. The frame-
work facilitates the capturing of knowledge and ex-
perience from subject matter experts to derive a
quantifiable risk-level output. This output can then
be evaluated against a set of risk criteria to aid deci-
sion making or to be used relatively to compare risks
of different missions. Additionally, the framework
can also be applied directly in the field during a de-
ployment to assess risk in response to changes in sit-
uation. These benefits are the reasons the proposed
fuzzy-based risk assessment framework is pragmati-
cally useful for future under-ice AUV deployments.

Sensitivity analysis enables the user to tune the
model for particular risk scenarios. Our sensitivity
analysis has considered five risk variables, but more
variables could have been included in this analy-
sis. We could have included other environmental
and operational variables such as the distance be-
tween the AUV and the seabed, the presence of
icebergs, and others. We could also have included
more detailed characteristics of the launch and recov-
ery systems. The variables considered in this analy-
sis were those deemed more important for the forth-
coming deployment under the Sørsdal Glacier in the
Antarctic.

Advancement of this work can potentially
further its application outside the AUV domain. For
complex new technology, there is often an absence
of hard data and of expertise. This uncertainty
is present in risk matrices used by organizations
that are now adopting AUVs. We have proposed
a method to homogenize the risk assessment used
by organizations with those used for quantifying
AUV risk. In doing so, a new methodology for AUV
under-ice mission risk calculation is proposed. The
fuzzy risk assessment framework can be adopted for
other complex technologies such as other unmanned
marine surface vessels or unmanned aerial vehicles
(Marconato et al., 2016; Porathe, 2013), where there
is an apparent lack of data. The difference between
the AUV applications and others is in the variables
considered and their dependencies. For example,
with respect to an AUV mission under ice, the
mission profile risk must be calculated based on the
Distance of Mission, Max Depth of Mission, and
Duration Under Ice. If we apply this methodology to
other technology, for example, to an unmanned ship,
the mission profile risk would have to consider other
variables.
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